Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank

Iván De la Cruz-Loredo a,b,∗, Daniel Zinsmeister b, Thomas Licklederer b, Carlos E. Ugalde-Loo a, Daniel A. Morales a, Héctor Bastida a, Vedran S. Perić b, Arslan Saleem a

a Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA, Wales, UK
b Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, Lichtenbergstraße, Munich, 85748, Germany

1. Introduction

Thermal energy storage (TES) plants are widely used in thermal networks to allow their flexible operation through the efficient and timely management of thermal energy supply and demand [1]. This brings well-known environmental and economic benefits, such as the reduction of CO2 emissions, lower energy generation costs, and reduced systems’ operational costs [2]. Although different TES technologies with a higher energy density are available in the market such as those based on latent heat (and phase change materials), hot water TES units are extensively used due to their low cost, simplicity, and favourable thermal properties [3].

The analysis, dynamic simulation, and control design of hot water tanks may be facilitated by adopting one-dimensional (1-D) models which accurately predict their performance and state-of-charge (SoC). Simultaneously, these models must achieve a trade-off between accuracy and complexity to reduce their computational cost. The standard multi-node modelling approach is commonly adopted in the literature and available in commercial software due to its simplicity. Highly spatially discretised multi-node models are usually adopted to overcome the numerical diffusion inherent to the modelling approach for forced convection heat transfer and accurately capture sudden temperature transitions [4,5]. However, a high number of nodes increases model complexity and simulation times without guaranteeing the accuracy of the results.

An insightful comparison of 1-D multi-node tank models with a different number of nodes is carried out in [6] for two experimental hot water tanks. Although a direct relationship between the number of nodes and the accuracy of the model could be drawn during a charging process which exhibits significant flow disturbances at the inlet, the accuracy of the results observed in the discharging of the second tank is low. In addition, a reduced accuracy is observed when the number of nodes used to model the second tank increases. This decreased accuracy is especially noticeable for reduced water flow rates, which facilitate thermal stratification by preventing mixing within the tank [7]. Thus, 1-D models that accurately represent hot water tanks exhibiting a high extent of thermal stratification are still needed.

Although the verification of a few 1-D hot water tank models has been reported in the literature, the potential variations in the stratification and sudden temperature changes during charging and discharging operations have been mostly disregarded. Ref. [8] illustrates how significant these differences may be following a theoretical
and experimental characterisation of thermal stratification for practical tanks. Therefore, accurate models with a reduced spatial resolution and easily adaptable for different thermal stratification conditions during charging and discharging are yet to be developed. Such less computationally intensive models would be desirable for a real-time accurate calculation of the tank’s SoC, which would, in turn, lead to a more effective operation of a hot water tank within a heating system.

This paper presents a novel 1-D multi-node model based on hybrid continuous–discrete time systems. The modelling approach aims to increase the accuracy of standard 1-D multi-node models for simulating hot water tanks operating with a high extent of thermal stratification. The model includes a discrete variable to define the vertical position of a flat thermocline barrier used to describe where sudden temperature transitions occur within the tank. This is in turn used to update the reference temperature employed in the calculation of the node temperatures. The model is capable of:

1. Capturing the delayed temperature transition in the nodes due to the transport effect of the thermocline through the tank’s height.
2. Reducing the numerical diffusion of the tank model without increasing its spatial resolution.
3. Accurately representing the extent of thermal stratification during charging and discharging of the tank by including the effect of the thermocline displacement in the calculation of node temperatures, as convenient.

A 1-D hybrid continuous–discrete time TES tank model with 12 nodes was implemented in MATLAB/Simulink, given the software’s capabilities to simulate hybrid systems, and validated using experimental data of a complete charging and discharging cycle of an actual hot water TES unit. The hot water tank operates with a low thermal stratification during charging and a high thermal stratification during discharging. Thus, the variable capturing the effect of the thermocline...
I. De la Cruz-Loredo et al.

Fig. 1. Charging (left) and discharging (right) processes of a fully stratified TES tank.

Fig. 2. System configurations for a hot water TES tank connected to: (a) a temperature-regulated heat source and a temperature-regulated heat sink; (b) a power-regulated heat source and a temperature-regulated heat sink; (c) a power-regulated heat source and an unregulated heat sink.

displacement was introduced during the discharging of the tank model only. For completeness, the simulation results obtained from the presented hybrid 12-node tank model were compared with those obtained using standard multi-node tank models. As demonstrated by an error analysis, the results from the hybrid 12-node tank model exhibit a good agreement with experimental temperature measurements and the SoC, enhancing the accuracy of the solution during the discharging process with respect to the standard tank models. It is also demonstrated that a standard 60-node model exhibits a reduced fidelity for calculating the temperature gradient and the SoC of the tank during the discharging process, regardless of its higher spatial resolution.

The remainder of the paper is organised as follows. Section 2 provides a background and literature review on the thermal stratification, characterisation, and 1-D multi-node modelling of hot water-based TES tanks. Section 3 introduces the 1-D hybrid continuous-discrete multi-node tank modelling approach. Section 4 describes the experimental setup and the model of the practical hot water TES tank investigated in the paper. Section 5 presents the experimental validation of the hybrid model and a comparison with the standard modelling approach. Section 6 discusses the limitations of the hybrid modelling approach. Finally, Section 7 presents the conclusions and brings the paper to a close.

2. Background and literature review

2.1. Thermal stratification of water-based TES tanks

The performance of water TES tanks depends on several factors, such as the effectiveness of the tank’s insulation and the height of its inlet and outlet ports [9]. One of the most relevant aspects to consider is the thermal stratification of water (i.e. the temperature gradient) since highly thermally stratified tanks are more efficient than poorly stratified or unstratified tanks as they collect and supply heat at larger temperature differentials [10,11]. The temperature gradient between the hotter and colder zones within a TES tank is known as thermocline, and it is often used as a reference to evaluate the extent of thermal stratification [10].

Thermal stratification of practical TES tanks is established between two ideal conditions: a fully stratified tank and a fully mixed tank [10]. The fully stratified tank considers a thin thermocline dividing the tank’s volume into two well-defined water volumes with different temperatures, namely hot and cold volumes. As shown in Fig. 1, the thermocline moves upwards or downwards in plug flow for charging or discharging the tank without mixing occurring between the water volumes. Thus, a sudden temperature change occurs through the tank’s height as the thermocline moves. (Note: in a plug flow all particles in a cross-sectional area exhibit identical velocity and direction of motion [12].)

Different factors contribute to the mixture of volumes of hot and cold water within a storage tank, thus deteriorating its thermal stratification. Some references have investigated through experimental tests the effects that the location of the inlet port and its geometry, mass flow rate, aspect ratio of the tank, and the temperature difference between the inflow and the fluid inside the tank may have on thermal stratification. A key finding is that thermal stratification is enhanced by increasing the aspect ratio and inflow temperature differences [13,14]. However, the effect of the mass flow rate depends on the inflow temperature and the design of the inlet system [14,15]. A constant inlet temperature is recommended to maintain a high degree of thermal stratification [15].

An effective design of the inlet system combined with a strict control of the mass flow rate and inlet temperature may maximise the thermal stratification in a TES tank by reducing the mixing produced at the inlet [15,16]. However, achieving this is not trivial as inlet flow rates and temperatures depend on the configuration and control of the thermal source and the thermal sink connected to the tank. A poor design and control of heating systems may lead to high return temperature levels [17], which may impact the operation of a tank. For further information, the interested reader is referred to [18,19], where different control strategies for the integration of TES tanks into heating systems are discussed.

The extent of thermal stratification in a water tank may vary for charging and discharging operations. For example, Fig. 2 shows three different system configurations for a hot water tank connected to a heat source and a heat sink. In Fig. 2(a), the tank is connected to a temperature-regulated heat source and a temperature-regulated heat sink, where a by-pass valve is used to vary a mixture of hot and cold water flows to maintain a constant inlet temperature during charging and discharging. In this case, the system could be operated under a high thermal stratification condition (see Fig. 1). On the other hand, Fig. 2(b) shows a tank connected to a power-regulated heat source and a temperature-regulated heat sink. Mixing generated in the inlet port during charging cannot be avoided due to temperature variability and, therefore, the ideal high thermal stratification condition cannot be guaranteed during charging. Fig. 2(c) shows a tank connected to a power-regulated heat source and an unregulated heat sink. Mixing occurs at the inlet during both charging and discharging.

2.2. Richardson’s number

Dimensionless numbers are often used to characterise thermal stratification in water tanks and evaluate their charging and discharging efficiencies (e.g. MIX number, tank aspect ratio, Reynolds number, Peclet number, and stratification number). A review and comparison of these numbers and an assessment of their sensitivity to relevant operating conditions of a tank can be found in [20,21]. Among the options, the Richardson’s number is widely used to quantify the inlet mixing phenomena [14]. It describes the ratio of buoyancy forces on a flow that is at a different density than that of an immobile fluid (i.e. a quiescent fluid).
The Richardson’s number considers the flow temperature and flow conditions in the inlet of the tank, the tank’s geometry, and the type of inlets. Thus, its mathematical expression varies according to the design of the tank and inlets. An overview of mathematical descriptions used in the literature can be found in [21]. For a standard TES tank with side inlets and horizontal inlet flow, the Richardson’s number Ri is given as

$$ Ri = \frac{g \beta D (T_{in} - T_{in})}{u^2_{in}} $$

where g [m/s2] is the acceleration of gravity, β [1/°C] is the coefficient of thermal expansion of water, D [m] is the diameter of the tank, u_{in} [m/s] is the linear velocity of water at the inlet of the tank and T_{in} [°C] its temperature, and T_{in} [°C] is the temperature of the water within the tank.

Experiments reported in the literature have found that for $Ri < 0.25$ a significant inlet turbulence is generated, producing a significant mixing and contributing to the deterioration of the thermal stratification [21]. Conversely, high values of Ri indicate a large extent of thermal stratification in the water tank. Although values of Ri amenable to the formation of thin thermoclines have not been explicitly reported in the literature, maximum values are on the order of 100 [22].

2.3. Modelling of hot water tanks

References found in the literature have shown that 1-D models may retain a good degree of accuracy for temperature prediction in a TES tank whilst reducing the complexity of the model [23]. In contrast, three-dimensional (3-D) models can describe the internal thermal behaviour of the TES unit very accurately using finite element analysis (FEA) and computational fluid dynamics (CFD). For instance, ANSYS Fluent is an often-employed commercial software for 3-D modelling [24,25]. However, much simpler 1-D models are still desirable to simulate and study interactions of hot water tanks with other elements of heating systems and design control systems. For example, 1-D TES tank models have been employed to study the economic feasibility of residential combined heat and power units in [26]. 1-D tank models have also been used to design control systems for hot water tanks [27] and to design and investigate new demand-side control strategies for improving the operation of heating systems [19,28]. The design and implementation of real-time SoC estimation of TES tanks also require simple 1-D models for the data acquisition and control [29,30].

Commercial software engines for the simulation of dynamic processes can facilitate the modelling and simulation of hot water tanks since they nominally provide pre-defined standard models that can be quickly customised and simulated [31]. For example, a comparison of different prosumer configurations in district heating systems is carried out in [32] using 1-D tank models available in the software platform SimulationX. Further details on some popular commercial software engines for 1-D modelling and simulation of water TES tanks are provided in Appendix A.

1-D representations of thermally stratified water TES tanks use a finite volume discretisation approach to the total tank’s volume [33,34]. A non-linear ordinary differential equation models the mass, momentum and energy balance in each discrete water volume or node. The number of nodes, also called the spatial resolution, is commonly associated with the fidelity of the thermal model [25,31]. Alternative models have been developed from the standard finite volume discretised model, aiming to capture different hydraulic phenomena occurring within the tank. For example, a 50-node TES tank model capturing the buoyancy and mixing effects in the inflow and outflow inlets is presented in [35]. Similarly, a 60-node model capturing the effect of a moving thermocline using an adaptive-grid approach is presented in [4], achieving similar temperature transitions to those from a standard multi-node model with a high spatial resolution. A Lagrangian modelling approach consisting of a tank with a varying number of segments (from 1 to up to 3000 segments) was compared against the standard multi-node tank model with fixed number of segments in [36], with similar simulation results.

2.4. Numerical diffusion in 1-D multi-node models

The main drawback of the 1-D multi-node modelling approach for hot water tanks is the artificial numerical diffusion involved in the temperature calculation of the nodes. This is generated by the spatial discretisation of the tank’s volume when forced convection heat transfer occurs [4,37].

The tank’s nodes are considered fully mixed water volumes with uniformly distributed temperatures. The forced water flow in the tank produces a heat transfer between the nodes, which modifies their temperatures. The rate of change of temperature in a node is calculated from the temperature of the adjacent nodes and the volumetric water flow rate. Since the heat transfer is considered to occur in the node’s borders, nodes with large volumes exhibit a slower temperature transition (i.e. high numerical diffusion) than nodes with small volumes. Therefore, multi-node models with a high spatial resolution (i.e. high number of nodes) are often adopted to define nodes with smaller volumes and simulate fast temperature transitions in the tanks [4].

Although numerical diffusion may be reduced in models with nodes of small volumes, this cannot be totally avoided. By having a larger number of nodes, an increased number of equations must be solved, also increasing the computational cost. Besides, models with high spatial resolution may also lead to significant simulation errors, as shown in Section 5 of this paper. Due to the calculation method, the rate of change of temperature in nodes is progressive throughout the tank from the node where water is directly injected (inlet) to the node where water is subtracted (outlet). Since the nodes’ temperatures are modified for the slightest temperature difference between adjacent nodes, a faster response in the nodes close to the tank’s inlet also produces a faster response for farther nodes.

3. 1-D hybrid continuous–discrete multi-node tank model

3.1. Standard 1-D multi-node tank model

Standard 1-D multi-node models found in the literature and commercial software consider heat transfer effects occurring at different levels of the TES tank [38,39]. Fig. 3 illustrates the heat flows observed in the ith node of the tank arising from different heat transfer effects. The rate of change in the sensible heat of the node i (H_i [W]) is given by the summation of these heat flows as

$$ H_i = c_p, i \rho V_i T_i = Q_{FC,i} + Q_{NC,i} + Q_{K,i} - Q_{L,i} + Q_{G,i} $$

where c_p, i [J/(kg °C)] and ρ_i [kg/m3] are the specific heat capacity and density of water at the node’s temperature T_i [°C], and V_i [m3] is the volume of the node. $Q_{FC,i}$ [W] is the heat flow generated by the forced convection heat transfer (i.e. heat transfer generated by the water flow in the tank inlets), $Q_{NC,i}$ [W] is the heat flow generated by the natural convection heat transfer, $Q_{K,i}$ [W] is the heat flow generated by the conduction heat transfer, $Q_{L,i}$ [W] is the heat loss, and $Q_{G,i}$ [W] represents the heat flowing into the node from internal or external heat generation sources. In turn, the majority of these heat flows are a function of the temperatures of nodes i, $i+1$, and $i-1$—i.e. T_i, T_{i+1} [°C] and T_{i-1} [°C].

The mathematical description of standard 1-D multi-node tank models is presented in detail in Appendix B.

3.2. Flat thermocline in a multi-node tank model

The standard 1-D multi-node modelling approach is susceptible to numerical diffusion [4]. To circumvent this problem and to effectively reproduce the sudden temperature change exhibited by highly thermally stratified TES tanks, two additional considerations were made for the multi-node model. Firstly, an ideal flat thermocline barrier was introduced into the model to predict the vertical position within the tank where the sudden temperature transition occurs.
the thin region between volumes of water with abrupt temperature differences observed in practical TES tanks with a high extent of thermal stratification [10]. Secondly, reference temperature positions on the tank’s wall were established at half of the height of each node to determine the location at which the temperature transition is detected in a node.

The flat thermocline barrier is considered ideal in a 1-D flow field. Thus, it is considered to move in plug flow with a uniform velocity distribution in the tank’s radial direction. This assumption resembles 1-D representations of a TES tank with an ideal movable insulation baffle [40]. In contrast, two-dimensional (2-D) or 3-D representations must consider the deformation of the thermocline in the tank’s radial direction due to the boundary layer generated on the tank wall and other fluid dynamics effects. However, the characterisation of hot water tanks and thermoclines for 2-D and 3-D models falls outside of the scope of this paper, which is restricted to 1-D models.

Although the thermocline barrier is considered ideal, it is not considered an adiabatic boundary. Nodes are allowed to exchange heat according to the heat transfer effects described by (2). For example, the difference in temperature exhibited by the nodes directly above and below the flat thermocline barrier increases the conduction heat transfer between the nodes.

Fig. 4 shows the multi-node tank model with a flat thermocline barrier and reference temperature positions, where \(y_{th} \) [m] is the vertical position of the thermocline and \(y_i \) [m] is the reference temperature position of node \(i \) where the transition of \(T_i \) is detected. This transition is assumed to happen at half of the height of each node (i.e. 50% of the volume) instead of its borders. This in turn helps maintaining a fixed temperature reference point during charging and discharging processes and reducing the numerical diffusion when calculating the temperature for nodes with large volumes. Thus, an extensive spatial discretisation of the tank is avoided.

In a multi-node tank model, \(Q_{FC,j} \) and thus \(T_j \) are dependent on \(T_{i+1} \) when charging and instead on \(T_{i-1} \) when discharging, as described by Eq. (B.1) in Appendix B. However, in Fig. 4, the flat thermocline barrier represented by the dashed blue line divides node \(i-1 \) into two zones with a substantial temperature difference between them. Thus, when discharging the tank, the water temperature in node \(i-1 \) at \(y_{i-1} \) (i.e. \(T_{i-1} \)) cannot be used to calculate \(T_{i-1} \) until \(y_{th} \geq y_i \). Instead, a previous value of \(T_{i-1} \), when \(y_{th} < y_{i-1} \) must be considered. In turn, a similar behaviour is expected for calculating \(T_{i-1} \) using \(T_i \) when charging the tank, and the thermocline moves downwards from \(y_{th} \) towards \(y_{i-1} \).

The temperature transport phenomenon described above is not time dependent and is determined instead through different discrete events based on \(y_{th} \). This effect is included in the multi-node model as

\[
Q_{FC,j} = \begin{cases}
\varepsilon_p \rho_l V_i (T_{i+1,k} - T_i) & \forall T_{i+1,k} \geq T_i - \theta \lor V_i > 0 \\
\varepsilon_p \rho_l (T_i - T_{i-1,k}) & \forall T_{i-1,k} < T_i - \theta \lor V_i < 0
\end{cases}
\]

(3)

where \(V_i \) [m/s] is the volumetric water flow induced through the tank’s inlets and crossing node \(i \), and \(T_{i+1,k} \) and \(T_{i-1,k} \) are discrete temperature values for nodes \(i+1 \) and \(i-1 \) at a discrete moment \(k \), which may be different than temperatures \(T_{i+1} \) and \(T_{i-1} \). The discrete temperature value of node \(j \) is periodically updated based on the position of the thermocline for the next discrete moment \(k+1 \) \((y_{th,k+1})\) when \(V_i > 0 \) as

\[
T_{j,k+1} = \begin{cases}
T_j & \forall y_{j+1,k+1} > y_j \lor y_{th,k+1} > y_{j-1} \\
T_{j,k} & \forall y_j < y_{th,k+1} < y_{j-1}
\end{cases}
\]

(4)

and when \(V_i < 0 \) as

\[
T_{j,k+1} = \begin{cases}
T_j & \forall y_{j+1,k+1} > y_j \lor y_{th,k+1} < y_{j-1} \\
T_{j,k} & \forall y_{j+1,k+1} < y_j \lor y_{th,k+1} > y_{j-1}
\end{cases}
\]

(5)

The value of \(y_{th,k+1} \) is updated as

\[
y_{th,k+1} = y_{th,k} - v_{th,k} \Delta t
\]

(6)

where \(v_{th,k} \) [m/s] is the vertical linear velocity of the thermocline given by the volumetric flow divided by the cross-sectional area of the tank \(A_f \) [m²] \((v_{th,k} = \dot{V}_i/A_f)\), and \(\Delta t \) [s] is the constant time step between \(k \) and \(k+1 \).

3.3. Flat thermocline formation during charging or discharging only

As discussed in Section 2.1, the control configuration of heat sources and sinks may produce a different extent of thermal stratification for charging and discharging operations of hot water tanks. For a tank presenting a thin thermocline during charging or discharging only, the dynamics of the multi-node tank model described by (3)–(6) must be modified accordingly. For example, for a thin thermocline present during charging only, the sudden transition of temperature does not occur when the tank is discharged. Therefore, the discrete temperature value of node \(j \) can be approximated to its continuous value during discharging, and (5) is simplified to \(T_{j,k+1} = T_j \). In this scenario, the thin thermocline barrier is destructed during discharging and formed again when charging the tank. Thus, \(y_{th} \) is updated as

\[
y_{th,k+1} = \begin{cases}
y_{th,k} - v_{th,k} \Delta t & \forall \dot{V}_i > 0 \\
y_{th,k} & \forall \dot{V}_i < 0
\end{cases}
\]

(7)

where \(y_{th,k} \) is the vertical position of the hot inlet. Conversely, for a thin thermocline present during discharging only, (4) is simplified to \(T_{j,k+1} = T_j \) and \(y_{th} \) is updated as

\[
y_{th,k+1} = \begin{cases}
y_{th,k} + v_{th,k} \Delta t & \forall \dot{V}_i > 0 \\
y_{th,k} & \forall \dot{V}_i < 0
\end{cases}
\]

(8)

where \(y_{th,k} \) is the vertical position of the cold inlet.

3.4. Simulation of hybrid continuous-discrete systems

Fig. 5 shows the mathematical model of a hybrid continuous–discrete time system such as the one presented in the previous subsections, where the output vector \(y \) is determined from the input vector \(u \).
4. Description and modelling of the experimental facility

4.1. Experimental facility

The modelling approach presented in Section 3 was experimentally validated using the heat storage system reported in [42]. Experiments for charging and discharging a TES tank were performed using a combination of a condensing boiler and a heat sink, as shown in Fig. 7.

The experimental facility incorporates a Wolf BSP-800 TES tank with a water capacity of 785 l (see Fig. 8(a)) [43]. Temperature was measured using ten PT100 sensors evenly distributed over the height of the tank’s wall (between the outside wall and the thermal insulation cover) to determine its internal temperature profile. Temperature sensors were installed as immersion sensors in the supply and return pipelines at each terminal of the tank, the condensing boiler and the heat sink—i.e. eight sensors in total. Charging and discharging flows were measured with electromagnetic flow meters, as shown in Fig. 7.

A Wolf CBG-2/20 20-kW condensing boiler [44] was used to supply heat to charge the tank. The boiler was operated at its maximum heat power during the experiment. Its internal control was set to maintain a constant temperature difference of 20 °C between supply and return.

Heat consumption was emulated by a parallel-flow heat exchanger in the heat sink. By using a mixer in its primary side, the temperature of the water flow supplied to the heat exchanger may be regulated (e.g. 40 °C for an underfloor heating system or 65 °C for a radiator). A controllable pump in the primary side provided the desired flow rate. The cooling water flow in the secondary side of the heat exchanger (purple pipelines in Fig. 7) was regulated with a control valve to obtain a desired return temperature of the heating system. In turn, this temperature is also the discharging temperature of the tank. The experiment was run with a set return temperature from the heating system of 30 °C.

4.2. Modelling of the TES tank

According to the datasheet of the TES tank [43], this was modelled as a cylindrical 1-D multi-node tank with a height of 1755 mm and a diameter of 790 mm (see Fig. 8(b)). The model considers 12 layers, numbered from 0 to 11 from bottom to top. The height of each tank layer is 150 mm for layers 1 to 11 and 105 mm for layer 0. Each layer may be discretised into a number of nodes to increase the spatial resolution of the model. For instance, a resolution of 5 nodes per layer results in a 60-node tank model. The height of the PT100 sensors within the tank coincides with the centre of layers 1 to 10, as shown in Fig. 8(b).

The condensing boiler and the heat sink are connected to the lowest and highest main inlets of the tank located at a height of 260 mm and 1430 mm from the bottom, respectively (see Fig. 8(a)). Thus, hot water is injected and subtracted directly from layer 9 of the tank and cold water from layer 2 (see Fig. 8(b)). The water flow is considered ideal at the inlets of the tank for a 1-D model. This implies that the horizontal volumetric flow entering and exiting the tank through the inlets is assumed vertical from the inlet to the outlet. Therefore, layers 2 to 9, located between the inlets and outlets of the tank, present heat transfer by forced convection, while layers 0, 1, 10 and 11 are dead volumes.

The condensing boiler and the heat sink are connected to the tank via 1.5-inch threads and insulated pipelines with a diameter of 22 mm, circulating water through the tank using hydraulic pumps. However, neither the condensing boiler nor the heat sink are represented in the simulation model. Instead, their effect is inherently present in the heating and discharging flow and temperature conditions for the tank adopted from the experimental test and measured at the tank inlets.

The TES tank was modelled in MATLAB/Simulink using the 1-D hybrid continuous–discrete multi-node modelling approach introduced in Section 3.2.
in Section 3 to characterise its dynamics. To corroborate the effectiveness of the hybrid multi-node model, this was compared against the standard multi-node models often used in the literature and adopted by commercial software (see Appendix B). Thus, three different tank models were assessed:

- A standard multi-node tank model with a spatial resolution of 1 node per layer, here termed standard 12-node model.
- A standard multi-node tank model with a spatial resolution of 5 nodes per layer, here termed standard 60-node model.
- A hybrid continuous–discrete multi-node tank model with a spatial resolution of 1 node per layer and $\Delta t = 1 \text{s}$, here termed hybrid 12-node model.

4.3. Heat losses

Heat losses in the tank were modelled using (B.10) and (B.11) for all models, as described in Appendix B. The heat loss transfer coefficient due to forced convection $U_{FC,i}$ [W/(m² °C)] was obtained according to the flow regime, as shown in [45], and the heat loss transfer coefficient for the tank’s standby condition $U_{0,i}$ [W/(m² °C)] was experimentally characterised for each layer of the tank model as described in Appendix C. Values of $U_{0,i}$ for each tank layer are shown in Table C.1. The resulting $Q_{L,i}$ in each layer of the tank was equally distributed to all the layer’s nodes in the case of the standard 60-node tank model (i.e. $Q_{L,i}/5$).

5. Experimental validation

5.1. Experimental and simulation conditions

The hybrid 12-node model was experimentally validated for a complete charging and discharging cycle of the storage tank. This was performed in a single trial and under practical operational conditions.

The tank was charged from an initial fully discharged condition (SoC = 0%) at an ambient temperature of 20 °C up to 60 °C. Although the storage tank can be charged up to a maximum temperature of around 85 °C, 60 °C was deemed sufficient to avoid overspending energy when conducting the experiment. This is because reaching 85 °C during charging does not contribute to achieving a higher thermal stratification or producing a thin thermocline due to the condensing boiler’s operation. Charging limitations are discussed further in Section 5.2.

The tank was later discharged at a constant discharging temperature $T_c = 30 \text{ °C}$, as this temperature is commonly observed in the return pipeline of practical domestic heating systems for space conditioning [46,47].

The duration of the charging and discharging processes of the storage tank depends on the value of V_{in}. In turn, this depends on the operation of the condensing boiler and the heat sink, described in Section 4.1. Thus, the storage tank was charged for three hours and discharged in the subsequent two hours of the experiment.
Simulations of the TES tank were carried out considering similar charging and discharging flow and temperature conditions during the experiments. Fig. 9(a) shows the experimental measurements for V_{in} and T_h for charging, while Fig. 9(b) shows the measurements of V_{in} and T_c for discharging. T_h and T_c were measured by the PT100 sensors in the boiler’s supply pipeline and the sink’s return pipeline, respectively—with both sensors placed at the tank’s terminals. On the other hand, V_{in} was measured by the flow meters in the return pipelines connected to the TES tank (see Fig. 7).

5.2. Thermocline considerations

Due to the limitations of the condensing boiler and the heat sink to strictly control the charging and discharging temperatures and the additional standby heat losses in the connection pipelines, the transient behaviours of T_h and T_c were substantially impacted. Although these variations impact the thermal stratification and formation of the thermocline by generating mixing within the tank, the charging process was primarily affected.

Fig. 10 shows the variations of the Richardson’s number during the first two minutes of the charging and discharging experiments. Ri is given by (1), where u_{in} is calculated considering an inlet diameter $D_{in} = 0.0381\, \text{m}$ ($u_{in} = 4|V_{in}|/\pi D_{in}^2$) and a T_{in} equal to the temperature measured by the nearest PT100 sensor to the tank inlet (i.e. PT100-9 for charging and PT100-2 for discharging). The initial negative values of Ri during charging indicate the temporal inversion of thermal stratification (i.e. colder water injected above a hot medium) and the generation of mixing at the inlet of the tank. Conversely, the high positive values of Ri followed by its rapid settlement during the tank’s discharging suggest a highly stable thermal stratification and the formation of a thin thermocline. Considering these characteristics, the thermocline position in the hybrid 12-node tank model was updated using (8).

5.3. Verification of temperatures and SoC

The spatial resolution adopted for the standard 12-node, standard 60-node and hybrid 12-node tank models ensures each PT100 sensor in the experimental configuration coincides with the centre of a node. This facilitates a direct comparison between the experimental measurements and simulated temperatures. The temperatures of the layers between the hot and cold inlets of the tank (i.e. layers 2 to 9), were compared. To this end, the root mean square error (RMSE) and the mean absolute error (MAE) between simulation and experimental results were obtained for the three models. For the standard 60-node model, the RMSE and MAE were calculated for the temperature of the central node of the tank layers. These errors are expressed as

\[
\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{T}_i - T_i)^2} \quad (12)
\]

\[
\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |\hat{T}_i - T_i| \quad (13)
\]

where \hat{T}_i and T_i are specific samples of the model and experimental measurements, and n the total number of samples.

A more practical comparison was conducted for the SoC of the tank. For a hot water TES tank model with N nodes, the SoC was calculated from temperature measurements as

\[
\text{SoC} = 100 \frac{\sum_{i=1}^{N} c_p \rho V(T_i) - c_p \rho \rho_{min} V_{st} T_{min}}{c_p \rho \rho_{max} V_{st} T_{max} - c_p \rho \rho_{min} V_{st} T_{min}} \times 100 \quad (14)
\]

where T_{min} [°C] and T_{max} [°C] are the minimum and maximum operating temperatures in the tank and V_{st} [m³] is the total volume of the storage tank. For the BSP-800 tank, $T_{min} = 20$ °C and $T_{max} = 85$ °C. This implies that SoC = 100% for a uniformly distributed temperature of 85 °C in the tank. The actual SoC of the tank was calculated from experimental measurements using (14), discretising the tank into 12 layers, as shown in Fig. 8(b), and assuming layers 11 and 0 exhibit the same temperatures measured by PT100 sensors in layers 10 and 1, respectively. The RMSE and MAE of the SoC were also calculated.

5.4. Comparison between simulation and experimental results

Fig. 11 shows the comparison between simulation and experimental results for a charging and discharging cycle of the TES tank. The
The lack of accuracy between \(T_{\text{10,exp}} \) and \(T_{\text{10,sim}} \) is observed during the charging of the storage tank, a gradual and significant deterioration in the accuracy of both standard models is observed during the discharging. Although the layer temperatures converge with the experimental measurements for the standard and hybrid models during the discharging, the behaviour of \(T_{\text{9,exp}} \) and \(T_{\text{9,sim}} \) is not as dramatic in the hybrid model.

Overall, simulation results from the hybrid 12-node model exhibit a better agreement with experimental results than the standard 12-node and standard 60-node models. This is a consequence of the reduced numerical diffusion in the hybrid model resulting from incorporating the variable for the position of the thermocline in the calculation of the temperature transition of the intermediate layers generated by forced convection heat transfer.

Fig. 12 shows a comparison of the temperature measurements in the intermediate layers of the tank models with respect to the experimental measurements (solid black traces). For the standard and hybrid 12-node models, which have a spatial resolution of 1 node per layer, only one temperature is displayed for each layer (dashed blue and solid red traces, respectively). On the other hand, five temperatures are displayed for the standard 60-node model, which correspond to the temperatures of each node within the layer (solid green traces). The top and bottom nodes of each layer of the standard 60-node model present a temperature difference with respect to the temperatures of the central node, with maximum differences of 3.5 °C and 10.8 °C in layers 9 and 2 during the discharging. Although the layer temperatures converge with the experimental measurements for the standard and hybrid models during the charging of the storage tank, a gradual and significant deterioration in the accuracy of both standard models is observed during discharging from lower to upper layers. Such a deterioration is not as dramatic in the hybrid model.

Fig. 13 shows the SoC variation through charging and discharging of the tank for all simulation models and experimental data. The SoC calculation was done using (14). Based on the results presented in Fig. 11, the three models exhibit a similar SoC transition during the charging process (first three hours in Fig. 11). However, different temperature profiles are observable during discharging for layers 2 to 9 (final two hours in Fig. 11a–ii). Differences are especially noticeable in the simulated temperature of layer 9 (\(T_{\text{9,sim}} \), red trace) with respect to \(T_{\text{9,exp}} \) (black trace), which exhibits a sudden transition from 60 °C to 30 °C during discharging.

When the tank is charged during the first three hours into the simulations and discharged in the following two hours, temperature measurements from experiments are identified as \(T_{\text{10,exp}} \), where subscript ‘1’ denotes the number of the layer coinciding in height with a respective PT100 sensor. Temperatures from simulations are identified as \(T_{\text{10,sim}} \).

The three simulated tank models exhibit similar temperature profiles during the charging process (first three hours in Fig. 11). However, different temperature profiles are observable during discharging for layers 2 to 9 (final two hours in Fig. 11a–ii, b–ii and c–ii). Differences are especially noticeable in the simulated temperature of layer 9 (\(T_{\text{9,sim}} \), red trace) with respect to \(T_{\text{9,exp}} \) (black trace), which exhibits a sudden transition from 60 °C to 30 °C during discharging. Instead, the standard 12-node tank model exhibits a smooth transition of\(T_{\text{9,sim}} \) due to the inherent artificial numerical diffusion (see Fig. 11a–ii). Although \(T_{\text{9,sim}} \) captures the sudden temperature transition for the standard 60-node tank model, this occurs sooner than for the experimental process (see the trace of \(T_{\text{9,exp}} \) in Fig. 11b–ii). The hybrid 12-node tank model captures the delayed transition in \(T_{\text{9,sim}} \) and thus achieves a better agreement with \(T_{\text{9,exp}} \) (see Fig. 11c–ii) than the standard models as the thermocline transport phenomenon was considered.

Temperature measurements in the top and bottom dead volumes of the tank exhibit a similar behaviour for the three models (see plots (i) and (iii) in Fig. 11) and achieve a good agreement with \(T_{\text{10,exp}} \) (black trace in plots (i)). However, none of the models predicts accurately the behaviour of \(T_{\text{9,exp}} \) (black trace in plots (iii)). \(T_{\text{10,exp}} \) substantially increased to 40 °C during charging and rapidly converged to \(T_{F} = 30 °C \) during discharging. Although the behaviour of \(T_{\text{10,exp}} \) can be explained by the presence of natural convection heat transfer when the tank is charged at a higher temperature (as described in Appendix B), this is not the case for \(T_{\text{9,exp}} \), which also increases during discharging.

The lack of accuracy between \(T_{\text{1,exp}} \) and \(T_{\text{1,sim}} \) (black and red traces in plots (iii) of Fig. 11) may be caused by the deformation of the water stream at the cold inlet during the charging process, which generates unexpected and unwanted mixing flows with the adjacent dead volume. Possible causes of this turbulence may be the immersed helical heat exchanger opposing the water stream within the tank [48,49], or the generation of a “vena contracta” produced by “free jet” conditions at the bottom of the tank and the geometry of the inlets, which is common in vertical containers [50]. To avoid inlet mixing and enhance thermal stratification in hot water tanks, dead zones must be minimised [51].

The analysis of water stream deformations may require 2-D or 3-D CFD simulations, which falls out of the scope of this work as this is limited to 1-D models. Thus, the relative accuracy between 1-D models is restricted to that afforded by estimating the temperatures of the intermediate layers (i.e. \(T_{\text{9,sim}} \) and \(T_{\text{9,exp}} \) given by the blue and red traces), shown in plots (ii).

Fig. 11. Experimental and simulation measurements of layer temperature for (a) standard 12-node model, (b) standard 60-node model and (c) hybrid 12-node model. Plots in (i) show the temperature measurements for layers 10 and 11, (ii) for layers 2 and 9, and (iii) for layers 0 and 1.
I. De la Cruz-Loredo et al.

Fig. 12. Experimental (solid black traces) and simulation temperature measurements for the intermediate layers of the standard 12-node model (dashed blue traces), standard 60-node model (light green traces) and the hybrid 12-node model (red traces).

Fig. 13. Comparison of the SoC calculated for the standard 12-node (SoC_{12}), standard 60-node (SoC_{60}), and hybrid 12-node (SoC_{hyb}) models with the SoC obtained from experimental measurements (SoC_{exp}).

charging but diverge during discharging. The SoC of the hybrid 12-node model (SoC_{hyb}) exhibits a better agreement with the SoC obtained from experimental data (SoC_{exp}) during discharging. However, the SoC obtained from the models progressively diverges from SoC_{exp} due to the temperatures exhibited at the bottom of the tank—i.e. $T_{1,\text{sim}}$ and $T_{b,\text{sim}}$.

A modified SoC (SoC_{m}) was calculated using (14) and excluding T_{10} to compare the simulation with experimental results without considering the effects of turbulence at the bottom dead zone of the tank. Fig. 14 shows the modified SoC for each tank model and the real tank. As it can be observed, the hybrid 12-node model accurately predicts the SoC of the real TES tank during the complete charging and discharging cycle.

To quantitatively assess the outcomes of the simulation models, Tables 1 and 2 show the RMSE and MAE of the standard 12-node, standard 60-node, and hybrid 12-node models for the temperatures in layers 2 to 9 (T_2 to T_9) during the complete charging and discharging cycle of the tank. In turn, these errors were also calculated for the individual charging and discharging cycles. Similarly, the RMSE and MAE of the SoC and SoC_{m} are shown in Table 3 for the three models.

For the charging cycle, the three models have a similar accuracy for all the parameters, with the standard 60-node model producing in general slightly smaller errors for T_2 to T_5, SoC and SoC_{m}, and larger errors for T_6 to T_9. However, for the discharging cycle, the hybrid 12-node model reduces the RMSE and MAE of T_3 to T_9 with respect to the standard models. For T_9, the hybrid 12-node model considerably reduces the RMSE in 3.9 °C and MAE in 2.84 °C with respect to the standard 12-node model—clearly outperforming it. The hybrid model also decreases the RMSE of the SoC and SoC_{m} in 1.9% and 2.83%, and their MAE in 1.49% and 2.04% compared to the standard 12-node model. Notably, the standard 60-node model produces the largest errors for T_2 to T_9 and SoC during the discharging cycle and consequently during the estimation for the complete charging and discharging cycle, regardless of its higher spatial resolution.

6. Discussion on the limitations of the hybrid modelling approach

6.1. Deformations of the water stream within the TES tank

Although the 1-D hybrid continuous–discrete model presented in this paper proved highly effective for simulating the thermal dynamics of a real hot water TES tank, certain limitations must be considered when implementing the modelling approach.

In the first instance, mixing phenomena generated by water stream deformations within the tank are not modelled, neither by the hybrid continuous–discrete model nor by standard models. This limitation is inherent of the 1-D tank models, with flow deformations produced by the boundary layers adjacent to the inner wall of the tank and pipes not being included. Flow deformations can also be produced within the dead volumes due to the tank inlet and outlet positions, leading to substantial simulation errors, as observed in Fig. 11a–iii, b–iii and c–iii. Consequently, reducing the dead volume within the tank is highly recommended by placing the inlets as close as possible to the top and bottom of the tank [51].

Charging and discharging temperature and flow conditions can also generate deformations of the water stream in the inlets of the TES tank due to natural convection. Buoyant forces acting on water streams injected horizontally into the tank may cause the formation of buoyant jets and vortices, thus deteriorating the thermal stratification [52]. Although the Richardson’s number offers a practical insight into the
The tank was discharged from an initial uniform temperature of 60 °C assessed for different inlet configurations and discharging flow rates. Stratification of a 128 l hot water tank with 8 temperature sensors was in the tank and leading to a reduced accuracy. Rate mixing at the tank’s inlets, deteriorating the thermal stratification and flow conditions between charging and discharging cycles may generate mixing. However, as the discharging flow rate increases, thermal stratification deteriorates due to mixing.

6.2. Transitions between high and low thermal stratification conditions

The inclusion of the thermocline displacement effect in the presented hybrid continuous–discrete modelling approach allows simulating, with an enhanced accuracy, practical TES tanks exhibiting a high extent of thermal stratification during charging and discharging operations. However, transitions between high and low thermal stratification conditions are not represented. Variations in the operating temperature and flow conditions between charging and discharging cycles may generate mixing at the tank’s inlets, deteriorating the thermal stratification in the tank and leading to a reduced accuracy.

To support this argument, Ref. [7] for discharging processes at different flow rates, as described in the previous paragraph, with the simulation results obtained with standard and hybrid 8-node models. Thus, there is a spatial resolution of 1 node per layer in both models. In the figure, temperature measurements from layers 1, 5 and 8 are shown, denoted by subscripts ‘1’, ‘5’ and ‘8’.

Another limitation to consider when choosing a modelling approach is the trade-off between the accuracy of simulation results and the model’s computational expense. Although the 1-D hybrid continuous–discrete tank model produces more accurate simulation results, estimating the position of the thin thermocline and updating the discrete states

<table>
<thead>
<tr>
<th>Test</th>
<th>Model</th>
<th>Layer temperature [°C]</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
<th>(T_6)</th>
<th>(T_7)</th>
<th>(T_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging and discharging</td>
<td>Std. 12</td>
<td>1.67</td>
<td>2.07</td>
<td>2.65</td>
<td>3.36</td>
<td>3.72</td>
<td>4.19</td>
<td>4.58</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>Std. 60</td>
<td>2.06</td>
<td>2.55</td>
<td>3.35</td>
<td>4.08</td>
<td>4.49</td>
<td>5.05</td>
<td>5.54</td>
<td>6.03</td>
</tr>
<tr>
<td></td>
<td>H. 12</td>
<td>1.68</td>
<td>1.39</td>
<td>1.48</td>
<td>1.69</td>
<td>1.74</td>
<td>1.97</td>
<td>2.28</td>
<td>2.45</td>
</tr>
<tr>
<td>Charging</td>
<td>Std. 12</td>
<td>1.7</td>
<td>1.66</td>
<td>1.50</td>
<td>1.59</td>
<td>1.39</td>
<td>1.40</td>
<td>1.40</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Std. 60</td>
<td>1.57</td>
<td>1.60</td>
<td>1.46</td>
<td>1.58</td>
<td>1.42</td>
<td>1.47</td>
<td>1.57</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>H. 12</td>
<td>1.72</td>
<td>1.67</td>
<td>1.51</td>
<td>1.61</td>
<td>1.41</td>
<td>1.42</td>
<td>1.42</td>
<td>0.73</td>
</tr>
<tr>
<td>Discharging</td>
<td>Std. 12</td>
<td>1.65</td>
<td>2.56</td>
<td>3.74</td>
<td>4.90</td>
<td>5.57</td>
<td>6.32</td>
<td>6.96</td>
<td>7.66</td>
</tr>
<tr>
<td></td>
<td>Std. 60</td>
<td>2.62</td>
<td>3.51</td>
<td>4.93</td>
<td>6.09</td>
<td>6.81</td>
<td>7.68</td>
<td>8.45</td>
<td>9.35</td>
</tr>
<tr>
<td></td>
<td>H. 12</td>
<td>1.65</td>
<td>0.88</td>
<td>1.44</td>
<td>1.82</td>
<td>2.14</td>
<td>2.56</td>
<td>3.14</td>
<td>3.73</td>
</tr>
</tbody>
</table>

6.3. Trade-off between model accuracy and simulation speed

Another limitation to consider when choosing a modelling approach is the trade-off between the accuracy of simulation results and the model’s computational expense. Although the 1-D hybrid continuous–discrete tank model produces more accurate simulation results, estimating the position of the thin thermocline and updating the discrete states
have been normally adopted to simulate tanks presenting a high extent of thermal stratification during charging and discharging processes. The model includes calculations for the position of a thin thermocline through the tank and its effect on temperatures due to the water transport time delay. In addition, the modelling approach is adaptable for water tanks with different extents of thermal stratification during charging and discharging.

A hybrid multi-node tank model with a spatial resolution of 12 nodes was developed for a practical hot water TES tank system presenting a poor thermal stratification during charging and a high extent of thermal stratification during discharging processes. The model was simulated and experimentally validated for a complete charging and discharging cycle using real measurements from a practical commercial tank.

The hybrid 12-node tank model was compared through simulations against the standard multi-node tank model with spatial resolutions of 12 and 60 nodes. Simulation results demonstrated that the hybrid 12-node model achieved a better agreement with the temperatures and SoC exhibited by the real tank during discharging compared to the standard models. The computational cost of the models was also compared through their simulation time ratios, with the hybrid 12-node tank model exhibiting a lower simulation time ratio than the standard 60-node tank model.

A direct comparison of the simulation errors (specifically the RMSE and MAE) of the three tank models with the experimental data also showed that the standard 60-node tank model produces the largest simulation errors in temperatures and SoC during discharging. This demonstrates that a higher spatial resolution does not necessarily guarantee accuracy in simulation results.

The presented modelling approach for hot water tanks exhibited improvements to the standard approach in three aspects: (i) the adaptability of the hybrid model to represent high and low thermal stratification during charging and discharging and the possibility to switch between these stratification conditions, (ii) the accuracy of the hybrid model to estimate the temperature distribution and the SoC of the tank, and (iii) the reduced computational cost of the hybrid model compared to standard tank models with a higher spatial resolution.

Table 4

<table>
<thead>
<tr>
<th>Model</th>
<th>Simulation time ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 12-node model</td>
<td>0.0015</td>
</tr>
<tr>
<td>Standard 60-node model</td>
<td>0.07</td>
</tr>
<tr>
<td>Hybrid 12-node model</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 5 shows a comparison of the simulation time ratios (i.e. real-time seconds per one second of simulation) obtained for the standard 12-node, standard 60-node, and hybrid 12-node models. As it can be observed, the simulation of the standard 12-node model is twenty times faster than for the hybrid 12-node model. However, the simulation of the hybrid 12-node model is two times faster than the simulation of the 60-node model.

The simulation time ratio of the hybrid 12-node model can be enhanced by increasing \(\Delta t \) for updating its discrete states. However, this is achieved at the cost of a reduced accuracy of the model. Table 5 presents a comparison of the simulation time ratios obtained for a complete charging and discharging cycle of the hybrid 12-node tank model for different \(\Delta t \). Tables 6, 7 and 8 present a comparison of the RMSE and MAE for \(T_1 \) to \(T_9 \), SoC and SoC\(_{in}\) obtained from the simulations. Although the simulation time was substantially reduced as \(\Delta t \) increased from 1 to 10 s (see Table 5), the RMSE and MAE of \(T_1 \) to \(T_9 \), SoC and SoC\(_{in}\) increased for the discharging process of the tank (see Tables 6 to 8).

Table 5

<table>
<thead>
<tr>
<th>(\Delta t) [s]</th>
<th>Simulation time ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.005</td>
</tr>
<tr>
<td>10</td>
<td>0.0042</td>
</tr>
</tbody>
</table>

7. Conclusions

Accurate yet simple 1-D dynamic models are required to predict and analyse the behaviour of the thermal gradient within hot water TES tanks and, in turn, effectively calculate their SoC. Standard multi-node models with a high spatial resolution (i.e. high number of nodes) have been normally adopted to simulate tanks presenting a high extent of thermal stratification. However, these models do not consider the effect of the thermocline transport in the calculation of the temperature distribution. Due to the inherent numerical diffusion of the multi-node modelling approach, high spatial resolution models may lead to larger simulation times compared to models with lower spatial resolutions without significantly enhancing the accuracy of their results.

This paper presented a novel 1-D multi-node model based on a hybrid continuous–discrete states modelling approach to simulate the temperatures within a TES tank with a high extent of thermal stratification. The model includes calculations for the position of a thin thermocline through the tank and its effect on temperatures due to the water transport time delay. In addition, the modelling approach is adaptable for water tanks with different extents of thermal stratification during charging and discharging.

Fig. 15. Comparison of the experimental results obtained for the hot water tank reported in [7] with the simulation results from standard and hybrid 8-node tank models for discharging flows of (a) \(V_{in} = 5 \text{ lpm} \), (b) \(V_{in} = 10 \text{ lpm} \) and (c) \(V_{in} = 15 \text{ lpm} \).
Table 6
RMSE of the hybrid 12-node model for T_2 to T_9 obtained with different Δt.

<table>
<thead>
<tr>
<th>Test</th>
<th>Δt [s]</th>
<th>Layer temperature [°C]</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
<th>T_7</th>
<th>T_8</th>
<th>T_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging and discharging</td>
<td>1</td>
<td>1.68</td>
<td>1.39</td>
<td>1.48</td>
<td>1.69</td>
<td>1.74</td>
<td>1.97</td>
<td>2.28</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.68</td>
<td>1.42</td>
<td>1.53</td>
<td>1.82</td>
<td>1.89</td>
<td>2.12</td>
<td>2.51</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.68</td>
<td>2.00</td>
<td>2.51</td>
<td>3.15</td>
<td>3.45</td>
<td>3.87</td>
<td>4.24</td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>Charging</td>
<td>1</td>
<td>1.72</td>
<td>1.67</td>
<td>1.51</td>
<td>1.61</td>
<td>1.41</td>
<td>1.42</td>
<td>1.42</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.72</td>
<td>1.68</td>
<td>1.51</td>
<td>1.61</td>
<td>1.41</td>
<td>1.42</td>
<td>1.42</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.72</td>
<td>1.68</td>
<td>1.51</td>
<td>1.61</td>
<td>1.41</td>
<td>1.42</td>
<td>1.42</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Discharging</td>
<td>1</td>
<td>1.65</td>
<td>0.88</td>
<td>1.44</td>
<td>1.82</td>
<td>2.14</td>
<td>2.56</td>
<td>3.14</td>
<td>3.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.65</td>
<td>0.97</td>
<td>1.58</td>
<td>2.10</td>
<td>2.43</td>
<td>2.86</td>
<td>3.55</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.65</td>
<td>2.40</td>
<td>3.48</td>
<td>4.53</td>
<td>5.12</td>
<td>5.81</td>
<td>6.39</td>
<td>7.04</td>
<td></td>
</tr>
</tbody>
</table>

Table 7
MAE of the hybrid 12-node model for T_2 to T_9 obtained with different Δt.

<table>
<thead>
<tr>
<th>Test</th>
<th>Δt [s]</th>
<th>Layer temperature [°C]</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
<th>T_7</th>
<th>T_8</th>
<th>T_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging and discharging</td>
<td>1</td>
<td>1.03</td>
<td>0.96</td>
<td>1.05</td>
<td>1.16</td>
<td>1.15</td>
<td>1.26</td>
<td>1.39</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.03</td>
<td>0.96</td>
<td>1.07</td>
<td>1.21</td>
<td>1.20</td>
<td>1.32</td>
<td>1.48</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.03</td>
<td>1.12</td>
<td>1.33</td>
<td>1.65</td>
<td>1.79</td>
<td>2.04</td>
<td>2.25</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>Charging</td>
<td>1</td>
<td>1.36</td>
<td>1.30</td>
<td>1.17</td>
<td>1.26</td>
<td>1.05</td>
<td>1.09</td>
<td>1.07</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.36</td>
<td>1.30</td>
<td>1.18</td>
<td>1.26</td>
<td>1.05</td>
<td>1.10</td>
<td>1.07</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.36</td>
<td>1.30</td>
<td>1.18</td>
<td>1.26</td>
<td>1.05</td>
<td>1.10</td>
<td>1.07</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Discharging</td>
<td>1</td>
<td>0.6</td>
<td>0.48</td>
<td>0.89</td>
<td>1.05</td>
<td>1.32</td>
<td>1.53</td>
<td>1.88</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.6</td>
<td>0.49</td>
<td>0.93</td>
<td>1.15</td>
<td>1.44</td>
<td>1.66</td>
<td>2.10</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.6</td>
<td>0.87</td>
<td>1.58</td>
<td>2.24</td>
<td>2.88</td>
<td>3.43</td>
<td>3.97</td>
<td>4.49</td>
<td></td>
</tr>
</tbody>
</table>

Table 8
RMSE and MAE of the hybrid 12-node model for SoC and SoC$_m$ obtained with different Δt.

<table>
<thead>
<tr>
<th>Test</th>
<th>Δt [s]</th>
<th>RMSE SoC [%]</th>
<th>RMSE SoC$_m$ [%]</th>
<th>MAE SoC [%]</th>
<th>MAE SoC$_m$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging and discharging</td>
<td>1</td>
<td>3.52</td>
<td>1.41</td>
<td>3.25</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.24</td>
<td>1.48</td>
<td>3.91</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.12</td>
<td>2.56</td>
<td>4.63</td>
<td>1.94</td>
</tr>
<tr>
<td>Charging</td>
<td>1</td>
<td>4.61</td>
<td>1.59</td>
<td>4.33</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.62</td>
<td>1.6</td>
<td>4.33</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.62</td>
<td>1.6</td>
<td>4.33</td>
<td>1.35</td>
</tr>
<tr>
<td>Discharging</td>
<td>1</td>
<td>3.54</td>
<td>1.12</td>
<td>3.06</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.7</td>
<td>3.51</td>
<td>5</td>
<td>2.81</td>
</tr>
</tbody>
</table>

CRediT authorship contribution statement

Iván De la Cruz-Loredo: Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft. Daniel Zinsmeister: Conceptualization, Investigation, Data curation, Visualization, Writing – review & editing. Thomas Licklederer: Conceptualization, Investigation, Data curation, Visualization, Writing – review & editing. Carlos E. Ugalde-Loo: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Visualization, Writing – review & editing. Daniel A. Morales: Conceptualization, Writing – review & editing. Héctor Bastida: Conceptualization, Writing – review & editing. Arslan Saleem: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The work presented was partly funded by the Mexican government through the National Council of Science and Technology (CONACYT). The work was also supported by FLEXIS—a project part-funded by the European Regional Development Fund (ERDF) through the Welsh Government (WEFO case number 80 836) and by the Engineering and Physical Sciences Research Council (EPSRC), UK Research and Innovation, through the projects ‘Flexibility from Cooling and Storage (Flex-Cool-Store)’ under grant EP/V042505/1, and ‘Multi-energy Control of Cyber-Physical Urban Energy Systems (MC2)’ under grant EP/T021969/1. The work of Thomas Licklederer and Daniel Zinsmeister was supported by the Federal Ministry for Economic Affairs and Energy, Germany (FKZ: 03EN3032). The work of Vedran S. Perić was supported by Deutsche Forschungsgemeinschaft (DFG), Germany (FKZ: 450821044). The construction of the CoSES laboratory was supported by Deutsche Forschungsgemeinschaft (DFG), Germany (FKZ: 350746631).

Appendix A. Commercial software engines for 1-D modelling and simulation of hot water TES tanks

1-D models of TES tanks are commonly adopted by popular commercial dynamic process simulators such as Modelica, Apros, IDA-ICE and TRNSYS to simulate energy networks at local and district scales [26,31]. These are briefly discussed next.
A.1. SimulationX

SimulationX is based on the modelling language Modelica. The integrated Green City library provides a wide range of component models of energy supply systems, including detailed models of thermal elements [53]. The library includes a stratified TES tank model, where the spatial resolution can be defined by the user. The height of the pipe connectors for charging and discharging can be defined as well. The connection can be direct or through internal heat exchangers. Fundamental heat transfer effects between neighbouring nodes include forced and natural convection, conduction, and heat losses to the environment [38].

A.2. Apros

Apros is a comprehensive software used for modelling and dynamic simulation of industrial processes. Its numerical solvers include different levels of accuracy for the solution of temperatures in solid structures and the hydraulic node pressures, flows and enthalpies [53].

Apros comprises a wide range of elements suitable for the simulation of heating and cooling systems from industrial applications. However, it is also possible to build simulation components using Simantics Constraint Language programming. The mathematical representation of TES tanks available in Apros is based on the laws of mass, momentum and energy conservation. The user can specify the spatial resolution and the dimensions of each individual calculation volume in the TES tank [54,55].

A.3. TRNSYS

TRNSYS (an acronym for TRaNsient SYStems) was originally developed for the transient simulation of solar thermal processes, but it is widely adopted to simulate solar systems, low energy buildings and HVAC systems, renewable energy systems, cogeneration, and fuel cells [39]. Several TES tanks with different geometries are included in the standard library. The components TYPE 4, 60, 340 and 534 are vertical hot water tanks. The user determines the degree of thermal stratification by defining the number of nodes. Energy balance is performed to calculate the temperature of each node. The models consider convection and the conductivity of the fluid inside the tank [39].

A.4. IDA ICE

IDA Indoor Climate and Energy (IDA ICE) is a simulation tool to accurately model buildings, its systems, and controllers. The software conducts energy balance considering climatic variations and a dynamically varying time step and enables calculation of CO2 emissions [56]. IDA ICE’s library includes thermal models for buildings, models for inter-zone airflow of buildings, and airflows through leaks and openings.

The software also includes in its library non-stratified and stratified hot water tanks. Parameters of the tanks are user-defined. For instance, heat transfer between nodes and heat exchange due to stratification are factors that may be considered in the modelling [57].

Appendix B. Mathematical description of standard 1-D multi-node tank model

The multi-node model divides the tank into an N number of equally sized fully mixed volumes or nodes, as shown in Fig. B.1. The rate of change of the sensible heat for a specific node i of the tank is given by (2) in Section 3 as a summation of heat flows.

The heat flow generated by the forced convection heat transfer $Q_{F,i}$ [W] is given by

$$Q_{F,i} = \begin{cases} \epsilon_p \rho_i V_{in}(T_{i+1} - T_i) & \forall \ V_{in} > 0 \\ \epsilon_p \rho_i V_{in}(T_i - T_{i-1}) & \forall \ V_{in} < 0 \end{cases}$$

where V_{in} [m3/s] is the volumetric flow rate in the tank, ϵ_p [J/(kg °C)] is the specific heat capacity of the water in node i at temperature T_i and ρ_i [kg/m3] its density, and T_i [°C], T_{i+1} [°C] and T_{i-1} [°C] are the temperatures of node i and the nodes immediately above and below it. $V_{in} > 0$ when charging the tank and $V_{in} < 0$ when discharging the tank. Eq. (B.1) is true for nodes located in between the hot and cold tank inlets (e.g. $i = 2, 3, \ldots, N - 1$ for the tank in Fig. B.1). For the nodes where tank inlets are located (i.e. nodes 1 and N in Fig. B.1), (B.1) is expressed as

$$Q_{F,i} = \begin{cases} \epsilon_p \rho_i V_{in}(T_{i+1} - T_i) & \forall \ V_{in} > 0 \\ \epsilon_p \rho_i V_{in}(T_i - T_{i+1}) & \forall \ V_{in} < 0 \end{cases}$$

where subindices ‘hin’ and ‘cin’ stand for hot and cold inlet nodes and T_h [°C] and T_c [°C] are the charging and discharging temperatures in the hot and cold inlets of the tank.

The heat flow generated by the natural convection heat transfer $Q_{NC,i}$ [W] occurs from lower to upper nodes whenever a lower node presents a higher temperature than an upper node. This effect is modelled by a temperature-dependent piecewise function as

$$Q_{NC,i} = \begin{cases} 0 & \forall \ T_{i-1} < T_i < T_{i+1} \\ Q_{NC,i-1,i} & \forall \ T_{i-1} > T_i > T_{i+1} \\ -Q_{NC,i,i+1} & \forall \ T_{i-1} > T_i > T_{i+1} \end{cases}$$

where $Q_{NC,i-1,i}$ [W] is the natural convection heat transfer from node $i-1$ to node i, and $Q_{NC,i,i+1}$ [W] is the natural convection heat transfer from node i to node $i+1$. In turn, these terms are given as [38]

$$Q_{NC,i-1,i} = \epsilon_p \rho_i A_i(T_{i+1} - T_i) \int (\rho_{i+1} - \rho_i) dt$$

$$Q_{NC,i,i+1} = \epsilon_p \rho_i A_i(T_i - T_{i+1}) \int (\rho_{i+1} - \rho_i) dt$$

where A_i [m2] is the cross-sectional area of the tank, and $\int (\rho_{i+1} - \rho_i) dt$ and $\int (\rho_{i+1} - \rho_i) dt$ [(kg s)/m3] are the integrals of the difference in densities between nodes.

The heat flow generated by the conduction heat transfer $Q_{K,i}$ [W] may occur through several media including the storage material and the tank’s wall. For instance, thermal conductors such as internal heat exchangers and electric heaters may cause a variation in the conduc-
tion heat transfer conditions from node to node. For node i, $Q_{K,i}$ is given as

$$Q_{K,i} = Q_{K,i+1} + Q_{K,i-1}$$

(B.7)

where $Q_{K,i+1} \text{[W]}$ is the conduction heat transfer between node i and node $i+1$, and $Q_{K,i-1} \text{[W]}$ is the conduction heat transfer between node i and node $i-1$. In turn, these are modelled as

$$Q_{K,i+1} = (k_f + k_{m,i+1}) \Delta x_i (T_{i+1} - T_i)$$

(B.8)

$$Q_{K,i-1} = (k_f + k_{m,i-1}) \Delta x_i (T_i - T_{i-1})$$

(B.9)

where $k_f \text{[W/(m·°C)]}$ is the thermal conductivity coefficient of the storage medium, $\Delta x_i \text{[m]}$ is the node’s height ($\Delta x_i = V_i/A_i$), and $k_{m,i+1}$ and $k_{m,i-1} \text{[W/(m·°C)]}$ are adjusting thermal conductivity coefficients representing the conduction heat transfer between nodes produced by any other media.

The heat loss Q_L,i is commonly modelled as a convective heat transfer between the node and the ambient through the tank’s wall as

$$Q_L,i = U_i A_{w,i} (T_a - T_i)$$

(B.10)

where $T_a \text{[°C]}$ is the ambient temperature, $A_{w,i} \text{[m²]}$ is the tank’s wall surface connecting the node’s storage volume and the ambient, and $U_i \text{[W/(m²·°C)]}$ is the convective heat transfer coefficient between them. The value of U_i depends on the flow regime [43]. However, the heat loss of a storage tank in standby condition (i.e. $V_i\dot\theta = 0$) can be experimentally characterised, as shown in [25]. Thus, U_i is given as

$$U_i = \begin{cases} U_{FC,i} \forall V_i\dot\theta \neq 0 \\ U_{0,i} \forall V_i\dot\theta = 0 \end{cases}$$

(B.11)

where $U_{FC,i} \text{[W/(m²·°C)]}$ is the heat transfer coefficient due to forced convection, obtained as in [45], and $U_{0,i} \text{[W/(m²·°C)]}$ is the heat transfer coefficient for the tank’s standby condition.

The heat flow produced by internal or external heat generation sources $Q_{G,i} \text{[W]}$ can be considered as direct heat power input to the node depending on the type of heat source.

B.1. Dead zones

The generation of dead zones or stagnation zones in TES tanks occurs when the hot and cold inlets do not produce forced convection heat transfer at the top and bottom of the tank [9]. This is shown in Fig. B.2. Unlike tank model in Fig. B.1, nodes ‘hin’ and ‘cin’ are not the top and bottom nodes in the tank. The modelling of the nodes within these dead zones (i.e. nodes above node ‘hin’ and below node ‘cin’) is given by (2) when considering $Q_{FC,i} = 0$, that is,

$$H_i = Q_{NC,i} + Q_{K,i} + Q_{L,i} + Q_{G,i}$$

(B.12)

Appendix C. Standby heat losses of the TES tank

To characterise the standby heat loss of the BSP-800 TES unit, the tank was charged to a temperature of 85 °C and left to cool down. The temperature of the tank was then recorded every 5 min over a period of 380 h at an ambient temperature around 20 °C. Then, using a spatial resolution of 1 node per layer (i.e. a 12-node tank model), the heat transfer coefficient between the storage and the environment $U_0 \text{[W/(m²·°C)]}$ was heuristically adjusted for each layer of the tank to fit the temperature measurements during the experiment.

Figs. C.1 and C.2 show the comparison between the temperature measurements and the SoC obtained from the experiment and simulation of the standard 12-node tank model. The SoC RMSE and MAE values of the model are 4.89% and 3.66%, respectively. Table C.1 shows the values of U_0 adopted for each layer of the tank model. These values were adopted for the standard 12-node model, the standard 60-node model, and the hybrid 12-node model.

![Fig. B.2. Dead zones in a TES tank.](image_url)

Fig. B.2. Dead zones in a TES tank.

Fig. C.1. Comparison of temperature measurements between the experiment and the standard 12-node model simulation of the TES tank in standby condition for: (i) layers 11 and 10, (ii) layers 9 and 2, and (iii) layers 1 and 0.

Fig. C.2. Comparison of the SoC between the experiment and the standard 12-node model simulation of the TES tank in standby condition.
References

[34] Huang T, Yang X, Svendsen S. Multi-mode control method for the existing domes-

