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Abstract—In neuroimaging, the difference between pre-
dicted brain age and chronological age, known as brain
age delta, has shown its potential as a biomarker related
to various pathological phenotypes. There is a frequently
observedbias when estimating brain age delta using regres-
sion models. This bias manifests as an overestimation
of brain age for young participants and an underestima-
tion of brain age for older participants. Therefore, the
brain age delta is negatively correlated with chronological
age, which can be problematic when evaluating relation-
ships between brain age delta and other age-associated
variables. This paper proposes a novel bias correction
method for regression models by introducing a skewed loss
function to replace the normal symmetric loss function.
The regression model then behaves differently depend-
ing on whether it makes overestimations or underestima-
tions. Our approach works with any type of MR image
and no specific preprocessing is required, as long as the
image is sensitive to age-related changes. The proposed
approach has been validated using three classic deep
learning models, namely ResNet, VGG, and GoogleNet on
publicly available neuroimaging aging datasets. It shows
flexibility across different model architectures and different
choices of hyperparameters. The corrected brain age delta
from our approach then has no linear relationship with
chronological age and achieves higher predictive accuracy
than a commonly-used two-stage approach.

Index Terms— Brain age delta, deep learning, neuroimag-
ing, skewed loss function, regression bias correction.

|. INTRODUCTION

UE to the increasing risk of age-related brain diseases,
brain age prediction has attracted a growing interest in
recent years. It can be formulated as building a regression
model that takes structural brain magnetic resonance imaging

Manuscript received 22 November 2022; accepted 18 December 2022.
Date of publication 22 December 2022; date of current version 1 June
2023. The work of Hanzhi Wang was supported by the China Scholarship
Council (CSC) for his Ph.D. work under Grant 202008060053. The
work of Derek K. Jones was supported in part by the Wellcome Trust
Investigator Award 096646/Z/11/Z and in part by the Wellcome Trust
Strategic Award 104943/2/14/Z. (Corresponding author: Yuhua Li.)

Hanzhi Wang, Matthias S. Treder, David Marshall, and Yuhua Li
are with the School of Computer Science and Informatics, Cardiff
University, CF10 3AT Cardiff, U.K. (e-mail: wangh69 @ cardiff.ac.uk;
trederm@cardiff.ac.uk;  marshallad @cardiff.ac.uk;  liy180 @ cardiff.
ac.uk).

Derek K. Jones is with the Cardiff University Brain Research
Imaging Centre, Cardiff University, CF24 4HQ Cardiff, U.K. (e-mail:
JonesD27 @cardiff.ac.uk).

Digital Object Identifier 10.1109/TMI.2022.3231730

This work is licensed under a Creative Commons Attribution 4.0 License.

, Senior Member, IEEE

(MRI) data from healthy individuals as input and uses chrono-
logical ages, i.e., the age from birth, as output. Aging can cause
marked changes in the brain-aging trajectory and deviations
from the healthy brain-aging trajectories can indicate the risk
of age-related brain diseases [1]. To measure this deviation,
a metric known as brain age delta, defined as the difference
between an individual’s estimated brain age and chronological
age has been proposed [2].

In predicting brain age, an age-related bias has been fre-
quently observed [2], [3], [4], [5], [6], [7], [8], [9]. The
predicted brain age tends to become older than the actual
chronological age for young participants and younger for
older participants. A useful quantification of this bias is the
correlation between chronological age and brain age delta, also
known as the age delta correlation (ADC). In this way, the
bias manifests as a negative ADC value.

A nonzero ADC significantly weakens the validity of the
brain age delta as a biomarker. Spurious relationships could
then naturally arise between brain age delta and other variables
of interest if these variables are also correlated with age [5].
It may also raise problems for subsequent experiments. For
example, when investigating if the brain age delta differs
across groups with different degrees of cognitive impairment,
the differences in the brain age delta between groups may
simply due to the group differences in chronological age dis-
tributions [10]. In that way, the apparent relationship between
the brain age delta and variables of interest might be more
driven by age and not the brain age delta [6].

Different approaches have been developed to mitigate the
dependence of the brain age delta on age [4], [5], [6], [11],
[12], [13]. Most of them can be summarized as a two-stage
approach as they involve firstly training a brain age estimation
model and applying a bias correction afterward on the model
predictions. However, this explicit correction approach is a
post-hoc correction of the model predictions (using a biased
model) which can lead to sub-optimal results.

In this paper, we propose a novel approach to correct
this bias. Compared with existing correction approaches, our
approach only consists of a single training stage without the
need to apply a bias correction stage. Model predictions at the
end of the training process are unbiased. The overall workflow
of the two-stage approach and our proposed approach is
illustrated in Figure 1. Also, we would like to stress that
our approach only modifies the loss function and can be
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Fig. 1. The overall workflow for the Brain Age Prediction problem.

The left route represents the widely adopted two-stage approach and
the right one represents our proposed approach. Each “Corrected
Brain Age” block represents the final estimation of brain age for each
approach and the corrected brain age should have no linear relationship
with chronological age. Two estimates of corrected brain age are then
compared with chronological age respectively to see which one achieves
a lower mean absolute error.

combined with any existing differentiable models and any
model architectures (e.g. ResNet [14], VGG-19 [15]). The
implementations are available in the GitHub repository.!

Our main contributions in this paper are:

1) We propose a novel approach that corrects predictive
bias directly in the model training stage. Compared with
the commonly used two-stage approach, our method
does not require an explicit bias correction stage. The
proposed approach acts as an alternative correction
method to the two-stage approach, whereas it achieves
significantly better accuracy. To the best of our knowl-
edge, this is the first such approach for deep learning
models.

2) We develop a training strategy to find the optimal
parameters for our method, which has been proven to
be robust to different datasets and model architectures.

The paper is organized as follows. Section II reviews the

recent developments in brain age prediction and existing
approaches to tackle the nonzero ADC problem. Section III
proposes the skewed loss function to solve the observed bias.
Section IV introduces a robust training strategy for the skewed
loss to make the model performances consistent. Section V
explains the settings of the experiments, including datasets and
models. Section VI demonstrates experiment results and model
comparisons. Section VII generalizes the skewed loss to other
areas using the apparent age prediction problem. Section VIII
summarizes the overall approach to conclude this paper.

Il. RELATED WORK
A. Brain Age Prediction Models
There has been a variety of studies that apply different
machine learning techniques, such as ridge regression [7],

1 https://github.com/hanzhiwangchn/MRI_Age_Prediction

support vector regression [16] and Gaussian process regres-
sion [2] to estimate brain age. Different convolutional neural
network (CNN) architectures have also been applied to this
task, such as VGG architecture [2], ResNet architecture [17],
Inception architecture [18] and fully convolutional network
architecture [8]. Despite adopting classical CNN architectures,
these models have already shown superior predictive perfor-
mances in brain age prediction.

B. Bias in Brain Age Delta

A more fundamental question in brain age prediction and
the starting point of this paper is to investigate whether the
brain age delta is an unbiased estimator. Several studies [2],
[3], [4], [5], [6], [7], [8], [9] have observed that brain age delta
is dependent on chronological age, which can be problematic
in subsequent analysis. The observed bias is also known as
regression dilution or regression attenuation, which could be
found in many areas [19]. For example, in some epidemiology
studies, it could behave as an underestimate of the associa-
tion between the risk factor and the disease, such as blood
pressure and stroke [20], [21], [22]. For brain age prediction,
different explanations of the cause of this predictive bias have
also been proposed. Liang et al. [7] found that a negative
ADC value consistently arises in a range of aging datasets
regardless of the regression models being used. Le et al. [5]
proved mathematically that this bias is inevitable for regression
models and hence not limited to aging datasets. Smith et al. [6]
observed that a penalized regression model and a non-Gaussian
distribution of the participants’ chronological age could cause
the model to make predictions toward the mean age as well.

C. Bias Correction Approaches

In the literature, a two-stage approach has been proposed
and widely adopted to correct the bias [4], [5], [6], [7], [11],
[12]. It introduces a second-stage correction to correct the
predictions from the first stage, i.e., the brain age estimation
model and the resultant corrected brain age delta will then
have no linear relationship with chronological age [12]. The
two-stage approach can be summarized below:

1) brain age prediction: Train a regression model f to pre-

dict chronological age (Y) given brain MR images (X).
The uncorrected brain age delta is then defined as

o= f(X)-Y )

2) bias correction: Remove the dependence of uncorrected
brain age delta ¢ on the chronological age (Y).

Two different approaches have been proposed in the bias
correction stage:

o Approach 1 [5], [6], [7], [11]:

1) Fit a linear regression between uncorrected brain age
delta 6 and chronological age Y

o= xY+fo (2)

2) The corrected predicted age is defined as
S X)correctea = f(X) — (B1 x Y + Bo) (3)
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3) The corrected brain age delta is then defined as

5corrected = f(X)Corrected =Y (4)

o Approach 2 [4], [12]:
1) Fit a linear regression between predicted age f(X)
and chronological age Y

F(X)=p1 xY+po S)
2) The corrected predicted age is defined as

f(X)corrected = (f(X) - ﬁO)/.Bl (6)

3) The corrected brain age delta is then defined as
Ocorrected = f(X)corrected -Y (7

Regarding the first approach, several studies [10], [13] have
argued that this approach essentially corrects the target label
(Y) and the model prediction is still biased. Moreover, in a
machine learning framework, the target value (Y) from the
test set should remain unknown when the correction approach
is applied. Otherwise, one can always make corrections toward
the target value (Y) to achieve a significantly lower error.
The first approach uses the chronological age (target value)
to make corrections in (3), which violates the principles of
this predictive framework. Therefore, we will not include the
first approach in the rest of this paper.

To apply the second approach in the predictive framework,
the linear regression (5) is performed on the validation set and
the resultant parameters (o, f1) are assumed to be generalized
to the test set. In that way, the predictions from the test set can
be corrected using (6). In the rest of this paper, we refer to the
second approach [4], [12] as the default two-stage approach
and use it as the contrast in Section VI.

Although the two-stage approach has been proven to remove
the age-related impact from brain age delta effectively in
practice [4], [8], [12], it does not take ADC directly into
account. Instead of correcting the predictions of a biased
model, Treder et al. [13] proposed to fuse both stages by
integrating a correlation constraint into the model training
stage. This results in a regression model that is unbiased to
start with and hence does not require post-hoc correction.
However, the authors use an analytical solution for ridge
regression and kernel ridge regression which does not extend
to deep learning. To sum up, we propose a method that also
solves the predictive bias at the model-building stage for any
deep learning models. The method extends to any type of
model that can be trained with a symmetric loss function (e.g.
linear regression, Support Vector Regression).

I1l. METHODOLOGY

A. Skewed Loss Function

In this section, we introduce our approach for bias correc-
tion using the skewed loss functions. We start by observing
that regression models are trained by minimizing a loss
function. Commonly used loss functions include

mean absolute error : Lyae(y,9) = |y — 3|

mean squared error : Luyge(v,3) = |y — 3> (3)

where y, y represent the target label and predicted value.

Regression loss functions are typically symmetric, i.e.,
overpredictions are penalized as much as underpredictions.
Therefore, one possible approach to counteract bias is to skew
the functions and penalize overpredictions more than under-
predictions for low values of y and vice versa. We denote this
approach as a skewed loss function to reflect this characteristic.
To this end, let us define a step function s : R — R as

5(x) = Ao Ir<o(x) + 41 Ir>o(x) )

where 1y(x) is the indicator function (1 if x € U and
0 otherwise) and A¢ and A; are the heights of the steps. This
implies that s(x) = 4¢ for x < 0 and s(x) = 4; for x > 0.

Multiplying the step function with the original loss function,
we obtain the skewed loss functions

LGy,9) =Ly, sy — )

We can further simplify s(x) to have only one hyperpara-
meter A that controls the amount of skew by setting A¢ :=
exp(—4), 11 := /151 = exp(4). Then s(x) simplifies to

(10)

Y

where sgn : R — {—1, 1} is the sign function and A controls
the skew.

This simplification (11) reduces flexibility by imposing an
“inverse symmetry” constraint on A9 and A1 in (9), whereas
it also reduces model complexity with only one parameter
controlling the behavior of the skewed loss.

To make the skewed loss function (10) compatible with the
brain age prediction, two more adjustments are needed:

s(x) = exp(sgn(x)4)

1) Skewed loss should behave differently in different age
ranges. For young participants, it should assign more
penalties to overpredictions than underpredictions. For
elderly participants, it should assign more penalties to
underpredictions than overpredictions.

2) The bias is more significant for participants with age
closer to either end of the data range than those with
ages closer to the mean age (of the training dataset) [12].
Participants with age closer to either end of the data
range need larger levels of skew.

Therefore, we can further modify s(x) by setting 1 as a
function of chronological age (y). The range of A is then
constrained within [—A,,4x, +Amax] Where 4,4, is a positive
hyperparameter:

s(x, y) = exp(sgn(x)A(y)) (12)

Based on (12), a general guide to define A(y) is that a
smaller y should have a negative A while a larger y should
have a positive 1. We propose two approaches to define A(y)
using linear functions for simplicity.

o Approach 1: A(y) can be defined as a linear function of
y.

/1()1) = g(y) X Amax + (l - g(y)) X (_/Imax) (13)

g(y) = (y - ymin)/(ymax - ymin) (14)

where Vmin, Ymax represent the minimum and maximum
age of the dataset.
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Fig. 2. L1 and L2 skewed loss function illustration. For each plot, the dotted and solid lines represent the normal symmetric loss function and the
skewed loss function respectively. The horizontal axis means possible model predictions and the vertical axis means the corresponding loss term
for each prediction. For each plot, from left to right, the skewed loss behaves differently in different age ranges and different ages are assigned with

different levels of skew using (15) and (16). Amax is set to 1 in both plots.

o Approach 2: 1(y) can be defined as a piecewise linear
function of y by setting the median value of y in the
dataset as a midpoint.

(I =8() x (=Amax) if Yy < Ymea

Ay) = 15
) g(y) X Amax otherwise (as)
g(y) = O = Ymin)/ Omed — Ymin) Y < Ymed
(¥ — Ymed)/Ymax — Ymea) otherwise
(16)

where Yimin, Ymax> Ymed represent the minimum, maxi-
mum, and median age of the dataset.

The difference between these two approaches of defining
A(y) is that the first one assigns the middle value of y (in the
training set) to have a zero A value, whereas the second one
uses the median value. For datasets with highly skewed age
distributions, the second approach results in a roughly equal
number of participants having positive A values and negative
A values, which improves stability in practice.

By combining (10), (12), (15), and (16), we formally
propose the skewed loss function for brain age prediction

Ly,9) =L, ) s —5,9) (17)
s(y —3,y) = exp(sgn(y — ))A()) (18)

where A(y) is defined using (15) and (16).
As an example, L1 and L2 skewed loss functions are
illustrated in Figure 2.

B. Effect of the Skewed Loss

The idea of employing a skewed loss function is to assign
different losses depending on whether the model makes
overestimations or underestimations. Because the predictive
bias manifests as an overestimation for younger individuals,
we assign more penalties when the model overestimates ages
for young participants to push the model to make fewer overes-
timations. This idea is reversed on elderly individuals and we
then penalize the model more when it makes underestimations.

ADC Comparison

0.2
0.0
-0.2
Q04
-0.6

-0.8

-1.0
150 200

epoch

(a)

ADC Comparison

250

s B
i & 3 fg ':M
----- L1 loss
—— Skewed L1 loss
150 200 250 300 350 400
epoch
(®)

Fig. 3. ADC Comparisons between L1 and skewed L1 loss. The model
is trained twice using L1 and skewed L1 loss respectively. For each plot,
the dashed and solid lines represent the changes of ADC (measured in
Pearson’s r) on the validation set in the training process using L1 and
skewed L1 loss respectively. Amax is setas 1in (a) and 2 in (b).

The effect of using the skewed loss in practice is illustrated
in Figure 3. We can observe that models using symmetric L1
loss have negative ADC values at the end of the training, which
is in line with previous studies, whereas models using skewed
L1 loss end up with larger ADC values. Figure 3 shows that
by applying the skewed loss functions, the model tends to
make fewer overestimations for young individuals and fewer
underestimations for elderly individuals so that the effect of a
negative ADC is reduced.

IV. DYNAMIC LAMBDA TRAINING STRATEGY
A. The Necessity of Dynamic Lambda Strategy

From Section III-A, 4,4y is a hyperparameter in the skewed
loss which controls the skew of the loss function. From
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TABLE | Algorithm 1 Dynamic Lambda Training Strategy
NOTATIONS FOR DYNAMIC LAMBDA STRATEGY Tnit: Zpmay < 15 skewed 1055 Ly Gomae)
- — for i < 1toy do
Notation Type Description Range if i < o then /) stage-1
¥ hyperparameter total number of epochs | Train the network using £s(A ) g
« hyperparameter stage-2 start epoch v/3 o Sing Los(Amax
B hyperparameter stage-3 start epoch 2v/3 else if L=< /3 then ) . // stage-2
€ hyperparameter update interval of Amaz [5, 10] Train the network using Ls(Zmax)
ADC variable age-delta correlation while (i — a) mod € =0 do
M variable an array to save A\maz Calculate the current ADC on the validation set
N variable an array to save ADC Save Aqx to M and ADC to N
2 hyperparameter correlation threshold [0.1, 0.2] if ADC > 0 then
n hyperparameter a positive multiplier (1,2) F] Py
Ls(Amax) function skewed loss controlled by Amax ellse ier'MKDC <mi):9/;7hen
| Amax < Amax X N
end
Figure 3, we can observe that setting A,qx as 1 results in on dRemmahze Ls(Amax) with updated Znax
a small negative ADC while setting 1,,,, as 2 ends up with a else // stage-3

small positive ADC. That indicates there should be an optimal
value between 1 and 2 for 4,4, so that the ADC can approach
zero at the end of the training process.

However, due to the randomness of the network training
process, different datasets used for training, and different
model architectures being used, it is not realistic to foresee
the optimal A, that can push the ADC to zero before
the training. To solve this problem, we propose a dynamic
lambda training strategy to tune A, in the training process
to find the optimal value that is suitable for the current model.
By dynamically changing 4,4, in the training process, we can
enable the model predictions to have (near) zero ADC at the
end of training.

B. Implementations of Dynamic Lambda Strategy

The dynamic lambda strategy is formally presented in
Algorithm 1. Some notations in Algorithm 1 are defined
in Table I.

It should be noted that hyperparameters in Table I are
insensitive to different values and the “Range” column in
Table I aims to give a general guide on how to set them.

In Table I, hyperparameters o and f separate the whole
training process into three stages, all of which should have
a similar number of epochs to ensure the model is properly
trained in all stages. Hyperparameter € determines how fre-
quently we update A,,,¢. A too-small value of ¢ may prevent
the model from training properly toward the newly updated
loss function, whereas a too-large value may prevent the model
from finding the adequate value of 1,,,, due to fewer updates.
Hyperparameter 6 acts as a positive threshold determining
whether to adjust A,,4, according to the current ADC value.
We will change A4, in the second stage only when the ADC
falls outside of [—6, 8]. Hyperparameter # determines how to
change 1,4y in each update in the second stage.

C. Explanations for Dynamic Lambda Strategy

Algorithm 1 divides the whole training process into three

stages:

1) Stage-1: The aim is to pretrain the model with a fixed
Amax to achieve relatively high accuracy before any
modifications are made. This is done because due to
the random initialization of the weights, ADC estimates
in the first few epochs may be uninformative.

Train the network using Ls(Amax)

while (i — ) mod € =0 do
Calculate the current ADC on the validation set
Save A;qx to M and ADC to N
Fit a linear regression F between M and N
Select Ajqx resulting in a zero ADC using F as the optimal
A-ma,\'
Reinitialize Lg(Lmnax) with optimal Ay,4x

end

end

end

2) Stage-2: From this stage, we are trying to find the
optimal 4,4, that results in a zero ADC on the validation
set. It is generally assumed that the validation and test
set should be derived from similar distributions, so we
assume a zero ADC on the validation set should be
generalizable to the test set. In this stage, we apply a
heuristic method to try different 4,,,, values to make
ADC approach toward zero. We also save A4, and the
corresponding ADC for stage-3.

3) Stage-3: Using the previously saved 4,4, and ADC pairs
from stage-2, we can fit a linear regression model to find
the optimal 4,,,, that results in a zero ADC and set it
as the updated A,,4,. This method is repeated multiple
times until the end of training so that A, is tuned
iteratively. We use linear regression for its simplicity
and it has been proven to be effective to find the optimal
Amax 1N practice.

There is a slight increase in training time when using the
skewed loss compared with using a symmetric loss function
because of the training of linear models in stage-3. However,
it is usually negligible compared with training a network.

Throughout the training process, our approach tries to
control ADC explicitly by iteratively tuning A,,,,. Therefore,
by measuring ADC with different types of correlation, our
approach can find the optimal 4,,,, resulting in the specified
correlation approaching zero, which is not feasible for the two-
stage approach.

The effect of using the dynamic lambda strategy is illus-
trated in Figure 4. In Figure 4, we train our model twice
using symmetric L1 loss and skewed L1 loss with dynamic
lambda strategy. It can be easily observed that at the end of
the training, the model using skewed loss ends up with a (near)
zero ADC on the validation set.
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Fig. 4. ADC Comparisons between L1 and skewed L1 loss. Dynamic
lambda strategy is applied for the skewed loss. The model is trained twice
using L1 loss and skewed L1 loss. The dashed and solid lines represent
the changes of ADC (measured in Pearson’s r) on the validation set in
the training process using L1 and skewed L1 loss respectively.

V. EXPERIMENTS

To empirically investigate our approach, we conducted
experiments using two publicly available aging datasets and
several classical neural network architectures. The models
were trained using the normal symmetric loss and the skewed
loss respectively. The two-stage approach was applied to
models using the normal symmetric loss as the contrast.

A. Datasets

To validate the robustness of the skewed loss, we selected
two public neuroimaging datasets, Cam-CAN [23], [24] and
ABIDE [25], with preprocessed 3D structural T1-weighted
MR brain images. The dataset descriptions and the specific
preprocessing pipeline for each dataset could be found at
the Cam-CAN? and ABIDE’ website. The data from the
Cam-CAN are preprocessed using the Automatic Analysis
pipeline [26] and we selected the gray-matter density maps
from it. The data from the ABIDE derives from cortical thick-
ness measures using ANTs pipeline [27] and we selected the
3D volume containing voxel-wise measures of cortical thick-
ness from it. It should be stressed that neither the two-stage
approach nor our approach relies on a specific dataset or a
specific type of data. We focus on these two specific datasets
because these images are easier to access and do not require
any further preprocessing, which provides a fairer comparison
set-up between methods. The 3D image resolutions are (96 x
112 x 96) for the Cam-CAN dataset and (141 x 120 x
178) for the ABIDE dataset. To further compare our approach
and the two-stage approach, we manually removed some
participants from both datasets to create two more modified
datasets. Our approach and the two-stage approach will then be
compared on all four datasets. The description of each dataset
is provided below and Figure 5 shows their chronological age
distributions:

o Cam-CAN dataset:

The Cam-CAN dataset contains 653 cognitively normal
participants (mean age 54.3 years, standard deviation
18.5 years, range 18-88 years).

¢ Skewed Cam-CAN dataset:

The Cam-CAN dataset has a roughly balanced age distri-
bution with slightly more elderly individuals. We removed

2https /Iwww.cam-can.org
3 http://preprocessed-connectomes-project.org/abide/download.html

Cam-CAN skewed Cam-CAN

8
8

g
g

=
&
S
&

g
g

3

Number of subjects
3

Number of subjects

s
s

°
°

80 90 80 90

40 50 60 70 40 50 60 70
Chronological Age (year) Chronological Age (year)

(a) (b)

ABIDE symmetric ABIDE

5 8 5
8 38 &
P
& 8

3

Number of subjects
= @

Number of subjects
g

S
s

°
°

10

10 12 14 16
Chronological Age (year)

20 30 40 5
Chronological Age (year)

(c) (d)

Fig. 5. Age distribution for the Cam-CAN and ABIDE datasets and their
skewed versions.

70% of the participants with ages smaller than 40 years
and 50% of the participants with ages ranging from
40 years to 60 years to create a skewed age distribution.
The skewed Cam-CAN dataset contains 423 cognitively
normal participants (mean age 62.2 years, standard devi-
ation 16.9 years, range 18-88 years).

« ABIDE dataset:
The ABIDE dataset contains 571 cognitively normal
participants (mean age 17.1 years, standard deviation
7.7 years, range 6-56 years).

o Symmetric ABIDE dataset:
The ABIDE dataset has a highly skewed age distribution
toward young ages. We removed the participants whose
age is larger than 20 years to make this dataset have a
more symmetric age distribution.
The symmetric ABIDE dataset contains 415 cognitively
normal individuals (mean age 13.2 years, standard devi-
ation 3.1 years, range 6-20 years).

B. Models

To validate that the skewed loss is robust to different
network architectures, we implemented three networks roughly
based on ResNet [14], VGG [15], and GoogleNet [28] archi-
tectures. We replaced the 2D convolution layers with 3D
convolution layers [29] and the specific implementations could
be found in the GitHub repository mentioned in Section I.
As for the choices of model-dependent parameters, such as the
number of filters in each layer, we followed a conventional
design strategy [30]. All models contain several repeated
blocks, each of which contains convolutional layers, activation
functions, and batch normalization [31]. The number of filters
was set to eight in the first block and was doubled after
each max-pooling layer to infer a rich representation of the
brain. It should be also noted that different choices of the
model-dependent parameters do not affect the final ADC
value as neither correction approach focuses on the model
architectures. We denote our models as ResNet, VGG, and
GoogleNet respectively in the rest of this paper. Compared
with the original network architectures, our models have fewer
layers due to the size of the dataset and the number of
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parameters is reduced below 1 million. All models only take
the raw images as input and demographic variables such as
gender are not included to follow the conventions of brain
age prediction problem [8], [9].

Also, we would like to stress that the brain age prediction
model is a regression model and hence the bias always exists
regardless of different model architectures. The skewed loss
and the two-stage approach can both be applied to any model
architectures and we only select ResNet, VGG and GoogleNet
architecture because they are still widely used in practice [2],
[8], [17], [18] and form the building blocks for more complex
models.

C. Training and Testing

The skewed loss approach is generic and can be applied
to any symmetric loss function. However, in the brain age
prediction literature, MAE (i.e. average L1 loss) is the most
commonly used metric. Therefore, we focus our analyses on
L1 loss.

Because the size of the datasets we used is relatively
small, to prevent models from over-fitting, we applied data
augmentation in the training process using TorchlO [32].
In each training iteration, every input image had a probability
of 50% being flipped around the horizontal plane. Also, the
L2 weight decay coefficient was set to 0.001.

During the training process, the Adam optimizer [33] was
used as the default optimizer for all models. The initial
learning rate was set to 0.01 and then multiplied by 0.5 every
50 epochs. The batch size was set to 16 as default and the
total number of epochs was set to 400.

When we trained the model using the skewed loss, the
hyperparameters used in Table I are set the same for all
models. We set hyperparameter a to 150, £ to 300, € to 5,
6 to 0.15, and # to 1.5.

Datasets were split using a stratified split strategy of
which 80% was used for training, 10% for validation, and
10% for testing. To make full use of the whole dataset,
we applied a split strategy similar to cross-validation. We ran-
domly split each dataset in 20 different ways so that no two
train/validation/test sets are identical. Also, to minimize the
fluctuations of the model results due to random initialization of
the weights, we trained our model on each train/validation/test
split 5 times. In that way, we ended up training a specific
model on a particular dataset 100 times.

VI. RESULTS

The performance comparisons between the two-stage
approach and the skewed loss across four datasets described in
Section V-A are listed in the following subsections. We also
add the performances using the normal loss function before
the correction stage as comparisons. The ADC is measured
using Pearson’s r unless specified otherwise. In Section VI-C,
we provide the performance using Spearman’s rank correlation
coefficient to measure ADC to illustrate the flexibility of our
approach.

Pearson’s r measures statistical dependence between two
sets of data in terms of the linear correlation of the vari-
ables. Spearman’s rank correlation measures linear correlation

TABLE Il
NOTATIONS FOR PERFORMANCE COMPARISONS

Notations Descriptions
Normal loss models using normal loss without two-stage approach
Two-stage models using normal loss with two-stage approach
Skewed loss  models using the skewed loss with dynamic lambda strategy
Wilcoxon Wilcoxon signed rank test

Paired-t paired t-test

between the rank values of two variables and hence quantifies
monotonic relationships [34]. The range of both correlation
coefficients lies between -1 (negative correlation) and 1 (pos-
itive correlation).

It should also be noted that, unlike normal loss functions,
correction approaches try to sacrifice model accuracy for more
unbiased model predictions. Thus, all correction approaches
will result in an increase in MAE compared with normal
loss. In our experiments, model performance using normal loss
could be regarded as the lower bound of model errors.

To save space, Table II lists some notations used in the
following subsections.

A. Model Performance

From Section V-C, we split each dataset using 20 different
ways and for each split, we train the network 5 times. At the
end of the training, we calculate the average value of the MAE
and ADC from the 5 repeated runs to reduce fluctuations in
model performances. In that way, we end up with 20 pairs (one
split for one pair) of averaged MAE and average ADC between
the two-stage approach and skewed loss. The significance tests
are performed by comparing the averaged MAE and ADC
values across the 20 splits. The model performance across
four datasets is shown in Table III and the significance test
results between the two-stage approach and the skewed loss
are shown in Table IV.

From Table III, the skewed loss achieves a lower MAE
compared with the two-stage approach for most models. The
averaged ADC of the skewed loss almost always falls within
—0.1 to +0.1, which indicates the bias in the brain-age delta
has been significantly reduced compared with normal loss.
On average, the skewed loss increases the MAE by 0.2 years
for the Cam-CAN datasets and 0.97 years for the ABIDE
datasets, whereas the two-stage approach increases the MAE
by 0.28 years and 1.12 years.

From Table IV, some models using the skewed loss
achieve significantly lower MAE compared with the two-
stage approach, for example, GoogleNet on Cam-CAN and
symmetric ABIDE datasets; ResNet on symmetric ABIDE
dataset and VGG on Cam-CAN dataset. For the rest models,
the skewed loss is likely to achieve lower MAE compared
with the two-stage approach whereas the improvement is not
significant enough.

To sum up, both the two-stage approach and the skewed
loss correct the model to have a near-zero ADC at the cost of
an increase on MAE, whereas using the skewed loss achieves
comparable or significantly lower MAE compared with the
two-stage approach.
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TABLE Il
MODEL PERFORMANCES ON FOUR DATASETS
Dataset Model Normal loss Two-stage Skewed loss
MAE ADC MAE ADC MAE ADC
Cam-CAN ResNet 4.80+0.42  -0.28+0.12 | 5.06£0.49  -0.03+£0.14  4.96+0.50 -0.03+0.13
VGG 5.09+0.44  -0.23+0.11 | 5.35£0.56  -0.02+0.14  5.224#0.59  -0.05+0.12
GoogleNet  5.10+0.54  -0.25+0.13 | 5.44+0.68 -0.03+x0.14  5.2240.60  -0.05+0.15
Skewed Cam-CAN ResNet 5.02£0.70  -0.35+0.19 | 5.31£0.71  -0.04+£0.20  5.21+0.76  -0.07+0.20
VGG 5.23+0.66  -0.34+0.17 | 542+0.71 -0.06+£0.19  5.43+0.75 -0.06£0.17
GoogleNet  5.28+0.71  -0.38+0.15 ‘ 5.62+0.79  -0.05+0.19 5.67+0.76  -0.06+0.18
ABIDE ResNet 3.40+0.43  -0.62+0.15 | 47142097  -0.04+0.28  4.54+0.66  -0.08+0.26
VGG 3.33+0.32 -0.6+0.15 | 4.35+0.89  -0.06£0.24  4.19+0.69  -0.09+0.25
GoogleNet  3.37+0.37  -0.60+0.15 ‘ 4.50+£0.75  -0.08+0.25  4.36+0.65 -0.12+0.27
Symmetric ABIDE ResNet 2.08+0.27  -0.73+0.08 | 3.55+0.88  -0.05+0.20  3.28+0.81  -0.09+0.23
VGG 1.9240.26  -0.64+0.11 | 2.81£0.60  -0.07+0.21  2.81+0.57 -0.03+0.24
GoogleNet  2.03+0.53  -0.64+0.11 | 2.93+0.73  -0.05+0.24  2.76x0.61 -0.07+0.23
TABLE IV has been significantly reduced compared with normal loss.
S'GN'F'CSANCE TEET BEJVWEEN -(/WO'STAGE AND On average, the skewed loss increases the MAE by 0.08 years
KEWED LOSS WITH P-VALUES for the Cam-CAN datasets and 0.6 years for the ABIDE
Dataset Model Wilcoxon Paired-t datasets, whereas the two-stage approach increases the MAE
MAE ADC MAE ADC by 0.12 years and 0.78 years.
Cam-CAN ResNet 0.09 0.77 0.06 0.76 From Table VI, ResNet on ABIDE dataset, VGG on ABIDE
VGG 0.06 0.16 0.06 021 dataset, and GoogleNet on ABIDE and symmetric ABIDE
datasets achieve significantly lower MAE using the skewed
GoogleNet  <0.01 0.19 <0.01 0.12 .
loss compared with the two-stage approach. For the rest mod-
Skewed Cam-CAN ResNet 0.10 0.14 0.28 0.14 els, the skewed loss tends to achieve lower MAE compared
VGG 0.50 0.91 0.85 0.98 with the two-stage approach whereas the improvement is not
significant.
GoogleNet 0.85 0.91 0.72 0.66
¢ To sum up, for ensemble models, the skewed loss can
ABIDE ResNet 070 <001 019 <001 achieve comparable or significantly better performances com-
VGG 0.09 0.16 0.12 0.05 pared with the two-stage approach. Using the skewed loss in
GoogleNet 0,18 0.19 013 017 znlsemble models can also remove the bias in the brain age
elta.
Symmetric ABIDE ResNet <0.01 0.07 <0.01 0.05
VGG 082 010 099 0.0 C. Performances Using Spearman’s Rank
GoogleNet  0.01 045 <001 041 Correlation as ADC

B. Model Performance of Ensemble Models

In Section VI-A, we calculate the MAE of each model
and take the average of MAE from the 5 repeated runs.
Alternatively, we can create an ensemble model by averaging
the model predictions of 5 repeated runs and then calculate its
MAE and ADC. Because we split the dataset in 20 different
ways, we also end up with 20 ensemble models and thus
20 pairs of MAE and ADC for each model architecture. The
ensemble model performance across four datasets is shown in
Table V and the significance test results between the two-stage
approach and the skewed loss are shown in Table VI.

From Table V, the skewed loss also achieves a lower MAE
compared with the two-stage approach for most models. The
ADC of ensemble model using the skewed loss almost always
falls within —0.1 to +0.1, which also indicates the bias

A further experiment is carried out to evaluate how our
approach performs by changing the ADC from Pearson’s r
to other correlation metrics. Here, due to space constraints,
we only showed the performances using ResNet on the
Cam-CAN dataset with ADC measured in Spearman’s rank
correlation in Table VII and Figure 6.

In Figure 6, we again train our model using L1 loss and
skewed L1 loss with dynamic lambda strategy. We can observe
that switching to different types of correlation metrics results
in the specified metric approaching zero. It shows the potential
to be generalized to other types of correlation metrics.

D. Consistency of Correlation Trends

Figure 3, Figure 4, and Figure 6 show the changes of
correlation of a single model. To further validate the stability
of our approach, we can examine how the variance of ADC
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TABLE V
ENSEMBLE MODEL PERFORMANCES ON FOUR DATASETS

Dataset Model Normal loss Two-stage Skewed loss
MAE ADC MAE ADC MAE ADC
Cam-CAN ResNet 4.00£0.24  -0.34£0.11 | 4.12#0.29  -0.03+0.12  4.07+0.33  -0.04+0.12
VGG 4.12+0.31  -0.29+0.10 ‘ 4.26+0.39 -0.03£0.11 4.21+0.36  -0.06+0.11
GoogleNet  4.06+£0.32  -0.32+0.13 | 4.20+0.48 -0.03£0.14  4.09+0.35 -0.05+0.14
Skewed Cam-CAN ResNet 4.33+0.61 -0.4+0.15 | 4.49+0.57 -0.04+0.21  4.38+0.66  -0.07+0.20
VGG 4.45+0.57  -0.39+0.15 ‘ 4.50+0.56  -0.06£0.19  4.45+0.58 -0.07+0.17
GoogleNet  4.30+0.49  -0.46+0.12 | 4.38+0.48 -0.06+£0.19 4.55+0.48 -0.07+0.17
ABIDE ResNet 3.02+£0.35  -0.67+0.11 | 4.04+£0.79  -0.04+0.30  3.66+0.43  -0.08+0.27
VGG 3.00+£0.25  -0.64+0.13 ‘ 3.79+£0.76  -0.06+0.25  3.57+0.51 -0.09+0.25
GoogleNet  3.00+£0.34  -0.66+0.12 | 3.89+0.60 -0.08+0.25  3.65+0.47 -0.12+0.27
Symmetric ABIDE ResNet 1.85+£0.19  -0.82+0.04 | 2.67£0.57  -0.05+£0.20  2.52+0.42  -0.09+0.24
VGG 1.67£0.19  -0.73+0.06 | 2.20+£0.36  -0.07£0.21  2.30+£0.39  -0.03+0.27
GoogleNet  1.79+0.50  -0.72+0.07 | 2.39+£0.57 -0.05+£0.26  2.20+0.47 -0.08+0.24
TABLE VI ADC Comparison
ENSEMBLE SIGNIFICANCE TEST BETWEEN TWO-STAGE 050 o ; '°55d o
AND SKEWED LOSS WITH P-VALUES 025 i
0.00
|9}
Dataset Model Wilcoxon Paired-t Q025
MAE ADC MAE ADC 00
Cam-CAN ResNet 019 068 031 073 o
VGG 046 018 044 020 S e T
GoogleNet 0.14 0.16 0.10 0.13 Fig. 6. ADC Comparisons between L1 and skewed L1 loss. Dynamic
lambda strategy is applied for the skewed loss. The model is trained
Skewed Cam-CAN ~ ResNet 028 013 031 0.3 twice using L1 loss and skewed L1 loss respectively. The dashed and
VGG 041 091 0.49 078 solid lines represent the changes of ADC (measured in Spearman’s rank
: : ) : correlation) on the validation set in the training process using L1 and
GoogleNet ~ 0.14 097 009  0.65 skewed L1 loss respectively.
ABIDE ResNet <0.01 0.02 <0.01 0.02 ADC Comparison
»»»»» L1
VGG 004 026 005 009 025 " Skewed L1 oss
0.00
GoogleNet  <0.01  0.30 0.01 0.28 O 025
<Df » bf‘f‘u"fﬁt&w
Symmetric ABIDE ResNet 0.15 0.17 0.07 0.24 -050 ‘.ﬂ g"&fi"ﬂjf o
-0.75 q
VGG 026 018 024 017 oo it
GoogleNet  <0.01 039 <0.01 040 ° Rt
Fig. 7. Averaged ADC Comparisons between L1 and skewed L1 loss.
TABLE VI The dashed and solid lines represent the changes of ADC on the

RESNET PERFORMANCE ON CAM-CAN USING SPEARMAN’S RANK
CORRELATION AS ADC

Model  Metric Normal loss | Two-stage  Skewed loss
ResNet  MAE 4.79+0.55 5.08+0.60 4.95+0.56
ADC -0.33+0.18 I -0.02+0.20 -0.05+0.20

changes in the training process. A large variance of ADC
indicates large oscillations in ADC and vice versa.

In Section V-C, we train each model 5 times to reduce the
fluctuations. Thus, we group these 5 runs to calculate the mean
and standard deviation of ADC. Figure 7 shows the trend of
averaged ADC of the 5 repeated runs.

validation set in the training process using L1 and skewed L1 loss
respectively. The shaded area represents the mean ADC plus or minus
one standard deviation.

From Figure 7, we can observe that the variance of ADC
decreases in the training process and arrives at a small value at
the end of training. This indicates the ADC can almost always
arrive at (near) zero using the skewed loss on the validation
set, which further validates the stability of the skewed loss.

E. Robustness to Data Distribution Shift

Machine learning models typically require that the training
and test set should share some similar properties like data
distributions and the models are expected to learn these
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TABLE VIII
MODEL PERFORMANCE COMPARISONS WHEN FACING DISTRIBUTION SHIFT

Training Set Test Set Metric Normal loss | Two-stage  Skewed loss
Group 2 & Group 3 Group 1 MAE 15.4£1.51 14.54+1.22 14.50£1.30
ADC -0.85+0.05 -0.80+0.03 -0.7540.03
Group 3 & Group I Group 2 MAE 6.9+0.31 7.75+£0.25 7.44+0.39
ADC 0.08+0.005 0.14+0.01 0.11+0.01
Group 1 & Group 2 Group 3 MAE 15.45+1.12 11.4+0.38 10.63+1.88
ADC -0.74£0.03 -0.6+0.06 -0.52+0.06

similarities during the training process. However, due to the
variability of the unseen test data, these similarities may not
always hold, which inevitably causes performance degradation
in most cases.

Although learning with distribution shift has been exten-
sively studied in recent years, it remains a challenging and
ongoing topic in machine learning. In Section VI-A, we have
discussed the model performance of the skewed loss without
distribution shift. Therefore, it is crucial to investigate whether
the skewed loss is robust to distribution shift or not.

1) Experiment Settings: To make the test set significantly
different from the training set, we manually split our dataset
based on the participants’ chronological age. For illustration
purposes, we only selected the Cam-CAN dataset and ResNet
architecture to discuss the distribution shift problem. The
Cam-CAN dataset was split into three groups. Group 1 consists
of participants with ages below 40 years. Group 2 consists of
participants with ages above 40 years and below 60 years.
Group 3 consists of participants with ages above 60 years.

The model was then trained three times using each cor-
rection approach. For each time, one group was selected as
the test set and the remaining two groups were combined
as the training set. The chronological age distribution of the
training and test sets of the three train-test splits are illustrated
in Figure 8.

2) Results: The model performance comparisons on three
different train-test splits are shown in Table VIII. The corre-
lation is measured in Pearson’s r.

3) Discussions: From Table VIII, it could be observed that
neither the skewed loss nor the two-stage approach achieves a
near-zero ADC at the end of the training, which indicates that
neither approach works well when facing distribution shifts.

However, by comparing the skewed loss and the two-stage
approach, it could be observed that the skewed loss suffers
less in terms of both MAE and ADC in all three experiments.
Moreover, when Group 1 or Group 3 is selected as the test
set, both correction approaches decrease the MAE compared
with the normal loss, which is not observed in Table III
and Table V.

The reason why the skewed loss and the two-stage approach
are not robust to distribution shift is that they both heavily
rely on the validation set. The two-stage approach relies on
the validation set to calculate Sy and f; in (5), whereas the
skewed loss aims to achieve a near-zero ADC on the validation
set. For both approaches, the validation set is used as the target
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Fig. 8. Age distributions of three types of train-test split. Each row
represents a different way of creating the training and test set. The left
three plots represent the three training sets and the right ones represent
the corresponding test sets.

for the model to optimize. If the validation set is significantly
different from the test set, both methods will suffer.

There is one more point to be noted by comparing
Table VIII and Table III, it could also be observed that MAE
increases significantly. There are several reasons for it. Firstly,
the size of the training set becomes much smaller compared
with the one used in Section V. Secondly, take the first
train-test split (Group 1 as the test set) as an example. In the
first train-test split, the training set only contains subjects
whose age is above 40 years so that the model is also more
likely to give a prediction that is above 40 years, whereas the
true labels from Group 1 are all below 40 years. Therefore,
when using Group 1 and Group 3 as the test set, the MAE
increases significantly.

To sum up, although both the two-stage approach and the
skewed loss are not robust to distribution shift, the skewed loss
suffers less compared with the two-stage approach in terms of
both MAE and ADC.

VII. GENERALIZATION OF THE SKEWED LOSS
We have demonstrated the ability of the skewed loss in
removing the dependence of brain age delta on chronological
age. We would like to stress that the skewed loss could
also be generalized to other areas regardless of brain age
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prediction. We provide a simple example here to illustrate
the generalization of the skewed loss using the apparent age
prediction problem. It should also be noted that in apparent
age prediction, achieving a more accurate prediction (a lower
MAE) is the primary goal rather than a near-zero correlation
as in brain age prediction.

A. Apparent Age Prediction Explained

Predicting a person’s real age based on a single face image
is a classic problem in the computer vision field. However,
the model performance can often be affected by outliers
represented by people who have an appearance that is not in
line with their real age [35]. Therefore, a different approach
has been developed known as apparent age prediction, which
is the age perceived by humans. The problem can then be
formulated as building a regression model that takes a person’s
face image as input and uses the apparent age as output.

B. Experiments

To empirically investigate our approach on apparent age
prediction, we conducted experiments using a publicly avail-
able face dataset. The models were trained using the normal
symmetric loss and the skewed loss respectively. The two-
stage approach was also applied to models using the normal
symmetric loss as the contrast.

1) Dataset: We selected the Chalearn Looking at People
2015 competition dataset (LAP dataset), which provided
thousands of annotated images [36], [37]. The images were
labeled based on web applications that averaged the opinion
of 10 independent users to obtain the apparent age.

To preprocess the original dataset, we first ran a face detec-
tion program on all images to remove the useless background
information. The program could be found in a GitHub repos-
itory* and we applied the default HOG-based approach [38]
to extract the face from the whole image. The resulting face
images were then resized to have a spatial resolution of 100 x
100 pixels. In total, we obtained 4383 face images.

2) Models: We adopted the ResNet [14] architecture to
demonstrate the effectiveness of the skewed loss in this prob-
lem. As for the choices of model-dependent hyperparameters,
we also followed the conventional design strategy discussed
in Section V-B. The specific implementations could also be
found in the GitHub repository mentioned in Section I.

3) Training and Testing: The general training and testing
strategy stays almost the same as the brain age prediction.
Because of the size of the LAP datasets, to prevent models
from over-fitting, we applied data augmentation in the training
process. In each training iteration, every input image had a
probability of 50% being flipped horizontally. Also, the L2
weight decay coefficient was set to 0.001.

During the training process, the Adam optimizer [33] was
used as the default optimizer for all models. The initial
learning rate was set to 0.01 and then multiplied by 0.5 every
50 epochs. The batch size was set to 64 as default and the
total number of epochs was set to 300.

4https://github.c0m/ageitgey/face_recognition

TABLE IX
RESNET PERFORMANCE ON APPARENT AGE PREDICTION

Model Metric Normal loss | Two-stage  Skewed loss
ResNet MAE 8.32+0.22 15.42+1.22 13.64+0.99
correlation -0.75+0.06 0.02+0.04 0.01£0.06
ADC Comparison
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Fig. 9. ADC Comparisons between L1 and skewed L1 loss. Dynamic
lambda strategy is applied for the skewed loss. The model is trained
twice using L1 loss and skewed L1 loss respectively. The dashed and
solid lines represent the changes of ADC (measured in Pearson’s r) on
the validation set in the training process using L1 and skewed L1 loss
respectively.

When we trained the model using the skewed loss, the
hyperparameters used in Table I are set the same for all
models. We set hyperparameter o to 50, f to 150, € to 3,
6 to 0.15, and # to 1.2.

Datasets were split using a stratified split strategy of which
80% was used for training, 10% for validation, and 10% for
testing. Also, to minimize the fluctuations of the model results
due to the random initialization of the weights, we trained our
models using skewed loss and normal loss 5 times respectively.

C. Results

The model performance comparisons on apparent age pre-
diction are shown in Table IX and Figure 9. The correlation
is measured in Pearson’s r.

It should be noted that considering the small size of this
dataset and low spatial resolution (100 x 100), the MAE
should still be considered acceptable compared with other
studies [35], [39].

From Figure 9, We can observe that the skewed loss also
achieves a near-zero correlation at the end of the training,
which proves that the skewed loss could be generalized to
other areas regardless of the brain age prediction.

VIII. DISCUSSION

We have proposed a skewed loss function and dynamic
lambda training strategy to solve the nonzero ADC problem in
brain age prediction. The skewed loss counteracts this bias by
switching the normal symmetric loss function into a skewed
form. The dynamic lambda strategy tunes A, iteratively
to search for the optimal value that can enable the model
predictions to have a near-zero ADC at the end of training.

One assumption of our approach is that models with zero
ADC on the validation set should also have near zero ADC on
the test set. By evaluating model performances in Section VI,
we find that using the skewed loss, ADC on the test set always
has a mean around zero, which supports our assumption.
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The most significant difference between the skewed loss
and the two-stage approach is that the skewed loss controls
ADC explicitly whereas the two-stage approach controls it
implicitly. That means changing the way we measure ADC
from Pearson’s r to other types of correlation metrics, our
approach could have a similar effect with the specified corre-
lation metric approaching zero. In Section VI-C, we showed
that using Spearman’s rank correlation can also achieve similar
performances.

We also demonstrated in Section VI that both the skewed
loss and the two-stage approach can achieve a near-zero ADC,
whereas the skewed loss achieves comparable or even better
model performances in terms of MAE compared with the two-
stage approach. Theoretically speaking, a two-stage approach
leads to a result that is strictly worse in terms of minimizing
both MAE and ADC than a single integrated approach. In the
two-stage approach, the model is optimized to minimize MAE.
When correction is applied afterward, there is no guarantee
that the MAE remains low. In an integrated approach, the
model is optimized to minimize MAE conditioned on a desired
maximum value of ADC [13]. Knowledge of the constraint
allows the model to find a better local minimum to solve the
task of minimizing both MAE and ADC. Also, the skewed loss
only aims to encourage the model to make predictions toward
the opposite side, i.e., from overestimations toward under-
estimations for young individuals and vice versa. In terms
of MAE, there is no difference between overestimations and
underestimations. In Section VI-E, we also evaluated whether
the correction approaches are robust to distribution shifts.
Although neither approach always achieves a near zero ADC,
the skewed loss has been proved to suffer less in terms of both
MAE and ADC from Table VIII.

We have also demonstrated in Section VII that the skewed
loss, as well as the two-stage approach, could also be gen-
eralized to other areas. The observed bias is also commonly
known as the regression dilution bias, which could be found
in almost any regression model. However, whether to apply
the skewed loss, as well as other approaches, depends on
different applications. In brain age prediction, a near-zero
ADC is the primary goal as a non-zero ADC could cause
spurious relationships in subsequent experiments, whereas in
apparent age prediction, a more accurate age estimate is more
important.

It should also be noted that both the two-stage approach
and the skewed loss have their advantages and shortcomings.
Regarding the two-stage approach, it is easier to implement,
because, in each stage, only one metric (MAE or ADC) is
optimized. However, when the correction is applied afterward,
there is no guarantee that the MAE from the first stage remains
low, which can be observed in Table III. As for the skewed
loss, it is obvious that by optimizing the two metrics (MAE
and ADC) in a unified approach, the model takes care of both
metrics at the same time. As for the shortcomings, a successful
search of Apugyx is crucial for the skewed loss approach.
In Algorithm 1, we provide a heuristic way to search for it
which proves to be robust. However, the two-stage approach
does not require this additional hyperparameter searching.

There are still some aspects that require further improve-
ments. Firstly, it would be preferred to apply the skewed
loss on a larger dataset. Secondly, our approach can only be
applied in regression models. Peng et al. [8] treated brain age
prediction as a classification task and applied a weighted sum
to calculate the predicted brain age. The two-stage approach
can be applied to that situation while ours cannot. Also, it is
useful to apply the skewed loss function in a case study to
assess its sensitivity to detect pathological changes in patients.
Although our approach achieves a near-zero ADC value that
is similar to the two-stage approach, a case study can further
confirm the relevance of our approach rather than through the
ADC value.

To conclude, we developed the skewed loss function to
counteract the predictive bias in brain age prediction. In most
cases, it achieves a better performance than the existing
two-stage approach. Also, our approach has been verified in
different datasets using different neural network architectures.
By taking ADC explicitly into consideration in the training
process, our approach also shows the potential to remove
nonlinear relationships by measuring ADC using relevant
correlation metrics.
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