
Clarity: Analysing Security in Web Applications

Connor J. Potter1, Neetesh Saxena1 and Soumyadev Maity2
1School of Computer Science & Informatics, Cardiff University, Cardiff, United Kingdom

2Department of Information technology, IIIT Allahabad, Prayagraj, India

potterc10@cardiff.ac.uk, nsaxena@ieee.org, soumyadev@iiita.ac.in

Abstract—The rapid rise in business’ moving online has

resulted in e-commerce web applications becoming increasingly

targeted by hackers. This paper proposes Clarity, a dynamic black

box vulnerability scanner capable of detecting Cross-Site

Scripting, SQL Injection, HTTP Response Splitting, and Session

Management vulnerabilities in web applications. The developed

tool employs the use of Mechanize and Selenium to perform the

majority of its web scraping requirements. Clarity was tested

against 50 e-commerce web applications, uncovering Session

Management flaws as the most prevalent vulnerability, with 36 out

of the 50 applications being vulnerable.

Keywords—Web security, HTTP response, SQL injection,

vulnerability

I. INTRODUCTION

More than 1.92 billion people worldwide have used online
shopping by 2019, with these numbers expected to continue
increasing [1]. This increase in online shopping users has
resulted in an intensified demand for e-commerce web
applications. These applications allow businesses to target a
larger consumer base and in turn increase in sales, resulting in
more business’s going online. However, there are of course
drawbacks too. For example, e-commerce web applications
contain sensitive user data such as name, address, and bank
details. These must be protected appropriately by the web
application, or this sensitive data may very well fall into the
wrong hands. For this reason, hackers target such web
applications, making it a top priority that we ensure the
appropriate security controls are in place. If an e-commerce web
application is found vulnerable to attack, there is a possibility
for the attacker to execute any of the following: Stealing user or
administrator account or personal details, using the web
application to distribute malware, using the web application as a
base for scamming operations, using it as a base for phishing
operations, or defacing the web page. Since 2011, more than 75
percent of all attacks occur on web applications [2]. With
applications facing this huge level of threat, the aim of this work
is to assess how these attacks are carried out on e-commerce web
applications, how we can detect them. We analyse and
investigate not only if a web application is using adequate
security controls but also that it is using them correctly. This
work looks to automate the detection of various vulnerabilities
found in OWASP’s Top 10 most critical web application
security risks [3].

Motivation. Attackers are constantly finding new
vulnerabilities and new ways of exposing them for personal
gain. This has motivated this work to give consumers cheap and
accessible means of detecting these vulnerabilities so they may
protect themselves before any harm is done during the visit to a
malicious or insecure web application. The motivation behind

the cheap alternative is the target audience of this work, which
would be people with limited experience in cybersecurity.
Therefore, these individuals will likely have no interest in
paying a large amount of money for a security scanner like many
currently on the market. Given the threat web applications face,
this work aims to identify how vulnerable e-commerce web
applications are to attack. This aim is broken up into three tasks:
investigate attack vectors for e-commerce web applications,
investigate the identification and detection of web application
vulnerabilities, and create a tool to automate the detection of
web application vulnerabilities. In this work, we have tested fifty
web applications. This number is reasonably enough to gain a
general understanding of how efficient Clarity is as well as
generally how secure e-commerce web applications are.

Key Challenges. The challenge to this work is to ensure
Clarity has satisfactory coverage of data entry points. It is a well-
known fact a black box penetration testing approach to finding
vulnerabilities in web applications often encounters false-
negatives due to poor coverage of the web application and this
is something we hope to overcome. Furthermore, the validation
of the web application after the attack has been executed must
be as accurate as possible. If this phase is not accurate, neither
will be the results.

II. RELATED WORKS

In this work, we focus specifically on four vulnerabilities:
SQL Injection, Cross-Site Scripting, Session Management
Flaws, and HTTP Response Splitting. The web applications
targeted are primarily small stores or sole traders, as these are
the applications most at risk due to them having a smaller budget
to put into ensuring the security of their web application.

A. Preliminaries

Sessions. HTTP is a stateless mechanism used to handle
requests and responses to and from a web application. Yet for
many web applications, being stateless cannot offer the desired
functionality. Session management is implemented by assigning
each user a unique session ID or session token which tells the
application who the user is and what data they have permission
to access. This token implementation can be broken up into three
mechanisms [6]: (1) tokens stored in cookies, (2) tokens sent in
hidden fields, and (3) tokens are created by the web server and
subsequently added to each link the user clicks on. The first two
options are client side, whereas for the third, a session ID is
created and stored on the server side.

Input validation. According to the Tainted Mode Model all
data received from the client to the server through HTTP
requests is untrustworthy (tainted) [7]. However, in order to
perform operations such as generating custom SQL queries, the
user input must be concatenated with the underlying code. In

order to do so securely, we must first validate the input. This
validation phase is often executed through means of sanitisation.
Sanitisation routines turn untrusted user input into trusted data
by filtering out any potentially harmful characters from the
input. The vulnerabilities which can occur as a result of
incorrectly implemented input validation are injection attacks.
Cross-Site Scripting and SQL Injection are two of such attacks.
Additionally, other injection attacks may ensue as a result such
as Command Injection.

B. Analysing Web Application Attacks

In this work, we discuss two possible models to detect
vulnerabilities in the web applications.

Tainted Mode Model. The Tainted Mode model can be
used to analyse web applications in both static and dynamic
environments to detect security vulnerabilities caused by
improper form validation. Several assumptions are made by the
Tainted Mode model [8]: (1) all data received from the client via
HTTP requests is untrustworthy (tainted), (2) all data being local
to the web application is trustworthy (untainted), and (3) any
untrustworthy data can be made trustworthy by sanitisation.
Based on these assumptions, the following security policies are
then defined: (1) tainted data must not be used in HTTP response
construction, (2) tainted data must not be written into local web
application storage, and (3) tainted data must not be used in
system command construction.

Penetration Testing. Penetration testing is based on
simulating attacks against a web application to determine
whether the application has any vulnerabilities. This is a black-
box testing approach, since an attacker would not normally have
access to the underlying code of the web application. According
to [9], [10], black box penetration testing follows these steps: (1)
identify all pages being a part of the web application, (2) extract
all Data Entry Points (DEPs) from each page visited by the first
step. Both steps can be automated by using a web crawler.
Retrieving all DEPs is an important stage as these are the vectors
from which a hacker can attack the application, (3) simulate
various attacks by fuzzing, which is a method of attacking web
applications where DEPs are filled out (or fuzzed) with a
mixture of malicious and innocent string patterns and sent as a
HTTP request to the web application, and (4) analyse all HTTP
responses for indications of vulnerabilities.

C. Vulnerabilities

The reasoning behind choosing these vulnerabilities was
SQL Injection and Cross-Site Scripting have been the most
prevalent vulnerabilities in the wild for many years [3].
Additionally, almost all existing security scanners researched
also detected these vulnerabilities, therefore in order to compete
it felt necessary to provide this functionality. Session
Management flaws however were frequently left out of these
tools, so providing this functionality sets Clarity apart from the
rest. Furthermore, HTTP Response Splitting, as a less common
and mostly fixed in modern web applications, is overlooked. In
fact, no scanners could be found that offer this functionality,
once again giving this tool an edge on existing scanners. All
vulnerabilities outlined are aimed to be detected using the
Clarity tool.

D. Existing Vulnerability Scanners

Many other security scanners have a vast number of different
options and information a layman would not comprehend.
Overwhelming the user with information may very well put
people off from using their software. For example, the open
source vulnerability scanner Wapiti [21] and Vega [22] are
command-line based tools which do not provide rich interface
to use them, especially to those who do not have any experience
this can be intimidating and confusing. Some of the larger more
renowned vulnerability scanners such as Netsparker [23] and
Acunetix [24] require paid subscriptions in order to use their
services. Most of the general public will not willingly pay for
such services, giving Clarity and edge over these more
expensive options.

Anagandula et al. [25] analysed black-box web application
scanners in detecting SQL injection and XSS vulnerabilities.
Tyagi et al. [26] evaluated two static web application
vulnerability analyses tools, OWASP WAP and RIPS using the
deliberately vulnerable web application and found that OWASP
WAP offers better results over RIPS. Anhar and Suryanto [27]
evaluated web application vulnerability scanners such as
OWASP ZAP, Wapiti, Arachni, and Burp Suite Professional.
They have found that the four WAVS have an average f-
measured value, Burp Suite Professional had the best true
positive and recall values, while Arachni has perfect Precision
valued. Mburano et al. [28] evaluated web vulnerability
scanners based on OWASP Benchmark and provide some
recommendations. Alptekin et al. [29] analysed different
vulnerabilities using vulnerability scanners and reported results
from top vulnerabilities. Chen et al. [30] proposed a scanner with
vulnerability detection is proposed to verify whether the target
web application is vulnerable.

Here, we look at existing vulnerability scanners and the
vulnerability detection capabilities they offer. Table I gives five
popular open source vulnerability scanners, followed by a subset
of the vulnerability detection they offer. As seen, most of these
scanners offer detection of both Cross-Site Scripting and SQL
Injection. These are two of the most common, and arguably the
most dangerous vulnerabilities to web applications in the wild.
Consequently, there is no surprise they are largely sought after
in vulnerability detection software. However, none of these
popular scanners are capable of detecting Session Management
flaws or HTTP Response Splitting. For that reason, Clarity has
been given the functionality to detect these two vulnerabilities
in addition to both XSS and SQLi. This sets Clarity aside from
the rest, making it a viable option to those needing to cover a
different range of vulnerabilities.

TABLE I. COMPARISON OF EXISTING VULNERABILITY SCANNERS

 XSS

Refle

cted

XSS

Store

d

XSS

DO

M

SQLi

Reflec

ted

Session

Manage

ment

HTTP

Response

Splitting

Grabber Yes Yes Yes Yes No No

Vega Yes Yes Yes Yes No No

SQLMap No No No Yes No No

Wapiti Yes Yes Yes No No No

Netsparke
r Hawk

Yes Yes Yes Yes No No

Clarity Yes Yes Yes Yes Yes Yes

III. OUR APPROACH AND CLARITY TOOL

In this work, we aim to analyse how many web applications
suffer from various vulnerabilities and to what degree. The
developed tool named ‘Clarity’ takes a dynamic black box
penetration testing in order to scan the target web applications
for vulnerabilities.

A. Quantitative research through a survey

First, we carried out a survey that was completed by 40
people. Two key questions and their responses are presented in
Figure 1 and Figure 2. Primarily targeting those with little
knowledge in the field of cybersecurity since these are people
most likely to be victim to such crimes. This is clear when
looking at how many web application vulnerabilities
participants have heard of. 65% of people have not so much as
heard the names of any of the vulnerabilities focused. The
primary age group who completed the survey was 18–24-year-
olds, at a rate of 55%. Astonishingly, 74% of participants had
encountered some form of attack while shopping online, ranging
from having personal details stolen to encountering fake
websites. Furthermore, 3 of these participants suffered a
financial loss as a result. These numbers demonstrate that even
though web application security has improved over the years,
there is still much room for improvement for such people.

When questioned how likely they will be to use a tool which
would detect for them if a web application contained any
vulnerabilities, a staggering 75% of participants said they would
be either likely or very likely to do so. With 20% being neither
likely nor unlikely and only 5% stating they are unlikely to
benefit from the proposed tool. With these numbers, we clearly
see a market for Clarity. In addition, 45% said they would be
willing to pay between £5-9 for this tool, 7.5% would be willing
to go as high as £9-13. With the remaining 47.5% not wanting
to spend any money at all. The importance of efficiency to the
participants was very clear. When asked how important it is that
the tool does not take a long time to run, 45% said it was
extremely important, and 37.5% thought it was important. This
did not come as a surprise however it gives the work more
direction in the sense that we know this to be of high importance
and thus there will be a greater focus put on Clarity’s runtime.

Fig. 1. Survey response to the question: "Have you experienced any of the

following security issues while using a shopping website?".

Fig. 2. Survey response to the question: "How likely would you be to use a tool

which checks for you if the web application is secure before you use it?"

B. System Model and Clarity Execution

A system model is created to aid the defining of Clarity’s
system structure, as seen in Fig. 3. In this model, the online
shopping user is the individual wanting to test for vulnerabilities
in a specific e-commerce web application.

Fig. 3. Clarity system model and scan process.

They interact with Clarity, entering the target web page and
starting the scan. Once the scan starts, the tool communicates
with the web browser, in this case Google Chrome, which acts
as a middle man in communicating with the target web
application itself. The browser communicates with Clarity,
sending it information collected by the crawler component.
When an attack is simulated, the web browser sends data
through Clarity’s validation engine, the results of which are then
passed back to Clarity and returned to the user.

IV. EXPERIMENTAL DESIGN AND EXECUTION

Python version 3.8 is used to implement Clarity tool using
an extensive number of external libraries for web scraping,
including Mechanize, BeautifulSoup4, Selenium, and TKinter.
The vulnerabilities explored and identified by Clarity are SQL
Injection, XSS, Session Management Flaws, and HTTP
Response Splitting. All vulnerability scans except from session
management flaws require two phases: the Attack Phase and the
Validation Phase. The attack phase performs an attack on the
web application and the validation phase reads the response and
checks for evidence the attack was successful. For each attack,

the Crawler method is first run in order to retrieve all web pages
found in the application. This gives us a set of URLs for the
scripts to target. The source code of the Clarity tool is available
online (https://github.com/cycislab/clarity).

A. SQL injection

Attack Phase. In order to enact an SQL Injection
vulnerability test, we must first attack the target page. Clarity
takes the first page from the web application found by the
Crawler, and retrieves all DEPs found within it. Secondly, DEPs
are filled with the first payload. Finally, the form is submitted,
and the results are validated to check whether a vulnerability has
been found. This is then carried out for all payloads until all have
been tested. The first string containing just an apostrophe has the
purpose of prompting a syntax error from the database. A web
application should not display detailed errors relating to the
database to the user, as this could be taken advantage of by an
attacker. All other strings have the purpose of bypassing the
login screen and gaining illegitimate access using various
syntaxes of different backend databases such as MySQL and
Oracle.

Validation Phase. Now that the attack has been performed,
we must check to see whether the attack was successful. To do
this, we read the web page for strings which would suggest this.
It looks for strings such as “stack trace”, “error”, “SQL”, and
“database” to detect if the attack string has resulted in an SQL
error. Additionally, Clarity also looks for strings which would
suggest a login was successful, such as a “logout” or “sign out”
button would be present.

B. Cross-site scripting

Attack Phase. Only one payload is used by Clarity for cross-
site scripting attacks. This script is:

 <ScRiPt>alert(“XSS Vulnerable”)</ScRiPt>

The alert function creates an alert box in the browser
containing the string “XSS Vulnerable”. The script tag uses a
combination of upper and lower case as an evasion technique in
order to throw off certain input validation which may only be
looking for “script” in all lower case. This attack checks the
input type of all form fields. If it comes across a form of type
“email” it enters a dummy email address, the same applies for
“password” type form fields. This once again bypasses certain
security measures. Finally, any form field of type “text” is
fuzzed with the attack string, then the form is submitted.

Validation Phase. The validation phase for cross-site
scripting is somewhat more complicated than it is for SQL
injection. This is due to Clarity needing to handle JavaScript in
the form of the alert box in the event of a successful attack.
Therefore, Selenium had to be used in the place of Mechanize,
as the latter is unable interact with JavaScript. Once the form has
been submitted containing the malicious input, Clarity waits for
a moment and then looks for an alert box. If one is found, Clarity
reads it and looks for the string “XSS Vulnerable”. If this string
is found, we know the script had been executed and the attack
has been successful.

C. Session management

The tool currently only searches for two types of session
management flaw: missing Secure flag and missing HTTPOnly

flag. These are not the only two ways in which a web application
can be vulnerable, but also the two which could realistically be
completed in the given timeframe.

The detection of these vulnerabilities is followed by Clarity
that had to visit each page, look at the cookies the page uses,
then move onto the next. Whenever a vulnerability was found,
it was added to a counter which was then returned to the user.
To offer perspective, this test was written into less than 20 lines
of code.

D. HTTP response splitting

Attack Phase. The attack phase of HTTP response splitting
is very similar to that of XSS. There is just one minor difference
in the attack string. Instead of entering the script as was done for
XSS, we must first add a carriage return, line feed. The attack
string used by Clarity is:

 Test%0d%0a%0d%0a<ScRiPt>alert(“HTTP Splitting
Vulnerable”)</ScRiPt>

Validation Phase. The validation phase for this attack is
virtually identical to that of XSS. The only difference between
the two is the string to search for within the alert box. In this case
the string is “HTTP Spitting Vulnerable”.

V. RESULTS AND EVALUATION

All testing was carried out on a Microsoft Surface Pro laptop
running Windows 10 OS, 2.5GHz Intel Core i7 processor, and
16GB LPDDR3 RAM. The internet service provider was Virgin
Media using M100 Fibre Broadband, with 66.69Mbps download
and 9.88Mbps upload speeds. 50 web applications were tested
using the Clarity tool. The same settings were used for each
application. The scan type was “Full Scan” and “Scan all Pages”
was selected, aiming to have the most thorough results
achievable.

Fig. 4. Clarity’s full scan on "www.pop-boutique.com", one of the 50 target
web application tested. The results show 35 pages missing the Secure cookie,

and 35 pages missing the HTTPOnly cookie.

Table II contains a conclusive list of all web applications
scanned and their results. It provides a table containing the
names of each application scanned, the time taken in seconds,
and the number of vulnerable pages detected for each

vulnerability. Followed by Fig. 4, demonstrating a scan on a
target e-commerce web application, displaying several session
management flaws.

A. Session management

The most common security vulnerability found in this study
was session management flaws.

 (a) (b)

Fig. 5. Percentage of web applications do not have (a) HTTPOnly cookie set,

and (b) Secure cookie set.

In total, 72% of the 50 web applications scanned were
vulnerable – having either a missing HTTPOnly cookie or a
missing Secure cookie. Figure 5(a) and (b) displays the
percentages for each flaw scanned for by Clarity.

B. SQL Injection

As can been seen in Fig. 6, very few of the scanned web
applications were vulnerable to SQL injection. In fact, only two
were discovered: one with only one vulnerable page, and the
other with as many as 16 detected vulnerabilities.

C. XSS and HTTP Response Splitting

There were zero results found for both XSS and HTTP
Response Splitting vulnerabilities. This is a good sign that
businesses and developers do pay attention to these
vulnerabilities.

Fig. 6. Percentage of the web applications found to be vulnerable to SQL

Injection attacks.

D. Time Efficiency

Figure 7 presents the time taken to scan all 50 web
applications. The total time taken was almost 1000 minutes,
approximately 16 hours. The initial Crawler function takes the
least amount of time to process, followed by session
management, then SQL injection attacks, with XSS and HTTP
response splitting attacks taking the longest time to execute. This

is likely due to needing to wait roughly 3 seconds for the alert
box to appear before it can be validated.

Fig. 7. Time taken to complete the scanning of all 50 target web applications

using Clarity.

E. Key Discussion

In this section, we discuss the key takeaways from this work
from the results obtained using Clarity tool. Table II shows the
results obtained from the scans performed by Clarity on 50 e-
commerce web applications. Most of these web applications are
vulnerable to secure cookie and HTTPOnly cookie attacks.

1) SQL injection: SQL injection received very few results.
This came as a surprise due to SQL Injection being the number
one most critical threat to web applications for many years. The
occurrence of this anomaly could have been a result of the small
sample size examined; however, it can also be speculated Clarity
has encountered some false negatives which have been
overlooked. Despite this, it can be expected that if many more
web applications were scanned, we would begin to see a higher
percentage of web applications being vulnerable.

2) Session management: Having a missing HTTPOnly flag
alone is not a threat, it is considered a bad practice. A missing
HTTPOnly flag only poses a threat if the web page is also
vulnerable to XSS attacks, in which case the page could be
vulnerable to XSS cookie sniffing. A cookie missing the secure
flag on the other hand poses a much larger threat. This could
leave a web application’s users vulnerable to traffic interception
as well as man-in-the-middle attacks. Additionally, missing the
secure flag can result in session hijacking in some situations.
Scans for session management flaws ran the quickest of the four
vulnerabilities.

3) Cross-site scripting & HTTP response spitting: Both XSS
and HTTP Response Splitting having zero positive results came
as a big surprise. However, there are known flaws in the fuzzing
phase of testing for XSS vulnerabilities which, due to the nature
of the process for testing for both vulnerabilities, will also affect
HTTP Response Splitting. The flaws talked about here are
Clarity not currently being able to detect or process when regex
is being used for form validation. This results in a false-negative
when some fields use regex form validation and others do not.
For example, it was discovered a web application
“www.castlewelshcrafts.co.uk” was vulnerable to XSS when
testing for such vulnerabilities in the early phases of the work.
However, when scanned by Clarity, no such vulnerability is

found. In this situation on the “register” page where the
vulnerability was found, the “name” field used no form
validation whatsoever. This would make the web application
vulnerable, but due to other fields using regex form validation
such as “email address”, Clarity’s fuzzing strings do not meet
the criteria and thus returns the web page as not vulnerable.

TABLE II. RESULTS OF CLARITY’S SCANS PERFORMED ON 50 E-COMMERCE

WEB APPLICATIONS

VI. CONCLUSIONS

This paper analyses and discovers security vulnerabilities in
e-commerce web applications and verifies whether the
applications are implementing adequate security controls.
Furthermore, the work proposed a new tool web application
vulnerability scanning tool named Clarity. Clarity took a
dynamic black box penetration testing approach to automatically
detect security vulnerabilities in web applications. It was able to
successfully detect Cross-Site Scripting vulnerabilities, SQL
Injection, HTTP Response Splitting and Session Management
flaws. Clarity aims to be an affordable, user-friendly alternative
to existing tools, with the primary focus being targeting
individuals with little experience in the field of cybersecurity.
With this proposed tool, this work investigated the security of
50 e-commerce web applications in order to identify how secure
these applications are on the web. We also provided a
comprehensive description of these vulnerabilities including
how they occur.

The results of the web applications analysed by Clarity
uncovered an abundance of Session Management flaw, several
SQL injection vulnerabilities, and no XSS or HTTP Response
Splitting vulnerabilities. However, it was discovered that one
web application suffered from an XSS vulnerability which could
potentially cause significant damage to the application. This
false negative could be an anomaly, but it could also be possible
that there are more vulnerabilities in the scanned applications
which have been overlooked. This instance resulting in a false
negative can be overcome by increasing how thoroughly Clarity
understands the input validation used in form fields and how
efficiently it abides by these rules. The results show that
although many applications do use the appropriate security
controls, there is still much room for improvement. Session
Management flaws can be relatively minor, XSS vulnerabilities
on the other hand cannot be overlooked.

Though there is still much progress to be made to make
online shopping a safer experience, this work has highlighted
some of the key issues that need attention. By enabling
individuals to make themselves aware of the dangers on the web,
we offer them the opportunity to put measures in place to
prevent themselves from falling victim to malicious users
looking to take advantage of these vulnerable applications.

REFERENCES

[1] J. Clement, Number of Digital Buyers Worldwide from 2014 to 2021, Jul.
2019. [Online]. https://www.statista.com/statistics/251666/ number-of-
digital-buyers-worldwide/

[2] H. Atashzar, A. Torkkaman, M. Bahrololum, M. H. Tadayon, “A Survey
on Web Application Vulnerabilities and Countermeasures,” 6th
International Conference on Computer Sciences and Convergence
Information Technology (ICCIT), 2011.

[3] OWASP Top 10 – 2017. Available: https://owasp.org/www-project-top-
ten/

[4] X. Li and Y. Xue, “A Survey on Web Application Security”, 2011.
[Online].
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.7174&rep
=rep1&type=pdf

[5] R. Nixon, “The Benefits of PHP, MySQL, JavaScript, and CSS”, in
Learning PHP, MySQL, JavaScript, and CSS, 2nd ed: O’Reilly Media,
2012, pp. 5-8.

[6] C. A. Vlsaggio and L. C. Blasio, "Session management vulnerabilities in
today's web," IEEE Security & Privacy, vol. 8, no. 5, pp. 48-56, Sept.-
Oct. 2010.

[7] A. Petukhov and D. Kozlov, “Detecting Security Vulnerabilities in Web
Applications Using Dynamic Analysis with Penetration Testing”.
OWASP Application Security Conference, Ghent, Belgium, 2008.

[8] Y.-W. Huang and D. T. Lee, “Web Application Security - Past, Present,
and Future”, Computer Security in the 21st Century, Springer US, pp.
183-227 (2005).

[9] Y.-W. Huang, S.-K. Huang, T.-P. Lin, Ch.-H.. Tsai, “Web application
security assessment by fault injection and behavior monitoring”, 12th
international conference on World Wide Web, May 2003.

[10] A. Wiegenstein, F. Weidemann, M. Schumacher, S. Schinzel, “Web
Application Vulnerability Scanners - a Benchmark”, Virtual Forge
GmbH, 2006.

[11] OWASP Top 10 – 2013. Available:
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf

[12] V. B. Livshits, and M. S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis”, 14th Usenix Security Symposium,
2005, pp. 273-274.

[13] D. Gol and N. Shah, “Detection of Web Application Vulnerability Based
on RUP Model”, National Conference on Recent Advances in Electronics
& Computer Engineering (RAECE), 2015.

[14] M. Liu and B. Wang, “A Web Second-Order Vulnerabilities Detection
Method”, IEEE Access, vol. 6, pp. 70983-70988, 2018.

[15] T. Farah, M. Shojol, M. Hassan and D. Alam, “Assessment of
vulnerabilities of web applications of Bangladesh: A case study of XSS
& CSRF,” International Conference on Digital Information and
Communication Technology and its Applications (DICTAP), Konya,
2016, pp. 74-78.

[16] M. Liu, B. Zhang, W. Chen and X. Zhang, “A Survey of Exploitation and
Detection Methods of XSS Vulnerabilities”, IEEE Access, vol. 7, pp.
182004-182016, 2019.

[17] Y. K. Malviya, S. Saurav and A. Gupta, “On Security Issues in Web
Applications through Cross Site Scripting (XSS)”, 20th Asia-Pacific
Software Engineering Conference (APSEC), 2013.

[18] H. Atashzar, A. Torkaman, M. Bahrololum and M. H. Tadayon, “A
survey on web application vulnerabilities and countermeasures”, 6th
International Conference on Computer Sciences and Convergence
Information Technology (ICCIT), Seogwipo, 2011, pp. 647-652.

[19] Bwapp, the deliberately insecure web application -
https://www.mmebvba.com/sites/bwapp/index.htm

[20] Damn Vulnerable Web Application (DVWA) - http://www.dvwa.co.uk/

[21] Wapiti open source vulnerability scanner – http://wapiti.sourceforge.io

[22] Vega open source vulnerability scanner – http://subgraph.com/vega/

[23] Netsparker vulnerability scanner - https://www.netsparker.com/

[24] Acunetix vulnerability scanner - https://www.acunetix.com/

[25] K. Anagandula and P. Zavarsky, “An Analysis of Effectiveness of Black-
Box Web Application Scanners in Detection of Stored SQL Injection and
Stored XSS Vulnerabilities,” 2020 3rd International Conference on Data
Intelligence and Security, 2020, pp. 40-48.

[26] S. Tyagi and K. Kumar, “Evaluation of Static Web Vulnerability Analysis
Tools,” 2018 Fifth International Conference on Parallel, Distributed and
Grid Computing (PDGC), 2018, pp. 1-6.

[27] A. Al Anhar and Y. Suryanto, “Evaluation of Web Application
Vulnerability Scanner for Modern Web Application,” 2021 International
Conference on Artificial Intelligence and Computer Science Technology
(ICAICST), 2021, pp. 200-204.

[28] B. Mburano and W. Si, “Evaluation of Web Vulnerability Scanners Based
on OWASP Benchmark,” 2018 26th International Conference on Systems
Engineering (ICSEng), 2018, pp. 1-6.

[29] H. Alptekin, S. Demir, Ş. Şimşek and C. Yilmaz, “Towards Prioritizing
Vulnerability Testing,” IEEE International Conference on Software
Quality, Reliability and Security Companion, 2020, pp. 672-673.

[30] H. Chen, J. Chen, J. Chen, S. Yin, Y. Wu and J. Xu, “An Automatic
Vulnerability Scanner for Web Applications,” 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2020, pp. 1519-1524.

