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Abstract

Sketching is a simple and efficient way for humans to express their perceptions of the world. Sketch
semantic segmentation plays a key role in sketch understanding, and is widely used in sketch recog-
nition, sketch-based image retrieval or editing. Due to modality difference between images and
sketches, existing image segmentation methods may not perform best, which overlook the sparse
nature and stroke-based representation in sketches. The existing sketch semantic segmentation meth-
ods are mainly designed for single instance sketches. In this paper, we present a new Stroke-based
Sequential-Spatial Neural Network (S3NN) for scene-level free-hand sketch semantic segmentation,
which leverages a bidirectional LSTM and graph convolutional network to capture the sequen-
tial and spatial features of sketches. In order to address the data lacking issue, we propose the
first Scene-level Free-hand Sketch Dataset (SFSD). SFSD is composed of 12K sketch-photo pairs
over 40 object categories, where the sketches were completely hand-drawn and each contains 7
objects on average. We conduct comparative and ablative experiments on SFSD to evaluate the
effectiveness of our method. The experimental results demonstrate that our method outperforms
state-of-the-art (SOTA) methods. The code, models and dataset will be made public after acceptance.

Keywords: Sketch dataset, scene sketch, free-hand sketch, semantic segmentation

1 Introduction

Sketching is one of the most important ways for
humans to depict intents. Compared to images
and text, sketches are more concise and can convey

richer information. Thanks to the rapid develop-
ment and popularity of stylus and touch screen
devices, people can get access to free-hand sketch
with more convenience. Sketch-based interactive
applications have also emerged, such as daily tools
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Fig. 1 Illustration of object-level and scene-level sketch
semantic segmentation. Scene-level sketch segmentation
aims to predict class label of each stroke in scene sketch,
which outperforms object-level segmentation a large mar-
gin in the aspect of semantic context.

(flowcharts and mind maps drawing) and soft-
ware for more specialized work (industrial and
mechanical design). These applications bring more
fine-grained requirements on sketch operations.

Sketch semantic segmentation (SSS) is a fun-
damental problem in sketch understanding. SSS
aims to assign strokes in sketch with certain
semantic labels. According to the segmentation
granularity and types of semantic labels, SSS can
be divided into scene and object levels (Fig. 1).
In scene-level segmentation, prior art methods
[1] migrated the models in image domain to
sketch domain for feature extraction. However,
directly using image semantic segmentation for
sketch ignores the strong temporal sequential con-
text among strokes in hand-drawn sketch, because
strokes belonging to the same object are likely to
be drawn in close proximity (see visualization of
stroke IDs in Fig. 7). Besides, sketch has the char-
acteristic of sparsity, and an ideal visual feature
encoder is expected to leverage the sparsity char-
acteristic. In order to address the above two issues,
we utilize a stroke-based method for scene-level
semantic segmentation. The input of our method
is stroke sequences that are stored in a vector
format. Although there are a few single-object
sketch datasets annotated with drawing strokes,
no scene-level sketch datasets are available so far.

The past decade has witnessed the construc-
tion of many sketch datasets. Early efforts [2, 3]
collected hand-drawn sketches of single objects.
With tasks such as cross-modal retrieval and
generation being proposed, subsequent work
improved the construction of sketch datasets from

two aspects. 1) Transition from unimodal to mul-
timodal. Other modalities such as real photos were
adopted to establish inter-modal correspondences.
2) Lifting from single objects to multiple objects
(scene-level). Scene-level sketches can describe
rich scene details and this is consistent with the
fact that realistic pictures usually contain mul-
tiple objects. Due to the time-consuming efforts
of sketching multiple objects, existing work [1, 4]
mainly achieves the goal by combining existing
single-object sketches. Compared to fully hand-
drawn sketches, the sketches obtained by the
above combination approach may lack certain
scene context and variety. Moreover, the simple
drag-and-drop operation disables the collection of
stroke order. Therefore, in this paper, we construct
the first Scene-level Free-hand Sketch Dataset
(SFSD), which integrates multiple objects, free-
hand sketches, sketch-photo pairs and vector for-
mat storage in one sketch dataset.

Based on SFSD, we design a Stroke-based
Sequential-Spatial Neural Network (S3NN) for
scene-level SSS. Compared to images, sketches
are highly sparse, and their appearance is domi-
nated by outlines and edges. The key challenges
of SSS lie in the sparseness and diversity of
sketches. Thanks to the vector format of SFSD,
we can easily extract each stroke and drawing
order of a sketch. The stroke sequence representa-
tion of scene sketch reduces the sparsity issue of
sketch. In order to extract the diverse feature of
sketch, we integrate visual, sequential and spatial
information in S3NN. Specifically, a pre-trained
convolutional neural network (CNN) is utilized to
extract the overall visual feature of each stroke.
The sequential relationship of strokes and the spa-
tial connection between neighboring strokes are
then learned by a recurrent neural network (RNN)
and a graph convolutional network (GCN).

Our main contributions can be summarized as
follows:

• We built the first scene-level free-hand sketch
dataset (i.e. SFSD) in vector format, which con-
tains more than 12 thousand sketch-photo pairs.
SFSD can facilitate the research and evaluation
of stroke-based neural models.

• To the best of our knowledge, we are the first to
conduct scene-level stroke-based sketch seman-
tic segmentation. To tackle the challenges of
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Table 1 Summary of representative sketch datasets and our SFSD dataset.

Dataset Sketch amount Vector Free-hand Sketch-photo pair Scene Person
Tu-Berlin [2] 20K X X

QuickDraw [3] 50M+ X X

Sketchy [5] 75K X X X

QMUL-Shoe-V2 [6] 700 X X X

SketchyScene [1] 7K+ X X X

SketchyCOCO [4] 14K+ X X

SFSD (Ours) 12K+ X X X X X

sparseness and diversity in sketches, the pro-
posed model incorporates visual, sequential and
spatial features of stroke sequences.

• Experiments on SFSD demonstrates that our
segmentation model outperforms the state of
the art (SOTA).

2 Related work

2.1 Sketch Datasets

Several sketch datasets have been presented in
the past decade to promote various sketch appli-
cations. Table 1 summarizes the representative
datasets and our SFSD dataset. TU-Berlin [2]
is the first large-scale sketch dataset, which
consists of 20K sketches over 250 categories.
QuickDraw [3] is a large dataset that includes
50M sketches across 345 categories. Both TU-
Berlin and QuickDraw are single-modal free-hand
sketch datasets, which are collected with vec-
tor storage formats and facilitate sketch edit-
ing. They are widely used in sketch recogni-
tion and text-sketch retrieval. Sketchy [5] and
QMUL-Shoe-V2 [6] are two multi-modal single-
object sketch datasets with sketch-photo pairs.
SketchyScene [1] and SketchyCOCO [4] contribute
scene-level sketch datasets with multiple fore-
ground or background objects. However, these
scene sketches are obtained by compositing single-
instance sketches and are stored in image format.
The category ’Person’ is very common for many
computer vision researches and applications. How-
ever, previous sketch datasets hardly included
’Person’ as one of the categories due to the diver-
sity of human, especially, varied poses, shapes, and
actions of different subjects. SketchyScene [1] is
the only dataset that also contains the category
’Person’ of cartoon characters which are different

to hand-drawn sketches in stroke and appear-
ance style. In this work, we present the SFSD
dataset featuring vector storage format, free-hand
drawing, scene-level objects, sketch-photo pairs
and human categories, which can benefit sketch
retrieval or editing researches.

2.2 Sketch Semantic Segmentation

Early efforts often use low-level geometric fea-
tures [7, 8] and traditional machine learning meth-
ods [9–12] to predict the categories that strokes
in a sketch belong to. While some results could
be achieved, these methods highly rely on specific
input format and are time consuming. Following
the flourishing of deep learning, various neural
network architectures are used for SSS, includ-
ing CNN-based methods [13–16], and RNN-based
methods [17–21].

CNN-based models treat SSS as an image
segmentation task and pay more attention to
the edge and outline features. Since a sketch is
drawn by stroke sequences, sequence modeling of
sketch strokes is a promising solution for SSS.
RNN-based models extract the sequential fea-
tures of stroke points. Besides the above visual
and sequential features, the spatial relationship
between strokes is also useful for SSS. Since graph-
based networks can learn structural relationships
effectively, some efforts use graph neural networks
for single-object SSS [22, 23]. In this paper, we
adopt a hybrid architecture of CNN, RNN and
GCN to capture multi-scale sketch features, and
conduct stroke-based multi-object SSS.

3 The SFSD Dataset

SFSD has the characteristics of scene-level, com-
pletely free-hand, multi-modal and vector storage
data format. It includes more than 12 thousand
pairs of photo and sketch over 40 categories.
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The reference photos were selected from MS
COCO [24]. Fig. 2 shows 44 sketch-photo pairs
from the proposed SFSD, where the annotation of
sketches is instance-level. All the 40 categories are
included in the figure. Since MS COCO provides
the textual description of each photo, we can even
carry out cross-modal research upon SFSD. In
addition to the semantic segmentation addressed
in this paper, SFSD can also support retrieval,
generation and other sketch-related tasks as well.
In this section, we introduce the process of dataset
construction, which can be summarized into three
phases, i.e. image preparation, sketch collection
and sketch annotation. Next, we report some
statistics and analysis on SFSD.

3.1 Dataset Construction

Image Preparation. MS COCO dataset [24]
includes 328K photos with 2.5M labeled instances.
Considering the large volume of MS COCO, it
is not realistic to sketch all the photos in the
dataset. Besides, not all pictures are suitable for
sketching. For example, a photo of a man feed-
ing hundreds of pigeons has too many objects and
it takes lots of effort to sketch the scene. To fil-
ter the photos, we first excluded those with more
than 10 objects. Then, we manually selected the
photos by the following criteria. 1) The scenes
are restricted to wildlife, outdoor sports, and out-
of-town streets. Other indoor and urban street
scenes may contain too many trivial objects (some
objects are difficult to identify even for humans
after conversion to sketches) and the background
may be hardly complete. 2) The photos have high
integrity, moderate background complexity and
objects that are relatively easy to identify and
draw. We recruited some participants to conduct
a pre-experiment and then came to the above con-
clusion. In this way, we finally selected 12,115
pictures from MS COCO as reference photos for
our SFSD. Fig. 3 displays samples of selected
qualified and disqualified images.

Sketch Collection. We recruited 40 partici-
pants with different levels of painting skill. 1600
hours were spent in total to accomplish 12 thou-
sand sketches. In order to standardize the process
of drawing, we established an online sketching
system to collect stroke sequences. We mainly col-
lected the absolute coordinates of drawing track

with a sampling rate of 120Hz. Each stroke is rep-
resented by a sequence of two-dimensional coor-
dinates, and each sketch is composed of a stroke
sequence. Considering the multi-object character-
istic of sketches in SFSD, we paid more attention
to the overall layout and coordination between
different parts of scene sketches. Instead of over-
lapping the panels of sketch and reference photo
and allowing for direct tracing of the outlines as
prior work [6], we placed the reference image on
the left side of the drawing board and asked par-
ticipants to give full play to their drawing ability.
This setting enhanced the diversity of sketches
for each individual object. In order to ensure the
dataset to follow uniform standards, we adopt
manual verification to discard sketches if the main
objects can not be identified by more than one
person.

Sketch Annotation.We deployed a sketch anno-
tation system to annotate SFSD. Another group
of participants were employed to finish the sketch
annotation. Each stroke was assigned with certain
background or foreground categories. Attributes
like drawing completeness and similarity of all
objects are also recorded for future work. The
quality inspection of sketch includes two aspects,
the drawing quality of sketches and the correct-
ness of annotation. The quality metric of sketch
includes overall legibility, sketch-photo matching
degree, and object details. The annotation quality
inspection aims to correct labeling errors of sketch
strokes.

3.2 Statistics and Analysis

Table 2 shows comparison of different sketch
components with existing scene sketch datasets,
ranging from strokes, objects to categories. Our
dataset contains 40 categories, more than twice
the number of categories in SketchyCOCO, which
also referenced real images. In our dataset,
sketches contain an average of 146 strokes, which
is much higher than previous single-object sketch
dataset and can describe more details of the
objects. Moreover, to the best of our knowledge,
previous scene sketch datasets do not contain
stroke order information.

The number of annotated instances in each
background and foreground category can be found
in Table 4. There are 12 background classes,
27 foreground classes and 1 miscellaneous class
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Fig. 2 Example sketch-photo pairs in SFSD which contain objects of all 40 categories. The sketches shown were annotated
at the instance level. We can observe that the dataset is diverse in terms of object categories, sketch complexity and drawing
quality.

(other). The total number of objects is 94, 037. In other words, we contributed a large number
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Table 2 Comparison and Statistics of scene sketch datasets.

Dataset categories
sketches per category categories per sketch objects per sketch strokes per sketches
max min mean max min mean max min mean max min mean

SketchyScene [1] 46 5723 31 1087.02 19 3 6.88 94 3 16.71 - - -
SketchyCOCO [4] 17 9051 33 1825.06 6 1 2.33 35 2 10.93 - - -
SFSD(Ours) 40 6429 141 1351.95 11 1 4.46 43 2 7.76 699 9 146.64
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Fig. 3 Samples of qualified and disqualified photos during
image selection process. These photos are taken from MS
COCO.

Background

Foreground

Miscellaneous

Fig. 4 Diagram of instance frequency distribution.

of single-object sketches since the annotation is
instance-level. Due to the frequent occlusion prob-
lems in real photos, the dataset contains a large
number of incomplete sketches, which can be used
for tasks like sketch completion. During the image
selection process, we did not prefer any specific
category. Naturally, an obvious long-tail distribu-
tion can be observed on the instance frequency
(Fig. 4). As the focus of segmentation, foreground
categories are mainly concentrated in the long-tail
section, which increases the difficulty of SSS but
is more in line with practical applications.

4 METHODOLOGY

The overview of proposed S3NN is illustrated in
Fig. 5. Given an input scene sketch, we first com-
pute statistical parameters (i.e. length, drawing
duration, and bounding box) for each stroke as
its global features. Then, we feed the image patch
corresponding to the bounding box of each stroke
into a pre-trained CNN to extract the primary
visual features of the stroke. The above two stroke
features are concatenated and fed to subsequent
modules, Sequential Encoder (SeqE) and Spa-
tial Encoder (SpaE). SeqE utilizes Bidirectional
LSTM (BiLSTM) to extract temporal features,
and SpaE leverages the spatial context model-
ing ability of graph convolutional network (GCN)
to extract spatial features. Finally, we feed the
extracted temporal/spatial features into a fully
connected layer with softmax to predict the class
label of each stroke.

4.1 Input Representation

A scene-level sketch contains a certain number
of strokes. Each stroke S can be represented by
a point sequence [(x1, y1), (x2, y2), . . . , (xn, yn)],
where (xk, yk) are the coordinates of the k-
th point and n is the number of points in
a stroke. The feature of the i-th stroke fi =
concat(f len

i , fdur
i , f boxi , f cnni ) can be obtained by

concatenating four types of features. 1) A scalar of
stroke length f len, i.e. the sum of Euclidean dis-
tances between each pair of adjacent points. 2) A
scalar of drawing duration fdur, which indicates
the time spent to draw a particular stroke. 3) 4D
vector of stroke bounding box f box. 4) 256D visual
feature f cnn obtained by feeding image crop of
stroke into a pre-trained CNN for feature extrac-
tion. We obtained the image region of each stroke
by converting a sketch from vector format into
image format and cropping the bounding box area
of the corresponding stroke in the image. Finally,
the sketch features F can be obtained by F =
[f1, f2, . . . , fm], where m is the number of strokes
in the scene sketch.
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Fig. 5 The framework of S3NN. For a sketch sample, the preprocessing includes computing statistic features and capturing
visual features of each stroke via ResNet50. The concatenated sequence feature is cascadingly fed into the Sequential Encoder
(SeqE) for temporal relationship extraction and Spatial Encoder (SpaE) for spatial connection learning. Finally, the fusion
of spatial and global sequential features is mapped to 40 categories. Classification is conducted by the softmax probabilities.

4.2 Sequential Encoder

In free-hand sketching, the sequence of strokes
can convey clues of human sketching mechanism,
and plays a crucial role in the understanding of
sketches. Strokes belonging to the same object are
found likely to be drawn in close proximity, so
it is a key problem to effectively incorporate this
sequential context into feature learning of strokes.
BiLSTM [25] built upon LSTM can effectively
model temporal sequential context of the past or
future in sketching by learning long-term memory
and short-term memory. In this paper, we uti-
lize BiLSTM for the sequential encoder of strokes.
Although other RNNs can be alternatives, experi-
ments demonstrate that BiLSTM is more effective.
The forward and backward modules of BiLSTM
can be formulated as follows

Lf ([f1, f2, . . . , fm]) = [
−→
h1,
−→
h2, . . . ,

−→
hm] ∈ R

dh×m

(1)

Lb([fm, fm−1, . . . , f1]) = [
←−
h1,
←−
h2, . . . ,

←−
hm] ∈ R

dh×m

(2)
where Lf and Lb denote the forward and back-
ward LSTM operations, and dh is the hidden
unit dimension. The output of BiLSTM is Ht =

[h1,h2, . . . ,hm], where hi = concat(
−→
hi,
←−−−−−
hm−i+1).

The hidden states will be used as the feature
vector of nodes in the subsequent modules for
spatial encoder and temporal features for stroke
segmentation.

4.3 Spatial Encoder

A complete sketch can be seen as the integra-
tion of multiple strokes. The combination of stroke
position and shape conveys semantic information.
There is uncertainty in the reliability of sequen-
tial features, e.g. two temporally adjacent strokes

may belong to the end of one object and the start
of another object, respectively. In order to com-
pensate for the probably of wrong classification
caused by SeqE, we further consider spatial infor-
mation in this module. Taking each stroke as a
node, SpaE mainly learns the correlations between
different strokes at spatial level by GCN. Given
a scene sketch, we construct a scene sketch graph
G = (V,E) to extract spatial features of strokes,
where V = {vi} and E = {eij} are vertices and
edges of graph G, respectively. Vertex vi denotes
stroke Si, and an edge eij links each pair of ver-
tices and denotes the spatial correlation between
strokes Si and Sj .

Given two vertices vi and vj of the graph, we
define an edge eij ∈ {0, 1} according to their spa-
tial proximity, i.e. eij = 1 if the bounding box
B(Si) of stroke Si contains part of stroke Sj or
vice versa

eij =

{

1 B(Si) ∩ b(Sj) 6= ∅ or B(Sj) ∩ b(Si) 6= ∅

0 otherwise
(3)

where B(·) is the bounding box of a stroke, and
b(·) is the set of points in a stroke. E is the matrix
that represents edges.

For each vertex, we get a fused feature hi by
concatenating forward and backward sequential
features of stroke Si. To extract spatial features
among strokes, we adopt four graph convolution
layers similar to [26] to learn spatial features
P(l+1) by propagating features between adjacent
vertices, where we input the feature P(l) of the
previous layer and the adjacency matrix. Formally,

P(0) = {hi}
m
i=1 (4)

P(l+1) = ReLU(ÃP(l)W(l)) (5)
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where Ã = E + I is the adjacency matrix, I is
an identity matrix, and W(l) is a learnable weight
matrix.

4.4 Stroke Segmentation

After we conduct the above two encoders, we
fuse the learned sequential and spatial features of
strokes, which can be used to predict the class
label of each stroke. Specifically, we first get the
fused feature Ri by concatenating the output
feature of the GCN’s last layer and two global fea-
tures of BiLSTM since the transformation of GCN
may lead to loss of sequential information. Then,
Ri is further fed into a fully connected layer and
softmax for stroke classification. Formally,

Ŷi = softmax(fc(Ri)) (6)

Ri = concat(P,
−→
hm,
←−
hm) (7)

where fc(·) is the fully connected layer.

4.5 Loss Function

We adopt a cross entropy loss function for sketch
stroke segmentation as follows

Loss = −
1

m

m
∑

i=1

wc · Yi · log(Ŷi) (8)

where Yi is the ground truth label, and Ŷi denotes
the probability of the stroke segmentation pre-
diction. In order to address the long-tailed dis-
tribution of each class, we adopted a weight wc

for each class c, computed as the ratio of the
median of class frequencies and class frequency of
c. Therefore, less frequent categories have higher
weight.

5 Experiments

5.1 Baselines and Implementation

Details

We use five SOTA baselines for comparison,
including FPN [27], DeepLabv3+ [28], LDP [29],
Sketch-RNN [3], SketchGNN [22]. DeepLabv3+
and FPN are commonly used image semantic seg-
mentation baselines. DeepLabv3+ is the extension
of DeepLabv3 [30]. FPN is a feature pyramid net-
work for semantic segmentation, which was the

Table 3 Sketch semantic segmentation accuracy (%) on
SFSD. The results marked with △ are evaluated based on
the test set with shuffled strokes.

Model C-metric P-metric MIoU
FPN 75.84 74.06 40.01
DeepLabv3+ 76.04 74.89 40.61
LDP 78.34 76.40 42.79
Sketch-RNN 68.56 66.70 28.62
SketchGNN 57.04 56.56 21.37
Ours w/o SeqE 78.74 75.73 41.77
Ours w/o SpaE(BiLSTM) 76.62 73.26 40.04

71.08△ 64.86△ 30.99△

Ours w/o SpaE(LSTM) 74.37 70.40 38.95
Ours w/o fusion 80.14 77.35 44.39
Ours w/o wc 80.61 77.37 44.61
Ours 80.72 77.65 45.34

78.38△ 73.85△ 39.70△

winning entry of COCO stuff 2017 competition.
LDP is a scene sketch segmentation method by
enhancing local detail perception. Sketch-RNN
was originally designed for sketch generation. We
utilized its encoder to perform SSS. SketchGNN
uses a well-designed GCN for object-level sketch
semantic segmentation.

We evaluated the baselines and our models
on the proposed SFSD. Experiments were not
done on other datasets since SFSD is the first
scene-level sketch dataset in vector format and our
model is stroke-based. We split 12, 115 sketches
into 9, 115 for training and the remaining 3, 000 for
testing. We converted the sketches into images and
generated masks according to the semantic anno-
tations as input for FPN, DeepLabv3+ and LDP.
ResNext50 and ResNet50 are used as the back-
bone networks of FPN and DeepLabv3+ respec-
tively. For Sketch-RNN, we followed the input for-
mat proposed by [3] and transformed each stroke
point into a 5D vector, i.e. [∆xi,∆yi, p1, p2, p3].
For SketchGNN, we resampled the points to 2048
for each sketch as input. For sketches with less
than 2048 points, we randomly interpolated the
stroke points to 2048 points. For sketches with
more than 2048 points, we searched for the strokes
with the highest number of points at a time, and
then deleted the point whose curvature is clos-
est to 180 degrees to the adjacent points. In our
method, SpaE’s vertex feature of all layers is 256D.
We apply the Adam optimizer for optimization
and set the learning rate to 0.001. All models are
trained on a single GeForce RTX 3090 for 150
epochs.
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Fig. 6 Visualization of representative segmentation results by the SOTA methods and our model.

5.2 Evaluation Metrics

We evaluate the performance of different methods
using three standard metrics as [11, 17, 29].

Pixel-based accuracy (P-metric) indicates the
percentage of correctly classified pixels to pixels of
all sketches.

Component-based accuracy (C-metric) eval-
uates the percentage of correctly classified strokes
to total strokes. A stroke label is determined by
its most frequent pixel label.

Mean Intersection over Union (MIoU) eval-
uates the average of the ratios between the
intersection and the union of ground truth and
predicted labels over all classes.

5.3 Comparison to State-of-the-art

Methods

As shown in Table 3, our model outperforms the
compared baselines. Our full model achieves per-
formance gain by 2.38% on C-metric, 1.25% on
P-metric and 2.55% on MIoU than LDP, which is
the best performing model in all baselines. Even
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Table 4 Number of annotated instances and segmentation accuracy by the proposed S3NN method for forty object
categories in SFSD dataset. C-m and P-m represent the criteria of C-metric and P-metric separately. The categories
marked with * indicate background objects. The marker # is miscellaneous category. Those without special symbols are
foreground objects.

Category No. C-m P-m Category No. C-m P-m Category No. C-m P-m Category No. C-m P-m
tree∗ 22494 0.89 0.91 fence∗ 2037 0.54 0.56 tennis racket 1042 0.71 0.70 snowboard 494 0.17 0.16
person 8572 0.97 0.97 cow 1959 0.62 0.62 horse 990 0.55 0.60 truck 488 0.43 0.45
cloud∗ 7784 0.94 0.96 stone∗ 1857 0.58 0.51 bus 902 0.81 0.82 motorcycle 481 0.74 0.76
grass∗ 7706 0.96 0.96 sheep 1856 0.76 0.72 bird 874 0.57 0.57 frisbee 412 0.38 0.51
others# 6077 0.31 0.31 elephant 1812 0.88 0.86 skis 869 0.41 0.40 dog 319 0.17 0.21
boundary∗ 4886 0.49 0.51 airplane 1277 0.88 0.89 river∗ 826 0.79 0.81 bear 319 0.23 0.23
zebra 2847 0.98 0.98 playground∗ 1136 0.31 0.37 skateboard 814 0.63 0.58 backpack 199 0.06 0.07
road∗ 2571 0.41 0.49 car 1103 0.40 0.37 sports ball 746 0.53 0.57 surfboard 194 0.22 0.35
giraffe 2335 0.98 0.97 mountain∗ 1078 0.38 0.50 baseball bat 615 0.39 0.43 kite 180 0.17 0.14
house∗ 2179 0.60 0.57 snowfield∗ 1062 0.80 0.76 baseball glove 607 0.29 0.27 bicycle 176 0.61 0.58

our model without the SpaE or SeqE module
achieves higher accuracy than DeepLabv3+. FPN
and DeepLabv3+ perform closely with accuracy of
around 75%, which indicates that they are satu-
rated using only visual features. Our network also
performs much better than Sketch-RNN. Sketch-
RNN was originally designed for single-object
sketches. When it is applied to a scene-level sketch
with multiple objects, the patterns of input stroke
sequences may be too complex for Sketch-RNN
to learn. Similarly, SketchGNN was originally
designed for single-object sketch segmentation,
which is much simpler than scene-level sketch
segmentation. However, the scene-level sketch con-
tains more complex semantic and structural infor-
mation, which makes the single-object approach
SketchGNN hard to perform well.

Fig. 6 shows the qualitative comparison of
segmentation results of sketch examples. We can
observe that our model performs better, especially
in the cases of occlusive, overlapping regions. In
the third sketch, the bus and the building are over-
lapped. FPN, DeepLabv3+ and LDP label part of
the building as bus. In the forth sketch, the per-
son in the middle has a small frisbee attached to
his hands, which is easily classified into the per-
son category. Only our model identifies the frisbee.
By checking the stroke sequence, we found that
although these objects (the building and the bus,
or the frisbee and the person) are spatially close,
they are far away in temporal sequential orders.
Conceptually, the performance gain of our method
could be due to stroke representation of sketch and
the temporal context of stroke sequences.

Table 4 shows the detailed segmentation per-
formance of our method on all the 40 categories.
Our method achieves competitive segmentation

performance for object categories with large num-
bers of instances, and provides a baseline model
for scene-level stroke-based SSS. Although promis-
ing results are achieved, we observe two types
of categories with poor segmentation performance
for future improvement: 1) objects with few occur-
rences, such as dogs and kites; 2) small objects
attached to large objects (i.e. human), such as
backpacks and baseball gloves. However, these are
also common issues for image semantic segmenta-
tion.

5.4 Ablation Study

Effect of SeqE. As shown in Table 3, after
removing SeqE, the performance drops by 1.98%
on C-metric, 1.92% on P-metric and 3.57% on
MIoU. SeqE introduces the pattern of stroke draw-
ing orders and enables S3NN to cope with some
otherwise intractable cases, e.g. occlusion, overlap.
To further validate the effectiveness of BiLSTM
in SeqE, we replaced BiLSTM with LSTM and
observed a decrease of 2.25% on C-metric and
2.86% on P-metric. As shown in the second row
of Fig. 7, the strokes of skateboard are spatially
separated but temporally close due to continuous
stroke ID of skateboard. Our model without SeqE
wrongly labels the right part of the skateboard
as a frisbee. After incorporating SeqE, the tem-
poral correlation of these two parts of skateboard
is utilized, and the skateboard can be segmented
correctly. We can also observe, due to the sim-
ilarity of stripe patterns of the boy’s shoes and
zebra, our model without SeqE is confused to
recognize the boy’s shoes as zebra. However, by
leveraging sequential correlation of strokes with
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Fig. 7 Visualization of drawing orders and segmentation results for ablation study. The legends represent color encoding
for stroke ID and object categories, and m is the stroke amount in a sketch. The red boxes highlight the wrongly labeled
segmentation results with the degraded models and fixed by our full model.

SeqE, our full model can achieve correct seg-
mentation results. Therefore, SeqE is effective for
stroke-based scene-level SSS.

Effect of SpaE. As shown in Table 3, with-
out SpaE, the accuracy drops 4.10% on C-metric,
4.39% on P-metric and 5.30% on MIoU, which
indicates the importance of this module. During
the prediction, SpaE tends to group spatially close
strokes and can correct part of the segmentation
error due to stroke temporal order. As shown in
Fig. 7, we can observe that there are temporal
gaps in drawing order between the strokes of ele-
phants’ body and leg, and the strokes of the each
elephant. SeqE tends to label the temporal sep-
arated strokes as another object. However, SpaE
exploits the spatial correlation of stroke and can
enhance the segmentation results.

Effect of feature fusion. To validate the effects
of global temporal feature in Eq. 7, we built a
degraded model by feeding the output feature of
GCN’s last layer into the fully connected layer for
prediction. As shown in Table 3, our full model
achieves 0.58% higher on C-metric, 0.30% higher
on P-metirc and 0.95% higher on MIoU. There-
fore, the feature fusion has positive impacts on the
stroke-based semantic segmentation task.

Effect of class-aware loss weight wc. The
long-tail distribution of SFSD’s instance frequency

results in the difficulty of making a balanced learn-
ing between different categories. In order to tackle
the above issue, we introduce a different weight w
for each category in Eq. 8. The effect of them was
tested by removing w from the loss function. From
Table 5 we can see that the overall effect is lim-
ited, but the improvement on some low-frequency
categories is promising.

Robustness to stroke orders. We shuffle the
strokes of sketches in the testset for 10 times, per-
form the semantic segmentation, and compute the
average evaluation metrics of semantic segmenta-
tion. As shown in Table 3, compared to evaluation
with original strokes, the average accuracy of our
S3NN using shuffled strokes drops 2.34%, 3.80%
and 5.64% on the three metrics, and the model
without SpaE drops 5.54%, 8.40% and 9.05%.
These results demonstrate that the stroke order
affects the performance of SeqE, but SpaE can
compensate for the performance drop. Therefore,
S3NN is robust to stroke orders.

6 Conclusion and Future
Work

In this paper, we present SFSD, the first large-
scale dataset of free-hand scene sketches. SFSD
provides a large repository of scene and object
sketches. Benefiting from SFSD, we propose an
effective stroke-based model for scene-level SSS,
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Table 5 Segmentation accuracy of each categories for ablation study of weight wc in loss function. C-m and P-m are
obtained by the degraded model without the class-aware weight wc.

Category C-m P-m Category C-m P-m Category C-m P-m Category C-m P-m
tree∗ 0.92 0.94 fence∗ 0.47 0.49 tennis racket 0.70 0.69 snowboard 0.08 0.07
person 0.97 0.97 cow 0.64 0.63 horse 0.52 0.52 truck 0.37 0.36
cloud∗ 0.93 0.94 stone∗ 0.57 0.50 bus 0.81 0.84 motorcycle 0.92 0.92
grass∗ 0.94 0.95 sheep 0.76 0.74 bird 0.50 0.48 frisbee 0.26 0.36
others# 0.35 0.38 elephant 0.85 0.83 skis 0.40 0.42 dog 0.09 0.11
boundary∗ 0.41 0.43 airplane 0.85 0.86 river∗ 0.77 0.80 bear 0.25 0.26
zebra 0.98 0.98 playground∗ 0.27 0.31 skateboard 0.67 0.62 backpack 0.02 0.02
road∗ 0.46 0.54 car 0.37 0.37 sports ball 0.45 0.45 surfboard 0.14 0.17
giraffe 0.97 0.96 mountain∗ 0.33 0.45 baseball bat 0.34 0.38 kite 0.19 0.16
house∗ 0.58 0.55 snowfield∗ 0.82 0.80 baseball glove 0.19 0.18 bicycle 0.49 0.50

which models multi-modal features, i.e. visual fea-
ture, sequential information, and spatial features.
We conduct comparative experiments and ablative
study on SFSD to evaluate the proposed model.
Experiments demonstrate that our model outper-
forms the SOTA methods, and it can also handle
challenging cases such as occlusion and overlap
well.

Although our method can achieve promis-
ing results, it can be improved in the future
work: 1) The stroke-based segmentation model
can be further improved to handle corner cases. 2)
SFSD is a multi-modal dataset, so it can enable
more scene-sketch researches such as sketch-based
image retrieval and generation, and scene sketch
generation.
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