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1 SUPPLEMENTARY TABLES

Table S1. Characteristics of the datasets used.

Dataset Variable Resolution Source
CenTrends v1.0 Precipitation 0.1° Funk et al. (2015)

GLEAM v3.5 SMroot
SMsurf 0.25° Martens et al. (2017);

Miralles et al. (2010)

NOAA CDR v5 NDVI
LAI 0.05° Vermote (2019b)

Vermote (2019a)
Berkeley LST 1° Rohde and Hausfather (2020)
COBE-SST2 SST 1° Hirahara et al. (2014)

NCEP-NCAR CDAS-1 U200
U850 2.5° Kalnay et al. (1996)

NOAA and KNMI Climate indices
(Table S2) / https://psl.noaa.gov/data/climateindices/

https://climexp.knmi.nl/selectindex.cgi
ECMWF SEAS5 Precipitation hindcast 1° (Johnson et al., 2019)

Table S2. Selected ocean–atmosphere oscillation indices and their abbreviations.

Climate Index Abbreviation
Antarctic Oscillation AAO
Atlantic Meridional Mode AMM
Atlantic Multidecadal Oscillation AMO
Arctic Oscillation Index AO
El Niño–Southern Oscillation (Niño3.4) ENSO
Indian Ocean Dipole IOD
Madden–Julian Oscillation MJO 1-10
Pacific Decadal Oscillation PDO
Pacific Meridional Mode PMM
Southern Annular Mode SAM
Southern Oscillation Index SOI
North Atlantic Oscillation NAO
East Atlantic Pattern EA
West Pacific Pattern WP
East Pacific/ North Pacific Pattern EP.NP
Pacific/North American Pattern PNA
East Atlantic/West Russia Pattern EA.WR
Scandinavian Pattern SCA
Tropical/Northern Hemisphere Pattern TNH
Polar/Eurasia Pattern POL
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Table S3. The KGE components value (r, α and β) results of nested cross-validation for all months and lead-times (1–3 months). The best values of A1 are
indicated in blue and the best values of A2 are indicated in bold. For comparison, the SEAS5 KGE composition is additionally shown.

KGE r KGE α KGE β
A1 A2 A1 A2 A1 A2

March

L1

Lasso 0.48±0.52 -0.02±0.40 0.91±0.52 0.95±0.81 1.28±0.76 1.28± 0.83
Ridge 0.48±0.58 0.01±0.47 0.78±0.51 0.87±0.67 1.13±0.50 1.33±0.90
RF 0.54±0.18 0.29±0.47 0.56±0.47 0.69±0.61 1.34±0.60 1.33±0.77
NN 0.53±0.49 -0.22±0.17 0.22±0.11 0.13±0.05 0.89±0.47 0.76±0.29
SEAS5 0.73 0.59 1.09

L2
Lasso 0.26±0.41 -0.02±0.10 1.10±1.11 1.47±1.80 1.28±1.08 1.25±1.61
Ridge 0.34±0.54 -0.10±0.39 1.10±0.96 0.97±0.86 1.24±0.98 1.18± 1.39
RF 0.25±0.35 0.00±0.33 0.39±0.35 0.41±0.35 0.98±0.45 1.03±0.56
NN 0.37±0.38 -0.03±0.30 0.55±0.79 0.15±0.08 0.91±0.85 0.85±0.45
SEAS5 0.18 0.25 0.76

L3
Lasso 0.24±0.23 -0.14±0.28 1.81±2.48 0.98±1.15 0.71±0.36 1.41±0.89
Ridge 0.24±0.29 -0.23±0.30 1.04±1.03 1.13±1.45 1.21±0.89 1.35±0.95
RF 0.13±0.44 -0.24±0.42 0.51±0.56 0.63±0.58 1.24±0.94 1.33±0.91
NN -0.10±0.47 -0.16±0.32 0.46±0.26 0.10±0.10 1.48±0.97 0.77±0.38
SEAS5 0.04 0.21 0.67

April

L1
Lasso 0.44±0.40 -0.10±0.23 0.54±0.11 0.60±0.23 0.99±0.12 1.10±0.11
Ridge 0.52±0.40 -0.14±0.28 0.50±0.12 0.40±0.12 1.00±0.14 1.03±0.17
RF 0.25±0.37 0.12±0.29 0.31±0.07 0.30±0.09 1.03±0.17 1.00±0.18
NN 0.40±0.28 0.06±0.13 0.29±0.12 0.24±0.06 0.94±0.18 0.85±0.19
SEAS5 0.50 0.57 0.89

L2
Lasso 0.43±0.19 -0.25±0.25 0.59±0.17 0.62±0.20 1.06±0.08 1.04±0.10
Ridge 0.64±0.18 -0.20±0.38 0.55±0.11 0.48±0.13 1.03±0.12 1.09±0.17
RF 0.38±0.13 -0.24±0.42 0.36±0.09 0.31±0.08 0.96±0.10 1.03±0.18
NN 0.60±0.32 0.26±0.35 0.45±0.14 0.30±0.06 0.92±0.18 1.01±0.30
SEAS5 0.32 0.29 0.73

L3
Lasso 0.37±0.34 0.06±0.16 0.56±0.18 0.62±0.13 1.03±0.15 1.05±0.16
Ridge 0.60±0.20 0.17±0.15 0.59±0.07 0.42±0.07 1.03±0.12 1.07±0.16
RF 0.56±0.20 -0.10±0.33 0.25±0.05 0.29±0.08 1.01±0.14 1.03±0.18
NN 0.32±0.51 -0.11±0.30 0.26±0.11 0.18±0.06 0.98±0.25 1.02±0.26
SEAS5 -0.15 0.25 0.67

May

L1
Lasso 0.38±0.36 0.00±0.33 0.62±0.17 0.48±0.16 1.10±0.11 1.00±0.27
Ridge 0.71±0.16 0.31±0.40 0.64±0.17 0.53±0.18 1.04±0.06 1.01±0.29
RF 0.60±0.23 0.37±0.16 0.33±0.11 0.38±0.12 1.00±0.17 1.00±0.21
NN 0.64±0.20 0.17±0.38 0.35±0.05 0.21±0.08 0.99±0.18 0.99±0.32
SEAS5 0.80 0.58 0.93

L2
Lasso 0.44±0.29 0.05±0.19 0.53±0.17 0.53±0.12 1.06±0.23 1.03±0.34
Ridge 0.27±0.26 0.00±0.34 0.50±0.17 0.49±0.17 1.05±0.21 1.04±0.33
RF 0.34±0.15 0.27±0.20 0.43±0.05 0.35±0.07 1.06±0.22 0.98±0.27
NN 0.48±0.23 0.20±0.33 0.35±0.19 0.25±0.12 0.93±0.30 0.99±0.33
SEAS5 0.61 0.23 0.89

L3
Lasso 0.21±0.32 -0.30±0.3 0.51±0.23 0.60±0.20 1.07±0.28 0.98±0.44
Ridge 0.42±0.31 -0.25±0.37 0.54±0.16 0.50±0.12 1.15±0.09 1.05±0.34
RF 0.49±0.23 -0.05±0.21 0.28±0.02 0.32±0.14 1.08±0.24 1.08±0.30
NN 0.39±0.18 0.19±0.23 0.25±0.04 0.16±0.04 0.91±0.24 0.99±0.32
SEAS5 0.65 0.25 0.93
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2 SUPPLEMENTARY FIGURES

Figure 1a. March.

Figure 1b. April.

Figure 1c. May.

Figure 1. Regions sourcing moisture during the long rains corresponding to the 90th quantile of
precipitation (based on FLEXPART).
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3 SUPPLEMENTARY MATERIAL: PSEUDOCODES
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4 SUPPLEMENTARY MATERIAL: HYPERPARAMETER TUNING AND ADDITIONAL
FEATURE SELECTION

4.1 Hyperparameter tuning

Hyperparameters are parameters that have to be optimized based on the input dataset. In this study,
hyperparameters of the different methods (ridge, lasso, random forest and neural network) were tuned in
the inner cross-validation loop with a grid search algorithm. For this, a discrete parameter space had to be
defined after which all possible combinations were evaluated (Probst et al., 2019). Tuning was done in the
inner cross-validation loop (Figure 2) which overcomes the problem of the parameters overfitting to the
training data. The performance measure that was used for optimization is the R-squared metric.
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For both the lasso and ridge regression, the only hyperparameter that needed tuning is λ which is a
measure of the amount of shrinkage: a larger λ leads to a greater amount of shrinkage (Hastie et al., 2009).
In this study λ was varied over 50 values in a uniformly-spaced grid with as minimum and maximum
values 10-4 and 10 respectively.

The random forest has multiple hyperparameters that can be tuned. Probst et al. (2019) stated that default
values often work well and additionally declared that it is not completely clear which hyperparameters
should be tuned routinely. They stated that the effect of tuning is much smaller than for other algorithms.
Therefore, it was opted to use default values of all parameters except the two most important ones (number
of trees and number of subsetted predictors considered when making a split, according to Clauwaert and
Waegeman (2022)) over which a grid search was done (Table S4).

Table S4. Random forest grid description of hyperparameters that were tuned.

Hyperparameter Minimum value Maximum value Step size
Number of trees 10 100 5
Number of predictors considered at split 1 10 1

Lastly, a single-layer neural network was used. Neural networks have a lot of hyperparameters to
tune. As tuning all of them would be computationally expensive, some of them were fixed; the fixed
hyperparameters are shown in Table S5 and the tuned ones in Table S6. To decide the values of the fixed
parameters, exploratory studies on the data were done by trail and error on simple test–train splits and
by consulting literature. Both an early stopping mechanism1 and dropout regularisation were added to
avoid overfitting. The maximum number of neurons that was used in the hidden layer was dependent on
the number of predictors.

Table S5. Fixed single-layer neural network hyperparameters.

Hyperparameter Fixed Value/Method
Optimizer Adam
Batch size 15
Maximum epochs 150
Dropout 0.2

Table S6. Values over which single-layer neural network hyperparameters were tuned.

Hyperparameter Grid
Number of neurons min: 8, max: number of predictors, step size: 8
Learning rate [0.0005; 0.001; 0.005]
Activation function [ReLu; Sigmoid]

4.2 Additional feature selection

Next to the main two predictor selection approaches (A1 and A2), there was some additional feature
selection done in the inner cross-validation loop for both approaches as the number of predictors can
become large as it depends on the number of significantly correlated clusters of SSTs and winds. The
number of predictors can then also be seen as parameter of regularisation, therefore tuning the number

1 After ten epochs with no improvement on validation loss, training was stopped.
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of predictors in the inner cross-validation loop could improve the performance results without overfitting.
Especially for data with a high number of predictors compared to observations, some feature selection
can help improve forecasts (Hastie et al., 2009). A univariate selection method was used where Pearson
correlation was done between the target (monthly rainfall) and the predictors, and subsequently ranked the
predictors accordingly, followed by the selection of the K best predictors. In the inner loop, the number of
correlation-based predictors (K) that were selected as input in the model was thus tuned. In this additional
feature selection, K varies over different values; in this study, it was opted to go from selecting the best
20% of the significantly correlated data to selecting 100% in steps of 20%.
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