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The Horn of Africa is highly vulnerable to droughts and floods, and reliable

long-term forecasting is a key part of building resilience. However, the

prediction of the “long rains” season (March–May) is particularly challenging

for dynamical climate predictionmodels. Meanwhile, the potential formachine

learning to improve seasonal precipitation forecasts in the region has yet to

be uncovered. Here, we implement and evaluate four data-driven models for

prediction of long rains rainfall: ridge and lasso linear regressions, random

forests and a single-layer neural network. Predictors are based on SSTs, zonal

winds, land state, and climate indices, and the target variables are precipitation

totals for each separate month (March, April, and May) in the Horn of Africa

drylands, with separate predictions made for lead-times of 1–3 months.

Results reveal a tendency for overfitting when predictors are preselected

based on correlations to the target variable over the entire historical period,

a frequent practice in machine learning-based seasonal forecasting. Using

this conventional approach, the data-driven methods—and particularly the

lasso and ridge regressions—often outperform dynamical seasonal hindcasts.

However, when the selection of predictors is done independently of both

the train and test data, by performing this predictor selection within the

cross-validation loop, the performance of all four data-drivenmodels is poorer

than that of the dynamical hindcasts. These findings should not discourage

future applications of machine learning for rainfall forecasting in the region.

Yet, they should be seen as a note of caution to prevent optimistically biased

results that are not indicative of the true power in operational forecast systems.
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1. Introduction

Accurate seasonal forecasts could bring enormous societal

benefits and lead to improved agricultural productivity, water

resource management, and disaster response planning (He

et al., 2021). There is a growing interest from governments,

industries, and non-governmental organizations (NGOs) in

seasonal forecasts that could support early actions to weather

extremes (Lang et al., 2020; Merryfield et al., 2020). As a

consequence, seasonal timescales, lying between the short range

weather forecasts and long range climate projections, have been

receiving increasing attention by the forecast community (Bauer

et al., 2015; Merryfield et al., 2020). However, traditional weather

forecast models were not originally designed for those timescales

(Cohen et al., 2019). Skilful seasonal predictions require

accurate characterization of “slowly-changing” climate variables

that influence weather conditions over weeks to months.

These include ocean temperatures, persistent atmospheric

pressure patterns, land conditions, and sea ice (Mariotti

et al., 2020). Despite the progress in the representation

of these variables in weather models (Merryfield et al.,

2020), error propagation still limits predictive power at

seasonal scales (Cohen et al., 2019). These factors suggest

a need for a different approach that can leverage the

plethora of reanalysis data and observations from satellite

remote sensing.

Artificial Intelligence (AI) has the potential to revolutionize

multiple research fields, and the arena of weather and climate

prediction is no exception (Reichstein et al., 2019; Zhao et al.,

2019). While the limited volumes of high-quality climate

observations, along with their strong spatiotemporal correlation

and high-dimensionality, impose a great challenge for AI

algorithms (Cohen et al., 2019), pure AI forecasting models

may already exhibit skills that are comparable to conventional

weather forecast models, even at short time scales (Scher,

2018). A recent review of the use of AI for weather forecast

modeling even stated that it is conceivable that numerical

weather models may one day become obsolete (Schultz et al.,

2021). Yet, as of today, the best practical results can still

be expected from a combination of AI and physical models

(Cohen et al., 2019; Schultz et al., 2021). If seasonal climate

predictions were improved by incorporating AI, this could help

support socioeconomic preparedness and resilience, particularly

in regions with significant exposure to seasonal climate hazards.

Nonetheless, only a limited number of machine learning studies

have focused on seasonal prediction so far (Dewitte et al., 2021),

and seasonal timescales are often only briefly mentioned in

surveys (Nayak et al., 2013). Comprehensive reviews onmachine

learning in seasonal prediction include Cohen et al. (2019) and

Bochenek and Ustrnul (2022). Cohen et al. (2019), in particular,

argued that machine learning can be adopted to further improve

the accuracy of operational seasonal predictions, a field that

almost exclusively relies on complex fully coupled dynamical

forecast systems to date.

The Horn of Africa—including the countries of Djibouti,

Eritrea, Ethiopia, Kenya, and Somalia—is one of those regions.

The rainfall in this region is characterized by twomain seasons—

long (March–May, MAM) and short (October–December,

OND) rains. Not only is it host to a large rural population that

is dependent on this highly seasonal rainfall supply, but it is

also regularly exposed to climatic extremes such as droughts

and floods. Moreover, the prediction via dynamical models

is notoriously challenging in the region. Chronic droughts

occurred during the periods 2005–2006 and 2008–2011, which

faced rainfall deficits of 30–75% below average (Nicholson,

2014a; Funk et al., 2019). The 2011 crisis, partly caused by

the drought event, affected millions of people and resulted in

significant displacement of communities, with millions suffering

from loss of livelihoods and assets (Slim, 2012). Flood conditions

arose after the drought that ended in the second half of 2011,

aggravating the already critical humanitarian situation in the

region (Nicholson, 2014a). These extreme events and difficulties

associated with them are still ongoing: in April–May 2020 and

August 2021 Ethiopia experienced flash floods affecting more

than 100,000 people (Davies, 2021). At the time of this article,

four consecutive rain seasons failing, starting from October

2020 have resulted in millions of people in Ethiopia, Somalia

and Kenya facing food insecurity and water shortages in the

present (UNOCHA, 2022). These below-normal rainfall seasons

have not always been anticipated by existing dynamical forecast

systems in the region, particularly for the long rain seasons

(March–May, MAM). More accurate drought predictions are

sorely needed, and AI techniques offer a potential opportunity to

overcome limitations in dynamical models (Cohen et al., 2019).

To date, efforts to use data-driven approaches for seasonal

prediction in the Horn of Africa remain limited. Mwale and

Gan (2005) used artificial neural networks, where the parameters

were optimized using genetic algorithms, to predict September–

November precipitation with a one-season lead-time over

eastern Africa. They achieved forecast skills that overcame those

by linear methods (Ntale et al., 2003). More recently, Alhamshry

et al. (2019) constructed an Elman recurrent neural network

model to forecast summer rainfall from teleconnected SSTs over

the Lake Tana Basin in Ethiopia, with good results over the

region. However, seasonal forecasts targeting Horn of Africa’s

long rains using data-driven learning approaches are especially

rare or non-existent. Moreover, Alhamshry et al. (2019), as

well as multiple other studies using AI for seasonal weather

prediction in other regions, used SSTs over preselected regions

based on a preassessment of the correlations between SSTs

and rainfall over the entire historical period. This approach is

prone to overfitting, due to the dependency between predictor

variables and test data, and could give optimistically biased

results (Hastie et al., 2009).
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FIGURE 1

Study area climatology. (A) Location of the study region and average total long rains (MAM) rainfall P (mm). (B) Precipitation data from CenTrends

(Funk et al., 2018) based on 1981–2014. The area has been delimited based on Adlo� et al. (2022).

This study assesses the predictability of the Horn of Africa’s

rainfall using data-driven approaches. The focus is on the

long rains, as it is not only understudied in this context, but

also particularly challenging to dynamical weather forecasts

and crucial for the supply of water to the region (Camberlin

and Philippon, 2002; Nicholson, 2014b). The study specifically

focuses on drylands, as they are home to many agropastoral

communities with a lifestyle that is highly dependent on water,

and thus rainfall, making the region especially susceptible to

disasters resulting from climate extremes such as the ongoing

drought event. Four different data-driven methods are explored:

ridge and lasso linear regression, random forests and single-

layer neural networks. The goal is to assess the potential of

these methods in forecasting MAM rainfall for lead-times from

1 to 3 months. Predictors of the long rains are based on

SSTs, zonal winds, land state and climate indices. A specific

focus is placed on investigating the influence of including

predictors that are preselected based on correlations to the

target variable, a frequent practice in machine learning-based

seasonal forecasting.

2. Study area

The focus of this study is the Horn of Africa drylands,

encompassing Somalia, northern Kenya and a part of eastern

Ethiopia (Figure 1). The study area is selected to highlight

the bimodal seasonality of rainfall as per (Adloff et al., 2022),

including grid cells for which the climatological rainfall over

February, July, and September is below 30 mm. Most of the

region is characterized by a flat topography mainly consisting of

lowlands, plateaus and coastal plains with an arid and semiarid

climate. It borders the Gulf of Aden in the north and the Indian

Ocean to the east. To the west and southwest, it is bounded
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by the Ethiopian highlands and the East African highlands,

respectively. The area has a bimodal rainfall regime, with so-

called long and a short rainfall season, which are consistently

relied upon for regional lives and livelihoods (Figure 1), and

a yearly average rainfall amount of ∼311 mm. While the

interannual variability of the short rains is strongly associated

with coupled ocean–atmosphere oscillations, specifically the El

Niño Southern Oscillation (ENSO) and the IndianOcean Dipole

(Behera et al., 2005; Manatsa and Behera, 2013; Nicholson,

2015a; MacLeod et al., 2021), the drivers of the long rains are

more complex. Vellinga and Milton (2018) suggests that the

most significant factors influencing long rains variability are: the

Madden-Julian Oscillation (MJO), SST in the north-west Indian

Ocean, and the Quasi-Biennial Oscillation. Recent evidence has

suggested the association of a fast-warming region in the west

Pacific Ocean, termed as “Western V”, with the frequency of

droughts during the long rain season, and its long term drying

(Funk et al., 2018). As mentioned above, our specific focus is

on the long rains, which contribute a total of 134 mm (±43%).

The region exhibits a north–south gradient in rainfall, with the

northern tip of the Horn receiving very low volumes.

3. Data and methods

Four data-driven models are compared in their skill to

hindcast the long rains in the Horn of Africa drylands

(Section 3.1). Their input data consist of reanalysis and

satellite data of multiple atmospheric, land and ocean variables

(Section 3.3). Forecast models were developed for every month

of the long rains season separately, at lead-times of 1–3 months.

Here, a 1-month lead time refers to data used of 1 month

before the target month. Nested k-fold cross-validation is used

to assess their performance (Section 3.2). March, April, and May

are considered separately because the long rains season is not

homogeneous, and rainfall is only mildly correlated among the

different months (Camberlin and Philippon, 2002; Nicholson,

2014b, 2015b). The time period used in this study is 1981–2014,

capped by rainfall and vegetation greenness data availability.

Furthermore, two approaches for predictor selection are adopted

(Section 3.4): one in which the predictors were selected based on

correlations on the whole available dataset (A1) and one where

correlation-based predictor selection was performed within the

cross-validation loop (A2). Results are compared against the

dynamical SEAS5 hindcasts produced at the European Centre

for Medium-Range Weather Forecasts (Johnson et al., 2019).

3.1. Prediction models

3.1.1. Ridge regression

Ridge regression is a regularization method designed to

deal with covarying predictors, and it reduces overfitting by

shrinking model coefficients toward zero. Since data for this

study is scarce with a high number of predictors (N < p),

shrinkage methods are particularly appropriate (Hastie et al.,

2009). The ridge regression is a linear method that employs an

iterative shrinking operation, rather than for example focusing

on subsets. The regression coefficients in ridge regression are

shrunk toward zero and each other by imposing a penalty

on their size, thus reducing model capacity. The amount of

shrinkage is controlled by a parameter λ ≥ 0; smaller λ values

give a smaller amount of shrinkage (Hastie et al., 2009). The

ridge coefficients aim to minimize a penalized residual sum of

squares (Equation 1).

β̂ridge = argmin
β







N
∑

i=1

(yi − β0 −

p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

β2
j







(1)

with β̂ridge = (β0,β1, . . . ,βp) the ridge estimate, yi the targets,

xi,j the inputs, β0 the intercept, βj the coefficient estimates, λ the

penalty factor, p the number of predictors and N the number

of observations.

3.1.2. Lasso regression

Similar to the ridge regression, lasso is also a regularization

method designed to deal with covarying predictors, and thus

it reduces overfitting by shrinking model coefficients toward

zero. Lasso stands for “least absolute shrinkage and selection

operator”, and it penalizes the absolute value of the model

coefficients. In contrast to ridge regression, the lasso regression

procedure (Equation 2) can produce coefficients that are exactly

zero and thus reduce the number of model parameters. In the

case of correlated predictors, lasso might randomly select one

predictor over the other (Tibshirani, 1996; Hastie et al., 2009).

β̂ lasso = argmin
β







N
∑

i=1

(yi − β0 −

p
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j=1

xijβj)
2 + λ

p
∑

j=1

|βj|







(2)

with β̂ lasso = (β0,β1, . . . ,βp) the lasso estimate, and every other

variable defined as in Equation (1).

3.1.3. Random forest

Random forests is an ensemble learning technique in which

a collection of regression trees is fitted to bootstrapped versions

of the training data (Breiman, 2001). Random forests are suitable

for a wide range of prediction problems, as they are simple to use

with only a few parameters to tune (Hastie et al., 2009; Biau and

Scornet, 2016), and have shown good performances in settings

with a small sample size and a high-dimensional predictor space

(Biau and Scornet, 2016). They are particularly recommended

in case of complex non-linear interactions (Hastie et al., 2009).
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For new instances, the predictions of individual regression

trees are averaged to obtain a final prediction (a.k.a. bagging).

Bagging reduces variance by averaging many noisy, but

approximately unbiased models. The random forest regression

predictor f̂ B
rf

after B trees T(x;2b)
B
1 are grown is shown

in Equation (3).

f̂ Brf (x) =
1

B

B
∑

b=1

T(x;2b) (3)

with 2b the bth random forest tree in terms of split

variables, cutpoints at each node and terminal-node values

(Hastie et al., 2009).

3.1.4. Neural network

Neural networks are defined as a network of interconnected

nodes where information processing occurs. Connection links

pass signals between the nodes, each with an associated

weight that represents its connection strength. A non-linear

transformation, known as an activation function, is applied

to the net input of each node in order to determine the

output signal. The most common type of neural networks

are multilayer perceptrons, which consist of an input layer, at

least one hidden layer and an output layer, where information

flows in a single direction only, from the input to the output

layer. The number of predictors and target variables determines

the number of input and output nodes, respectively. Hidden

layers allow for non-linearity in the relationship between the

inputs and outputs. The number of hidden layers and neurons

depends on the problem and data availability (Mekanik et al.,

2013). Here, a multilayer perceptron with a single hidden

layer is used: since we have a low number of samples with

a high number of predictors, this helps reduce the risk

of overfitting.

3.2. Cross-validation

To compare the performance of each model, a nested k-

fold cross-validation is used (see Supplementary material for

the pseudocode). This procedure is more appropriate than a

single split into training and testing data, since the sample size

is relatively low (Varma and Simon, 2006; Wainer and Cawley,

2021). Nested cross-validation requires two cross-validation

steps, referred to as the outer and inner loops. In the outer loop,

datasets are split into k groups, or folds, in which the models,

generated in the inner loop, are evaluated by determining

unbiased performance estimates. In the outer loop, each fold

is once held out for testing, and the remaining k–1 folds are

then merged and split into inner folds for training (Wainer and

Cawley, 2021). For this study, a five-fold cross validation in the

outer loop and a four-fold cross-validation in the inner loop are

chosen (Figure 2). These values are decided based on a trade-

off between having enough folds with performance estimates,

having enough data to calculate a performance metric, and

compute time.

The training data of the outer loop is fed into the inner

loop, that splits the data again into training and test (or

tuning) data. The inner loop includes predictor selection and

hyperparameter optimization procedures that are described

in the Supplementary material. Once the optimal set of

hyperparameters is found, a final model is constructed using all

inner loop data, i.e., the outer loop train data. The performance

is then assessed with the never-seen-before test data from the

outer loop. For the single-layer neural network, the procedure is

slightly different. In the inner loop, a single validation dataset

is set apart, because it is not common to use cross-validation

in neural networks. Therefore, for the neural networks, we

select the best performing model instance of the inner loop—

where the tuning set serves as validation set for overfitting—

and use this model to estimate the performance on the

test data.

In general, the outer loop is used for estimating the

performance of a model, while the inner cross-validation is used

for tuning the hyperparameters and performing some additional

predictor selection. The inner loop can then be seen as a “model

selection” phase, where optimal hyperparameters and number

of predictors are selected based on performances obtained on

the inner loop tuning fold. The selected parameters are then

used to construct the model using the training data in the outer

loop during a “model training” phase. The trained model is

then evaluated in the outer loop using the test data in a “model

testing” phase (Varma and Simon, 2006). In each of the outer

loop folds, the performance is calculated using the outer loop test

data, and those performances obtained over the different folds of

the outer loop are subsequently averaged to arrive at an overall

performance score, and the standard deviation of the different

performances serve as an uncertainty metric. Comparing the

outer loop performances of the different modeling methods

enables identification of the best method. With nested cross-

validation, the test data used in each iteration of the outer loop

are completely independent of the data used to optimize the

performance of the model, hence it can be seen as a reliable

approach for choosing the best modeling method (Varma and

Simon, 2006; Wainer and Cawley, 2021).

3.3. Data

Monthly rainfall data comes from the gridded observational

Centennial Trends Greater Horn of Africa (CenTrends)

precipitation dataset v1.0 [mm/month] (Funk et al., 2015). The

data spans the period 1900–2014, at a resolution of 0.1◦, and

covers the Greater Horn of Africa (–15◦S–18◦N, 28◦E–54◦E).

Root-zone soil moisture (SMroot) and surface soil moisture
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FIGURE 2

Schematic overview of nested k-fold cross-validation procedure with 5 outer folds and 4 inner folds. A1 refers to the general approach with

selecting predictors based on correlations on the whole dataset (1981–2014), while A2 refers to the approach where selection of predictors

based on correlations is done only on the training data in the cross-validation procedure (see Section 3.4).

(SMsurf) data are acquired from the Global Land Evaporation

AmsterdamModel (GLEAM) v3.5a which is available from 1980

with a 0.25◦ resolution (Miralles et al., 2011; Martens et al.,

2017). The Normalized Difference Vegetation Index (NDVI)

and Leaf Area Index (LAI) are used to characterize vegetation

dynamics. LAI and NDVI data are available from 1981 at a

resolution of 0.05◦ from the National Oceanic and Atmospheric

Administration (NOAA) Climate Data Record version 5,

and are based on observations from the Advanced Very

High Resolution Radiometer (AVHRR) (Vermote, 2019a,b).

For the monthly averaged land surface temperature (LST),

the Gridded Berkeley Earth Surface Temperature Anomaly

Field, available from 1750 with a resolution of 1◦, is used

(Rohde and Hausfather, 2020).

Global SST data are obtained from the COBE–SST2

product, provided by the NOAA Oceanic and Atmospheric

Research (OAR) Earth System Research Laboratory (ESRL)

Physical Sciences Laboratory. The dataset has a resolution

of 1◦ and is available over the period 1850–2019 (Hirahara

et al., 2014). Monthly data on zonal winds come from

the National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) Climate

Data Assimilation System I CDAS–1, and are available

from 1949 with a resolution of 2.5◦ (Kalnay et al., 1996).

Zonal winds at 200 and 850 hPa are chosen to consider

both the upper troposphere and low level flow. Moreover,

ocean–atmosphere oscillation indices are used to diagnose

different modes of climate variability; Supplementary Table 2

gives an overview of these indices. They are obtained

from NOAA and the Royal Netherlands Meteorological

Institute (KNMI).

Finally, retrospective forecast (or hindcast) precipitation

data from the European Centre for Medium-Range Weather

Forecasts (ECMWF) fifth generation seasonal forecast system

(SEAS5, Johnson et al., 2019) are used, not as input, but

for comparison. The ECMWF SEAS5 hindcasts consist

of 25 ensemble members, at 1◦ resolution, of which the

ensemble average is considered. The hindcast is available

from 1981. Datasets have been rescaled to a common 0.25◦

resolution by bilinear interpolation. Supplementary Table 1

gives an overview of the datasets and their

general characteristics.

3.4. Predictor selection

3.4.1. Physics-guided and correlation-based
data selection

For a number of predictors (i.e., SMroot, SMsurf, LST,

NDVI, LAI, and SST), a physics-guided approach is used

for data selection. First, the climatological source regions

for precipitation are identified; these are the regions which

contribute moisture (through evaporation) to the rainfall

occurring in the study region. This is enabled by the

use of the Lagrangian FLEXible PARTicle dispersion model

FLEXPART (Stohl et al., 2005). Specifically, the FLEXPART
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model simulations are carried out at a global scale using

millions of air parcels which are uniformly distributed

throughout the globe and are tracked both in space and

time. The following variables are used to force FLEXPART:

temperature, specific humidity, horizontal and vertical wind,

cloud cover, precipitation, 2-m air temperature, dew-point

temperature, sensible and latent heat fluxes, and North/South

and West/East surface stress. FLEXPART tracks the location

(latitude, longitude, and height) of each parcel and simulates

their dynamic and thermodynamic properties (temperature,

density, specific humidity). Then, the outputs from FLEXPART

are used to construct and evaluate the parcel trajectories,

i.e., all air parcels residing over the study region are tracked

backward in time and parsed for precipitation in the study

region to identify moisture sources in previous time steps

and locations. In doing so, all the locations in which the air

parcel gains or loses moisture are identified. In this study,

the evaluation of air parcel trajectories from the FLEXPART

simulations, forced by ERA-Interim reanalysis, are carried

out using a recently developed moisture tracking framework

(Keune et al., 2022).

The aforementioned steps allow us to delineate the rainfall

source regions of the study region, for each of the three MAM

months. Once the source regions are determined, predictors

are averaged over them. These source regions are shown in

Supplementary Figure 1. Atmospheric dynamics such as wind

direction play a big role in their location. The dominant

easterlies in March are followed by the appearance of low-

level flow patterns of the Asian monsoon in April, which

show a change in wind and pressure patterns over the Indian

Ocean. By May, the low-level flow becomes stronger, with

southeasterlies prevailing south of the equator and dominant

southwesterlies north of the equator (Nicholson, 2015b). To

the authors’ knowledge, the use of moisture source regions to

delineate and select predictors is novel in the context of seasonal

rainfall forecasting.

The set of physics-guided terrestrial and oceanic predictors

is combined with the SSTs, zonal winds (200 and 850 hPa)

and coupled ocean–atmosphere oscillation indices that are

significantly (p < 0.05) correlated with monthly rainfall over

the study region. Rainfall data for March, April, and May are

correlated with the SST for each lead-time and each pixel, and

neighboring significantly correlated pixels are then clustered

together. Finally, the averages over these clusters are taken as

predictors. For zonal winds at 200 and 850 hPa, the same

procedure is repeated. In addition, the climate indices from

Supplementary Table 1 are also correlated with MAM rainfall

for the 1- to 3-month lead-time and only indices showing

significant correlation are retained as predictors. All predictors

are standardized using amin–max normalization to rescale them

to the same [0–1] range prior to their use in the prediction

models (Section 3.1).

3.4.2. Approaches for selection of correlated
predictors

The selection of predictors used in data-driven models

is typically based on correlations, as outlined above. These

correlations are often calculated over all available data, with

this approach followed by many studies in seasonal rainfall

forecasting (e.g., Block and Rajagopalan, 2007; Diro et al., 2008;

Alhamshry et al., 2019). For example, for their prediction of the

Ethiopian spring rains, Diro et al. (2008) selected their predictors

based on SST correlations over all available years (1969–2003).

More recently, Alhamshry et al. (2019) calculated correlations

of Ethiopian summer rainfall with global SST fields across

the period 1985–2015 and used the result to select predictors.

Following this, they trained an Elman recurrent neural network

using 1985–2000 data, and optimized their model for 2001–

2015, eventually defining their final optimization as the best fit

for the whole period 1985–2015. Multiple other studies have

used this approach, both in the eastern Africa region (e.g.,

Block and Rajagopalan, 2007; Nicholson, 2014b, 2015b), as well

as elsewhere (e.g., Singhrattna et al., 2005). This commonly-

used predictor selection approach is also explored in this study

and referred to as A1. The problem with A1 is that it may

lead to biased performance measures, as the test set is not

fully independent.

In the field of machine learning, it is known that selecting

variables within the cross-validation procedure, instead of

prior to it, is of utmost importance, and doing otherwise

may yield optimistically biased predictions (Krstajic et al.,

2014). Therefore, a more “statistically correct” approach is also

examined in this study, and further referred to as A2. In A2,

and just like in A1, for each fold of the five outer cross-

validation loops, a subset of good predictors is found that

show strong enough correlation using all samples. However,

unlike in A1, the test data are excluded in the selection of

predictors. As a consequence, in A2, significantly correlated

SSTs, winds and climate indices are selected and clustered in

the outer cross-validation procedure, as also shown in Figure 2.

In other words, instead of using all data (1981–2014) to select

correlation-based predictors (e.g., the SST correlations), the

correlations and the clustering are done excluding test years.

This predictor set is subsequently merged with the physics-

guided input data. The set of predictors, selected in the outer

loop, is then further used to fit the models in the inner

loop and to eventually evaluate performance against the test

set. For every fold of the outer loop, the set of predictors

may thus be different. Selecting variables within the cross-

validation procedure is not necessary for the physics-guided

predictors, as those are independent because they are not

selected based on correlations with the long rains. By using

both approaches, a comparison between them can be made,

and enables the discussion of the effect of selecting predictors

based on correlations prior to cross-validation for seasonal
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FIGURE 3

Performance of the conventional A1 approach for predictor selection. (A) Time series of observations and hindcasts of the nested

cross-validation procedure of all modeling methods for MAM at a 1-month lead-time representing the first approach where correlation-based

predictors were done on the whole dataset (A1). (B) Median and interquartile ranges illustrating the Kling–Gupta E�ciency (KGE) performances

of the cross-validation procedure for the four data-driven models and the dynamical hindcast at all lead-times (L1–L3). RF and NN refer to the

random forest and the single-layer neural network, respectively. KGE-values > −0.41 (see discontinuous line) indicate some skill compared to

using the climatological mean as hindcast.

forecasting in the study area. See Supplementary material for the

pseudocode of the predictor selection.

4. Results

4.1. Performance of data-driven models
vs. dynamic weather hindcasts

First, the A1 approach, in which the entire time series is used

to preselect correlated predictors, is evaluated. Figure 3 provides

an overview of the performance of the different data-driven

models when following this A1 approach, and it indicates a good

predictive skill, comparable to dynamical weather hindcasts

(SEAS5), and frequently superior. Figure 3A shows time series of

cumulative precipitation forMAM at a 1-month lead-time. Even

some of the more extreme years are reasonably well-hindcasted.

The Kling–Gupta efficiency (KGE) metric is used to compare

the performance of the different models in Figure 3B. KGE

combines the correlation coefficient (r), bias (β), and ratio of

the standard deviations (α) by computing the Euclidean distance

(ED) of the three components from its ideal point (Gupta

et al., 2009); KGE-values > −0.41 indicate some skill compared

to using the climatological mean as hindcast (Knoben et al.,

2019). For a 1-month lead-time, the highest KGE values for the

month of March are found for using lasso models (KGE = 0.27),

while ridge regressions perform best in April (0.30) and May

(0.60). For 2- and 3-month lead-times, the performances are

slightly worse, as expected, but the lasso and ridge regression

models still maintain a high level of predictability, consistently

outperforming the dynamical hindcasts. Supplementary Table 2

illustrates the partitioning of the KGE values into its three
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FIGURE 4

Performance of the A2 approach for predictor selection where independent test data is used that is not employed in the preselection of

correlated predictors. (A) Time series of observations and hindcasts of the nested cross-validation procedure of all modeling methods for MAM

at a 1-month lead-time representing the second approach where correlations are performed inside the cross-validation loop, excluding the

years used for testing (A2). (B) Median and interquartile ranges illustrating the Kling–Gupta E�ciency (KGE) performances of the cross-validation

procedure for the four data-driven models and the dynamical hindcast at all lead-times (L1–L3). RF and NN refer to the random forest and the

single-layer neural network, respectively. KGE-values > −0.41 (see discontinuous line) indicate some skill compared to using the climatological

mean as hindcast.

different components (r, β , α). The skill demonstrated by the

data-driven hindcasts in terms of correlation coefficient to the

observations (best model frequently r > 0.4) is comparable

to the values reported by previous studies in eastern Africa

that use this conventional A1 approach for predictor selection

(Nicholson, 2015b; Alhamshry et al., 2019).

4.2. On the pitfall of using
correlation-based predictors

As mentioned in Section 3.4, the main issue with the

conventional (A1) approach is that its verification sample is

not fully independent, resulting in the forecast skill being

optimistically biased (Hastie et al., 2009). Therefore, the analysis

is repeated using the statistically correct A2 approach. As noted

in Section 3.4, in A2, the correlations and clustering used to

preselect predictor variables were computed excluding the years

used for testing. Figure 4 shows poor results for the A2 approach

in terms of predicted performance. Extreme years are no longer

adequately represented. While the performance of random

forests, lasso regression and neural networks at 1-, 2-, and 3-

month lead-times (respectively) is comparatively superior to the

other data-driven approaches, the performance of SEAS5 is still

typically superior to all of them. To fully understand the origin

of the low performance for A2, the KGE is decomposed into its

three components (r, α, and β) in Supplementary Table 2. The

correlation (r) differs greatly between the two approaches and

rarely exceeds 0.2 in A2, being sometimes even negative, while

the values of A1 are in line with those in literature (Nicholson,

2015b; Alhamshry et al., 2019). For A2, the performance of the

data-driven hindcasts drops significantly below that of SEAS5

(Figure 4B). The bias (β) is not responsible for the low KGE

values for A2, which fluctuate around the mean. The reason
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for the low KGE of A2 is the low correlation (r) in hindcasted

vs. observed rainfall, but also the low variability (α). Overall,

extremes are almost never captured with the A2 approach with

hindcasts showing only a slight deviation from the mean, and

hence with peaks and lows being under- and overestimated,

respectively. Comparing the statistics shown in Figure 3B for

the A1 approach, it is clear that A1 performs unrealistically

well because of the dependency between the predictor selection

and testing samples. This hides a problem of overfitting in

the conventional A1 approach, which would result in low

predictability for the years outside the pool of data used in

predictor selection, misrepresenting the true value of the models

for real-world forecasting.

5. Discussion

Our results point to a serious issue affecting many previous

studies which evaluate statistical seasonal climate forecasting. If

predictor selection is not carried out properly, and performed

based on correlations over the entire data record, overly

optimistic predictive skill is expected. Therefore, the reported

level of forecast skill in data-drivenmethods is often significantly

overestimated. Future studies must consider this potential

pitfall and explore new avenues to increase predictability

without overfitting. The overfitting underlying the A1 approach

is evidenced once more by Figure 5, which illustrates how

the temporal correlation clusters between pixel SST and the

study region precipitation differ when looking at slightly

different periods for the calculation of these correlations. Purely

coincidental correlations occur due to the large number of pixels

and the limited temporal granularity, and it falsely increases

the predictive power of the models that use these regions as

predictors when the test data is also included in the time series

used to compute these correlations. If the SSTs from these

correlation clusters were selected as predictors in the data-

driven models, the spurious nature of these correlations would

indicate that they do not necessarily reflect any underlying

physical process linking the SSTs and the region’s rainfall. This

makes the SSTs in these regions uninformative when it comes

to operational forecast systems that go beyond the historical

observational period. In larger datasets, it could be that the

significant correlations do not change as much when taking

a part of the data out as a test set, which could result in

correlation clusters that are more consistent. The difference

in outcome between the two approaches would then also be

smaller. Nonetheless, it is important to consider that the use

of longer time periods may mean historical correlations are

unrepresentative of present times due to non-stationarity in

climate teleconnections (Weisheimer et al., 2017).

Although recent work improved in investigating sources of

interannual variability, the long rains in the Horn of Africa

remain difficult to predict at seasonal scales (Vellinga and

Milton, 2018; MacLeod, 2019; Finney et al., 2020). This is

particularly the case during the long rains, and it is evidenced by

the low predictability as the lead-time increases. Therefore, the

low predictability achieved when using the statistically correct

approach (A2) is not totally unexpected. Nonetheless, there are

several means to improve machine-learning predictions of long

rains upon what is presented in this study. First, with only

34 years of data available, the partitioning into train, test, and

validation yields limited samples, which hinders the accuracy of

the hindcasts. In the case of neural networks this is particularly

important, and they should be used with larger datasets to fully

capture the complex interactions. Second, the hindcasting was

done for the study area as a whole, delineated as a region

of homogeneous bimodal annual rainfall seasonality. However,

during the long rains, the amount of rain falling over the area still

differs; the northeastern tip is drier than the southwestern part

(Figure 1A). Third, the predictor selection based on correlations

used linear correlations (for SSTs and zonal winds), while

the random forest and neural network algorithm can capture

possible non-linear trends as well. Possible SST and wind

clusters with a non-linear relationship with rainfall might thus

be missing in the predictor set. If longer time series were used

for training, the higher probability of non-stationary and non-

linear changes should be considered in the predictions and

in the predictor selection. Finally, the added value of using

physics-guided input data as predictors could not be determined

given the low predictability of the target variable. This approach

should be further studied in the future, and is expected to have

a larger potential in regions with continental-origin rainfall,

in which the land state upwind may have a large influence

on the precipitation occurrence in the downwind region

(Miralles et al., 2019).

6. Conclusion

In this study, seasonal rainfall hindcasting in the Horn

of Africa drylands was performed using four data-driven

modeling methods: ridge and lasso linear regression, random

forests, and single-layer neural networks. The performance of

each of the methods was assessed using nested k-fold cross-

validation. The three long rain months (March, April, and

May) were studied separately and hindcasts were done for lags

of 1–3 months. Significantly correlated clusters of SSTs, zonal

winds, and coupled ocean–atmosphere oscillation indices were

selected as predictor data. These were merged with terrestrial

and oceanic variables which were averaged over the region

sourcing moisture during each of the long rain months. The

source regions were obtained through Lagrangian transport

modeling.

Our findings reveal a pitfall in the conventional approach

of selecting predictors as predictors based on correlations

to the target variable, without testing the performance
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FIGURE 5

Maps with clusters of significant correlations (p < 0.05) of SSTs with May rainfall at a 1-month lead-time, indicated in blue for the five folds and

over the whole available period.

using independent data. This conventional approach yielded

prediction scores that indicated a high performance of the

data-driven models—particularly ridge and lasso regressions—

compared to the performance of dynamical hindcasts. However,

comparison with a more statistically correct approach wherein

the predictor selection was done inside the cross-validation

loop on the training data (and thus maintaining the test and

predictor selection as independent samples) demonstrated a

tendency toward overfitting by the conventional approach.

When testing and selecting predictors in independent samples,

all four modeling methods performed poorly in their prediction

of long rains, especially at 2- or 3-month lead-times, and worse

than the dynamical hindcasts. The results in this study should

not discourage future applications of machine learning for

rainfall forecasting in the region, but rather be seen as a note of

caution to prevent the (frequently done) selection of predictors

based on correlations to the entire observational period. That

gives optimistically biased results that are not indicative of the

true power in operational forecast systems that aim to predict

beyond the historical period.

Furthermore, our results also confirm that seasonal rainfall

forecasting in the Horn of Africa dryland region is particularly

challenging, certainly during the long rain season, and

particularly for extreme values. The lack of forecast skill

Frontiers inWater 11 frontiersin.org

https://doi.org/10.3389/frwa.2022.1053020
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Deman et al. 10.3389/frwa.2022.1053020

could be attributed to several factors, such as the lack of

understanding of long rain interannual variability, limitations

in record length, and the consideration of a large study area

as a homogeneous geographical unit. Further research should

continue focusing on pinpointing sources of predictability

during the long rains and improving process understanding

in order to inform predictor selection (Vellinga and Milton,

2018). Furthermore, other suggestions include exploring more

advanced deep learning techniques such as convolutional or

recurrent neural networks, and hybrid techniques combining

dynamical and data-driven approaches.
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