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Abstract 

Microwave resonant sensors use the spectral characterisation of a resonator to 

make high sensitivity measurements of material electromagnetic properties at GHz 

frequencies. They have been applied to a wide range of industrial and scientific 

measurements, and used to study a diversity of physical phenomena. Recently, a 

number of challenging dynamic applications have been developed that require 

very high speed and high performance, such as kinetic inductance detectors and 

scanning microwave microscopes. Others, such as sensors for miniaturised fluidic 

systems and non-invasive blood glucose sensors, also require low system cost and 

small footprint. This thesis investigates new and improved techniques for 

implementing microwave resonant sensor systems, aiming to enhance their 

suitability for such demanding tasks. This was achieved through several original 

contributions: new insights into coupling, dynamics, and statistical properties of 

sensors; a hardware implementation of a realtime multitone readout system; and 

the development of efficient signal processing algorithms for the extraction of 

sensor measurements from resonator response data. The performance of this 

improved sensor system was verified through a number of novel measurements, 

achieving a higher sampling rate than the best available technology yet with 

equivalent accuracy and precision. At the same time, these experiments revealed 

unforeseen applications in liquid metrology and precision microwave heating of 

miniature flow systems. 
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1 Introduction 

Microwave resonant sensors (MRS) exploit the change in the spectral response of a 

resonance to make enhanced sensitivity measurements of a wide range of physical 

phenomena linked to the change in a material’s electromagnetic properties at GHz 

frequencies. One such phenomenon is the modulation of the microwave surface 

impedance of superconductors by impinging light waves. This has been exploited 

recently to create state of the art detectors for telescopes in the far infrared region 

of the spectrum [1] – vital for our understanding of galaxy and star formation – as 

well to engineer better THz cameras [2], recently introduced in some airports to 

detect concealed weapons.  

Whilst the GHz frequency band does not always contain useful information about 

sample substances, it does not ionise or chemically alter samples, can be applied 

without direct contact, and penetrates through a large variety of materials. In 

addition, MRS design is highly adaptable, enabling a host of specialisations from 

super-ruggedised sensors monitoring oil and gas composition at deep-sea 

wellheads to nanofabricated microwave microscopes capable of imaging single 

atoms and probing the localised properties of complex materials such as high 

temperature superconductors and thin film ferroelectrics. Many other interesting 

and relevant phenomena can be studied using MRS, and the same basic sensor 

principle has been tailored to suit a diversity of measurement tasks and conditions. 

Since the 1950s, these advantages have attracted a range of established uses for 

MRS [3], but outside of the laboratory they tend to be limited to less demanding 

‘industrial’ tasks such as density estimation, moisture content measurement and 

quality control [4]. These applications do not truly harness the power and 

precision of laboratory-based microwave resonator measurements, which can 

achieve a very high dynamic range and accuracy but are traditionally slow and 

require a high level of expertise, laborious calibration routines, and awareness of 

environmental variability. 
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Despite this, a number of new and potential uses for MRS systems have arisen that 

demand fast sample times, high accuracy and laboratory precision as well as 

presenting complex system integration challenges. These include the 

aforementioned kinetic inductance detectors for astronomy and THz imaging, as 

well as scanning microwave microscopes for surface characterisation [5]. Other 

more speculative applications include precision heating in miniaturised flow 

systems [6] and sensors for portable instruments and medical devices [7]. The key 

to enabling or enhancing these applications is changing the architecture of the 

electronics for spectral characterisation to make it faster, cheaper, and easier to 

integrate whilst retaining the high performance of laboratory-based microwave 

resonator measurements. Therefore: 

The aim of this thesis is to solve the issues currently limiting the speed, 

accuracy, and integration of MRS systems so as to enable their 

advantages to be brought to bear in new and unforeseen applications.  

Fortunately, advances in digital signal processing (DSP) and broadband converter 

technology created an opportunity to move away from traditional MRS readout 

architectures. Part of the solution was to use multiple frequencies of excitation 

simultaneously (a so-called multitone signal) allowing spectral characterisation 

without requiring local oscillator tuning or invoking resonator transients, giving a 

big speed advantage. To generate and measure such a signal, I developed a system 

for resonator spectral characterisation, the readout hardware (Chapter 4).  

The basis of the system is a wideband, high precision, software-defined radio 

(SDR) transceiver, using high-resolution, broadband analogue to digital and digital 

to analogue converters to cover not only the full spectral response of the resonator 

but also its intended perturbation range. The design is flexible and has minimal 

radio frequency (RF) components, instead relying heavily on DSP. In certain 

frequency ranges aligned to the needs of digital communications, it is fully 

implementable with just a few highly integrated semiconductor components. This 

means the system is scalable for low cost, low power consumption and small 

physical dimensions.  
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The concept of the multitone readout system was recently found to have been 

developed in parallel [8]. However, Hermann et al. did not appreciate the scope of 

their invention. Despite stating its capability for high-speed readout, they did not 

demonstrate any novel or enabling applications, nor did they focus on optimising 

the accuracy and precision of their system for meteorological quality 

measurement, as done here. 

To investigate the performance of the hardware, I conducted long-term stability 

measurements. These show that the precision of the new measurement system on 

short time scales is comparable to that obtainable with a conventional vector 

network analyser (VNA). Over longer time scales, thermal fluctuations in the 

resonant sensor itself limit the precision of both techniques. Furthermore, if the 

sensor can be periodically referenced to a measurement of a known standard 

(such as air), the achievable precision in realtime resonant frequency 

measurements is about 1 part per billion, or 30 bits, over a 1 s integration time. 

This is a higher dynamic range than many other sensor systems can boast.  

A large part of this new architecture lies in the algorithms used to calculate the 

resonator spectral response and extract relevant sensor measurements from it. 

These algorithms together make up the readout software (Chapter 5). A likely 

target platform is a field-programmable gate array (FPGA), a type of highly parallel 

programmable digital integrated circuit, in anticipation of an embedded sensor 

solution. Therefore, algorithms suited to the highest possible readout speed were 

developed with parallel processing and high computational efficiency in mind. 

Extensive use was made of the efficient computation and parallel processing 

capability of the National Instruments LabVIEW programming environment in 

order to develop and test these software routines. 

The hardware and software elements of this novel MRS readout system are the 

most significant contributions to knowledge arising out of this work. They are the 

basis of a patent filed at the end of this project [9]. The desire to protect this 

intellectual property, necessary to secure funding for the SDR platform used in its 
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development, has meant that the main body of this research work is yet to be 

published. 

A key part of the attempt to solve some of the other problems facing current MRS 

applications, such as high systematic error and sensor miniaturisation, was the 

development of a general resonator modelling method (Chapter 3). Investigation 

into theoretical sources of nonlinearity in the resonant sensor response identified 

a need for a comprehensive model, general enough to correct the nonlinear 

response of complex miniaturised sensors and compensate for the effects of high-

frequency dynamic perturbation processes. A combination of theoretical analysis 

and interpolated finite element method (FEM) eigenvalue simulations provided a 

hybrid, or semi-parametric multi-stage model. This linked measured resonator 

spectral response, resonator eigenvalue, and a desired measurand, such a 

permittivity. Artificial neural networks were proposed as a means to represent 

these models in a form suitable for FPGA implementation, allowing the sensor 

electronics to correct automatically for any nonlinear response of the sensor in 

realtime and at high rate (Chapter 6). Although general and somewhat theoretical 

at this stage, this work will help support on-going microwave resonant sensor 

design activities at Cardiff University and could be appropriate for publication if 

verified experimentally in the future [10]. 

The development of this readout system greatly enhanced the speed of resonator 

characterisation over traditional laboratory MRS measurements. This enabled the 

development of a novel system for controlling solid-state microwave heating in a 

miniature flow system [6]. I also used the new readout system to measure free-

falling droplets and gas-segmented flow streams, primarily as an attempt to verify 

the accuracy of dynamic MRS measurements using the new readout system 

(Chapter 7). As well as being largely successful toward this aim, these experiments 

potentially present a new opportunity to apply MRSs in multi-parameter fluid 

characterisation – possibly offering a cost or robustness advantage over traditional 

methods in measuring properties such as surface tension and viscosity, in addition 

to permittivity [11]. 
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In summary, the original contributions to knowledge are the application of a 

realtime multitone measurement system to liquid property measurements [11] 

and to microwave heating control [6] [10], as well as an accurate, efficient, fast, 

and highly flexible MRS readout system platform [9], suitable for use in the next 

generation of integrated MRS applications, e.g., [7]. 

The thesis is broken down into six further chapters: Applications, Theory, 

Hardware, Software, Verification, and Conclusions. The Applications chapter 

reviews the industrial and scientific uses for MRSs and gives an overview of the 

developments and technology in several key areas that lead up to this work. The 

Theory chapter introduces the principles behind resonant sensors and develops 

the multi-stage MRS modelling approach. The Hardware chapter discusses MRS 

readout architectures and the development of the new multitone readout system, 

along with experiments to assess its static performance in comparison to a VNA. 

The Software chapter covers spectral estimation using multitone excitation signals, 

their optimisation, and the correction of distortion effects. This chapter also 

assesses methods for extracting resonant frequency and bandwidth from spectral 

estimates. The Verification chapter brings together elements of Chapters 3-5 in 

several demonstrations of the power and scope of realtime MRS measurements 

including measurement of liquid droplets, gas-segmented flow streams, 

microreactor heating control and dynamic capillary filling characterisation. The 

final Conclusions chapter summarises the achievements of this work and discusses 

the interesting and groundbreaking potential of its main findings and 

contributions. 

The next part of this chapter introduces microwave resonant sensors in more 

detail and provides a general discussion of their advantages and disadvantages in 

comparison to other sensing technology. 
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1.1 Microwave Resonant Sensors (MRS) 

Defining what is meant by the phrase ‘microwave resonant sensor’ will help 

explain the context of the problem. This section discusses the specific 

characteristics and requirements of the intended application scope encompassed 

by this label. 

A sensor is a device that measures a physical property and converts it into a signal 

that can be read by an observer or by an instrument. This definition introduces the 

concept of signals. This also implies that a sensor is a subcomponent of an 

instrument. The job of an instrument is then to process these signals in a useful 

way. Therefore, an important part of sensor system design must be deciding what 

signal processing to do and how to do it in an optimum way. Fundamentally, this is 

the central topic of this thesis. 

In engineering, the term ‘sensor’ has come to imply something that is a 

subcomponent of a larger system, such as an instrument, or to suggest a level of 

autonomy or a high level integration of a device into a wider system or network. I 

use the term in this sense also. The device is perhaps just one small part of a 

‘higher measurement objective’, meaning that it and any surrounding system is 

capable of some degree of autonomy and integration. This type of sensor should 

not rely on laborious human interaction or calibration in order to produce its 

output signal, be that for dissemination by man or machine.  

In the field of microwave measurements, this distances the intended application 

space from ‘traditional’ techniques aimed at very high accuracy one-off 

measurements of pure physical properties. This could be said of the measurement 

of ceramic dielectric properties or the surface impedance of superconductors, for 

example. These are not sensor applications, but experiments that happen to use 

microwave resonators. If the user has to spend an hour carefully setting up the 

experiment and post-processing the data to make one measurement then he or she 

can accept this as all part of the experimental method and due scientific rigor. This 

represents a level of human intervention and time expenditure that is 
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unacceptable for the applications of MRS discussed here. However, the 

demarcation is far from sharp. After all a very good sensor could be used in a 

laboratory setting as well, saving the user time and hassle associated with these 

traditional techniques. This definition of a sensor goes some way to justifying the 

pursuit of this problem, and represents some of the objectives of this work. 

The term microwave refers to the portion of the electromagnetic spectrum having 

a wavelength between about 1 meter and 1 centimetre (of corresponding 

frequency in free space between 300 MHz and 30 GHz) [12], although the MRS 

principle of a perturbed resonator is still applicable even at optical wavelengths. 

The physical quantities that can be sensed relate to the interaction of these waves 

with matter; some property of matter will affect the propagation of these waves 

and hence be detected (sensed) by microwaves. Sensors are transducers, i.e., they 

convert energy from one form into another. In MRS, this conversion is between the 

electromagnetic energy of microwaves and the kinetic energy of molecules, ions, 

and electrons. It is often stated that microwave sensors are used to measure 

electric permittivity,   conductivity,   and occasionally magnetic permeability,   

[13]: 

   
 

 
   

 

 
   

 

 
  1.1 

These are transfer functions (linear input-output ratios) that state how easily a 

material transmits a displacement current  , an electric current   and a magnetic 

flux in response to an electric field E or magnetic field H. Of these ‘flows’,  ,   and 

 , only the electric current actually represents the physical transport of matter. 

Each of these parameters is a function of the frequency at which the field 

alternates – the material’s response spectrum – and sometimes the direction of the 

field as well, known as anisotropy. Anisotropy is present in most regular 

crystalline materials. A microwave resonant sensor can be designed to measure 

unambiguously any one of these three parameters at a time, and by suitable 

orientation of sample with the modal field distribution, also extract anisotropic 

responses as well [14]. 
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The microwave-matter interaction is a subject of great depth and much interest 

but it does not form a central part of this thesis because the main aim is very 

general. Although specific examples or case studies may require knowledge of the 

microwave-matter interactions in that application, it would be impractical to 

discuss the nature of all the interactions of all the possible sensors to which the 

main development of this thesis could be applied. Furthermore, in many cases, one 

is not interested in these quantities per se but what they represent for the material 

under investigation – its shape, size, composition, temperature, presence or 

absence. For example, one of the main applications of ‘microwave sensors’ (albeit 

non-resonant) is in the measurement of distance – such as that from a car’s rear 

end to its owner’s garage wall. The actual permittivity of the wall itself does not 

matter in the slightest, as long as it is enough to ensure adequate reflection. 

The third yet key term in the central theme of this thesis is ‘resonant’. A resonant 

sensor is one designed to have a clearly defined and sharp oscillation at a specific 

frequency (a unimodal resonance) or a set of discrete frequencies (a multimodal 

resonance). When a material in a resonator interacts with its electromagnetic field, 

the resonator changes its oscillation frequency and its bandwidth – i.e., the range of 

frequencies over which it will resonate best. From these parameters, one can 

deduce the contribution the material has made to the energy storage and energy 

loss mechanisms within the resonator. The reason to add this extra complication, 

rather than simply putting a material in an electromagnetic field and measuring 

the change in field amplitude, is twofold. Firstly, the resonator amplifies changes in 

its internal fields due to the sample at frequencies near its resonant modes, thus 

increasing its sensitivity. Secondly, the resulting change in amplitude and phase of 

signals close to resonance is coherent, whereas any noise is (ideally) not. Thus, in 

signal processing terms, the resonator provides a signal to noise ratio (SNR) gain 

by producing a correlated ‘response’ across a range of frequencies – usually 

several times the resonator bandwidth. The trade-off for this gain is that each 

resonant mode can only be used to measure the response of a material at one 

frequency. However, this limitation is not as drastic as it may seem. For 

fundamental physical reasons, spectral features in the dielectric response are 

normally extremely wide – spanning a decade or more in frequency. This inherent 
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‘smoothness’ present in the majority of material responses in the microwave band 

means that response spectra can be ‘pieced together’ from multimodal resonators, 

or indeed multiple resonators, without sacrificing much in the way of detail. 
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1.2 Advantages of the microwave interaction 

Apart from in situations when one is specifically interested in a material property 

at microwave frequencies (to assess its performance as a microwave circuit 

substrate material, for example), the advantages of using the microwave part of the 

electromagnetic spectrum are relatively subtle. It is fair to say that these sensors 

enjoy less widespread applicability than those at longer wavelengths (low 

frequency electrical measurements) and at specific shorter wavelength bands 

(optical and near-optical measurements). This is for both practical and physical 

reasons. From a practical point of view, measuring and generating voltages and 

currents at lower frequencies is easier and cheaper, because wave phenomena are 

insignificant on the scale of physical devices and the properties of doped silicon at 

low frequencies are more favourable for making integrated devices.  

At optical wavelengths, cheap, miniature and efficient solid state sources such as 

light emitting diodes (LEDs) and semiconductor lasers are widely available, as are 

detectors (photodiodes, CCDs, etc.). Furthermore, the wavelength is small enough 

that the ray approximation is valid on the scale of most physical devices, making 

design simpler; antennas are not required for free and guided propagation of 

optical signals and the optics are highly miniaturised. Specific bands can also 

benefit from the low cost of components, especially those used for digital 

communications. 

From a physical point of view, electronic and ionic conductivity are linked to a 

wide range of physical processes (Figure 1.1), yet tends to decrease in significance 

in the microwave band as it is masked by the displacement current. The ‘skin 

depth’ in which currents may flow in conductors is also larger at lower 

frequencies, meaning that bulk conductance properties can be measured. At optical 

wavelengths, with photonic energy about 1 eV, electronic transitions are the 

predominant source of electromagnetic (EM) interaction; these are accurately 

predicted and readily interpreted by quantum theory. The fact that most materials 

have electronic absorption bands at or near optical wavelengths implies that this 

band contains a rich source of detailed information about chemical composition, 
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something that cannot be said about the microwave band. This is one of the 

reasons why evolution has led the animal kingdom to adopt visible light as its 

wavelength of choice for its most powerful sensor – the eye.  

 

Figure 1.1: Hypothetical liquid response to electromagnetic fields as a 

function of frequency, showing the physical significance of various re gions of 

the spectrum. 

Due to its short wavelength, the near-optical band is also much more sensitive to 

surface disturbances on the molecular scale, such as selective adsorption of analyte 

molecules into evanescent field regions. This can be further enhanced by the use of 

surface plasmon resonance; the excitement by laser of surface propagating waves 

(with associated quantum quasi-particle called the polariton) in a thin layer of 

metal atoms. This is a primary technology of the latest generation of miniaturised 

biosensors [15], [16]. The microwave interaction, with photons of less than 1 meV, 

does not have a quantum interaction (except in unusual cases, such as magnetic 

resonance) and instead tends to be a combination of many factors, such as density, 

viscosity, temperature, etc., as it is largely determined by intermolecular structure. 

This means the response is less readily interpretable and suffers from a 

multiplicity of perturbing environmental factors. The much larger wavelength also 

means less selectivity to molecular scale surface effects, as even evanescent 

microwaves tend to have an active extent many orders of magnitude larger than 
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that achievable at optical wavelengths. Whilst extreme engineering can improve 

this resolution to nm length scales using micro/nanofabricated ultra-sharp 

‘microwave microscope’ probe tips [17], this is difficult and costly to achieve. 

Despite this, microwave sensors do have many advantages. One often cited 

advantage is that of being non-contact. Whilst this is true of optical sensors as well, 

microwave wavelengths are ideally suited to being non-contact whilst also 

permitting volumetric measurement to a reasonable depth in a wide range of non-

metallic materials, whereas non-contact optical methods can only make volumetric 

measurements in a more limited class of high transmissivity materials. Lower 

frequency measurements require electrical contacts to be very close or in direct 

contact with material, so they are less suitable. Microwave radiation is also 

minimally invasive; it is non-ionising and has high safe exposure limits to 

operators. Furthermore, in the vast majority of cases microwave radiation cannot 

affect chemistry except by heating (although this issue has been subject to some 

controversy in the chemistry community) [18]. 

A significant advantage is the highly flexible design and construction of microwave 

resonators; there are many known geometries of resonant structure and although 

each generally has a disparate ‘optimum’ geometry in terms of sensitivity, 

accuracy, size, and ease of manufacture, a good of compromise can usually be 

reached without sacrificing overall performance. In addition, (unlike optical 

systems) this flexibility, as well as the relaxed mechanical tolerance when dealing 

with longer wavelengths, means that the fabrication of microwave sensors does 

not necessitate expensive specialised or extreme precision manufacturing 

methods. These advantages imply the ease of MRS integration into extreme 

environments, complex systems, and cost-sensitive applications. 

Cost is a key advantage of using microwave sensors, or more specifically precision-

cost ratio. As the sensors themselves are highly flexible in design and do not 

necessitate specialised materials or fabrication methods, they can be mass-

produced at low cost. Thus the significant factor in overall expense is the readout 

system. The enabling factor for high precision-cost ratio is therefore the fact that 
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microwaves can be accurately detected and measured by synchronous receivers. 

Microwave receivers are based on the principle of downconversion by frequency 

mixing, a process that produces coherent lower-frequency signals that can be 

sampled with great precision and provide full vector information of a microwave 

signal. Due to the performance demand of radar and the mass demand of 

communications over more than a century of engineering, this detector of choice 

for microwave radiation can be designed with a higher dynamic range than any 

other room-temperature detector and can be made cheaply enough to be 

integrated into disposable ‘RFID’ tags costing a fraction of a penny. Maximising this 

key advantage, the precision to cost ratio, is therefore crucial in allowing the 

potential of microwave sensors to be fully exploited. 

This chapter has outlined the reasons for pursuing the improvements in MRS 

sensor processing and some of the achievements made over the course of this 

work. In the next chapter, the applications of MRS will be discussed in more detail, 

from the more mundane industrial applications that rely on the robustness and 

large penetration depth of microwave sensors, through to a discussion of some of 

the interesting new applications alluded to in this introduction, such as kinetic 

inductance detectors and sensors for miniature fluidic systems. 
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2 Applications 

This chapter looks at some of the applications microwave resonant sensors (MRSs) 

are routinely used for and what advantages they have, in both a broad ‘industrial’ 

context, in Section 2.1, and a scientific one, in Section 2.2.  

Section 2.3 then goes on to introduce some of the new and challenging things that 

MRSs have been applied to in the last decade or so, focussing particularly on those 

that rely on time-domain sensing; so-called dynamic measurement. These 

applications have been particularly influential in shaping the development of MRS 

technology, especially in this work. The first is the microwave kinetic inductance 

detector (MKID), an extremely sensitive detector originally developed for 

astronomical telescopes. The concept behind this thesis arose from research into 

the readout systems for MKIDs, so Section 2.3.1 gives a background to these 

devices and the previous developments in readout technology that inspired this 

work.  

Cardiff University and other institutions have recently directed some attention 

toward the integration of MRSs with microfluidic and ‘lab-on-a-chip’ technology. 

This interesting and promising research area, currently in a difficult adolescent 

stage, may find low-cost and high-speed MRS technology valuable in a few specific 

practical applications – so this field and some of the ways in which MRS could be 

useful within it are introduced in Section 2.3.3 as well.  

The final discussion topic, and pride of the microwave resonant sensor community, 

is the microwave microscope in Section 2.3.4 – an ultra-high-resolution sensor for 

probing the high frequency properties of matter down to the atomic level. Because 

of the need to scan the probe mechanically, and the very small perturbations 

produced, this sensor is demanding of both good dynamic performance and the 

highest precision any readout technology has to offer. 
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2.1 Industrial applications of MRS 

By a huge margin, the most established application of MRSs is moisture estimation. 

The accurate determination of moisture content (or more precisely the 

measurement of liquid water relative mass fraction in solids or liquids, known as 

aquametry) is crucial to a large variety of different manufacturing processes, from 

construction materials to pharmaceuticals.  

Moisture content affects the quality of products in a range of ways. Many products 

are prone to bacterial, fungal and pest contamination and high moisture content 

generally exacerbates this. Improper processing resulting in undesirably high 

moisture content can impair the quality, efficacy and storage life of foodstuffs, 

drugs and chemicals, and even pose a significant risk through food poisoning, 

spore inhalation, or structural failure of building materials. Incorrect water 

content of mixtures before processing also affects the quality of the resulting 

products; this is especially true of ceramics, cement, and concrete. Simple 

economics can also be significant – water is relatively dense, and drying materials 

costs a lot of money (because of water’s high heat capacity); this has implications 

for many bulk materials bought and sold by weight. Thus, there is a big incentive 

for manufacturers across the industrial spectrum to measure the moisture content 

of products throughout the manufacturing process. Fortunately, this is an ideal 

task for microwaves, and is by far the most widely commercialised application of 

both resonant and non-resonant microwave sensor systems. 

The field of microwave aquametry was reviewed recently by Udo Kaaze, author of 

over 200 publications in the area of material science and the dielectric properties 

of water in particular [1]. Other well-known reviewers of the field include Ebbe 

Nyfors [2], who discusses industrial microwave sensors in detail in his book of the 

same name [3]. Seichil Okamura, gives a historical overview from 1948-1999 [4]. 

The late pioneer of microwave aquametry Andrzej Kraszewski who cites hundreds 

of published applications as well as making significant contributions to the field 

[5], [6] (Figure 2.1). More recently, Klaus Kupfer’s book [7] provides a thorough 

background to the scientific principles and measurement techniques in the wider 



 Chapter 2– Application 

19 

field of electromagnetic aquametry, and has a chapter devoted specifically to 

microwave resonant sensors.  

  

Figure 2.1: Taxonomy of microwave sensors (both resonant and nonresonant) 

for aquametry (left) and MRS frequency shift agains moisture content for 

various weights of soybean, reproduced from [5]. 

Among the hundreds of applications of microwave aquametry, some of the more 

persistent examples include: fossil fuels, biofuels, turbine oil, assorted grains, 

green tea, tobacco, wood, concrete, veneer, paper, soil, snow, fabric and 

pharmaceutical powders and tablets (see above review articles for references). As 

well as listing literally thousands of publications, these authors all take pains to 

point out the significant advantages of microwave sensors, many of which apply to 

the whole array of MRS applications as well. A summary of the most widely cited 

follows in Table 2.1. 
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Table 2.1: Advantages of MRS for aquametry 

Advantage Description 

High contrast 

Water has a microwave permittivity at least 10 times that of most 
dry materials, as well as a significantly higher loss factor. Such a 
large contrast means that its presence can often be singled out and 
estimated to a useful level of accuracy even with large variations in 
the underlying composition of the sample. Neither shorter nor 
longer wavelengths offer such a marked contrast and with so diverse 
a range of possible mixtures. 

Non-destructive 

Unlike the classic aquametry method of heating the sample for hours 
to drive off the moisture and measuring the resulting change in 
mass, or the accurate yet chemical Karl Fisher titration method [8] 
based on the reaction of water with a known concentration of iodine, 
microwaves do not affect the quality or composition of a sample in 
any way. 

Noncontact 

Because only the electric field of the sensor needs to reach the 
sample, a reasonable gap can be accommodated which enables 
samples to pass continuously past the sensor – ideal for production 
line automation. 

Large 
penetration 
depth 

Due to the centimetre wavelength of microwaves, they can be 
arranged to penetrate quite deeply within most non-metals without 
resorting to free-space propagation, allowing the resonator 
perturbation principle to be maintained, and avoiding the radiation 
loss and complexity of antennas. Because of this, the volumetric 
moisture content can be determined, rather than being limited to the 
surface as with other types of sensor. This avoids any assumptions 
about the homogeneity of moisture distribution; porous materials 
are generally drier near surface due to evaporation, for example. 

Safe and non-
ionizing 

Another common way of estimating water content is by measuring 
density with a gamma ray densometer. However, such ionising 
radiation poses a potential health hazard, as it is carcinogenic. Any 
device seen to have the potential for such a risk to operators is 
increasingly unpalatable to industry, however small the threat posed 
may actually be. 

Robust to 
extreme 
environmental 
conditions 

Difficult environmental conditions include the presence of vapour, 
dust, surface contamination, as well as extremes of pressure and 
temperature. Popular with ‘dirty’ industrial production line settings, 
the environmental robustness offered by microwave sensor systems 
gives them an edge over more ‘delicate’ sensors such as infrared and 
capacitance cells, especially surface contamination as both are 
susceptible to this. However, this advantage is largely a result of 
careful product development, the flexibility of microwave resonator 
designs, and the lack of any need for moving parts or precision 
electronics in close proximity to the sensor, rather than any inherent 
advantage of microwaves. 
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Advantage Description 

Less sensitivity 
to ionic 
conductivity 

This is often desirable as ionic conductivity is strongly temperature 
and composition dependent and tends to swamp lower frequency 
measurements. Since the effect of ionic conductivity is inversely 
proportional to frequency, by microwave frequencies its 
contribution to loss is much less significant, particularly in 
comparison to water, giving greater measurement robustness. 

Can be 
independent of 
density 

Various ways have been devised to make microwave moisture 
measurements independent of the density of the sample, which 
gives microwave sensors a big advantage over density-based 
aquametry methods when constant sample density cannot be 
guaranteed. 

 

Less often trumpeted (due perhaps in a large part to the inevitable bias of 

authors), are the disadvantages of microwave sensors. These are summarised in 

Table 2.2. 
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Table 2.2: Disadvantages of MRS for aquametry 

Disadvantage Description 

Expense of 
components 

Sadly, microwave components (cables, connectors, amplifiers, 
electronics, etc.) are more expensive than RF components, and these 
are more expensive than low-frequency components. Although 
certain bands used for communications are cheaper due to mass 
demand, even these are still much more expensive than their low-
frequency equivalents. For microwave sensors to be economic, they 
have to offer something that low frequency sensors do not – too 
often this essential practical point gets overlooked in the literature. 

Large equipment 
dimensions 

Despite several attempts to miniaturise the required equipment, 
many systems are still dependent on bench-top instruments to 
achieve the level of accuracy needed. Furthermore, because of 
conductor losses being essentially proportional to the surface area 
to volume ratio, microwave resonators cannot be made arbitrarily 
small without having an impractically low Q or undesirably high 
resonant frequency. In fact, most sensors need to be at least one-half 
wavelength long in one or more dimensions, leading to a difficult 
trade-off between the expense and unsuitability of working at higher 
frequencies or the large sensor size required at longer wavelengths. 

Poor specificity 

Because the ‘dry’ permittivity of a material is initially unknown and 
materials often show non-linear mixing rules with water, moisture 
estimation is inherently inaccurate. Although a variety of analytical 
mixing rules for composite dielectrics exists (for an overview see 
Sihvola [9]) many are based on tenuous assumptions such as non-
interacting spherical particles or depend on unknown permittivity 
values, such as that of the ‘bound water’ layer that surrounds large 
solute molecules and ions due to hydrogen bonding. Thus in most 
cases the only way to provide an accurate reading is to fully 
characterise a range of material-water mixtures and use this as a 
calibration ‘look-up’. However, this makes the sensor specific to a 
particular material and can introduce errors if the nature of the 
material or its environment changes in an unanticipated way. 

Sensitivity to 
temperature 

With water, the temperature coefficient of permittivity is 
particularly large across the whole microwave band; hence, precise 
control of temperature in aquametry experiments is particularly 
important. It is often difficult to determine the exact temperature of 
a sample inside a MRS, and a temperature differential between a 
sample ‘reservoir’ and the interior of the resonator is inevitable. 
Thus, even the introduction of a sample into a resonator can alter its 
temperature and result in a source of experimental error. 
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Disadvantage Description 

Sensitivity to 
environmental 
variation 

As well as temperature, a multitude of environmental variables, such 
as surrounding air humidity, contact pressure, and the presence of 
other materials in the sample (contaminants, air, etc.) can have a 
significant effect on both the sample and the resonator itself. This 
generally implies that additional sensors or special procedures are 
required to correct for or minimise environmental variation in order 
to reduce measurement ambiguity – e.g., misattributing a change in 
resonant frequency to sample composition when actually it is due to 
a change in temperature. This can easily undermine the advantages 
of a microwave sensor, particularly as the additional sensors and 
environmental controls can significantly increase the total system 
cost and complexity. 

Limited spatial 
resolution 

A less significant point since the advent of the microwave 
microscope (Section 2.3.4) has demonstrated that ultra sub-
wavelength imaging is possible. However, what microwaves cannot 
do is achieve high spatial resolution as well as having large sample 
penetration. Shorter wavelengths, and particularly optical lasers, can 
be focussed on a small region of a sample over very large distances 
whereas microwaves cannot be ‘focussed’ to similar spatial 
resolutions without resorting to evanescent methods that have very 
limited depth penetration. 

 

Perhaps because of these disadvantages, lack of funding, or simply a lack of 

exposure, many of the proposed applications have seemingly not progressed 

beyond the lab. Although it is often hard to discern exactly how microwaves are 

being used in commercial devices, a number of companies can be found that 

currently manufacture MRS instruments for microwave aquametry. Sartorius-

Omnimark [10] sells two types of microwave moisture analyser. One is based on 

the destructive method of microwave heating combined with sample lost-mass 

measurement that simply offers a faster way of drying a sample out – this type of 

microwave aquametry is sometimes confused with ‘proper’ microwave sensors. 

The other, however, is a genuine MRS for on-line moisture measurement aimed at 

process control that claims to measure moisture content from           with 

0.08 % repeatability. The sensor appears to use a planar evanescent-mode 

resonant sensor not unlike the evanescent planar ring resonator developed by 

Reinhard Knöchel [11], proposed as part of a multisensory approach to determine 

the ‘quality’ of fish via a MRS method [12]. 



Chapter 2 – Applications 

24 

An example of a fully developed MRS system for microwave aquametry aimed at 

long-term structural health monitoring in civil engineering applications (e.g., the 

detection of corrosion-related ‘concrete-cancer’ associated with reinforced 

concrete) was published recently by Sokoll and Jacob [13]. The miniaturised 

sensor (Figure 2.2) is based on a compact helical resonator measured in reflection 

mode. Unusually, the author goes into a lot of detail about the sensor electronics, 

both in this and several earlier papers [14], [15]. The heart of the measuring 

system consists of a single, the AD8302 manufactured by Analog Devices [16], 

which has a built-in phase and dual logarithmic detectors, claims a dynamic range 

of 60 dB, and is suitable for frequencies up to 2.7 GHz. The author makes a number 

of useful contributions to improve the accuracy of this miniature vector network 

analyser (VNA), including an electronically switched self-calibration system 

consisting of on-board offset short and offset open impedance standards. However, 

despite claiming a moisture level uncertainty of 0.7 %, the MRS system has a 

measurement period of 5 s and a poor SNR of the estimated resonator frequency 

response trace. Even so, this represents a very good example of the state of the art 

in low cost and low power MRS systems, having a peak power consumption of just 

315 mW. 

  

Figure 2.2: Microwave resonant sensor (left) and compact measuring system 

(right) for the measurement of moisture content, reproduced from [13]. 

The application of aquametry to structural heath monitoring leads to another 

application area for MRS: Non Destructive Evaluation/Testing/Monitoring (NDE, 

NDT, and NDM). More general than simply measuring water content, this 

application is all about measuring a change in material dielectric or sometimes 
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conductivity properties and relating that to a symptom of aging or damage. 

Examples include crack detection [17] and transformer oil aging [18]. 

Another closely related field to aquametry is that of compositional analysis. In fact 

aquametry is a special case of compositional analysis when the mixture has one 

part that is water. Densometry – the measure of density – falls in to this category 

too; in this case, one of the mixture components is air. Microwaves have 

traditionally been used to enable density and mass-flow measurement under 

continuous flow conditions [19], [20] where it would be impractical to measure 

mass directly and mechanical density meters would be unsuitable (in 

environments where there is too much vibration, for example).  

Klein et al. recently developed a commercial liquid composition-based MRS system 

for use in diagnosing the contents of sealed liquid bottles [21]. The novel sensor 

uses a combination of a 100 MHz lumped element resonator used to measure 

conductivity, and a 2 GHz dielectric resonator with evanescent fields to measure 

complex permittivity. Combining these pieces of information is apparently 

sufficient to differentiate benign liquids from solvents or harmful chemicals, and 

was trialled at Prague Ruzyně airport to aid in passenger security checks [22]. 
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Figure 2.3: Dual-mode resonant sensor with evanescent fields (left) and its 

application as a commercial prototype airport bottle scanner (left), 

reproduced from [21]. 

One interesting early mention of this compositional measurement appears in a 

NASA technical brief in 1967 [23], where bubbles of hydrogen are detected in fuel 

lines (i.e., measurement of liquid hydrogen density), presumably for use on the 

later Apollo mission rockets. Even over 40 years ago the authors state that 

“Microwave cavities have been used for many years to measure the densities of 

fluids and gasses”. The 10 GHz sensor developed showed enhanced robustness to 

temperature and pressure variations over traditional capacitance sensors, and the 

thin coaxial fin design of the cavity end walls resulted in negligible flow disruption.  

In a later technical note on the development of this MRS system [24], the authors 

also discuss one of two possible sensor readout schemes; the ‘Resonant Frequency 

Tracking System’, or REFTS and the ‘Cavity Tuned Oscillator’ or CTO system. The 

REFTS is interesting as it was an early attempt to create a high-speed 

measurement system as an alternative to the slow frequency counter method 

employed by the CTO; a basic self-oscillator method. It used frequency modulation 

to characterise the resonator, which was then used to produce a control voltage to 

keep the frequency locked on resonance. This in turn gave an analogue control 

Cylindrical 
dielectric 
resonator 

Inductor 
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voltage from which the resonant frequency could be estimated (assuming the 

voltage-controlled oscillator (VCO) had a linear voltage-frequency characteristic). 

However, the authors seemingly failed to notice that the system would have been 

capable of full magnitude and phase characterisation if they had merely added a 

sweep generator to the VCO control signal. 

 

Figure 2.4: In-line MRS (right) and readout system (left) developed at NASA 

between 1967-1971 for the measurement liquid hydrogen density in rocket 

engines [23]. 

Measuring the density of very viscous flows is a widely commercialised application 

of microwave sensors, however only a handful of these use resonant technology. A 

typical example is in food production to ensure consistency of the end product; 

Toshiba manufacture a device which fits into a section of standard stainless steel 

pipe [25]. Other mixtures include the tricky multiphase gas, mud, water and 

assorted hydrocarbon concoction produced by oil and gas wells, where May et al. 

used a multisensor approach including a re-entrant cavity resonator [26]. MRSs 

have been applied to monitor such mixtures under fast-flowing conditions in 

pipelines for automatic process control in the extremely harsh environment of 

undersea well-head monitoring; such systems are commercialised by Roxar Flow 

Measurement AS, Norway [27]. This is a testament to how robust the MRS and its 

readout electronics can be engineered to be. 
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2.2 Scientific applications of MRS 

Scientific applications related to solid-state physics are a strong, traditional 

application of MRS techniques. Primary among these is the study of 

superconductivity (see Section 2.3.1 for a brief introduction). Several scientific 

applications are reviewed in the third of the classic trilogy of articles on the cavity 

perturbation technique by Klein et al. [28], including the study of the temperature 

dependence of the conductivity of organic superconductor crystals such as 

tetramethyltetrathiafulvalene, the first ‘unconventional’ superconductor, 

discovered by Nobel laureate Klaus Bechgaard in 1979 [29]. Microwave resonant 

sensor techniques have also been instrumental in probing the properties of high 

temperature superconductors, both in single crystal form, e.g., [30] and thin-film, 

e.g., by the elegant method of patterning a coplanar resonator into it [31]. 

Regardless of the methods used, the study of superconductivity at microwave 

frequencies has a rich heritage and a number of practical applications in high 

frequency devices and systems, as reviewed in [32], [33], [34], and [35].  

The general field of permittivity measurements has been reviewed several times 

by Jerzy Krupka [36], [37]. Resonant methods have been used to study the 

interesting microwave properties of nanomaterials, for example nanoparticles [38] 

and carbon nanotubes [39]. Ferroelectrics are a class of materials that have 

polarisation domains akin to ferromagnetic materials and show a nonlinear, 

hysteretic response with applied electric field; from their beginnings as merely an 

academic curiosity, they are now central to a number of high-tech applications 

[40]. Microwave resonator methods have been applied to their measurement in 

both bulk [41] thin film form [42], [43], including localised property measurement 

using a microwave microscope (see Section 2.3.4) [44]. This technique has also 

been applied to localised ferromagnetic resonance characterisation [45]. 

One of the few established uses for MRS in the medical field is in tumour detection, 

particularly in relation to breast cancer. Biological tissues have been extensively 

studied with microwaves over the years, and it was suggested as early as 1926 

[46] that “malignant tumors have a greater polarizability than normal breast 
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tissues or benign tumors”; the higher dielectric constant of malignant tumour 

tissue being due largely to the enhanced blood flow required to support its 

aggressive growth. Microwave resonant sensors based on the evanescent coaxial 

probe model have been proposed for this purpose [47]. However, resonant 

techniques are in the minority as free-space imaging techniques and electrical 

impedance tomography, as well as high-resolution ultrasound and MRI scans, 

allow for improved 3D imaging and hence localisation capability that resonant 

sensors cannot match [48], [49]. 

MRSs have also been proposed for the measurement of temperature; the high Q 

and excellent stability of whispering gallery mode dielectric resonators, named 

after the resemblance of their circumferential EM field distribution to the acoustic 

resonance mode thought to be present in the whispering gallery of St. Paul’s 

cathedral [50]. This lead the National Institute of Standards and Technology 

(NIST), Boulder, CO, USA  to suggest their suitability as an alternative temperature 

reference standard, with an early prototype shown to have sub 10 mK 

reproducibility [51]. MRSs have also been suggested for pressure measurements 

with an elegant single-chip sensor [52]. However, it is not apparent how the use of 

an MRS in these non-specific sensor applications could ever be cost-effective when 

compared to its alternatives, restricting their use to a narrow range of ultra-

precision experiments. 

An interesting scientific use for microwave resonator measurements is in plasma 

research, e.g., a simple hairpin resonator and basic swept power readout was 

found to give better accuracy than the expensive and widely-used Langmuir probe 

[53], [54]. Microwave resonators have also been applied to plasma generation; 

quite recently miniaturised resonators have been used to generate ‘microplasmas’ 

[55], [56] which can be used for analytical chemistry especially in ‘Lab-on-a-Chip’ 

applications (see Section 2.3.3). There still exists the apparently untapped 

potential for a self-measuring microplasma generating resonant sensor, based on 

the technology developed in this thesis for the self-monitoring microwave 

microreactor (Section 6.3), though quite how advantageous this would be is 

uncertain. 
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One curious and long-running series of microwave resonator based physics 

experiments relates to the search for (or more truthfully the progressive 

elimination of) a ‘dark matter’ candidate known as the axion [57]. The hypothetical 

axion, a weakly interacting yet very light particle, is postulated to interact with 

virtual microwave photons in a high-Q cavity under a large applied field (7.6 T in 

the experiment’s latest incarnation), causing real microwave photons to be 

generated which would be detected close to resonance by an ultra-sensitive 

microwave receiver. Although microwave resonator characterisation is utilised 

solely for essential calibration purposes, the experiment undoubtedly represents 

the state-of-the-art in low noise microwave receiver technology and is probably 

the most sensitive microwave receiver ever built; the power expected to be 

produced by axion coupling is a mere 10-22 Watts [58], [59].  

Since the 1950s [60], [61], and more recently [62], microwave resonators have 

been used to study the properties of gasses, and this is the only state of matter 

where microwave properties are accurately predicted and thoroughly understood 

at the quantum level. Unlike other states of matter, gasses exhibit energy level 

transition absorption lines that occur at microwave frequencies, corresponding to 

various rotational modes of dipolar species. Furthermore, the addition of a high 

voltage electric field leads to the separation in energy of E field aligned and E field 

anti-aligned quantum states (the level splitting is completely analogous to the 

principle behind magnetic resonance). Electron transitions between these split 

levels can absorb microwaves at a frequency proportional to the static electric 

‘bias’ field – known as the Stark effect [63]. These various absorption lines can 

occur at frequencies throughout the microwave, millimetre and infrared spectra, 

with those of large molecules having high moments of inertia occurring at 

microwave frequencies in the centimetre region, 3 – 30 GHz. Collectively the 

measurement of these phenomena is known as microwave spectroscopy, see [64] 

and [65] for reviews. 

The traditional method for measuring these spectra was to introduce a gas into an 

evacuated waveguide and measure the power transmission using a swept 

microwave source and power detector. After that resonant methods were 
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introduced, offering much higher sensitivities, but requiring a tuneable cavity 

(usually of Fabry–Pérot design) which inevitably led to long measurement times. 

In 1981, a major advancement came with the combination of a supersonic sample 

nozzle, which cools a beam of gas molecules down to ~ 1 K by its adiabatic 

expansion on egress from this nozzle when forced through it under high pressure. 

Another advance was the pulse-echo detection method, whereby the time-domain 

free induction decay (FID) of the molecular beam is detected by a sensitive 

receiver a fraction of a second after the application of a high power microwave 

pulse is applied. The FID signal is then Fourier-transformed in order to extract the 

absorption spectrum (which generally has absorption lines much narrower than 

the resonator bandwidth) [66]. The technique, known as Fourier transform 

microwave (FTMW) spectroscopy has been honed ever since, and the current 

advances of wideband arbitrary waveform generators (AWGs) and oscilloscopes 

have allowed for the direct (non-resonant) excitement of the molecular beam with 

a broadband ‘chirp’ signal pulse [67].  

Whilst these recent developments look set to obsolete resonator methods in 

microwave spectroscopy, much as it has in the field of magnetic resonance, current 

research includes the miniaturisation of such instruments in order to make 

practical sensors; one interesting application is the detection of chemical warfare 

agents [68]. Here the attraction of microwave resonator sensors is renewed when 

low cost, small size and a restricted range of spectral measurement are required. 

There are, of course, many more applications for microwave resonator 

measurements than there is space to mention. This is especially true in the pure 

scientific research applications discussed above, where the cost of instrumentation 

can be offset by the high precision and accuracy of the technique.  

Yet the industrial applications discussed in Section 2.1, particularly moisture 

sensing, and composition sensing in general, demand relatively little from a 

microwave sensor. Physical variation and uncertainties in the constituents of a 

mixture, as well as assumptions made in the various mixing laws by which 

permittivity can be converted to composition, ultimately limit the accuracy of these 
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sensors. This means that there is no need for the sensor system to have better than 

about 0.1 % accuracy, achievable with relative ease using current technology. 

Furthermore, the requirement for simultaneous bandwidth and resonant 

frequency measurement is often inessential in these single-parameter industrial 

measurements. This all renders any readout technology improvements (and 

therefore any potential contribution from his work) somewhat redundant. 

Despite this, there is still a potential need for further miniaturisation and lower 

power consumption in the industrial sensor area – particularly in the important 

fields of structural health and environmental monitoring. Whilst this suggests 

there is still room for improvement in the technology of microwave resonant 

sensor systems, this application space is definitely less demanding when it comes 

to requirements from the sensor electronics.  

However, in Section 2.3 some rather more cutting-edge uses for MRSs will be 

introduced. These present a real demand for a better way of measuring resonators, 

not only in realtime but also with extreme accuracy. This is where the impact of 

improvements in the hardware and software of MRS readout systems can be most 

significant. 
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2.3 Dynamic applications 

A central theme of this thesis is applying microwave resonant sensors in dynamic 

applications – where things are changing in time, perhaps quite rapidly. This 

section introduces some of these applications in more detail. Each of them could be 

improved by the advantages of faster sampling combined with high accuracy and 

integration. Many of these dynamic applications have been forced to use single 

frequency resonator characterisation to guarantee speed. This limits the dynamic 

range and accuracy of the resulting measurement, as well as making it sensitive to 

external sources of drift and other problems. Many of the applications mentioned 

here could therefore benefit from a high-speed spectral characterisation technique. 

The main dynamic MRS applications that will be discussed are Kinetic Inductance 

Detectors (KIDs), sensors for microfluidic devices and scanning microwave 

microscope systems. Each is a good example of an application of microwave 

resonant sensors being part of a larger measurement system where speed, 

autonomy, accuracy, and overall system cost are important factors. 

Research into KIDs highlighted some of the inadequacies of existing resonator 

readout methods, and an opportunity for improvement and a fresh approach in 

this area presented itself. The exacting requirements of KIDs include very high 

precision, high-speed sampling and massive readout parallelism to handle the 

desired numbers of individual resonator ‘pixels’. Thus a new readout method was 

needed to retain the high precision of spectral resonator measurements – i.e., 

where the response of the resonator is measured at more than one frequency – yet 

at the same time obtain each spectral estimate at a much greater speed than 

traditional measurement techniques. Finally, the architecture of the resulting 

system had to be scalable so that it could be duplicated a large number of times 

without becoming impractically expensive or prohibitively complex. 
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Figure 2.5: Photograph of a 196 pixel Lumped Element Kinetic Inductance 

Detector (LEKID) array for mm wave detection designed at Cardiff University 

[69]. Each dark square is an individual microwave resonator consisting of a 

superconducting inductive meander and interdigital capacitor patterned by 

photolithography in a thin superconducting film. 

On-going research into microfluidics and continuous flow measurement at Cardiff 

University has previously shown [70] that MRSs had promise for diagnostic and 

compositional measurements of fluids. Here the objectives were the cost, footprint, 

and scalability of the readout system, as well as ability to sample at high speeds 

due to the flow rates and reaction times often encountered. A particular 

phenomenon of the laminar flow regime in these microsystems occurs when 

immiscible fluids are combined at a specially shaped junction. The fluids combine 

into a single stream of highly regular alternating fluid packets, known as 

segmented flow. This presents a particularly interesting challenge, and potentially 

an entirely new opportunity for real time microwave measurement – capturing 

each segment as it flows individually. Another opportunity was presented in the 

ability to regulate precisely microwave heating in microfluidic reactors by 

monitoring the characteristics of the microwave resonator used to deliver the 
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heating power. Since the small volumes and high flow rates present a dynamically 

changing environment, such a control system should be capable of fast sampling. 

When it was first invented, the microwave microscope – a sub-wavelength imaging 

device based on evanescent field perturbation – was revolutionary. Since then 

microwave microscopes have been developed that have atomic level spatial 

resolution and can be integrated into conventional atomic force microscopes for 

automatic control of tip-sample separation. These systems have been used to make 

microwave frequency measurements of a host of fascinating nanoscale 

phenomena. Microwave microscopes generally raster scan line-by-line in order to 

build up a 2D image; however, this is very slow unless each ‘pixel’ can be acquired 

extremely fast. Not only is this tedious, it also creates a potential source of 

uncertainty if the sample is not truly held static throughout the scanning process. 

Another issue is synchronising the microwave readout with the tip-sample control; 

because this generally works in a modulated ‘lock-in’ mode, the microwave system 

should ideally sample at a high rate in order to extract this modulation from the 

microwave data. Furthermore, due to the extremely small relative energy 

perturbation that occurs at the tip-sample interface the changes in the host 

resonator can be minute. Thus, a microwave microscope readout system should 

also be capable of extreme precision. 
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Figure 2.6: Combined atomic force and microwave microscope (left) and 

control and measurement system (right), reproduced from [71]. 

Because of the relevance of these applications to this thesis, there follows a brief 

discussion of these applications and their specifics, as well as how each in turn can 

be generalised into a problem that can be solved with a unified approach to 

readout and sensor design. 

2.3.1 Introduction to microwave kinetic inductance detectors 

(MKIDs) 

The loss-less super currents in conventional superconductors (which give rise to 

zero DC resistance and the exclusion of static magnetic fields – defining properties 

of superconductivity) are made possible by the formation of weakly-bound 

coherent pairs of electrons known as Cooper pairs, as explained in the theory of 

Bardeen, Cooper and Schrieffer [72], for which they shared the Nobel Prize in 1972 

[73] – the second for John Bardeen, who was already a Nobel laureate for his part 

in the invention of the transistor. The principles behind the microwave kinetic 

inductance detector are intimately tied to the Bardeen, Cooper, Schrieffer, or BCS 

microscopic theory of superconductivity (as shown by the failure of the two-fluid 

model [74] to predict the correct sensitivity for MKIDs [75]). However, rather than 

attempt to describe this theory in all its quantum-mechanical rigor, for the 

purposes of this introduction there instead follows a ‘classical’ interpretation of 

the phenomenon which is altogether more lucid and helpful to the non-physicist. 
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The remarkable phenomenon that enables mutually repulsive electrons to be 

bound by an attractive force is the modulating effect each electron has on the metal 

ion lattice. This displacement of the metal ions from their equilibrium positions, 

caused by the attraction of a passing electron, creates a region of locally increased 

positive charge density that lags behind a moving electron, much as the wake of a 

ship modulates the surface of calm water. For very fast-moving electrons (those 

which are near the top of the Fermi distribution of kinetic energy, from the highest 

at the Fermi energy    through a narrow band of width  ), the lattice ‘wake’ 

stretches out into a long, narrow tube of positive potential and the displacement 

between its centre of charge and that of the electron is enough to create a small 

window of opportunity were a net positive attraction between two such fast-

moving electrons can exist. The potential tube is too narrow to attract another 

electron except when it is approaching at the same speed from the opposite 

direction. Then, on passing, the electrons can become bound together; each 

electron finding an energetically favourable spot languishing in the trailing 

positive charge of the other, aligning nose-to-tail. This process has been likened to 

two children playing on a waterbed [76]. 

The bound electron pair then oscillate back and forth within a finite radius, known 

as the coherence length, and the lattice deformation becomes a bound 

displacement wave that travels with the pair. Waves of lattice deformation are 

quantised, like all waves, and have particle analogues called phonons, which get 

their name for their role in sound transmission. It is therefore said that Cooper 

pairs are bound together by an electron-phonon interaction, which follows from 

rigorous quantum mechanical analysis as well as the simplified classical picture 

described here [77]. In fact, there are also other types of lattice wave that can bind 

electron pairs together in this way, such as magnetic spin fluctuation waves [78] – 

thought to be responsible for superconductivity in some high temperature 

superconductors. 
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Figure 2.7: Feynman diagram and description of the electron-phonon 

interaction. 

The radius of the Cooper pairs (i.e., the mean average separation of the elections) is 

finite, on the order of       ; the BCS coherence length (   is the Fermi velocity, 

  is the energy gap). In conventional metallic superconductors this so large that 

many millions of other pairs can exist within the volume of one Cooper pair, and is 

several orders of magnitude greater than the lattice spacing. This causes long-

range order effects such as the smearing out of superconductor-insulator 

transition regions, as the wavefunctions of overlapping pairs become coherent and 

pairs are no longer distinguishable as single entities. This coherency means that 

the ensemble of Cooper pairs moves as one through the lattice, without colliding or 

scattering – a superfluid in motion. 

To be able to pass close enough for the initial binding to occur, the electrons must 

be of opposite spin, otherwise they would be excluded from having the same 

momentum (the Pauli exclusion principle). Thus, the pair of opposite-spin 

electrons make up a quasiparticle with zero net momentum and integer spin (a 

boson), since the two half-integer spins of the pair cancel. The distribution of 

energetically favourable ‘orbits’ for this two-electron quasiparticle is atom-like 

with the electrons occupying a high-order spherical S orbital having a banded 

structure of ‘sweet spots’ likened to an onion [79]. All the electrons within   of the 

Fermi energy will form these pairs, and these new bosons condense into a single, 

lower-energy zero-momentum quantum state. It is a phase change akin to freezing; 

for this reason it is said that the Cooper pairs form a thin frozen crust atop the 

Fermi sea of free electrons [80]. This creates a tiny energy gap   in the electronic 
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band structure of the superconductor that can easily be overcome by thermal 

excitation, confining the phenomenon to low temperatures. 

Cooper pairs travelling through the lattice under an applied field cannot scatter 

(the mechanism which causes resistance in normal metals), as each Cooper pair 

conserves momentum and thus cannot be scattered into a new energy state with a 

different momentum without supplying sufficient extra energy to break the pair up 

completely. This is because all the other available momentum states below the 

energy gap are already filled with normal electrons. Thus, it is the frozen crust of 

Cooper pairs and the protective energy gap it produces which prevents scattering 

and explains why superconductors have no resistance. 

The superconductor energy gap is also central to the application of 

superconductors to photon detectors, such as KIDs. The small size of the energy 

gap allows low energy photons be absorbed. The photon energy breaks up one or 

more Cooper pairs, releasing ordinary free electrons (called quasiparticles, from 

Landau’s theory of Fermi liquids that describes the free electrons in metals). These 

released quasiparticles reside in energy states above the gap – boosting the normal 

population that are there naturally due to thermal excitation.  

The excess quasiparticles then scatter about for some time, releasing the excess 

energy as phonons before reaching the right energy to recombine into new Cooper 

pairs and returning the population of Cooper pairs and quasiparticles to its normal 

equilibrium level. The population excess of excited electrons (and equivalent 

deficit of Cooper pairs) decays roughly exponentially after a single photon event 

with a constant called the recombination time, dependent on the efficiency at 

which the quasiparticle energy is scattered and how quickly the resulting phonons 

escape. This photoconductor-like model of superconductors is a direct 

consequence of an energy gap, and is applicable to most superconductors even if 

the nature of the gap (some superconductors have multiple energy gaps) and the 

mechanism of the Cooper pair coupling varies. 
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These two populations of charge carriers are both responsible for current flow 

under an applied field. However, the additional ‘super current’ flow of Cooper pairs 

has no resistance, and hence ‘short circuits’ any conduction by normal electrons. 

This results in the characteristic sudden transition to zero DC resistance as soon as 

the thermal energy is low enough to favour the formation of even one Cooper pair. 

However, when an alternating (AC) current is caused to flow, another effect comes 

into play. Due to the relatively long distances that a Cooper pair can exist and 

travel over without loss of momentum, they can amass a significant amount of 

energy as inertia when accelerated by an applied electric field – similar to a free 

electron in a vacuum tube. This kinetic energy may be viewed as equivalent 

magnetic energy storage – inductance – hence the name ‘kinetic inductance’. The 

inductive and resistive current flows carried by the two conducting populations 

thus give rise to a complex conductivity,          , and at microwave 

frequencies the surface impedance of a superconductor consists of a resistive and a 

significant reactive term:          .  

At GHz frequencies, superconducting transmission line or wire thus has a small but 

significant loss at high frequencies, as well as an enhanced inductance: 

         , where      is the standard geometric, or ‘external’ inductance and 

   is the kinetic addition. This kinetic inductance fraction      may be enhanced 

using specific geometries of conductor, namely thin films. A superconducting 

microwave transmission line or thin strip can thus be used as a detector – 

incoming radiation breaks Cooper pairs and creates excess normal electrons, 

which then increase    and   . Note that fewer Cooper pairs actually store more 

kinetic energy for a given accelerating electric field – consider the analogy of 

inductors in parallel, one for each pair. Therefore, the kinetic inductance fraction is 

larger near to the superconducting transition temperature where there are fewer 

pairs. The change in surface impedance can thus be used to deduce the optical 

signal. This has been known for some time [81], but the insight to use a MRS to 

measure this change in surface impedance (see Figure 2.8 and Figure 2.9 for the 

principals of its operation) – and to operate instead at a low temperature to gain 

amplification by high Q factor – came more recently. 
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Figure 2.8: Graphical summary of kinetic inductance detector principle.  
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Figure 2.9: Graphical overview of resonant KID operation.  
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2.3.2 Origin of the problem addressed in this thesis 

The idea to use a microwave resonant sensor to amplify this change in 

superconductor surface impedance due to photon absorption was first proposed in 

2002 by Day et al. from NASA’s Jet Propulsion Laboratory (JPL) [82]. They showed 

that a microwave transmission line resonator made from a low temperature 

superconductor such as aluminium can have a very high sensitivity to photons, 

with a detector noise limit (known as its noise equivalent power, or NEP) as low as 

             . The system they used to achieve this sensitivity relied on a 

homodyne, single frequency detection scheme with In-phase and Quadrature (IQ) 

readout, allowing for small changes in the magnitude and phase response of the 

resonator to be estimated at a single frequency. For a multiplexed detector, they 

needed one of these homodyne systems for each resonator. An analogue approach 

would be impractical for such a large number of channels on both cost and size 

grounds, so a digital solution was quickly sought. They based their multiplexed 

readout system around software defined radio (SDR) architecture (see Section 4.1 

for brief background and discussion of SDR). This ‘mostly digital’ microwave 

resonator measurement system was the inspiration for my work, and the system 

architecture used by Mazin et al. [83] and later groups for KID measurements is 

the starting point for the developments of this thesis, both from a hardware and 

software perspective. 
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Figure 2.10: Early aluminium transmission line MKID (left) and multiplexed 

homodyne readout system (right) developed by the Caltech team, from [83] 

During the subsequent study of KIDs, an unexpected source of phase noise was 

discovered [84] that resulted in a disappointingly high NEP. Phase noise is a 

common problem in resonator measurements; this source of error is usually 

caused by a combination of local oscillator frequency drift and instability of the 

resonator itself (i.e., extrinsic and intrinsic phase noise). However, this noise 

source was different; it showed unusual power dependence. As the microwave 

excitation power was increased the noise level would decrease, eventually 

disappearing altogether, but only when the power was too high to be practical as it 

lead to overheating of the cryogenic refrigeration system.  

This mystery snag was eventually blamed on defect-related, two level system 

(TLS) polarisation fluctuations in the dielectric of the resonator, creating a source 

of ‘capacitance’ noise due to the random fluctuations of TLS polarisation between 

the ‘E field aligned’ and ‘E field anti-aligned’ quantum states. This correctly 

predicted the observed power dependence of the noise: it was caused by the 

progressive ‘saturation’ of the TLSs. A high electric field amplitude reduces the 

probability that the polarisation of the TLS will flip randomly (i.e., noisily) from 

one quantum state to the other, as the energy required to do so increases with E 

field and hence applied power [85] (extrinsic phase noise due to the RF source 

would not be expected to change with input power). 
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One proposed solution was to simply measure the change in insertion loss of the 

resonator on resonance – this ‘amplitude direction’ shows minimum sensitivity to 

phase noise, whilst still being slightly sensitive to the optical signal because 

resistive losses also increase with Cooper pair breakage [86]. In fact the sensitivity 

to photon flux has a vector angle of about −85°; in other words a large negative 

shift in resonant frequency (i.e., phase) and a small shift in insertion loss (i.e., 

amplitude). Thus, an optimal method was devised, which required measuring the 

IQ noise covariance matrix as a function of input signal frequency. In 2D, the 

contour of constant variance (i.e., noise power) was found to be an extremely 

elongated ellipse (a Gaussian noise model was assumed), showing that the phase 

noise dominates amplitude noise. Computing the minor axis of this ellipse gives the 

vector of lowest noise, and the division of the signal and minor ellipse vectors can 

be used to estimate the direction of highest SNR, which is closely aligned to the 

amplitude, or I, axis (justifying the amplitude readout solution). However, the 

energy of the phase noise source is mainly concentrated at lower frequencies; thus 

signal inputs at higher frequencies have a different optimum vector direction for 

maximum SNR. By combining the in-phase and quadrature signals using an 

optimum frequency-dependent mixing matrix the best SNR can be found 

throughout the input signal frequency range. This approach was developed by Gao 

in his PhD thesis [86]. 
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Figure 2.11: Single-frequency IQ readout of a phase-noise corrupted signal. 

Simple 2D IQ plane representation (left) and 3D phase plane vs signal 

frequency space, used to account for frequency-dependent quadrature noise. 

However, this is still a single frequency readout method. The dynamic range is 

therefore inherently very limited; single frequency excitation cannot measure both 

small and large changes simultaneously (as an extreme, a large change in resonant 

frequency would result in the excitation signal being ‘off resonance’ – rendering 

the phase and amplitude measurements meaningless). However, the superior 

spectral characterisation method would require the ability to resolve the full 

resonator spectrum in real-time. Conventional methods are simply not up to the 

task. Thus, one of the main aims of this thesis was to devise an effective way of 

doing this without losing the low noise and high-speed advantages of the single 

frequency method. This system design and development is discussed later in the 

hardware section. 

Even with spectral measurements the issue of optimum SNR vector is still present, 

and to make things more complicated this vector would vary not only with signal 

frequency but also with its position on the resonator spectral response curve. 

Thus, an optimum method would require the estimation of the best SNR vector 

over the whole resonator spectrum. Add an extra dimension to the existing 3D 

space and things start to become tricky to visualise. To handle this mathematically 

requires two spectral dimensions, one for ‘signal frequency’ and one for 
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‘microwave frequency’. Therefore, another important aim of this thesis was to 

develop a comprehensive ‘time-frequency’ model of a microwave resonator sensor. 

This model is developed and discussed later in Section 3.4. 

 A different method to reduce phase noise issues, quite often used in astronomical 

detectors, would be to use signal chopping combined with a lock-in amplifier. This 

technique is potentially applicable to more microwave resonant methods than just 

KIDs, but here at least the method of ‘chopping’ the signal merely requires the 

telescope to ‘jiggle’ at a known frequency – effectively modulating the signal onto a 

known carrier [87]. This modulation of the signal can be used to place it far enough 

away from the     distribution of phase noise to minimise its effects relative to 

unavoidable broadband noise sources (i.e., Johnson noise or A/D converter 

quantisation noise). However, this method greatly reduces the bandwidth of 

signals that can be measured (it would be unsuitable for transient detection, for 

example). It is interesting to translate this technique to other MRS applications to 

see if, theoretically at least, a lower noise floor can be achieved through bypassing 

resonator phase noise problems. This alternative technique, and other ideas, will 

be studied in more detail in Chapter 4. 

2.3.3 Sensors for microfluidic applications 

Microfluidics is the technology of manipulating small amounts of fluids (gases, 

liquids and suspensions) on a small scale – typically when one or more dimensions 

of a flow system is smaller than 1 mm [88]. As things are made smaller, the balance 

of forces changes from those on the macro scale with which we have everyday 

experience. One of the key changes to take place in fluid capillary (small tube) 

systems is the increase in frictional forces (viscous forces), which resist and damp 

the motion of fluids, relative to inertial forces, which tend to keep the fluid in 

motion [89].  

A very low viscosity to momentum ratio occurs, for instance, with the flow of air 

masses on everyday scales, and produces effects such as turbulence, which is 

difficult to model and causes unpredictable effects. However, within small cross-
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section channels, a high drag to momentum ratio exists, even for gasses. In fact, 

fluids of different viscosities that on the macro scale behave very differently, such 

as glucose syrup and acetone, show exactly the same behaviour when pumped 

along microchannels. This is because a regime known as laminar flow exists, where 

flow occurs in straight, parallel lines and no rotation (vorticity) occurs when the 

fluid flows past an obstruction, for instance. Fluids in this regime behave very 

predictably, and the chaotic component of flow that causes turbulence is 

insignificant. This is because the energy stored in momentum is damped away 

before it can build up and feedback into the system, causing instability.  

 

 

 

Figure 2.12: Top right – the first ‘lab on a chip’, a gas chromatography system 

built by Terry in 1975 [90], left – a complex microfluidic device features on 

the cover of the journal Science, bottom right –a sophisticated microfluidic 

‘bioprocessor’ for DNA sequencing [91]. 

The predictability and regularity of laminar flow has given rise to a number of 

applications of microfluidics-based devices that would be either very inefficient or 

impossible to achieve on a larger scale. Furthermore, as the length scale (i.e., 
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smallest channel dimension) of microfluidic devices is reduced, there are also a 

number of other beneficial effects. The larger relative surface energy tends to keep 

micro droplets more stable, and other surface phenomena such as selective 

adsorption, which is the basis for the separation of a chemical mixture by 

chromatography, become more significant. Electrically- and magnetically-induced 

forces also become significant enough to be useful. An example of this is 

dielectrophoresis, the induced movement of a fluid by a non-uniform electric field. 

This is the driving technology behind ‘digital microfluidics’ [92], the manipulation 

of discrete droplets of fluid in preference to continuous flows. These unique or 

enhanced phenomena, with more than a little hype [93], have helped make 

microfluidics the technology of choice when precision control, measurement and 

manipulation of fluids is required. 

One particular branch of microfluidics is the Lab-on-a-Chip (LoC), also known as a 

Micro Total Analysis System (uTAS) [94]. This is a paradigm where different 

chemical analysis and synthesis operations are combined into a single 

microsystem, where fluid analytes are handled and contained using microfluidic 

techniques, and the ancillary electronics and systems are to be miniaturised and 

integrated as far as possible. The ultimate aim is therefore to create a miniaturised 

laboratory complete for a particular task. This could be investigating cells to check 

for diseases or cancer, performing assays on bodily fluids to diagnose disease and 

monitor health, particularly in the home or in places lacking access to proper 

healthcare, to check the efficacy of drugs without in vivo testing, environmental 

monitoring in remote locations to investigate pollutants, etc. Such systems rely 

heavily on sensors, especially in terms of the definition used earlier, i.e., where a 

low level of manual intervention and a high level of intelligence, integration and 

robustness are required. 

A distinct but highly overlapping branch of microfluidics can be termed “industrial 

microfluidics”, or micro process engineering. Rather than being aimed at 

reproducing analytical laboratories on a chip, this technology is aimed at creating 

miniature chemical plants and factories (known as microreactors) aimed at 

synthesising chemicals rather than analysing them. Driven by the potential 
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increases in efficiency and performance (e.g., purity of end product) attainable due 

to the highly controlled environment of micro flow, especially rapid thermal 

cycling and short diffusion lengths, this technology is being considered for on-

demand synthesis, perhaps in remote locations, and to enhance yield of difficult 

reactions or those requiring complex steps [95]. This interest is helped in a large 

way by ‘green’ considerations such as the reduction of hazardous waste, reduced 

reagent consumption, containment of toxic, carcinogenic or explosive intermediate 

reaction products and the reduction in energy usage, all of which microfluidic 

technology claims to offer. 

What does microwave sensor technology have to offer these applications of 

microfluidics? As a sensor, most established microwave resonant sensor types are 

not suitable for LoC applications. Their physical bulk and extensive supporting 

hardware, as well as the lack of the autonomy and robustness that is also required 

– either in the sensor or in its electronics – has meant that the integration of 

microwave resonant sensors with microfluidic technology has not advanced 

beyond a few proof-of-principle academic demonstrations. Examples include the 

substrate integrated waveguide sensor, which has potential for fluidic channel 

integration due to its compact size and reasonable Q factor (700 at 8 GHz) [96], 

[97], [98]. Shaforost et. al [99],[100] made dielectric resonator based sensors at 

both microwave and millimetre wave exploiting the very high Q factor whispering 

gallery resonant modes to detect a nanolitre volumes of liquid. However, they did 

not actually address the microfluidic integration problem, as the liquid had still to 

be pipetted into the sensor manually. Whilst the whispering gallery mode 

resonator is already a powerful and developed technique for biosensing at optical 

wavelengths [101], as a microwave sensor it will always tend to be impractically 

large and expensive. Previous work at Cardiff University has also made inroads 

into this problem, culminating in a highly sensitive sapphire dielectric resonator 

with fully integrated circumferential microfluidic channel and active sensing 

volume of 56 nanolitres [70].  
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 Figure 2.13: Microwell whispering gallery mode resonant sensor with 

simulated electric field distribution with coupling waveguides (left), [100] 

and a substrate integrated waveguide cavity resonant sensor with hole for 

fluid capillary (right) [96]. 

Basing miniature resonant microwave sensors on planar lithography or micro 

electromechanical systems (MEMS) fabrication technology is a distinct possibility –

this technology has been used to integrate broadband waveguide structures, 

typically coplanar waveguide (CPW), with microfluidic devices on several 

occasions. Initially proposed by Facer et al., [102] the technique was gradually 

refined and improved in accuracy by the group at National Institute of Standards 

and Technology (NIST, based in Boulder, CO, USA) [103]. Others have also 

reproduced this work and applied it to ‘biosensing’ within microfluidic channels 

[104]. However, these broadband measurements require an expensive VNA and 

laborious calibration routines. Also, as discussed in the Theory chapter, non-

resonant methods have much lower sensitivity than resonant methods, thus 

requiring larger liquid volumes for a given sensing precision. 
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(a) 

 

 

(b) 

 

 

Figure 2.14: Two implementations of a CPW with integrated microfluidic 

channel for broadband microwave permittivity measurements. Shown in 

profile from reference [102] (a) and in 3D from reference [103] (b). 

Moving from this low sensitivity broadband method to a resonant sensor could be 

as simple as creating two capacitive coupling gaps in these transmission line 

structures, as was done crudely over 10 years ago in an attempt to make a water-

ethanol-glucose compositional sensor based on a microstrip line resonator [105]. 

Others have exploited variations on a simple transmission line, realising that a 

higher sensitivity can be achieved using the higher filling factor of lumped element 

components. Adapting the MEMS technology used to make various types of 

‘biosensors’, [106] transmission lines periodically loaded with lumped elements 

(distributed MEMS transmission lines – DMTL) were fabricated in order to create 

propagation conditions sensitive to the localised dielectric properties of an 

introduced fluid [107]. It seems a mystery, however, why a single miniature 

lumped element microwave resonator would not be better than this overly 

complex approach. Converting a miniature lumped element resonator such as 

those in [108] to a resonant sensor using this MEMS fabrication technology could 

result in an extremely high filling factor, highly miniaturised sensor. However, it is 

possible that the quality factor would be too low for it to be possible to measure its 

spectral response accurately. 
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 Figure 2.15: Clockwise from top left: schematic of microfluidic integration of 

MEMS based transmission line sensor [107], compact lumped-element 

microwave resonator design [108], scanning electron micrograph of the 

active region of the MEMS transmission line device [107], and simulation of a 

hypothetical 7 GHz lumped element resonant sensor in a microfluidic channel. 

In the last figure, the electric field magnitude is shaded dark blue – red and 

current density black – orange. 

However, it is in the context of micro process engineering – the job of making new 

chemicals, drugs, and materials with microfluidics [91] – that I believe microwave 

resonant sensors have the biggest potential. Already quite extensively used in 

some industrial processes as discussed earlier, microwave heating and to a lesser 

extent microwave sensing is a mature technology in industries such as lumber, 

paper, food, and agriculture. Microwave-assisted synthesis is an efficient and 

powerful technique that has been around for several decades [109]. Attempts by 

others to integrate microwave heating with continuous flow systems have enjoyed 

some success [110]. The power of microwave resonators to both heat and act as a 
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sensor for continuous flow systems simultaneously, something recently 

demonstrated for the first time at Cardiff University using the resonant sensor 

real-time measurement techniques developed in this thesis, could be a promising 

technology to support the aims of the industrial microfluidics community.  

One demanding but potentially significant application of microwave resonator 

technology – both sensing and heating – in microfluidics is in droplet flow systems. 

One interesting and useful phenomenon that occurs due to the relative 

enhancement of surface forces and the laminar flow regime is that of the 

segmentation of a multiphase flow, reviewed by Günther and Jensen [111]. Two 

immiscible fluids combined at a junction (or one injected into another) will form 

very regular droplets under certain circumstances, or elongated ‘slugs’ when in a 

channel geometry of dimensions too small to support a more energetically 

favourable sphere. Droplet generation is not only regular but can be very fast – as 

high as 10,000 droplets per second [112]. Including the increasingly important 

field of digital microfluidics – where droplets are manipulated on an individual 

basis – and an opportunity for a sensor capable of measuring and possibly also 

heating individual droplets presents itself.  

Apart from miniature integrated resonators, suitable geometries of resonator 

already exist, and are based on the concentration of fields to a point using a 

sharpened probe coupled to a conventional cavity or dielectric resonator – a device 

identical to a ‘microwave microscope’ but without the need for a translation stage 

[113]. Such a device must be capable of sampling very fast – this is the key to it 

offering an advantage over competitive techniques – and it must be precise. One 

excellent technology for sensing and actuating individual droplets, particles and 

even cells is low frequency (up to several MHz) excitation by microfabricated 

electrodes, e.g., [114]. Microwaves must offer a unique level of precision or 

function to be competitive with this well-established technology. 
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2.3.4 Introduction to scanning microwave microscopes 

Most scanning microwave microscopes are a type of MRS, although some are 

broadband (non-resonant). Typically, they consist of a macroscopic resonator 

body, often coaxial but increasingly dielectric, that has a protrusion, or ‘probe’ with 

a sharp tip designed to create a highly localised field region which is then 

perturbed by a sample. The sample is scanned back and forth underneath the 

probe in order to build up an ‘image’ derived from the electromagnetic interaction 

of the sample with the localised field at the tip. The technique is a powerful tool for 

investigating the fundamental properties of micro- and nano-structured materials, 

and has become highly sophisticated over more than two decades of continuous 

development. 

The classical resolution limit – the minimum spacing that two point-like objects 

need to have in order to be distinguishable by a wave – was previous thought to be 

limited to around     (the Abbe diffraction limit). However, it was found that 

evanescent, or ‘near field’ waves can overcome this – these rapidly decaying waves 

occur naturally when a propagating wave meets a discontinuity beyond the cut-off 

for propagation, such as at the edge of an optical fibre, outside of a sub-wavelength 

hole or at the end of a transmission line. Microwave microscopes for dielectric 

sensing (the most common type) exploit the evanescent electric field concentrated 

between a small radius conductor and a distant ground plane in order to exceed 

massively the Abbe limit. The idea for near field imaging was first proposed in 

1928 by Synge [115]. Early practical demonstrations are Soohoo in 1962 [116] and 

Frait in 1959 [117], who achieved sub-wavelength imaging in microwave magnetic 

measurements. Ash and Nichols [118] are usually credited with the invention of 

the microwave microscope for dielectric measurements as it generally understood 

today. The technique was later extended to visible light by Pohl et al. [119] and 

Lewis [120]. The sharpened metallic tip design which has become standard was 

proposed by Wei et al. [121]. Later improvements in resolution came with tapered 

microfabricated waveguides, such as parallel plate [122]. Many attempts were 

made to integrate microwave microscopes with other types of scanning probe 

microscopy, such as Atomic Force Microscopy (AFM). Tabib-Azar et al., attempted 
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to microfabricate a tiny coaxial aperture on a conventional AFM tip [123], but this 

early attempt was non-resonant and used a basic power detector readout. 

 

Figure 2.16: Microfabricated tapered parallel plate probe (left) and primitive 

power readout along with basic finite element method simulations (right) in 

an attempt to deduce an inversion model [122]. 

Despite these advances, there were difficulties with inversion that meant that the 

majority of authors made no attempt to convert resonant frequency and 

bandwidth data into material parameters. A valiant attempt to use a combined 

FEM and semi-analytical inversion model [124] showed that sample thickness was 

a significant source of uncertainty as it changed the effective stored energy of the 

resonator. The difficult convolution of the effects of variable tip-sample distance 

during scanning and varying spatial dielectric property was partially resolved with 

the introduction of tip-sample separation control mechanisms; however, robust 

permittivity inversion remains an issue that lacks a fully satisfactory solution to 

this day [125]. 

One method to control the tip-sample separation is combining conventional 

Scanning Tunnelling Microscopy (STM) with the microwave microscope. The STM 

feedback mechanism then keeps the tip-sample separation constant by 

maintaining a constant tunnelling current. Recently this method was used to 

produce images of individual gold atoms at a 2.5 GHz [126], and individual Gallium 

and Arsenide atoms [71]. Another method, which has the advantage of not 

requiring conducting samples, is based on shear force feedback using a 
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tangentially excited mechanical tuning fork attached to the resonant probe tip. The 

resonant frequency and Q factor of this tuning fork decrease when the separation 

approaches single nanometres, a phenomenon thought to be related to enhanced 

squeezed-film damping, capillary forces, or van der Waals forces; this change can 

then be used as a feedback signal to maintain a particular nm separation. First 

applied to near field optical microscopy [127], the technique was adopted by the 

collaboration lead by Kiejin Lee and Barry Friedman who applied it to glucose 

biosensing, among other applications, [113], [128], [129], one of these being the 

microfluidics-relevant microwave microscope based ‘biosensor’ which can be used 

in a non-scanning arrangement to probe small fluidic systems. 

 

 

 
Figure 2.17: Schematic of a combined Scanning Tunnelling Microscopy (STM) 

and Near Field Microwave Microscopy (NFMM) system, using quadrature 

readout and an analogue tunnelling current lock-in system (left). Images 

acquired by the STM-NFMM (left) showing microwave measurements of a gold 

surface with individual atoms resolved. The lower set of images shows the 

effect of deactivating the STM tip-sample separation control [126]. 

A system combining microwave microscopy with Atomic Force Microscopy (AFM) 

has been commercialised by Agilent Technologies [130]. The device is unusual in 

that it employs the customary half wavelength coaxial resonator with sharpened 

tip, but as an impedance transformer that is not decoupled from the line, 

apparently to give a sensitivity boost whilst still allowing absolute measurements 
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of capacitance. This is useful for its prime intended application in the measurement 

of local semiconductor carrier density. This material property can then be 

estimated via derived dC/dV characteristics obtained using amplitude modulation 

of the excitation voltage and lock-in detection methods [131]. 

Other applications to benefit from the microwave microscope include 

semiconductor research, [132] ferroelectrics, [133], [134] transparent conducting 

oxides (TCOs) [135], organic semiconductors [136], and self-assembled 

monolayers [137]. The recent developments in atomic-scale microwave imaging 

have led to their proposed use in the study of quantum dots, low dimensional 

systems that show fascinating fundamental properties owing to their quantised 

energy levels [138]. The authors are apparently unaware of advances in atomic 

resolution microwave microscopes, but despite their primitive experimental setup 

(consisting of a microstrip resonator and diode detector readout) claim an 

impressive capacitance sensitivity of            – enough to measure the dC/dV 

characteristics of a single quantum dot.  

Another rich scientific application is the measurement of localised superconductor 

properties, including effects at the grain boundaries of High Temperature 

Superconductors (HTS) [139]. Notably from the instrumentation point of view, as 

part of this work it was realised that broadband measurements could be done 

whilst still retaining high sensitivity through the use of a multimodal resonator 

[140]. 
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Figure 2.18: Multimode resonator used as a broadband measuring device in a 

scanning microwave microscope stage used in the study of high temperature 

superconductors (left). The plot showing the large number of absorption 

resonances (right) highlights a central issue in multimode resonator – the 

problem of non-uniform coupling across the band [140]. 

Most authors pay little attention to improving the microwave resonator readout 

technique, largely choosing to emulate a conventional single-frequency readout or 

using a commercial VNA. However, the improvement of resonator readout 

technology, as well as a detailed analytical inversion model, is discussed in a patent 

by Xiang et al. [141], providing a useful reference despite the inevitable patent 

bias. According to the author, of the methods proposed for microwave microscope 

readout the analogue phase-locked loop method is limited by stability, 

conventional swept measurements are limited to 20 Hz, yet swept measurements 

with a fast Direct Digital Synthesis (DDS) source can apparently be up to 10 KHz. 

Because of this, in their patent a fixed-frequency DDS method with IQ readout is 

suggested, which incidentally is the same method as used for the latest kinetic 

inductance detector systems. Data rates of 100 KHz – 1 MHz are claimed, but the 

authors acknowledge the severely restricted dynamic range offered by a single-

frequency method. 
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 Figure 2.19: Control system for a microwave microscope based on microwave 

DDS and single frequency quadrature readout [141]. 

This chapter has been a summary of the applications of microwave resonant 

sensors, concentrating on demanding, high-performance measurement. In the next 

chapter the theoretical background to their operation will be given, and models are 

derived that can be used to understand and correct for their imperfections. A 

comprehensive theoretical treatment is important to ensure accurate and reliable 

operation at the fastest possible readout rates. This will establish that MRS can 

offer the performance necessary to match some of the cutting edge applications 

discussed here. 
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3 Theory 

This chapter discusses the theoretical basis of microwave resonant sensors, and 

introduces the important concepts that later parts of this thesis rest upon. Section 

3.1 is a general introduction, and discusses the advantages of using a resonant 

system to amplify the response of a material to electromagnetic fields. This is 

followed by a fresh look at resonator modelling, deriving a comprehensive, multi-

stage mathematical model of microwave resonant sensors. The development of the 

resonator model is divided into three major sections: 

 Perturbation analysis (Section 3.2) – how the change in resonant frequency 

and bandwidth can be attributed to the material parameters of a sample; 

 Spectral response estimation (Section 3.3) – how measurements of 

frequency-domain scattering parameters of a sensor are linked to the 

resonator’s ‘true’ resonant frequency and bandwidth; 

 Resonator dynamic response (Section 3.4) – how the response of a 

resonator to changing environments and real-time measurement conditions 

be modelled and understood. 

In Section 3.5, there is a review of noise and systematic uncertainty in resonant 

sensor measurements. Finally, in Section 3.6 is a discussion of the various ways to 

embody and generalise the multidimensional nonlinear functions encompasses 

aspects of resonant sensor behaviour and their systems. Such functions are more 

suitable for an automated or embedded sensor system to learn and simulate than 

the arbitrary mathematical equations historically used for resonator analysis. 
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3.1 Why use a resonator? 

A microwave resonator exhibits a change in its stored energy and power loss due 

to a variation in a physical electromagnetic property (permittivity, permeability, 

conductivity) of a specific material in a certain region of a resonant system. These 

properties fully quantify a material’s interaction with electric and magnetic fields. 

The resonant sensor is carefully designed so that only one of these properties may 

vary at a given time. Then the change in stored energy and power loss in a 

resonant system can be selectively attributed to the variation in that material 

property in that specific region – i.e., the resonator acts as a sensor for the change 

in the material properties of that region.  

Often this physical property varies in response to some external factor like 

photons, chemical composition, temperature, sample size and position, DC 

magnetic or electric fields, etc., which may be the actual objectives of 

measurement: the desired signal, or measurand. An indirect approach is therefore 

taken to measure the objective quantity, first by translating it through a physical 

electromagnetic property and then through a resonant system.  

To do this, the resonator is characterised by measuring the amplitudes of 

electromagnetic waves passed through it, from which its total stored energy and 

relative power loss are estimated. Then, using knowledge of its electromagnetic 

standing wave pattern, the variation in the material property, and finally the 

measurand itself is inferred. This multi-stage process will be broken down and 

analysed step-by-step in the following sections of this chapter. 

The first stage of this process, linking measured amplitudes of electromagnetic 

waves as a function of frequency, i.e., the resonator spectral response, to its stored 

energy and power loss, is deeply connected to changes in the characteristic 

resonance shape. The key resonance characteristics related to energy and power 

dissipation are location (i.e., resonant frequency) and size (i.e., bandwidth) (Figure 

3.1). 
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Figure 3.1: Different substances placed inside a resonator cause both the 

location of the resonance and its width to be altered – as in this example 

where different solvents are flowed into a small capillary that passes through 

a simple metallic rectangular cavity resonator (see Section 6.3 for 

experimental setup). 

Why take this indirect route? The answer is simple: to achieve a higher sensitivity 

and selectivity to the objective quantity. In other words, resonators are used to 

improve the signal to noise ratio (SNR) of the output measurement. The resonator 

is nothing more than an amplifier – specifically a special type of parametric 

amplifier. To demonstrate the amplification achieved by a resonant system over a 

non-resonant one, this discussion starts with a simple MRS measurement example 

using basic circuit theory. 

3.1.1 Introductory example of microwave resonant sensing 

In this example, two methods of sensing a change in capacitance are compared – a 

resonant method and a non-resonant method. In a sensor application, this 

capacitance change would be caused by a change in material properties due to a 

measurand, for example the presence of a high permittivity, watery human finger – 
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the basis of the sensors used in touch-sensitive screens. These methods can be 

represented by the simple circuit diagrams shown below: 

 

Figure 3.2: Circuit comparison of a resonant (right) vs. non-resonant (left) 

measurement for determining the change in capacitance, C, by comparing the 

amplitude and phase of voltage waves measured at the dotted lines.  

To characterise these circuits at microwave frequencies, one can measure the 

transmission scattering parameter – the ratio of the transmitted ‘scattered’ voltage 

wave to the incident voltage wave applied by some generator, assuming both 

waves are reference to the same system impedance,   . This complex-domain 

scattering parameter is known as    ; the subscript denoting the ratio of the 

outward-travelling voltage wave at port 2, i.e.,   
 , to the inward-travelling voltage 

wave applied to port 1, i.e.,   
 . See Pozar [1] for definitions and description of 

scattering parameters in general. In the case of the left circuit containing a single 

shunt capacitance,  , that we wish to measure,     as a function of the angular 

frequency,  , of the voltage waves is given by: 
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The transmission parameter close to resonance of the resonator (right circuit) is 

        
    

        
    

  

   3.3 

This function traces a circle in the complex plane, and its magnitude looks like 

Figure 3.1. The angular frequency at which this resonator is found to resonate (at 

the peak in magnitude, where          ) is denoted by   . The parameter    is 

the quality factor – this is measure of how sharp a resonance is, and is the ratio of 

resonant frequency to the 3 dB bandwidth. Both these are ‘loaded’ parameters. 

This means after coupling the resonator (with the smaller ‘coupling’ capacitance at 

the top in Figure 3.2) to the measurement system impedance. I denote loaded 

parameters with a subscript ‘1’.  

Generally, loaded parameters will be slightly different from those of the pure, 

‘unloaded’ system,           (i.e., of the isolated parallel LC resonant circuit here). 

The parameter    is related to the strength of the coupling (in this example, this 

means how large the coupling capacitance is relative to C). This parameter will be 

discussed later on, so for now consider this an arbitrary scaling factor. For the sake 

of comparison, in this example the resonator consists of a lumped capacitance   

and inductance  . Then the sensitivity of     to a small change in the capacitance   

on resonance (i.e.,     ) would be 

 
 

  
             

    
 

 
        

 

   
   3.4 

This result ignores the change in    with C, which is a second-order effect. The 

resonator impedance,        . For the sake of comparing this sensitivity with 

that of the non-resonant capacitor, if the resonator has        (it is difficult to 

create impedances more than an order of magnitude away from 50 Ω at high 

frequencies anyway), and the comparison is at the same frequency,      

     , then the single-capacitor sensitivity reduces to: 
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  3.5 

the magnitude of which is     . Therefore, at the resonant frequency at least, the 

magnitude of the resonant sensor’s sensitivity is larger by a factor of       
   : 

 

Figure 3.3: Sensitivity gain of a resonant sensor over a non-resonant sensor 

as a function of frequencies close to resonance.  

It is apparent that the ‘gain’ of a resonant sensor is approximately proportional to 

its quality factor. Just by adding two circuit components, an inductor and a 

coupling capacitor, a sensitivity gain typically of two or three orders of magnitude 

is possible – even higher in the case of superconductor resonators. Interestingly, 

this advantage only appears if the resonator is decoupled. A similar derivation 

shows that the sensitivity of a parallel LC resonator with no decoupling is     

times that of the single capacitor under the same assumptions – offering no major 

gain and no advantage. Thus, there is also an inherent assumption here that 

resonant sensors must be coupled. This occasionally gets ‘forgotten’ in the 

literature; in fact the first incarnation of the kinetic inductance detector was not 

decoupled and hence gave no sensitivity advantage over simply shunting the 

inductance to ground (although in this case there were other good reasons for 

using a resonant circuit besides sensitivity) [2]. 

Coupling reduces the loaded    in a simple way relative to the resonator’s inherent 

unloaded   , essentially a fixed parameter determined by the quality of the 

resonator construction and materials:  
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                 3.6 

where      is a measure of the coupling magnitude (this parameter can have an 

associated phase shift too). By adjusting the coupling, one can (in theory) set      

to any value        . The magnitude of      cannot be greater than one or the 

circuit would have gain. This would seem to suggest that, in order to achieve 

maximum sensitivity, the coupling should be made as weak as possible so        

and      . However, whilst this may optimise how narrow the resonance 

appears, it is not an optimum level of coupling for measurement. Weaker coupling 

may increase sensitivity up to a point, yet it also reduces the strength of the 

microwave signal that passes through the resonator; from inspection of Equation 

3.3, it is apparent that the relative transmission gain (i.e., insertion loss) on 

resonance, when      is             . Since any attenuation of a signal 

degrades its SNR, using weaker coupling also implies that there will be more noise 

present on the signals transmitted through the resonator, hence also on the 

resulting estimates of     and, ultimately, those of the measurand itself. 

Optimum sensitivity is thus achieved when the coupling is adjusted so         . 

This is a ‘critical coupling’ condition when the loaded Q is half that of the unloaded 

Q. Substituting Equation 3.6 into the sensitivity (Equation 3.4) gives         

      
            

 
, which is maximised when          . This results in an 

optimal insertion loss of 6 dB. However, coupling as strong as this may create 

other issues. For example, the change in loaded bandwidth as measured differs 

from the change in unloaded bandwidth as coupling is increased; this needs to be 

corrected for accurate sensing (as discussed later on), which may be a source of 

error if the correction required is significant. In addition, whatever circuit 

structures are used for coupling may perturb the internal standing wave field 

distribution more – possibly making inversion models inaccurate. Furthermore, 

stronger coupling implies higher sensitivity of the resonance to the external 

impedance environment – something that may be subject to fluctuations due to 

temperature, connection/disconnection cycles, etc., as discussed in [3] 
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Figure 3.4: Plot of normalised sensitivity to a change in capacitance (valid 

also for change in resonant frequency), against coupling factor K 1Q0 (log). 

What this analysis does show, however, is that accepted practice can sometimes be 

misguided; weak coupling is almost always used ‘by default’ in the literature, 

regardless of sensitivity considerations. This analysis has tried to show that 

resonant sensors can be viewed just like any other type of sensor – and the same 

considerations apply as to any signal measurement problem. All measurements 

must balance three central issues: noise, gain, and distortion. This example has 

shown at a simplistic level how the first two issues relate to MRSs. The complex 

and tricky issue of distortion – i.e., nonlinearity of sensor response – will also 

feature many times over the coming discussion, and its minimisation and 

mitigation is a key problem tackled from various angles throughout this thesis. 

3.1.2 Introduction to resonant sensor modelling 

Like amplifiers, resonant sensors have a nonlinear response to their inputs; they 

introduce distortion. They also add noise. Also like amplifiers, there is a trade-off 

between these. Increased gain may improve SNR but at the expense of increased 

distortion. When talking about sensors, it is more usual to use terms like 

‘sensitivity’ rather than ‘gain’, but they are really words for the same thing.  

A poor but simple approach is to reduce the sensitivity (by introducing a smaller 

quantity of sample, for example) to a level where one can ignore the nonlinearity 

altogether, analogous the practice of ‘backing off’ the input power to an amplifier. 

This makes processing information in the sensor output easy, but leads to a worse 

10
-2

10
-1

10
0

10
1

10
2

0.05

0.10

0.15

0.20

0.25

K
1

Q
0

Se
n

si
ti

v
it

y
 /

 Q
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



 Chapter 3– Theory 

79 

noise floor and therefore a worse limit of detection (LoD) – the smallest 

measurand value the system can reliably measure. To an extent this can be 

improved with higher quality (and higher price) system components, but this 

results in an undesirable cost-benefit trade-off. An alternative approach is to use 

signal processing to correct the nonlinearity, and to direct all design efforts 

towards optimising the gain of the sensor instead. This shifts the onus of the task 

from good system design to good sensor modelling, as a poor nonlinear model will 

not fully eliminate the distortion, leading to measurement error. 

To this end, I developed a multi-stage modelling approach for resonant sensors. At 

each stage, signals are defined as functions of time in anticipation of a high-speed 

readout system and realtime digital signal processing approach. Stage 1 is 

application-specific, and is the transformation from an objective signal (photon 

flux, chemical composition, temperature) to one of the material physical 

parameters. Stage 2 is entirely general, and is the transformation from physical 

parameters in various regions of the resonator to its defining parameter; its 

eigenvalue, or complex resonant frequency,         . This parameter is linked 

to the conventional unloaded resonant frequency and bandwidth of an ideal 

resonator by the zeros of the conjugate equation,              , where   is 

the Laplace transform variable:  

    
  

   
        

      
  

   
                         3.7 

Hence the unloaded bandwidth,              . The letter   is used rather 

than the more common   to avoid confusion with wavelength. Note also that    

should not be confused with conductivity – it is taken from the term for the real 

part of the Laplace transform variable. Quite often, it is convenient to define 

          instead, as it avoids the negative sign of   . Since the real part of the 

eigenvalue is always negative, due to energy conservation in a passive system, the 

definition being used should always be clear from the context. 

The use of eigenvalue,   rather than resonant frequency, bandwidth, etc., is a 

deliberate choice. This is a parameter that is not directly observable, but is solely 
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determined by the energy stored and power lost in a resonant mode – a variable 

that, in turn, can be directly linked to physical material properties, or estimated by 

numerical finite element method (FEM) simulation to a high degree of accuracy. 

(as discussed in a later section).  

This parameter is not affected by the proximity of other modes, leakage, coupling 

reactance or other effects – as are the frequency of maximum insertion loss or the 

point where the phase of a scattering parameter crosses zero. Rather, these points 

all form part of the general spectral response of the resonator – something that 

will be discussed in more detail later. This isolates the eigenvalue model from any 

assumptions about the shape or nature of the measured spectral response, and 

allows one the flexibility to explicitly model the relationship between spectral 

measurements and the unknown eigenvalue of an isolated resonator mode. This 

generality can then accommodate less ‘ideal’ resonators, for example, when 

calibration to a reference place near to the resonator is unavailable or impractical, 

and the electrical length of the connecting cables causes an unknown phase shift in 

the measuring scattering parameters. 

By decoupling eigenvalue from spectral response, the model for stage 2 can be 

applied universally to any resonator. Stage 3, therefore, is the transformation from 

these ‘hidden’ eigenvalues to the frequency-domain scattering parameters.  

Scattering parameters (S parameters) are central to linear microwave analysis and 

are introduced in every textbook on microwave engineering, e.g., [1]. S parameters 

provide a description of linear systems that transitions smoothly from low 

frequency circuit theory to optical systems without loss of accuracy, and provide a 

model of a device that is independent of the impedances presented to its ports. 

They describe the amplitude and phase ratios of electromagnetic waves travelling 

outwards (reflected) to those travelling forwards (transmitted) at various spatial 

reference planes – known as ports. For N ports there are    S parameters to 

describe the complete set of these ratios, which can be arranged in a square matrix.  
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For the usual microwave situation of guided waves in transmission lines, these 

quantities also relate to the voltage measured across the transmission line at those 

reference planes, as the voltage at any point is the superposition of the reflected 

and transmitted voltage waves. This voltage is sampled by a down-converting 

mixer and ultimately converted to the digital information in an MRS ‘readout’ 

system (see Chapter 4). Thus, S parameters are used as the final output of the 

model of the microwave resonator, even though they are only approximately 

measured by the system proposed in this thesis. 

An issue arises, however, about how to represent the time-dependency of these 

scattering parameters – which are a frequency-domain parameter. A simple 

solution is to use the time-frequency scattering matrix,       , with each element 

of the matrix representing one complex wave ratio in two-dimensions; microwave 

frequency   and ‘baseband’ time  . This time-frequency representation assumes 

that the rate at which the frequency-domain parameter varies in the time domain 

is slow relative to the period of the frequencies at which it is specified – perfect for 

modelling modulated signals. This means that the time-stationary assumption of 

the Fourier representation is not violated for the fast microwave-domain process. 

Since the period of microwaves is sub-nanosecond, this is almost certainly true. 

To summarise so far, a MRS can be represented as a three-stage process. The first 

stage is the effect of a time-varying measurand,     , on the material properties 

(permittivity, permeability and conductivity) of the materials within the resonator. 

Although there is normally just one measurand, multiple (parasitic) time-varying 

effects may be represented by the vector,     . The second stage is the effect of 

those material properties on the ‘energy budget’ of the resonator – the total energy 

loss and storage per mode. This in turn determines the ‘hidden’ eigenvalues of the 

resonator, which are functions of the measurand and therefore time:       . 

Finally, there is the spectral response of the resonator, described using scattering 

parameters, which is primarily determined by the eigenvalues of the resonator and 

gives it corresponding peaks or dips with characteristic widths and amplitudes 

that will change with time. Since these frequency-domain parameters are also time 
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varying, a time-frequency representation is used for all the scattering parameters: 

        

 

Figure 3.5: Three stage resonator model showing the main mathematical 

‘black boxes’ involved in the mapping of an objective measurand to the 

parameter actually measured in any MRS system. 

Stage 1 is specific to each and every application, so if this relationship is known 

already, the first two stages can be lumped together into one ‘resonator eigenvalue 

response function’, which maps directly from the target measurands to the 

eigenvalues of each resonant mode of interest. Mathematically, this resonator 

eigenvalue response function (Stage 1+2) can be written:  

                 3.8 

The function      is the response function of the resonator, and the vector      

contains the time-dependent measurands as discussed above. The vector   

  can be thought of as the mode’s state vector, and over time traces out a 

trajectory in the two dimensional modal state space.  

Stage 1 Stage 2 Stage 3 

Objective 
variable, 
e.g., flux 

Stage 1 
parameters e.g., 

temperature 

     
 

Regional material 
properties; e.g., 

permittivity  

               
       

Stage 2 parameters  
e.g., geometry, modal 

field distribution 

       

Eigenvalue of 
resonant 

mode 

       

Voltage wave 
spectral 

response 

Stage 3 parameters  
e.g., coupling, frequency 

of excitation 



 Chapter 3– Theory 

83 

3.2 Resonator perturbation 

A resonator can be defined by an energy balance equation, contained within the 

framework of thermodynamics. Because every system has a Hamiltonian 

representation, all energy can be seen to come in two ‘flavours’; potential energy 

and kinetic energy [4]. In a system, energy is stored in these forms and continually 

sloshes between them. This happens because the laws of thermodynamics 

stipulate that energy must try to distribute itself evenly. Left to its own devices, a 

system will divide its energy equally, on average, between its potential and kinetic 

storage mechanisms; the principle known as equipartition. However, the transfer 

of energy from one form to another is imperfect; it must generate heat and 

increase its average entropy, fixing the direction of the ‘arrow of time’ [5]. The 

condition(s) that guarantee equipartition are known as resonance, and the ratio of 

the amount of energy stored to the rate at which it is lost from the system due to 

entropy, governs how quickly the oscillations of a resonator will die away. 

Normally resonators are driven, however, and thus the energy lost is continually 

renewed by a supply of new energy from ‘outside’ the system. Thus, driven 

resonators can be seen to conserve energy and thus satisfy an energy balance 

equation without violating the principle of increasing entropy. 

Every system, whether microwave, mechanical or chemical, has just three terms in 

its energy equation – total kinetic energy, total potential energy, and energy 

dissipation. For example, in kinetic inductance detectors there are three different 

types of energy storage, magnetic, electric and inertia (of Cooper pairs). Electric 

energy is a type of potential energy; (PE) and both magnetic and inertial energy 

are types of kinetic energy (KE). This means that these two mechanisms can be just 

added up and treated as an ‘equivalent’ magnetic energy (or inertia, or indeed 

whatever one wishes), allowing the system to be modelled as a conventional two-

mechanism resonator. The standard theory of microwave resonator perturbation 

comes from Poynting’s theorem [6], which is an electromagnetic energy balance 

equation, but a similar one could be derived for any physical system which has a 

Hamiltonian that is constant (i.e., conserved) over time. Thus this approach to 
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resonator modelling is entirely general – for electric energy just read PE, and for 

magnetic, KE. 

The equation most often encountered in traditional perturbation analysis is 

derived by a number of authors from Poynting’s theorem, [1], [7], [8], [9]  and in 

the notation I have adopted looks like this, with         :  

 
       

  
 

                                                 
 

  

                       
 

  

 3.9 

This says that the relative change in eigenvalue due to a measurand   is equal to 

the relative change in complex power within the resonator volume. Since the 

equation is in the Fourier domain, a complex number can be used to represent 

energy storage and power loss of time-harmonic quantities. This time-harmonic 

ansatz is a convenient way of describing energy and power conservation in a single 

complex equation; all the time-integrals reducing to simple expressions. Since the 

resonator is driven, both real and imaginary power is conserved (the real power 

flow out as heat is exactly balanced by real power flow in from the excitation). 

Using the electromagnetic constitutive relations      and     , assuming a 

linear, isotropic (i.e., scalar) material, and using the commutativity of the dot 

product (         ), gives:  

 
       

  
 

                                              
 

  

                               
 

  

 3.10 

The fact that this equation depends on both the unperturbed fields,     , and the 

new changed fields under the influence of a changed sample,     , is usually 

ignored in simple perturbation theory, with the assumption that the sample is so 

tiny as to have no effect of the fields. Whilst patently wrong, this assumption has 

given acceptable results for many decades. So why go further? The justification for 

accepting sample-dependent fields and the nonlinearity this causes is made in the 

context of the type of sensors discussed and the application areas targeted. 
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Smaller, lighter, and more sensitive sensors mean larger sample volumes and 

therefore the invalidation of the small perturbation assumption.  

This should not be avoided but embraced, as it is not without nonlinearity in the 

upper measurement ranges that high sensitivity can be achieved in the low 

measurement ranges; within the limit of the resonator’s coupling and minimum 

loaded Q factor required to resolve the resonance, of course (although automatic 

coupling control could alleviate this limitation to an extent). 

This is a complex domain equation, since not only are the permittivity and 

permeability complex, but so are the inner products            and           ,  

in general. This means that the change in field distribution can cause a change to 

both the power loss and energy stored – regardless of what is going on inside a 

perturbing material. The total complex power is given by a volume integral over all 

space. This is not very practical, and it is logical to break down the integral into a 

number of discreet regions       of homogeneous material properties:  

 
       

  
 

                  
                   

         
           

  3.11 

Where               
 

 
      and                

 

 
     for brevity. Notice the 

step of abstraction here – from integration to summation. It is a logical extension to 

say that this equation is a finite element equation; breaking down a problem into a 

discrete approximation and using summation rather than integration. Thus this 

equation applies equally well to FEM simulation results when each region is an 

individual mesh element. 

This summation of individual energy packets, possible because of the additive 

nature of energy itself, allows one to introduce other models of energy storage and 

loss other than volumetric: the surface of a good conductor, loss due to radiation, a 

port for coupling, or an isolated electric dipole, for example. Thus, a term might be 

added to the numerator to account for the change in complex power at the surface 

of a good conductor:  
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                                          3.12 

The surface integral is used here, and the impedance              for a good 

conductor, resulting in roughly equal perturbation to both energy storage and loss 

from a change in real surface impedance. In order to avoid added complexity here, 

the skin depth    is assumed constant – if the conductivity were the measurand in 

this sensor then the actual dependence of    on    would be a source of a small 

degree of nonlinearity and error if left uncorrected.  

This is often a source of nonlinearity (dispersion) in microwave systems and even 

in FEM eigenvalue simulations, where one approach to correct for    dependence 

requires making increasingly accurate estimates for the ‘true’ resonant frequency, 

putting these estimates back into the equation for skin depth, and iterating. 

Creating a surface with       can represent a terminated port at the end of a 

matched transmission line, so this term is also useful for incorporating the effect of 

loading from a measurement system, such as an additional coupled port. 

Dipoles are a mathematical model of an infinitesimal point of charge separation 

(electrical) or circulating current or spin (magnetic). In resonator analysis, they 

are frequently used to represent very small samples of spherical or cylindrical 

geometry. The complex power due to a dielectric dipole is given by:  

                    
       

           
             3.13 

Note       here is the dipole moment and not the resonator eigenvalue. An 

equivalent expression exists for magnetic dipoles. Point values for the fields are 

used rather than surface or volume integrals as an infinitesimal sample is assumed. 

Here           are the internal and external complex permittivity, and N is the 

depolarisation factor; related to the geometry of the sample. N is a scalar quantity 

for ellipsoidal bodies such as spheres and cylinders. The fraction can be 

represented by an ‘effective’ permittivity   ; being the homogeneous material of the 

same size as the sample which would store the same complex energy in the 

absence of depolarisation. There is a significantly nonlinear relationship described 
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by even this very simple depolarisation model – which highlights the importance 

of accurate nonlinear models and good nonlinear inversion in measurements 

where depolarisation occurs. 

Other expressions for dipole moments exist for small conducting particles and 

wires, and effective depolarisation factors have been derived analytically or 

empirically via FEM simulation for a number of other geometries of body besides 

ellipsoids, e.g., [10], [11], and layered bodies such as a dielectric tube surrounding 

a dielectric rod [12]. 

These additional energy contributions can be introduced into the above equation:  

       

  
 

           
                          

                 
   

         
                        

               
   

  3.14 

In theory, this equation can simulate the resonator eigenvalue response from 

knowledge only of its particular regions and their field distributions. 

Unfortunately, pure mathematical knowledge of a resonator’s fields, especially 

how they change if a new sample material is introduced – i.e., the quantity 

            – is rarely available. Linear perturbation theory thus makes the 

assertion that           and           for simplicity. However, this forces 

the sensor designer to make the volume of sample very small in order to minimise 

the error it introduces. In turn, this reduces the sensitivity and may increase the 

physical size of the sensor as well – both undesirable trade-offs.  

The origin of the change in fields is three-fold. Firstly, dispersion (frequency 

dependence of material parameters) may alter the phase constant and attenuation 

constant of the propagating mode that is resonant. Thus, the propagating mode 

stays the same, but its energy storage and loss are not exactly what they would be 

at the original resonant frequency before introduction of a sample.  

Secondly, the dominant propagating mode may be joined by another propagating 

mode – making the resonator multimodal – when a sample is introduced. Energy is 

partitioned between the modes of propagation via the superposition principle, in a 
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ratio so as to minimise the free energy. Thus, if a sample makes the original mode 

energetically unfavourable then an increasing proportion of the energy will be 

directed into an alternative mode. This happens, for instance, in TM010 cylindrical 

cavity resonators with a lossy dielectric rod down the centre. The ‘parasitic’ mode 

in this case is a coaxial TEM mode, where currents (either real or displacement) 

flow down the rod forming a ‘centre conductor’ of a coaxial cable and giving rise to 

a concentrated region of counter-circulating magnetic field and radial electric field 

close to the rod. This is one of the few cases simple enough to have an analytical 

description [8].  

The third origin of the field change is sample depolarisation/demagnetisation, 

which creates additional fields due to the accumulation of surface charges and/or 

circulating currents within an introduced sample. Although accounted for in the 

ideal dipole case by the above equation, if the dipole fields reach a discontinuity 

such as a cavity wall or dielectric region other than the sample, then this 

constitutes a sample-dependent change in field and the energy stored/lost in these 

regions. 

As an example, suppose that the measurand represents the real and imaginary 

permittivity in one region – the sample. Thus                         only, 

where   is complex. No other material properties in other regions have any 

dependence on  . These equations also apply in situations where the material 

parameters in just one region are linearly dependent on the measurand. Using the 

notation derived above, this scenario is described by the perturbation equation:  

 
       

  
 

       

                         
 
       

  3.15 

The ‘energy excluding sample’ term on the denominator,            
       

        , can be replaced with a single function –      – having arbitrary   

dependence in order to account for sample-dependent fields:  
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  3.16 

Since it is assumed that this sample-dependent change in fields is quite small, their 

dependence on some measurand could be expressed by using the first few terms of 

a Taylor series expansion around the resonator’s unperturbed state      :  

                   
 

 
    

             
 

   

          3.17 

A similar expansion could also be used for      ,       and         as well.     is the 

Jacobian of the field with respect to  , and   
   is the Hessian matrix of the field 

with respect to  . Note that    is real but    and any higher order terms are 

complex. In a later section, graphical examples of these derivative field quantities 

will be given based on FEM simulations, and the issues in using them to actually 

model large signal perturbation will be discussed. Note that in this linearisation,    

is real, but    is complex. 

Taking just the first order, linear approximation for all these measurand-

dependent quantities, i.e.,            , and          , leads to the 

following equation:  

 
       

  
 

        

            
 

         

            
  3.18 

The resulting complex quadratic equation has two solutions for   given a 

measurement of       and assuming all other quantities are known precisely, 

making it problematic to use in an automatic sensor without the ‘intelligence’ to 

know which solution to accept. However, since this equation is already based on 

linearised quantities, it makes more sense to expand it as a Maclaurin series about 

zero (the unperturbed state) as well:  

           
 

 
   

 

 
 

  

  
 

  

              3.19 
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To second order, we have a real-domain first order term:     which is just the 

standard linear perturbation ‘filling factor’; the denominator being equal to four 

times the energy of the resonator with no sample. The other term is quadratic and 

is a complex number. Thus, there are still two possible solutions for   given     . 

However, there is more than one way to linearise an expression. Since the above 

rational function is complex, a more accurate approach is to equate real and 

imaginary parts, solve simultaneously, and then take the series expansion. This 

bivariate Maclaurin series expansion up to second order in   of Equation (14),:  

 

        
   

 
   

   

 
   

                            

  
    

 
                          

  
  

 

 
                          

  
  

   

3.20 

And for the bandwidth-related part of the eigenvalue:  

 

        
   

 
   

   

 
   

                            

  
    

 
                          

  
  

 

 
                          

  
  

   

3.21 

In these equations the complex terms          and          have been 

separated into their real and imaginary parts. These expressions are rather 

unwieldy, and it is debatable whether much is gained from them. To proceed, an 

even simpler case can be assumed – totally static, sample-independent field 

distributions, i.e.,      . Equating separately the real and imaginary parts of as 

before, and leaving out the quadratic terms so that        , and       , gives a 

pair of equations:  

    
       

  
    

   

    
     

       

  
    

   

    
   3.22 

This pair of equations can then be solved simultaneously in terms of           

to obtain a solution that is independent of both      and     :  
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   3.23 

An equation in terms of resonator Q can also be derived from these equations:  

      
                

               
  3.24 

This shows that Q is dependent on a non-trivial combination of     assumed to be 

proportional to the loss in the sample, and   ; proportional to energy storage.  

These are surprisingly complicated results, and demonstrate even in a simple 

static-field model the inherent interdependence between the real and imaginary 

parts of the eigenvalue – between resonant frequency and quality factor – 

properties often treated independently without a second thought. Only with a 

combination of two of these measurements can a complex material parameter be 

determined accurately. The inverse of these equations:  

     
 

 
 
                           

           
    

 

 
 
             

           
  3.25 

is consistent with the real and imaginary expansion of Equation 3.19 to first order. 

With the approximation that the Q factor is large (i.e., that          ), and the 

change in resonant frequency is insignificant (i.e., that        ), they reduce to 

the standard linear perturbation equations with     being equal to the filling 

factor. 
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Figure 3.6: Normalised change              (red) and              

(blue) against real permittivity         and imaginary permittivity 

       as predicted by Equation 3.23 for a resonator with         and 

filling factor         . Static field distribution (no depolarisation) is 

assumed. Although an extreme case, this demonstrates the nonlinear nature 

of the perturbation response. 

These equations can also be expanded about zero as a truncated Maclaurin 

polynomial in  . Retaining just the first order terms in both    and    allows a 

matrix equation to be written, using a 2D vector representation of the complex 

input variable,          
  and the complex output variable      

            :  

 

 
     
      

  
 

 
 
    

    

    
    

  
   

   
   

   
    

  

             

3.26 
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This matrix representation is consistent with multiplication by a single complex 

constant:        , since multiplication by        is equivalent to 

multiplication by the matrix   
   
    

 . Clearly,      , thus           

     
 

 
  . This agrees with the first term of the complex Maclaurin series 

derived above in Equation 3.19 – the matrix representation just serves to highlight 

the cross coupling that causes correlation between resonant frequency and 

bandwidth changes in real-life resonator perturbation. 

In the usual limit of      , this reduces to the familiar independent linear 

perturbation equations – consider for example       and       ; one expects 

the bandwidth              to depend predominantly on    and resonant 

frequency      on    which would be the case if the diagonal elements of the K 

matrix were zero. The relative magnitude of cross coupling is therefore inversely 

proportional to the unloaded Q factor of the resonator.  

The inverse Equation 3.23 also has a matrix representation. To estimate    (in 

statistics the estimator is donated with a circumflex, or ‘hat’) from a measured 

eigenvalue:  

 

 
   
 

   
 

   
 

 
 

 

             
 
    

    

    
    

  
              
          

   

           
      

    
  

3.27 

The above equation, in either matrix or complex form, is recommended for use in 

any new MRS measurement system where the sample perturbation is small and 

linear – in the absence of sample-dependent fields in a non-depolarising geometry, 

it is accurate without further assumptions. Even though ignorance of the cross-

coupling terms probably introduces an error of less than 1 % in most situations 

(i.e., small changes, high Q), as the above equation is still very simple there is no 

excuse for not using it. 
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These equations can be thought of as describing ‘imperfections’ or ‘bad design’ in 

resonator responses. However, instead of being considered as such, this non-ideal 

behaviour should be seen as an inherent – something to be embraced and 

accepted, rather than avoided and ignored. It is, after all, better to understand, 

model and account for non-ideal and nonlinear behaviour in a system than to 

ignore it or try to design it away – leading to inaccuracy or wasted effort, 

respectively. 

3.2.1 Sensitivity limits 

The result from the previous linear perturbation approximation gives a simple real 

‘gain’ for an MRS sensor,     . This gain is equal to the filling factor 

 
 

 
 

            

               

 
            

               

  3.28 

Note that the equality of electric and magnetic energy at resonance has been used 

to simplify the denominator, with the equation in   being for a pure dielectric 

sample and the equation in   being for a pure magnetic sample. This sensor ‘gain’ 

can be seen to be related to the volume ratio of the sample to the resonator, and 

therefore has a maximum possible value of    , if all the field were contained in 

the sample.  

As shown earlier, a simple expression for the sensitivity measured by scattering 

parameters is the tangent-argument of transmission,              . Thus the 

sensitivity to a small change in resonant frequency (rather than capacitance as 

before) is 

 
 

     

    

    
 

  

       
             3.29 

which can be seen to be simply the inverse loaded bandwidth of the coupled 

resonator.  
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As derived earlier, the simplest linear model of perturbation says that 

                  , in the absence of any other factors. Therefore, to calculate 

the overall sensitivity of the resonator, the chain rule can be applied, giving:  

 
 

   

    

    
  

  

     
 
 

 
 

   

 
  3.30 

Thus, in the simplest approximation, the sensitivity of a resonator is the product of 

the loaded quality factor and the filling factor.  

Herein lays the fundamental limit on sensor performance. Suppose a dielectric 

sample fills the ideal resonator, then          , where      is the dielectric 

loss-tangent of the sample. Assuming coupling is optimised (as discussed earlier), 

then this situation represents the maximum possible sensitivity. For a high loss 

material such as water,          at 2.5 GHz. A resonator with a Q of 10 would be 

almost impossible to couple to and measure. However, decreasing the filling factor 

to restore Q to a more measureable value reduces sensitivity. Under these simple 

assumptions, halving the sample volume means doubling the Q but halving the 

filling factor at the same time, resulting in no net change in sensitivity. 

This situation will always approximately apply when the sample is both the 

objective of measurement and the dominant source of loss – which it often is. For 

the example of water, therefore, a phase sensitivity of        radians per 1 part 

change in sample permittivity represents the best possible performance achievable 

with a resonant sensor. A 0.1% change in real permittivity results in a maximum of 

0.01 radians, or about 0.6°, change in phase. This represents a maximum change of 

about        in the amplitude of a transmitted signal: a small yet detectable shift.  

Similar limits can be shown for other materials, but as the loss in the material 

decreases so the actual limit of detection achievable is restricted by other factors, 

such as loss in other parts of the resonator. Although simplistic, what this analysis 

shows is that detecting small changes in high loss dielectrics should be avoided in 

MRS, and that even for medium-loss materials there is no significant advantage to 

be found in extremely high unloaded Q factors. 
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3.3 Resonator spectral response 

The resonator spectral response equation, the final stage of the microwave 

resonator model, has been expressed earlier as              . The nature of this 

multi-dimensional time-dependent complex equation is the subject of this section. 

Inverting this relationship, linking measured voltage waves to the resonator 

eigenvalue, is the most critical step of the microwave resonator readout system. 

This is especially true in non-VNA based resonator systems, where the absence of 

reference-plane calibration and precision microwave reflectometers and receivers 

requires the careful consideration of system imperfections, such as mismatched 

source and load impedances, to be taken into account. 

There are two primary routes to an analytical model of a microwave resonator – a 

transmission line approximation and a lumped element (LE) approximation. Both 

these viewpoints are somewhat idealised, and no practical resonator at high 

frequency can truly be said to belong to either camp entirely. Like all analytical 

models, these are just approximations of the true subtlety and complexity of 

reality. However, one of the main applications discussed in the previous chapter, 

the lumped element kinetic inductance detector (LEKID), is well represented by a 

LE model, and some effort was expended during this project to derive a 

representative model of this type of resonant sensor. For this reason, the analytical 

model of LE resonator spectral response shall be the starting point for this 

discussion. This is easily generalised, as a lumped component is interchangeable 

with a distributed reactance at a single frequency, and over small relative 

frequency deviations (i.e., over a narrow band resonance) the difference is 

negligible. Indeed, the end results agree with accepted models derived wholly 

under the assumption of transmission line resonators. 

A general model of a resonator must take into account loss in both the magnetic 

and electric fields; in LE resonators, this means the resistance of the inductor and 

conductivity of the capacitor dielectric. Notably, the LE circuit is similar to the unit 

cell of a ‘lossy’ transmission line; thus this circuit (in either parallel or series 
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format) is an equivalent model for transmission line resonators around a modal 

frequency. This dual loss model is shown in Figure 3.7. 

 

 Figure 3.7: Parallel resonator with dual losses. 

The relationship between the voltage across the circuit and the current through it 

is given by a differential equation, which can be converted into the Laplace domain, 

or equivalently by making the ansatz that all functions of time             

where      . The impedance transfer function:  

      
 

    
 

         

  
     
      

  
      

 3.31 

The poles and zeros of this equation yield the conditions under which the 

resonator acts like an open and short circuit, respectively. These are definitions of 

electrical resonance if they occur at finite frequency. By comparison to a standard 

2nd order form;  

 
        

     

  
 

    
  

 
  

   
  

3.32 

it is possible to write down the complex eigenvalues of the single resonance pole:  

    
  

   
        

              
     

   
        

    

     
  3.33 
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Note that, since         
 

   
 and that 

 

  
 

 

   
 

 

   
 

 

  
 

 

  
 where    is the 

‘c   uc    Q’        is  he ‘ ielec  ic Q’ – the definition of quality factor implies 

this rule of additive loss mechanisms. Thus, there are no real surprises with this 

dual loss analysis when compared to the more common single loss analysis. 

This equation is unrepresentative, as it is virtually impossible to excite such a 

circuit without loading significantly it by the impedance of the generator and/or 

the detector used to measure its response. At low frequencies, a voltage source of 

MΩ impe   ce c ul  be use    s well  s high-impedance oscilloscope, and the 

ci cui  m  el w ul  s ill be  el  ively  ccu   e  A  RF    Ω is ki g;  hus       m    

decoupling (or coupling, depending on your point of view) is needed to avoid this 

significant loading and associated reduction in resonator selectivity. 

This in turn, therefore, requires a new model in order to be representative. Only 

one type of coupling model will be discussed here. It will be show that the results 

can be generalised to all coupling methods in general. Again, because of its 

 ss ci  i   wi h LEKID  es      s   he ch se  c upli g is ‘m g e ic b   s  p 

c upli g’  The  e m ‘b   s  p’ i  ic  es  h    he  es        ppe  s  s    ip i  

tra smissi     s  pp se       pe k      ‘m g e ic’ bec use  he c upli g is 

 ssume     be be wee   he  es      ’s m g e ic  iel       h       he ex e   l 

circuit. It is a somewhat idealised model; a pure LE reactance mutually coupled to 

the magnetic field of the resonator. However, it is appropriate in the situation 

where a resonator is in close proximity to an electrically short length of 

transmission line. 

To begin it is necessary to explain the nature of magnetic coupling, which is slightly 

more complicated than capacitive coupling. Consider the set of N electrical circuits, 

            , each carrying a current    around the closed contour   . The ith 

current element, located at position vector    is         (assuming the circuit to be a 

uniform current filament). The magnetic flux density produced by this element at 

another point,   , is given by the Biot-Savart law, which may be simplified under 

the uniform current filament assumption:  
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  3.34 

Thus mutual inductance between two circuits,    , defined as the flux produced by 

   divided by the current induced by this flux in,   , can be derived: 

 

    
     

     

  
 

     
       

 

  

  
 

     
          

 

  

       
    

  
 

         

       

 

  

 

    
    

  
  

       

       
 

 

  

 

  

 

Figure 3.8: Mutual inductance and the derivation of the Von Neumann 

formula. 

This result is the Von Neumann formula. Note that this equation is general, but for 

   , i.e., for self-inductances, the current density and finite cross-section of the 

conductor needs to be taken into account to avoid the singularity in        . This 

law applies equally to distributed resonators, although the ‘circuit’ encompasses a 

distributed current density. Thus, it is possible to calculate the mutual inductance 

between, say, a cavity’s magnetic field and a coupling loop introduced into it using 

a similar approach. 

Let a system consist of two circuits,    and    . If    and    have the same polarity 

(as is indicated by the dot notation), the flux in each circuit is given by:  

                                                   3.35 

Faraday’s law of induction gives the voltage across    and   : 

0
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  3.36 

Using the same harmonic ansatz used earlier, this may be expressed in terms of the 

Laplace variable;                             and                 

         . Expressing the primary circuit impedance as             and arbitrary 

secondary circuit impedance such that  , gives:  

       
     

     
     

        

         
 

                    
  

         
  3.37 

since from inspection of the Neumann formula            . In a system of two 

coupled circuits,             for energy conservation. For finite coupling, 

           , with     
   

 

    
 a ‘magnetic coupling coefficient’ satisfying 

      . Another figure used for magnetic coupling is the ‘turns ratio’ 

   
  

  
   

. Note that if a sample perturbs neither    nor   ,    is a constant. 

Consider the two extremes of coupling: if      the numerator cancels with the 

denominator leaving just the secondary reactance,          . Thus, the 

secondary circuit does not affect the primary at all. Perfect coupling, for      

gives                           , which is merely the parallel combination of 

primary and secondary impedances.  

The above relationship can be used to derive the impedance transfer function of a 

magnetically coupled resonator with dual loss mechanisms as above. Substituting 

                 into the above equation gives:  

          
                

              
      

                      
 3.38 

The denominator of this function can be seen to be the same as that for the 

uncoupled parallel resonator considered above – its poles are preserved by 

coupling. The numerator contains a version of the same function, but with L2 

reduced by the factor      
 

 . Using standard notation:  
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 3.39 

As well as a conjugate pole pair, the biquadratic fraction also has a conjugate zero 

pair:  

 

   
  

   
        

        
  

     
 

 

   
     

   

     
 

 
  

     
 

   

3.40 

The coupled resonator impedance transfer function therefore consists of a 

conjugate pair of zeros and a conjugate pair of poles, which become closer as the 

coupling becomes weaker until they cancel completely in the limit of infinitesimal 

coupling, leaving just the primary circuit reactance. The pole and zero can 

influence each other; creating a ‘skewed’ frequency response, but separate into 

independent resonances as coupling becomes larger. Normally, this is of little 

practical significance – one resonance becomes dominant and the remaining 

‘image’ resonance has little discernible effect on measured scattering parameters.  

The significance of this impedance transfer function to the resonance feature seen 

in scattering parameters is that both frequency and bandwidth can be seen to 

change with coupling. This is useful to realise when getting ideal eigenvalue FEM 

simulations to agree with real-life coupled resonators. It also helps to accurately 

model the case of a sample-dependent coupling perturbation, whether 

unintentional or by design (i.e., where the sample perturbs the coupling structure 

rather than the resonator body in order to achieve a higher sensitivity from the 

larger ‘filling factor’ offered by the much smaller coupling structure). 

The scattering parameters of this two-port coupled circuit can be found easily by 

considering the impedance above to be in series with a transmission line:  
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 3.41 

An analogous expression exits when the impedance is assumed to be in a ‘shunt’ 

configuration. The equivalent transformation for a one-port coupled resonator is  

        
        

        
  3.42 

Taking one of cases as an example, with some simplifying terms the Laplace 

domain equation for the transmission scattering parameters can be written:  

        
 

     
 

  
 

    
  

 
  

   

  
 

    
  

 
  

   
       

      

  
 

    
  

 
  

   
  3.43 

where   
            

  

        
 is a weakly-s-dependent parameter for     , close to 

unity for   
   . The quantities     ,       and        change little with frequency 

close to resonance, thus they can be approximated by complex constants:  

 

  
          

  

      
    

  

  
    

   
 

          
  

    
      

 

                  
   

 

3.44 

           is the normalised coupling reactance at resonance. In the limit of 

weak coupling    is simply the scattering parameter of the coupling reactance 

alone and    goes to zero as the pole and zero cancel out. Because these limits are 

meaningless, it precludes the assumption of weak coupling coefficient as a route to 

approximation:  

 lim 
  

     
    lim

  
     

K  
 

     
 lim

  
     

       3.45 
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Having two complex poles at positive and negative frequencies is somewhat 

redundant and can be represented as a single complex pole at high frequencies; the 

negative frequency pole is far enough away to have no effect on the positive 

frequency response close to resonance. Actually the assumption of complex 

frequency will turn out to be very useful when considering modulated systems – 

quadrature representation of signals at baseband makes complex frequency 

physically meaningful. Taking   to be a complex constant (       , this complex 

pole is:  

 

   
  

   
                    

  

        
     

 

  
 

          

        
 

 

  

  

  
   

             
  

       

           
 

    

 

      

     
 

        

  
   
  

       
 

3.46 

It turns out that          is slightly more than 1, thus the resonant frequency of 

the pole is slightly less than that due to the uncoupled resonator. In effect, 

magnetic coupling reduces, or ‘pulls’ the effective resonant frequency. This means 

that FEM eigenvalue simulations will generally overestimate resonant frequencies 

of magnetically coupled resonators, even in the limit of negligible quantisation and 

model error.  

The coupled, or loaded, Q factor can be seen to be made up of the original unloaded 

Q, with the correction       that accounts for frequency pulling, and an external Q 

factor that arises from the loading of two external 50Ω loads transformed through 

the coupling. This external Q is therefore defined by:  

    
         

         
 

    
       

      
       

      
    

    
       

      
       

      
    

  3.47 
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Figure 3.9: External quality factor of a magnetically coupled bandstop 

resonator for different mutual coupling strengths and coupling reactance 

values. 

Therefore, there are two limiting behaviours for external Q in respect to coupling 

reactance. In the usual case of small coupling reactance it can be seen that    is 

inversely proportional to both   
  and   . Also, in this limit resonant frequency 

pulling is proportional to   
  and   

 . However, it is important to remember these 

simple relationships are only valid in this limit, as shown by the Figure above. This 

implies that strong coupling cannot be achieved by increasing the size of the 

coupling structure ad infinitum. Maximum potential coupling occurs when the 

reactance of the coupling structure is equal to the total external load, or 100Ω in 

this case. 

In the small coupling reactance limit, to second order in    and   
 ,    

       
   

     and         
  , which agrees with the behaviour seen in this 

limit above. We can define a coupling coefficient,  , which in this limit is therefore 

   
  

  
 

      
 

 
  3.48 

Also, in the limit of even smaller coupling reactance, i.e., to first order in   :  
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3.49 

It is important to note, however, that despite its apparent dependence on   , the 

parameter    is still a constant not dependent on    in a dynamic sense. This can 

lead to confusion – hence the choice to leave   explicitly on the numerator rather 

than lump it into a new variable parameter. Thus we arrive at the single pole 

model of the transmission coefficient of a coupled bandstop resonator:  

 
          

     

  
   
  

       
    

     

    
   
  

       
 

3.50 

Note that this result makes no assumptions about coupling strength – these occur 

just in the simplified definitions of the parameters. Therefore, it is universally 

applicable.  

The reflection parameters for this resonator are almost exactly the same function, 

the only difference being   
  

        
 

 

          
 

 
, which is close to zero rather than being 

close to 1, and   
  , which is positive instead of negative:  

          
  

  
   

    
   
  

       
 3.51 

In fact all simple coupled resonators can be modelled by this function with 

appropriate choices for the complex parameters  ,   
 , and     and thus the 

derived approximate coupling parameter  .  This model agrees with the one 

suggested by Kajfez [13], which is recommended by the UK’s National Physical 

Laboratory (NPL) [14]. 

In general, accurate values for    and   
  are not known in advance, and 

measurements of resonator scattering parameters can only reveal the ‘loaded’ 
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eigenvalue          , This is related to the ‘unloaded ‘eigenvalue       

    by the following expression:  

 

                               
  

    
          

             

    
 

             
 

  
                

 

  
   

3.52 

Even if the coefficient   is assumed to be constant, then a change in measured 

eigenvalue such that          , will not, in general, reflect the true change in 

unloaded eigenvalue that is predicted by perturbation analysis (or FEM 

simulation). If uncorrected, this will lead to an error in measurement when 

attempting to invert the perturbation function. In principle an accurate estimate of 

  and therefore     and    could be achieved by determining the constants    and 

   and using the identity            (similar identities exist for other types of 

coupling – see tables below). However, this requires a fully calibrated VNA and the 

removal of the electrical length of the coupling structures (a post-processing step) 

in order to give accurate estimates of these parameters (even then, there may be 

some uncertainty). Fortunately, in the small coupling reactance limit a simple 

solution is available. To first order in   ,          and     ; thus        

     and      . This ignores frequency pulling due to coupling, although this is 

an assumption whose accuracy can be verified experimentally by adjusting the 

coupling mechanically and measuring the perturbation it produces. In this limit:  

                           
 

   
 

              

      
  3.53 

The last expression shows how the correction    can be estimated from a 

calibrated scattering parameter measurement of the unperturbed resonator on 

resonance,          , assuming          . This is valid in principle for any 

coupled resonator. In terms of loaded and unloaded quality factor,    and   , this 

implies that:  
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  3.54 

Note that this is equivalent to the NPL recommended procedure for obtaining 

unloaded Q by            , where d is the diameter of the resonator curve as 

plotted on a Smith chart (also equivalent to its insertion loss on a linear voltage 

scale) [14]. It is important to realise that    and therefore    are constant as long 

as the coupling does not change and the sample is non-magnetic. Therefore, this 

correction factor only needs to be evaluated once. The insertion loss measurement 

               as stated above is valid for the unperturbed resonator; it need not 

be measured with a sample in place. This is valid generally as long as the sample 

perturbs just one modal field (i.e., magnetic or electric) and the coupling is to the 

opposite field (i.e., magnetic coupling for an E-field sample, capacitive coupling for 

an H-field sample). As field separation at the sample is normally ensured anyway 

to avoid ambiguity, this condition is easily met in practice. 

Once the constant    is known (e.g., through calibrated VNA measurement) it can 

be applied to all subsequent dynamic acquisitions, even if these are not performed 

on the VNA. Therefore, the requirement to measure accurate absolute amplitude 

only applies to an initial ‘characterisation’ in order to estimate   , meaning that, 

thereafter, a simpler hardware without absolute amplitude calibration can be used 

without introducing error. Clearly, for this assumption to be valid, the coupling 

strength, coupling reactance and the impedance of the instrument ports must 

remain static. Lack of precision 50 Ω source and load impedances in alternative 

readout hardware could be a source of error, therefore. Variations in    due to the 

sample, e.g., parasitic sample coupling perturbation, depolarisation or imperfect 

field separation could also invalidate this assumption, as well as temperature 

variation and mechanical disturbance affecting the external load impedance or 

coupling reactance. In order to ensure accuracy without requiring absolute 

amplitude measurements, it is critical that these effects are understood, modelled 

and corrected for as nonlinearities or mitigated as far as possible. 
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There follows a summary of the various configurations of resonator with 

appropriate model values for these parameters, showing how reactive coupling 

affects the complex parameters   ,   
 , and    . 

3.3.1 Magnetic single loop coupling single port reflection: 

 

Parameter Reflection 
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3.3.2 Magnetic single loop coupling bandstop: 

 

Parameter Reflection Transmission 
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3.3.3 Magnetic single loop coupling bandpass: 

 

Parameter Reflection Transmission 

   
           

  

       
    

  

  

   
 

  

    
  

    
   

 

  

      
 

     
 

  

    
  

           
  

          
 

  

  
          

  

           
  

        
 

  

  

    
      

 

                    
   

 
  

  

 
      

 

                    
   

 
  

  

 

 

Capacitive coupling is very similar to magnetic coupling; the coupling reactance 

simply becomes              and the term      
   is replaced by      

  , 

where           is an equivalent ‘capacitive coupling coefficient’. Note, 

however, that this term has no upper bound, unlike for magnetic coupling where 

the term always lies between 0 and 1, as there is no physical reason for    to be 

less than the coupling capacitance. Despite this, when the coupling capacitance is 

small coupling still pulls the resonant frequency down, as          just as for 

magnetic coupling. 
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3.3.4 Capacitive coupling bandpass: 

 

Parameter Reflection Transmission 
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3.3.5 Capacitive coupling bandstop: 

 

Parameter Reflection Transmission 

   
           

  

       
    

  

  

   
 

  

    
  

    
   

 

  

       
 

     
 

  

    
  

           
  

          
 

  

  
          

  

           
  

        
 

  

  

    
     

 

                    
   

 
 

  

 
     

 

                  
   

 
 

  

 

 

The case that has not yet been considered is magnetic dual coupling, where there 

are two magnetic coupling loops and the resonator is placed in series. This is 

actually the most common configuration. The transmission resonance becomes a 

peak that is easy to identify and measure. In addition, magnetic coupling loops are 

easy to manufacture and coupling strength is easy to adjust by rotating the loops. 

However, a full circuit analysis based on non-ideal transformers (having finite 

reactance), is too complex to be pursued. However, one can approximate this case 

with the knowledge that quality factors always combine in a known way. Thus  

 
 

  
 

 

  
 

 

    
 

 

    
                      

  

   

 
          

 

 
   3.55 

Thus the composite coupling coefficient is simply the summation of the coupling 

coefficients due to the two (or more) coupling ports. Values for the parameters  , 

  
 , and     are hard to estimate without a full analysis. However, an approximate 

derivation using ideal transformers leads to the well-known formulae [15], [16]: 
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3.56 

where the simplifier            . These equations fit into the standard 

resonator model just derived, thus completing the general resonator model for all 

possible coupling cases. 

3.3.6 Magnetic dual bandpass coupling: 

 

Parameter Reflection port 1 Reflection port 2 Transmission 

                                     

               

                                

 

3.3.7 Modelling spectral response imperfections 

To summarise, a good general model of the Laplace domain response of the 

scattering parameters of a microwave resonator close to one of its resonant modes 

is:  
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 3.57 

This model can also account for a range of non-ideal spectral features. Often it is 

impractical or impossible to calibrate to a reference plane negligibly far from the 

coupling structures. Adding a length of transmission line to the coupling structures 

is equivalent to multiplying the scattering parameters by      , with   equal to the 

delay of both lines for transmission, and twice that of one line for reflection. This 

simple phase shift can be seen to substitute   
    

       and    
    

      . This 

is a good reason to consider these parameters to be arbitrary complex constants. If 

the connecting cables are quite long, linear frequency dependence   
  

  
              can be assumed. Short cables can assume a complex constant. 

Other discontinuities can similarly be approximated by additive and multiplicative 

complex constants or low-order series expansions in frequency. For the modelling 

of MKIDs, Gao [17] uses the following analytic model, equivalent under 1st order 

expansion of        :  

                    
         

   
   
  

      
   3.58 

where       and      , and          is the loaded resonant frequency,   is 

a complex gain-phase error term and    is an arbitrary phase factor,   , accounts 

for the electrical length (i.e., reactance) of the ‘elbow’ coupling structure used in 

the quarter wavelength superconducting transmission line resonators that Gao 

used in [17]. 
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Figure 3.10: Schematic of the capacitive bandstop ‘elbow’ coupler of a MKID 

device (left) and demonstration of the curve fit using the equation above 

(right). Reproduced  from Gao [17]. 

Judging by the low fit residual (           in this example), this equation is an 

accurate description of the non-ideal conditions of this MKID resonator. However, 

to fit this complex 7-parameter equation robustly requires five separate stages – 

removing the cable delay, circle fitting in the complex plane, rotation and 

translation, curve fitting to the phase response and then finally deriving all 7 

parameters from these fit coefficients, or using these as initial values for the full 7-

parameter nonlinear curve fit. Using such a complex procedure is troublesome for 

an automated MRS system. Apart from the obvious computational burden of this 

approach, another issue is robustness. Failure to converge to a fit solution can 

occur due to multiple minima in the error surface of this high-dimensional 

nonlinear function. During post-processing, this eventuality can easily be 

discerned by a human operator and corrected by re-fitting or by tweaking the 

initial parameter estimates. This luxury does not exist in an online sensor 

processing system.  

The power spectral response of this model, taking      and            , is:  

         
 

    
    

             
         

           
        

          
   

  3.59 
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This is not a Lorentzian function – the term       
            causes a 

frequency dependence on the numerator of the function, manifest as a ‘skew’ in the 

power transmission. This will prevent an accurate curve fit potentially leading to 

bias-causing errors. Also, the maximum power transfer is no longer at    ; 

causing an error in the measurement of the resonant frequency, although this isn’t 

necessarily an issue if the error is static and differential techniques are employed. 

To compensate for this error properly requires estimation of the complex 

parameters   
  and   

 , which in turn implies the ability for vector measurement – 

the measurement of both magnitude and phase response. However, fitting to an 

empirical ‘skewed Lorentzian’ function shown in normalised form below, which 

assumes a linear dispersion model for   
    , was shown by Gao to agree with the 

full complex domain 7-parameter model to within      and      for resonant 

frequency and quality factor, respectively:  

          
 

         
       

          
  

 3.60 

In this form, (slightly different to that used by Gao, but with the same number of 

degrees of freedom),    should be normalised so that       . If this is ensured 

then the curve fit using this function is quite robust, has reliable convergence, and 

is computationally efficient – therefore making it suitable for implementation in an 

online system. This curve fit is general enough to be applied to both transmission 

and absorption resonances without any further specialisation, although the initial 

starting points should be chosen appropriately in each case to improve the 

reliability of convergence. Curve fitting methods are considered in more detail in 

the Software Development chapter. 
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Figure 3.11: Effect of varying the phase offset   between   
  and   

  from  

     , corresponding to colours blue   red.   
          ,   

       . 

Due to inherent properties of coupled resonators, vector measurement is 

important to ensure accurate results. Although scalar methods – detecting only the 

power transfer function – seem appealing due to their simplicity, any method 

aspiring to the accuracy of VNA readout methods should, therefore, ideally allow 

for the full vector response to be estimated. As will be shown in Chapter 4, modern 

vector modulation and demodulation techniques facilitate this without greatly 

increasing system complexity. With complex frequency response data the 

correction of the error-causing complex parameters   
  and   

  can be done with 

curve fitting directly to the full complex domain equation, or by correcting for the 

vector offset and rotation as measured in the complex plane before performing a 

standard Lorentzian fit to the corrected data. 

Another source of error in resonator spectral response measurements that is 

particularly relevant to non-VNA readout systems is the lack of error-corrected 

scattering parameters. Full 2-port error correction, which compensates for coupler 

mismatch, finite directivity and the gain and phase response of the microwave 

system up to the calibrated reference planes, requires the measurement of all four 

scattering parameters. Thus, it also requires the use of two receivers, precision 

reflectometers, switches and other microwave components that are inherently 
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bulky and expensive. A reduced cost and complexity measurement system cannot 

afford the luxury of error correction.  

For the most part, this is not as serious an issue as it might first seem. One of the 

main reasons for this is that the resonator, by design, is the highest Q component 

in the signal chain. What this implies is that the frequency dependence of the 

connecting cables, etc., can be either taken to be constant, or corrected for by a 

simple linear dispersion model. This ‘background’ then has little effect on a proper 

differential measurement if a simple ‘thru’ calibration is available. A more serious 

source of error is uncalibrated source and load mismatches. If the receiver 

terminates in a mixer, as is usual, then the voltage ‘sampled’ is the superposition of 

the forward and reflected voltage waves at the diode. If this termination is non-

ideal, then the reflected wave may be re-reflected at the resonator and cause an 

error. From signal graph theory, the estimated transmission parameter is:  

      
  

  
 

   

       
               3.61 

where the last approximation assumes a small mismatch;    is the reflection 

coefficient of the receiver. Although additive, this error now contains a copy of the 

resonator-dependent reflection parameter. In the case of an ideal, symmetrically 

coupled bandpass resonator           . Thus in this case:  

                     
   3.62 

which can be seen to cause a quadratic distortion to the original transmission. 

Since generally     is large when     is small, and vice-versa, this error will be felt 

strongest at the edges of resonance, leading to an overestimate of the resonator 

bandwidth. Again, this may not lead to an error in a fully differential measurement 

system, but will lead to difficulty in curve fitting based on the assumption of an 

ideal scattering parameter model. One simple way around this issue, which only 

requires a modest increase in circuit complexity, is to use a circulator-based 

isolator on the receiver to terminate the unwanted reflected signal. Since 
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circulators, especially when narrow band, are relatively compact and moderately 

inexpensive, this provides a compromise solution. 

A more complete error model for transmission measurements [18] which also 

takes into account source mismatch, crosstalk and gain error (response 

dispersion) is given by the following equation and signal graph model (Figure 

3.12): 

 
       

    

                        

                            
   

3.63 

 

Figure 3.12: Signal flow graph indicating sources of error in transmission 

parameter measurement. 

This again leads to a quadratic error when approximated to first order in both 

source and load mismatch. Note also that, in general, all these error terms are 

frequency dependent – assuming a constant value for these is based on the narrow 

band approximation that all these errors have much lower Q factors than the 

resonator. Whilst clearly the case at microwave, error terms introduced at 

baseband may well exhibit ‘ripple’ which cannot be taken as constant across the 

measurement bandwidth. These issues will be addressed practically in Chapter 4. 

The previous discussion has given up expressions describing the static behaviour 

of microwave resonators. In the next section, the dynamic behaviour will be 

investigated. 
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3.4 Resonator dynamic response 

In a dynamic system, the effect of time-varying parameters must be considered. In 

the time domain, the resonator is excited with a time-varying electromagnetic 

signal and the change in that signal in response to a sample-dependent time-

varying resonant frequency and bandwidth is measured. The most accurate 

description of such a system is a time-domain differential equation. This section 

investigates the behaviour of a resonant sensor subject to rapid variations in its 

characteristics using differential equation analysis methods. 

Starting from the second order system representation derived earlier, assuming    

and    are arbitrary constants, and using the loaded values    and   ;  

 
       

     

     
    

  

  
 

    
  

 
  

   
 

3.64 

In order to investigate time-dependent behaviour, the first step is to convert this 

equation to a state space representation, by defining             
  as the 

arbitrary state vector:  

 
        

           
  

  
       

   

 
      

                          

 3.65 

With no time-dependence, i.e., if the resonator were a linear time-invariant (LTI) 

system, this set of equations would be all that is needed to describe its behaviour. 

This would yield no more useful information than the existing spectral response 

model derived earlier, however. To introduce parametric variation, it is useful to 

first rephrase the above state vector equation as second order ordinary differential 

equation (ODE), by re-substituting the ‘dummy variables’         and         :  

 
     

  
  

     

    
            3.66 
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To tie this together with the perturbation theory described earlier in terms of a 

changing resonator eigenvalue, consider 
  

   
       and         . This results 

in a differential equation with arbitrary time-dependence of its parameters. 

Furthermore, consider the simple case of the incident voltage wave being a 

harmonic excitation,              :  

                     
           

            3.67 

Unfortunately, this deceptively simple linear differential equation hides an 

extraordinary level of complexity. For example, considering just one form of 

arbitrary parameter time-dependence gives the Mathieu equation, where a 

parameter is periodically varying:            c s           . The solutions 

to this equation are in terms of irreducible Mathieu functions [19] and encompass 

a range of different behaviour, with only certain values for the Mathieu coefficients 

resulting in periodic output (i.e., chaotic, non-repeating behaviour is the norm). 

Another related behaviour is observed when the parameters vary at twice the 

resonant frequency, causing amplification of the excitation wave – a phenomenon 

known as parametric resonance. This is often likened (incorrectly) to the method 

of self-excitation of a child on a swing [20], the child’s legs causing the centre of 

gravity to be driven at twice the frequency of oscillation thus causing it to swing 

higher. However, in the case of a small perturbation to the parameters, the 

behaviour is only weakly different from the solutions for simple harmonic motion. 

To help understand the behaviour of this parametrically perturbed oscillator, it can 

be simulated numerically. Consider a sudden change in both parameters at time 

   , so that                 and                 , where        is 

the delayed Heaviside function. The differential equation can be written:  

                                                      3.68 

This can be converted into system of first order ODEs by re-assigning dummy 

variables, which is then amenable to numerical solvers, such as Runge-Kutta 

methods [21]. Numerical simulation of this system of differential equations is 
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implemented quite simply in Matlab® (MathWorks Inc., MA, USA). An example is 

shown below for a step-change of ~ 1% in both   and   with the excitation at the 

unperturbed resonant frequency. After 1000 cycles (long enough for a steady state 

of oscillation to be reached, the step-change occurs. The results confirm the 

intuitive results that the resonator takes some time to settle into oscillation at its 

new resonant frequency. For small changes the resonator acts like an over-damped 

linear system, and for large changes ‘overshoot’ or ringing is seen. As shown below, 

these transients decay exponentially with decay constant              .  

Because the Q is relatively high, the response occurs on a time scale much longer 

than the oscillation frequency. It is therefore logical to study what happens to its 

envelope with respect to time rather than the voltage wave itself. Indeed, this 

envelope response is how such a transient will be seen at the baseband level; the 

response after being mixed with a quadrature carrier equal to the excitation 

frequency and then low-pass filtered – i.e., a homodyne IQ detection system as 

used in kinetic inductance detector and some microwave microscope readout 

systems. To estimate this envelope-domain time-variation under the assumption of 

high resonant frequency, we make the ansatz, backed up by the simulation results, 

that the response voltage has the form:  

                                    
       3.69 

where     is the baseband excitation amplitude. Substituting this into the general 

parametric equation gives a second differential equation in terms of the complex 

time-varying envelope:  

                             
    

                         
     3.70 

Again this can be represented as a 2D 1st order ODE system through the 

introduction of the ‘dummy’ variables         and         :  

 
                        

    
                       

    

      

  3.71 
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Figure 3.13: Simulation of a transient change in resonator parameters. Top 

figure is the b voltage wave against time normalised to 1 Hz frequency. Lower 

figure is simulated baseband IQ signals; red is Q(t) and blue is I(t). A change 

in parameters of 1% in both   and   is shown as a continuous line, 10% 

change broken. 

The simulated response of this baseband 1st order ODE is shown above. The same 

delayed step response at baseband is closely approximated by:  

                exp                    3.72 

where    and    are the steady-state baseband responses for the initial and final 

conditions, respectively. 

The 1st order ODE system can be used to construct another state-space 

representation, this time in terms of the ‘baseband’, where             
  is the 

state vector, and        is the baseband response:  
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 3.73 

Although useful for simulation, this equation is still intractable as it stands. It 

therefore does not offer a clear route to estimating       and      . One way to 

incorporate the parameters into this equation is to include them in the state 

vector. This allows numerical methods that estimate the state vector, such as the 

Kalman filter [22], to estimate then the parameters at the same time. A 

deterministic model incorporating time-varying parameters is then be given by:  

 

 

  

 
 
 
 
 
 
 
  

  

  

   
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
                

    
              

    

  

            

  

  

  
            

  

  

   
 
 
 
 
 
 
 

                       

  

  

  

  

           

 3.74 

This can be seen to conform to a general state space model which is nonlinear only 

in the process equations (in a linear system                         ):  

 
                   

           D    
 3.75 

This state-space representation now incorporates the measurand vector      as 

part of the excitation, or control input                          
 

 through the use 

of the separated perturbation equations             and             – Equation 

3.23 above, for example. The chain rule has been applied to these expressions to 

incorporate them in the differential process equation. It is an all-encompassing 

description of the resonator multi-stage model, which although useful for 

simulation purposes is impractical for use in estimation of real-time resonator 

parameters. 
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In order to find a more practical model, the nonlinear and dynamic aspects of the 

response can be simplified in an effort to separate them. The simulation results 

showed that a step-change in material properties could be accounted for by 

decomposing the response into a transient and steady state response. A simple 

equation for this baseband steady state response can be derived from the single 

pole model equations by substituting           :  

 
         

         
            lim

   
              

          

                     
 3.76 

Thus for sufficiently slow changes in input parameter – i.e., having a frequency 

content much less than the resonator bandwidth – this steady state solution 

provides a convenient form for the final stage of the resonator model proposed 

earlier. Thus, the change in the resonator spectral response function        

       can be written:  

                               
                

                          
 3.77 

Surface plots for this steady state change in spectral response function are shown 

below.  
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Figure 3.14: Steady state change in scattering parameter for a small change 

in resonant frequency, blue surface is              and red surface is 

            . Other values are                
 

   

 

     
      . 

 

Figure 3.15: Steady state change in scattering parameter for differing  

bandwidths. Surfaces and other parameters as above . 

This is the exact resonator perturbation equation for ‘DC’ input signals, and it 

shows that the response of the resonator to a change in its parameter is nonlinear. 

This means that if a parameter varies harmonically,                   , even 

if slowly, then the output will consist of an infinite number of harmonics of this 
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signal:                 
       

       . Furthermore, the resonator response 

will not change instantly, even with a small perturbation, as has been 

demonstrated by the numerical simulation of the step response. Instead it will 

exhibit a response that varies both in amplitude and phase relative to the 

harmonically varying parameter, characterised by a time constant        

       .  

This composite nonlinear and dispersive response of the baseband is 

demonstrated by numerical simulation of the state space model (Figure 3.16) 

which shows the magnitude and phase response of the first three harmonics of the 

perturbation signal that would be received in I and Q baseband signals. This 

simulation shows that as the frequency of sinusoidal variation in the resonant 

frequency parameter increases, the measured response of the resonator decreases. 

If unaccounted for, this would lead to an error in any derived measurements. The 

values used in this simulation were:                ,       , and 

     M   which can be seen to give a first-order system type response in the 

first harmonic of       with cut-off                M  . First order behaviour 

is also seen in the roll-off of the second harmonic of      ; i.e., -20 dB/dec, whereas 

the second harmonic of       rolls off at -40 dB/dec, and the third harmonic of 

     , -60 dB/dec. However, these orders are inconsistent with the observed 

phase responses, so in general a first-order system model is not applicable to the 

harmonic distortion products. 



Chapter 3 – Theory 

128 

 

Figure 3.16: Response of the resonator state variable,          , to rapid 

sinusoidal variation in resonant frequency:                      . DC 

response is shown in black; first, second and third harmonics are shown in 

red, blue and purple, respectively.       is denoted by a continuous line and 

      is shown as a broken line. The magnitude (left) and phase (right) of the 

harmonics present in the state vector were obtained by Fourier analysis of the 

simulated time-domain response. 

In order to estimate the ‘DC’ response for the various harmonics, a multivariate 

Taylor series expansion of the response of the resonator to a small change         

in its eigenvalues, shown here up to second order:  

 

   
     

             
 

                 

              
   

 
     

              
    

                 

              
     

 
                  

              
   

  
     

              
   

  

3.78 
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Figure 3.17: First ten harmonics of the response against normalised 

frequency to a pure change in resonant frequency          ; DC – 10th 

harmonic are shown in colour spectrum progression blue – red.  

Combining this small signal, steady state approximation, with the first order 

dynamic behaviour observed it is possible to introduce a 2D frequency 

representation of the resonator. This gives the steady state response to a small 

harmonic variation in input parameter; a simple model for a lock-in system where 

material parameters are modulated by an external control. This would be the case, 

e.g., when as a low frequency ‘bias’ field is applied in the case of ferromagnetic or 

ferroelectric materials, and that frequency is then demodulated by the MRS system 

receiver. As numerical simulation confirms, both in step response and harmonic 

response, the linear dynamic response can be modelled as a first order system with 

a single complex pole:  

        
               

             
  
     
        Ω   

       

   
Ω    
      

 3.79 
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The complex baseband response therefore has two frequency dimensions, driving 

frequency and signal frequency. In both these dimensions, the resonator has a 

corresponding amplitude and phase, or equivalently real and imaginary, response. 

This is a 2D response over a 2D grid, impossible to visualise in one figure.  

Combining the first order dispersion model with the first harmonic steady state 

response results in a multiple input, single output (MISO) system model 

parameterised over these two dimensions, ‘slow’ signal frequency Ω and ‘fast’ 

drive frequency  :  

       Ω  
      

   
Ω    
      

 
                    

             
  3.80 

This relatively simple function, technically a describing function as the first-order 

dispersion is dependent on both the frequency and magnitudes   ,    of its two 

inputs, gives the first harmonic response of the resonator to a sinusoidally varying 

eigenvalue signal. The Taylor series can also be used to derive the transfer 

functions between the applied signal and its harmonics, if necessary. However, the 

resonator response to a more complex excitation signal consisting of multiple 

frequency components will be complicated by the mixing of its frequency content 

by the nonlinearity.  

One approach to allow the response to arbitrary input signals to be estimated 

without resorting to time-domain simulation is to decompose the above model into 

a cascade of a linear dispersive system and a memoryless nonlinearity. This is 

known as a Wiener model when the nonlinearity is after the linear dispersion and 

a Hammerstein model when the nonlinearity is before it [23]. This requires the 

assumption that    Ω and        in order to remove the amplitude 

dependence from the dispersion model, making it a valid linear system. This 

unfortunately limits applicability to one of two limits: lower frequency and large 

amplitude or high frequency and small amplitudes; however it is more accurate 

than using either the steady state response or first harmonic approximation alone. 

From inspection of the simulated results, the linear dispersion should come before 
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the memoryless nonlinearity in order to produce the steeper roll-off seen in the 

higher harmonics (i.e., a polynomial nonlinearity following a first order 

dispersion). Thus, an appropriate decomposition is the Wiener model: 

 

Figure 3.18: Wiener model of the resonator spectral response function, valid 

for rapid perturbations of small amplitude, or low frequency perturbations of 

large amplitude. 

It is possible to find an inverse of this decomposed Wiener model; given a 

measurement of       , pass this through the inverse nonlinearity              

and then filter it through the equalising filter        , which is a simple high pass 

filter in this case. To find the inverse nonlinearity, define two separate variables 

               ,                 and solve simultaneously, which assuming the 

data have been normalised by                        gives:  

 

      
            

               

                   
               

      
                             

                   
               

 3.81 

There is only one solution for this inverse so the resonator response is, perhaps 

surprisingly, unambiguous with respect to simultaneous changes in resonant 

frequency and bandwidth at any excitation frequency. To implement this inverse 

with a spectral measurement, the output could be simply summed over all the 

drive frequencies measured; e.g.,                       . Although seemingly a 

good solution; mathematically an optimum estimator, in practice the ‘unperturbed 

resonator’ constants   ,   ,    and    required to evaluate this inverse function 

are generally not known in advance, and there is a fundamental problem in 

defining and estimating the ‘initial’ or ‘unperturbed’ response        in an online 

 
     

       
    

             

                          
 

Parallel linear filters  Memoryless output nonlinearity 
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MRS system. Thus, in practice other methods such as curve fitting or neural 

networks must be used alongside or instead of this direct solution. Various 

methods for estimating and inverting the resonator dynamic spectral response, as 

well as a comparison of their performance in the estimation task and suitability for 

realtime computation will be discussed in Chapter 5. Note that, if curve fitting or 

similar is used to estimate the signal and resonator parameters, then the accurate 

inverse dispersion function       ,   ,   ) can be used to compensate for the roll-

off of the resonator response – combined  with a suitable envelope method (such 

as a Hilbert transform filter [24]) to estimate the amplitude, this should result in a 

good approximation.  

This concludes the discussion of the modelling of resonator dynamic properties. 

Although modelling resonator behaviour through numerical integration of the 

continuous-time nonlinear state space equations is very accurate, it is also time 

consuming and computationally intensive (computing the 31 individual 

simulations necessary for Figure 3.16 took over 12 hours on a high-end 

workstation). The state space equations are also inflexible when modelling 

imperfections in the scattering parameters of the resonator – to take into account 

connecting transmission lines and load impedance mismatches, for example. Thus, 

the Wiener model is a good compromise between flexibility, computational 

complexity and accuracy, which is valid for arbitrary input signals of a dynamic 

nature – in other words a model suitable for the dynamic applications of MRS 

discussed in Chapter 2. 
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3.5 Statistical considerations 

The performance of a sensor can be classified according to various measures. 

These can be represented graphically for a hypothetic one-dimensional sensor: 

 

Figure 3.19: Diagrammatic representation of general sensor response 

features (exaggerated to highlight key features).  

This diagram shows how several sources of error and uncertainty combine to 

affect the performance of a sensor. Fundamentally, from a statistical point of view, 

a sensor combines probability density functions from various error sources in 

order to produce a final, or posterior, probability density function which should be 

centred on a certain estimate value and reflect the degree of spread or distribution 

of the possible values that the estimate could be. This is represented in the above 

diagram by the use of central ‘mean’ line and a ‘confidence interval’ – the lines 

denoting the range where, given a large number of repeated trials, 95% of the 

measurements would be found to lie. It is possible to distinguish further two 

different sets of statistics in the sensor response – variation due to time-varying 

random errors and variation due to time-static systematic errors [14]. 

log( truth ) 

log( estimate ) 

Resolution limit 

Limit of detection 

Saturation limit 

Lower 95% 
confidence line 

Upper 95% 
confidence 
line 

Mean 

Bias 
Dynamic 
range 

Distortion limit 



Chapter 3 – Theory 

134 

Random error determines the limit of detection and sets the bottom limit for the 

dynamic range parameter. This type of error is simpler to analyse and understand; 

each time a new measurement is made the ‘error dice’ are rolled again. Random 

error is due to noise. In passive microwave circuits, the main origin is Johnson-

Nyquist noise caused by random motion of charge carriers having a kinetic energy 

proportional to temperature.  

In a sensor system, there are also extrinsic and intrinsic noise sources. Extrinsic 

sources are those caused externally to the sensor, such as in the microwave 

electronics, connecting cables, etc., and intrinsic sources are inherent to the sensor 

itself; in resonators, these are thermal fluctuations in the charge carriers in its 

conductors and lossy dielectrics. The effects of random fluctuations in magnetic 

and electric field energy can be estimated relatively simply – being ‘small signal’ 

characteristics, the effect of these noise sources can be ‘propagated’ through the 

resonator response model in order to determine their effect on the resonator.  

Because such random errors are small, the propagation of the uncertainty due to 

their variation can be achieved by Taylor series expansion of the sensor response 

function to second order about the mean. To demonstrate this, consider the 

intrinsic noise sources in a lumped resonator (knowing that this can be 

generalised to a distributed resonator) [25]: 
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Figure 3.20: Resonator noise sources – inductive branch noise voltage 

            and capacitive branch noise current             

The differential equations that describe the magnetic field and electric field 

branches of this noisy resonator can be expressed as first order stochastic 

equations, known as Langevin equations [26]: 

  
     

  
                       

     

  
               3.82 

where              are zero mean random processes. To solve the Langevin 

equation for the distribution of voltage and current in these equations the first and 

second moments are calculated. Knowing that the equation is linear and the noise 

are zero-mean, it is clear that the mean voltage and current will not differ from 

their deterministic values; i.e.,            
 

 

 
   and            

 
 

 
 . However, 

the variance,                  , of the voltage and current is non-vanishing. The 

solutions for the variance are obtained using rules of statistical independence and 

the properties of differentiation in order to simplify the           term [27]:  

            
  

   
      

  
 

                      
  

   
      

  
 

   3.83 

According to the principle of equipartition of energy, the average energy of any 

passive harmonic oscillator is    , divided equally between its kinetic and 

potential energy forms; i.e., its magnetic and electric field energy. Knowing that the 

energy stored in the inductor is  

 
    and the capacitor,  

 
   , and taking thermal 

equilibrium to be the limit    , substituting in the current and voltage variance, 

   and   , gives these equilibrium equations:  
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3.84 

where    and    are the conductor quality factor and dielectric quality factor, 

respectively, and         is the resonator impedance. Therefore, the intrinsic 

noise caused by the losses in the resonator is independent of the value of stored 

energy and therefore the resonant frequency. However, the spectral distribution of 

the noise measured across the whole resonator will not be white but will be 

‘filtered’ by the resonator spectral response, as represented by the circuits below: 

 

Figure 3.21: Equivalent circuits showing the relationship between the 

individual branch voltage noise sources and the total voltage measured 

across the resonator. 

Because the individual noise sources are uncorrelated (valid in the case of thermal 

noise), the total noise variance measured across the resonator is simply the 

summation of the individual noise variances (equivalent to the combination of the 

noise voltages in quadrature). Furthermore, since the variance of a voltage is a 

measure of power and the power spectral density of noise passed through a linear 

filter is simply                       [28], the power spectral density of the 

noise measured across the resonator is given by:  

            
    

 
 

 

      
 
 

 
    

 
 

  

      
 
 

          
      

 

         
  3.85 
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Expressed in terms of non-lumped element resonator equivalents, this Lorentzian-

like power response is:  

            

 
  
  

 
  
  

    
  

 

  
  

    
 

  
  

  
 

    
 

 
  

   
  

  

  
  

 
  

  
 
  

    
     

 

  
  

   3.86 

This function reveals that the peak voltage noise measured at the resonant 

frequency increases with Q factor, yet the total voltage noise integrated over all 

frequency stays constant – regardless of Q factor. This is simply because, on 

resonance, the resonator has increasingly high real impedance with Q factor. 

However, in all practical cases the thermal noise is below measurable limits. The 

peak voltage noise variance predicted for a room temperature resonator with 

              and       is about   p  .  

Whilst thermal noise generated by the loss mechanisms of a resonator may be too 

small to be of practical significance, there are other sources of noise that do 

dominate real resonators. Primary amongst these is the temperature-fluctuation 

induced change in the physical dimensions of a resonator. In a transmission line or 

cavity resonator, such tiny changes in the electrical length of the resonator cause a 

shift in the resonant frequency. Furthermore, the electrical permittivity and 

magnetic permeability of materials within the resonator is also temperature 

dependent; hence, temperature fluctuations can also cause the equivalent 

capacitance and inductance of the resonator to vary.  

The situation is much more complex if the inductance and capacitance – or 

equivalently the resonant frequency and bandwidth – are taken to be stochastic 

variables. The Langevin equation approach is too longwinded to present here – 

this approach is discussed at length in [29] for general second order systems, 

although the case where damping and resonant frequency are both random 

variables simultaneously is not considered. However, a simple static modelling 

approach can be used to estimate the magnitude of such small fluctuations in 

resonator parameters on the resonator spectral response. In fact, the response of 
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the resonator to such fluctuations is the same (and hence inseparable from) the 

small-signal response of the resonator to a desired signal, as previously derived in 

Equation 3.78. Thus, the spectral response variance arising from a small 

fluctuation in resonant frequency and bandwidth is given by:  

              
     

 

 
 
    

    
      

    
     

             
 

              
 
 
   3.87 

In this equation,    
  is the variance of fluctuations in resonant frequency,    

 is the 

variance of fluctuations in bandwidth, and      
 is the covariance of fluctuations 

between resonant frequency and bandwidth. If there is a single perturbing noise 

factor, such as temperature fluctuations, that affects both resonant frequency and 

bandwidth, these (co)variances can be linearly related to it under the small signal 

approximation:  

    
   

   

  
 

 

   
           

   
   

  
 

 

   
            

 
   

  

   

  
   

  3.88 

In these expressions   is the perturbing ‘noise’ variable, for example temperature, 

and the derivatives        and        are the sensitivities of the resonant 

frequency and bandwidth to the noise variable. These equations can also be 

related to fluctuations in capacitance and inductance, where relevant. 

In the case of thermal expansion of a cavity resonator, for example, these terms 

would be related to the thermal expansion coefficient of the resonator material, the 

dimensions of the resonator and the number of wavelengths, resonant frequency, 

and geometry of a particular mode. The effect of temperature on bandwidth would 

be insignificant in most cases. 

Whilst this static approach is useful to estimate the magnitude of noise effects, 

comprehensive dynamic modelling of parametric noise can be accomplished if its 

probability distribution is known. This is useful when the distribution of noise is 

known to follow some specific spectral distribution, such as     . A 

comprehensive dynamic state-space noise model can be expressed as:  
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           D          
 3.89 

This deceptively simple stochastic differential equation now includes the process 

noise      , which by virtue of incorporating the resonant frequency and 

bandwidth information in the state vector, now includes noise caused by 

fluctuations in capacitance and inductance, as well as thermal noise. This can 

model effects such as thermal instability in resonator geometry, mechanical 

vibration (i.e., acoustic noise or microphonics), and more obscure phenomena such 

as the two level system fluctuations that cause capacitor noise in kinetic 

inductance detectors (see Section 2.3.1 for a discussion). The addition of 

measurement noise       can further model mixer and amplifier noise as well as 

quantisation noise in analogue to digital conversion. The simple fact that the 

amplitude of the signals transmitted through the resonant system are dependent 

on the measured parameters further means that the signal to noise ratio of the 

output varies with input bandwidth. Thus resonator measurements inherently 

exhibit heteroscedasticity. This means that the variance of the output variables 

(i.e., parameter estimates) changes with their value. 
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Figure 3.22: Diagrammatic representation of the continuous-time stochastic 

state space model. After [22]. 

Having established that the effects of random errors can be simulated effectively 

using the stochastic state space equations, the next and final discussion for this 

section refers the what is often the dominant source of error in microwave 

resonant sensors; ‘static’ or systematic error. This source of error is often seen as 

more pathological and more difficult to detect, quantify, and reduce. That is 

because, unlike random error, systemic error is the same each time the ‘dice are 

rolled’ on a new measurement. Thus, no amount of averaging or simple statistical 

methods can be used to reduce it in a given experimental setup. 

There are two primary sources of systematic error; these are model parameter 

error and nonlinear distortion. Model parameter error occurs when we use a 

model of the system to produce a measurement but the parameters of that model, 

or even the model itself, are not true to life. In effect this leads to a permanent 

under- or over-estimate of the true measurement; known as bias. Model parameter 

error can arise because the measurements of the real life system are flawed – for 

example we may have measured the radius of a cavity resonator to be 10mm, but 

in fact it is actually 10.1mm. Using the same example, model error would arise if 

we assumed that the cavity resonator had a circular cross section when actually it 
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was ovoid. These types of error are universal to all components, e.g., finite 

machining accuracy leading to tolerance in component parameters.  

To alleviate this source of error one might decide to calibrate using a measurement 

of a known material. In theory this could be seen to eliminate systematic error 

(assuming a linear model!), as one could correct for gain errors with just one 

sample (and there is no offset error in a differential measurement). However, there 

might be uncertainty in the actual ‘reference’ value of the sample. The microwave 

resonator technique is already the most accurate way of measuring permittivity, 

and all manner of environmental and dimensional effects mean that a sample 

measured as a reference somewhere else may actually have a different permittivity 

in a current experiment [30].  

This is especially true for the measurement of the permittivity of liquids and solids, 

and is confounded by the fact that, as yet, there is also no theoretical prediction for 

the permittivity of materials which can be used as a ‘gold standard’. Rarefied 

gasses do have accurate theoretical permittivity values, so perhaps these are the 

way to calibrate. But this then becomes an exercise in accurate temperature and 

pressure measurement in order for the theoretical prediction to agree with reality, 

and the values of range of different permittivity values that could be calibrated in 

this way is very small. Furthermore, any calibration measurement made will itself 

be subject to random error. This will then be introduced into the calibrated system 

as a source of systematic error. Thus, calibration does not fully eliminate the issue 

of systematic error. I would go so far as to say that calibrating microwave resonant 

sensors with reference materials should be done with extreme caution, if at all. 

Due to the aforementioned problems with ‘gold standards’, however, this assertion 

is somewhat untestable at present. 

Nonlinearity can also cause systematic error; in some ways, this can be seen as a 

type of model error. Failure to correct for nonlinear effects and distortion is akin to 

failure to have a sufficiently representative model. The ultimate nonlinearity is 

saturation and no amount of correction can account for this. In microwave 

resonators ‘saturation’ as such is difficult to define. If the resonance moves outside 
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a limited tuning range, this can be considered to be a type of saturation. In 

addition, if the bandwidth increases to the point where parameter estimate is 

saturated by noise (the heteroscedasticity of the measurement because of 

insertion loss increasing) then this can be considered too to be a form of 

saturation. The fact that these limits generally only occur when the sample 

perturbation is very large means that resonant sensor measurements are generally 

considered to have a high dynamic range. 

However, nonlinearity can be more pervasive than simple saturation. Nonlinearity 

not only distorts a signal, but it also distorts random noise too. Thus, the statistics 

of a signal are altered by nonlinear systems, potentially leading to bias. Since bias 

does not reduce with averaging or filtering, it becomes a source of systematic 

error. Hence, nonlinearity turns random noise into systematic error. This may 

seem like a minor issue and in conventional VNA measurements, it probably is. 

However, the new digital radio architecture developed to replace VNA methods in 

this thesis necessarily does not have same dynamic range as the VNA for spectral 

response measurements. Fundamentally, this is because the VNA is a narrowband 

radio receiver, meaning it has a small equivalent noise bandwidth and can use a 

high resolution A/D converter with low quantisation noise. Because the software 

defined radio has a noise bandwidth equal or exceeding the resonator bandwidth, 

and must therefore also use a lower resolution, faster A/D converter, its dynamic 

range for spectral measurements is reduced.   

In order to restore the ‘lost’ dynamic range of spectral measurements and obtain 

an equivalent precision for the resulting resonant sensor measurements, 

essentially some form of averaging must be used. In order to avoid systematic 

error, therefore, the minimisation of distortion-induced systematic error is vital to 

ensure absolute accuracy is not degraded. Thus, what is a minor issue becomes of 

critical importance for the success of this approach. 

The following example should help to demonstrate why it is important to be able 

to correct nonlinearities at the full sample rate, and show that only linearisation of 

the data before averaging will result in the reduction of bias. This is a key point, 
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and can be easily overlooked; this example refers to a classic mistake in spectral 

measurements. Suppose an instrument outputs phase and magnitude information 

of a complex signal subject to some corruption by noise. Suppose also that the user 

wants the real and imaginary parts of the data, (the measurands   and  ) which 

they know can be easily extracted from this information. To improve SNR, it is 

decided to average the phase and magnitude results coming from the instrument 

(which could be also accompanied by sample rate reduction, or decimation). 

However, the resulting average, although it might appear to fluctuate less and be 

less ‘noisy’, actually leads to an increasingly poor estimate of the desired real and 

imaginary parts of the signal as averaging is increased.  

The reason is the nonlinear transformation, i.e., distortion, caused by the 

magnitude and phase transformations;               ,                 . If 

both   and  , nominally constant, are assumed to be corrupted by uncorrelated 

noise;          
  ,          

   a direct average of the linear measurands 

should tend to the true value    as         in the limit of infinite averages – the 

mean ergodic theorem [28]. However, it c   be sh w  by    mé ’s  el   me h   

[31], that expected value of a nonlinear function does not generally tend to the 

same value as it would in the presence of no noise – in other words it exhibits bias:  

               
    

  
  

   
 

    
    

     
 

  
   

 

    
    

     
                 3.90 

Cramé ’s  el   me h   is use  here simply to indicate a general approximation 

valid for arbitrary nonlinear functions. Indeed, there is an exact equation for the 

probability density function of the magnitude of a complex variable, when its real 

and imaginary parts are zero mean, independent and identically distributed; the 

Rayleigh distribution,                  , which has mean        . This is 

also a specific case of the noncentral Chi distribution for the norm of any number 

of independent normally distributed variables. Similarly, the expected phase is 

                  
  
  

  
  

   
 

   
    

   
 

  
   

 

   
    

   
                 3.91 
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Attempting to apply the inverse transformation to recover the measurands   and  , 

 

                  c s                  

                  si                   

3.92 

now clearly gives the wrong results. Even if the phase bias cancels when   
    

 , 

(this arises because arctangent is an odd-symmetric function around the expected 

value) the magnitude does not have this specific symmetry and hence leads to an 

overestimate of the amplitudes of the measurands. 

These results show that to avoid bias it is good practice to convert each 

measurement to one linearly related to the main source of noise before averaging. 

If the noise and the signal are made linearly separable – i.e., in the form           

they must therefore be uncorrelated. Linearising therefore has the property of 

minimising correlation of noise with a signal – a fact exploited in a majority of 

blind linearisation (blind meaning without prior knowledge of the desired signal) 

and predistortion algorithms (predistortion means linearising by correcting the 

input to a nonlinear system rather than the output). Generally for a nonlinear 

function,                , therefore this principle of linearisation at maximum 

rate is key to getting accurate results when any form of averaging or sampling rate 

reduction of the output of nonlinear system is being used.  

In the case of the resonator spectral measurements, which are nonlinear functions 

of       and      , if they are modelled as random variables through the process 

noise      , then averaging any spectral estimates before calculating       and 

      directly may lead to bias. However, the measurement noise       is linearly 

related to the output     , thus it is most effectively reduced by averaging the 

spectral estimates directly. Passing the noise due to       through whatever 

nonlinear inverse function is being used to estimate       and       will lead to 

bias! This is a tricky situation, and it means that if both the measurement noise and 

the process noise are significant, a minimum bias can only be achieved through a 

balance of averaging before nonlinear inversion and averaging after nonlinear 

inversion. 



 Chapter 3– Theory 

145 

Once       and       have been estimated, there is still the issue of the nonlinear 

resonator eigenvalue response function. For the simple static field case this is 

given by Equations 3.23 and 3.25. It is in the eigenvalue response function that the 

effects of systematic error are felt. Often the largest source of error is the 

uncertainty in the sample volume    . If, for simplicity, the field over the sample is 

assumed to be uniform, then 

 
 

 
 

           

             

   

        

      
  3.93 

Although the sample is static, for the purposes of determining systematic error    

can be treated as a random variable             
   or some other distribution. 

Indeed it may be a composite of several other geometric parameters, such as 

length, diameter, etc., which may or may not be independent. In this case, the full 

covariance matrix of all significant geometric parameters must be taken into 

account. In the simple Gaussian case, propagation of one-variable error 
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   3.94 

Even in this simplest case, an uncertainty in sample volume can be seen to cause 

bias, although since   
     this is small. If analytic equations do exist for 

determining resonator perturbation parameters from geometric uncertainty 

distributions, then the general second-order approximation for the first and 

second moments of a multivariate function (Cramér’s delta rule applied to multiple 

dimensions) can be used:- 

 

                    
 

 
                         

c v                              

3.95 

The vector   should contain all the random variables with known covariance 

matrix  . In some literature, this is known as a sensitivity analysis.  
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In practice, however, an analytical solution for which the Jacobian and Hessian can 

be calculated is unlikely to exist in the case of determining the resonator 

perturbation parameters. Therefore a powerful alternative method is to use Monte 

Carlo methods combined with numerical or FEM simulation to determine the 

output spread. This involves drawing the random variables used for a simulation 

from a known distribution (with known correlations). Over many thousands of 

simulations, a distribution function of the output variables is created. This naive 

approach is very inefficient, and more optimal techniques are available that 

involve creating nonparametric models for the sensitivity of a simulation to its 

input variables.  

Although uncertainty, noise and error analysis is often too complex to allow 

closed-form solutions, what this section has showed is that at the very least there 

are appropriate processes to simulate and estimate the dynamic performance of 

resonant sensors, and therefore provide for a means to compare and ultimately 

optimise a sensor system.  
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3.6 Solving the inverse problem 

To determine the target parameter estimate, or measurands,    from the eigenvalue 

requires that an estimate of the inverse of               be found – a procedure 

known as inverse modelling. Thus, the equation that is actually executed during a 

measurement is:- 

                  3.96 

The normal way to go about this is to first express the forward function 

analytically, and then find a mathematical inverse of it to make the measurement. 

This was shown above for the simple linear case:  

           
         

       
  3.97 

However, this way to estimate an inverse function raises a number of issues. The 

first and most important issue is that any analytical solution rests on simplifying 

assumptions, as analytical complexity can increase staggeringly fast. Consider the 

difference in the expressions expanded to first and second order in   above (the 

second order equation has no analytical inverse, incidentally). Thus, it is usually 

not practical to express an analytical solution that is sufficiently true to real life, no 

matter how elegant its mathematical expression might be. 

Another important issue in any multivariate system such as this is the number of 

degrees of freedom represented by its describing equations. A measurement of 

two independent parameters can be used to estimate at most two independent 

unknowns. Thus, even though the eigenvalue might depend on a very large 

number of parameters, only two can be found by the function inverse at any one 

time. That implies that all the other perturbing factors of the resonator must 

remain constant over the course of a measurement, or be determined separately 

using some other measurement.  
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A further issue is one of solution multiplicity. Only a monotonic function, i.e., one 

that only increases (or decreases) with  , will have only one solution when 

inverted. A simple example of a non-monotonic function is     , whose inverse, 

     , clearly has two solutions. This is bad news, as it results in ambiguity. 

Whilst a human might be able to infer or assume a certain solution from the 

context of the problem, such an inference can be difficult for a machine to do in an 

automated sensor system. Non-monotonic resonator responses can occur when 

sample depolarisation is significant as well as for unusually large filling factors, so 

this consideration does have practical implications. A final problem is in actually 

finding an inverse of a function at all, as some representations of equations (e.g., 

polynomial expansions) can have intractable roots. This is less significant in 

practice, however, since numerical interpolation, or ‘look up tables’, can be used as 

long as the forward equation can be evaluated. 

All these issues can be bypassed by expressing the forward model in a different 

way, one for which an inverse is much easier to find. In effect, the problem of 

inversion becomes a task of regression. Regression means fitting a function, 

whether to measured or simulated data, that aims to approximate the true inverse 

function well enough to be useful. Fortunately, some ‘tricks’ can be used to prop-up 

a predominantly simulation-based model by a scarcity of real data points. This 

ensures that even if available real-life calibration is limited it does not mean having 

to reduce the model to a cripplingly inaccurate one. 

All smooth differentiable functions can be approximated by a finite polynomial via 

Taylor’s theorem, and the above discussion demonstrated that the eigenvalue 

response function for a two-parameter input may be written:  

                
         

       
    

      
      

            3.98 

A is a     matrix of weights, where            if N is the highest order of 

the expansion. Note the cross terms such as       in the expansion that are 

necessary for a fully expressive representation of multivariate equations. Such 

nonlinear mixing of the two variables produces nonlinear correlations between the 



 Chapter 3– Theory 

149 

dimensions of p which cannot be rectified by linear transformation. This cross-

term expansion is equivalent to the nested sequence                of 

convolution of the ordinary polynomial sequences along each dimension of  , i.e., 

      
      

     
 . This representation is known as a general polynomial 

regression model, and the matrix A can be estimated from a series of   simulation 

data,                   , by forming the matrix                 of 

observations, and the matrix                 of convolved polynomials in 

known values of   and using the least squares solution based on the Moore-

Penrose pseudoinverse [32] to estimate the weight matrix:  

                      3.99 

This provides a reasonably robust and reliable estimate of the forward model in 

the absence of noise, which matches closely simulations of resonators having 

samples in weakly depolarising regimes. However, the overall function in   does 

not have a defined inverse in general and an inverse must be found numerically. If 

the transformation       has an inverse, for example       in the same notation, 

so that               , then that function could be performed on the eigenvalue 

estimates on a measurement-by-measurement basis in order to extract the 

measurands in real time. Since low-dimensional matrix multiplications are 

relatively fast computationally, such an operation could be performed by a real 

time system in principle, allowing the nonlinearities of a resonator to be corrected 

at the same rate as samples are collected. 

Having established the importance of linearisation, we are left with the problem of 

finding an appropriate inverse function. Although polynomial representations 

arise naturally from Taylor expansions, as in the extended resonator perturbation 

theory shown earlier, this representation isn’t a good one for producing a reliable 

inverse as their solution are intractable at higher orders and they suffer from a 

multiplicity of solutions. A multivariate polynomial expansion can be written 

      – this approximates a function as a weighted sum of nonlinear basis 

functions. The function      is known as the basis generating function. In the above 

example, this function generated the polynomial cross products of its input 
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dimensions. But polynomials are just one family of such nonlinear basis functions, 

and some are perhaps better suited to the problem in hand. The key to making this 

move to a more appropriate approximation method is that the choice of basis 

function doesn’t necessarily have to have any physical meaning in order to do the 

task in hand arbitrarily well. In other words, we move into the realm of 

nonparametric modelling, where the model does not necessarily have to have 

physical meaning, but merely has to approximate some data to a required degree.  

3.6.1 Basis functions and Artificial Neural Networks 

One type of basis function that is commonly encountered for approximating a 

function is the Fourier basis. The basis functions here are sines and cosines of 

different frequencies and the Fourier series is a weighted sum of these functions – 

the weights are thus the coefficients found by performing the Fourier transform. 

Whether or not the Fourier series is a good approximation depends on the type of 

function. Those having discontinuities tend to be less well approximated in the 

locality of the discontinuity. This is known as Gibbs’ phenomenon. Other basis 

functions have similar issues. For example, Runge’s phenomenon occurs at the 

edges of a polynomial basis approximation leading to local non-convergence of the 

approximation with increasing order [33]. One important class of approximants 

are the radial basis functions (RBF). Each output from an RBF machine is given by:  

                        
        

 

   

 3.100 

This is a sum of distance functions, weighted by the vector  . The term        is 

a distance norm, often the Euclidean distance, from some centre vector    – note 

the similarity here to the multivariate Taylor expansion about a particular point. 

The nice feature of RBF approximation is that, given a known or fixed centre 

vector, the weights can be estimated from ‘training’ data using one of the many 

methods for solving linear equations, such as the pseudoinverse. Indeed, if there 

are as many centres as training data points and these centres are taken to be equal 

to the    values of the training set, then the matrix of distances from each    to 
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these centres,  , is a square, positive definite matrix having a definite inverse, thus 

       . This is known as the RBF interpolation, as the function it implements 

must pass exactly through its training points.  

Typical basis functions used are Gaussian,            
and inverse quadratic (i.e., 

Lorentzian),                  . The parameter   , or shape parameter, 

determines the selectivity or ‘bandwidth’ of the function, with smaller values 

tending to increased flatness. Whilst this parameter can be tuned individually, it is 

often fixed to a constant value for all the basis functions in order to simplify the 

estimation. If this is the case, it is important to normalise the input data so that the 

expected variance of all input dimensions is approximately equal. Indeed, this is 

good practice for most non-parametric methods of function approximation. From a 

small simulation set this is done simply by normalising by the nominal range of 

each dimension; a large measured dataset could instead be normalised by 

prewhitening using its estimated covariance matrix. This would further enhance 

performance by linearly decorrelating the input dimensions before the RBF 

approximant. 

Closely related to RBF machines are Artificial Neural Networks (ANN). In fact, an 

RBF can be viewed as a simple type of ANN. The difference between ANNs and the 

other types of basis function approximant previously mentioned is simply the 

location of the linear weights. Whereas in basis function approximants the linear 

weighting and summation occurs after a nonlinear function, in an ANN the linear 

weighting and summation occurs before the nonlinear function. This subtlety can 

significantly enhance the expressive power of ANNs, making them more efficient at 

learning arbitrary functions. However, this complicates the estimation of their 

weights, as linear methods such as the pseudoinverse are no longer applicable. In a 

fanciful analogy to biological neural networks, these weights are called ‘synaptic 

weights’ and the nonlinear functions ‘activation functions’. Fortunately, any 

equivalence to real biological neural networks has long been dismissed [34]; this 

should not detract from these otherwise extremely powerful and general tools in 

the field of machine learning. Each output from an ANN, with a single layer of 

nonlinear neurons of activation function      is given by:  
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The bias scalar,    is usually neglected under the assumption that it is included in 

the input, i.e.,                              . The weight for this ‘zeroth’ 

input thus becomes the bias. Although useful, this current ANN has only one layer – 

only one set of weights and activation functions. This network is not capable of 

learning arbitrary functions, and in fact implements what is known as a linear 

discriminant function. This is a bounded output than can loosely be interpreted as 

a probability; in other words a form of binary classifier. To make a neural network 

capable of regression (and interpolation), it is necessary to add another output 

stage which can linearly weight the outputs of this layer. As shown by Kolmogorov, 

a neural network implementing a weighted linear combination of an unlimited 

number of arbitrary nonlinear neurons, i.e.,                     , is capable of 

universal approximation [35].  

This is not quite so impressive if you consider that both Fourier and Taylor 

expansions both fall into this category, depending on the definition of the arbitrary 

nonlinear functions        . However, Lorentz later showed that this was indeed 

possible not just with arbitrary functions but also using the same nonlinear 

function for each neuron – i.e., a constant activation function [36]. Thus, in theory, 

the regression neural network with a single hidden layer of identical nonlinear 

activation functions should be capable of learning and therefore approximating 

any function arbitrarily well. Such a network looks something like this: 
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Figure 3.23: Regression neural network with a single hidden layer. The nodal 

transfer function is indicated by the graphic. Each arrow carries a numerical 

weight. Training involves the presentation of known outputs (targets) and 

known inputs, whereby an algorithm iteratively calculates (backpropagates) 

the error, updating these weights until convergence on a minimum of the 

error cost function. 

ANNs are a very flexible and general platform for learning nonlinear functions 

between almost any conceivable data. ANNs are mentioned in many good texts. 

Simon Haykin, one of the world’s leading experts on adaptive signal processing, 

gives a comprehensive treatment of neural networks in [37]. Another book by 

David MacKay [38] gives an interesting background and discusses neural networks 

with reference to Bayesian learning.  

Several years ago a review of neural network techniques applied to microwave 

measurements (mostly concentrating on calibration for VNAs, but also mentioning 

materials measurement) stated five advantages of neural networks in this 

application  [39]: 

“(1) they do not require detailed physical models; (2) calibration times 

can be reduced because only a few training points are required to 

accurately model standards; (3) ANN model descriptions are much 

more compact than large measurement files; (4) ANN models, trained 
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on only a few measurement points, can be much more accurate than 

direct calibrations when limited data are available; and (5) they are less 

susceptible to the noise inherent in the measured data.” 

Despite being written from the point of view of producing calibrations for VNAs, 

the same advantages apply to neural networks in materials measurement. The 

main difference with the sensors is that the training data for the ANN is generated 

by finite element simulation rather than measurement. This is primarily because 

enough sufficiently well-characterised materials do not exist, but also has the 

advantages that the neural network can also be trained to learn the effects of 

geometry and environmental parameters, like temperature, and thus predict 

uncertainties in data and to some extend be self-correcting. 

Neural network architectures of various types have already been used quite widely 

in the microwave measurement field, with some applications in permittivity 

estimation being related to the approach taken in this thesis [40], [41], [42], [43], 

[44].  Most of the publications on complex permittivity estimation using neural 

network and other machine learning approaches have been focussed on the 

problem of arbitrary shaped inclusions in a waveguide under broadband 

excitation. This involves the tricky inverse problem of estimating both the shape 

and permittivity of an object based on scattering parameter measurements alone. 

This inverse problem was shown recently, somewhat surprisingly, to have a 

unique solution [45], allowing it to be used as a primitive form of microwave 

imaging, although accuracy is surely an issue even with guaranteed singularity. 

However, reasonable accuracy has been shown for the easier problem of fixed 

geometry, where a grid of complex permittivity of a static geometry inclusion is 

taught to a neural network from repeated full 3D finite division time domain 

(FDTD) simulations of complex reflection coefficient (Figure 3.24). This method 

was developed by Yakovlev et al. [41]. Their neural network fitted the simulated 

data to an error of less than 0.01% and showed a maximum error of about 5% in 

actual measurement.  
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Figure 3.24: Example neural network structure (left) and sample complex 

permittivity space (right) showing FDTD simulated training vectors (circles) 

and corresponding trained network outputs (dots) [41]. 

Authors to work specifically on resonator rather than broadband measurements 

have largely pursued a finite element simulation in the loop approach. In other 

words, to make a single measurement requires an algorithm to adjust the 

permittivity of a finite element simulation until it agrees with measured values for 

the change in resonant frequency and bandwidth, as done in [46], [47]. This is 

clearly impractical for an online resonant sensor due to the long simulation time, 

even if neural networks or Newton-Raphson methods are used to speed up the 

process by locally approximating the finite element results.  

Another issue with this, and other neural network methods, is accuracy. Stanković 

et al. [48] recently published a combined knowledge-based network (KBN) and 

multilayer perceptron (MLP) system for the estimation of the resonant frequency 

of a tuneable cavity loaded with a dielectric slab. Thus was trained using data 

generated by the Transverse Resonance Method (TRM), a mode-matching based 

numerical simulation. They claim a neural network error no better than 0.5 % on 

average, and a worst-case error no better than about 2 %. This ‘model error’ would 

be manifest as distortion in an online MRS, so their technique would need to be 

improved to be suitable for a precision MRS application. Despite this, their use of a 

KBN hybrid is notable. First introduced to microwave measurements in 1997 [49] 

this type of network embeds known analytical or empirical function of the inputs 

which may describe part of the wider function the network is being taught, making 
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its task easier. Placing the KBN before a standard neural network effectively 

generates extra inputs to the network; this may make its life easier, particularly if 

the knowledge function is highly nonlinear, however there is always the danger 

that the increased number of weight coefficients needed to accept the additional 

input dimensions would lead to poor generalisation of the network to unseen 

patterns. 

The apparently simpler problems of estimating permittivity from eigenvalue (the 

inverse eigenvalue response function, or Stage 2), or estimating eigenvalue from 

scattering parameters (the inverse resonator spectral response function, or Stage 

3) apparently have not been considered independently as candidates for neural 

network inversion modelling. Yet there are good reasons to divide the task into 

two like this. Chief among these is that finite element simulation can predict 

eigenvalues accurately. Another good reason is that, up to a point, eigenvalue 

simulations are scalable. Thus, the same geometry simulation can be applied to a 

different frequency, i.e., a slightly larger or smaller resonator of the same 

geometric ratio (the limit being the error due to incorrect skin effect). In other 

words, rather than ‘tune’ the simulation, make the simulation general enough to be 

applicable over the entire range of anticipated samples and even over multiple 

geometries if desired. 

With sufficient regularisation and control over some finer points of 

implementation, ANNs and their variations are powerful techniques that can be 

used to learn complex nonlinear functions, especially where an all-encompassing 

analytical or empirical function is either non-existent or too computationally 

intensive to evaluate. However, ANNs extremely slow to train thoroughly (often 

taking several hours or more with a large dataset) and are only suitable when the 

underlying nonlinear function is static in time, i.e., training only occurs once. Thus, 

they are ideal for learning and inverting the nonlinear relationship between, say, 

resonant frequency, and sample permittivity of a given sensor. In this way, the 

difficulty of trying to invert a complex nonlinear perturbation equation is 

sidestepped by training the simulated relationship to a suitable neural 

architecture, which can then learn the arbitrary inverse relationship.  
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Stage 3 is the resonator spectral response function, or              , and its 

inverse is needed for measurement. Curve fitting is traditionally used for this 

inverse, however neural networks can be applied here too (see Section 5.3.2). This 

deceptively simple function is deeply connected with the actual method of 

estimating the spectral response itself. The very nature of this function is 

dependent not only on the resonator but on the entire readout system. Only by 

combining neural networks with other powerful techniques from the field of 

machine learning, such as adaptive filters (Section 5.1.7), can this more challenging 

equation be accurately represented in silicon. 

This concludes this section discussing the theoretical background to resonator 

modelling. Later sections will draw upon various elements of this theory. The key 

findings and models discussed will be used to improve various aspects of MRS 

systems. In Chapters 4 and 5 these are incorporated into the software algorithms 

and hardware design of a demonstration MRS system which relies on many of the 

dynamic resonant sensor considerations discussed in this section. In Chapter 6, 

many of the models introduced here are used to derive important theoretical 

predictions of MRS response to known permittivity materials. This is a key step in 

the verification of the newly developed MRS system’s accuracy. 
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4 Hardware 

Both theoretically and in practice, the microwave resonant sensor method can 

measure a wide range of interesting and relevant dynamic processes accurately 

and with high precision. Yet a measurement is only as good as the instrument used 

to make it. Of the numerous existing instruments conceived for characterising, or 

‘reading-out’ resonant sensors, which are most suitable for new and demanding 

dynamic measurement applications? Apparently, no existing technique is ideally 

suited; many have a specific advantage, such as cost, speed, or accuracy, but lack 

the flexibility in architecture to make a smooth trade-off between them. 

This chapter discusses the development of a new, more suitable instrument for 

MRS readout, and, since contemporary systems are as much software as hardware, 

this chapter focuses on the hardware part of the instrument whilst software is 

deferred to a chapter of its own. Section 4.1 gives a background to software-

defined radio (SDR), the technology behind contemporary communications 

systems, and the ideal platform for the next generation of microwave resonant 

sensor systems. Section 4.2 then introduces existing physical implementations of 

MRS readout systems, discussing how the choice of hardware and its design affects 

the performance, cost, and integration of the overall system. Section 4.3 then 

describes a novel design of MRS readout hardware that aims to overcome the 

limitations of existing systems. We filed a patent for this design and it represents 

one of the main contributions to knowledge arising out of this work. Section 4.4 

then goes on to discuss the experimental implementations of this new readout 

approach. Completing this chapter are experimental results comparing the static 

performance of these implementations to a VNA readout method optimised for 

realtime measurements, along with a short discussion. 
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4.1 Software-defined radio 

Fundamentally, all MRS systems rely on the generation (transmission) and 

detection (reception) of GHz frequency signals. The system passes an excitation 

through the resonator and detects its response. It then compares the response and 

excitation in order to characterise the resonator, normally in the frequency 

domain. When measuring a dynamic environment, the modulation of this 

excitation signal in amplitude and phase by a time-varying resonator can be seen 

as a type of analogue quadrature-amplitude modulation (QAM), except with the 

information being generated by the ‘channel’ (i.e., resonator) rather than in the 

transmitter. MRS systems are like high dynamic range radio receivers where the 

objective is to ‘demodulate’ this continuous quadrature modulation in order to 

recover the perturbation signal. Driven by the demands of high-bandwidth 

communication standards such as Wi-Fi (IEEE 802.11), recent technological 

advances have greatly increased the sampling rate and analogue performance of 

QAM-based radios, whilst at the same time achieving a high level of integration, 

low cost and low power consumption – qualities demanded by a next-generation 

MRS system. It is therefore logical to look to the latest advances in high bandwidth 

radio systems and apply them to the problem of MRS readout.  

The flexibility, power and, most importantly, the low relative cost of digital signal 

processing has meant that there is an increasing trend to implement many of the 

traditional functions of a radio transceiver in digital; minimising the amount of 

analogue components such as mixers, filters, amplifiers and oscillators. Because 

“software” in one way or another describes all modern digital systems, radios 

having a prominent digital element like this are called software-defined radios 

(SDRs). This trend has been enabled by recent advances in high-resolution and 

high-speed Analogue to Digital (A/D) and Digital to Analogue (D/A) converters, 

which now provide high dynamic range (14-16 bit) conversion of 100 MHz signals 

and up, as well as improvements in the power and speed of digital processors. 
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Although originally developed in the early ‘90s by the US Army as a method to 

integrate many different wireless military communications standards into one 

flexible device, [1], the term SDR has come to be associated with any radio 

architecture with a high degree of flexibility, minimalist analogue ‘front-end’ and a 

significant amount of digital signal processing. The paradigm of instant 

reconfigurability to a multitude of existing and unforeseen communications 

standards is clearly appealing, particularly in military applications where enemy 

eavesdropping, adaption to variable transmission conditions and communications 

infrastructures as well as field-downloadable upgrades offer an unquestionable 

advantage in the theatre of war [2],[3]. 

In the RF community, it can sometimes seem as if there is an obstructive 

competition between traditional analogue engineering and digital signal 

processing approaches to difficult radio challenges. The comparison is tricky, 

particularly since the old argument that digital systems are low cost and low 

power tends to be rather weak when dealing with the high performance demands 

of modern communications. Field-programmable gate array (FPGA) based digital 

signal processing can easily consume the power budget of an entire receiver 

system, for example. Therefore, although the SDR paradigm might seem to imply 

the superiority of a digital implementation over an analogue solution, what it really 

requires is a careful and cooperative engineering approach that tackles the twin 

challenges of high performance and power efficiency using the full arsenal of both 

digital and analogue RF techniques. Only very recently has this convergence of 

analogue and digital engineering really started to be taken seriously at radio 

frequencies. 

Whilst many of the advantages of SDR systems are irrelevant to MRS systems, a 

primary benefit from dynamic MRS measurement perspective is the ability to 

adjust rapidly and accurately the configuration of excitation signal and receiver, 

eliminating or minimising reliance on a conventional microwave synthesiser or 

swept sources and their limited tuning rates. The ability for rapid adjustment of RF 

frequency like this is known as frequency agility, and is a key prerequisite of SDR. 

Frequency agility facilitates the accurate tracking of rapid changes in resonant 
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frequency. Digitally generated signals can be updated within one sample period – 

instantaneously as far as a digital receiver is concerned. As demonstrated in 

Section 3.8, microwave resonators can respond to changing material properties at 

rates up to and exceeding their bandwidth, typically several MHz. Therefore, to 

exploit fully a sensor’s potential measurement bandwidth requires the ability to 

change and detect signals with sub-microsecond timing. High bandwidth digital 

radio technology is the only practical way to achieve this. Software 

reconfigurability also allows for dynamic changes in the bandwidth and sampling 

rate of the detector system, allowing an adaptive trade-off to be made between 

sampling rate, precision and power consumption. The latter issue is of particular 

importance for portable and remote sensor systems. 

 

Figure 4.1: Ideal “full software” radio system with minimal analogue 

components. 

Despite the advantages of digital systems, it is not currently possible to generate 

and receive high-dynamic range microwave signals by converting directly to and 

from digital – the hypothetical Software Radio (SR) (Figure 4.1). Although 

wideband Arbitrary Waveform Generators (AWGs) exist which perform Digital to 

Analogue (D/A) conversion at up to 24 GS/s at 10 bit resolution, [4], these 

instruments are exceptionally expensive (more than £100k) and suffer from poor 

dynamic range. This is due to the challenging nature of such high frequency 
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conversion, the imperfections of which generate distortion and wideband spurious 

signals. On the Analogue to Digital (A/D) side, Digital Storage Oscilloscopes (DSOs) 

are available for real-time signal acquisition at rates up to 100-120 GS/s and 

bandwidths as high as 20-45 GHz. However, these can be even more expensive 

(over £250k) and are usually limited to < 40 dB dynamic range – around 6 effective 

bits of resolution. The effective number of bits is the equivalent resolution that an 

ideal converter would need to have to give the same performance; less than the 

nominal 8 bits due to imperfections such as excess noise, distortion, and spurious 

signals. Additionally, non-realtime sampling oscilloscopes are available with 80-

100 GHz bandwidth [5],[4], and generally have much higher dynamic range than 

real-time scopes ( ~ 70 dB ). However, they can be quite slow to acquire a single 

capture as they work by repeatedly (under)sampling a repetitive signal over many 

cycles. Due to this assumption of static signals, they therefore would not be 

suitable for the dynamic signals found in MRS systems. 

Generating and receiving microwave signals within a finite band is therefore still 

done most effectively and cheaply using frequency mixing techniques, whereby a 

lower frequency representation of the desired signal is converted to and from GHz 

frequencies using an analogue mixer; a nonlinear circuit which generates and 

filters desired ‘mixing products’ of the high frequency and baseband signals. In 

modern radio transmitters, this generally involves using a D/A converter to 

generate the baseband signal, followed by one or more stages of frequency 

translation using microwave Local Oscillators (LOs) (Figure 4.2). Receivers work 

on the same principle in reverse. However, frequency translation with mixers is 

non-ideal. Spurious signals caused by signal ‘images’, undesired signal distortion in 

the mixer, ‘folding’ of noise into the signal band, conversion losses, LO feed-

through, quadrature offset, gain and phase errors and LO phase noise all degrade 

the performance of analogue front-ends. These issues will need to be understood 

and addressed carefully so that any detrimental effects can be quantified and 

minimised in a cost-effective way in order to squeeze the highest performance-cost 

ratio out of an MRS system. 
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Figure 4.2: Conventional multistage heterodyne receiver architecture with 

analogue quadrature downconversion 

The main difference between the requirements of MRS system architecture and 

radio architectures is the need for analogue measurement accuracy. Unlike a 

communication system an MRS system is inherently ‘closed’; the receiver knows 

quite precisely, what the transmitter sent and measures the difference between 

what is transmitted and what is received, rather than aiming to recover an 

unknown transmitted bit stream with a low error. The problem in this differential 

technique is therefore separating the changes in the received signal caused by the 

resonator from those due to system imperfections – impedance mismatches, 

component dispersion, quadrature errors etc. Despite this fundamental difference, 

methods to reduce and correct for system imperfections are still important to 

improve the error rate of a transceiver system. Thus at a general level, techniques 

for improving the quality (e.g., data rate, bit error rate) of transmitter systems will 

also improve the accuracy of MRS systems. 
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4.2 MRS hardware architectures 

A variety of different approaches to measuring MRS exists, and each has its own 

specific advantages and disadvantages. Because the majority of this thesis is 

concerned with the development of a new MRS readout architecture, it is 

important first to discuss the most important existing architectures in terms of 

their operational principles, strengths, and weaknesses. This section will look at 

these in turn before describing the newly proposed MRS architecture in detail. 

4.2.1 Power detection 

The simplest and earliest MRS architecture combines a swept oscillator with a 

power detector. The power detector suffers from a number of issues, which arise 

from its inability to recover the vector (i.e., amplitude and phase) information of 

signals; therefore, it is largely obsolete except in the most cost-conscious 

applications. However it is still worthy of discussion as it serves to introduce many 

of the issues which also affect the performance of more sophisticated MRS systems. 
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Figure 4.3: Swept oscillator-power detector architecture  

The main distinguishing feature of this architecture is the power detector; 

generally a high quality Schottky diode with input impedance matching, DC bias 

and output filtering, accompanied by a built-in or external ‘video’ low noise 

amplifier (LNA). Temperature compensation and response calibration are 

additional essential features of ‘instrumentation’ grade power detectors. 

Instrumentation detectors can have sub-microsecond response time and a typical 

dynamic range of 60 – 90 dB [6]. They can also be very broadband (e.g., 0.01 – 50 

GHz) however, broadband diodes tend to have poor VSWR which leads to load 

mismatch errors (which distort the resonator response as discussed in the theory 

section), so narrowband detectors are more suitable for MRS systems. Power 

detectors range widely in price, but instrumentation quality detectors are 

relatively inexpensive (typically around £200 – £2000) depending on frequency 

range and quality (i.e., much cheaper than a VNA). A highly compact detector 

system using off-the-shelf surface-mount diodes could even be assembled for 

under £10 if accuracy was not important. However, the total cost of this 

architecture is usually dominated by the requirement for a rapid sweeping, high 
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stability and low noise synthesiser – easily costing tens of thousands of pounds. 

With lower quality, higher phase noise signal sources the precision of this system 

rapidly deteriorates. 

Diode detectors ideally output a voltage proportional to the input power (i.e., using 

the diode’s ‘square law’ I-V region given a fixed load), which in practice is slightly 

nonlinear. The general equation for the response of a diode detector is:  

         exp  
        

   
   

   

   
       4.1 

where           are constants,    is the temperature-dependent thermal voltage, 

  is the amplitude response of the matching circuit,    is the amplitude of the drive 

signal and    is the modified Bessel function of the first kind [7]. This 

transcendental equation where    appears on both sides can be solved iteratively 

for      , giving a response which is approximately quadratic (hence the ‘square 

law’) but tends increasingly to a linear relationship at higher power levels. To an 

extent this nonlinearity can be corrected by calibration. However, there will be 

some residual systematic error arising from temperature drift of this 

characteristic, causing distortion of the measured resonator response. To reduce 

sensitivity to DC drift and close-in LO phase noise, the local oscillator is often 

amplitude modulated in order to produce an AC signal after the power detector. A 

traditional analogue lock-in amplifier or digital signal processing then recovers the 

signal envelope [8]. The response is generally low-pass filtered to reduce noise (at 

the expense of response time); a digital implementation is preferable as this 

provides the flexibility to adjust filtering dynamically in response to varying input 

signal statistics. 

The main drawback with this architecture is the non-selective nature of the power 

detector. Because a power detector integrates the power of all signals, the total 

noise power over the bandwidth of the detector will be irreversibly added to the 

desired signal power, as will any spurious signals and harmonics of the signal 

(hence it is good practice to bandpass filter before the power detector). SNR will 
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vary over the resonator spectral response if noise is present both on the input and 

on output of the resonator. In a diode detector, therefore, this variable noise power 

is added to the signal power, resulting in distortion of the resonator response 

shape from Lorentzian. In addition, this distortion is not static but changes with 

sensor perturbation, as the resonator insertion loss and hence SNR changes with 

changing bandwidth. Thus, this bias is not static and cannot be ‘calibrated out’, 

resulting in an unavoidable source of systematic error.  

No amount of averaging or lock-in amplification can reduce the bias of a power 

detection method due to additive input noise. This is an example of bias caused by 

a nonlinear system with noise on its inputs, a central issue in this thesis. Because of 

this both the systematic error and the dynamic range of an MRS system based on a 

diode power detector are significantly worse than is possible with a full vector 

receiver. For the most part this is a fundamental issue irrespective of the quality 

(and price) of the components used in either system. The extra cost of precision 

components tends to go mostly on increased linearity and/or bandwidth. 

Bias in power detectors can be demonstrated by simple computer experiment. A 

sinusoidal signal with added noise was input into simulated vector and diode 

detectors and averaged 100,000 times (ideally reducing the noise power by 50 dB). 

This averaging is representative of a very low pass baseband filter or a lock-in 

amplifier with a very long integration time. Different methods for estimating the 

power of the input sinusoidal signal were compared. The results confirm that the 

output of a power detector has bias (shown by its deviation from a straight line), 

meaning that signals below the input noise floor cannot be resolved. This is 

exacerbated by the fact that the noise bandwidth of a diode detector must be 

greater than the maximum anticipated sweep span. However, the output of vector 

detector with ideal mixers has no such bias, allowing the noise floor to be reduced 

without limit by averaging – although this is strictly valid only for white noise and 

ideal system components. This simulation also shows that logarithmic averaging 

(i.e., the geometric as opposed to the arithmetic mean) is the best way of 

combining multiple power estimates. 
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Figure 4.4: Comparison of different averaging methods for estimating the 

power of a sinusoidal signal corrupted by white Gaussian noise. Only vector 

averaging avoids bias and can recover a signal with negative SNR; this 

requires a tuned receiver. Of the averaging methods suitable for power 

detector processing, converting the output to a log scale before averaging 

results in the lowest bias. 

Adding input and output reflectometers to separate the incident and reflected 

waves turns the system into a ‘scalar network analyser’ which allows the worst 

systematic errors to be eliminated through basic calibration routines, though this 

is in no way comparable to the error correction possible with a vector network 

analyser. A somewhat better way to keep the low cost and simplicity of diode 

detectors yet achieve a comparable accuracy to a VNA is to use a six-port 

reflectometer. The six-port reflectometer technique has been recognised since the 

1970s and is reviewed in [9]. More generally, a variety of combinations of 90° 

hybrids and two, four, or five diode detectors can be used to provide an estimate of 

the full complex scattering parameter [10]. Since each diode detector of known 

power but unknown phase gives a circle of possible values on a Smith chart, vector 

information is found by combining multiple diode detectors offset in phase from 

each other and finding where the circles they describe intersect. If only one valid 

solution lies within the Smith chart than this must be the true complex scattering 
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parameter. More complex circuits and numbers of detectors generally give a more 

accurate result. Two such reflectometers can therefore provide all four scattering 

parameters of a two-port network.  

The approach has been applied to broadband permittivity estimation on a few 

occasions [11], [12], particularly at submillimetre wavelengths where mixers are 

costly and perform poorly [13]. An interesting example of this approach was 

demonstrated quite recently [14] as a narrowband readout system for a 35 GHz 

microwave microscope, proposed as a readout for a ‘new’ method of encoding data 

as microscopic pits on a disk. Whilst an outdated idea, it was a good demonstration 

of a microwave microscope nevertheless and was also demonstrated for 

characterising surface and buried cracks in dielectric materials [15]. 

 

Figure 4.5: Six port reflectometer using five separate diode detectors, five 3 

dB 90° hybrids and two 3 dB 180° hybrids for measuring the complex 

reflection of an MRS. After [16]. 

Despite overcoming the limitations of the receiver in terms of the absolute 

accuracy (i.e., static error) in scattering parameter estimates, and allowing for the 

recovery of vector information, the six-port reflectometer method still suffers from 
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the same drawback as the single diode detector in terms of noise bandwidth. 

Furthermore, the added cost and size of the extra passive microwave circuits and 

additional diode detectors can easily become comparable to a full vector receiver. 

This is especially so if instrumentation quality power detectors are used, although 

implementing the circuits with lumped element hybrids, e.g., on-chip is a 

possibility [17]. To overcome the limitations of the diode power detector and 

provide a better cost-size-performance trade-off, a quadrature receiver can be 

used instead. 

4.2.2 Quadrature receiver 

Quadrature receivers are behind most modern communications systems, as well as 

the many of MRS systems, including the new SDR system developed in this work. 

This architecture also allows for full vector measurement of the response of the 

resonator. It relies on an In-phase and Quadrature (IQ) mixer, to translate two 

copies of the received signal down to a lower frequency. Most introductory texts 

on microwave engineering cover the basics of frequency translation by nonlinear 

mixing, e.g., [18]. A circuit containing nonlinear components such as diodes, having 

dominant second order nonlinearity, is used to create a copy of two signals 

combined at its inputs at both the sum of their relative frequencies,      , and 

their difference,      . This process is easily demonstrated by considering the 

series expansion of the voltage input-output relationship of such a device, e.g., 

              
   . If two sinusoidal voltage waves, an ‘RF’ signal, 

              , and a ‘LO’ signal,                ,  are combined at the input, 

         , the output voltage can be written:  
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where the last two terms can be seen to be the sum and difference frequencies. The 

difference frequency thus represents the downconversion process, assuming that 

     . If instead it is assumed that       , the same process can be seen to be 

an upconversion process producing two identical sidebands at      . Thus 

mixers used for upconversion and downconversion are identical apart from the 

filtering used to select the desired output signal. 

The above analysis considers RF and LO signals with zero phase offset. If instead a 

signal with a particular phase and magnitude is considered, so that 

 
      si             si  c s    c s si     

   c s      si      
4.3 

for an in-phase and quadrature local oscillator (carrier) signal, then the sum and 

difference mixing products are then 

 

       c s      
        c s            si            

        c s            si           

       si       
        si             c s           

        si             c s          

 4.4 

Thus, by using both an in-phase and quadrature carrier signal, and comparing the 

downconverted products, a receiver can selectively recover the    and    parts of 

a signal. This is evident from looking at the downconverted signals at       

    in the two baseband channels      and     :  

  
    

    
        

  c s        si     

  si         c s    
        

     

    

  
c s     

si      
   4.5 

which is a special matrix multiplication which, as may be recalled from Section 3.3, 

is equivalent to complex multiplication,                          , where the 

complex constant          is the Fourier coefficient of the RF signal. The Fourier 

components of the RF signal can thus be recovered irrespective of the relative 
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phases of the RF and LO waveforms. This is crucial because phase synchronicity of 

microwave signals is very difficult, if not impossible, to achieve over reasonable 

time scales. Therefore, phase and magnitude spectral response information of a 

resonator can be recovered simply by sweeping RF frequency. 

Although the six-port reflectometer also enabled the estimation of the full complex 

scattering parameter, the homodyne quadrature receiver has one big advantage 

over diode detectors. Because the frequency mixing process ideally translates a 

linear copy of the signal with minimal distortion, the noise can be reduced by 

filtering or averaging at baseband, effectively allowing a much smaller noise 

bandwidth than possible with diode detector. This is only possible with a linear 

detector such as this. Spectrum analysers utilising this coherent detection principle 

are often specified with noise bandwidths as low as 1 Hz and consequently can 

have as much as 150 dB of dynamic range. Without doubt, this is a significant 

advantage, and arguably does not involve additional complexity. After all, a 

quadrature, or IQ, mixer generally requires 4-8 diodes to form two individual 

mixers, a 90 hybrid to create the in-phase and quadrature carrier signals, splitters 

to send the RF signal to each mixer, and low pass filters to remove the unwanted 

higher frequency products. Clearly this is a similar level of complexity to the six 

port diode reflectometer considered earlier, and is based on largely the same 

components having the same performance-cost considerations. 

If the frequencies of these two signals are the same, the process creates a DC 

voltage and a signal at   . This is known as homodyne conversion, after the Greek 

words ὅμοιος (homoios) meaning similar and δύναμις (dynamis) meaning power or 

force; the root of the word “dynamic”. The term ‘zero-IF’ is also used for this 

configuration since the intermediate frequency (IF), defined as      , is zero and 

no further frequency mixing stages are used. In the equation above, if       the 

DC components reduce to         with the in-phase carrier and          with the 

quadrature carrier. Using a hybrid to generate these 0° and 90° carrier signals, it is 

therefore possible to recover the relative amplitudes of    and    and therefore 
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the phase shift of the RF signal relative to the carrier. This allows the full complex 

resonator response to be estimated.  

However, referring to the series expansion of the nonlinear mixing process above, 

an issue with this ‘DC’ homodyne approach becomes apparent. The nonlinearity of 

the mixer itself produces the undesired DC components,  
 
      

     
  . These will 

be superimposed on the desirable homodyne DC levels giving the real and 

imaginary components of the signal, leading to an error. In fact the total DC levels 

on the   channel will be      
    

     
         /2 and      

    
     

  

          on the   channel. Furthermore, since the LO drive level can be 10 dBm 

or more, especially for passive mixers, the DC output due to this term would 

swamp that due to the desired signal. This not only leads to errors due to drift, and 

noise from imperfect LO automatic gain control, it also creates the potential 

problem of saturating the input amplifiers and/or ADC. To get around this 

problem, balanced mixers are required. A typical balanced mixer consists of a 

diode ring and two 180° hybrids or centre-tapped transformer baluns: 
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Figure 4.6: Double balanced mixer circuit based on a diode ring and 180° 

hybrid transformers on both the RF and LO ports.  

The balanced mixer ideally cancels the undesired DC components, and in fact all 

even order harmonics of the RF and LO signals [18]. This compromises input 

impedance matching on the RF, however. Circulators or directional couplers are 

necessary to prevent resonator response errors due to load mismatch. 

Furthermore, it is impossible to design ideal 180° hybrids, especially as the diodes 

themselves may be mismatched due to process variations. Thus whilst this circuit 

does alleviate the problem, it does not eliminate it. Mixers are usually specified for 

LO to IF isolation. The IQ mixers used in the prototype system have 30 dB LO-IF 

isolation, so for an LO drive level of 10 dBm, RF signal levels any smaller than -20 

dBm will be swamped by LO feedthrough. Thus, this mixer specification must be 

excellent for the homodyne approach to be accurate and free from the potential for 

drift errors. Diode temperature variations can cause time-varying drift, affecting 

this match and therefore the level of undesired DC feedthrough. This could be 

confused with a small real-world signal, especially if single frequency readout is 

used. 

To avoid this problem altogether requires modulated signals in place of just the LO 

itself as the excitation, or a full heterodyne receiver architecture having two or 
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more local oscillators and several frequency translation stages. In both these cases, 

a bandpass filter at IF filters out DC. These methods are used in the SDR 

architecture and in VNAs, respectively. 

Another significant source of error in quadrature receivers is gain and phase 

imbalance, or quadrature skew, between the I and Q channels. This error also 

affects the SDR system, so will be considered in more detail later on. Due to 

imperfections in the quadrature hybrid, and gain differences in the mixers and 

subsequent baseband processing, the true      and      signals received will be 

erroneous. Instead of representing exactly orthogonal phasors of equal magnitude, 

there will be a small error in their relative magnitudes and the angle between 

them. At a given frequency, this error is represented by linear transformation of 

the      and      signals: 

 

Figure 4.7: Representation of IQ mismatch error; digital circuit 

representation (left), phasor (upper right) and matrix multiplication, or 

shear transform, representations (lower right) adapted from [19]. 

This error means that the complex number equivalence is broken, as the matrix 

representation no longer has the correct form (see Section 3.2). In homodyne 

systems, this leads to systematic error in spectral estimation, particularly as this 

error varies with frequency. However, as can be discerned from the matrix 

representation, this error is linear and the true      and      signals can be 

recovered by multiplying by the inverse of the shear transform matrix. An operator 

can estimate the coefficients of this correction matrix by comparison to a known 

Numerical IQ mismatch model 
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reference – for example by connecting a ‘thru’ line in place of the resonator with a 

known phase delay. Whist this is not easy to do at DC in a true homodyne system, it 

is possible to use a variable length transmission line and sweep the phase of either 

the resonator or the reference branch by changing the line length. This should 

ideally trace out a circle in the IQ plane. A calibration routine can then estimate the 

quadrature imbalance coefficients from the measured deviation from this circle. 

Clearly, these calibration requirements are unsuitable for MRS systems outside of a 

laboratory. 

Simple blind estimation methods such as those described in [19],[20],[21] exist 

that do not require a calibration to a known reference and work under the 

statistical assumptions that the true      and      signals are random and 

uncorrelated. Whilst acceptable for communications systems, such algorithms do 

not provide the degree of accuracy required for resonator measurements and the 

time-domain variation caused by the stochastic nature of their adaptation could be 

confused with a real perturbation signal. On the other hand, higher performance 

blind correction methods such the Bussgang or Constant Modulus algorithms [22] 

are aimed at digital communication systems employing a discrete symbol alphabet 

and are unsuitable for the unknown analogue perturbation encountered in this 

system. Using calibration to a known reference, however, leaves the possibility of 

errors due to drift, and it is generally not practical to recalibrate during a dynamic 

measurement when it requires the physical disconnection of the sensor. 

Figure 4.8 below shows a design for a simple MRS readout system based on a 

simple homodyne quadrature receiver. The LO excitation is generated by a 

synthesiser which should have good amplitude stability and low phase noise. It is 

filtered to eliminate harmonics and then split using a directional coupler into a 

resonator branch and a reference branch which provides the LO drive signal for 

the mixers. The coupler is preferable to a simple resistive divider as it ensures 

good isolation of the LO reference arm from reflections due to the resonator. It also 

provides a more appropriate distribution of LO power since the mixer (if passive) 

typically requires a high drive level which is undesirable for the sensor due to self-

heating effects. The diagram shows separate balanced mixers configured as an IQ 
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mixer, but an integrated passive or active device could be used instead. LNAs, 

preferably with variable gain, are used to provide an optimum signal level to the 

two channel A/D converter. The low pass filters provide both RF signal rejection 

and antialiasing and must therefore have good rejection over a wide frequency 

range. Finally the D/A converter shown allows for frequency control of the LO 

through by some unspecified method, allowing the digital processing to control the 

sweep in a synchronous way for resonator spectral characterisation. Swept 

characterisation is essential when using the homodyne architecture for calibration 

purposes, even if single frequency readout is used subsequently for speed. This 

architecture and calibration method was the approach taken with the first kinetic 

inductance detector architectures, for example [23].  
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Figure 4.8: Homodyne quadrature detector based microwave resonant sensor 

readout architecture. 

The A/D converters here are nominally sampling signals with a bandwidth equal to 

the highest frequency content of the perturbation signals expected for the resonant 

sensor. Because this is usually much less than the resonator bandwidth, it makes 

sense to use a lower rate, higher resolution converter in this architecture. An ideal 

A/D converter for this is Σ-Δ. This architecture uses a faster A/D to oversample the 

analogue waveform combined with noise shaping to push the quantisation noise 

away from the lower frequency band of interest. Modern, multilevel Σ-Δ ADCs can 

achieve 24-bit resolution at rates as high as 1 MS/s – easily fast enough for most 
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dynamic MRS needs. An example of such a device is the AD7760 from Analogue 

Devices [24]. This device has over 100 dB dynamic range at 2.5 MHz (8 times 

oversampling). The oversampling factor can also be programmed from 8 – 256, 

providing the system with a way of trading off SNR against maximum input 

frequency on the fly. This component would be an ideal choice for high 

performance dynamic MRS measurement applications using the homodyne 

architecture, although with a power consumption of almost 1W it is not suitable 

for portable applications. 

Note that a compensating delay can be included to ensure that the phase of the 

signals in the LO is matched to that of the resonator branch. Whilst phase is 

relative and any phase offset can be corrected via calibration, it is tempting to 

think that having equal delays in these branches should cancel out any phase noise 

generated by the LO. In theory at least, this random phase modulation 

superimposed on the LO signal can be cancelled by the homodyne method if the 

electrical delay, or group delay, in both the resonator branch and the reference 

branch are equal. One way to think about this is to consider a time-varying ‘IF’ 

frequency             where             and both       and       are 

subject to random variations of frequency. This is an approximate model for CW 

signals derived from the same source but offset slightly in time (frequency is the 

derivative of phase; so a phase noise distribution of         ec would translate to 

white frequency noise). The larger any delay offset, the higher the amount of LO 

phase noise present at the receiver. Quadrature homodyne mixing with a phase 

offset like this is even used as a simple way to measure oscillator phase and 

amplitude noise without needing a reference oscillator [25]. 

This suppression effect can be shown with a simple simulation where a small 

phase modulation is added to a local oscillator signal,        c s     

 si       , and a variable delay is introduced into one branch. Ideal quadrature 

mixing is simulated mathematically:                      , where      

denotes the Hilbert transform. From a real input signal, the Hilbert transform 

produces a complex signal where the imaginary part is equal to the input but 

shifted by 90°. After putting the simulated carrier through this mathematical 
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hybrid, the resulting multiplication with its delayed copy,       then has a real part 

equivalent to      and imaginary part equivalent to     .  

 

Figure 4.9: Simple demonstration of phase noise cancellation in a homodyne 

detection system for increasing delay offset of the two branches. Red shows 

the amplitude of the residual phase signal in the I channel, blue the signal in 

the Q channel. 

The results confirm that as the delay is increased the suppression of phase 

modulation decreases. The residual phase noise present on the I and Q channels 

can be seen to follow the relationships;          
      , and                . 

Therefore, the overall phase noise magnitude on both channels combined is simply 

proportional to the delay,  . Whilst this does suggest that minimising   is 

important for phase noise rejection, this is almost impossible to achieve practically 

when a resonant sensor is in place because its group delay is very large. Group 

delay is defined as the derivative of phase with respect to frequency:  

        
     

  
            c   

         

  
             

   

  
  4.6 
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the resonator offset constant,   , has assumed to be zero for simplicity. Thus, the 

group delay of a resonator measured in RF cycles is about    , over 100 ns for 

most practical resonant sensors of interest, the same as about 21m of PTFE-filled 

coaxial cable. This delay also changes with sample perturbation. This all implies 

that it is impractical to cancel phase noise by delay compensation, and suggests 

that resonator measurements are inherently sensitive to LO phase noise due to 

their large group delay. This inherent sensitivity to LO phase is one of the main 

reasons why it standard practice to use the lowest phase noise oscillator affordable 

in a given MRS application. 

When the LO frequency is swept, accurate estimates for the resonator gain and 

magnitude response are possible, as long as the receiver is calibrated to correct for 

IQ gain, phase and offset errors. Figure 4.8 above shows complex-domain curve 

fitting in the digital signal processing section as a means to estimate resonator 

parameters. Complex-domain fitting makes full use of the complex response 

information available. Yet even if the software converts spectral data to power and 

uses Lorentzian fitting instead, it does not mean that the IQ system is a ‘waste’. The 

enhanced accuracy and lower noise bandwidth still give this system architecture a 

significant performance advantage over power detection methods. 

Swept frequency characterisation is necessarily slow, as the LO synthesiser must 

make a difficult trade-off between sweep speed, phase noise and resonator settling 

time. To improve the readout rate for realtime measurements, the system can use 

single frequency (i.e., continuous wave, or CW) excitation instead. The signal 

processing can make use of Equation 3.81 in this case:  

 

      
                       

            
                              

      
                          

            
       

                    

                   

    4.7 



Chapter 4 – Hardware 

185 

This relates both resonant frequency and bandwidth directly to the time-domain 

     and      waveforms, allowing the system to make resonant frequency and 

bandwidth estimates up to the full ADC sample rate. However, this requires a 

calibration routine to correct the waveforms for quadrature imbalance errors, 

normalised by the measured resonator    and    constants and referenced to the 

static resonator frequency       and bandwidth       (estimated from a previous 

swept-frequency measurement or VNA characterisation). It is also suitable only for 

small changes in resonant frequency and bandwidth, otherwise accuracy quickly 

deteriorates. 

Whilst the quadrature homodyne system makes a number of improvements over 

power detection methods, it evidently still suffers from a number of issues. The 

ultimate and most accurate way of measuring a linear microwave network is the 

vector network analyser. Correcting both for system imperfections such as source 

and load impedance mismatch, as well as using a heterodyne receiver architecture 

for both vector information recovery and high dynamic range, it is undoubtedly the 

most accurate and most precise way of characterising a linear network such as 

resonator. However, this comes at a price. The next section looks at the VNA and its 

architecture 

4.2.3 The vector network analyser (VNA) 

Rather than use a homodyne quadrature receiver, modern VNAs use a CW 

excitation source offset in frequency from the LO of the receiver, creating a MHz 

frequency IF signal that can be bandpass filtered with a high rejection crystal filter. 

Careful and adaptive choice of this IF frequency minimises the number and 

magnitude of spurious signals that fall into the measurement band, resulting in a 

very high dynamic range. In modern VNAs this IF signal is then generally 

converted directly to digital, before being processed using digital downconversion 

and filtered according to the user-specified IF bandwidth (IFBW). The digital 

downconversion process implements a numerical equivalent of a homodyne 

quadrature receiver, utilising efficient frequency domain processing such as 

hardware FFTs on a dedicated FPGA chip.  
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A heterodyne downconversion system therefore allows for full recovery of the 

phase and magnitude information of a signal without requiring an IQ mixer. In fact 

some VNAs, such the now obsolete Agilent 8753 series [26] did away with a mixer 

altogether and used an RF sampler instead, which under-samples the RF signal and 

converts it to baseband through a wideband aliasing process. Conceptually this is 

similar to mixing by an impulse train, or a ‘comb spectrum’ as this would appear in 

the frequency domain. Apparently, this proved to be cheaper despite the extra 

complexity, probably because it is difficult to make the very wide bandwidth 

mixers required of VNA receivers: 

 

Figure 4.10: VNA receiver ‘front-ends’ are based on wideband samplers rather 

than a traditional mixers in some economy Agilent VNAs despite the 

degradation in dynamic range due to noise folding in from over its wide 

bandwidth [26]. 

At its heart, the VNA consists of a minimum of three coherent, heterodyne 

receivers. Directional couplers on the outgoing and incoming signal paths allow it 

to measure the three voltage waves in a given direction,    – the excitation wave, 

   – the reflected wave and    – the transmitted wave. By forming vector ratios it 

can determine the scattering parameter estimates            and           . 

The LO excitation and 50Ω load are then swapped with a switch and the two 

reverse scattering parameters calculated. This can be expanded indefinitely and 

four port VNAs are common. The receiver architecture and overview of a typical 

VNA is shown in the Figure 4.11. 
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Figure 4.11: Typical receiver architecture of a modern VNA (top), and a 2-

port VNA architecture based on four receivers and a single excitation  source 

used for MRS readout (bottom), adapted from [27]. 
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Even without calibration, the use of the vector ratio method and the high quality of 

the internal couplers and components mean that the base accuracy of the VNA is 

reasonably good, as demonstrated by the following figures for the economy model 

VNA used for some of the later experimental work. Evidently, the only rather poor 

specification is the load match on this particular instrument. 

Table 4.1: Specifications for sources of measurement error before calibration 

for the Agilent E5071B used for the experimental work [28]. 

Parameter 
Specification (dB) 

0.0003 – 3 GHz 3 – 6 GHz 6 – 8.5 GHz 

Directivity 25 20 15 

Source match 25 20 15 

Reflection tracking ± 1.0 ± 1.5 ± 1.5 

Transmission tracking ± 1.0 ± 1.5 ± 1.5 

Load match 15 11 8 

 

Due to the number of non-ideal components in the signal path – couplers, switches 

and the load impedance itself, a 6 complex term (i.e., 12 real term) error model is 

used to calibrate VNAs using known reference standards, such as a short, open, 

load and through line normally used in a coaxial environment. This error 

correction provides a greatly enhanced ‘virtual’ directivity, source match, etc., 

typically better than 40 dB for directivity and match and reducing tracking errors 

to ± 0.05 dB or better [6]. 
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Figure 4.12: Error flow graph for VNA forward measurements 

However, these errors are not necessarily easy to translate to resonant frequency 

or bandwidth estimation error in MRS measurement. Many of these sources of 

error are frequency dependent but vary relatively little over the narrow 

bandwidth of a typical resonance, even over the entire perturbation range of a 

particular sensor. As discussed in the theory section, if the errors are constant to 

first order with frequency it causes a quadratic distortion of the resonator 

response, leading to bias in bandwidth estimates. Yet in a differential resonator 

measurement, some of these errors may cancel out. Simulation studies were 

carried out to attempt to address this issue, as discussed in the Software chapter. It 

is likely that VNA calibration does not have a significant impact on MRS accuracy, 

especially when compared to other sources of error such as resonator drift and 

geometric tolerances. This renders much of the complexity of the VNA 

unnecessary. In particular, reverse measurements are not required to make 

transmission and reflection measurements when calibration is not being used. This 

effectively wastes two of the four receivers. 

Whilst the architecture of a VNA is not overly complex in concept, it is expensive 

because of the duplication of the receivers and the need for two precision RF 

sources. Because VNAs are designed to be very broadband and have very high 

specifications throughout this band, the individual RF components such as 

couplers and mixers (if used) are expensive and bulky. For MRS systems, which for 

a given application or sensor do not require broadband operation at all, this makes 

the VNA an over specified and non-cost effective solution.  
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4.3 Swept oscillator considerations 

From the earlier discussions, it is clear that swept oscillator measurements are 

central to all exiting MRS readout systems. The frequency of the source must be 

swept in a power detection mode otherwise changes in bandwidth and frequency 

cannot be resolved independently, even in the small perturbation limit. It is also 

necessary to sweep the LO in homodyne quadrature readout systems for 

calibration, and repeat this periodically to correct for drift errors. Similarly, 

although single frequency, or continuous wave (CW), readout is possible in VNAs 

that support it, this also requires periodic swept-measurements because of the 

difficulty tracking changes in resonant frequency with a CW excitation. Periodic 

calibration is unsuitable for continuous real-time measurements. The new MRS 

system designed and built for this thesis is capable of spectral characterisation 

without requiring a swept oscillator. With existing technology, there are probably 

four options for dealing with swept oscillator characterisation in the context of 

dynamic measurements: 

 Sweep the oscillator every measurement cycle and live with limited 

readout rate (meaning longer scan times for microwave microscopes, 

inability to capture important dynamic behaviour, reduced precision, etc.); 

 Keep the CW frequency on resonance using a tracking loop, sweeping the 

oscillator only to establish an initial lock or in the event of a lock failure; 

 Use a fixed frequency CW excitation and control the sample and 

environment conditions carefully to ensure resonance is always within a 

narrow measurement window ; 

 Sweep the oscillator periodically for calibration, using a fixed frequency 

CW excitation for discontinuous yet higher-rate measurements. 

The first option raises a fundamental issue in all swept readout systems. This is 

because sweep speed, frequency accuracy and phase noise are inextricably 

correlated to the performance (i.e., expense) of the LO. The PLL bandwidth should 

be low to ensure good phase noise but high to allow the oscillator to settle quickly 

to a new frequency when swept or stepped. Only by using an inherently lower 
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noise VCO or higher performance PLL architecture can this trade-off be improved. 

This makes the LO the limiting component in the overall figure of merit of the MRS 

system. Because of this, subsequent improvements to the aforementioned readout 

architectures have generally involved the use of better types of LO, such as those 

based on direct digital synthesis (DDS). This indicates that there is a big advantage 

in keeping the LO frequency fixed in a particular readout architecture. Then its PLL 

bandwidth can then be made as small as required to suppress the phase noise 

without needing to move to a more expensive LO architecture. 

Even neglecting the settling time of the local oscillator, one problem with rapidly 

sweeping or stepping the oscillator frequency is that the resulting excitation signal 

is not persistently exciting in the time domain. Therefore, an error will be 

introduced due to the transient response of the resonator. This is particularly true 

with high Q resonators. In order to mitigate this error, the time taken for each 

measurement point must be significantly longer than the resonator transient time, 

else it will affect the measurement accuracy, causing bias. The transient response 

of a resonator to a step change in driving frequency will decay according to 

exp      , the same as for a step change in resonant frequency derived in the 

theory section. For example, a high Q resonator might have a bandwidth of 100 

KHz. The settling time of this resonator to within an insignificant error of        

is    l                 s. This time must be multiplied by the number of 

sweep points to give the total measurement duration. In this example, a sweep of 

100 points would be limited to a maximum repetition rate of about 50 Hz, an order 

of magnitude slower than that possible with the new prototype readout. However, 

when accuracy is not as critical, some of the bias introduced by the resonator 

transient can be cancelled out by first sweeping in the positive (increasing 

frequency) direction and then in the negative (decreasing frequency) direction; the 

resulting hysteresis is then ideally eliminated by averaging the two results. 

The second option, attempting to keep the excitation frequency on resonance, is 

fraught with difficulty, as an additional frequency control loop is created which 

must compete with the existing phase locked loop (PLL) of the LO unless the 

tracking bandwidth is very small. A small tracking bandwidth limits the maximum 



Chapter 4 –Hardware 

192 

slew rate of resonant frequency possible for dynamic behaviour and therefore 

offers no advantage over the first option. Yet when the tracking bandwidth is 

increased to be comparable to the PLL bandwidth, it becomes impossible to 

separate a ‘real’ change in phase due to the resonance from that due to PLL lag. In 

addition, the accuracy in estimating resonant frequency decreases the further the 

excitation is from resonance.  

Any feedback loop attempting to track dynamic changes in resonant frequency 

occurring at a rate close to or faster than its own tracking bandwidth may not 

converge reliably and may even diverge from resonance due to nonlinearities and 

bias in the estimation process. If this happens in an online measurement or control 

scenario, the results could be disastrous – in effect causing the MRS readout to 

‘loose lock’ to the resonance. Manual intervention is likely necessary to reset this. I 

observed this effect in early experiments to measure dynamic effects such as 

heating with both a VNA and the early prototype MRS readout. When feeding back 

resonant frequency estimates, e.g., derived from curve fitting, for example, errors 

in resonant frequency when a fast perturbation occurs cause divergence of the 

frequency control loop, especially as the error is higher the further the resonance 

is from the centre of the sweep. This was a key reason for keeping the LO 

frequency fixed in the prototype MRS readout and for removing resonant 

frequency tracking from swept VNA measurements in later experiments.  

On the other hand, if tracking is to be avoided, then the problem with keeping the 

excitation frequency fixed in CW readout (option 3) is the reduced perturbation 

the system can reliably measure – in effect reducing its dynamic range. 

Furthermore, if a sample or environmental variation causes the resonance to drift 

outside of this narrow measurement range (no more than a fraction of its 

bandwidth) then without tracking it is necessary to do another swept 

characterisation in order to restore the excitation frequency accurately on 

resonance. This requires the suspension of measurements and the removal of the 

resonator from the dynamic environment it is measuring (option 4). In a realtime 

application, this may not be physically possible. Even if it is feasible, the system 

may miss some important temporal event during this calibration phase that it is 
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attempting to monitor, such as a change in composition or a flow system 

disturbance. 
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4.4 Prototype MRS readout system design 

To address better these issues, the solution lay in the excitation of the resonator at 

multiple frequencies simultaneously. In this way, spectral characterisation over a 

sufficiently wide band is possible without sweeping the local oscillator. A 

persistently exciting signal with multi-frequency content also avoids resonator 

transient errors because it has no time-domain discontinuity. However, unlike CW 

excitation, permits accurate and unambiguous recovery of resonant frequency and 

bandwidth information without requiring periodic swept calibration. It can 

therefore make high rate MRS measurements over an unlimited period without 

concerns about system drift. 

However, what hardware architecture permits the generation of a broadband 

excitation signal consisting of a number of discrete frequencies simultaneously? 

Clearly, having multiple RF synthesisers summed together with a power combiner 

is impractical on cost grounds. The answer, as alluded to earlier, lay in the 

technology of high bandwidth software defined radio systems. The community of 

researchers working on microwave kinetic inductance detectors soon realised that 

these systems were ideal for generating such multitone signals [29]. But whereas 

these multiple tones were used to address each individual resonator ‘pixel’ with a 

separate single tone, the same system architecture could be adapted to provide a 

multifrequency excitation to a single resonance instead, providing an ideal 

platform for a realtime, potentially low cost and portable MRS system. 

I designed a new hardware architecture based around a direct-conversion, or 

‘zero-IF’ wideband radio transmitter and receiver. Whilst direction-conversion 

architectures are known to suffer from problems not encountered in multi-stage 

analogue-based IF receivers (IQ mismatch, even order distortion, DC-offset and LO 

phase noise feedthrough [30]) they are simpler and require only one local 

oscillator. Furthermore, digital IF conversion, as used in modern VNAs, can still be 

implemented using the same hardware, allowing the system extra flexibility. 
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The system is based on quadrature mixers for upconversion and downconversion, 

but whereas in the homodyne quadrature system these are necessary to recover 

the amplitude and phase response of the resonator, in this radio system they are 

used to provide upper and lower sideband separation, or single sideband (SSB) 

modulation and demodulation. This allowed the bandwidth of the system to be 

utilised in the most efficient way. The maximum measurement bandwidth of the 

system is equal to the sampling frequency of the ADC and DACs used, or 100 MHz 

in this prototype. This is enough to measure even low Q resonant sensors under all 

but the largest sample perturbation conditions without needing to change the LO 

frequency. SSB modulation comes at a price; it effectively doubles the number of 

baseband components needed, requiring two ADCs and two DACs instead of one, 

as well as an IQ mixer at both the transmitter and receiver. 

SSB modulation is based on a simple mathematical axiom that the Fourier 

transform of an analytic signal has no negative frequency components. Because 

negative baseband frequencies become lower sidebands and positive frequencies 

upper sidebands, forming the analytic representation of a signal before 

upconverting it should cancel the lower sideband entirely. Similarly, reversing the 

process for downconversion will reject any signals present in the lower sideband 

from being imaged into the positive baseband frequencies. The analytic 

representation of a signal is                    , where      is the Hilbert 

transform.  

IQ mixers approximate the upconversion of a complex signal, as noted in the 

previous section, so all that remains is to generate the real and imaginary parts of 

this baseband analytic signal. While this can be done with a hybrid, creating an 

analogue SSB modulator, this is necessarily a bandpass component and suffers 

from the imperfections of physical hybrid circuits. However, by generating the real 

and imaginary parts of the baseband signal with separate DAC channels, not only 

can the analytic representation be generated perfectly, independent upper and 

lower sidebands can be created, doubling the Nyquist band of frequencies that can 

be generated and received. This is why the bandwidth of the system is    and not 

     as it would be for a single ADC or DAC. A multitone excitation signal can thus 
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utilise both the negative and positive frequency components of the complex 

baseband signal, obtained easily in software by using the complex FFT. In fact, the 

vast majority of all the signal processing and manipulation can be done in the 

complex frequency domain, as discussed in the Chapter 5. 

One elegant feature of this approach, despite the increased complexity, is that 

(with proper choice of excitation signal) the system can still recover the upper and 

lower sidebands perfectly even in the presence of IQ mixer phase mismatch. IQ 

mismatch causes part of the upper sideband to be reflected into the lower 

sideband and vice-versa, as shown in Figure 2.13. 

 

Figure 4.13: Sideband suppression vs. quadrature phase error and various 

gain errors (shown by different colours with dB offset labels), f rom [31]. 

As shown in Figure 4.14, by spacing the tones of the excitation asymmetrically 

about DC, or by digitally modulating the excitation around an offset frequency 

(     is particularly good as it also minimises distortion), the spurious signals 

caused by this mismatch do not fall on the intended signal frequencies and thus 

can be recovered or simply filtered away. Note that tones are avoided close to DC – 

this bypasses the issue with local oscillator feedthrough and downconverted phase 

noise at this point. 
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Figure 4.14: Cartoon showing the relative magnitude of multisine tones 

transmitted subject to quadrature imbalance and imperfect sideband 

suppression. A wideband DC-centred signal with offset upper and lower 

sideband tones (top) and a narrow band digitally modulated signal (bottom) 

both allow the receiver to remove the effect of sideband images from the 

received signal. 

Figure 4.16 below shows a typical signal spectrum received by the implemented 

prototype system after passing through a transmission resonance. Since the 

resonator has quite a narrow bandwidth, digital modulation is used to centre the 

multitone signal around one quarter sampling frequency. Due to the quadrature 

receiver, the upper sideband image can be identified as a reflection of the main 

signal at negative baseband frequency. The fifteen measurement tones are clearly 

identifiable and can be selectively filtered in the frequency domain, simply by a 

‘brick wall’ style filter. This is only possible because the tones were designed to be 

periodic in the 256-sample window. There is therefore zero spectral leakage and 

the excitation signal tone energy is confined perfectly to one FFT bin.  
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Careful attention to these issues, as well as the use of double balanced IQ mixers 

and proper selection of the LO drive and RF levels, mean that this prototype 

system can recover the resonator response with a very high degree of accuracy. In 

fact the only distortion to the power spectrum is due to odd-order intermodulation 

(IMD), which can be seen causing the spectral regrowth ‘skirts’ visible at around 

      F  to each side of the main multitone signal. This implies that the dynamic 

range of the spectral response measurement in this example varies from about 40 

to over 50 dB across the resonator response. Whilst this is incomparable to a 

VNA’s 90+ dB of dynamic range, it is certainly low enough to cause minimal 

systematic error in resonator measurements (a topic analysed in more detail in 

Section 5.1.1), and is either superior to or comparable with other, non-VNA MRS 

readout technologies. 

Removing components such as couplers, switches, etc., from the signal path, the 

complex 12-term error model of a VNA can be reduced to the simple error model 

discussed in Section 3.3.7, reproduced in Figure 4.15. 

 

Figure 4.15: Error flow graph of the multitone system.  

If the source and load impedances connected to the resonant sensor are very well 

matched (quite possible within a narrow frequency range such as the operational 

span of a resonant sensor) the only significant error term remaining is the complex 

gain term, T (transmission tracking error). This can readily be calibrated for by 

connecting a ‘thru’ line and performing a basic response calibration, without 

affecting the accuracy the S21 estimate made by the system. Thus, the complexity 
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and labour required of VNA calibration are eliminated in this system without 

unduly introducing error. 

 

Figure 4.16: Typical measured spectral response of the prototype system 

when measuring a resonator using a digitally modulated multitone excitation 

signal. 

The design of the hardware prototype is shown in Figure 4.17. The design has a 

number of features to ensure full coherence of the excitation and response signals. 

The transmitter and receiver share the same LO for coherency. Furthermore, all 

the converters (ADCs and DACs) share the same sample clock. This means they 

sample simultaneously, allowing the I and Q channels to be perfectly phase-

synchronous. Digital triggering is also used to ensure the ADC records are aligned 

with the transmitted waveforms, allowing for accurate phase response estimation. 

In the system shown, amplification is done solely at baseband where low noise 

amplifiers are cheaper and have better performance, although in the experimental 

system RF LNAs were used at the transmitter because they were more readily 

available. Due to the poor VSWR of the double balanced IQ mixers, isolators are 

necessary to ensure a good source and load match.  
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Figure 4.17: Design for a simultaneous multitone excitation based MRS 

readout system based on a wideband coherent quadrature zero-IF 

architecture. 
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Although in communication systems QAM requires IQ mixing to be used in order to 

recover the modulated phase and magnitude, this is because the LO at the 

transmitter and receiver are independent and therefore cannot be perfectly phase 

synchronous. However, in this system the same LO is used at the transmitter and 

receiver – thus quadrature mixing is not absolutely necessary and a single mixer 

could still recover the phase and magnitude response (just like in a VNA). In this 

system, a numerically controlled oscillator (NCO) is shown in the digital section as 

a means to perform IQ mixing numerically – however in practice FFT analysis 

would be used directly here as well, bypassing the need for this as an explicit step 

in the processing. Figure 4.19 shows a design for a simplified system that uses this 

approach and relies on the bandpass response of the resonant sensor to remove 

the lower sideband image from the signal present at the receiver.  

As discussed in Pozar, [18], a balanced mixer that uses a 90° hybrid at its inputs 

instead of the usual 180° hybrid can ideally give a perfect input match. This is ideal 

for this simplified (potentially low cost and portable) system as it eliminates the 

requirement for isolators to ensure good source and load match conditions – an 

otherwise relatively large and expensive component. 

As it stands, this simplified system has no bulky microwave transmission line 

circuits such as hybrids and couplers. It also has no active RF components apart 

from the LO (if passive mixers are used). It could therefore be realised in an 

extremely compact form without resorting to monolithic microwave integrated 

circuit (MMIC) technology. The downside to this, as indicated in Figure 4.18, is that 

incomplete lower sideband separation would cause the spectral error to be 

increased – degrading overall measurement accuracy. 

Note that both these systems are inherently wideband. With a wide tuning range 

LO, they can be of almost unlimited frequency bandwidth. Whilst very wide 

bandwidth mixers are expensive, a flexible and accurate system such as this would 

not be specific to a particular MRS or frequency band. It therefore could be an 

attractive alternative to a conventional VNA for traditional laboratory MRS 



Chapter 4 –Hardware 

202 

applications, whilst at the same time enabling high-speed realtime readout 

capability. 

 

 

Figure 4.18: Cartoon showing the relative magnitude of multisine tones 

received by the reduced complexity system. In the reduced complexity system, 

having a single channel ADC and DAC and no quadrature mixing, rejection of 

the lower sideband is performed by the bandpass response of the resonator. If 

the resonator attenuation of the lower sideband is insufficient, the remaining 

lower sideband signal is reflected back into the upper sideband at the 

receiver. Depending on the relative phases of the tones this interference may 

be additive or destructive, causing systematic error.  
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Figure 4.19: Design for a simplified readout system that uses digital IF 

modulation and relies on the bandpass resonator response to provide lower 

sideband image rejection. Having no inherently bulky or expensive 

components, it is ideal for low cost and portable MRS instrumentation. 

Radio systems such as these can readily be implemented on a single chip at RF 

using modern silicon germanium (SiGe) processes, and the technology promises to 

be applicable throughout the microwave band and even into mm waves [32]. 
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Several fully integrated quadrature receiver and transmitter chips have been 

developed by the high-volume manufacturers such as Analogue Devices (see 

Figure 4.20 below). The technology of this MRS readout system is ideally suited to 

full integration on-chip, making the ultimate goal of widespread, low cost, and low 

power consumption microwave sensor technology seem a step closer.  

 

Figure 4.20: Functional block diagram of a state-of-the-art, fully integrated 

single chip quadrature digital upconverter with 14 bit, 1 GS/s DAC [33]. The 

100-pin 16 mm square integrated circuit has a typical power consumption of 

1.4 W. 
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4.5 System implementation 

These system designs are still at a high-level of abstraction; the design of a physical 

system to implement them from scratch at the component level would be a 

significant undertaking and require a degree of time and capital investment no less 

than the development of any advanced instrument – something that was not 

available at the time of doing this work. A way of realising them using existing 

hardware and instruments as far as possible was therefore required. This meant 

that as much time as possible could be devoted to the novel aspects of this work 

such as the system architecture, algorithms and calibration methods, rather than 

on implementing already existing technology.  

To this end, I initially used an existing instrument set that emulated the entire 

transmitter and receiver hardware. Having excellent performance and 

specifications, these instruments provided an ideal starting point to develop 

algorithms and perform some initial experiments. However, this system was both 

expensive and not fully suitable; it lacked perfect coherency between the 

transmitter and receiver because they were unable to share the same LO.  

The subsequent implementation used instruments to provide only the baseband 

ADC and DAC functionality, as well as a synthesiser to implement the LO. This 

allowed the RF system to be developed at the component level whilst using the 

previous hardware as a useful performance reference. These instruments were 

provided for by a £20,000 grant from the Cardiff Partnership Fund (CPF), which 

was awarded based on the commercial potential of this technology. As part of this 

project, a patent application was written detailing the system and its key 

algorithms for realtime operation. At the time of writing, this patent has been filed 

and is awaiting examination [34]. The subsequent subsections discuss these two 

hardware implementations in more detail. 
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4.5.1 First implementation using VSA/VSG 

I developed many of the working principles, software algorithms and performed 

some of the earlier experiments, such as dynamic microwave heating, using a 

National Instruments (NI) vector signal generator (VSG) and vector signal analyser 

(VSA). The VSA was the NI PXI-5661 model and the VSG used was the NI PXI-5670. 

The devices covered an RF range of 250 KHz – 2.7 GHz.  

The VSA uses a superheterodyne IF architecture and digital IQ downconversion 

using a single channel of a 14 bit, 100 MS/s digitizer. The superheterodyne 

architecture allows it to eliminate sideband images and carrier feed through. An 

expensive and delicate yttrium iron garnet (YIG) preselection filter, tuned 

magnetically, provides high out-of-band and noise rejection at the input. It also has 

very low input distortion and low a noise figure due to high quality passive mixers 

and LNAs. Like most RF instruments it relies on a very low phase noise synthesiser 

referenced to a 10 MHz oven controlled crystal oscillator (OXCO). An OXCO holds a 

quartz crystal at a turning point in its temperature-frequency curve, well above 

external ambient temperature, using a well-insulated oven with thermostatic 

control loop. This provides an accurate PLL reference that ensures low LO phase 

noise below 10 MHz.  

The VSG used a very similar architecture in reverse, a 16-bit 100 MS/s arbitrary 

waveform generator (AWG) with digital upconversion is followed by 

superheterodyne IF upconversion. ‘AWG’ is term used to describe a system 

containing a DAC plus some supporting functionality, generally variable output 

amplification, reconstruction filters, etc., along with a digital triggering and 

memory core that generally supports a range of built-in waveform patterns. Again 

this multi-stage upconversion system is extremely high performance and uses a 

tuned YIG filter for harmonic, spurious and noise rejection. The VSA also contains 

its own high performance LO.  

These instruments together therefore provided an excellent reference – or 

emulator – of the required receiver and transmitter functionality, approximating 
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the performance of an ‘ideal’ radio system from a comparative perspective. 

Although in some ways, their architecture is similar to the direct conversion 

design, the exclusive use of digital upconversion and superheterodyne IF 

architecture means that sideband suppression, LO feed through suppression and 

IQ match are essentially perfect. However, because digital upconversion makes 

incomplete use of the full ADC Nyquist range, both the VSA and VSG have only 20 

MHz realtime bandwidth, which is further limited to only       M   when using the 

onboard signal processing for digital upconversion in the AWG. Furthermore, at a 

total cost of around £28,000, this system is clearly not the basis of any sort of 

competitive technology to the conventional VNA for MRS readouts. 

 

 

Figure 4.21: The NI PXI-5670 VSG (left) and the NI PXI-5661 VSA (right) 

shown withdrawn from the PXI chassis where they are normally mounted 

[35]. 

The instruments are mounted in a chassis that provides their interface, power and 

ventilation requirements. Because they have no display or controls of their own, 

they are known as virtual instruments (VIs), as a user interface must be 

implemented in software on a connected PC. The communication bus used in this 

chassis is known as PXI – hence the devices and chassis are known generally as 

‘PXI instruments’. The peripheral component interconnect (PCI), extensions for 

instrumentation (PXI) form factor, first introduced and standardised by NI in 1998, 

has several major advantages for implementing realtime systems [36]. Firstly, 
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being based on the PCI standard which supports a peak data rate of 133 MB/s, it 

allows very rapid transfer of large amounts of captured data from the digitizer to 

be streamed to a PC for analysis in realtime. Without instruments based on this 

form factor, or its even faster successor PXI express, (PXIe) that supports a peak 

transfer rate of > 1GB/s, implementing this experimental platform for realtime 

resonator measurements would have been impossible. By comparison, the former 

de facto standard general-purpose instrumentation bus (GPIB), IEEE-488 has a 

peak data transfer rate of just 1.8 MB/s. The use of this instrument form factor and 

acceptance of the virtual instrument concept was therefore essential to the overall 

success of the hardware prototype. 

In order to synchronise the instruments properly the signal routing shown in 

Figure 4.22 was used. Synchronisation was done both at baseband and at RF. As 

the VSG and VSA each had separate LOs, and neither instrument supported an 

externally supplied local oscillator, the best RF synchronisation that could be 

achieved was by exporting the 10 MHz reference from the VSG to the 

downconverter. Whilst this ensures the frequencies of the local oscillators are 

locked, it does not guarantee phase coherency. Therefore, a digital signal 

processing approach was necessary to individually phase synchronise the received 

waveforms with the excitation at baseband. To synchronise the baseband, the 

sampling clock of the AWG is exported to the digitizer (ADC), which is 

programmed to accept this externally supplied clock for data conversion. In 

addition, the AWG is set to output a pulse every cycle of the periodic excitation 

signal (using the AWG ‘script’ mode and marker output functionality). This used to 

trigger to each digitizer acquisition. Although there is a fair amount of trigger jitter, 

using this configuration the baseband generated and received waveforms are still 

guaranteed to be synchronous to within less than one sample period, on average. 



Chapter 4 – Hardware 

209 

 

 Figure 4.22: Front panel signal routing used to synchronise VSG and VSA.  

Second implementation using custom RF front end 

The VSA/VSG system was functional, but it suffered from performance issues due 

to the lack of coherency – meaning the system could not take full advantage of 

these instruments’ low distortion and noise performance. Furthermore, the system 

was still a long way from showing that the multitone hardware architecture could 

be realised in an economical and efficient way. The CPF funding was used to 

purchase two NI AWGs (PXI-5422), an NI digitizer (PXI-5122) and an RF signal 

generator (RFSG) (PXI-5652) in order to implement a second hardware prototype.  

The AWGs are single channel, 16 bit, 200 MS/s DACs that include analogue filtering 

and gain control, as well as a synchronisation and memory core (SMC) providing 

waveform memory and scripting functions, trigger and clock routing, as well as the 

same high speed PXI interface. They thus provided I and Q channel DAC 

functionality without necessitating difficult and time consuming digital design or 

FPGA programming. Their LabVIEW drivers provided all the necessary 

functionality to configure and send arbitrary data and configure relevant triggers, 

etc. The digitizer is a 14 bit 100 MS/s two-channel ADC with input amplification, 

filtering and buffering and well as the same SMC and similar functionality. The RF 

synthesiser has a range of 500 KHz – 6.6 GHz and thus provides plenty of flexibility 
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for testing the system with a range of different resonant sensors. This was a major 

improvement over the limited 2.7 GHz upper frequency of the previous 

implementation.  

Initially, an RF front end based on active IQ modulators and demodulators; the 

Analogue Devices (AD) ADL5375 400 MHz-6 GHz evaluation board and the 

ADL5380 quadrature demodulator evaluation board. Additionally, in order to 

drive the balanced inputs of the modulator, two broadband, low-noise, low-

distortion differential amplifiers (Texas Instruments THS4509 also as evaluation 

boards) were used rather than baluns to ensure full modulation bandwidth. Whilst 

these components are miniaturised and have good performance characteristics on 

paper, they were not ideally suited to implement the RF front end. Firstly, due to 

sensitivity to DC input bias variations and temperature, the performance of these 

devices was prone to drift. This made it difficult to apply simple predistortion 

methods from a one-off calibration. In addition, the modulator had poor noise 

performance at high frequencies (noise figure 15.5 dB at 5.8 GHz). Tricky manual 

circuit modifications were also required to alter RF balun for different MRS 

frequency ranges. These issues, and the generally time consuming setup (requiring 

numerous power supplies and DC offset nulling) meant that the IC solution was 

dropped in favour of simpler passive IQ mixers. 
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Figure 4.23: Functional representation of the ADL5375 active IQ modulator 

and ADL5380 active IQ demodulator [37], [38]. 

Identical Marki microwave double balanced passive quadrature mixers were used 

in the final implementation of the system (IQ-1545LMP, Marki Microwave Inc., 

Calif., USA). These mixers had a frequency range of 1.5 – 4.5 GHz, suitable for the 

range of MRSs available for experimental work. The models ordered specified a LO 

drive level of 10 dBm, but were found to perform almost identically with as little as 

6 dBm whilst lowering the output requirements of the RFSG and reducing the LO 

feedthrough at the receiver. The performance specifications of these mixers was 

very good (see below), but at £380 each they were not as cheap as solution as the 

AD active components. However, the simplicity of the RF front end setup and 

reliable, low-drift performance was a boon for experimental testing.  

Table 4.2: Performance specifications of the chosen Marki Microwave double 

balanced quadrature mixers [39]. 

Parameter Minimum Typical Maximum 

Conversion loss (dB)  5.5 7 

Image rejection (dB) 16 25  

I/Q gain mismatch (dB)  0.3  

I/Q phase mismatch (degrees)  3  

LO-RF isolation (dB) 37 43  

LO-IF isolation (dB)  30  

RF-IF isolation  30  
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Parameter Minimum Typical Maximum 

Input 1 dB compression (dBm)  4  

Input third order intercept (TOI) (dBm)  14  

 

In addition to the passive mixers, a resistive power splitter (Mini Circuits ZFRSC-

123+, £60), which uses a slightly unusual design [40] to achieve about 20 dB of 

isolation at an insertion loss of 10 dB (a conventional splitter would have just 6 

dB). Whilst this is not very power efficient, it is compact, provides sufficient drive 

level to the mixers over a very wide frequency range and the additional isolation 

was found to improve the signal distortion levels – probably by eliminating a 

parasitic RF signal path between the modulator and the demodulator LO ports. 

Additional filtering was also included, extra 50 MHz antialiasing LPFs (Mini 

Circuits SLP 50+ £28) as well as DC blocking capacitors (Mini Circuits BLK-89+ 

£12).  

Matching bandpass filters were also used at the RFSG output and in the transmitter 

path to provide harmonic, spurious signal and noise rejection. Various Mini-

Circuits bandpass filters were used for different resonant sensor frequency ranges 

(e.g.,VBFZ-4000-S+ £32). A 3dB pad was placed immediately after the RF output of 

the IQ modulator – this was found to improve signal distortion significantly 

(possibly by attenuating the baseband signal reflected by the filter or resonator). 

This was followed by one or two cascaded 18 dB gain LNAs (Mini-Circuits ZX60-

3018+) depending on the insertion loss of the sensor. Finally, isolators were used 

on the outputs to improve source and load match (Aerotek Co., Thailand), with a 

specified VSWR of 1.4 these gave a noticeable improvement over the mixer VSWR 

of between 2-3, however, they could be eliminated by using a custom mixer 

designed for better RF match, as mentioned above. A photograph showing part of 

the RF front end and the PXI instruments is shown in Figure 4.24. 
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Figure 4.24: Photograph of the second implementation of the multitone 

system using passive IQ mixers.  

 

Figure 4.25: Top-down view of the implemented RF front end with variable 

attenuator used for flatness and predistortion calibration. Two amplifiers are 

shown here cascaded with a 3 dB pad in-between to improve matching. As 

such this front-end is suitable for high insertion loss resonant sensors.  
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Again, careful attention was paid to the ensuring coherency of the transmitter and 

receiver. Because the mixers were supplied with an identical LO signal, RF 

coherence was guaranteed. Both DACs and the two-channel ADC were supplied 

with the same 100 MHz sampling clock. The functionality to divide this clock signal 

frequency in a phase coherent way was not provided on the instruments, thus the 

AWGs were run at half their maximum sampling rate of 200 MS/s. The accurate 

and low-phase noise OCXO-derived 10 MHz reference signal from the RFSG was 

used to phase lock the sampling clock of the AWGs and ensure the sampling jitter 

was minimised. Finally, a waveform marker signal was used to trigger the 

waveform acquisitions in the digitizer. These measured ensured the transmitted 

and received signals were phase synchronous to with a fraction of a degree, much 

better than that possible with the previous system. Therefore, no additional 

software processing for synchronisation was necessary. 
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Figure 4.26: Front panel signal routing to ensure full phase synchronisation 

between the baseband and RF instruments.  

The total noise figure of this system can be calculated by considering the cascade of 

all the RF system components. The combined IQ SNR at the output of the DAC can 

be estimated to be about 3 dB higher than that due to a single DAC’s quantisation 

noise, assuming the noise adds in an uncorrelated way. The signal to quantisation 

noise (SQNR) is given by the following equation:  Q R                   

where N is the number of bits and FdB is the crest factor of the generated signal 

(assumed to have amplitude equal to the full-scale range (FSR) of the DAC). The 

noise figure of the system is given by the classic cascade equation:  

         
    

  
 

    

    
      4.8 

For the implemented RF front end with single amplifier, the worst-case calculated 

noise figure is about 15.7 dB for a resonator insertion loss of 10 dB, and 14.4 dB for 

an insertion loss of 6 dB, when using a single 18 dB gain RF amplifier at the 

transmitter after the mixer. This is dependent on the conversion loss of the mixers, 
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although no single component is truly dominant in the calculation. This results in a 

combined SNR at the receiver ADC of about 79-81 dB for a signal with a crest factor 

close to a sine wave, and is thus comparable with the 14-bit ADC’s own 

quantisation noise of 81 dB. However, the received signal will rarely be exactly 

equal to the FSR of the ADCs in the implemented system as there is no automatic 

gain control. In the system with one RF amplifier, the total path loss is      for a 10 

dB insertion loss resonator. The maximum baseband amplification setting within 

the digitizer is 20 dB, so this path loss can be easily made up. Thus, the actual 

received signal SNR is typically dominated by the SQNR of the input ADCs. From 

this point of view, the implemented system can be considered to have more than 

adequate noise performance. 
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4.6 Optimisation of VNA measurements for 

realtime MRS readout 

Although the above discussion criticised the VNA, in situations where cost, space, 

and power consumption are of no importance, and fast sampling (> 100 Hz) is not 

required, the VNA represents an extremely accurate and highly flexible, if 

somewhat redundant, platform for a MRS readout system. However, optimising a 

VNA for realtime MRS measurement is not a trivial task; these instruments are not 

designed with realtime measurements as a primary concern. In order to provide a 

fair performance comparison for the new hardware systems developed in this 

work, a parallel aim was to achieve the best possible performance out of existing 

mid-range VNAs. I developed procedures and control software to operate an 

Agilent E5071B and a Rohde and Schwarz ZVL, each costing approximately 

£20,000, in a mode suitable for dynamic MRS applications. Not only was this 

project valuable as a comparison, it has also proven useful for a number of other 

research projects that require high accuracy dynamic MRS measurements.  

Optimising a VNA-based system means maximising the noise spectral density of 

the resonator measurements, i.e., the total error per second or ‘precision-per-

point’. The MRS sampling period is the time between successive measurements of 

resonant frequency, permittivity, etc. By definition, ‘realtime’ means that 

processing must not be ‘offline’ but run continuously, as a minimum resonant 

frequency and bandwidth should be output at the intended measurement rate. 

Whilst most modern VNAs include very basic processing for resonant frequency 

and 3 dB bandwidth, this method based on discrete ‘marker’ interpolation 

performs poorly compared to curve fitting, as discussed in [41] (elaborated on in 

Section 5.3.1 which discusses curve fitting), especially as the number of sweep 

points decreases. Therefore, realtime VNA measurements require some additional 

processing on top of that performed by the VNA as standard. Furthermore, if this 

processing and data collection is performed on an external PC (the method chosen 

for all this work), there will also be a finite time required for the transfer of the 

VNA spectral data. Therefore, the total measurement period will be given by the 
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sum of the sweep time, internal processing time, data transfer time and external 

processing time. 

  

Figure 4.27: Non-pipelined VNA measurement timing. 

Note that some slack time is necessary because all PC-based processing, as well as 

the data transfer, are nondeterministic and thus subject to some variability. This is 

one fundamental issue with VNA measurements, what can be thought of as 

sampling jitter. If VNA measurements are simply configured to run as fast as 

possible (by the VNAs internal timing) then the actual sample time when the 

resonance is measured is subject to a lot of jitter, something that was found 

experimentally. This is disastrous if important information is represented by the 

temporal axis. The capillary filling experiments, discussed in the Experimental 

Verification chapter, are an example of this. A partial solution that makes a big 

improvement to sampling jitter is to use an external sweep trigger, an external 

signal generator configured to output a square wave or regular pulse at a known 

frequency. In these and all subsequent experiments the VNA was triggered using a 

synthesised function generator (Agilent 33220A) set to output a repetitive trigger 

signal at a frequency controlled by the PC. 

Another improvement in timing efficiency was made possible through adopting a 

pipelined architecture. Using LabVIEW’s built-in multithreading capability allowed 

the process thread handling the data transfer from the VNA that to run in parallel 

with the data processing thread. This not only eliminated the additional processing 

time (i.e., curve fitting) from the total measurement time, but also by further 
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concatenating several measurements together and processing them as a block, the 

impact of one-off overhead delays, such as the saving of data to file, could be 

minimised. The two loops were synchronised using a FIFO buffer (known as a 

queue structure in LabVIEW) allowing data to be transferred between threads 

without risking a software race hazard. Data streaming from the VNA was also 

handled in an innovative way. It was found that using the standard method to 

ascertain whether new data were ready (polling the VNA’s status register) caused 

an undesirable overhead. Thus, the software used a ‘quick and dirty’ method 

instead. Data were streamed continuously at maximum rate and compared with 

the pervious iteration. Due to inevitable noise and time-variation, new data are 

invariably different from old, allowing the control program to establish that a 

sweep was complete and so add the new data to the buffer. These programming 

developments all helped improve the maximum readout rate and achieve truly the 

highest possible measurement rate. 

 

Figure 4.28: Pipelined VNA measurement timing. 
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Figure 4.29: LabVIEW virtual instrument (VI) for pipelined VNA realtime 

readout with curve fit processing and streaming to file. 

Due to these improvements, and the fast data transfer rate of the USB 2.0 control 

interface (the highest bandwidth instrumentation bus supported by the VNA), at 

all but the quickest sampling rates (T > 50 Hz), the VNA sweep time dominates the 

total measurement period. To optimise temporal MRS measurements further, 

therefore, it is necessary to focus on the factors that determine the sweep time and 

how these affect the dynamic accuracy of measurements. In other words, for a 

given accuracy, what is the shortest sweep time (ST) that can be achieved? 

The architecture of VNAs has been discussed in some detail above. The key 

parameter that determines the dynamic range of spectral measurements is the IF 

filter bandwidth (IFBW), also called the resolution bandwidth (drawing a 

comparison to spectrum analysers). On modern VNAs this is implemented by a 

digital filter which can be varied in bandwidth as desired with a simple software 
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change. Assuming the input has a white noise distribution (valid outside of limiting 

phase noise), e.g., thermal noise spectral density,                  , and is 

terminated in a matched load, then the noise power density measured at the 

receiver,                        m     at 20°C. Thus, the SNR of a 

scattering parameter should be proportional to the IFBW. However, using a 

narrower IFBW increases the measurement time per point. Fundamentally, this is 

because of the relationship between time and frequency – the Heisenberg-Gabor 

limit [42]. This says that, for a given accuracy, a narrower bandwidth requires a 

longer ‘integration time’ and vice-versa; mathematically,     , where W is the 

bandwidth, T is the sampling interval and U is some uncertainty constant.  

Thus to achieve a real reduction in noise by a factor of 10 not only implies a 

decrease in IFBW by a factor of 10 but also an increase in ST by the same factor. In 

practice, however, the digital filtering method is not perfect and has certain 

overheads associated with it. This means that the ST does not increase in 

proportion to decreasing IFBW but rather ‘saturates’. Another way of looking at 

this is that a reduction in IFBW by 10 does not always increase ST by 10. This how 

manufacturers see it because it sounds better. Agilent provide a handy application 

note [43] that summarises these issues and the impact of IFBW and vector 

averaging on both noise floor and sweep time (see Table 4.3). This shows that, 

from the noise floor point of view, it is more time-efficient to reduce IFBW in 

preference to increasing vector averaging, however this advantage becomes 

insignificant towards the narrowest IFBWs. All modern VNAs should show a 

similar trend, although the exact figures will vary. 

Table 4.3: Comparison of noise reduction and sweep time for the Agilent PNA, 

ordered by increasing sweep time [43]. 

IFBW Averages 
Noise floor 
reduction 

Relative sweep time  

10 KHz 0 0 dB 1 

1 KHz 0 10 dB 7.75 

10 KHz 10 10 dB 10 

100 Hz 0 20 dB 74.8 
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IFBW Averages 
Noise floor 
reduction 

Relative sweep time  

10 KHz 100 20 dB 100 

10 Hz 0 30 dB 740 

100 Hz 10 30 dB 748 

1 Hz 0 40 dB 7443 

100 Hz 100 40 dB 7480 

 

This answers one part of the question – avoid averaging for preference over IFBW. 

But how to choose the best number of points for a given accuracy? To get a better 

practical understanding of this, this fast VNA setup was used to measure a 

nominally static cylindrical TM010 mode cavity resonator held at approximately 

35°C using a warmplate (Minitube HT50). Different numbers of sweep point and 

IFBW were used and Lorentzian curve fitting was used to estimate resonant 

frequency and bandwidth in the realtime LabVIEW control program. The VNA was 

triggered by 1 KHz square wave, effectively instantaneously. The inter-

measurement delay was measured using a software millisecond timer and, when 

averaged, gives a fair approximation to the maximum possible measurement rate 

under these settings. Recordings of resonant frequency and bandwidth deviation 

were made over a 1000 sample window. In order to assess measurement 

repeatability (precision), the average absolute forward finite difference (i.e., the 

point-to-point deviation (PPD)) was calculated over the 1000-sample set for each 

IFBW-points combination. This statistic was chosen rather than the variance, 

absolute deviation, etc., as the derivative minimises sensitivity to natural drift due 

to temperature, etc., whist still giving a good practical measure of variability:  
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The measurement speed results show that there is a significant overhead 

(probably the data transfer to the PC over USB) that causes the period to bottom 

out at around 6.5 ms. The fastest possible measurement rate with this system is 

therefore around 150 Hz. The period decreases slowly, crossing the 10ms 

threshold diagonally across the IFBW-points plane, as shown in Figure 4.30. At 

higher IFBWs, the measurement period increases roughly with its square, as 

expected. However, the measurement period does increase linearly with the 

number of sweep points, again probably due to overheads in instigating the sweep 

and establishing communication with the instrument. 

 

Figure 4.30: Optimised VNA measurement period for various IF bandwidths 

and number of sweep points. 

Whilst the above graph would seem to suggest that more points is preferable to 

lower IFBW from a measurement time point of view, the repeatability data show 

that the number of points has almost no effect on the measurement precision. In 

fact, the optimum number of points appears to be reached by seven. After this, the 

measurement repeatability actually gets slightly worse. However, the repeatability 

is roughly proportional to the square root of the IFBW in both resonant frequency 
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and bandwidth. Therefore, the lowest IFBW should be used that still allows the 

desired measurement rate. The smallest possible repeatability with this VNA and 

resonator seems to be around 20 Hz. Considering that the resonant frequency of 

this sensor was 3.48 GHz, this represents a repeatability of 5 parts per billion 

(ppb) in resonant frequency and about 70 parts per million (ppm) in bandwidth 

for this resonator and VNA readout combination. This is extremely stable, 

indicating that MRS systems like this would be very useful for low noise sensing 

and precision control applications where absolute accuracy is not as important as 

noise. If the MRS system could be made cheaply enough, this advantage alone could 

give the technique mileage over traditional sensing methods in industrial control 

applications. 

 

Figure 4.31: Average point-to-point standard deviation in estimated resonant 

frequency values over 1000 consecutive samples. The peak is an outlier, but 

considering the 1000 averages might be caused by the presence of spurious 

signals in the IF receiver at a specific sweep frequency under those settings.  
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Figure 4.32: Average absolute point-to-point standard deviation in estimated 

bandwidth values over 1000 consecutive samples.  

Repeatability is not the only aspect of measurement, however. If the estimated 

values are compared, it is apparent that there is some bias in the measurement 

with the number of sweep points (although not with IFBW). This is likely due to 

the simple but imperfect Lorentzian fitting algorithm, as discussed in the Software 

section. As the number of points is increased, estimates of bandwidth and resonant 

frequency seem to converge, assumedly to their ‘true’ values. It can be concluded 

that a reasonably large number of points is needed to ensure bandwidth estimates 

are unbiased (i.e., accurate). With just a few points, this bias can be as high as 25% 

in bandwidth and 0.05% in resonant frequency, orders of magnitude higher than 

the precision. Note that the span used was the same in each case, so this bias is 

caused by sweep frequency resolution rather than coverage of the resonator 

spectral response.  

Whilst this bias is probably constant (and would be cancelled in a differential 

perturbation measurement), this assumption is not definitive and cannot really be 

tested, as a perfectly repeatable perturbation does not exist. It is therefore wise to 
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mitigate the worst of the bias by over-specifying the number of points, at the 

expense of measurement rate. 

 

Figure 4.33: Apparent measurement bias in bandwidth measurements.  

 

 

Figure 4.34: Apparent measurement bias in resonant frequency.  

To summarise this section, software and techniques were developed to make VNA-

based comparison measurements of MRS resonant frequency and bandwidth, 

optimised for speed, precision, and accuracy. External triggering mitigates 

sampling jitter and software pipelining reduces processing and transfer overheads. 
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IFBW was found to be crucial to measurement performance and should be 

minimised. Furthermore, the number of points should be carefully chosen to 

balance measurement rate against potential bias. 
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4.7 Static system noise comparison 

To compare the measurement precision of the multitone system to the optimised 

VNA measurement, an experiment was designed to determine the levels of 

measurement noise present on a nominally static resonator. The experiment 

revealed some unexpected facts about resonator measurements in general, 

showing that the major source of noise in MRS systems below about 10 Hz appears 

to come from thermal fluctuations rather than the readout system – either VNA or 

multitone. The experiment further verified that the multitone system has 

comparable static performance to a VNA. The experiment also led to an interesting 

possibility. The precision of MRS measurements could be improved through 

perturbation signal modulation and ‘lock-in’ techniques. This could potentially 

make temporal MRS measurements useful for metrological as well as existing 

dynamic applications. This could be achieved by ‘chopping’ a sample perturbation 

on and off (e.g., by mechanical removal and replacement). 
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Figure 4.35: Experimental setup for the VNA and experimental multitone 

system static testing experiments. 

An existing compact cylindrical resonator was measured at its 3.48 GHz TM010 

mode. The resonator was mechanically very robust and was precision machined 

from copper. The thick walls and high thermal conductivity of copper ensures that 

temperature fluctuations should cause minimal thermal expansion and 

contraction. There were no dielectric materials in the cavity, so the effect of 

thermal expansion on resonant frequency could be easily predicted. The resonator 

was placed on a warmplate (Minitube HT50) with thermostatic control set to 40°C. 

The hotplate and resonator were surrounded by a 5 cm thick insulating foam layer 

and the joins were sealed with aluminium tape.  
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Figure 4.36: Photograph of the two halves of the cylindrical resonator used 

for these experiments. This method of construction ensures that the radial -

longitudinal TM010 mode currents are not forced cross the join – preserving a 

high conductor Q. 

Phase noise in the local oscillator of any MRS readout method is theoretically 

impossible to separate from a ‘real signal’. Furthermore, if locked to the same 

absolute frequency reference, two different MRS readout systems for estimating 

resonant frequency should read the same if there is no measurement bias. 

Therefore, in order to ascertain better the source of the measured noise and 

compare the accuracy of both systems, a 10 MHz Rubidium atomic clock reference 

(GPS-89, Spectracom, NY, USA) with global position system (GPS) lock was 

obtained. This was used as an alternative reference to which the PLL of the local 

oscillators in both systems could be locked.  

Rubidium frequency references lock to a known hyperfine transition at 6.834 682 

610 904 324 Hz [44]. Optically pumped electrons of a 87Rb plasma undergo a 

hyperfine transition when excited with microwaves at this frequency, causing a 

small change in the optical absorbency of the Rb vapour that can be detected using 

a photo cell. This shift in absorbance is used to tune a microwave synthesiser, 

which is then divided down to produce the 10 MHz standard used to discipline 

other oscillators. Rb oscillators are one of the cheapest precision timing sources 

available, and the technology has been miniaturised quite successfully – 

Symmetricom manufacture a miniature Rb oscillator just 40 x 35 x 11 mm, 

weighing only 35 g and consuming less than 120 mW [45]. When combined with 

the 1 pulse-per-second GPS signal derived from the orbiting Caesium atomic clock 

ensemble, frequency stability can be guaranteed be          parts over periods 
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ranging from one minute to days and          parts over periods from one 

second to one minute. 

The VNA was configured as described above using an external trigger and 

LabVIEW realtime control, however raw spectral data were collected rather than 

being converted to resonant frequency on-line. This was to investigate the noise on 

both the raw scattering parameter estimate and the resonant frequency separately. 

A full 2-port short, load, open, through (SLOT) calibration was performed prior to 

measurements, extending the reference planes to the resonator coupling 

structures (made from bulkhead SMA connectors terminated in magnetic loops). 

As this was a long-term stability study, the measurement sample rate was set to 10 

Hz and the IFBW 10 KHz. While not the fastest possible sample rate, it was chosen 

to demonstrate a good compromise between precision and speed and to avoid 

generating too much data over the run (even so, the uncompressed measurement 

file was over 1 GB). Over half a million samples were collected for each experiment, 

an average run time of about 15 hours.  
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Figure 4.37: Example of the noise measured in resonant frequency (top) and 

bandwidth (bottom) over a 3-hour period using the VNA. 

A multitone readout system based on the second hardware implementation was 

set up for narrowband measurement using digital upconversion around     . A 32 

tone, 256-sample excitation was used, giving a spectral coverage of 12.5 MHz 

centred on resonance. As the insertion loss of the resonator was quite low, a single 

RF amplifier was used at the transmitter side to ensure the baseband signal 

amplitude made efficient use of the ADC code range, maximising the signal to 

quantisation noise ratio. Since the resonator was assumed stationary, a simple 

FFT-based spectral estimation algorithm (discussed in the Software chapter) was 

used to estimate the power spectral response from 256 successive averages to 

which a Lorentzian function was fit. This allowed the system to acquire the data, 

compute the spectrum and perform the curve fitting within a 20 ms time period 

whilst still guaranteeing real-time operation with no missed samples due to the 

fetch bottleneck. However, the number of samples collected per second with the 

multitone system is                M  s, whereas the maximum that could 

be collected is clearly 100 MS/s if all the data could be processed. This represents 

an information utilisation of just 3 %.    
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 Figure 4.38: Example of the noise measured in resonant frequency (top) and 

bandwidth (bottom) over a 3-hour period using the multitone system. 

Although these measurements were taken at different times, the experimental 

setup used for each readout system was identical. The same signal in resonant 

frequency is present in two independent measurement systems, regardless of 

whether they were locked to the Rb oscillator, so it could not be an artefact of the 

measurement system. Although the bandwidth noise on appears to be worse with 

the multitone system, it also samples 5 times quicker – noise power spectral 

density (PSD) was thus used to make a sample rate independent comparison. 

To post process the VNA data, 1000 samples randomly selected from the whole 

dataset of spectral data were used to fit an 8-term complex-domain resonator 

model (this is elaborated on in later experiments). The parameters from this model 

were used to derive estimates for the resonator constants    and   , which were 

applied to correct the rest of the spectral data before doing a simple 3-term 

complex-domain fit. This eliminated the effects of coupling reactance and the 

electrical length of the coupling structures in order to provide a very accurate 

absolute reference by which to compare the multitone system measurements.  
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Figure 4.39: Example of K0 and K1 normalised data over 1000 randomly 

selected data points, with 3-term fit shown in grey. The correlation between 

real and imaginary scattering parameter is evident from the scatter of 

individual points (blue). 

In order to investigate the nature of the measurement noise, power spectral 

density (PSD) estimates were made for the deviations in both resonant frequency 

and bandwidth (the relative errors):  

       
           

     
                                         

           

     
 4.10 

The sample mean was used to estimate the expected value in each case. Thomson’s 

multitaper method [46] was applied to DFT estimates over a logarithmic frequency 

grid derived using the Goertzel algorithm [47]. This method, which uses optimal 

frequency-domain tapers based on the orthogonal Slepian sequences, is a highly 

optimal, low bias spectral estimator for stationary ergodic random processes, an 

appropriate assumption in this case. The logarithmic frequency spacing is 

convenient for visualising noise behaviour over a range of time scales.  
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Figure 4.40: PSD of resonant frequency fluctuations measured with a VNA. 

The blue curve is with the Rb oscillator lock, red internally referenced.  

 

Figure 4.41: PSD of resonant frequency fluctuations measured with the 

multitone system, the light blue curve is without Rb oscillator lock, dark blue 

with. Red is the VNA measured PSD for reference.  
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Figure 4.42: PSD of bandwidth fluctuations measured with a VNA. The blue 

curve is with the Rb oscillator lock, red internally referenced.  

 

Figure 4.43: PSD of bandwidth fluctuations measured with the multitone 

system, the light blue curve is without Rb oscillator lock, dark blue with. Red 

is the VNA measured PSD for reference. 
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The power spectral density analysis is intriguing. The    noise appears to be 

relatively flat, and extremely low (one part per billion corresponds to a standard 

error of        ) on timescales shorter than about 5 seconds (0.2 Hz). Between 

about 0.01 Hz and 0.1 Hz the spectral slope is approximately         ec. This 

would be consistent with close-in local oscillator phase noise or filtering by a long 

time-constant first order system. At very low frequencies the spectrum tends to a 

    distribution, or         ec. Furthermore, the results with and without the Rb 

oscillator imply that low frequency oscillator phase noise does not cause the 

resonant frequency fluctuations; there is no statistically significant difference 

between the power spectra measured with and without it. Some improvement is 

seen in bandwidth measurements, however, probably due to the improved noise 

floor brought about by the better short-term phase noise of the Rb oscillator 

reference. This suggests that the only significant effect of phase noise is its 

conversion to uncorrelated amplitude noise in the spectral measurements, rather 

than causing apparent shifts in resonant frequency. 

In comparison, the PSDs of the VNA and multitone system are very similar – 

showing that the multitone readout precision is comparable to the VNA throughout 

the input frequency range. The multitone system PSD extends to a higher 

frequency because it has a higher sampling rate (50 Hz as opposed to 10 Hz). 

There is a small discrepancy in    noise at about 0.2 Hz, however, this is on the 

scale of the 95 % confidence intervals for these spectra (around         ). There 

is a peak difference of about 10 dB in bandwidth noise, however, in the 0.01-0.1 Hz 

range when the multitone system is not locked to the Rb oscillator. The fact that 

this coupling appears to go away when the Rb oscillator is used is curious. Judging 

by the increased signal seen in this region as well, the cause of this can be put 

down to noise coupling between frequency and bandwidth, i.e., some of the 

resonant frequency fluctuations are being coupled to the bandwidth dimension. 

Although some natural correlation is expected, the discrepancy suggests that, in 

the multitone system, this may be caused by coupling between the I and Q channels 

– i.e., AM to PM conversion. The most significant causes of this effect are 

quadrature mismatch and nonlinearity. Hence, the poorer linearity of the 
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multitone system is causing more resonant frequency fluctuations to be converted 

to bandwidth fluctuations than in the VNA. Although the effect is small in 

magnitude, it could be prevented by correcting (or predistorting for) quadrature 

errors and nonlinearity (a topic covered in more detail in the Chapter 5). 

In order to explore the nature of the noise source further, more statistical 

information was computed. The Pearson correlation coefficient [48] is a measure 

of linear relationship between two random variables. For measuring the 

correlation between two vectors, such as the vector of scattering parameter 

estimates against frequency, the Pearson correlation matrix can be derived by 

scaling by the diagonal of the individual vector covariance matrices,    :  

     
 

   
 

       

         
 
        

         

 

   

  4.11 

this gives a matrix where the diagonal is unity and the off-diagonal elements vary 

between    (perfect negative correlation) and    (perfect positive correlation. 
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Figure 4.44: Pearson correlation matrices over the measured spectrum for 

linearly de-trended VNA data over 30 seconds (top row), and 30 minutes 

(bottom row). Dark blue represents perfect negative correlation,     , and 

dark red being perfect positive correlation,     . On the left of the row is the 

correlation between frequencies in the real  part of the spectral response, in 

the middle is the correlation between frequencies and between real and 

imaginary, and on the right is the correlation between frequency in the 

imaginary part of the spectral response.  

Each set of corresponding pixels over the three images in a row corresponds with a 

2×2 covariance matrix in the real and imaginary scattering parameter dimensions:  

        
     

     
     

     
                 4.12 
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m being the number of frequency sweep points and R and I denoting        and 

      , respectively. These many covariance matrices each have an equivalent 

‘uncertainty ellipse’ in the complex plane. This was touched upon in the 

Applications chapter when looking at previous work on kinetic inductance 

detectors. The uncertainty ellipse is an accepted way of visualising the correlation 

between measured noise sources in these resonant sensors. The above approach, 

with three separate Pearson matrices, generalises this analytic approach to 

multifrequency measurement (which kinetic inductance detector readouts do not 

use, in general, hence this method has not been considered previously). 

According to this analysis, there is a very high degree of correlation between 

adjacent frequency points on the resonance curve, and that correlation increases 

over longer periods. The change in sign of the correlation in        marks the 

resonant frequency, and two changes in correlation sign in        mark the 3dB 

bandwidth. Even on the 30-second time scale, there is a very high correlation 

between adjacent imaginary parts of the scattering parameter within the resonator 

bandwidth. This is consistent with small changes in resonant frequency, since the 

change in        is proportional to a change in resonant frequency to first order, as 

shown in the Theory section by Taylor series expansion. Over large time scales, 

there is generally a very high correlation over the entire spectral response. The 

structure of these correlations confirms that the fluctuations measured in resonant 

frequency are not due to noise in the receiver. This would not cause correlations 

between frequency points, even if it might cause correlations between the real and 

imaginary scattering parameter estimates. This further supports the hypothesis 

that, on a time scale of minutes and above, the measurement noise is dominated by 

small variations in resonant frequency arising naturally in the resonant sensor 

itself. 

There is a clear signal with a period around 1.5 minutes, visible on the resonant 

frequency vs. time trace and on the noise power spectral density graph. Some 

variation from measurement to measurement is seen. After eliminating the 

measurement systems as an explanation, this had to be due to the warmplate 

thermostatic loop. The triangle-wave like heating and cooling cycle caused by its 
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hysteretic switching control method. As this control loop was specified to keep the 

temperature nominally within ± 0.1°C, this peak-to-peak variation of about 3 KHz 

represents the resonant frequency change corresponding to around a 0.1 K 

temperature variation. Temperature changes cause cavity resonators to expand 

and contract, changing their electrical dimensions and therefore resonant 

frequency. The thermal expansion coefficient of copper at 40°C is       ppmK   

[49]. The resonant frequency and bandwidth for this air-filled TM010 mode 

resonator are given by the following expressions, derived from the analytical 

solutions of the Helmholtz wave equation in cylindrical coordinates: [18]  

    
  

 
         

  

  

     

    
 

  
  

        
 

   

  
 
 

             
   

    
    4.13 

where      mm is the cavity radius,   is the speed of light,                   

is the conductivity of the cavity walls,           and          are constants, 

and                is the permeability of free space. Thus, both bandwidth 

and resonant frequency are inversely proportional to the cavity radius. Also, by the 

definition of thermal expansion, the change in radius for a given change in 

temperature,          . Theory thus predicts that the peak-to-peak deviations 

in resonant frequency are about     
     K   for a temperature variation of 0.1 

K. This agrees quite closely with the observations – suggesting if anything that the 

true temperature variation over the heating and cooling cycle is slightly less than 

0.1 K. 

Based on this quite significant change with temperature, it is logical to estimate 

what the effect random temperature fluctuations might have on the measured 

resonant frequency and bandwidth. Using Equation 3.88, combined with the above 

expressions, the variance of the noise induced in resonant frequency and 

bandwidth due to thermal fluctuations in a TM010  mode resonator is given by:  
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4.14 

where   
  is the variance of the random temperature fluctuations. Whilst 

temperature induced variance in bandwidth is predicted to be negligible, a 

significant correlation,      
, between bandwidth and resonant frequency is 

expected due to temperature fluctuation.  

Based on the magnitude of the thermal noise predicted above, combined with the 

        ec trend in the noise spectral density on the minute time scale, it implies 

that the source of the noise is random temperature fluctuations that are filtered by 

a long thermal time constant – i.e., the combined the thermal mass of the resonator 

and metal hotplate. The filtering effect comes from applying Newton’s law of 

cooling by convection:  

 
     

  
  

  

   
       4.15 

which states that the rate of change of temperature with time is proportional to the 

convective heat transfer coefficient  , multiplied by the body’s surface area   

divided by the body’s specific heat capacity    times its mass   (the body being the 

combined resonator-hotplate thermal system in this case).       is the thermal 

gradient between the body and the environment. Thus if the environmental 

temperature is considered to be random white noise, and the system time constant 

         is large, it will act as a first order low pass system with a low cut-off 

frequency; the roll-off from which is         ec.  

This provides an explanation for the measured noise in resonant frequency, and 

gives weight to the conclusion that the flat, white noise section represents the 

measurement system noise floor whereas the      noise is generated by thermal 

fluctuations in the resonant sensor. This demonstrates that the new MRS 

measurement system is intrinsically capable of resolving part-per-billion changes 
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in resonant frequency – about 180 dB or 30 bits of dynamic range – at 1 Hz rate. 

Since the measurement noise appears to be white, this figure should decrease by 

10 dB for each 10   in sampling rate. Furthermore, if the multitone system was 

able to achieve 100 % sample utilisation instead of the 3 % currently possible, this 

figure could theoretically be improved by 15 dB, assuming the white noise 

distribution continues at higher frequencies. Few sensors and sensor readout 

systems can boast this intrinsic level of precision; as it stands this is          

more dynamic range than cutting-edge optical image sensors, for example [50], 

[51]. This is why the MRS technique is desirable as a means to make astronomical 

detectors using microwave kinetic inductance detector arrays.  

Converting this precision to that of the desired measurand estimate is evidently 

application-specific; however, based on a simple linear conversion, and assuming 

that the maximum possible signal is limited to the 100 MHz bandwidth of the 

multitone system, this translates to a dynamic range, e.g., for real permittivity, of 

150 dB – around 30 parts-per-billion (ppb), or 25 bits. If the noise statistics for 

bandwidth are assumed to be constant, and the largest bandwidth practically 

measurable is around 50 MHz (a factor of 100 more than this sensor has when 

empty), this implies that the dynamic range for bandwidth perturbation (e.g., 

imaginary permittivity) is around 140 dB – around 100 ppb, or 23 bits. However, 

when the bandwidth is time-varying, the situation is complicated by the fact that 

the SNR is proportional to the insertion loss and therefore (approximately) 

inversely proportional to bandwidth, a situation known as heteroscedasticity 

(amplitude-dependent statistics). Thus, at the largest bandwidth practically 

measurable this would result in 40 dB degradation in the noise floor and hence 

dynamic range. Thus at maximum bandwidth perturbation the resonant frequency 

perturbation dynamic range could be reduced to 110 dB, and 100 dB for 

bandwidth perturbation. Fortunately, the noise present on the multitone system is 

limited by the input ADC quantisation noise. This situation could therefore be 

alleviated to some degree by using a baseband variable gain amplifier (VGA). 

The above discussion ignores thermal noise, so for longer measurements the 

resonant sensor would need to be perfectly thermally stabilised throughout a 
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measurement to achieve the same precision. However, such thermal stability is 

difficult to achieve in practice, especially over long periods. This raises an 

interesting possibility. If the main source of noise is thermal fluctuations, and it is 

possible to control temperature variations adequately enough to limit this noise to 

low frequencies, it makes a lot of sense to modulate the input to the sensor at a 

frequency above this cut-off point. Judging by these data and the level of thermal 

fluctuations of this resonator, such a frequency would be about 0.1-1 Hz in this 

case. This is a key insight to arise out of this work. 

Whist it is difficult to generalise, it is likely that most resonant sensors without 

specific sensitivity to known sources of noise are dominated by thermal expansion-

contraction noise, making this conclusion of general significance. Examples of 

other intrinsic sources include microphonics (vibration) in the case of microwave 

microscope sensors, or two level system fluctuations at the substrate-metal 

interface in the case of MKIDs. This also implies that, without good reason to do 

otherwise, simple and robust metal cavity resonators should be preferred to more 

complex sensor designs from a precision point of view. 

In smaller resonators with a correspondingly shorter thermal time constant, or in 

less well controlled environments having higher thermal fluctuation, this ‘knee’ in 

the noise PSD would be shifted to higher frequencies, making higher speed 

sampling a necessity. This is an unexpected application of the fast-sampling 

multitone system. Faster sampling could possibly increase the dynamic range of 

nominally ‘static’ metrological measurements, making the multitone system 

appealing in a general laboratory setting as well as in specific high-speed sensing 

applications. 
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5 Software 

Moving to an SDR architecture for MRS readout results in a higher flexibility and 

lower cost by exchanging analogue complexity in favour of DSP. The software 

algorithms that facilitate and enhance measurement performance of such a system 

are therefore crucial to the success of this approach. This chapter is thus devoted 

to the development and testing of the multitone measurement system software. 

In the Theory section, the sensing process is represented as a multistage model, 

linking measurand to eigenvalue, eigenvalue to scattering parameter, scattering 

parameter to time-domain voltages. The software must unravel these processes, 

one by one, in reverse; this chapter is organised in this way, too. With hardware 

now capable of generating and receiving broadband, multifrequency signals, 

Section 5.1 looks at the task of estimating the spectral response from their time 

domain measurement. In order to keep the system simple, spectral estimation 

must rest on the assumption that the excitation is perfectly known. Thus, Section 

5.2 ensures this is not a far-fetched assumption by looking at ways to use software 

to correct for the imperfections in the signal generation process.  

Once a good spectral response is available, the next step is to turn it into an 

eigenvalue. Section 5.3 discusses how to go about this, from simple, tried-and-

tested methods like curve fitting, through to novel, non-parametric methods 

suitable for the very fastest MRS readout rates and implementation on embedded 

processing platforms such as field-programmable gate arrays (FPGA). 
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5.1 Spectral response estimation 

Without a sufficiently accurate and low noise estimate of the resonator spectral 

response, no amount of signal processing will be able to produce measurements 

with instrument quality precision. Therefore, the first and most important issue to 

be addressed in this chapter is how to exploit best the powerful broadband signal 

generation and measurement capability of the SDR system to produce an accurate 

resonator spectral estimate – ideally in a fraction of the time required by 

traditional methods.  

As discussed extensively in the Theory chapter, the response of a microwave 

resonator to voltage wave excitation can be accurately modelled parametrically, 

including a number of real-world imperfections such as coupling reactance, 

electrical length of connecting lines and finite receiver directivity. This spectral 

response is well approximated as a linear system, as long as distortion in the 

transmitter and receiver is minimised. The task of estimating parameters for a 

linear system from excitation and response signals is known as linear system 

identification. The theory of linear system identification therefore underpins this 

section, so a short introduction will be given in Subsection 5.1.1.  

Spectral response estimation is divided into three topics that were tackled through 

a combination of simulation and experimentation. The generation of excitation 

signals (mathematically, as opposed to physically) is covered first in subsection 

5.1.2. Simple, non-parametric, stationary estimation of frequency response using 

Fourier transforms is then discussed in subsection 5.1.3. Finally, the use of 

adaptive filters for high-speed, dynamic response estimation, both for non-

parametric and parametric spectral estimation, is introduced in subsection 5.1.4. 

5.1.1 Linear system identification 

The microwave spectral response of the resonator is the voltage wave response to 

voltage wave excitation as a function of frequency. This response is linear, i.e., it is 

not a function of voltage itself, only frequency. Although certain materials 
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encountered in MRS measurement, such as ferrites, ferroelectrics, and 

superconductors, can show nonlinearity, the microwave excitation power can be 

normally reduced to a level where this is insignificant. Most resonant sensors, in 

fact, being high quality passive devices made from pure metallic conductors and 

the best dielectrics, are likely to be the among the most linear devices encountered 

in microwave measurement.  

This linearity assumption is key to allowing multifrequency signals to be used as a 

measurement excitation. If a single frequency,   , is applied to a system with 

nonlinearity, the harmonics generated will be at multiples         , etc. These can 

be rejected quite easily by an appropriate preselection filter at the input of the 

receiver. However, if a multifrequency signal is passed through a nonlinearity, 

distortion will be generated in-band (i.e., at the same frequencies as used for 

excitation). This cannot be filtered away. Thus, the assumption of linearity of the 

microwave sensor system is not merely a mathematical abstraction but a 

necessary condition for the use of an excitation consisting of multiple frequency 

components. 

Whilst the sensor itself may be linear, the system identification algorithm must 

take place in the digital domain. Therefore, there are several nonlinear 

components in the signal chain linking the digital world to the RF world and back 

again (see Figure 5.1). The following discussion of linear system identification 

therefore rests on the assumption that the distortion caused by these stages is 

mitigated or insignificant. The correction and avoidance of distortion using 

software techniques is discussed in later sections of this chapter. 
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Figure 5.1: Mathematical representation of the multitone system signal chain. 

Nonlinear components are shaded red, linear components blue. Sampling is 

not technically a nonlinear process, but causes spurious products to appear 

due to aliasing (akin to wrapping an infinite paper tape of continous domain 

spectra around a cylindrical drum of finite sampled space) that causes new 

spectral components to be generated in the same was as nonlinear distortion.  

From a mathematical perspective, an ideal mixing process does not alter the 

spectral characteristics of the excitation and response signals, just ‘slides’ them in 

frequency. Thus mixing stages can be replaced with a linear baseband model 

simply by redefining             , where    is the carrier, or LO frequency. 

Evidently, the assumption that both mixing stages are at exactly the same 

frequency of conversion must hold for this to be possible. Similarly, the 

assumption of ideal quadrature modulation and demodulation allows for perfect 

reconstruction of the upper and lower sidebands – leading to a complex signal 

representation of the entire bandpass excitation and response, with negative 

baseband frequency representing spectral content below the carrier frequency, 

and positive baseband frequency representing that above. This complex signal 

representation is only valid if the gain and phase offset of the two IQ mixers is 

 

 

     

      

      

      

     

     

RF filtering 

Sensor 
response 

     

Analogue 
response 

Digital 
response 

Mixing 

Sampling 

Analogue 
excitation 

Digital 
excitation 

     

Quantisation 

Sampling Quantisation 
Baseband 
filtering 

     
 

 
     

   

   

           
By the discrete 

Fourier transform: 

By the continuous 
Fourier transform: 

                   



Chapter 5 – Software 

253 

negligible. Thus, the analogue excitation and response signals,      and     , are 

naturally represented as complex-domain signals with the real and imaginary 

components representing the I and Q channels of the transmitter and receiver. 

Sampling and quantisation represent the last stages of the translation process to 

and from the digital world. Ideal sampling occurs for perfectly bandlimited signals, 

i.e., when the baseband filtering       and       reject all signals with a frequency 

greater than Nyquist,     , where    is the sampling frequency. Under these 

conditions, aliasing of out-of-band signals can be ignored and the sampling 

process, too, can be represented as a simple linear process:                 

and                , where        is the sampling period. This highlights 

the importance of sampling synchronisation. For the excitation and response 

signals to be compared in the digital domain, the digital index,    , must be the 

same for both the transmitted and received signals. In the presence of a sampling 

time offset, for example,                    . The offset    is difficult to 

correct for unless it is static and an integer multiple of  . However, it can be 

tolerated if phase offsets are taken into account in later curve fitting procedures, 

although this may increase measurement error and system complexity 

unnecessarily. The simple and robust hardware solution of a shared sampling 

clock is therefore preferable. 

Under this assumption, the sensor spectral response is represented in digital in a 

form known as the impulse invariant form – i.e., its impulse response is similarly 

sampled,                        . This preserves the shape of the spectral 

response and is the appropriate way of modelling the resonant sensor in the digital 

world. However, this also implies that the spectral response must be cascaded with 

that of the two ideal antialiasing filters and hence can only be known over a finite 

bandwidth      – twice that of Nyquist band because of the unique positive and 

negative frequency information. In reality, these filters will have some pass-band 

ripple and finite transition bandwidth, which will alter the flatness of the response; 

however, since these effects are linear they are comparatively easily corrected. 
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The final quantisation process is the task of going from a finite number of integers 

to continuous voltages. This is inherently nonlinear and will result in distortion. 

However, an ‘ideal’ quantiser model approximates the resulting very high-order, 

low-level distortion as an additive white noise source (quantisation noise) that is 

at a constant level of about one or two units of the quantisation interval, known as 

least-significant bits (LSBs). Along with any other thermal noise in the baseband 

circuitry, this can thus be represented as two additive random noise sources,    

and   .  

The resulting idealised, linear mathematical model of the multitone hardware 

system is now simple enough to apply linear system identification theory and gain 

an insight into the use of multifrequency excitation and response signals in 

estimating the spectral response of an RF system from the digital world. Later 

sections of this chapter will deal with the various non-ideal behaviours of the 

single chain that cause the real-world multitone system to deviate from this 

mathematical ideal.  

 

Figure 5.2: Simplified stochastic model of the multitone system.  

5.1.2 FFT-based sensor spectral response estimation 

In this model and discussion, the spectral representation of the sensor and system 

components is used extensively. However, as mentioned in the Theory chapter, the 

sensor is a time-varying system that cannot be represented by a Fourier transform 

exactly, as Fourier transforms only exist for strictly stationary signals. Fortunately, 

in the digital domain, use can be made of the inherently time-limited nature of the 
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discrete Fourier transform (DFT). This is because the DFT can be broken down 

into an equivalent series of operations that make no assumptions of stationarity. In 

effect, the discrete Fourier transform performs a digital downconversion at each 

frequency point, consisting of quadrature digital mixing (by a complex LO), low-

pass filtering (by a moving average filter) and finally decimation (rate reduction) 

by a factor N, the number of samples used for the DFT estimate. In effect, the DFT 

mixes a composite signal down to DC from a particular discrete frequency ‘bin’ at 

         , where         . Thus, the quadrature DC value (or mean) is 

extracted by the summation over N samples. If every other frequency component 

of the signal is periodic in the window of N samples then they will have a mean of 

zero and thus cancel out completely. This just leaves an estimate of the magnitude 

and phase at that frequency, wholly analogous to the homodyne quadrature 

readout system. This is another way to look at the spectral leakage problem, and 

highlights the importance of using excitation signals that are periodic in the digital 

analysis window. Signals that are not periodic will not cancel out in the averaging 

process and instead will ‘leak’ across the estimates of all spectral components. 

Figure 5.3: Representation of the DFT as an on-going time-domian digital 

downconversion process consisting of digital mixing, low-pass filtering and 

decimation. 

To avoid aliasing in a decimation process, it is assumed that the input signals to the 

decimator are perfectly bandlimited to contain no frequency content above 

       . If this is not the case, aliasing may occur. This situation can be greatly 

improved by replacing the moving average (MA) filter with an alternative finite 

impulse response (FIR) low pass filter (Figure 5.4). This filter is four times longer, 

but has a closely matched response to the MA whilst having much higher alias 
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rejection. Use of such a filter avoids the guesswork of the FFT approach in dynamic 

signal environments, preventing unexpected inaccuracies arising from 

unexpectedly high transients, etc. When only a few frequencies are required, the 

extra computational burden of this technique is not an issue. 

The DFT estimate is therefore still valid in the case of a time-varying system, such 

as the resonant sensor, as long the desired response rate of the sensor change is 

less than     . In the multitone system, typical parameters are            and 

    , giving a cut-off of           . In all of the practical experiments carried 

out, the rate of change of the resonant sensor spectral response is several orders of 

magnitude less than this. Therefore, use of the conventional DFT is still valid. 

However, this also highlights a limitation of the DFT method. Frequency resolution, 

i.e., the number of frequency samples, N, and the cut-off for dynamic changes,   , 

are inextricably linked. As discussed in the last subsection, adaptive filters provide 

a neat way of allowing a dynamic trade-off to be reached instead. This means that 

the maximum measurable rate of change of sensor characteristics can be 

decoupled from the achievable frequency resolution.  

 

Figure 5.4:      MA LPF impulse response (left) and magnitude response 

(right) in blue, compared to a least-squares FIR filter design in red, matched 

to the MA response in the pass band but offering much higher alias rejection; 

i.e., suitable for use with dynamic signals.  

The simplified model of the multitone system also contains random, or stochastic, 

signals on both the input and output. Stochastic signals do not have a strictly 

defined Fourier representation, as they not square-integrable:             
 

  
. 

Danger of aliasing 

- Reduced by 20 dB 
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Therefore, their spectra must be derived through the Wiener-Khinchin theorem [1] 

that relates the spectrum to the statistical expectation of the autocorrelation 

function 

        
 

 
                 

   

   

            E                5.1 

where        is the power spectrum and        is the expected autocorrelation at 

time sample  .        is always real. The cross-power spectral density between 

two signals,       , (complex, in general) can be similarly derived:  

        
 

 
                 

   

   

            E                5.2 

Using these identities, it is possible to derive two different ways of estimating the 

spectral response (i.e., transfer function) of the combined system and sensor, 

                , at the discrete frequencies,          , using digital 

signal processing: [2] 

       
      

      
                  

      

      
      5.3 

As it stands, it is not possible to evaluate these expressions directly as the 

definition of the statistical expectation of the correlation functions contains an 

average over all time. However, using the linearity property of the DFT, the auto- 

and cross-correlation operations can be taken outside of the DFT summation, and 

an approximation to the transfer function of the sensor can be derived using the 

statistical average over M individual DFT estimates of the excitation,     , and 

response,     . The estimates must be the same length, thus the number of 

samples used for the excitation is the same as the number of samples acquired for 

each response. These estimates can be efficiently generated using the fast Fourier 

transform (FFT) algorithm: 
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   5.4 

Comparing both these estimates to the ideal noise-free case, it is possible to see 

that the presence of noise at both the input and output leads to bias: [2] 

          
     

   
 

  

                    
     

   
    5.5 

where   is the ‘true’ sensor transfer function,      
is the noise spectral density at 

the input and      
is the noise spectral density at the output. The fractions 

     
     and      

     can be seen to be the input SNR and output SNR, 

respectively. Reducing the noise on either the input or output (by using a higher 

resolution digital/analogue converter and better quality circuits), and choosing the 

appropriate version of the estimates,     for low transmitter noise and     for low 

receiver noise, will reduce the bias of these estimates. Since     is generally 

spectrally ‘flat’ and time-invariant when using a static excitation signal, it is clear 

that     is most appropriate estimate, as the resulting bias is constant across 

frequency and thus will have minimal effect on the derived sensor eigenvalue 

estimates. 

To reduce bias, as demonstrated by the simple computer experiment in the 

Hardware chapter, vector averaging is a preferred to averaging in the power 

domain, and this applies equally to spectral estimation. Thus, a simple, efficient, 

and low bias method of estimating the sensor transfer function can be derived:  

       
 

 
 

      

      

   

   

   5.6 

This is equivalent to the vector average of   individual estimates of the complex 

transfer function. A powerful feature of this method of estimating the sensor 

transfer function is that only the specific frequency bins that contain excitation 
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signal tones need be evaluated. Thus, out of the full vector of the     response 

signal      one can select an arbitrary subset                   , an operation 

equivalent to an ideal ‘brick-wall’ filter. This is an error-free process as long as all 

signals are periodic in the original time window and spectral leakage is not 

present.  

Furthermore, this algorithm may be simplified with the knowledge that the 

excitation signal spectrum does not change with time, hence may be taken outside 

of the average. This avoids having to do an explicit division operation at fast rate: 

       
 

       
       

   

   

                 5.7 

To implement this approach in an online system, the approximately stationary 

assumption can be used to perform the above algorithm continuously over 

repeated blocks of N samples. When continuously supplied with data, this 

algorithm outputs a new spectral estimate at a rate of      , where   is the 

length of the FFT used (typically quite short e.g., 64 samples), and   is the number 

of averages performed (a typical value used is 128). At an input sample rate of 100 

MS/s, these settings would give a spectral response estimate at a rate of about 12 

KHz.   

 

Figure 5.5: Diagram of the block FFT algorithm for estimating the spectral 

response of the sensor as an online process.  

The variance of this spectral estimate is given by 
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  5.8 

Using a first order linear approximation, this gives an estimate for the variance of 

the spectral estimate of: 

    
     

 

 
        

         

         
 

        

         
    5.9 

where                  is the ratio of the input noise power to excitation signal 

power at frequency  , and                  is the ratio of output noise power to 

excitation signal power. This analysis shows that, as expected, averaging improves 

the SNR of the estimate,                 by a factor of   .  

Equation 5.9 predicts that the effect of output noise is independent of the sensor 

itself – and therefore of any sample perturbation. However, the effect of input 

noise is proportional to the sensor’s power transmission. This will cause the 

derived eigenvalue estimate to have bandwidth-dependent noise, because the 

change in bandwidth is inversely proportional to insertion loss. In other words, the 

sensor system will have heteroscedasticity. This can be a problem, as common 

curve fitting and statistical analysis techniques often make the assumption of 

constant variance, and may therefore be invalidated.  

Heteroscedasticity can be reduced by ensuring that output noise is always 

dominant. In the hardware implementation, this was indeed the case, as a 14-bit 

converter at the receiver and a 16-bit converter at the transmitter. To investigate 

the performance of the FFT spectral response estimation algorithm for various 

input/output noise conditions, numerical Monte-Carlo simulations were 

performed using additive white Gaussian pseudorandom noise and analysed over 

100,000 trials.  

The simulations are in agreement with Equation 5.9, with the variance due to input 

noise being Lorentzian, i.e.       as predicted, in both     and    . For the power 

transmission estimate, the variance is between Lorentzian and squared-Lorentzian 
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depending on the relative input and output noise levels. Output noise also causes a 

significant decrease in the precision of the phase estimate away from resonance. 

 

Figure 5.6: Variance of H estimates. Continuous lines are for output SNR of 6 

dB with no input noise, dashed for input SNR of 6 dB with no output noise, 

and dotted for an SNR of 6dB at both the input and output. 
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Figure 5.7: Estimates of H in various complex mappings. The black line shows 

the true value. Blue lines are the estimate ensemble  mean, red are the 5% and 

95% ensemble percentiles. Lines are as Figure 5.6. 

The estimated relative bias of the sensor response estimate is defined as 

          . This figure was also computed for the three different combinations 

of input and output noise. The results are shown in Figure 5.8. The results confirm 

that, with a finite number of FFT averages (10 in this case) the power transmission 

response still has residual bias. Furthermore, this bias is frequency dependent 

when noise is present at the output of the resonant sensor (the very situation 

preferred on homoscedasticity grounds) appearing to be roughly parabolic with 

frequency around resonance. 

For power-domain eigenvalue estimation methods, such as Lorentzian curve 

fitting, this means that the bandwidth will be overestimated. However, the added 

noise level at the output should be constant, regardless of sensor perturbation, 

thus differential bandwidth measurement should cancel out this bias and not affect 

the accuracy of any derived measurements. Even if bias on absolute bandwidth 

estimates is a problem, at realistic system noise levels and with a reasonable 
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number of FFT averages (the bias decreases linearly with number of averages), the 

level of this bias should be insignificant. Evidently, however, the issue can be 

avoided altogether by using        and        to extract the eigenvalue estimate. 

 

Figure 5.8: Bias of the simulated sensor transfer function estimates for 

various complex mappings. Continuous lines are for an output SNR of 6 dB 

with no input noise, dashed for an input SNR of 6 dB with no output noise, 

and dotted for an SNR of 6dB at both the input and output of the resonant 

sensor. 10 averages were used in the algorithm. 

To see how the variance in sensor transfer function estimates impacts on 

eigenvalue estimates, the mathematical inverse relationship, Equation 3.81, can be 

used. This is the most efficient and lowest bias eigenvalue estimator, provided 

amplitude estimates are accurate, and the resonator constants    and    are 

known exactly – unlikely in practice, but this direct inverse is still useful in 

providing a benchmark.  

The results of the Monte Carlo simulations (Figure 5.9) show that with only input 

noise, the best-case SNR (i.e., at the optimum frequency) of the eigenvalue 

estimates is roughly equal, at about 85 dB on average – a SNR gain of 25 dB over 
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the spectral estimate used to derive them. However, for output-only noise, the SNR 

gain is much higher, up to 100 dB for small changes, but varies significantly with 

the perturbation (i.e., having significant heteroscedasticity). This is the opposite of 

what Equation 5.9 seems to predict for the transfer function estimate itself. These 

results can be used to derive two recommendations. Firstly, better sensor 

precision is reached by concentrating on minimising the noise at the transmitter in 

preference to at the receiver, as a proper eigenvalue estimator should have better 

output noise rejection. Secondly, if the output noise at the receiver causes 

undesirable heteroscedasticity, then this can be alleviated by making the noise at 

the transmitter more dominant overall. 
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Figure 5.9: Maximum SNR of the sensor eigenvalue estimate as a 2D function 

of bandwidth change     and resonant frequency change    . The top row 

are for an input SNR of 60 dB with no output noise, and the bottom row are 

for an output SNR of 60 dB with no input noise. The simulated resonator had 

                          , no additional averaging was used.  

These results suggest that very high resolution ADC and DACs are not necessary 

for high precision MRS measurements, as through a combination of spectral 

averaging and the inherent SNR gain of the eigenvalue estimation process much of 

the quantisation noise should be rejected. Indeed, the high SNR gain of the 

estimation process is consistent with that found in the long-term stability 

measurements (see Section 4.6), as both the VNA and the multitone system are 

receiver-noise dominated, having a receiver noise floor of around 90 dB yet 

showing a peak SNR of around 180 dB in resonant frequency estimation. 

However, this does not mean cheap 8-bit ADCs and DACs could necessarily replace 

for the high-resolution devices used here. Nonlinear distortion in the ADC and DAC 
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response limit the improvement possible with this method as, in actuality, 

quantisation noise is not truly random but consists of a large number of 

deterministic spectral components known as spurious signals. Spurii will not be 

reduced by averaging and will cause a source of bias on the spectral response 

estimate. One simple measure that could reduce this effect is to inject a low-level 

random ‘noise’ signal, known as dither. This can applied digitally in the case of the 

DAC, and in the case of the ADC, if the normal noise figure of the receiver baseband 

circuitry is not sufficient by itself, it can be supplemented using an analogue circuit 

such as a ‘noise diode’ amplifier. Dither provides a randomly changing input to the 

quantiser, causing the spurii to be also randomly time varying and thus more 

amenable to reduction by averaging. Clearly, the accuracy advantage gained by this 

method must be balanced by the precision degradation. However, in most cases, 

MRSs have plenty of precision and accuracy is really the limiting factor, making 

this an attractive option. 

Measurements of the digitizer used in the second multitone system 

implementation indicated that it has a sufficiently high level of random noise 

present at its inputs already due to the input amplification stages, meaning 

additional dither was not a necessity. However, other sources of nonlinearity serve 

to limit the maximum accuracy that can be obtained in sensor spectral estimates 

well before the effects of random noise become significant. This is discussed 

further in Section 5.2. 

5.1.3 Multifrequency excitation design 

The above subsection showed how the sensor transfer function can be estimated 

given an arbitrary finite-length digital excitation,  . Since the excitation is arbitrary 

(meaning that there should be no need to alter it), and of finite length equal to the 

FFT used in the estimation algorithm, it can just be repeated continuously by the 

DAC using a simple circular memory buffer. This makes its generation simple. So 

what should the excitation be? It should definitely contain multiple frequencies, 

allowing the spectral estimate to be made across the resonator bandwidth. This 

then replaces the need to sweep the signal or otherwise alter it, and, if the signal 



Chapter 5 – Software 

267 

covers sufficient bandwidth, avoids any necessity to change the local oscillator 

frequency. This means a simple fixed-frequency oscillator can be used rather than 

an expensive synthesiser. The choice thus comes down to how best to assign those 

N digital numbers of the excitation signal in some optimum way. 

The performance of a given spectral estimation method can be measured in terms 

of the spectral estimate variance,    
 , that it gives under stationary signal 

conditions. Furthermore, to introduce a measure of the efficiency of a given 

method, the spectral variance can be normalised to a given time, or equivalently a 

given number of samples. Thus, the precision-per-second is a good measure by 

which to compare various excitation signals that can be used for spectral response 

estimation. Because the FFT used at the spectral estimate side must be the same 

length as the excitation, it therefore makes sense to normalise to this length. The 

performance measure is therefore the minimum variance    
  that can be achieved 

in one N-sample period of the excitation signal. 

A figure of merit used to compare different signals is the crest factor [2]. The crest 

factor normalised to that of a sinewave (i.e.,    ),   , for a discrete signal      is 

given by: 

    
m x        

        
               

 

 
        
   

   

  5.10 

This equation is often converted to dB, in which case the lowest crest factor 

physically obtainable is          relative to a sinewave. This is the case for a DC 

signal or square wave excitation. Due to the requirement that the excitation fit in 

the maximum full-scale range (FSR) of the generating DAC, it is normally the case 

that the maximum amplitude, m x       is fixed. Therefore, the average power of 

the excitation signal, and therefore its SNR, is related fundamentally to the crest 

factor:  
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m x        

    
      

  
  

  
   5.11 

as both m x       and the noise power     
  are constants for a given hardware 

configuration. Substituting Equation 5.12 into Equation 5.9, the    variance is: 

    
     

   
 

  
 
                         

m x      
   5.12 

as, from Parseval’s theory [3], 

     
  

 

 
        
   

   

 
 

 
         

   

   

   

   

        5.13 

assuming the excitation is spectrally flat. The SNR of the transfer function estimate 

is, therefore 

          
   m x      

   
 

    

                          
   5.14 

The total number of measurement samples in this estimate is   , and the 

comparative excitation signal figure of merit is the precision-per-sample, i.e., 

   
       , thus it is independent of these numbers. Furthermore, we have no 

control over the term in brackets as it depends only on the hardware and the 

sensor. Therefore, the only parameter that can reduce the spectral estimate 

variance independently of acquisition time is the excitation crest factor,   . Since 

increasing the measurement time is undesirable, it is imperative that the crest 

factor is minimised for whatever excitation signal is chosen. This precludes 

multifrequency excitation signals such as an impulse train, which have very high 

crest factors (despite being relatively easy to generate). Given that the comparison 

of performance for excitation signals basically comes down to this one figure of 

merit, the choice of excitation signal must largely be dictated by practical 

considerations – just as long as it has the lowest crest factor possible. 
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Many signals that do have reasonably low crest factors, such as stepped sine waves 

or periodic ‘chirp’ signals of periodically varying frequency, have undesirable 

additional frequency components extending over a wide bandwidth, these can 

interfere when aliased or mixed with the desired excitation by intermodulation 

distortion. Many excitation signals do not allow arbitrary control of amplitude, or 

are not periodic in the FFT window length, leading to spectral leakage (e.g., 

pseudorandom noise). One of the best candidate excitation signals are maximum 

length binary sequences (MLBS). Being binary, these only need a one-bit DAC to be 

generated. However, these signals also have disadvantages: whilst excellent as a 

baseband excitation signal, they lose many of their desirable properties once 

modulated. They also permit no control over the location or relative amplitude of 

its spectral components.  

Therefore, after much consideration into the practicalities of possible excitation 

signals, a multisine excitation signal was chosen. Multisine signals and 

perturbation signals in general are covered in the excellent text by Godfrey [2]. 

This excitation signal has a number of practical and theoretical advantages, as 

summarised in Table 5.1. 
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Table 5.1: Advantages of a multitone excitation signal  

Advantage Description 

Multifrequency 
Multi-point spectral characterisation is essential when 
both bandwidth and resonant frequency are required or 
the change in resonant frequency is large and/or rapid 

Persistently exciting  
Each frequency component is static as a function of time, 
therefore avoiding resonant transient response. This is 
not the case with stepped sine (i.e., VNA), impulse, etc. 

Deterministic 
The excitation signal is known without having to explicitly 
measure it or rely on statistical methods (e.g., noise 
excitation) 

Arbitrary/flat amplitude 
Excitation spectrum can be of arbitrary amplitude. This is 
useful in compensating filter roll-off, as it ensures uniform 
SNR. MLBS cannot have arbitrary amplitude spectra 

Low crest factor 
Optimised multisine signals have a crest factor only 
slightly greater than a single sine wave, much lower 
than, e.g., pseudorandom noise 

Broadband  
In theory, a multisine can cover a bandwidth as wide as 
the Nyquist limit of the generating DAC. Analogue 
modulation, e.g., FM is limited by LO PLL bandwidth 

No wasted spectrum  
With ideal generation hardware, a multisine has no 
spectral components other than those directly used for 
measurement 

Zero spectral leakage 
As long as each sinusoidal component is periodic, e.g., in 
256 samples, spectral leakage is zero. Therefore, window-
free FFT processing can be used without error 

Flexible number of samples 
No limit on the number of samples, i.e., period can be a 
power of two as FFT processing is most efficient. This is 
not the case with MLBS, which have period      

Trivial digital modulation 
Digital modulation is achieved simply by selecting tones 
from around some offset frequency. RF modulation also 
works as it is band-limited and robust to distortion 

 

The equation of a discrete complex-domain multisine signal is 

                       

   

     

           5.15 

where     is the number of tones of the multisine signal. In general, a multisine 

can therefore consist of arbitrarily spaced tones of arbitrary amplitudes; however, 
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equally spaced, flat amplitude signals are most useful for excitation signals. In the 

digital world, when the number of cycles of each sinusoid is an integer,        

   then spectral leakage is zero and the entire multisine signal consists entirely of 

individual discrete line spectra. This is known as a multitone spectrum. An easy 

way to generate a multitone signal and ensure this condition is always met is to 

use the inverse DFT:  

                                    

   

   

          5.16 

which can be seen to reduce to Equation 5.15 when        . It is trivial to 

specify a particular tone subset,                      , by setting a 

particular      to zero. Evidently, in the limit of a long inverse FFT (IFFT) 

arbitrary frequency resolution can be achieved. However, it is more efficient to use 

few tones and space them uniformly and as closely as possible, keeping the FFT 

short and computationally efficient. Matching the length of the generating IFFT to 

the FFT used on the acquired waveforms will ensure that zero spectral leakage is 

preserved without wasting spectral resolution with an unnecessarily large number 

of samples.  

5.1.4 Digitally modulated multitone signal 

Digital modulation is trivial for a multitone. Tones are simply centred on a 

particular carrier frequency. There is a good reason for doing this. Digital 

modulation at one-quarter sampling frequency is often used to implement direct 

downconversion receivers and likewise transmitters because of its simplicity; the 

digital IQ mixing by a wave at      is then trivially implemented by multiplication 

by the cosine and sine sequences            and             [4]. Apart from its 

simplicity, this choice of modulation frequency also minimises intermodulation 

distortion (IMD). 

IMD is caused by nonlinearities in both the baseband and RF parts of the system. 

Given a memoryless nonlinearity, this is represented by the power series 



Chapter 5 –Software 

272 

expansion,          
    . This is a particularly sensitive issue for multitone 

signals as IMD causes inter-mixing of adjacent tones, making their amplitudes 

interrelated in a nonlinear way. For   frequency components,          , 

intermodulation products are created at frequencies defined by           

            where    can be any integer, both positive and negative. The IMD 

product’s order is defined        
 
   . For example, the classic two-tone third-

order products that lie in-band, often the dominant source of nonlinearity caused 

by the power amplifier in an RF transmitter, are given by                    

and                  . For a multitone excitation where all components are 

periodic in the FFT window, every one of these IMD products will also fall directly 

on, or be aliased to, an in-band FFT bin. Thus, nonlinearity cannot cause spectral 

leakage in itself. 

Generally, only odd-order RF nonlinearities cause in-band distortion as even order 

distortion products are created at much higher RF frequencies and are filtered 

away. However, baseband nonlinearities can cause IMD of any order – e.g., those 

caused by the IQ mixer at the transmitter have significant second and third order 

baseband nonlinearity. Digital modulation can avoid certain IMD products, as 

shown in Figure 5.10. Although the number of intermodulation products does not 

represent their absolute amplitudes, this graph does indicate that modulation 

around      causes many of distortion products to fall outside of the signal band 

and thus have minimal impact after filtering (i.e., tone indexing).  
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Figure 5.10: Comparison of the number and location of baseband-generated 

intermodulation (IMD) products of a 5-tone multisine signal located around 

DC (left) to the same signal located around      (right).  

Digital distortion can also be reduced with other tone location methods, for 

example by choosing all tones from a sequence of prime multiples [5]. This 

minimises the probability that IMD products will fall on tone locations. However, 

this vastly increases the length number of samples required for the excitation, as 

the number of cycles required becomes quite large in order to ensure roughly 

equal tone spacing. This, in turn, would decrease the maximum readout rate if an 

FFT method were employed. If nonlinear distortion does become a limiting factor, 

turning to these signals would improve performance at the expense of 

measurement rate, but would not require any alteration to the physical hardware. 

5.1.5 Multitone signal crest factor optimisation 

As indicated above (Equation 5.12), the variance of the transfer function estimate 

is critically dependent on the crest factor. For a particular excitation signal, 

therefore, this parameter must be minimised. For a multitone signal, the crest 
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factor is highly dependent on the relative phase of each component. If all phases of 

a large number of tones are all set to the same value, the resulting time-domain 

signal tends towards a series of periodic impulses having an extremely high crest 

factor.  

An analytical approach to ensuring a low crest factor was found by Schroeder [6] 

for equally spaced multitone signals. This defines the phases of the multisine 

components according to the simple progression:  

      
 

 
                      5.17 

However, this solution is non-optimal for digitally modulated or non-uniformly 

spaced multitone signals. One option first proposed by Van der Ouderaa et al. [7] is 

to use an iterative time-domain clipping approach, where the multisine is 

repeatedly passed through a time-domain level clipping function before 

transforming back into the frequency domain. Only the resulting clipped tone 

phases are kept, and the process is repeated. This method was adapted for the 

multitone signals generated here. Due to the sensitivity of the convergence of this 

algorithm to the exact level use for the clipping, the algorithm was slightly 

modified, introducing a ‘soft clip’ hyperbolic tangent function and a stochastic 

element to the clip level. 
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Figure 5.11: Example of a crest factor optimised, 7-tone digitally modulated 

multitone in time (left), and in the frequency domain (right). Red are real 

samples, blue imaginary. The actual digital samples are shown as points, 

their continuous-time representation as a curve. 

 

Figure 5.12: Modified stochastic crest factor optimisation algorithm 

To explore further the minimisation of multitone crest factor, an optimisation 

algorithm was used. The phase vs. crest factor space is high-dimensional for larger 

numbers of tones, and the performance function contains an extremely large 

number of local minima. This makes it a difficult challenge for simple optimisation 

algorithms such as Gauss-Newton etc. A relatively recent and powerful stochastic 

optimisation algorithm known as particle swarm optimisation (PSO), inspired by 

the ‘collective intelligence’ of swarming bees, [8] is ideally suited to this type of 
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problem as it is well-suited to problems with large numbers of local minima due to 

its stochastic nature. The algorithm was implemented in LabVIEW, based on the 

elegant simplified approach of Pedersen and Chipperfield [9].  

To compare the performance of the various optimisation approaches, they were 

applied to the crest factor optimisation of digitally modulated multitone signals of 

various lengths. The total waveform length was 512 samples in each case. Both the 

particle swarm optimisation (PSO) and compression algorithms were limited to a 

run time of 5 seconds. They therefore represent both a comparable computational 

burden and a convergent state. Since the excitation need only be generated once, 

the time taken for its optimisation is not an issue in practice. 

  

Figure 5.13: Crest factor for digitally modulated (fs/4) multitone signals with 

various numbers of tones. Tone numbers with outstanding crest factors are 

highlighted. 
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Figure 5.14: Crest factor for digitally modulated 15-tone multitone signal at 

various digital modulation frequencies. Key as in Figure 5.13. 

The comparison in Figure 5.13 shows that the ‘soft clipping’ compression 

algorithm almost always performed well, whereas the PSO algorithm performance 

degrades with increasing number of tones. This is because the number of 

dimensions for the optimisation problem is equal to    , meaning that the size of 

the search space increases     . This is a problem known as the ‘curse of 

dimensionality’ [10], and is a common problem in machine learning. The 

compression algorithm, on the other hand, does not increase in complexity at all 

with larger numbers of tones. Whilst other optimisers may fair better, the 

compression algorithm with Schroeder starting phase performs well enough that 

there is no need to pursue this line of investigation further. 

The results in Figure 5.14 show that DC-centred and       centred multitone 

signals have a clear advantage in crest factor. At      this is because the 

modulating wave has the simple representation discussed above. This, therefore, 

has minimum impact on total waveform crest factor, providing yet another good 

reason to choose this modulation frequency whenever bandwidth requirements 

allow. Based on the settings and optimisation used here, the achievable crest 

factors are less than 10 % more than that of a sine wave, resulting in no more than 
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1 dB reduction in the SNR of the resulting sensor spectral estimates compared to a 

single sine wave of the same amplitude.  

5.1.6 Selecting the optimum number of tones 

With crest factor optimisation now providing for performance comparable to a 

single sine wave, the only problem that remains is choosing the right number of 

tones. This is a non-trivial problem, as having too few tones will affect the 

eigenvalue estimate accuracy and precision, as shown in the case of the VNA 

previously in Section 4.5, whereas having too many tones will decrease each tone’s 

amplitude and therefore the SNR of each frequency point of the spectral estimate.  

For a flat-spectrum multitone signal of   tones, limited by hardware to a fixed 

maximum value, the average tone amplitude is given by:  

       
m x       

       
 5.18 

Thus increasing the number of tones decreases their amplitude and thus the SNR 

of the spectral estimate at that frequency. However, the precision of the eigenvalue 

estimate should increase the more frequencies are measured. Ideally this would 

cancel out the    dependence altogether.  

To see how these considerations are reflected in practice, a simple experiment was 

performed with the second implementation of the multitone system, using the 

same temperature-stabilised cavity resonant sensor as used in Section 4.6. 

Although similar to the VNA measurements, in this case the tone spacing was 

constant at just under         for a 512-sample excitation signal. The tones were 

also centred at     , therefore the effect of adding tones was to increase the 

effective span rather than the frequency resolution. The results are shown in 

Figure 5.15. Lorentzian fitting was used to extract eigenvalue estimates. Judging by 

the apparent convergence of the mean value of the eigenvalues, it seems as if the 

accuracy does improve with increasing tone number, particularly in the bandwidth 

measurement, although it is difficult to conclude from this result how significant 
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this effect is. However, the peak-to-peak deviation (Equation 4.9) does increase 

linearly with the number of tones. The results seem to suggest that a reasonable 

compromise is reached with      tones, but this will likely be highly specific to the 

average resonant sensor operating conditions (e.g., average bandwidth) and the 

number of samples used. 

 

Figure 5.15: Comparison of the effect of a variable number of tones measured 

using the multitone hardware system and a temperature-controlled static 

resonator. Red points represent bandwidth measurements and blue resonant 

frequency.  

5.1.7 Adaptive filters for response estimation 

Adaptive filtering based on the stochastic gradient method (i.e., using an iterative 

weight update rule) is a well-known technique that has been actively researched 

for many decades, and the classic least mean squares (LMS) algorithm was 

proposed by Widrow and Hoff in 1960 [11], although the general concept of was 

proposed even earlier [12]. It is not necessary to present the theoretical 

background to adaptive filters here, as this is not a digital signal processing 

focussed thesis, and this application of them is also very straightforward. For 

background information, excellent references include Haykin, [13] and Sayed, [14].  

Applications linked to microwave engineering include communications (e.g., 

wireless channel equalisation) [15] and radar (e.g., target tracking) [16]. 

Estimation of the resonant sensor transfer function can be done using a specific 
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adaptive filtering mode known as parameter tracking. In this mode, the adaptive 

filter is configured to track changes in the time-varying parameters of a system.  

Unlike static filters or FFT-based processing, adaptive filters cover a wide superset 

of situations where system dynamics and signal statistics are not stationary but 

vary at any rate up to the Nyquist frequency. MRS parameter tracking is a middle-

ground application, lying between that of recovering a noise-corrupted signal on 

the one hand (where the signal is approximately stationary in a statistical sense) 

and detecting a sudden fault or change in system dynamics on the other (where the 

signal can undergo sudden changes of statistics). The strength of the adaptive filter 

approach, compared to the FFT algorithm discussed above, is this ability to cope 

well both with very rapid and very slow changes in the resonant sensor. Adaptive 

filters have not been used before for processing microwave sensors, and their use 

in this application was incorporated into the patent filed on the multitone 

measurement system [17] 

The adaptive filter is configured to predict the sensor response,      based on the 

excitation signal      over the previous N samples. In other words, the adaptive 

filter tries to model the sensor, producing an estimate of the sensor impulse 

response       that strives to match the true sensor as closely as possible, from this 

point of view working in much the same way as curve fitting. Theoretical analysis 

of the most common adaptive filter algorithms shows that, in the long-time limit, 

they converge to the best estimate of the true impulse response in the least-

squares sense [14], minimising the cost function               
 

. They are also 

extremely efficient at it, the simplest adaptive filter algorithm (LMS) being 

computationally more efficient than an averaged FFT approach [18]. 

Adaptive filters can thus track changes in the sensor spectral response over time. 

This is demonstrated in the simple simulation results in Figure 5.16. In the top 

image is a spectrogram shows the time-frequency representation of a microwave 

resonator. The dark blue band shows a resonance initially centred in the 100 MHz 

window. Over time, there are three sudden step changes: to a higher frequency, 

then to a broader bandwidth, and then back to the original resonant frequency. In 
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the lower image is the shown the FFT of the adaptive filter weights over the same 

period. The adaptive filter weights can be seen to estimate and track the changes in 

the resonator response in the presence of noise. Its response to these step changes 

is similar to a simple low pass filter, and is caused by the filter re-converging after 

a step change at a finite rate. The characteristic time for this is tuneable through 

parameters of the adaption algorithm used, and there exists a simple inverse 

relationship between the settling time and the noise reduction properties of an 

adaptive filter. 

 

Figure 5.16: Spectrogram showing an adaptive filter tracking step changes in 

the resonant frequency and bandwidth of a simulated microwave resonator. 

The adaptive filter spectrogram (bottom) was obtained by calculating the 

Fourier transform of the adaptive filter weight vector.  
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Figure 5.17: General adaptive filter configured for system identification.  

There are two types of digital filter, infinite impulse response (IIR) and finite 

impulse response (FIR). IIR filters use both feed-forward and feedback, in general, 

giving a transfer function with arbitrary coefficients on both the numerator and 

denominator. FIR filters, on the other hand, only implement a simple feed-forward 

scheme, equivalent to the dot product of the filter weights and a vector of time-

delayed samples. They thus have only finite-length effect on the signal samples. 

Whilst IIR adaptive filters do exist, their convergence is tricky as they have stability 

issues. A second-order IIR adaptive filter is effectively a tracking pole. It could 

therefore be used to track the resonant sensor transfer function efficiently with 

only three adaptation weights. In theory, the sensor eigenvalue would also be 

simply related to this IIR filter pole, completing the eigenvalue estimation task in 

an elegant way. However, in practice this does not work because the digitally 

sampled sensor resonance can never truly match a digital IIR filter resonance due 

to the effect of aliasing. Thus, this method suffers from poor accuracy that makes it 

impractical for an MRS system. 

Thus the rather less elegant but much higher performance method is to implement 

a simple and robust FIR adaptive filter, with the same length as the excitation 

waveform, and use its Fourier-transformed weights as a fast, time-domain 

estimate of the sensor transfer function, updated as they are every time sample.  
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Depending on the adaptive filter algorithm, given a step-change in the sensor 

transfer function, the coefficients of the filter will converge on the impulse 

response samples exponentially in time or faster. The filter algorithm thus 

provides some controllable low-pass filtering functionality. Proper selection of the 

adaptation algorithm parameters should ensure that the signal to noise ratio of 

this spectral estimate is roughly equal to the signal to noise ratio of the input 

signals. The adaptive filter will contribute its own ‘estimation’ noise, due to the 

stochastic nature of the algorithm itself. Careful control of the algorithm 

parameters is therefore needed to balance the convergence rate with the 

suppression of this estimation noise.  

 

Figure 5.18: Simulation of the NLMS filter algorithm applied to resonator 

transfer function estimation in the time domain. The top figure is the time-

domain prediction error in dB - the input noise level was 80 dB. A sudden 

jump in resonant frequency is present in the middle of the record. This is 

reflected in the readjustment error and the spectrogram of    in the bottom 

figure.  

Assuming an FIR adaptive filter model, the equations for a general stochastic-

gradient adaptive filter are: 
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 5.19 

The step size      and gain         are specific to the algorithm. Whilst many 

sophisticated adaptive filter algorithms exist, only very simple algorithms have any 

real place in this application, as the number of computations required per second 

would otherwise be impractically high. The two algorithms investigated were the 

normalised least mean squares (NLMS) algorithm [14] and a change detection 

algorithm [18].  

The following equation describes the (well-known) algorithm of the NLMS filter 

used in this ‘system identification’ mode:  

                 
     

         
                    5.20 

Where       are the filter weights at the nth iteration,   is the scalar constant 

learning rate,      are the N excitation samples,      is the last received sample, 

and      denotes the Hermitian transpose of a complex vector. The expression 

                         is equivalent to the error between the true output 

sample at time   and that predicted by the adaptive filter. Often in definitions of 

this algorithm, a small constant is added to the denominator to eliminate divide-

by-near-zero errors. However, in this case      is known to be persistently exciting 

and therefore this is not necessary. 

 In this baseband implementation, the weights vector, received signal, and 

excitation vector are all complex. N is the filter length. The spectral estimate of the 

resonator is gained by the Fourier transformation;               . Because the 

excitation is fixed and periodic within N samples, it is logical to implement the 

above adaptive filter in block form, with length N. The term,                   , 

can then be pre-computed as a     Toeplitz matrix    and stored in memory. 
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This makes the NLMS algorithm here no more computationally complex than the 

basic LMS algorithm it replaces, becoming: 

                             5.21 

where   is a vector of the error signal over the previous N samples. This iteration 

produces an      block of weights    every N samples. The computational 

complexity of this algorithm per spectral estimate is      multiplications and 

   additions, resulting in a total of                       if processed at 

full rate. This is very high, but not beyond the capabilities of modern FPGAs. 

Evidently, for this algorithm to have any comutational advantage over the FFT 

algorithm (complexity order  l g  ), it isn’t practical to FFT the weight vector at 

this rate. Thus, the weight vector can either be filtered and decimated in the time 

domain or an eigenvalue extraction method that works directly on the time-

domain weights can be employed. The neural network-based eigenvalue method is 

ideal for this latter task, discussed in the next section. 

5.1.8 Full system tests with adaptive filter algorithm 

In order to assess the performance of the adaptive filter algorithm in estimating 

the sensor transfer function, the NLMS algorithm was implemented in LabVIEW 

and used with the first implementation of the multitone hardware (Section 4.4.1). 

To compare the combined algorithm and system accuracy in estimating the 

transfer function, a simple experiment was performed.  

Using two circulators, a VNA (E5071B, Agilent) and the prototype multitone 

system were connected simultaneously to the same resonator (Figure 5.19); the 

same rectangular cavity resonator used in the heating experiments (Section 6.3). 

The excitation signals interfere, even with the circulators, so central LabVIEW PC 

control was necessary to switch between the measurement systems smoothly 

whist still allowing reasonably high sampling rate and realtime performance. This 

was achieved by disabling the RF output of each system in turn using inbuilt solid-

state switches. Acquisitions were also synchronised to this switching. 
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Figure 5.19: Multiplexing of the VNA and multitone system. 

Example results are shown in Figure 5.20 and Figure 5.21. The VNA was 

configured with a high IFBW (50 KHz), as a relatively large number of sweep 

points (215) were used for spectral estimate comparison reasons. The trace noise 

present is rather higher than it could be if optimised, therefore. However, the 

multitone system with adaptive filter algorithm is evidently a comparable, if not 

superior estimate of the spectral response, appearing to have less trace noise and 

being in good agreement generally with the VNA. The only apparent inaccuracy is 

in phase, where the deviation becomes significant towards the edges of the FFT 

window. This is caused by the lack of phase calibration; the response does not take 

into account the phase of the antialiasing filter roll-off. This could be rectified using 

static equalisation with a ‘thru’ calibration standard in place of the sensor. 
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Figure 5.20: Example of a spectral response estimate with the first prototype 

system compared with a simultaneous VNA measurement 

When both these spectral measurements are converted to eigenvalue estimate 

using the Lorentzian curve fitting method, the time-domain tracking of this sensor 

also shows superiority on the side of the multitone system. The VNA 

measurements are at a slower mean rate, with around 60 times fewer samples 

taken over the 5-minute interval (the average rate was 3 ms for the multitone 

system and 180 ms for the VNA – although the sampling rates were not uniform 

due to need to switch from one instrument to the other). A matching linear trend 

can be seen in the resonant frequency measurements, due to temperature drift, 

and a small offset of about 2 KHz. There is no way of knowing which system is 
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more accurate, and at this magnitude could be due to the different local oscillators 

in each instrument, which were not locked together. Assuming this offset is static, 

it would not cause any error in differential sensor measurements.  

 

 

Figure 5.21: Simultaneous comparison of the first prototype system and VNA 

during measurement of a static resonator  
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5.2 Correcting for system imperfections 

As discussed above, the estimation of the sensor spectral response – upon which 

all further processing stages rest – is reliant on the assumptions of linearity and 

ideal operation in the various stages present in the transmitter-receiver signal 

chain. This section addresses software methods used to minimise the nonlinearity 

and distortion of the spectral estimate caused by various hardware imperfections. 

As mentioned in the Chapter 4, the most significant cause of distortion is the mixer 

at the transmitter side. This is because the amount of distortion is dependent on 

the drive level of the baseband input to the mixer, which is relatively high at the 

transmitter. In contrast, the RF input to the mixer at the receiver is comparatively 

less as it has been attenuated by the sensor insertion loss and filtering effect.  

5.2.1 Nonlinear predistortion for transmitter compensation 

Correcting for the distortion using software methods allows the drive level to the 

modulation mixer to be increased without risking poor performance. This then 

increases dynamic range and improves SNR without affecting error. This ability to 

make more efficient use of signal amplitude is why nonlinear predistortion is an 

essential part of most modern communications systems employing a power 

amplifier [19], [20].  

The nonlinearity of baseband distortion caused by the IQ modulation can be 

viewed as a two dimensional function of the amplitudes of the ideal in-phase and 

quadrature signals          :  

                                 5.22 

where             are the distorted outputs. The concept of digital predistortion is 

to apply a function to the discrete versions of these signals before the are 

generated, so that 



Chapter 5 –Software 

290 

                                                           5.23 

Thus, the digital prediction attempts to implement       
   and hence minimise the 

cost function                               .  Whilst many clever adaptive 

methods exist to do this, e.g. [21], in the multitone system the nonlinearity is 

largely static in time and, therefore, can be corrected for by a simple fixed 

predistortion applied to the excitation waveform before it is loaded into the 

memory of the AWG. 

In order to find this static estimate of       
  , the multitone system is calibrated with 

a known training waveform. The received signal can then be compared to this 

training waveform and the error function turned into a predistortion look-up-

table. Due to IQ gain and phase offset errors in the quadrature modulator, the 

distortion function is a two-dimensional function, in general. Thus       is a 

nonlinear function of both      and     . This is a form of nonlinear mixing 

between these ideally orthogonal signals, meaning that they can no longer be 

treated as an approximation to a complex number and must be treated as general 

interdependent variables. Note, however, that gain and phase offset – the ‘first 

order’ mixing effects are not an issue per se, due to the choice of tone location, as 

discussed in Section 4.3. Even if it is an issue, this is best dealt with by a separate 

method, e.g., [22], [23], as it tends to be highly frequency-dependent.  

To find this 2D function, the training waveform is derived from a randomly 

permuted grid-sampled amplitude signal, equivalent to high-density QAM signal 

(Figure 5.22). This makes sure that the amplitude space is fully sampled, but that 

an approximately random signal is still created in the time domain. The random 

nature of the permuted training waveform eliminates sensitivity to linear 

frequency response, as each random permutation has a slightly different frequency 

content, and thus over a number of averages with different permutations, only the 

frequency-independent part of the nonlinear distortion is learnt. In effect, this 

permutation method extracts the memoryless part of the IQ mixer nonlinearity – 

this is all that is required, as the tone-flattening algorithm (Subsection 5.2.2) will 

take care of any remaining frequency dispersion. 
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Figure 5.22: Regularly sampled IQ calibration constellation shown at the data 

rate (black squares) and the trajectory of the resulting calibratio n signal 

after interpolation and root-raised cosine filtering (grey curve).  

To derive the 2D nonlinear predistortion look-up data, the sensor is first replaced 

with a ‘thru’ – in this case a spectrally flat variable attenuator set to the same 

insertion loss as the unperturbed sensor. The training waveform is then generated 

before passing through an interpolating root-raised cosine filter. An interpolation 

factor of 4-8 was found to be suitable. This pulse-shaping filter, matched at the 

receiver, avoids aliasing by bandlimiting the training waveform without affecting 

the amplitudes at the time samples corresponding to the sampled amplitude grid.  

Figure 5.23 shows the measured training waveform at the receiver, before and 

after predistortion correction. The distorted IQ grid has been largely restored by 

predistortion at the transmitter.  

 
1.5 

-1.5 

Ideal I 
1.5 -1.5 

Id
ea

l Q
 



Chapter 5 –Software 

292 

 

Figure 5.23: Received IQ calibration constellation before (left) and after 

(right) predistortion correction. 

In order to apply the predistortion function to an arbitrary excitation signal, the 

correction at each one of these discrete amplitude sample points needs to be 

interpolated. Figure 5.24 shows an example of the learnt inverse function       
  , 

interpolated using a radial basis function (RBF) network, as described in Section 

3.6.1. This implements the predistortion estimate function 

  
     

     
    

     

     
    

    

    
 
 

  
     
     

 
 

  

 

   

 5.24 

where the weights    and    are found by solving the linear system of equations 

derived from the training waveform and its measured response. The inverse 

quadratic radial function was found to perform best,                  , and 

the centres    and    were chosen from another regularly sampled grid, this time 

over      space. A constant        was chosen, resulting in a very smooth 

interpolation that performed well in practice. The number of basis functions was 

chosen to be      , giving a good balance between predistortion accuracy and 

the amount of training data required to give a good estimate of the RBF weights.  
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Figure 5.24: Example of the 2D predistortion function learned by the RBF 

network. The blue surface represents the mapping between the input IQ plane 

and the predistorted I’ signal. The red surface represents the  same mapping 

for the Q’ signal. 

Figure 5.24 demonstrates the impact of the RBF predistortion function on a simple 

two-tone signal generated by the later implementation of the multitone hardware 

system. The spectrum was generated by the receiver. The main problem for 

modulated multitone signals is the in-band third order IMD, which in this case has 

been reduced by over 10 dB, down almost to the noise floor. Apart from the 

inconsequential IQ offset image tones reflected about DC (bin 32), the other 

distortion products have all been reduced, giving over 50 dB of dynamic range, 

without altering the amplitude of the two-tone signal significantly. The 

predistortion algorithm was found to be very important for satisfactory 

performance of the full-bandwidth measurements on the split-ring sensor, 

discussed in the Section 6.2. 
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Figure 5.25: Two-tone signal comparison before (top) and after (bottom) 

predistortion using the RBF interpolating function. 
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5.2.2 Tone flattening algorithm 

During a calibration phase, a further correction that can be performed is to correct 

for small variations in the measured multitone amplitudes as measured at the 

receiver. Flattening the received tone in this way not only compensates for the roll-

off and ripple of the antialiasing filters, etc., it also helps reduce the impact of 

distortion at the modulator even further. Any residual, static variation in the 

relative tone amplitudes caused by nonlinear intermodulation can be compensated 

for by slightly increasing or decreasing the amplitudes of the tones transmitted. 

Due to the effect of system nonlinearities, the compensating predistortion 

algorithm, and the need re- optimise the crest factor after changing its tone 

amplitudes, the relationship between the amplitudes of the generated tones and 

the received tones is complicated. Changing the amplitude of just one tone has a 

small yet finite effect on the amplitude of all the others. This relationship is 

unknown, and it is impractical to estimate it accurately, even to first order.  

Consider a multitone signal with 32 tones. A general first order relationship 

between the generated and received tones could be represented as      where 

  is a vector of received tone amplitudes and   is a vector of generated tone 

amplitudes. The ‘off-diagonal’ elements of this matrix account for nonlinear effects. 

  is a matrix with, in general, 1024 distinct coefficients. To sample this 32-

dimension space fully, in order to estimate this matrix reliably, the simplest full-

factorial experiment would require at least         billi   experiments, due to 

the very high number of degrees of freedom of this matrix. Estimation of the 

interrelation between generated and received tone amplitudes as a route to direct 

multitone flatness calibration is clearly impractical, even if the number of 

coefficients can be reduced by only considering nonlinear interactions up to a 

certain order.  

Therefore, a simple iterative method was adopted instead. The ‘hardware-in-the-

loop’ iterative tone-flattening algorithm developed to solve this issue is necessarily 

the last step in the calibration process. It ideally compensates for the attenuation 
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caused by linear dispersion effects of the RF system, reconstruction, and 

antialiasing filters once the system has been linearised by the predistortion 

algorithm, as well as ‘mopping up’ the effects of small nonlinear mixing occurring 

at the transmitter side. 

Using the averaged-FFT algorithm to estimate the relative magnitude of the 

received tones,       , an iterative tone amplitude correction algorithm was 

developed, that determines a new value for the tone amplitude vector        

based on the relative deviation of the received tone amplitudes from flat, i.e., 

minimising the cost function             me i          : 

        exp  l       l           me i              5.25 

The median tone amplitude is used, rather than the mean, as the relative tone 

amplitudes are not normally distributed in general, thus this gives a better 

estimate of the relative amplitude deviation. At each step, crest factor optimisation 

on the resulting multitone waveform was performed using the soft clipping 

algorithm. A logarithmic version of the algorithm was found to perform better than 

a linear version – in effect performing adaptation in the logarithmic domain. The 

adaptation step-size parameter   was chosen to be 0.1 to give a slow but reliable 

convergence to flatness.  

The typical convergence of this iterative algorithm is shown in Figure 5.26, 

showing that convergence is reached within about 20 iterations to a peak-to-peak 

deviation of just 0.02 dB. Figure 5.27 shows the effect of the tone-flattening 

algorithm on the measured multitone spectrum at the receiver for a wideband 

excitation signal (100 MHz total span). In this case, the peak-to-peak deviation is 

around 0.03 dB. Whilst the algorithm cannot be applied in an online fashion, as the 

need for crest factor optimisation makes it quite slow, the effect of drift on the tone 

amplitudes should be minimal if the system is temperature controlled. Thus, the 

tone amplitude flatness can be expected to be improved significantly even from 

this one-off correction. 
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Figure 5.26: Typical convergence performance of the multitone flattening 

algorithm with number of iterations. 

 

Figure 5.27: Measured amplitude of multitone signal at receiver during 

calibration phase after tone flattening optimisation algorithm was run for 30 

iterations. Total peak-to-peak deviation from flat is less than 0.03 dB. 

 

0.01

0.1

1

10

0 8 16 24 32

P
ea

k
-t

o
-p

ea
k

 a
m

p
li

tu
d

e 
d

ev
ia

ti
o

n
 (

d
B

)

Iterations

-25

-24.9

-24.8

-24.7

-24.6

0 8 16 24 32 40 48 56 64

R
ec

ei
ve

d
 s

ig
n

al
 (

d
B

F
S)

FFT bin number



Chapter 5 –Software 

298 

5.3 Inversion of the spectral response function 

In the Theory chapter (Subsection 3.1.2), the multistage model was introduced. 

This section discusses software methods to invert Stage 3 of this model – the link 

between (time-varying) eigenvalue and (time-varying) spectral response: 

 

Figure 5.28: Stage 3 of the resonant sensor model (left) and the inverse 

function to be implemented in the digital software (right) 

This stage generally means extracting parameters for some spectral response 

model as a function of time, e.g., in the notation I have adopted: 

             
         

                
       

   
     

   
  

     

     
   5.26 

Historically, this process has received the most attention in the literature, as it has 

always been a necessary part of resonator measurements regardless of the method 

used to estimate their spectral response. Almost all of the previous work in this 

area has been related to VNA-based resonator measurements, and particularly to 

the measurement of unloaded Q factor. This is an important diagnostic 

measurement used for quality control of microwave substrate materials and 

dielectric resonators. The first methods aimed at analogue network analysers were 

graphical, based around Smith chart measurements [24] and the measurement of 

specific points around the resulting resonance circle, after Ginzton in 1957 [25]. 
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Circle fitting remains a powerful estimation method [26], [27], often used as a 

‘first’ step to correct for the factors    and    as well as other imperfections. 

The authority on Q factor measurement is Darko Kajfež, whose books [28],[29] and 

papers[24], [30],[31] develop a rigorous method of estimating Q factor from circle 

fitting in the complex plane. This method implicitly generates fit parameters that 

can be converted into bandwidth and resonant frequency, as well as Q. However, 

as is evident from the Theory section, Q factor is not a very useful parameter for 

MRS measurements as it does not relate linearly (even approximately) to 

measurands like complex permittivity. Thus, the high accuracy of Q factor 

measurement methods (such as Kajfež’s QZERO software [32]) does not 

necessarily imply that these methods will give a high measurement accuracy 

overall. Furthermore, they are based on the assumption of measurement on a 

calibrated vector network analyser. Whilst these techniques may be suitable for 

accurate estimation of the    constant of a given sensor (for calibration purposes), 

they are not very suitable for use in an online system. 

Pertersan and Anlage [33] published a useful comparison of curve-fitting based 

methods, with both precision and accuracy determined by both numerical 

simulation and from measurements of a high-Q superconducting cavity resonator. 

They also discuss methods that can correct for power-dependent quality factor 

nonlinearity, something that can occur in superconducting resonators (for example 

in type II superconductors when localised microwave current densities exceed a 

critical value causing localised transitions into a higher resistance mixed 

conduction state). They found that the Lorentzian fit (actually, a skewed 

Lorentzian fit) performed very well, and was the best overall performer over a 

wide range of input signal to noise ratios. Full complex-domain regression is still 

superior, however, as shown in [34]. Other methods consist of a sequence of 

various curve fits, such as circle fitting to correct for rotation and offset, followed 

by fitting to the phase response. For superconducting MKID resonators, Gao 

developed a multistep curve fitting approach [35]. In this thesis, I have used a 

combination of fitting methods, including Lorentzian and full complex domain. 
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5.3.1 Online parameter extraction via curve fitting 

The vast majority of methods are therefore based on curve fitting. Curve fitting is a 

mathematical procedure in the field of regression, whereby the parameters 

(coefficients) of a mathematical model that best agree, by some measure, with 

collected data are found using an algorithm. Usually, the measure of ‘agreement’ of 

a mathematical model’s prediction with data is the squared error,             , 

where   is a vector of data points and    are the model predictions based on the 

fitted parameters,   . Curve fitting is therefore an optimisation process, minimising 

a sum-squared-error cost function        as a function of the parameters,   

When the function       is nonlinear, as in the case of resonant sensor response, 

the optimisation becomes tricky, as the relationship between the gradient of the 

cost function, which sets the best ‘direction’ for its minimisation,     , is also 

nonlinear. The optimisation may thus suffer from a host of problems, such as 

multiple minima (i.e., multiple solutions to      ), difficulty with convergence 

(e.g., taking a long time, or not converging at all, or diverging), as well as sensitivity 

to the initial starting point for the fit algorithm (the value of the first iteration     ) 

[36]. The link between the statistics of the fitted parameters (i.e., variance and 

bias), and the statistics of the collected data points is also nonlinear and can be 

impossible to predict through any other means than Monte Carlo simulation. 

Whilst the superiority of curve fitting for eigenvalue estimation is not in question, 

one of the issues addressed in this thesis was how to perform curve-fitting best 

when the sensor is part of a realtime measurement system. Thus, issues such as 

speed, computational complexity, reliability, and robustness become important. If 

transfer function estimates are generated at KHz or even 100s of KHz, the task of 

extracting an eigenvalue estimate from each one by curve fitting becomes 

extremely challenging. This is because nonlinear curve fitting is computationally 

intensive, requiring many iterations, each consisting of several matrix operations. 

Due to these special requirements of high-speed MRS readout, general-purpose 

curve fitting algorithms as implemented in MATLAB, LabVIEW, etc., were not up to 

the task. Optimised algorithms were thus developed that can run at a much higher 



Chapter 5 – Software 

301 

rate and include specialisations that provide increased robustness for 

unsupervised, online MRS systems. 

In the same way that the adaptive filter algorithm is an iterative, stochastic 

approach to the minimisation of a cost function, iterative curve fitting algorithms 

can be ‘unwrapped’ in the time domain. Thus, in contrast to the traditional method 

of performing many time-consuming iterations on the same data, each iteration 

can be done with fresh data, generating a new parameter estimate. This is ideal for 

an online system, as the previous iteration provides the initial starting point for the 

next. When unwrapped into a time-domain recursive algorithm like this, the classic 

nonlinear least squared curve fitting technique, the Gauss-Newton algorithm, 

becomes the second-order stochastic gradient descent algorithm (NLMS, by 

comparison, is a first-order stochastic gradient descent algorithm) [13]:  

 
               

          

  
         

       

                                     

 5.27 

where   is the Jacobian matrix of the residual, of the current fit and latest data 

sample                    , with respect to the coefficients. When used to fit a 

function to the transfer function estimate,            for complex fitting, or 

            
 

 for Lorentzian fitting. In this case the curve fit to the spectrum 

should be weighted as               , as the variance of each point is roughly 

proportional to     
 

, as discussed above. When fitting a function where all data 

points have the same variance,   reduces to the identity matrix. 

 The learning rate,  , ideally unity in the original Gauss-Newton algorithm, is used 

to stabilise the convergence of the algorithm in the presence of noise, etc. The 

concept of controlling   based on the current convergence properties is the basis 

of many later additions to this algorithm, for example, the regularisation of 

Levenburg and Marquardt [37] can be seen to be a generalisation of the   

parameter. For the purposes of this simple realtime algorithm, where the change in 
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the spectral response with time can assumed to be relatively slow compared to the 

iteration rate, a scalar value of   is perfectly sufficient. 

Lorentzian fitting is appealing as it is still very accurate and high precision, as 

discussed above, yet does not require phase calibration. This eliminates the 

requirement for phase calibration in the multitone system. The development of 

this algorithm revealed a few tricks to using the Lorentzian function successfully. 

Firstly, rather than the ‘book’ definition, a normalised inverse quadratic works 

much better as a fit function:  

       
    

              
       

    

    
  5.28 

where   is the number of tones,    is the first tone frequency, and    their 

frequency spacing (assumedly equal). This inverse quadratic function avoids a 

double-minimum problem due to having a coefficient squared (i.e.,         would 

be a bad expression to have in a curve fit function as it has two solutions that give 

the same answer). Ensuring   is always in the range       is also important for 

avoiding numerical divide-by-zero problems and multiple solutions due to the   . 

It also allows the same starting value to be used for all problems;                

almost always guarantees convergence. Furthermore, to eliminate any sensitivity 

to amplitude variations, the magnitude response estimate should be normalised 

before fitting i.e., 

      
       

m x       
  5.29 

This ensures that the residual is always normalised to the same relative magnitude 

and is why a fixed   is sufficient. This step has the added benefit that the absolute 

amplitude accuracy of the multitone hardware system is irrelevant. However, in 

order to invert for unloaded bandwidth, a ‘calibration’ value of    is needed as this 

cannot be estimated from the insertion loss in this case. 
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Conversion from these normalised fitted parameters to the eigenvalue estimates 

(in Hz) is then simple:  

           
                    

       
               

     

      
 5.30 

A version of this fast Lorentzian curve fit was implemented in LabVIEW. The 

Jacobian   was expanded into is analytical form, allowing for its efficient 

calculation, 

  
       

              

               

                 

                

                 
 

 

 5.31 

The resulting was reduced to        multiplications and        addition 

operations per iteration, or        multiplications without using weighting. 

The performance of the algorithm was evaluated using some simple numerical 

simulation experiments. The first experiments were static simulations, based on 

initialising the algorithm to the same starting coefficients each time and 

performing 100 iterations at      , then evaluating the estimation error 

          
  and         

 
. A 31-tone excitation was assumed. The first of these 

experiments, Figure 5.29, was for no input noise – the error displayed by this 

simulation is the algorithm convergence error after the finite time of 100 

iterations. Close to the starting point, the error is very low and comparable to the 

numerical precision. However, the farther the coefficients are from the starting 

value the higher the error. This is reflected in the red regions of the plots. It is 

equivalent to the dynamic convergence seen in the adaptive filter in response to a 

step change – the bigger the step change, the more iterations are needed to reach a 

given error level. In practice, if the rate of change of eigenvalue is limited, this 

source of error would be very small.  
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Figure 5.29: Performance of the fast Lorentzian fit algorithm with no noise 

for various bandwidth and resonant frequency values. Left shows the error in 

the resonant frequency estimate, from blue at -150 dB through to red at -60 

dB. Right shows the error in bandwidth estimate, from blue at -150 dB 

through to red at -40 dB. 

Figure 5.30 is a Monte Carlo simulation of performance at an input SNR of 80 dB at 

the mid-bandwidth value of 0.5 (the SNR is assumed to be inversely proportional 

to the bandwidth). This time the algorithm was run for 1000 iterations. This 

therefore represents the steady-state performance of the algorithm independent of 

convergence time. This shows that there is a modest SNR gain of about 20 dB, in 

general, roughly in agreement with the earlier simulations. Evidently, when the 

resonance peak is outside of the measurement band        or       , a 

significant degradation in accuracy is seen. 
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Figure 5.30: Performance of the fast Lorentzian fit algorithm with an input 

SNR of 80 dB (100 averages). Left shows the error in the resonant frequency 

estimate, from blue at -150 dB through to red at -60 dB. Right shows the error 

in bandwidth estimate, from blue at -150 dB through to red at -40 dB. 

5.3.2 Nonparametric, neural network approaches 

The curve fitting method is very powerful, but it even with an optimised 

implementation, it is still quite computationally intensive. Furthermore, due to the 

limited convergence rate, it is unsuitable for use on the most rapidly varying 

sensors. Whilst it is possible to repeat iterations with the same data to improve 

convergence rate, this also increased the computational burden by the same level – 

not an efficient trade-off. 

Therefore, what is needed is a direct inversion of the eigenvalue function – in other 

words an algorithm that, in one-step, evaluates the function               . As 

discussed in Section 3.6.1, artificial neural networks (ANN) are powerful methods 

to find complex multi-dimensional functions based on input training data. A 

multilayer neural network could approximate the eigenvalue response inverse 

function in a single time sample: 
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                                   5.32 

The weight matrices  ,   and   are taught to the ANN from numerical simulations 

of sensor response over a large, fully-sampled grid over the anticipated range of 

eigenvalue parameters. The functions      are the neural network activation 

functions and may be of the ‘sigmoid’ type;               , or some more 

computationally-efficient function such as a Look Up Table (LUT) or a truncated 

power series representation. Assuming a LUT implementation with zero 

multiplications, the total computational complexity for a two-layer neural network 

in feed-forward mode like this is             multiplications. Depending on 

the number of hidden units     needed to learn the function with sufficient 

accuracy, this may be more efficient than a conventional curve-fitting approach. 

One of the strengths of ANN learning is that a network can be trained with realistic 

data; e.g., sensor input and output noise, and the normalisation of the transfer 

function amplitude. It can also be trained to be insensitive to non-ideal effects such 

as connecting transmission line length and coupling reactance. 

It has been demonstrated that adaptive filters are an efficient method for 

estimating the sensor impulse response under rapidly varying conditions. Thus, 

paired together, the adaptive filter and neural network could be an enabling 

combination for the highest speed MRS measurements. In this configuration, the 

ANN follows the adaption algorithm, using as its input the time-domain filter 

weights that have been filtered to reject non-excited frequencies (this function can 

be incorporated into the multiplication of the first ANN weight matrix,  , and thus 

does not constitute any additional computational complexity). The weights can 

also optionally be low-pass filtered and decimated if necessary before the ANN 

inversion. 

Furthermore, the eigenvalue response function can also be incorporated into the 

ANN function. Hence this system can output not only the eigenvalue      , but 

additionally (or alternatively) the desired measurand parameter estimate      . 

This last option is application specific. However, being merely software, new ANN 
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coefficients can easily be loaded to perform sensing with different resonators and 

in different application contexts without significant change to the architecture of 

the readout system software. 

 

Figure 5.31: Complete real time parameter estimator made from an adaptive 

filter followed by an artificial neural network 

To demonstrate this system through simulation, a neural network was trained 

with data simulated from an adaptive filter given plenty of time to converge (i.e., as 

if the sample properties were static). The operating point was assumed when the 

resonator is centred on the middle of the multitone signal. The neural network was 

trained to recognise both increases and decreases in resonant frequency and 

bandwidth over a regularly sampled grid. Half the training dataset was noiseless 

and half had additive noise at a level of -75dB (this was uniform across the change 

in bandwidth) so the network learnt robust noise rejection. 
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The neural network was trained with 2000 samples, generated by an optimised 

Latin square sample of the bandwidth-frequency space [38]. This ensures that the 

sample distribution is much more evenly spread than if drawn from a simple 2D 

uniform distribution, but is still essentially nondeterministic. This is good for 

training, as multiple samples from this same distribution can be used to compare 

the generalisation properties of the neural network (i.e., to unseen data) in a 

statistically rigorous way [10].  

The number of adaptive filter weights simulated was 32; these were divided into 

real and imaginary (the neural network algorithm in the Matlab toolbox does not 

work with complex data), giving a total of 64 inputs. A three-layer neural network 

architecture was chosen, having two hidden layers each with hyperbolic tangent 

nonlinearities. Ten hidden neurons were chosen for each hidden layer. This 

number was reached by guesswork, although trials over all possible combinations 

could be done given sufficient time. Bayesian regularisation was chosen as the 

training algorithm [39], this algorithm, whilst computationally intensive and very 

slow, is well suited to this sort of regression problem and gives excellent 

generalisation performance. 

 

Figure 2.9: Neural network toolbox representation of the network 

The error shown below is the absolute relative validation error,             . 

This error is based on the evaluation of ANN performance with new samples not 

used to train the neural network. As such, it is a good measure of the generality of 

the network; it is also a fair approximation to      . The samples are shown by 

small grey dots. The value predicted by the neural network is actually plotted over 

the true value, but the error is so small that no difference can be discerned by eye. 

As seen by the contour plot, the error surface has quite a large amount of ripple. 

This may imply that too many hidden units were used. However, the average error 
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is around  80dB, which corresponds to an uncertainty of ± 0.01% (100 Hz in 1 

MHz) in the estimate of bandwidth or resonant frequency change. From the plot, it 

is apparent that the SNR degrades under smaller changes. This is because the 

change is small in these areas and the performance measure is relative. This could 

be improved by retraining with many more samples from these ranges.  

 

Figure 5.32: Validation error after neural network prediction of resonant 

frequency and bandwidth change. On the left is the absolute relative error in 

the estimate of the change in resonant frequency, scale is in dB ( -40dB is an 

error of ±1%). On the right is the absolute relative error in the estimate of the 

change in bandwidth, same scale 

In summary, the performance of the ANN method is comparable to that of the fast 

Lorentzian method, therefore providing a neat and flexible solution to the problem 

of eigenvalue estimation. However, this combined algorithm remains to be tested 

practically, and a comprehensive analysis of the error and statistical performance 

of the combined system remains an outstanding task. 
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6 Verification 

To demonstrate and validate the measurement of dynamic perturbation signals 

using a microwave resonant sensor (MRS), a range of experiments were 

performed. Two of these aimed to verify the accuracy of the multitone readout 

system pushed at high sampling rates; the capture of a falling liquid drop, in 

Section 6.1, and the measurement of a gas-segmented flow stream in Section 6.2. 

Neither of these experiments seems to have been demonstrated before, and both 

represent challenging measurement environments that would be difficult or 

impossible for traditional MRS readout systems to handle with good precision and 

accuracy simultaneously.  

A project to monitor and control microwave heating effects in miniature flow 

systems provides a good demonstration of the use of temporal measurement, in 

Section 6.3. In Section 6.3, the use of temporal MRS measurement for dynamic 

capillary filling experiments is investigated. These experiments are all proof-of 

principal demonstrations; however, each shows potential as a sensor system in its 

own right that, with further development, might find application in metrology, 

chemical synthesis, point-of-care diagnostics, or remote sensing, for example. 

For the purposes of verification, the experiments were devised so that a 

reasonably good prediction of the results could be made by an independent 

method, or by sound theoretical analysis. An agreement with prediction therefore 

serves to verify temporal MRS measurements and the multitone readout system. 

All these experiments, therefore, took a known ‘reference material’ and used it in 

one-way or another to create a dynamic signal. Liquids are ideal for this task – 

simple, pure solvents are well-characterised for permittivity against frequency and 

temperature by groups such as the National Physical Laboratory, UK, giving a 

traceable standard by which to compare measurements. Thus, liquids and liquid 

metrology is a strong theme throughout this work and in potential applications of 

these sensor systems. 
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6.1 Capturing a falling dielectric drop 

An existing aluminium cylindrical  TM    cavity resonator designed for the 

measurement of tubes containing liquid or powdered materials [1] was used as a 

sensor for a dynamic measurement verification experiment where an invariable 

dielectric liquid was dripped at a steady rate through the resonator body. The 

cavity was designed with a 5 mm circular aperture centred in its top and bottom 

surfaces. A microcapillary-based dropper was aligned precisely with these holes so 

that each droplet fell along the axis of the resonator, with the time between 

entering and exiting the resonator being about 40 ms. This created a repeatable, 

high speed dynamic perturbation signal having a peak resonant frequency slew-

rate of about 30 MHz/s with which to test the prototype system. 

The reference liquid, for which both ethanol and methanol were used (HPLC grade, 

Sigma Aldrich, UK), was delivered to the dropper at constant rate by a syringe 

pump (KDS200, KD Scientific) which maintained an accurate flow rate of 100 

µl/min. The dropper was made from a length of accurately cleaved, clean polyether 

ether ketone (PEEK) capillary with an inner diameter (ID) of 150 µm. Due to its 

small dimensions, the flow regime in the capillary was laminar and the drop 

formation highly regular. The process of drop formation is highly controlled: 

gradually the droplet increases in volume under the slow, steady and pulse-free 

flow conditions provided by the pump, with surface tension and electrostatic 

attraction to the hydrophobic capillary being the only competing forces to gravity. 

Once the drop reaches a certain size, it is no longer in contact with the capillary 

and is held only by cohesive forces to the remaining liquid. Eventually the weight 

of the forming droplet overcomes surface tension and the droplet falls. When 

carefully controlled, this process is highly predictable, and is a long established 

way of measuring surface tension using a specialised pipette known as a 

stalagmometer [2],[3] . This technique relates the surface tension of a liquid to a 

droplet’s mass m and the radius of the capillary orifice r [4] : 
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  6.1 

where             is the gravitational constant and    is a correction factor of 

order 1 that accounts for imperfections in a specific aperture’s geometry – 

generally this factor is eliminated in practice by comparing to a reference liquid 

such as water. Although this capillary is not flat-bottomed as a stalagmometer, a 

similar relationship to the above should hold in this case. Furthermore, given the 

small size of the drop and the low viscosity of the alcohols, it is expected that the 

drops should form a neck only for a very short time and without creating any 

satellite droplets following the main drop. Thus by the time the drop enters the 

cavity it is expected to be isolated and spherical. Whether these assumptions are 

true in practice could be verified with a high-speed video camera setup if required, 

such as that demonstrated in [5].  

Figure 6.1: Formation of a liquid drop at the tip of a hydrophobic 

microcapillary 

Once detached the droplet falls as a particle under free fall, described by 

Newtonian mechanics and therefore having a velocity independent of mass. This is 

easily verified by calculating the terminal velocity for a spherical object. 

Considering that the particle is large enough to be in a high Reynolds number 

regime, this is given by [6] 
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                6.2 

where   is the droplet mass,       kgm   is the density of air,         

(dimensionless) is the drag coefficient of a sphere and              m is the 

cross-sectional normal area. Thus for these droplets the terminal velocity is over 

    ms  , well in excess of the 1.1 ms   that the droplets are expected to reach by 

the time they exit the resonator. Thus using the ballistic approximation, which 

predicts the time taken to fall a distance   is        the transit time of the drops 

should be constant at around          ms. 

It is therefore reasonable to assume that the main experiment parameters; liquid 

composition, droplet size, interval and freefall time are all well controlled, allowing 

the performance of the system to be reliably assessed with a predictable and 

repeatable time-varying perturbation. Figure 6.2 showed the experimental setup. A 

short length of PEEK capillary of inner diameter (ID) 150 µm and outer diameter 

(OD) 360 µm (Upchurch Scientific, UK) was threaded through a sleeve of OD 1/16”. 

This created a tight seal in the conical Fingertight fitting (yellow-grey) and union 

(black) that interfaced the dropper assembly to the main tubing. Standard 500 µm 

ID, 1/16” OD Teflon tubing then connected this assembly to a gas tight glass 10 ml 

syringe for precision dispensing.  

The syringe pump employed here works by rotating a lead-screw driven pusher 

using a stepper motor assembly, providing an accurate flow as long as the 

diameter of the syringe is known precisely (accuracy better than 1 %, repeatability 

better than 0.1 %) [7]. The syringe pump was calibrated by measuring the syringe 

plunger diameter with a micrometer (14.57 mm in this case). This information is 

input into the pump, ensuring accurate conversion from pusher velocity to 

volumetric flow rate. The flow rate was set to 100  l mi , allowing the drop to still 

form freely and naturally whilst ensuring that the drop interval was not excessive. 

The dropper assembly was suspended vertically above the cylindrical resonator 

and aligned to its main axis (see Figure 6.10). Inserted through the resonator body 

was a 5 mm diameter thin-walled plastic straw. This protected the inside of the 
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resonator from contamination in the event of misaligned drop. Being of constant 

cross section, minimal volume, and low permittivity it had minimal effect on the 

resonance. The resonator was connected by short cables to the second 

implementation of the PXI-based multitone prototype system as discussed in the 

Hardware chapter. Data were captured, processed, and streamed to file in realtime 

by the same LabVIEW program used to implement the processing algorithms.  

 

Figure 6.2: Photograph of the dropper assembly (left) and the experimental 

setup (right) 

6.1.1 Resonant sensor theory and characterisation 

In order to extract useful sample measurements from this experimental setup, the 

microwave resonant sensor, i.e., the TM010 cavity, needs to be characterised. As 

discussed in the Theory chapter, this will allow measurements of resonant 

frequency and bandwidth to be converted to complex permittivity through the 

inversion of the resonator eigenvalue response function. 

The general perturbation Equation 3.14 describes the link analytically between 

complex resonator eigenvalue   and a desired measurand,  , which in this case is 

the complex permittivity of the droplet: 
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  6.3 

The sample in this case is assumed small and spherical, and will depolarise in the 

resonator electric field because the axial electric field lines in the TM010 mode will 

cross the dielectric boundary of the sample. Therefore, for the single sample 

region, the best energy term to use out of those in the above general perturbation 

equation is the dipole moment term, i.e., the fourth summation term,           , on 

the numerator. Taking the reference to be air so that             , this gives a 

simplified energy term for a dipole in a uniform applied field: 

                          
       

           
       6.4 

There is only one non-sample region, the cavity body, and only one sample region. 

Therefore, all summations reduce to single values. In the cavity air region 

              
 

 
     and               

 

 
    , but it can be assumed that 

          because the sample is so small it should cause an insignificant change 

to the field distribution. Because of this assumption, the equipartition theorem can 

also be used to state that       . For the TM   mode, the only non-zero field 

components are the azimuthal magnetic field, which varies only with radius, and 

the vertical electric field, which also varies only with radius. This simplifies the 

field integral calculations for these terms greatly. Thus,  

                         
      

       
 

 

         
    

      6.5 

where    is the cavity volume [8],[9], Here the constant                      

is the solution to        ; the first positive real root of the Bessel function of the 

first kind of zeroth order. The software package Maple®  (Maplesoft Inc., ON, 

Canada) can be used to find any such root if other cylindrical resonator modes are 

used instead: in this case the constant    
                    Furthermore, for an 

air filled resonator it can be assumed that the relative        . Even though the 

permittivity of air may be slightly higher than this, depending largely on humidity, 
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the error introduced by this assumption is significantly less than cavity dimension 

uncertainties, etc. 

 
       

  
 

           

              
  6.6 

Assuming the drop is centred exactly at the electric field maximum so that 

       , and assuming the drop is perfectly spherical so that      , gives the 

simplified energy factor for the depolarised dielectric droplet:  

              
  

    

    
  6.7 

where    is the drop volume and    its complex relative permittivity. Thus the fully 

simplified linear resonator perturbation equation for the droplet in a TM    mode 

resonator is 

 
       

  
 

          

                   
  6.8 

where       
       is the effective cavity volume. This function is plotted in 

Figure 6.3 below: 
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Figure 6.3: Predicted change in    (blue) and    (red) against drop 

permittivity according to Equation 6.8  for the TM010 mode cavity. A drop 

volume of 2.84 µl was assumed. Note that, by the definition used here, the 

‘3dB bandwidth’        , the change in which is positive – as expected for 

lossy sample. 

This function is clearly nonlinear due to the depolarising effect, and this sensor is 

not an optimal way of measuring liquid permittivity because of it. The predicted 

change above is only valid when the droplet is in a central position, at the mid-

point of its fall through the resonator. However, the assumption of uniform electric 

field along the cavity axis is clearly invalidated close to the holes which allow the 

drop to enter and leave the cavity. In addition, the effect of drop depolarisation 

fields may cause nonlinear perturbation effects when the drop is close to the cavity 

ends.  

According to [10] the permittivity of methanol at 25°C and 2.5 GHz is       

                 (intervals given at 95% confidence). The predicted reduction 

in resonant frequency for methanol is therefore         K   and unloaded 

bandwidth increase of           K  , based on an uncertainty of       mm in 
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cavity dimensions (estimated from measurement at various different positions – 

this relatively large variation may have been caused by warping due to the 

resonator’s assembly method). For ethanol,                      at the same 

temperature and frequency, this perturbation estimate is         K   for 

resonant frequency and         K   for bandwidth. These estimates will 

provide a reference by which to verify the accuracy of the dynamic measurement. 

The inverse of this expression gives the estimated complex    as a function of the 

measured eigenvalue:  

     
                    

                    
  6.9 

In this expression it is necessary to correct for the effects of loading using the 

approximation given in the Theory chapter,             , when using 

measured results. This is particularly important here as the resonator is strongly 

coupled; ignorance of this would therefore lead to a significant error. 

In order to determine the external Q, a 2-port, fully calibrated VNA measurement 

of the empty resonator was made. An 8-term spectral model was fitted to these 

data based on a first order expansion of the effect of the electrical length of the 

capacitive coupling probes beyond the calibrated reference plane, which was about 

12.2 mm for each probe:  

                          
  
 
         

           
     

         

     
 

 

 
  6.10 

   are the normalised frequency points of the sweep (normalisation improves 

numerical stability and convergence). This curve fit (and all subsequently 

described curve fitting) was performed using the Matlab® Optimization ToolboxTM 

(The MathWorks Inc., MA, USA). The toolbox function lsqnonlin was used. This 

implements a Levenburg-Marquardt algorithm, as discussed in the Software 

chapter, to minimise the 2D objective                           , where   is 

a vector of measured complex scattering parameters,    is the fitted function 
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estimate and   the parameter vector. This circumvents the limitation of the fit 

algorithm to real-domain functions, allowing full use of the complex scattering 

parameter data whilst avoiding a nonlinear transformation to power, phase, etc. A 

nonlinear transformation would invalidate the assumption of normally distributed 

noise inherent in least squares curve fitting. Because of the way the function is 

defined, an initial coefficient vector                            always provides 

a good starting point for the fit; the first six coefficients being zero in the case of 

zero imperfections (i.e., free from coupling reactance, connecting line length, etc.). 

 

Figure 6.4: Calibrated reference measurement of the TM 010 resonator showing 

S21 (blue) and S11 (red) in magnitude (left) and Smith chart (right) 

representations; the data are shown by points and the curve fit by a 

continuous line. 

The mean squared error of this fitted function,                , where   is the 

number degrees of freedom of the fit. This figure of merit is extremely small for a 

single sweep due to the very low trace noise of the VNA – about     . This value 

can be transformed into an estimate for the upper and lower bounds on the 

derived coefficients using the following relationship:  

                             6.11 

where t is the inverse of Student’s cumulative distribution function for        

degrees of freedom, N being the number of samples (the factor of 2 comes from the 
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real and imaginary components which are assumed to be independent).   is the 

Jacobian matrix of the fitted y values with respect to the fitted coefficient vector – 

this is something most curve fitting algorithms can optionally return numerically; 

although for this function it does also have an analytical representation. The 

normalised coefficient vector   is related to useful resonator parameters by the 

following series of relationships:  

 

                    
 

 
     

  

  
 

 

 
        

              
  

       
 

             
  

           
 

 6.12 

Using these relationships and the calculated upper and lower coefficient bounds, 

useful confidence intervals on these derived parameters can be estimated. If one-

off VNA characterisation like this is used to correct for all subsequent multitone 

system measurements, it is important to characterise what the contribution to 

measurement uncertainty will be from this calibration. From a single sweep, the 

calculated 99% confidence bounds turn out to be very optimistic:    

            ,           for example. However, a better estimate of 

repeatability is reached by combining several sets of repeated measurement into 

one curve fit. Especially if the calibration routine is repeated in between, these fit 

intervals then become useful indicators of the systematic error on these reference 

measurements (although definitively no substitute for full systematic error 

analysis). Three separate repeats were thus made, giving the parameters shown 

below. These estimates were used as a reference for all subsequent experiments 

with this resonator. 
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Table 6.1: Estimated static resonator constants estimated from calibrated 

VNA reference measurement 

Parameter Value 99 % fit interval 

   2.499 805 074 GHz   380 Hz 

   544.554 KHz   380 Hz 

                                      

                                         

   2295   1.6 

   2738 +20/−21 

   14200 +670/−570 

 

The cavity is over-coupled, with the loaded Q being dominated by the external Q. 

This is not a problem in practice, although the coupling is not optimum. This 

coupling regime is better suited to measuring high loss samples rather than for the 

small perturbation experimental conditions used here. Note the large interval of 

values for the unloaded Q under this regime. The accuracy of this    estimate is 

dubious when limited to such a degree by coupling loss. According to the 

correction for unloaded bandwidth,             , the measured bandwidth is 

approximately 456 KHz larger than the unloaded bandwidth, which is therefore 

around 89 KHz.  

6.1.2 Experimental setup 

The prototype SDR system as described in the Hardware chapter was used. Due to 

the high resonator coupling factor, one RF LNA and a low AWG gain setting (0.07) 

provided sufficient signal level to best exploit the input range of the ADC under 

normal operating conditions. At this modulator drive level, the excitation signal 

distortion was very low. The resonator bandwidth is low compared to the 

maximum multitone system bandwidth (100 MHz), so a 512-sample excitation 

waveform consisting of 15 tones covering about 3 MHz and spaced at 195 KHz was 

used. This was modulated at     , which, as discussed in the Software chapter, 
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provides excellent rejection of distortion and quadrature errors. Because of this, 

and the narrow resulting frequency span, predistortion and tone flattening 

calibration were not required and this step was omitted. 

The experiment needed to run in realtime to capture the results from a large 

number of individual droplets continuously. ADC acquisitions could therefore only 

be collected at a rate low enough to ensure continuous processing was maintained 

indefinitely. Due to the bottleneck in the system during the transfer of these 

acquisitions to the PC, the prototype system was limited to a realtime resonator 

readout rate of 500 Hz. This is still significantly faster than that possible with a 

VNA using an optimised, externally triggered configuration. However, of the 

maximum possible waveform samples that could be acquired, only about 4 % 

could be used to produce spectral response estimates under these conditions. 

Due to these limitations on readout rate, it was not necessary to use an adaptive 

filter in order to make a continuous spectral estimate. Although the perturbation 

slew rate caused by the falling drops is still high by the standards of traditional 

resonator readout systems, simple FFT block processing was still sufficient for 

estimating the resonator spectral response. Even at the position of highest change, 

the assumption of stationarity was not noticeably violated over a single waveform 

capture period. The captured waveform was 16 times longer than the excitation 

signal, this was then divided into blocks of 512 samples, and the spectral estimates 

of each block averaged as discussed in the Software chapter. The fast Gauss-

Newton algorithm for fitting a Lorentzian response to spectral data was used in 

order to extract resonant frequency and bandwidth estimates.  

6.1.3 Results of the falling drop experiments 

Several sets of measurements of both ethanol and methanol drop streams were 

taken. An example of a resonant frequency trace captured for methanol is shown in 

Figure 6.5 below. The drops appear as short, regularly spaced pulses of resonant 

frequency shift superimposed on a slowly varying background. 
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Figure 6.5: Plot of an entire resonant frequency waveform, consisting of 1 

million points over a period of about 30 minutes (left), and a short sample 

near the start of the experiment (right). 1273 droplets were measured in this 

time. Measurements are shown as black points joined by a grey line.  

The drift in resonant frequency due to environmental variation, such as thermal 

cavity expansion, is evident from the baseline position close to zero (seen as a 

thick dark line at the top of the long waveform in the left plot above). Importantly, 

the perturbation due to the droplet, shown by the band of points at the bottom of 

the waveform, appears to follow the drift in ‘reference’ resonant frequency closely. 

This demonstrates the potential of dynamic measurements like this to cancel out 

uncertainties due to drift. As long as the dynamic measurement is arranged so 

there is a periodic ‘reference’ signal, like the time between droplets in this case, 

this can be used as a new reference for the next measurement. This differential 

technique ensures that drift is cancelled on timescales longer than the 

recalibration period. To remove the baseline drift in this experiment, a simple 

moving median filter (MMF) method was used. The MMF implements the statistical 

median function over a siding block of length 256 samples. Since the signal pulse 

width is less than 256/2 samples, the MMF was reliable and effective at extracting 

the baseline drift, which was then subtracted from the main signal. 
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Figure 6.6: Baseline corrected resonant frequency waveform (top) and 

bandwidth (bottom) for ethanol droplets. Individual samples are shown by 

blue points joined by a light blue curve. The red line indicates the 

perturbation predicted by the spherical dipole theory, based on the sample 

volume estimated from the average drop rate.  

One of the appealing reasons for working with dynamic signals is the information 

contained within the time dimension of measurement. The processing of the data 

captured in this experiment required the detection of each individual droplet, the 

estimation of the time between droplets (which should be proportional to the 

droplet volume), and the calculation of the average resonant frequency and 

bandwidth perturbation per drop. In order to do this a perturbation threshold 

based on the change in resonant frequency was used as a ‘trigger’. The crossing 

time for this threshold was then linearly interpolated to give an accurate estimate 

of the drop entry and exit times. The time between these crossing times provides 

an accurate estimate for the volume of each drop, based on the assumption that the 

flow rate is constant. The extracted temporal information is summarised in Figure 

6.7. 
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Figure 6.7: Measurements of drop size dispersion using time-domain 

measurements of drop interval, top row – methanol, bottom row – ethanol. 

The results seem to confirm that the drop volume is random and normally 

distributed with mean       l for methanol and       l for ethanol; a drop 

diameter of about     mm. These values are very close; the surface tension of 

methanol is very close to that of ethanol (            m   and        

      m   respectively at 25°C [11]). Using this time-domain method of sample 

volume estimation in an online measurement system means the inverse equation 

used can be specific to the every drop – allowing the system to adapt to unknown 

liquids. This also has the advantage of referencing the dominant source of 

measurement uncertainty (the sample volume) to the accurate and well-controlled 

volumetric flow rate, increasing the potential measurement accuracy.  

The above stalagmometer equation predicts a drop mass of about      g for both 

alcohols, giving an estimated drop volume of       l  based on their densities of 

       gcm   and        gcm  , respectively. This underestimate by just over a 

factor of 2 is probably due to the imperfect dropper tip – proper stalagmometer 
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design requires a flat bottom and they are usually made of a hydrophilic material 

such as glass, rather than hydrophobic PEEK as used here. The drops are bigger 

than estimated probably because of the initial attraction of the liquid to the outside 

of the capillary – a behaviour verified by observation. However, an order-of-

magnitude agreement still serves to confirm the basic operational principles. It 

also clearly demonstrates that useful secondary information can be derived from 

temporal MRS measurement. 

  

Figure 6.8: Change in resonant frequency over a large number of repeated 

drop transients, each plotted as a series of points; left is methanol, right is 

ethanol. The red line shows the perturbation predicted by theory 

However, despite the promise of this drop method, an apparent problem was 

found. On processing the individual drop transients, (see Figure 6.8) a significant 

ripple was observed during the transit of the drop. Initially this was thought to be 

an artefact of the measurement system – perhaps a ‘memory effect’ due to the 

realtime processing algorithm feeding back previous curve fit coefficients, causing 

the estimates to oscillate around their true values. However, to eliminate this 

explanation, raw data for the individual tone amplitudes was also taken for off-line 
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processing. As seen below, the ripple is still present in the raw spectral estimates 

that have no memory.  s 

 

Figure 6.9: Relative power of the 15 measured tones plotted against time 

around a typical droplet transient (Sampling rate 250 Hz)  

Therefore, it cannot be an artefact of the curve fitting system. In addition, as 

described by the time-domain resonator model in the Theory section, the decay 

time for any transient behaviour due to this perturbation is much less than the 

sampling interval. This leaves two physical explanations for the ripple effects 

 The axial electric field magnitude of the resonator is not  homogeneous 

and instead shows variability with distance – causing variable 

perturbation as the drop falls 

 The droplets are not perfectly spherical when falling and instead oscillate 

in sphericity due to inertial effects – causing the depolarisation factor to 

vary as the drop falls 

To eliminate the first explanation, a further experiment was done (see Figure 

6.10). Chrome steel ball bearings, 1 mm in diameter, were dropped from rest at a 

height of 13 mm above the resonator directly along the resonator axis. These 

bearings had very good tolerance for diameter and sphericity,       m, [12] 
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making them an excellent standard by which to compare the liquid drops. The 

theoretical perturbation due to a depolarised good conductor is approximated by 

taking the limit of Equation 6.8 as            , reducing it to:  

 
       

  
 

    

       
             K    6.13 

The change in bandwidth is predicted to be negligible.  

 

 

Figure 6.10: Cross sectional diagram of the TM010 resonator configured for 

the falling ball bearing reference measurement . 

The experiments failed to show any ripple. The results also agree closely with the 

predicted perturbation, measuring       K   at the midpoint of the drop transit, 

on average. The total width of the perturbation signal is about 50.3 ms. This is 

higher than the free fall model transit time of 45 ms due to the resonator 
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perturbation beginning before the particle enters the resonator, and likewise on 

exit, due to the fringing field around the entry hole.  

 

 

Figure 6.11: Change in resonant frequency with time over repeated 

experiments of steel spheres falling from a known height through the 

resonator. 

There is a relatively large amount of sampling jitter considering the time-domain 

signal is specifically chosen to be highly repeatable. This may be caused by non-

determinism in the LabVIEW software timing and/or digitizer data transfer, 

occasionally causing a particular trigger to be missed. If a trigger is missed, the 

sample period defaults to the next trigger – effectively doubling the sampling 

period for that measurement point. This is consistent with the band of sampling 

jitter labelled in Figure 6.11, as traces appear to be discreetised into bands of an 

integer number of samples. To investigate this explanation, software timing was 

used to measure the time taken to fetch successive acquisitions from the digitizer. 

A fetch period exceeding twice the desired sampling period would imply a missed 

trigger and hence explain this measurement artefact. 
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There is no truly accurate high-precision timing available in a multithreaded 

operating system environment like Microsoft Windows®. The best that LabVIEW 

offers is the millisecond timer, which returns the current number of milliseconds 

from some unspecified time (possibly since last boot-up). However, a higher 

precision timer is available in the Windows application-programming interface 

(API) that is capable of measuring smaller intervals (     on the computer 

running the experiments). This API function was used in the LabVIEW control 

software to measure the acquisition period (Figure 6.12). Whilst the majority of 

the samples appear to be very close to the desired 2 ms period – implying that the 

right trigger has been received and the timing is accurate – occasional acquisitions 

fail to meet their deadline and result in a missed trigger. Whilst this particular 

example has only an extremely small probability of a missed trigger (just 0.01 %), 

this is likely to be dependent on the average background process load of the 

computer and similar uncontrolled factors. This could therefore explain the 

observed sampling jitter on the resonant frequency waveforms. 

 

 Figure 6.12: Software timed acquisitions showing occasional missed triggers 

– a possible cause of timing jitter. 

The non-deterministic software environment of the PC is therefore causing a 

measurement artefact, however the hardware system should be fully deterministic 

and is coordinated accurately with a shared 100 MHz clock, itself frequency locked 

to a precision 10 MHz reference in the RF signal generator. The long-term solution 

to sampling jitter is therefore to perform the digital signal processing on a fully 

deterministic system – such as a realtime operating system, embedded processor 

or, most desirably, an FPGA. This would not only allow for precision timing with 
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minimal sampling jitter but also allow for 100 % utilisation of the available 

waveform data. This, in turn, promises a much higher maximum sample rate and 

increased dynamic range, as mentioned previously in the Hardware chapter. 

6.1.4 Drop oscillations 

Having ruled out measurement-related sources of the observed oscillations, a 

physical explanation was sought. It turns out that falling droplets naturally 

undergo surface oscillations (mechanical resonance) due the second order system 

created by the drop surface energy (spring), inertia (mass) and viscosity (damper) 

[13]. Whilst the alcohol drops have a low mass, they also have low viscosity and 

high surface energy because of hydrogen bonding; hence, drop oscillations are still 

plausible. The axisymmetric resonant modes of the liquid drop boundary were first 

described by Lord Rayleigh in 1879, [14], [15]: 

             c s          6.14 

where   is the angle measured from the centre of a drop of radius  , and       is a 

Legendre polynomial for the resonant mode        . The resonant frequency of 

these surface oscillation modes is given by  

    
 

   
             6.15 

This predicts a resonant frequency for fundamental vibrational mode of the drops 

of 91.8 Hz for methanol and 90.6 Hz for ethanol. This is a high frequency, but with 

the system sampling at 500 Hz, it should be possible to check whether the 

observed ripple matches it.  

As the number of points in the oscillatory part of each drop is relatively few, a 

nonlinear least squares algorithm was used to fit a sinusoidal wave to this part of 

every drop waveform; i.e.,             c s       si    . The fitted 

frequency was estimated for every drop. A histogram of the measured drop 

oscillation frequency is shown in Figure 6.13. An R-square value of 0.99 or higher 
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was obtained for the majority of the droplets, showing that the sinusoidal model 

agrees very well with the measured data. This also implies that any damping of the 

oscillations is small enough not to cause appreciable decay of the oscillations 

during their transit time. Furthermore, if higher order droplet vibrational modes 

are excited, either they are of insignificant amplitude or they do not affect the 

depolarisation factor in such a way as to cause resonator perturbation oscillations.  

This analysis shows that the majority of the measured drops have an oscillation 

frequency close to that predicted by the Rayleigh model, perhaps biased towards a 

slightly lower resonant frequency than predicted (Figure 6.13). However, this is 

still a good enough agreement to conclude that this natural behaviour is the cause 

of the observed ripple in resonant frequency. That the amplitude of the oscillations 

is so high is remarkable, testament to the sensitivity of depolarisation factor to 

shape. It also seems somewhat counter-intuitive to the accepted wisdom that 

inertial effects are insignificant on these length scales. Clearly, this assumption can 

be easily mistaken in practice.  
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Figure 6.13: Histogram of measured drop oscillation frequency derived from 

time-domain resonant frequency waveform processing of individual droplets 

(top) and example of the Fourier curve fits to measured droplet oscillations 

(bottom) with fit as red curve and data points as blue points  
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6.2 Measuring a gas segmented flow 

To provide a more controlled perturbation signal, and to better evaluate the full 

capabilities of the multitone system under large-signal perturbation conditions, a 

second experiment was devised. An existing split ring resonator (SRR) [16], a 

compact lumped element resonant sensor with a highly localised electric field, was 

used to measure the perturbation caused by a capillary containing an alternating 

flow stream of a pure reference solvent with air. This sensor has an extremely high 

filling factor, as its electric field is highly confined. The resulting high sensitivity 

means the perturbation signal caused by even low permittivity samples is 

exceptionally large, with a resonant frequency slew rate of around 1.9 GHz/s. 

Compressed air and solvent flow from a syringe pump were combined at a 

capillary tee junction to generate this flow stream. As discussed in the Applications 

chapter, on small length scales such as this junction a laminar flow regime and a 

dominance of surface forces exist, leading to interesting behaviour such as highly 

stable multiphase flow regimes. This is exploited here to create regular segments, 

or ‘slugs’, of air interspersed with solvent – rather than small, irregular, isolated 

bubbles expected on conventional scales. This flow regime is analysed in detail by 

Triplett et al. [17][18]. Gas-liquid segmented flow like this is often used to enhance 

the accuracy of chromatographic assays by reducing dispersion, [19] to enhance 

mixing in each phase, [20] and to perform gas-liquid reactions and separations 

[21]. The constantly refreshing gas-liquid interface also enhances the reaction rate 

of chemical reactions, and allows for the extraction products continuously, which 

enhances yield in microfluidic reactors. 

As the air segments extended across the entire capillary diameter, and were long 

enough to occupy the whole electric field sensing region of the SRR, they created a 

momentary ‘zero reference’ point where the capillary nominally contained only 

air. This was then followed by a long slug of solvent, and the combined segmented 

flow stream passed the split ring sensor at a velocity of about    mm s. A suitable, 

large amplitude, dynamic perturbation signal with which to test the multitone 

system could thus be generated. 
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Figure 6.14: Photograph of the split ring resonator housing with inflowing 

gas segmented flow stream (left) and the split ring resonator with fitted with 

microcapillary (right). 

Due to the high filling factor of the SRR, high dielectric loss liquids such as water, 

methanol, etc., cause a massive increase in bandwidth, making measurement of the 

resonance difficult and inaccurate. The SRR is better suited to measuring small 

amounts of polar contaminant or analyte in a largely non-polar matrix. Such 

compositional analysis was its intended application. This meant that a suitable low 

loss reference liquid was needed for characterisation. Toluene (       ), a 

benzene ring with single methyl group, is a common solvent used in industrial and 

pharmaceutical processes. It is only very weakly polar, has low viscosity yet a 

relatively high boiling point, making it an ideal candidate. According to Petro and 

Smythe, [22] toluene has static dielectric constant of          , and the first 

dielectric relaxation at a frequency of 24.57 GHz, with an associated dielectric 

increment of only         . This gives a complex permittivity at the resonant 

frequency of 3.58 GHz of about                . This very low dielectric loss, 

          , is guaranteed not to ‘swamp’ the resonant sensor. 
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6.2.1 Experimental setup 

Figure 6.15: Cross sectional diagram of the gas segmented flow setup showing 

the split ring resonator and capillary configuration – Inset: generation of gas 

segmented flow at a tee junction 

To create a resonator perturbation that alternated between two known static 

values, the gas segmented flow was eluted into a 500 µm OD/250 µm ID Teflon® 

AF capillary (Biogeneral, CA, USA) before passing through the capacitive gap of the 

split ring. This had the effect of stretching the slugs by a factor of four in length as 

the narrower capillary had half the inner radius. The longer slug completely filled 

the active length of the capacitive gap – for a split second being equivalent to 

homogeneous flow conditions. The outer diameter of this capillary was 

conveniently sized so that a seal was possible simply with a push fit into the larger 

capillary. Teflon® AF (grade 2400) is an amorphous fluoropolymer that has one of 

the lowest known dielectric constants of any solid and a very low loss factor, 

               , [23], having minimal impact on the measurement accuracy 

and Q factor. Pumping a fluid through a narrow capillary can require large forces, 
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so the length of this narrow capillary was kept short in order that the syringe 

pump pusher mechanism could cope and gas pressure was required was 

reasonable. The join was located inside the resonator housing. The fluid eluted into 

a containment trap, sealed using a conformable polymer film (Nescofilm®, Japan). 

A second, large diameter length of tubing extending out of this trap allowed 

displaced gas to escape to atmospheric pressure inside a fume cupboard – this was 

important as toluene produces vapours harmful to human health [24]. 

The controlled gas flow was created by tapping-off the laboratory compressed air 

supply (from an external compressor) using a manually controlled adjustable air 

bleed and pressure meter readout. A pressure of about 5.6 KPa was found to be 

sufficient to create a slug flow regime with the syringe pump flow rate set to 200 

 l mi ; depending on the length of the narrow capillary. Experimentally, the 

optimum pressure was found by releasing the constriction until the point at which 

liquid was seen moving back along the gas line. The pressure was then gradually 

increased until it was sufficient to force the liquid slowly back towards the tee 

junction, at which point relatively stable slug flow could be created and adjusted 

for gas-liquid ratio by fine adjustment of the pressure. Although simple, this 

method of generating a constant pressure gas source is not very accurate, and as 

the results show, leads to quite a large variation in the gas segment length. This 

was not an issue for this experiment, but a better and more repeatable experiment 

would be achieved using bottled, compressed nitrogen. 
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Figure 6.16: Configuration of the air supply (left) and photograph (right)  

In order to increase the dynamic range of the measurement for the multitone 

system, the coupling to the SRR was increased by moving the coupling loops 

inwards. The brass housing was also re-polished and the copper ring was cleaned 

by sonication in an acetone bath to remove traces of metal polish, fingerprints, etc. 

Subsequent handling of the split ring was avoided. Having a high sensitivity to 

evanescent electric fields at the surface of the copper ring, this cleaning procedure 

is important to maximise the quality factor of the sensor. Other than this, no 

alterations were made to the resonator, the design and construction of which is 

covered in more detail in [16]. 

6.2.2 Resonant sensor characterisation 

The analytical perturbation analysis for the split ring is similar to that of the 

droplet experiment, as the sample is depolarised in the SRR too. The dipole energy 

term in the general perturbation equation is therefore convenient here also. The 

dipole energy of a capillary containing a sample is a bit more complex than a 

homogeneous sphere: [16] 

                   
  

                                 

                                 
  6.16 

where   is the capillary inner radius,   the outer radius    the sample complex 

relative permittivity and    the capillary relative permittivity.         is the total 
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volume of fluid within the electric field region of the split ring (assumed to be 

uniform over this length). Note the use of   rather than   in the equation for    is a 

correction to that quoted in [16]. This is because the volume integral of the energy 

density is over the sample inside the capillary, rather than over the entire capillary 

volume itself, and, since the field inside a depolarised ellipsoidal prism or body of 

revolution is always uniform, this volume integral reduces to the geometric volume 

multiplied by the constant internal field. This result is derived for a dipole in an 

infinite expanse of free space. However, the top and bottom faces of the split ring 

capacitor are close enough to be in physical contact with the capillary, which will 

cause a degree of error. Whilst [25] gives a correction for the proximity of 

conductors based on image theory, the correction is in terms of effective 

depolarisation factor and thus is difficult to apply to the above equation. 

A simple approximation to find the electric field energy term,    of the unperturbed 

resonator is to use the ideal parallel plate capacitor assumption, which states that 

the electric field in the gap is uniform within the gap and zero everywhere else – an 

assumption that is clearly invalidated to some degree by inspection of the FEM 

simulation (see Figure 6.18). This is likely to cause this theory to overestimate the 

magnitude of the perturbation, as the fringing fields will tend to increase the true 

effective volume. Under this assumption, the effective volume    of this uniform 

field is therefore simply that of the air cuboid in the gap. Thus, in the static field 

limit,           
    and, with                 standing in for the complicated 

fraction in the equation above, the relative eigenvalue perturbation is given by:  

 
       

  
 

                   

                     
  6.17 

The results of this simple perturbation model are shown below for various sample 

relative permittivity values. This simulation is based on the measured resonant 

frequency and loaded bandwidth, nominal gap width of      m, split ring radii of 

  mm and   mm, split ring length of   mm, capillary OD of      m and capillary ID 

of      m. For the reference permittivity of toluene, this equation predicts a 

change in resonant frequency of     M    and bandwidth increase of     K  .  
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Figure 6.17: Predicted change in    (blue) and    (red) against sample 

permittivity according to Equation 6.17 

The nature of the electric fields in the gap region with capillary is shown in Figure 

6.18, from a 3D eigenvalue simulation of the entire SRR in COMSOL. In order to 

reduce the computational burden, symmetry boundary conditions were exploited 

in the equatorial and vertical planes (perfect magnetic conductor and perfect 

electric conductor, respectively). Quartering the volume in this way reduced the 

computational burden significantly. The final meshed model had 840,000 degrees 

of freedom and took 4 minutes to solve using a 64-bit, 12-core workstation with 12 

GB of RAM. The field plots shown are for an air-filled capillary. With air, some 

enhancement of the internal field within the capillary can be seen. This effect 

occurs when the permittivity of the capillary exceeds that of the fill – something 

that could be exploited for a sensitivity enhancement if sapphire or other high 

dielectric constant capillaries were used. The field magnitude within the capillary 

is still quite uniform, despite the proximity of the conductors. The effect of fringing 

field can also be seen as a ‘glow’ emanating from around the edges of the gap. 

Comparing two eigenvalue simulations, one with toluene and one with air, this 
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FEM model predicts a change in resonant frequency and bandwidth of        M   

and       K  , respectively. 

 

  

Figure 6.18: FEM simulation of the SRR with air filled capillary.      is shown 

by shading blue-red, E field lines by red curves. The top image is a section 

through the ring equatorial plane, bottom left is a vertical section through 

the capillary, and bottom right is a section through the middle of the split; 

the E field direction being normal to this image 

Parametric eigenvalue perturbation measurements were performed over a sample 

permittivity grid. A       grid was used, with identical mesh and geometry to 

the simulation shown above in Figure 6.18. The total simulation time was 

approximately 25 hours. Figure 6.19 shows the resulting two-dimensional inverse 

function – giving complex sample permittivity as a function of change in bandwidth 

and resonant frequency. These data could be interpolated using a radial basis 
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function or cubic spline if this function needed to be estimated in an online sensor 

system.  

It was found that such direct, non-parametric interpolation of the simulated 

eigenvalue perturbation was much more accurate than the traditional method of 

using FEM modelling simply to extract and estimate of the volumetric field 

integrals, and thus to merely derive static estimates for the effective volumes of the 

resonator and sample. This is because field integrals derived from FEM require an 

additional numerical estimation step, making them more sensitive to the effects of 

finite mesh quantisation. Calculating the difference in eigenvalues, on the other 

hand, tends to cancel out quantisation errors, especially if the mesh is kept 

constant as the sample permittivity is varied, as done here. In fact, being a 

differential comparisons technique, it is actually very analogous to real-life 

resonator perturbation, but instead of cancelling drift, it instead partially cancels 

mesh quantisation error. 
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Figure 6.19: Complex permittivity inversion nomogram derived from 

parametric FEM simulation of a split ring resonant sensor. Lines are spaced 

at relative permittivity steps of 0.5.  

The error between the FEM prediction and the analytical prediction,            

        , is shown in Figure 6.20. The disagreement is quite high. When    is low 

the analytical equation overestimates the resonant frequency perturbation by as 

much as 25 %, and when    is high for a low-loss sample, the bandwidth is 

underestimated by as much as 42 %. By inspection of the error function, it is also 

possible to conclude that a simple compensation to the effective volume is not 

sufficient to reduce this error significantly; therefore, the source of this 

discrepancy must be due to sample-dependent field effects – i.e., non-linear 

perturbation. 
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Figure 6.20: Comparison of the analytical prediction via Equation 6.17 and 

the parametric FEM simulation. The error in the predicted change in    is 

shown in blue and that in    in red, against the 2D sample permittivity grid.  

The FEM simulation should give a much more accurate estimate of the 

perturbation than the simple dipole theory. However, as microscope inspection of 

the split ring reveals (see below), the geometry is poorly controlled, with the split 

ring gap being neither parallel nor uniform in width, and the central duct in the 

capillary being somewhat off-centre. Because of these physical imperfections, the 

FEM simulations were unrepresentative and will be subject to error.  
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Figure 6.21: Photomicrograph of the gap section of the split ring resonator 

showing a cleaved section of Teflon® AF microcapillary 

Due to these inherent inaccuracies of both analytical and numerical modelling 

approaches, it was decided to opt for a straightforward comparative study to verify 

this experiment. In other words, whilst this may be a difficult sensor to model and 

invert accurately, as long as the multitone system results agree with static 

measurements made by the VNA then this still serves the overall experiment aim 

of system verification. If this sensor design were to be used in a real application 

then the fabrication process would need to be improved, and a more dimensionally 

accurate capillary; e.g., precision-made fused quartz, would need to be employed to 

guarantee accuracy around the 1 % level typical of well-designed MRSs, rather 

than 10-20 % as it is currently. 

As with the previous experiment, comparative calibrated VNA measurements were 

taken for the SRR with the capillary being air-filled and after static filling with 

toluene. Four separate measurements were taken, and the spread of values used to 

set approximate confidence intervals on these measurements. 
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Table 6.2: Estimated static SRR constants from multiple calibrated VNA 

reference measurements. 

Parameter Value 99 % interval 

   3.580 767 667 GHz   1.500 KHz 

    1.506 423 MHz   1.500 KHz 

                                          

                                 

   1189   1.2 

   2365   9 

   2389   14 

 

Table 6.3: Perturbation constants for toluene under static conditions from 

calibrated VNA reference measurements. 

Parameter Value 99 % interval 

     37.237 MHz   12 KHz 

     315.6 KHz   12 KHz 

 

The static change in resonant frequency and bandwidth are reasonably close to the 

    M   and     K   predicted by the above perturbation theory, especially 

considering the geometric imperfections, neglected conductor proximity, and 

fringing field effects. They are even closer to the     M   and     K   predicted 

by the numerical modelling, suggesting that parametric FEM simulation is a more 

accurate inversion method for this resonator despite its physical 

unrepresentiveness to the geometric imperfections of the real sensor. 

Dealing with these rapid, large shifts in resonant frequency was a demanding test 

of the multitone system. A full-span multitone excitation of 64 samples was used, 

resulting in 31 tones spaced to avoid DC and sideband images. However, with a 

tone spacing of 3.125 MHz – comparable to the 3 dB bandwidth of the resonator – 

only about 3-4 of these tones were significant at any given time in determining the 
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resonator parameters due to the statistical weighting in the curve fit algorithm. As 

in the previous experiment, FFT-based spectral estimation with 128 averages was 

used, combined with simple fast Lorentzian curve fitting. A sampling rate of 500 Hz 

was possible under these settings. Full nonlinear predistortion correction was 

found to be essential, and a calibration grid of 16   16 amplitudes was used 

followed by tone amplitude equalisation – as discussed in the Section 5.2.1. 

 

Figure 6.22: Screen shot of the multitone system LabVIEW front panel UI with 

the gas-segmented flow experiment in progress. Clockwise from top left , the 

graphs show resonant frequency vs. time, spectral power transmission 

estimate and curve fit, fit residual vs. frequency, the excitation signal vs. time 

and a spectrogram showing the power transmission as a  tone gradient black-

blue-white. 

 



Chapter 6 – Verification 

351 

6.2.3 Results of the gas segmented flow experiment 

Typical time-domain segmented flow measurement waveforms are shown in 

Figure 6.23. 

 

 

Figure 6.23: Measured change in resonant frequency (top) and bandwidth 

(bottom) over the first 2 seconds of the experiment measuring toluene -air 

segmented flow; red dashed lines show the expected perturbation limits 

corresponding to the static VNA measurements. 

The resonant frequency measurement is generally good, and agrees quite closely 

with the static VNA measurement, showing an average resonant frequency change 

of  36.959 MHz, only 0.7% less that that measured with the VNA. Such a small 

discrepancy could easily be due to small differences in the sensor, or 

evaporation of the toluene into the gas segment – increasing its permittivity 

relative to air. The bandwidth, however, is not such a good measurement. It 

shows a disproportionate amount of variation, overshoot on the gas segment 

cycle and a systematic glitch around the midpoint of the transition. These 

errors most likely caused by the tone spacing being too large to allow a reliable 
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fit for bandwidth. However, moving to a 128-sample, 61 tone waveform, which 

would largely eliminate these errors, would have significantly reduced the 

amplitude of the signal at the receiver, leading to degraded precision on the 

resonant frequency measurement. Further processing was therefore only 

applied to the resonant frequency waveform. 

A similar time-domain analysis was performed as with the droplet 

trigger signal was generated by applying a threshold to the resonant 

waveform in order to isolate the rising and falling edges of the alternating 

waveform ( 

 

Figure 6.24). The post-processing algorithm also extracted the maximum and 

minimum resonant frequencies over this period and used them to estimate the 

change in resonant frequency between each adjacent gas and liquid segment. The 

results are shown in Figure 6.25. Evidently, there is a fair amount of scatter in this 

measurement. This is many times greater than the static deviation of resonant 

frequency estimates, which was less than 10 KHz peak-to-peak. It also occurs 

almost entirely in the air segment part of the waveform. This scatter is therefore 

most probably caused by inconsistencies in the air bubble itself, e.g., variations in 

the thickness of a thin film of toluene remaining on the inside of the capillary 

during air bubble passage. This retention of a liquid film is to be expected due to 

imperfections in the contact of the gas segment with the capillary wall, and does 

not detract from the measurement capability significantly.  
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Figure 6.24: Captured rising and falling edges of the passing of the gas 

segment showing dispersion caused by variable velocity; the red line shows 

the average over these 360 segments, blue points are the individual 

measurements 

 

 

 

Figure 6.25: Extracted liquid segment resonant frequency perturbation 

against time (left column) and histogram (right column) 
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6.3 Transient microwave heating and control 

As discussed in the Applications chapter, the field of microreactor technology is 

appealing for a number of reasons, not least the promise of high efficiency, high 

yield on-demand reactions. Many chemical processes require heating, and to 

ensure optimum yield, purity, etc., heating generally needs to be controlled 

accurately. Of course, if the only aim is to heat a microreactor, the best and 

simplest solution is simply to place it in an oil bath. However, part of the promise 

of microreactor technology is the ability to perform multi-stage reactions and 

processes on the same ‘chip’; each stage may require different thermal 

environments and may only take up a small area of the chip itself – hence the 

concept of localised, on-chip heating was born. Whilst there are already excellent 

general purpose, localised heating methods for microreactors, such as Joule 

heating via embedded wires, co-flowing channels containing high thermal capacity 

liquids [4] or micro Peltier effect junctions [5], microwave heating has some 

specific advantages over other heating methods. 

6.3.1 Brief review of microwave heating 

Microwave heating is a natural partner for so-called ‘green chemistry’, having 

demonstrated enhanced yield, higher speed, and better energy efficiency over 

traditional heating methods in a wide range of processes. This implies reduced 

waste and reagent consumption and reducing the need for environmentally 

harmful solvents and reagents. Microwave heating has even been called the 

“Bunsen burner of the 21st century” [27], and has become the mainstay of organic 

synthesis [28]. Its unique benefit is selectivity. In a microwave frequency electric 

field, only substances with high dielectric loss will heat appreciably. This is 

efficient, as the walls and containment vessel do not waste energy getting hot as 

well. It can also be exploited to heat a specific phase of a mixture. In a multiphase 

system, this allows a temperature gradient to be maintained between phases, 

enhancing certain separation and extraction processes.  
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Microwaves also penetrate relatively far into even strongly absorbing dielectrics, 

and they do so instantly from the moment they are applied. This makes microwave 

heating very fast, as most other externally applied heat sources, such as infrared, 

only make the surface hot and must wait for heat to diffuse into the full volume of 

the material. On the micro scale, where convection is negligible, heat diffusion can 

be glacially slow compared to the timescales of other processes. This fast rate of 

heating can be further exploited to superheat liquids beyond their normal boiling 

point – heating simply occurs too fast for the process of bubble nucleation to begin 

and hence catalyse the liquid-gas phase change. Superheated fluids can be highly 

reactive and have unusual properties that make them useful for chemical 

extraction and as reagents [29]. 

  

Figure 6.26: Examples of high-tech single-mode resonant cavity microwave 

reactors aimed at laboratory synthesis – the CEM Voyager continuous flow 

system (left) [30] and the Anton Paar Monowave (right) [31] – both offering 

fibre optic thermometry-based heating control 

Microwave heating apparatus aimed at laboratory work, and even flow chemistry, 

is already a commercial reality (Figure 6.26), however the combination of directed 

(i.e., localised) microwave heating with microreactor technology is still at the 

development stage, with several groups having demonstrated localised microwave 

heating in microfluidic devices with varying degrees of success. Some of these 

previous attempts have used broadband transmission line based microwave 

excitation [32],[33]. This has the advantage of allowing the excitation frequency to 
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be tuned to the optimum absorbency of specific polar liquids, and has also been 

used to create specific thermal gradients through standing wave patterns [34]. 

However, it is inefficient. Energy is dissipated in the on-chip waveguide structures 

and reflected from the impedance discontinuity created by the presence of the 

sample in the waveguide. Furthermore, broadband RF signal sources are 

expensive, so having this broadband capability is not really of practical significance 

outside of laboratory exploration. Furthermore, materials still absorb microwaves 

strongly over more than a decade of bandwidth around their relaxation frequency. 

Other attempts have shown very good control and localisation but have sacrificed 

the very selectivity of microwave heating that is its main advantage [35],[36]. 

However, if these issues were solved, applications are not lacking. Microwave 

heating has been successfully applied to a wide range of lab-on-a-chip applications. 

These include synthesis processes such as microreactors, [37],[38],[39] drug 

discovery, [40] microwave-assisted extraction, [41] and bead synthesis, e.g. for 

molecularly imprinted polymer manufacture [42]. Analytical processes can also 

benefit from directed microwave heating, such as in microwave-accelerated metal-

enhanced fluorescence bioassays, [43] and DNA amplification [44]. The appeal of a 

well-designed, precision localised microwave heating system is apparent. 

6.3.2 The self-monitoring microwave project 

The mass of fluids contained within a microreactor is generally very small. Heating 

(and cooling) therefore take place very quickly. Accurate control of heating rate 

and temperature can therefore be challenging, particularly if it is untenable or 

undesirable to place thermometric wires, etc., directly at the site where heating is 

to take place. Any time lag between heating and thermometry will limit the 

maximum heating rate that the control system can reliably cope with. In a fast-

flowing, high-yield microreactor the fluid may be long gone in this time. Whilst 

fibre optic infrared thermometry is both fast and localised, it is also expensive and 

is not suitable for large numbers of autonomous parallel reactors or cheap, field-

portable instruments; the very implementations of microreactor technology where 

it can be of most benefit. These considerations lead to the idea of a self-monitoring, 
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resonant microwave heater. If, by monitoring its resonant frequency and 

bandwidth, a miniature microwave resonator could regulate and control its own 

heating, it would mitigate some of these difficulties found in microreactor heating 

integration. A fast, low-cost, and accurate MRS system such as that strived for in 

this thesis work could therefore enable the advantages of controlled, localised 

microwave heating to be integrated with microreactor technology in a cost-

effective and practicable way for the first time.  

To see if the multitone measurement system could be applied to this heating 

control problem, a joint research project at Cardiff University was initiated. Its aim 

was to control the heating of various solvents in a microfluidic chip using a basic 

microwave cavity resonator, whilst simultaneously measuring the cavity 

characteristics using the multitone readout system. The project findings were 

presented at the leading international conference on microfluidic technology [45]. 

The project went on to investigate ways to adaptively control the optimal coupling 

of the high power microwave heating signal into the resonant cavity, for which a 

fuzzy-logic control algorithm was designed. Other members of the project also 

designed a solid-state amplifier to generate the high power heating signal in a cost-

effective and compact way using a laterally diffused metal-oxide-semiconductor 

(LDMOS) transistor. However, these developments are not relevant to the main 

discussion of this thesis and will not be covered further. 

6.3.3 Experiment theory 

Dielectric heating in fluids is caused by Joule heating through the movement of 

ionic charge carriers and the viscous damping of dipole movement induced by a 

time-varying electric field. The time-averaged heating power     within a sample 

of volume     and relative permittivity,   , generated by a uniform internal electric 

field    is given by: 

     
      

 
           

   6.18 



Chapter 6 –Verification 

358 

Heating is therefore governed by       , the sample’s dielectric loss factor.  The fact 

this is material-specific means that selective and efficient heating is possible. 

Assuming negligible heat loss (valid for rapid heating in a thermally insulating 

channel), the heating rate of a material is therefore:  

 
  

  
 

   

  
 

      

   
           

   6.19 

 where   is the sample density and C its specific heat capacity [46]. 

The problem with using this simple analysis to estimate and control the 

temperature accurately is the difficulty in estimating     . This factor depends on 

the specific resonant structure and its mode, as well as sample position, sample 

shape, and the relationship between the power delivered from a source and the 

electric field amplitude within the cavity. For example, if the applied electric field, 

   , crosses a boundary between regions of different permittivity, depolarisation 

will cause the internal electric field,   , to be reduced. Just as this shielding effect 

causes the change in bandwidth to be much less under depolarisation conditions 

than without, so a depolarised sample will heat much less efficiently. Trying to heat 

a fluid in a round capillary (if the split ring resonator were to be used as a 

miniature microwave, for example) the heating power would be reduced by the 

factor 

 
    

 

     
 

     
 

                                    
  6.20 

assuming the same power is coupled into the resonator. The same would apply to 

heating droplets, as was attempted by [33]. In this case, the heating power density 

within the water droplets (with           at 2.5 GHz) in the low loss 

fluorocarbon oil used (    ), would have been about 0.5 % of that possible with 

a continuous water column in a non-depolarising geometry, i.e., where the electric 

field is applied parallel to the channel axis. Not only would this require a much 

higher power to deliver the same heating rate, it would also cause a larger portion 

of incident microwave power to be wasted in the rest of the resonant structure, 
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making it less energy efficient. The difference between attempting to heat 

microfluidic channels in non-depolarising as opposed to a depolarising regime is 

easily demonstrated by a simple FEM simulation (Figure 6.27). 

 

   

 

Figure 6.27: Section through five parallel rectangular channels of water, 

perpendicular (left) and parallel (right) to the direction of applied electric 

field in a microwave cavity resonator, with electric field strength shown as a 

colour gradient from dark blue (zero) to red (maximum). The black line at the 

top and bottom of each figure marks the limit of the cavity and the beginning 

of the slot in the cavity wall – an evanescent field region. 

In this experiment, the channels where kept vertically aligned with the direction of 

the electric field to minimise depolarisation. The perturbation response of this 

rectangular cavity containing L vertical channels is therefore:  

 
       

  
 

            
 
   

       
             

 
   

  6.21 

where    is the electric field amplitude at the position of the channel, assumed 

uniform over its length. This assumption is invalidated close to the top and bottom 

of the cavity where the channels enter and leave it via a slot – as shown by the FEM 

simulation above. The deviation from uniform field depends on the permittivity. 

For these simulated channels containing water, the effect of depolarisation at the 

extremities of the cavity can be seen around the evanescent field in slot region, 

reducing the electric field in the channels relative to that around them. This zone of 
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sample-dependent field will invalidate the static field assumption and hence 

render a linear perturbation model inaccurate, as discussed in the Theory chapter.  

Reducing the width of the slot, through using a thinner microfluidic chip, would 

reduce the relative significance of this effect. However, despite attempts to 

fabricate PTFE microfluidic devices from thinner PTFE sheets, (using pre copper 

clad Polyflon® substrates [47] stripped of copper) the bonding process was not as 

reliable, and the micromilling used to cut out the channel profiles was poorly 

controlled due to the difficulty in keeping this thin substrate flat over the course of 

the milling process. However, it was found recently that laser cutting of the 

bonding film allows for tighter control of the bonding process [48], so further work 

might improve this method sufficiently, eventually allowing thin, flexible pure 

PTFE microfluidic devices to be manufactured as desired. 

For the TE101 mode, the electric field distribution in the Cartesian coordinates x, y, 

z, is very simple, hence the effective volume can be deduced: 
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  1. 

where        is the cuboid volume of the cavity. Thus for a single channel or 

capillary placed in the position of highest electric field, narrow enough to be able 

to assume the field is uniformly   
  over its entire length, the perturbation equation 

reduces to the very simple form 
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6.3.4 Linking resonant sensing to microwave heating 

The amount of heating power delivered to a sample can be estimated in a 

resonator by considering the basic definition of the imaginary part of the resonator 

eigenvalue,   , (with the sign taken to be negative by convention) which can be 

expanded into a summation over N regions due to the additive nature of energy. In 
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principle, this allows the power dissipated in a specific region,     , to be found by 

measuring the unloaded bandwidth: 

    
   

    
         

     
 
   

      
 
   

                     

 

   

         

 

          

  6.23 

However, in practice the stored energy     is unknown. A simple solution is to use 

the simple ‘zeroth order’ perturbation assumption that the stored energy remains 

the same when perturbing factor,  , is introduced into the resonator. Then the 

ratio of the power dissipated before and after the perturbation can be related to 

the bandwidth: 
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Furthermore, if the perturbation is actually the act of introducing a sample into the 

resonator, then the above result can be used to derive the ratio of the power 

dissipated in the sample,              , to the total power dissipated throughout 

the resonator. In other words, this is the power efficiency,  , of sample-specific 

heating within the resonator: 
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This gives the relative power dissipated in the sample compared to that dissipated 

in the metallic cavity walls, microfluidic substrate, etc. It also means that the 

relative power dissipated in a sample can be estimated just by measuring the 

bandwidth, as long as the bandwidth before the sample is introduced is known. 

Also, if the heating power is assumed to be coupled into the resonator at a single 

port, then the total power dissipated within the cavity,       , can be found by 

measuring the incident and reflected power at that port, i.e.,                

     , where     is the power produced by the amplifier/magnetron source and   is 

the reflection coefficient. This is a parameter that can be measured in realtime, 
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using a VNA or a directional coupler and diode power detector, giving a measure of 

the instantaneous ‘external’ power efficiency of heating: 

         
       

        
    

     

     
              6.26 

From the Theory section analysis, the reflection parameter at the resonant 

frequency (the optimum frequency for heating excitation) is: 

 
          

     

   
   
  

      
                  

            
6.27 

Using the small coupling reactance assumptions, and assuming the resonator is 

one-port with magnetic (loop) coupling, with      , gives: 
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This shows that the reflection parameter is dependent on the sample, as varying 

sample permittivity will cause the Q factor to change. However, it also shows that 

in principle the external efficiency could be measured without using a 

reflectometer as long as    was fixed and its value previously characterised. From 

the above equation, it is apparent that the highest heating efficiency is obtained 

when       , or      . This is the ‘critical coupling’ criterion. In the 

experimental cavity, the coupling was designed to be altered by rotating a circular 

coupling loop; allowing it to be optimised for maximum efficiency. This allows the 

coupling to be varied as the mutual inductance between the cavity and the loop 

            c s  , where   is the angle between the (horizontal) magnetic 

field lines at the site of the loop and the loop axis. Thus   
  c s   and the 

efficiency can be written 

                
     

     
      c s     

 

  6.29 
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giving the optimum angle for maximum power transfer at any given time,  

        c s                     6.30 

although the constant       still needs to be found by prior characterisation for  

this equation to be accurate. An alternative approach is to use an iterative method 

to minimise the reflected power, although this can be a tricky nonlinear problem 

when coupled with the task of trying to keep the frequency of power excitation on 

resonance as well. This issue is outside of the scope of this discussion, however. 

For uniform, rapid heating of a stationary fluid, where the transport of heat away 

by convection and conduction can be neglected, this suggests that the temperature 

rise could be predicted from resonator bandwidth measurements: 

           
 

  
    

     

     
                     

 

 

  6.31 

This time integral can be approximated by the cumulative sum of successive 

discreet samples, as long as the rate of change is slow relative to the sampling rate. 

If the liquid is flowing, this will remove heat at a constant rate from the system. 

This situation can also be accounted under quasi-steady-state conditions, where 

      and          are assumed to be changing slowly, by evaluating the above 

integral to approximate the temperature rise at the outlet of a length of channel: 

          
 

   
   

     

     
                    6.32 

where   is the volumetric flow rate and   is the channel/capillary length in the 

uniform electric field. This implies a linear temperature gradient along the channel 

length. However, this steady state solution is invalidated for larger temperature 

changes by the temperature dependence of the complex permittivity of the liquid 

itself. In the above equations, the power dissipated in the sample is temperature 

dependent,                , making the heating problem nonlinear and creating 

a non-uniform rate of heating with distance along the channel/capillary . Generally, 
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most polar liquids show a permittivity-temperature relationship that is dominated 

by the reduction in the dielectric relaxation time with temperature; the higher 

thermal energy of the molecules within it allowing the displacement caused by the 

microwave electric field to be damped away more quickly. This activation process, 

where the molecular relaxation mechanism is characterised by a certain activation 

energy    [49] 

   
  

 
exp   

  

   
   6.33 

The frequency corresponding to maximum power absorption will therefore shift 

upwards with temperature. Thus, if the absorption maximum is higher than the 

excitation frequency to begin with, both the real and imaginary permittivity will 

drop. This is known as ‘self-limiting’ thermal behaviour because the rate of heating 

decreases as the material heats up. However, if the frequency of excitation is 

initially higher than the absorption maximum, the imaginary permittivity can 

increase with temperature, leading to ‘thermal runaway’ behaviour as the 

temperature increases exponentially with time. Fortunately, the temperature 

dependence of permittivity is known for a number of common solvents, especially 

water, where it is of interest in the study of its intermolecular structure [50],[51].  

6.3.5 Experiment setup 

The heating cavity/MRS was a simple TE101 mode rectangular resonator, fabricated 

by milling from an aluminium block and joined vertically at the midpoint to avoid 

current flow across this join. The rectangular TE101 mode is functionally equivalent 

to the  TM010 mode in a cylindrical resonator, having a uniform electric field along 

the vertical axis where the sample is placed with good magnetic field separation. A 

slot was milled to allow insertion of a 90 mm × 60 mm × 4 mm PTFE microfluidic 

‘cartridge’. The cavity had three coupling ports. One large, rotatable magnetic loop 

coupling allowed critical coupling of the heating signal into the cavity. Two 

secondary SMA capacitive probe coupling ports allowed connection to the MRS 

system measuring the cavity in transmission. This design decoupled any variation 
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in the high power coupling from the MRS system and provided good attenuation of 

the high power signal from the measurement system. However, it also introduced 

additional sources of coupling loss and may have been somewhat redundant – 

ideally, both heating and multitone excitation signal would be coupled in via the 

single adjustable port. Further details of the resonator design and of the 

microfluidic chips and their manufacture are discussed in [44]. 

Microwave power up to 2 W was provided by a synthesiser (NI PXI-5652) 

combined with a 35 dB solid state power amplifier (PA) and was coupled into the 

cavity resonator using the adjustable magnetic coupling loop. The MRS readout 

system used was the first implementation of the multitone system (refer to the 

Hardware chapter for details). Because of the limited characterisation bandwidth 

of this system, the microfluidic chip caused a significant increase in the loaded 

bandwidth, making the resonance difficult to characterise. Thus in the experiments 

discussed here a single vertical Teflon capillary, 1/16” OD and 500  m ID (Sigma 

Aldrich, UK), located along the central axis of the resonator was used rather than 

the microfluidic chip. After all, the aim as regards this thesis is to demonstrate the 

use of the multitone system, rather than to show explicitly that the method can be 

applied to an actual microfluidic device. Whilst the second implementation of the 

multitone system would have been more than adequate, it could not be used for 

this demonstration due to time constraints. 

Control of heating was achieved by on-off modulating the continuous-wave heating 

signal using a PIN diode switch controlled by a variable duty cycle signal (internal 

to the RF signal generator used as the source). This pulse width modulation (PWM) 

was at sufficiently fast rate (20 Hz) that the time averaged source power,         , 

can be assumed to be proportional to the duty cycle, and, due to the thermal time 

constant of heating, should result in almost uniform heating rate with no 

significant transient. This method of heating regulation is the most energy efficient, 

as the PA drive level can be optimised for best efficiency. In a final product, it is 

possible that a switched-mode power amplifier could be used instead for even 

greater power efficiency. It is also accurate, as the incident power can be estimated 
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accurately without explicit measurement once the gain of the PA is characterised. 

This saves additional circuit complexity and signal processing. 

In order to test the hypothesis that temperature regulation should be possible 

using just the MRS readout system without any secondary thermometry, a simple 

control loop was implemented in software. This control loop implemented basic 

proportional control and was not optimised. The control signal could be either 

resonant frequency or the bandwidth. Target resonant frequency or bandwidth 

values (i.e., thermostatic) or target waveforms (i.e., thermal cycles) for these 

variables could then be input into the algorithm, which would then adjust the duty 

cycle of the heating signal modulation and hence regulate the rate of heating.  

For these control experiments HPLC grade water (Sigma Aldrich, UK) was used. 

Water heats very efficiently at 2.45 GHz, but quite slowly as it has a high heat 

capacity. It also shows a significant temperature dependence of the real part of 

permittivity, due to the relaxation peak (initially at 18 GHz) moving to higher 

frequencies as it heats up. Resonant frequency control was therefore used, based 

on a locally linear approximation for the permittivity dependence of water and the 

knowledge that at the excitation frequency of 2.45 GHz, the slope of the 

permittivity-temperature relationship is always negative. Thus, if the measured 

resonant frequency increased, it meant the permittivity was decreasing and hence 

the temperature was rising. The heating duty cycle was thus accordingly reduced. 

The constant of proportionality used was merely adjusted empirically to give the 

desired temperature range needed. However, for aqueous samples it is entirely 

possible that, with prior calibration using a reference thermometry standard such 

as infrared emissivity via fibre optics, relatively accurate temperature control 

could be possible. As far as I know, this is the first time such a heating control 

method has been demonstrated. 
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Figure 6.28: Microwave heating control cycle using resonant frequency and 

bandwidth feedback from the MRS readout system 

The system architecture is shown in a simplified form below, although in reality 

there were three separate sources all nominally tuned to the same frequency, 

rather than the single RF source shown here. This was due to the restrictions of 

instruments used to implement the initial multitone system. Furthermore, an 

additional isolator and attenuators were required at the output and input of the 

multitone system to protect it from the high power heating signal that is still of a 

significant amplitude when coupled into the secondary ports. 
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Figure 6.29: Architecture of the microwave heating system with simultaneous 

MRS readout based on the multitone system 

In order to prevent the high power heating signal from swamping the 

measurement system, readings were only taken during the ‘off’ phase of the PWM 

cycle. This meant that a duty cycle above about 80 % was not possible due to the 

time needed to acquire the measurement waveform. However, this only influences 

the maximum heating rate and is not a significant disadvantage. One issue with the 

restrictive system implementation was that synchronisation of the ADC 

acquisitions with the PWM signal had to be done in software. This made the 

sampling timing inaccurate and resulted in the overall measurement rate being 

limited to a disappointing 50 ms. Future iterations of this heating control system 

based on the second implementation of multitone system would alleviate this, as 

well as many other limitations of this setup.  

6.3.6 Results of dynamic heating experiments 

As an initial test, a single full-power (2 W) pulse was applied to water under a 

stopped flow condition, and the resonator response was measured using the 

multitone system. The simple single capillary perturbation model was used to 

invert these data to complex permittivity. Despite its innacuracies this model was 

sufficient for an indicative demonstration. The results (Figure 6.30) show that the 
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change in complex permittivity as the temperature rises can be measured in 

realtime with the system simultaneously to the application of microwave heating.  

The large amount of noise on these measurements is disappointing, and may be 

due to noise and interference amplified by the PA being coupled into the receiver. 

The noise is certainly greater than that obtained with the nominally static 

measurements discussed in the previous two chapters. One issue is apparent in 

these results. ‘Parasitic’ heating effects (due to the change in the permittivity of the 

capillary, thermal expansion of the cavity etc.) cause systematic error. This can be 

seen in the difference in the apparent sample permittivity before and after the 

heating pulse is applied. This error is approximately the same magnitude as the 

unexpected change in permittivity that occurs towards the end of the heating cycle. 

What this implies is that, although the water in the capillary can be seen to heat up 

and cool down relatively quickly, (albeit with the expected decrease in heating rate 

due to its lower loss factor with temperature) it does not return to the same 

permittivity even by the end of the experiment.  

Given that the permittivity of the capillary is low, that Teflon shows relatively little 

temperature dependence, and that the apparent time lag is consistent with a long 

thermal time constant, this parasitic perturbation is probably caused by the air 

heating up inside the cavity and causing the water to stay hot. The capillary 

thermal mass would be too low to cause this alone. The simple solution to this 

problem, therefore, is to provide a constant flow rate of cooling air, or continuously 

flow another microwave transparent fluid, such as perfluorohexane, along a 

coaxial tube or parallel channel. This would provide more rapid cooling for fast 

thermal cycles, at the expense of heating rate, and would result in a more accurate 

heating rate estimation from bandwidth measurements, as the rate of heat removal 

could be accounted for and carefully controlled. 
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Figure 6.30: Measured permittivity response of a capillary containing water 

in a stopped-flow condition subject to a full power heating pulse . 

In the next two results, the control system was used to create arbitrary thermal 

cycles. In the first, a sinusoidal ‘target’ wave in resonant frequency was input into 

the control algorithm. The water in these experiments was flowed at high constant 

rate of 0.5 ml/min using a syringe pump. It can be seen that the temperature 

measured by a thermocouple at the outlet of the cavity does appear to follow a 

sinusoidal pattern, lagging behind the measured resonant frequency by a small 

amount due to the thermal time constant of the thermocouple. In the second 

example a larger signal control waveform was used to create a dynamic 

temperature swing of 20°C. In both of these experiments, an expectedly high level 

of noise is present on the resulting resonant frequency measurements. This is in 

contrast to the previous heating pulse experiment, which in all other respects 

apart from the control loop was identical. Therefore, the source of this additional 

noise must be the control loop itself. This is probably caused by the simplistic 

control algorithm, which amplifies the natural resonant frequency fluctuation. 

Implementing a proper control algorithm with empirically optimised proportional, 

integral, derivative (PID) settings would alleviate this issue. 
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Figure 6.31: Heating cycle where a sinusoidal target variation in resonant 

frequency is used as a heating control signal . Red shows the temperature 

measured at the outlet, blue the measured resonant frequency.  

Figure 6.32: Higher amplitude heating cycle, where a ramp -hold waveform in 

resonant frequency is used as a heating control signal . Red shows the 

temperature measured at the outlet, blue the measured resonant frequency.  
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6.4 Dynamic capillary filling 

The idea to measure the time-domain filling of a capillary using a microwave 

resonator arose out of on-going work at Cardiff University investigating blood 

chemistry using microwave dielectric analysis. To support this work a joint project 

with visiting students from L'Université de Bordeaux was undertaken to 

investigate the metrology of capillary filling using dynamic microwave resonant 

sensor measurement [51]. This project represents a good example of the power of 

temporal MRS measurement to extract more information about a sample than 

would otherwise be possible. Due to the requirements for accurate time-sampling 

and the relatively slow rate of filling, the optimised VNA readout discussed in the 

Hardware chapter was used for these experiments.  

Capillary affinity is the basic principle on which most chromatography techniques 

are based. For example, in thin layer chromatography (TLC) an analyte is drawn up 

by capillary action and is separated into different components by the distance they 

travel in a planar substrate, governed by their affinity for the substrate material. 

Whist provoking comparison to simple school experiments with ink and blotting 

paper, modern TLC is highly sophisticated and is regarded as a fast, inexpensive, 

flexible, and low-footprint analysis method [52]. Although simple paper based 

immunoassays (most commonly seen as pregnancy test kits) are low-cost and easy 

to manufacture, such tests are difficult to apply in a quantitative way [53]. Perhaps 

it is not too much to suppose that a low-cost MRS system has the accuracy to make 

such tests quantitatively accurate, without necessitating complex microfluidic 

fabrication, pumping systems or expensive, fragile detectors. 

The concept of applying a detection method distributed spatially along a capillary 

(chromatography ‘column’), rather than at a single point after sample elution, has 

been applied to pumped-flow chromatography as well, where it is known as 

whole-column detection [54]. The study of the dynamic capillary filling properties 

of an analyte has elements of both these approaches. Due to the correlation 

between distance and time in the filling process, a non-homogenous 

chromatographic separation will cause the time-domain filling profile to deviate 
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from that of a pure liquid, potentially providing information about complex 

samples in an extremely simple way.  

Combining chromatographic separation with microwave resonant sensor 

measurement is unexplored territory, and MRSs could potentially add a new 

dimension to analyte measurement. When combined with accurate, fast, and low 

cost MRS readout technology, a chromatography-MRS hybrid system could offer 

advantages in cost, selectivity, or sensitivity in specific applications over 

conventional detection methods (such as conductivity, UV, visible or fluorescence 

spectroscopy). The measurement of capillary filling dynamics with MRSs is 

therefore worthy of investigation, at least at the proof-of-principle level as done 

here. 

6.4.1 Experiment theory 

The interface between a solid and a liquid is characterised by the relative 

magnitude of the forces acting to keep the liquid molecules together (cohesive 

forces, e.g., van der Waals, hydrogen bonding, etc.) and attracting the molecules to 

the solid surface (adhesive forces). The traditional way of characterising this 

interface between a specific liquid and specific solid is by considering the contact 

angle made with a small drop of the liquid resting on a flat surface of the solid – the 

so-called sessile drop technique [55],[56]. When at rest this three-phase (gas, 

liquid, solid) system is in thermodynamic equilibrium with all interfacial energies 

between each phase in balance; a situation described by the Young equation [57]. 

Liquids with a high affinity for the solid are said to have good wetting; the drop 

spreads out further and therefore has a low contact angle at the point where the 

liquid-gas interface meets the solid-liquid interface (Figure 6.33). The study of 

wettability is an active area of research [58].  
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Figure 6.33: Possible behaviours of a sessile droplet on a surface and the 

definition of contact angle – after [56]. 

If a capillary is made of a materials that has a contact angle less than 90° with a 

particular fluid, this fluid will be drawn up inside it by adhesive forces – the 

phenomenon known as capillary action. The filling process (capillary imbibition) 

itself is an interesting dynamic phenomenon which is still an important area of 

research of importance to subjects such as botany and microfluidics. Capillary 

forces attract the liquid up the tube but viscous forces, gravity, and inertia all 

impede its motion. The dynamics of a vertical capillary filling a distance   in time   

with a Newtonian liquid under a laminar flow regime (Poiseuille flow) are 

described by the differential equation [59],[60].  
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  and   are the density and viscosity of the liquid,   is the surface tension of the 

liquid-air interface,   is the liquid-capillary contact angle and   is the capillary 

radius. Exact analytic solutions to this equation are not available. However, by 

ignoring the inertial terms, capillary forces compete only with viscous forces to 

draw liquid up the capillary unaided. This solution was independently exposed by 

180° 

90° 

0° 

 Non-wetting 

Complete wetting 

Liquid drop 
Solid surface θ 

Contact angle, θ 



Chapter 6 – Verification 

375 

Lucas [61] and Washburn, [62] and is known as the Lucas-Washburn (often just 

Washburn) equation 

             
  

 
 
c s  

 
    6.35 

This equation predicts a    dependence for the distance the liquid meniscus moves 

in a given time. However, this equation does not converge to the steady state 

height,  

 lim
   

     
  c s 

   
  6.36 

and it also predicts a nonphysical infinite velocity at the start of filling. 

Furthermore, the contact angle itself may not be constant but depends to some 

extent on the velocity of filling, due to friction effects at the moving meniscus 

contact line [63]. Despite this, the Washburn equation is simple yet relatively 

accurate in predicting the dynamic filling behaviour over the majority of filling 

progression. 

If capillary filling is to be measured by resonator perturbation, if the sample is 

assumed to have a constant permittivity and is non-depolarising as is the case 

here, a simple approximation is to assume the change in resonant frequency (or 

bandwidth) is linearly related to the height of the meniscus in the cavity:  

 
           

            
 

         

      
                         6.37 

where   is the internal height of the cavity and      is the distance between the 

bottom of the capillary and the point at which the meniscus just enters the 

resonator cavity.   
     is the value of the resonant frequency when the liquid fills 

the resonant cavity fully, and       is the resonant frequency before the sample 

enters. Thus, given the    dependence of the displacement, a suitable model for the 

time dependence of the relative change in resonant frequency is: 
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  6.38 

where     c s      is the diffusivity constant of the liquid filling process. Note 

that, due to the initial length     , the squared change in resonant frequency will 

not be a straight line, as might be initially be expected, since 

  
      

      
 

 

 
        

        
   

       

      
               6.39 

This last equation will prove useful in curve fitting the filling process in a 

numerically robust manner, giving     
     . 

Studying the capillary filling process in ways other than simply measuring the 

meniscus position optically can reveal useful secondary information about the 

liquid and its properties, especially if there are other time-domain factors that 

perturb the normal filling process. For example, if the capillary is coated with a 

chemical that reacts with the liquid, or has a certain affinity for different 

components within the liquid. 

6.4.2 Experiment setup 

To investigate capillary filling metrology with microwave resonant sensors, a 

simple experiment was devised based around a TM010 mode cylindrical resonator 

designed to accept a rigid, narrow capillary along its axis. The basic experimental 

setup is shown diagrammatically below: 
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Figure 6.34: Cross sectional diagram of the transient capillary filling 

experimental apparatus showing the primed experiment (left) and during the 

filling transient (right) (not to scale). 

A cylindrical copper TM010 mode resonator of internal diameter 33 mm and height 

24 mm was designed and fabricated for the project, giving a resonant frequency of 

around 7 GHz. The resonator was conventionally turned by lathe and was fastened 

together with through-bolts. This meant that the radial-longitudinal current flow 

in the TM010 mode was forced to cross the join between the lid and the main 

resonator body. In order to reduce the impact of this on the unloaded Q, a small 1 × 

1 mm lip was introduced in order to magnify the contact force and provide a better 

electrical connection at this point. A 1 mm diameter hole along the central axis 

permitted various sizes of capillary to be aligned to the uniform electric field 

maximum. Any homogeneous dielectric-filled capillary would therefore be non-

depolarising with this arrangement. However, during the filling process a dielectric 

discontinuity is created by the rising meniscus, which causes depolarisation at the 

liquid-air interface, resulting in a degree of nonlinearity in the perturbation vs. 

distance relationship as a function of permittivity. In order to determine and 

correct for this effect, parametric FEM simulation was used. Due to the 

axisymmetric geometry, a 2D solution was applicable, which was very efficient in 

terms of computational burden and allowed an exceptionally fine mesh to be used, 

effectively rendering the quantisation error negligible. 
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Figure 6.35: Depolarisation around the moving meniscus, showing     shaded 

from blue-red with red E field lines 

 

Figure 6.36: Results from parametric FEM simulation of the capillary filling 

for the three different liquids, with the predicted change in resonant 

frequency (left) and bandwidth (right) on the top row, and the deviation of 

these from the linear theory (Equation 6.37) on the bottom row 
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Various options were investigated for filling the capillary in a controlled manner. It 

was found that a high degree of variability in the time-domain filling characteristic 

was caused by inconsistencies in the way in which the capillary was initially 

brought into contact with the liquid. To mitigate this, a simple dropping 

mechanism was used to allow the capillary to fall from rest vertically in a 

repeatable way (see Figure 6.34). Another potential cause of variability was the 

capillary falling to the bottom of the PTFE reservoir, obstructing the free entry of 

fluid. A layer of polymer foam was thus used to support the capillary at a known 

height just below the surface of the liquid whilst providing minimal impediment to 

the inflow of liquid. A constant volume of liquid was pipetted into the reservoir 

before each experiment so that the depth of the capillary below its surface was 

consistent. Capillary filling begins the instant the capillary touches the liquid 

surface, so the distance between the stationary capillary and the reservoir liquid 

surface must be kept constant for the time reference for the start of filling to be the 

same in each case. 

The apparatus was kept on a warmplate (MiniTube HT50, USA) that allowed the 

temperature of the resonator and reservoir to be held static. To improve heat 

conduction to the resonator body, a copper thermal link made from a 1 mm thick 

copper strip of 25 mm width was fastened to the resonator and to the warmplate 

with liberal amounts of heat transfer compound. Measurements were made at a 

range of temperatures and with various mixtures of solvents, although only a 

selection of these measurements will be discussed here for reasons of brevity. 

6.4.3 Results of the capillary filling experiments 

The raw temporal measurements for three alcohols are shown below. The 

methanol, ethanol and isopropyl alcohol (IPA) used were all HPLC grade (Sigma 

Aldrich, UK). These capillary filling experiments were performed with dry fused 

quartz capillaries (VitroCom, USA) of ID 300  m, OD 400  m and length 100 mm. 

When filling experiments were repeated with pre-wetted capillaries the filling time 

was found to be different. This is to be expected. Some adsorption of the alcohol to 
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the capillary surface will change its wettability, thereby leading to a different 

contact angle, as discussed in [46]. 

Whilst the tolerance on the inner diameter is stated as       , the uncertainty of 

the sample volume can be eliminated from the dynamic phase of the measurement 

by referencing to difference in perturbation between empty and full (Equation 

6.36). This cancels the effect of variable capillary radius under the assumption of a 

uniform electric field over the sample volume. Furthermore, by the standard 

perturbation theory, which is comparatively accurate due to the small opening in 

the end plate walls, the permittivity of the liquid can be estimated. 

 Figure 6.37: Raw capillary filing response in resonant frequency and 

bandwidth for three different alcohols. 

The FEM simulations can be seen to agree quite well with the final perturbations 

produced by the full capillary. The results for methanol were slightly 

underestimated by the FEM simulation, although this is likely to be due to the 

difference in temperature between the actual liquid measured and the nominal 

     value used for the simulation. To use the FEM results to convert these 

perturbation measurements to distance, both were first normalised to lie in the 
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range      . This eliminated error due to the disagreement in the absolute values of 

the perturbation. The simulation data were then used as a ‘look up’ function 

relating this normalised perturbation to distance. Piecewise cubic interpolation 

was used to match the measured perturbations with the simulated values in order 

to convert to distance along the resonator axis. Curve fitting to the model in 

Equation 6.39 was then performed on these corrected data. The results are shown 

in Figure 6.38 for resonant frequency (similar results were obtained for 

bandwidth): 

 

Figure 6.38: Distance vs. time relationship of the capillary filling experiment 

extracted using interpolation of numerical FEM simulations. The curve fit to 

the Washburn equation is shown as a red curve, individual data by blu e 

points. 

The agreement of these data with the Washburn prediction shows that dynamic 

capillary filling behaviour can be successfully extracted from temporal MRS 

measurement. However, derived estimates for the liquid diffusivity constants were 

not reliable, possibly due to the ambiguity of having both unknown start 

displacement and unknown start time for the beginning of filling making the curve-

fit problem underdetermined. 
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7 Conclusions 

This thesis investigated new and improved techniques for implementing 

microwave resonant sensor (MRS) systems. The use of microwave resonators to 

make high sensitivity sensors has been demonstrated in a number of challenging, 

dynamic applications recently, including kinetic inductance detectors, scanning 

microwave microscopes and miniaturised microfluidic systems. The unmet 

demands of high-speed and high-performance MRS measurement gave this work a 

clear and timely aim: to solve the issues currently limiting the speed, accuracy, and 

integration of MRS systems so as to enable their advantages to be brought to bear 

in new and unforeseen applications.  

This chapter first summarises the achievements of this work, before conducting a 

review of the limitations and more immediate future improvements that could be 

made to overcome them. Finally, it concludes by suggesting some of the intriguing 

future developments that may arise from the contributions made herein, in the 

light of current trends in high-performance MRS measurement. 
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7.1 Achievements and contributions 

The concept of dynamic MRS measurement has been analysed theoretically, 

showing that there is no fundamental reason why the rate at which temporal 

resonance perturbation is measured could not be comparable with the bandwidth 

of the resonator itself – over 100 KHz for typical sensors. Sources of nonlinearity 

and other inaccuracies have been studied, outlining ways to maximise accuracy 

without compromising sensitivity through thorough sensor modelling. This 

knowledge will assist in the design of future resonant sensors. 

A flexible, wide-band and high-speed multitone readout system for MRS was 

designed and realised. Since starting this work, the concept of a multitone readout 

system was found to have been developed independently by Hermann et al., [1]. 

However, the present work was unique in that it sought to maintain accuracy 

without compromising on speed, and was targeted at cutting-edge applications 

rather than conventional industrial measurement. This was ensured through 

applying a rigorous, all-encompassing approach using a number of novel 

techniques such as digital modulation, asymmetric tone spacing, and digital 

predistortion methods to maximise the achievable accuracy of the system. This 

was combined with new signal processing and sensor characterisation methods, 

creating a readout system with the performance necessary for the demanding MRS 

applications of tomorrow. 

The multitone system was verified for both static and dynamic performance. Static 

accuracy was found to be comparable to the best readout technique available, this 

being a calibrated VNA with 8-term curve fitting. Long-term stability 

measurements identified that the noise floor of the measurement system was 

reached on time scales shorter than about 5 s. In this region, the dynamic range 

was over 180 dB (at 95 % confidence) for resonant frequency averaged over 1 s. 

This translates to a dynamic range of 150 dB in measurements derived from 

resonant frequency perturbation, outperforming many other sensor types. The 

effect of LO phase noise was also ruled out as a limiting factor by comparing results 

referenced to a high-stability rubidium oscillator. This alleviates fears that 
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implementations of the system with lower cost microwave oscillators would 

unduly sacrifice precision. 

Dynamic performance was verified through a series of experiments designed to 

create a known perturbation under controlled time-domain variation. The first 

experiment measured falling liquid droplets. Standard perturbation theory proved 

to be in good agreement with the measured results on average. However, an 

unexpected phenomenon was observed; high frequency oscillations due to droplet 

transient dynamic response to the drop formation impulse. This is the first time 

such oscillations have been measured using a microwave technique. The 

agreement of the droplet self-resonant frequency with theory gives confidence in 

the correct operation of the multitone system, and is testament to the power of 

temporal domain resonator perturbation processing. 

The second experiment measured a gas-segmented flow stream. This challenging, 

high slew-rate perturbation presented a rate-of-change in resonant frequency of 

around 2 GHz/s. It was largely successful as a proof-of-concept experiment, and we 

believe that it is the first time that dynamic MRS measurement at such high slew 

rates has been demonstrated. In addition, the system was shown to have 

comparable accuracy in estimating the real part of the permittivity of a low-loss 

dielectric liquid to that achievable with static VNA techniques, limited by the 

fabrication of the sensor itself. Indeed, the inversion of measured perturbation to 

permittivity for this sensor provided a good demonstration of the nonparametric 

FEM-derived sensor inverse modelling technique pioneered in this work. 

The results predicted by FEM simulation of the SRR agreed more closely with the 

measurements of both the multitone system and static VNA. This indicates that the 

numerical modelling approach is superior and ultimately more flexible than the 

traditional analytical perturbation approach, the unwieldy expressions of which 

nevertheless failed to take into account fringing field effects and therefore 

underestimated the true resonator effective volume. With complex resonant 

sensor designs, the time and effort needed to derive a fully representative 

analytical model soon exceeds that needed to produce a complete parametric FEM 
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characterisation, especially given the power of modern computer workstations. 

This approach should be seriously considered as a replacement for perturbation 

theory in all but the simplest sensor geometries. 

The static noise measurements showed that low frequency noise degrades the 

dynamic range of MRS systems below 0.2 Hz. The falling droplet experiment also 

demonstrated the ability of an online measurement system to subtract a 

periodically sampled baseline. This is of great practical significance when the 

environment is prone to drift (due to temperature and humidity swings, etc.), 

which would otherwise be a significant source of error in uncontrolled sensor 

environments, such as industrial settings or outdoors. Taken together, these 

findings show that both maximum precision and improved accuracy are achieved 

by temporal processing of a modulated measurand signal, e.g., alternating between 

the desired sample and a reference, at frequency over 1 Hz. This finding is 

applicable to all microwave materials measurements. Although this concept is 

common, for example in astronomical telescopes to remove the background 

brightness [2], its application to microwave materials measurement has not been 

explicitly demonstrated per se, despite acknowledgement of the drift problem and 

the existence of similar ‘sample chopping’ apparatus to ensure in situ perturbation 

as in [3]. 

The multitone system was applied to the time-domain measurement of liquid 

complex permittivity changes induced by microwave heating. Whilst it has been 

known for some time that a microwave resonant sensor can also be used to heat a 

sample as well as measure it, this is the first time resonant sensor information has 

been used as a control method to create arbitrary thermal cycles in a miniaturised 

flow system. This is a step away from a self-monitoring microfluidic microwave 

reactor. This project also showed how such a system could be optimised, for both 

heating rate and energy efficiency, by proper design of the cavity, sample 

orientation, coupling control and microfluidic integration. Due to the non-

depolarising geometry and high thermal isolation, heating rates were close to the 

maximum possible with any heating method with high loss factor liquids such as 

water and methanol.  
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The power of realtime temporal domain MRS processing was also demonstrated in 

a second novel application, the measurement of transient capillary filling. These 

experiments showed that, with the help of parametric FEM sensor modelling, it 

was possible to use resonator perturbation to measure both the moving meniscus 

position and complex permittivity of a nominally homogenous, uniform sample 

simultaneously. Like the falling droplet experiment, the extra temporal 

information made possible with realtime resonance sampling could be used to 

determine mechanical liquid properties as well as electrical – indicating the multi-

dimensional measurement capability of high-speed, high accuracy MRS systems. 

In summary, much progress has been made toward improving the speed, accuracy, 

and integration of MRS systems by advances in multiple directions, along 

theoretical, signal processing and hardware paths. The multitone readout 

technology can measure as fast as resonant sensors are capable of responding, and 

the accuracy demonstrated in certain measurements is limited only by the sensor 

itself, rather than the hardware, modelling or processing used. Integration remains 

an open challenge, and although semi-integrated solutions are presented in e.g., [1] 

and [4], with the technology developed here, coupled with the exciting new 

applications and the funding opportunities they bring, it is surely only a matter of 

time before a truly integrated, high-performance single chip solution to MRS 

readout systems is possible. New and unforeseen applications have indeed been 

demonstrated at a proof-of-concept level, from droplet oscillations as a route to 

liquid rheology through to a self-monitoring microwave microfluidic reactor. For 

the most part, therefore, the aim of this thesis has been met successfully. 
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7.2 Limitations and improvements 

The speed of the multitone system is limited to about 500 Hz for realtime 

measurements due to the data transfer rate bottleneck, although in single-shot 

mode the measurement rate is still demonstrably high (100M/256). To allow this 

high measurement rate to be sustained indefinitely requires the processing to be 

implemented on an FGPA – the logical next step in this work.  

The adaptive filter and neural network algorithms are ideal for this as they allow 

maximum rate readout and a flexible response time. They also allow for a tuneable 

ratio of filtering before and after inversion to resonant frequency and bandwidth, 

providing optimum precision. However, they have not been tested practically 

under dynamic measurement conditions (as the FFT/curve-fitting algorithms 

have), so they are not fully verified methods and may require alteration and 

efficiency improvement in the light of real-world testing. One potential 

improvement in the neural network algorithm that might be necessary for its 

realisation on FPGA is the replacement of the hyperbolic tangent activation 

function with one more suitable for implementation with limited computational 

resources, such as a look-up table or piecewise linear approximation. This will 

require re-training of the neural network with such functions and a re-assessment 

of network performance. 

Despite the work done on software predistortion, the system is still limited in 

accuracy by the intermodulation distortion, caused largely in the quadrature 

mixers. Distortion means that the true amplitude of the excitation tones cannot be 

known perfectly, making the spectral estimate, and resulting eigenvalue estimates, 

less accurate. Furthermore, distortion in the receiver cannot be fully corrected for 

by the predistortion algorithm, and the resulting spectral errors may vary as the 

sensor spectral response changes. This will cause a further source of perturbation-

dependent error. Whilst more elaborate calibration routines, e.g., at multiple 

attenuation levels, might improve this to some extent, a more direct solution 

would be to tackle the source of the distortion itself. 
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Some investigation into a custom passive mixer design would therefore be 

valuable; concentrating on maximising linearity over the frequency range of a 

specific sensor would undoubtedly provide better results than using a general 

purpose, wideband component. Furthermore, using an alternative balanced 

architecture to ensure excellent impedance match at the RF port would ensure 

minimum error due to source and load reflections. I do not believe that moving to 

an active mixer architecture would be a step forward. However, ways to integrate 

low-distortion, high dynamic range passive mixers into a system-on-a-chip or even 

single-chip ASIC solution would need to be investigated for the promise of true 

MRS system integration to be realised. 

The split ring sensor measurements had some accuracy problems related to the 

small number of tones that occupied the resonator bandwidth at any one time. 

This meant that dynamic errors were introduced, especially into the bandwidth 

measurements, which were visibly distorted. Use of a variable gain amplifier (VGA) 

at the receiver would have given sufficient dynamic range for more tones to be 

used, largely eliminating this source of bandwidth estimate error without 

adversely affecting precision. The use of a VGA would also ensure optimum use of 

the full-scale range (FSR) of the receiver ADC at all times, making the dynamic 

range constant under changing bandwidth conditions and hence reducing 

heteroscedasticity. However, system performance would need to be re-evaluated 

after this system change to check for undesirable dynamic effects caused by the 

amplifier gain control loop. This will necessitate some further work. 

The absolute accuracy of the split ring resonant sensor used for the gas segmented 

flow experiment is significantly worse than that of a cavity resonator, having a high 

sensitivity to the geometric uncertainty of small features such as the gap size and 

the capillary internal dimensions. It also has a depolarising geometry, restricting it 

to non-polar liquids. Improving the fabrication method of the SRR could increase 

accuracy, and the linearity of its perturbation response might be increased, e.g., by 

using a higher permittivity capillary, or one of a different ID/OD ratio. For physical 

reasons, it is probably impossible to achieve high field localisation without some 

degree of depolarisation, therefore techniques to improve or trade-off 
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perturbation nonlinearity against field localisation are required; this is a good 

avenue for further study using parametric FEM simulation coupled with numeric 

optimisation techniques. 

The gas-segmentation principle has promise even in otherwise static liquid 

dielectric measurement as a way to correct for drift automatically. However, 

currently it does not have the same metrological potential as the falling droplet 

measurement system above due to the liquid film retention problem. This caused 

the apparent precision of the permittivity estimate to be degraded even though the 

measurement system noise floor was still very low. One potential solution is to use 

superhydrophobic coatings on the inside of the capillary in order to suppress or 

eliminate liquid film retention and provide a cleaner transition from liquid to gas 

segment. It is also worth investigating the impact of liquid evaporation into the air 

segment. Although this should have minimal effect, this can quite easily be verified 

by performing the experiment at a range of temperatures to reach different vapour 

pressures. Careful temperature calibration of the resonator will be necessary, but 

it should be possible to show that the gas segment does not change permittivity 

significantly with temperature if this hypothesis holds.  

The microwave heating system suffered from a number of limitations. Parasitic 

heating limited the accuracy of the permittivity estimate. To resolve this issue the 

flow system should be modified to introduce a heat exchanger, possibly located 

coaxially within the resonant sensor. Providing a known rate of cooling airflow 

would improve accuracy by preventing parasitic heating, as well as allowing for 

faster cooling cycles. However, heating rate and efficiency would suffer to some 

extent. The high level of noise and fluctuation present in the controlled heating 

system must also be addressed for the system to be practical. Using the latest 

implementation of the multitone readout system would enhance the sampling rate 

and provide greater noise rejection of the heating signal, as it would be phase 

coherent with the carrier signal used for modulation. The control algorithm could 

also be improved by applying digital control design techniques. Coupled with the 

faster readout rate, this would undoubtedly enhance the performance of the 

temperature control loop enough for it to become practical. 



Chapter 7 – Conclusions 

395 

The temperature measurement also needs to be properly verified using infrared 

emissivity thermometry or, better still, a thermochromic tracer [5], by which 

spatial temperature profiles can also be recorded. In addition, the system as it 

stands does not represent sufficient novelty in application to interest the 

microfluidic community, and the sensor is still physically bulky. Combining 

segmented flow and heating together using the SRR to create a miniature, chip-

localised microwave sensor/actuator system would certainly be a more impressive 

demonstration of the capabilities of microwave-microfluidics [6] 
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7.3 Scope for future development 

Once realtime MHz frequency readout rates can be realised, a welcome 

continuation of this work would be to verify that the transient response of 

resonator perturbation at these very high frequencies does indeed fit with the 

theory of parametric state-space analysis, although conceiving a suitably fast and 

predictable perturbation may be difficult. The use of lasers to create rapid thermal 

transients or to exploit nonlinear electro-optic effects in dielectrics could be a 

potential candidate for such an experiment, and such a system could then provide 

a useful platform for the study of such interactions. 

Whilst the falling droplet experiment was intended to be simply a proof-of-concept 

demonstration of the multitone system and realtime MRS processing, it may have 

some practical applications as a method of investigating liquid properties. Apart 

from permittivity, this experiment can measure two independent factors – drop 

rate and oscillation frequency – that depend on the density and surface tension of 

the liquid, hence allowing these useful properties to be measured. Viscosity could 

also be measured if the resonator could be made taller, allowing sufficient transit 

time for the estimation of the droplet oscillation decay constant. This is because 

the characteristic decay time       of the vibrational mode is related to kinematic 

viscosity   in the small damping limit: [7]  

 
 

 
 

 

  
             7.1 

In short, if the sampling rate was increased, and the accuracy and repeatability of 

droplet generation optimised, this method might be competitive with much more 

delicate and expensive instruments such as that demonstrated by Matsumoto et al., 

where lasers were used to measure falling droplet shape [8]. Evidently, the 

metrological application of this MRS system has potential as an avenue for further 

study [9]. This method has the advantage of only requiring a small sample volume, 

and, combined with a cost-efficient, high-speed readout system optimised for small 
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perturbation and high accuracy, (e.g., using narrower band, 16-bit converters) it 

could even be a candidate for a novel laboratory bench-top instrument. 

With a few improvements, it is fair to say the multitone readout system coupled 

with the SRR is a good solution to handing the challenging measurement of gas-

segmented flow streams. This sensor has a very high sensitivity and is second only 

to a microwave microscope’s sharpened tip for electric field localisation. However, 

the sensor overall is much more compact than one based on Kim’s static 

microwave microscope [10] would be, giving it unique potential. This raises the 

interesting possibility of new applications in online monitoring and control of 

segmented flow systems. Such an MRS system could assist chromatography assays 

that use gas segmentation post-column to reduce axial dispersion, perhaps by 

adding an extra analysis dimension, or simply providing a reference measurement 

when solvent gradients are employed. Another potential application is in gas-

liquid reactors. This split ring MRS system has the potential to measure individual 

segments of such reactors, to determine their composition, measure reaction 

progress or even perform targeted microwave heating on a slug-by-slug basis.  

The system capable of simultaneous complex permittivity measurement with 

microwave heating also has potential. The ability to measure the impact of 

microwave heating with the same field distribution as used to cause it can 

eliminate sources of uncertainty in conventional microwave heating. In particular, 

it gives an indication of the volume-averaged temperature through a sample. This 

is something that methods such as infrared emissivity thermometry cannot do. 

Furthermore, if reactions are progressing, knowing the exact energy absorbed via 

time-integrated bandwidth monitoring and measuring temporal permittivity 

change could together be used to monitor changes in composition or perform 

rough calorimetry. This information could then be fed back directly to heating 

control using the demonstrated PWM method. Whilst probably not a substitute for 

thermometry, due to the unknowns in chemical composition and parasitic heating, 

the extra dimensions this capability brings might still be very useful in optimising 

high performance flow chemistry and related applications. 
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Looking farther forward, if a low-cost, high-speed MRS readout system can be 

realised and is coupled with this technique, a wider scope of applications can be 

envisaged than just microreactor research. Although the technique does not scale 

well to higher filling factors and larger resonators (i.e. to satisfy domestic 

microwave requirements), in principle the technique could be scaled up, for 

example to pharmaceutical production levels, by a parallel method – duplicating a 

large number of fully integrated microreactors each with intelligent microwave 

capability. This is, after all, the preferred scale-up method for most microreactor 

technologies. Furthermore, the technique can be boosted with higher microwave 

powers to yield even more rapid heating rates. With new, low cost LDMOS 

transistors now capable of delivering microwave powers over 200 W at 2.5 GHz, 

[11] this technology and heating method is appealing for the laboratory microwave 

market – perhaps finally offering a fully 21st century implementation of the 

Bunsen burner of the 21st century. 

The capillary filling experiments, whilst only simple demonstrations, also present 

some highly speculative applications. In the real-world scenario of measuring 

unknown, complex liquids, some degree of chromatographic separation might be 

possible under the self-filling conditions. This would be reflected in the filling 

dynamics, potentially creating a unique transient filling ‘fingerprint’. In these 

situations, decoupling capillary filling dynamics and perturbation from samples 

also undergoing time-domain changes or having spatial inhomogeneity, is a 

complex and interesting challenge. One simple solution that has some rather 

interesting potential, is to add a secondary sensing method to detect the liquid in 

the capillary, for example a linear array optical detector, creating a multi-sensor 

system that combines the high dynamic range and robustness of microwave 

sensing with the additional optical spatial information. 
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Figure 7.1: Design for a multi-sensor dynamic capillary filling sensor 

integrating optical and microwave sensing. 

This multi-function sensor design uses a linear charge coupled device (CCD) 

operating in spectral absorption mode, with uniform illumination e.g., white LED 

array or UV lamp for fluorescence. Linear sensors, e.g., [12], have thousands of 

pixels, giving high spatial resolution, and can have sampling rates over 100 Hz. 

This multi-sensor device could replace a range of different analyses performed on 

complex fluids such as blood, simply by measuring complex permittivity and 

optical absorbance dynamically over capillary filling. Tests might consist of a 

selection of disposable capillaries pre-coated with a variety of compounds – such 

an anticoagulant agent, or an artificial receptor. The very small volume of sample 

needed, combined with the promise of low overall cost, with only the capillary as a 

disposable unit, makes this sensor system appealing for point-of-care diagnostics, 

hailed as enabling technology for the developing world [13].  

This might seem far-fetched, and the application of MRSs to biomedical 

applications is indeed still in its infancy. However, recent developments in non-

invasive blood glucose sensors [14], that are likely to utilise the multitone readout 

technology developed here, are pushing the technology of microwave sensor 

design and to the limits of miniaturisation, portability, and cost, this area looks set 

to be an exciting new area of future research. 

One application area that has been alluded to several times without actually being 

demonstrated practically, is the microwave microscope. Using the multitone 

measurement system could increase the scan rate of such a device by orders of 
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magnitude. This could be translated to higher resolution, larger scan areas, or the 

ability to resolve spatiotemporally: in other words making a microwave video. In 

this field, the multitone system and the other approaches developed here have 

much to offer, and the application of the multitone system to microwave 

microscopy could be demonstrated in the near future simply by replacing the 

readout method employed on an existing microscope with the PXI-based 

implementation of the readout system developed in this work. As microwave 

microscopy is rapidly becoming a common laboratory method, there is also an 

opportunity here for the commercialisation of an instrument based on the PXI 

implementation. The concept of periodic recalibration could also be applied to the 

microwave microscope if the traversal velocity is quick enough to allow the 

measuring probe to return to a known calibration standard at the end of each scan 

line. This line-by-line recalibration could greatly reduce sensitivity to drift and 

enhance the accuracy of microwave microscope measurements. 

In summary, the continued expansion of microwave resonant sensors into new 

disciplines such as chemistry and medicine will require great advances in their 

readout systems and design methods, but the rewards will be a diversity of new 

applications as a next-generation embedded sensor technology. It is hoped that the 

contributions made in this work will prove to be a valuable step towards this goal. 

Furthermore, high-performance realtime MRS measurement is an enabling 

technology in more traditional fields such as material metrology and microwave 

microscopy, offering new capabilities and higher performance, and aiding 

advancement across the scientific disciplines. 
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