
1. Introduction
Understanding the physical mechanisms that drive aftershock sequences may enable effective forecasting to miti-
gate their impacts. Aftershock sequences (periods of localized, elevated seismicity rate that follow larger earth-
quakes) often exhibit considerable spatio-temporal complexity (e.g., Ozawa & Ando, 2021; Ross et al., 2019; van 
der Elst & Shaw, 2015) and can vary in productivity even after controlling for mainshock size (Dascher-Cousineau 
et al., 2020; Marsan & Helmstetter, 2017). This complexity and variability poses fundamental questions about the 
mechanisms driving aftershock sequences, and makes deterministic modeling a challenging prospect. Commonly, 
probabilistic aftershock models, such as the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988; 
Ogata & Zhuang, 2006), outperform physics-based models (Hardebeck, 2021; Woessner et al., 2011).

Traditionally, coseismic elasto-static Coulomb stress change is considered as the principal trigger of after-
shocks (King et al., 1994; Stein, 1999). However, aftershock models based on coseismic Coulomb stress change, 
such as Coulomb Rate-and-State (Dieterich, 1994), have shown mixed predictive skill: some models perform 
comparably to ETAS following certain earthquakes (e.g., Mancini et al., 2019, 2020), but many perform worse 
(e.g., Cattania et al., 2018; Hardebeck, 2021; Woessner et al., 2011). Shortcomings may be partially caused by 
modeling uncertainty (Cattania et al., 2014; Hainzl et al., 2010) and a lack of constraints on physical properties 
(Hardebeck, 2021), including the preseismic stress state (Mildon et al., 2019; Wedmore et al., 2017), but may also 
be due to the existence of additional aftershock triggering mechanisms.
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Multiple mechanisms are capable of redistributing crustal stresses following an earthquake (Freed,  2005; 
Harris, 1998), including dynamic stress changes (Brodsky & van der Elst, 2014; Hill et al., 1993), secondary 
stress changes (Marsan,  2005; Meier et  al.,  2014), pore-fluid phenomena (Bosl & Nur,  2002; Miller,  2020), 
viscoelastic relaxation (Freed & Lin, 2001; Zhang & Shcherbakov, 2016), and aseismic afterslip: a type of tran-
sient, aseismic fault-zone readjustment (Avouac,  2015; Bürgmann,  2018). Afterslip may provide a source of 
stress redistribution that in some circumstances exceeds that of the mainshock: relative afterslip moment (defined 
as 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
= 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑜𝑜 ∕𝐴𝐴𝑐𝑐𝑜𝑜

𝑜𝑜  , where 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑜𝑜  is afterslip moment and 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐

𝑐𝑐  is the corresponding coseismic moment) is 
typically ∼10%–30%, but can exceed 100% (Churchill et al., 2022).

Avouac  (2015) stated that “Aseismic afterslip drives aftershocks in general,” which is supported by evidence 
such as their shared Omori-type (Utsu et al., 1995) decay (Ingleby & Wright, 2017; Wennerberg & Sharp, 1997), 
observations of spatial correlation and early spatial co-migration (e.g., D’Agostino et al., 2012; Jiang et al., 2021; 
Kato, 2007; Peng & Zhao, 2009; Ross et al., 2017), and numerical models and frameworks consistent with both 
behaviors (Helmstetter & Shaw, 2009; Perfettini & Avouac, 2004, 2007; Perfettini et al., 2018). However, after-
slip models have considerable uncertainty (Churchill et al., 2022), and previous attempts to include afterslip in 
Coulomb Rate-and-State models have not concluded that afterslip is the principal aftershock driving mechanism 
(e.g., Cattania et al., 2015). Until now, the afterslip-aftershock discussion has mostly focused on individual case 
studies, thus it is timely to synthesize available data sets and systematically test links between afterslip and 
aftershocks. Although existing evidence generally points to spatio-temporal relationships, investigating the link 
between afterslip moment and aftershock sequence productivity may provide useful constraints for aftershock 
forecasting.

We investigate whether relative afterslip moment correlates with: (a) aftershock number, (b) cumulative 
moment (both of which absolute and relative to an expectation, given the mainshock size), (c) seismicity rate 
change (SRC), (d) aftershock sequence b-value, and (e) decay exponent p from the modified Omori law (Utsu 
et al., 1995), for potentially damaging Mw ≥ 4.5 aftershocks. We also investigate whether coseismic moment, 
afterslip moment, or their sum best correlate with absolute aftershock number, and whether background seismic-
ity rate correlates with 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 . We select aftershocks from the National Earthquake Information Center (NEIC) 

global catalog (USGS, 2017), for 41 earthquakes in a range of geographical and tectonic settings, with afterslip 
models described by Churchill et al. (2022). We develop testable hypotheses and define variables (summarized 
in Table S1 in Supporting Information S1) in Section 2, outline data and methods in Section 3, and present and 
discuss results in Sections 4 and 5, respectively. Throughout, the superscripts “aslip,” “ashocks,” and “co” refer to 
afterslip, cumulative aftershock, and coseismic parameters, respectively. We also use the terms driving and trig-
gering interchangeably, and do not distinguish between the substantial loading of faults to failure (i.e., inducing) 
and the perturbing of faults that are already close to failure (i.e., triggering).

2. Hypotheses
The generic behavior of aftershock sequences can be described using empirical relationships, which form the 
backbone of probabilistic models including ETAS. Here, we form simple testable hypotheses that predict how 
certain aftershock sequence characteristics may deviate from these established laws for higher or lower values 
of 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 .

2.1. Aftershock Sequence Productivity

The Utsu-Seki scaling law (Utsu,  1970) gives aftershock sequence productivity (nexp, the expected number 
of aftershocks above a given magnitude) as a function of mainshock magnitude (Mw), an exponent (α), and a 
constant of proportionality (k):

𝑛𝑛exp = 𝑘𝑘10𝛼𝛼𝛼𝛼𝑤𝑤 . (1)

Aftershock sequence productivities have been observed to vary beyond this scaling (e.g., Marsan & 
Helmstetter,  2017), possibly due to factors such as fault dip, lithospheric age, normalized rupture area 
(Dascher-Cousineau et al., 2020), mainshock depth (Nyffenegger & Frohlich, 2000; Persh & Houston, 2004), 
seismic coupling (Hainzl et al., 2019), and other physical, background characteristics (Hardebeck, 2021).
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We investigate whether 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 correlates with relative aftershock productivity (nrel). We hypothesize that a greater 

𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 will correspond to a greater nrel, as a greater afterslip moment will impart a greater magnitude and/or 

volume of stress change (Segall, 2010), thus an increased potential to trigger aftershocks. Conversely, one could 
argue that a greater 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 would correspond to fewer aftershocks and a lower nrel, as afterslip is indicative of 

velocity-strengthening fault-zone material (Marone et al., 1991; Perfettini & Avouac, 2004). We define relative 
aftershock productivity (nrel) as:

𝑛𝑛rel =
𝑛𝑛abs

𝑛𝑛exp
, (2)

where nabs and nexp are the absolute and expected productivities (in a specified time window). We evaluate α and 
k in Section 3.2, and confirm for our data that α ≈ 1.0 (Hainzl & Marsan, 2008; Yamanaka & Shimazaki, 1990).

Similarly, we expect the relative cumulative moment of the aftershocks 𝐴𝐴
(

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟

)

 to correlate with 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 , and 

we test this. 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟
 is defined as:

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟
=

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎

𝑀𝑀𝑎𝑎𝑎𝑎
𝑎𝑎

, (3)

where 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎  is cumulative aftershock moment. However, cumulative aftershock moment may be a less stable 

characteristic than aftershock number, as it is the sum of randomly sampled moments from a heavy-tailed distri-
bution (Zaliapin et al., 2005).

2.2. Background Rate and Seismicity Rate Change

The Dieterich (1994) framework predicts that aftershock rates are proportional to a given reference seismicity 
rate. Whether this reference rate is best described by declustered (i.e., background) (e.g., Hainzl & Ogata, 2005) 
or undeclustered (e.g., Catalli et al., 2008) seismicity is a matter of discussion (Cocco et al., 2010). We use declus-
tered background seismicity rate (B) to make an explicit comparison between spontaneous background earth-
quakes and our aftershock sequences. The framework thus predicts the total expected number of aftershocks in a 
sequence (ntot) as a function of reference rate (B), the background stressing rate 𝐴𝐴 (�̇�𝜏𝑟𝑟) and an imposed stress step (τ):

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 ∼
𝐵𝐵

�̇�𝜏𝑟𝑟
𝜏𝜏𝜏 (4)

(Helmstetter & Shaw, 2009; Marsan & Helmstetter, 2017). Noting that this relation may not hold on the scale of 
entire sequences (Page & van der Elst, 2022), we use a simple measure of SRC to explore how aftershock produc-
tivity varies with respect to the background rate. We test whether 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 correlates with SRC. We define SRC as:

𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎

𝐵𝐵
, (5)

where B is the number of background events (above magnitude m) expected in the specified time window 
(Section 3.1). We hypothesize that a greater 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 will correspond to a greater SRC, as again, a greater afterslip 

moment will impart a greater magnitude and/or volume of stress change, thus an increased potential to trigger 
aftershocks.

2.3. Magnitude-Frequency Distribution

The Gutenberg-Richter law (Gutenberg & Richter, 1954) describes the magnitude-frequency distribution of seis-
micity in a given space-time window. The number of earthquakes (n) above a given magnitude (m) depends on 
parameters describing productivity (a) and distribution (b):

𝑛𝑛(𝑚𝑚) = 10𝑎𝑎−𝑏𝑏𝑚𝑚. (6)

Aftershock sequences may exhibit different b-value distributions to mainshocks and larger-scale catalogs 
(Godano et al., 2014), possibly implying a physical distinction. We therefore investigate whether 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 correlates 

with b-value.
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We hypothesize that a greater 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 will correspond to a larger number of smaller aftershocks, and hence 

sequences with higher b-values. High 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 may be associated with fault zones that have a greater proportion 

of velocity-strengthening material (Marone et al., 1991; Perfettini & Avouac, 2004), and/or greater rheological 
heterogeneity (Muto et al., 2016; Wei et al., 2013). Compared to a more uniformly velocity-weakening fault zone, 
these conditions may provide more barriers to large ruptures, requiring a greater number of smaller earthquakes 
to accommodate slip on numerous isolated velocity-weakening fault patches, thus facilitating a higher b-value. 
Additionally, afterslip may reload isolated asperities resulting in typically small (Mw < 4) repeating earthquakes 
(Uchida & Bürgmann, 2019).

2.4. Aftershock Sequence Decay

The modified Omori law (Utsu et al., 1995) describes how the rate of aftershocks (R) decays with the elapsed time 
(t), depending on a constant (K), a characteristic onset time (c), and an exponent (p):

𝑅𝑅(𝑡𝑡) =
𝐾𝐾

(𝑡𝑡 + 𝑐𝑐)
𝑝𝑝 . (7)

The parameter p describes the rate of decay and is typically 0.8–1.2 (Hainzl & Marsan, 2008; Utsu et al., 1995). 
For afterslip velocity time-series fit to this decay form, p is ∼0.8–1.04 (Ingleby & Wright, 2017).

We hypothesize that more slowly decaying afterslip will generate longer aftershock sequences. Unfortunately, 
due to the lack of constraints on the temporal characteristics of afterslip (Churchill et al., 2022), it is not possible 
to test this directly. Instead, we use 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 as a proxy, positing that it is difficult to reconcile a quickly decaying 

aftershock sequence with a high 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 . Thus we test whether 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 correlates with aftershock p, estimated using 

maximum likelihood (Ogata, 1999).

3. Data and Methods
3.1. Data Sources

We use estimates of relative afterslip moment 𝐴𝐴
(

𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎

)

 from the compilation by Churchill et al. (2022). We investi-
gate 41 mainshocks (exclusions are explained in Text S1 in Supporting Information S1), with varied mechanisms 
and a wide geographical distribution, thus are a reasonably representative subset of global Mw ≥ 6.0 mainshocks. 
However, there is a selection bias, whereby smaller mainshocks, particularly those with low-moderate 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 , 

are underrepresented, as their afterslip signal may not reach the detection threshold. There is also uncertainty 
in these estimates. Churchill et al. (2022) showed that estimates of 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 do not correlate with study duration 

or start-times as expected, including for different estimates following the same mainshock. Therefore, rather 
than the specific time-period from each afterslip study, we use a systematic aftershock selection time-period of 
18 months, which is in the range of compiled afterslip model durations and the range of apparent aftershock dura-
tions (corresponding well to the forecastable period) over our approximate magnitude range (Hainzl et al., 2016). 
We therefore assume that the given 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 estimates are representative of 18 months of afterslip and discuss the 

possible implications of this in Section 5.

Whilst regional seismic catalogs include a larger number earthquakes than global catalogs, their magnitude scales 
may not be directly comparable, and their completeness magnitudes vary. We therefore select Mw ≥ 4.5 after-
shocks from the global NEIC catalog to ensure global quasi-comparability. We calculate the catalog's complete-
ness magnitude (Mc) to be 4.5 by a goodness-of-fit test (Wiemer & Wyss, 2000) with an associated b-value of 
1.01, estimated throughout using maximum likelihood (Aki, 1965). Estimates of Mc by alternative approaches 
(Cao & Gao, 2002; Herrmann & Marzocchi, 2021) are discussed in Text S2 in Supporting Information S1, with 
all corresponding b-value estimates ∼1.0. As catalog completeness varies in space and time (Kagan, 2003), we 
account for any missing Mw  ≥  4.5 aftershocks in individual sequences. We estimate Mc for each aftershock 
sequence, and use the estimated a and b-values to predict the number of aftershocks expected between Mw4.5 and 
the Mc for the sequence (Text S2 in Supporting Information S1).
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3.2. Aftershock Selection and Background Rates

We select aftershock sequences using 2D, 3D, and Nearest Neighbor Declustering (NND) selection methods 
to mitigate the effect of any one method being susceptible to catalog errors or producing erroneous results. 
As catalog location errors may be up to tens of kilometres (Kagan, 2003) and likely to have a greater relative 
impact on aftershocks sequences following smaller mainshocks, we implement a conservative minimum selection 
length-scale of 30 km in our 2D and 3D methods. We assume catalog origin-time errors are negligible. Methods 
are explained in greater detail in Texts S3–S5 in Supporting Information S1.

Our 2D aftershock selection method uses empirical scaling relations to define a spatial aftershock zone. This 
method is 2D as selections are made in map-view and seismicity depth is not considered. This method builds on 
work by Kagan (2002), who approximated aftershock zones as 2D Gaussian distributions (ellipses) and derived 
scaling relations for the major- and minor-axis lengths of the ellipse, lmaj and lmin. We scale lmaj and lmin with main-
shock size and mechanism based on the recent mainshock rupture scaling relations by Thingbaijam et al. (2017) 
and considering mainshock dip angle from the GCMT catalog (Dziewonski et al., 1981; Ekström et al., 2012). 
The Thingbaijam et al. (2017) scaling relations provide reasonable approximations of mainshock dimensions and 
aftershock zone size, even for large subduction earthquakes (Zhang et al., 2020, 2021). For each mainshock, we 
conduct a broad preliminary search for seismicity within 2lmaj of the mainshock epicenter (Figure 1a) and use 
this to define the average location of seismicity. We then find the orientation of an ellipse (with lmaj and lmin axis 
lengths) centered at this location which includes the most earthquakes (Figure 1b), thus defining our aftershock 
selection zone (Figure 1c, Text S3 in Supporting Information S1).

Our 3D aftershock selection method uses a volume that scales with mainshock size, constructed around the 
mainshock fault geometry and bounded by a single threshold distance for simplicity. We assume that this distance 
scales with coseismic moment (as aftershock selection must be independent of afterslip moment to avoid a biased 
result). We assume that the minimum shear stress that can trigger aftershocks occurs at a distance that scales 
with 𝐴𝐴 𝐴𝐴

1∕3
𝑜𝑜  from the fault (e.g., Marsan, 2005). As the exact scaling relation would depend on numerous assump-

tions including slip distribution, rupture scaling, surrounding rheology and threshold triggering stress, we use 
a conservative estimate that ensures a systematic proportion of aftershocks are selected when working with 
variable real-world earthquakes. We select all aftershocks within 𝐴𝐴 4 ⋅ 10−6 𝑀𝑀

1∕3
𝑜𝑜   km of the fault plane (Figure 1d), 

using fault geometries derived from coseismic slip models in the SRCMOD database (Mai & Thingbaijam, 2014) 
(Text S4 in Supporting Information S1). This method could not be used for 10 mainshocks which lacked available 
fault models.

For comparison, we also use the NND algorithm (Baiesi & Paczuski, 2004; Zaliapin & Ben-Zion, 2016), which 
establishes whether every earthquake in a catalog is dependent or independent, based on a distance (defined in 
terms of location, time and magnitude) to its nearest neighbor. This allows the classification of fore-, main-, and 
aftershocks. We use the same parameters as Zaliapin and Ben-Zion (2016), with Mc = 4.5. The 2003 Mw7.2 Altai 
earthquake is identified as an aftershock, and thus omitted here.

The number of aftershocks (nabs) selected by each method are given in Figure 1e. For each mainshock, we define 
the relative spread as the maximum difference between the number selected by any one method and the median 
number selected by all methods, divided by the median. Across all mainshocks, this has a median value of 
0.23, indicating that aftershock number is generally well-constrained (see examples in Text S6 in Supporting 
Information S1).

We calculate the Utsu-Seki parameters α and k to be 0.99 (with 95% bounds of 0.92–1.06) and 10 −5.71 by linear 
regression (using the log-transform of Equation 1) for the 29 Mw ≥ 7.0 mainshocks (Figure 2a). For lower magni-
tude mainshocks, the compilation may be biased toward more productive mainshocks and thus we exclude them 
from our calculation. Our estimates are similar to those obtained by Dascher-Cousineau et al. (2020) for their 
(Mc = 4.5) global study (α = 1.04, k = 10 −6.17). We use our estimates to calculate nrel for the subsequent analysis.

We estimate background seismicity rates using the spatial regions identified in the 2D aftershock selection 
method. Using the (1979–2019) NEIC catalog, we (a) select the median frequency of earthquakes per calendar 
year, which naturally removes the quietest and loudest years (Helmstetter & Werner, 2012) and (b) fit inter-event 
times to a Gamma distribution, assuming that the tail of this distribution represents independent events and can 
be used to estimate background rate (Hainzl et al., 2006; van Stiphout et al., 2012). Whilst these methods (and the 
subsequent SRC analysis) are simple compared to more rigorous approaches (e.g., Marsan & Nalbant, 2005; van 
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Figure 1. Schematic diagrams of the 2D and 3D aftershock selection methods, and results for all three methods. (a–c) Show a preliminary search for seismicity, fitting 
the aftershock ellipse, and the selected sequence of the 2D method, (d) shows the 3D aftershock selection method, and (e) shows the number of Mw ≥ 4.5 aftershocks for 
each method, for 41 mainshocks ordered by decreasing magnitude. Symbol shape denotes the selection method, color denotes the mainshock magnitude, gray symbols 
denote where a method was unsuitable (shown above the x-axis), and red circles denote the relative spread of aftershock number estimates for each mainshock. Only one 
selection method is used for the Altai earthquake.
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Stiphout et al., 2011; Zhuang et al., 2005), they are robust and generally produce estimates within a factor of ∼2 
of each other for regions with mainshocks Mw ≥ 7, but diverge further for Mw < 7.

4. Statistical Analysis
We calculate the Spearman's rank correlation coefficient, which tests for monotonic relationships (Dodge, 2008), 
and/or the gradient (using a first-order least squares inversion), between the characteristics we wish to test. As 
there are multiple afterslip moment estimates for some earthquakes and up to three aftershock selection methods, 
we bootstrap to fairly sample data and reflect uncertainty and the range of estimates. For each test, we create 
2,000 subsets of randomly sampled data (one data-point per mainshock) and present the median (correlation 
coefficient or gradient) and 95% range of the resulting distribution. Text S7 in Supporting Information S1 details 
instances of erroneous, excluded data points in our analyses.

The Spearman's correlation coefficient (median and 95% confidence bounds from bootstrap analysis) between 
𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐

𝑐𝑐  and nabs is 𝐴𝐴 0.860.90
0.82

 . The correlation coefficients between nabs and 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑜𝑜  𝐴𝐴

(

0.730.79
0.67

)

 , and 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐
𝑐𝑐 +𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐  𝐴𝐴

(

0.860.90
0.81

)

 

Figure 2. Data showing the strong relationship between coseismic moment and aftershock number and the lack of 
relationships between relative afterslip moment and key aftershock sequence characteristics: (a) coseismic moment and 
aftershock number (mainshocks Mw ≥ 7.0 are fit to Equation 1), (b) relative afterslip moment and aftershock number, (c) 
relative afterslip moment and relative aftershock number (a factor, see Equation 2), and (d) relative afterslip moment and 
seismicity rate change (a factor, see Equation 5). Circles denote median values, color denotes mainshock magnitude, gray bars 
in the y-direction reflect the multiple aftershock selection methods and in the x-direction, reflect multiple estimates of 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 . 

Endmember mainshocks are annotated.
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do not improve on the correlation between 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐
𝑐𝑐  and nabs (Figure 3a). Whilst low magnitude, low 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 main-

shocks may be underrepresented in our data set, for these mainshocks 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐
𝑐𝑐 +𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐 ∼ 𝐴𝐴𝑐𝑐𝑐𝑐

𝑐𝑐  , thus the relationship 
will not be significantly affected by the bias.

The estimated correlation coefficients between relative afterslip moment and all key aftershock sequence charac-
teristics tested are <|0.2| (Figure 3b). The median Spearman's correlation coefficients (and 95% bounds) are low 
between 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 and nabs 𝐴𝐴

(

−0.16−0.02
−0.29

)

 , and between 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 and nrel 𝐴𝐴

(

0.140.29
0.00

)

 , with mainshocks existing in all four 
quadrants (Figures 2b and 2c). Correlation coefficients are also low between 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 and: 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎  𝐴𝐴
(

−0.120.03
−0.27

)

 , 
𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟
 𝐴𝐴
(

0.140.27
0.00

)

 , and SRC 𝐴𝐴
(

−0.100.08
−0.25

)

 , with values of SRC varying from ∼10 to more than 100 times the back-
ground rate (Figure 2d). The correlation coefficient between 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 and background seismicity rate is 𝐴𝐴 − 0.080.12

−0.29
 , 

implying that B is not a good predictor of 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 . The correlation coefficients between 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 and aftershock 

b-value 𝐴𝐴
(

−0.070.08
−0.22

)

 and decay exponent p 𝐴𝐴
(

−0.050.17
−0.26

)

 are also low (Figure 3b). Both b-values and p cluster 
around 1.0 (Figure S6 in Supporting Information S1), which is consistent with previous studies (Shcherbakov 
et al., 2005; Utsu et al., 1995), with outlying values likely caused by the relatively high Mc.

5. Discussion
For our data set of 41 mainshocks and their Mw ≥ 4.5 aftershocks, we find no strong relationship between relative 
afterslip moment and (a) absolute or relative aftershock productivity, (b) absolute or relative cumulative after-
shock moment, (c) the SRC, (d) the b-value, or (e) the decay exponent p of the aftershock sequences. The strong 
correlation between absolute afterslip moment and aftershock productivity can be explained by the scaling of 
both of these factors with mainshock moment (Churchill et al., 2022; Utsu, 1970). However, the lack of propor-
tionality between relative afterslip moment and relative aftershock number implies they scale differently with 
mainshock size: Helmstetter et  al.  (2005) considered aftershock productivity scaling using elasto-static stress 
transfer between fractally distributed dislocations. We also find that coseismic moment is a better indicator of 
aftershock sequence productivity than either afterslip moment or the sum of afterslip and coseismic moments. 
We therefore reject the hypothesis that afterslip is the dominant control on all aftershock sequence characteristics. 
Despite case study evidence supporting a link, our findings contrast with the concept that afterslip drives after-
shocks (e.g., Avouac, 2015; Perfettini et al., 2018). We discuss the role afterslip may play in influencing after-
shock sequences alongside other mechanisms and the implications of our findings for seismic hazard analysis.

Several mechanisms, including afterslip, coseismic Coulomb stress change, dynamic triggering, and pore-fluid 
mechanisms, may be capable of triggering aftershocks and some can explain an Omori-type aftershock decay 
(Helmstetter & Sornette, 2002; Miller, 2020). Multiple mechanisms may operate simultaneously and their relative 
importance may be case-specific. For example, Ross et al. (2017) showed that both afterslip and fluid diffusion 
triggered aftershocks following the 2010 Mw7.2 El Mayor Cucapah earthquake. We can therefore assume that 

Figure 3. The median Spearman's rank correlation coefficients and 95% bounds of relationships between key characteristics 
and: (a) nabs and (b) 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 . Forty one mainshocks are analyzed in each case, except for seismicity rate change, b-value, 

p, and B analyses, which include only 38 mainshocks (Text S7 in Supporting Information S1). Annotations reference the 
corresponding plots in Figure 2 (black) or Figure S6 in Supporting Information S1 (red).
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aftershock triggering is not driven by a single mechanism, and that afterslip plays a varied and non-ubiquitous 
role in influencing aftershock sequence characteristics (e.g., one could posit that the importance of afterslip in 
driving aftershocks depends on their respective zones being close together, which may not be the case when after-
slip occurs only at depth). This is consistent with our finding that afterslip moment does not universally correlate 
with key aftershock characteristics and previous evidence supporting case-study links.

In particular, afterslip may influence the spatio-temporal distribution of aftershocks, as is supported by case 
study observations of early spatio-temporal co-migration of afterslip and aftershocks (Feng et  al.,  2020; 
Huang et al., 2017; Jiang et al., 2021; Peng & Zhao, 2009). Whilst we show that aftershock decay rate is not 
controlled by relative afterslip moment, it could still be influenced by other afterslip characteristics, such as 
its migration or decay rate. Furthermore, as Page and van der Elst (2022) found that aftershock productivity 
relates to background seismicity rate at spatially discretized scales within individual sequences, but not at 
the scale of entire sequences, one could hypothesize that afterslip characteristics drive aftershock sequence 
productivity at spatially discretized scales within individual aftershock sequences, effectively driving their 
spatio-temporal distribution. However, our results indicate that relative aftershock productivity may be 
controlled by other mechanisms and factors such as physical fault-zone and background characteristics, 
although no single parameter has been shown to dominate (e.g., Dascher-Cousineau et  al.,  2020; Hainzl 
et al., 2019; Hardebeck, 2021), indicating that multivariate analysis approaches may be well-suited to inves-
tigating this question further.

Limitations in our data and methodology may also obscure relationships. Our relatively high Mc of 4.5 is 
necessary for ensuring comparability globally, but does not allow us to test the hypothesis that afterslip 
disproportionately drives smaller aftershocks. As afterslip may drive typically small (Mw  <  4) repeating 
earthquakes (Uchida & Bürgmann, 2019), our analysis may be missing relationships involving lower magni-
tude aftershocks. Uncertainty may also be obscuring weak correlations: Churchill et  al.  (2022) estimated 
that uncertainty in afterslip moment estimates is typically a factor of 2–3, and we showed that our after-
shock selection methods generate an average relative spread of 23%. Furthermore, the compiled afterslip 
models have different corresponding modeling time periods, requiring us to use a uniform time-period for 
aftershock selection, and the data bias may mean that lower magnitude mainshocks, particularly with low 

𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑎𝑎
 , are underrepresented. Additionally, given that considerable variability in aftershock productivity is 

well-established (e.g., Dascher-Cousineau et al., 2020; Marsan & Helmstetter, 2017), our null result may be 
because of our relatively small sample size of 41 mainshocks. Therefore, both constraints on the statistical 
power of our analysis and the previously mentioned sources of uncertainty mean that we cannot reject weak 
relations between afterslip and aftershocks. However, we argue that if strong relations existed, these would 
influence the correlation coefficients despite these limitations.

Our results indicate that the standard Utsu-Seki scaling relation (Utsu, 1970) is a more useful indicator of the like-
lihood of potentially damaging Mw ≥ 4.5 aftershocks, than when afterslip moment is incorporated. We provide 
evidence that considering afterslip would not improve probabilistic aftershock hazard forecasts (e.g., ETAS and 
Coulomb Rate-and-State models), particularly considering the challenges surrounding providing accurate and 
timely measurements of afterslip (Churchill et  al.,  2022). However, future work is vital to establish whether 
specific characteristics of afterslip influence the spatio-temporal distributions of aftershocks, their productivity 
in special cases, and/or their behaviors below Mw4.5.

6. Conclusion
Whilst some studies claim that afterslip principally drives aftershocks, our results contradict a strong link between 
relative afterslip moment and several primary (Mw ≥ 4.5) aftershock sequence characteristics, following 41 global 
mainshocks. We find that:

1.  Aftershock productivity varies between sequences beyond the scaling which is expected with mainshock 
moment, and beyond the effect of background rate, in contrast to the Dieterich (1994) model.

2.  Relative afterslip moment does not correlate with the key aftershock sequence characteristics tested: after-
shock number or cumulative moment (both in absolute or relative terms), SRC, b-value or Omori exponent p. 
We can reject the hypothesis that afterslip moment controls aftershock productivity.
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3.  Mainshock moment best indicates aftershock sequence productivity. This supports the use of mainshock 
moment within probabilistic aftershock hazard models (e.g., Field et al., 2017; Wang et al., 2022), although 
additional characteristics have been linked to variability in aftershock productivity.

4.  Characteristics of afterslip may still influence aftershock sequence behaviors in some capacity (their 
spatio-temporal distributions, productivity in specific cases, behaviors Mw ≤ 4.5), but further investigation 
is needed.

Data Availability Statement
Data used are accessible through: Churchill et  al.  (2022), https://doi.org/10.5281/zenodo.6414330, and 
USGS  (2017). Also accessible are our aftershock selection codes: https://doi.org/10.5281/zenodo.7188981 
(including our NND catalog), the Omori fitter: https://github.com/tgoebel/aftershocks, b-value/Mc analysis codes: 
https://github.com/sachalapins/bvalues, and the Lillliefors b-value test: https://doi.org/10.5281/zenodo.4162497.
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