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ABSTRACT6

High levels of faecal indicator organisms (FIOs) at bathing water sites can cause disease7

and impose threats to public health. There is a need for predicting FIO levels to inform the8

public and reduce exposure. Data-driven models are one of the main tools being considered as9

predictive models. However, identifying the main inputs of the data-driven models is a major10

challenge in developing FIO predictor models. This paper develops a data-driven model for FIO11

concentration prediction based on a limited number of critical input variables. Essential variables12

were identified with be a combination of Gamma test and GA (Gamma-GA-test). Artificial13

Neural Networks (ANNs) and linear regression models were developed using these two variable14

identification approaches for comparison. The models were applied to a case study, and it was15

found that the model using the Gamma-GA test has a high potential to predict FIO levels more16

accurately, although this requires further investigation with different case studies. A correlation17

analysis was required prior to the variable identification approaches in this study. The need of18

this analysis highlights the significance of understanding the waterbody and the data set in the19

development and application of data-driven models. Models using a Gamma-GA test were more20

capable of predicting extreme (high) FIO concentrations, making a Gamma-GA test more suitable21

for a bathing water quality early warning system. The importance of nonlinearity in such predictive22

models was also demonstrated by the better performance of nonlinear ANN models compared23
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to linear regression models regardless of the variable identification approaches used. This paper24

highlights the importance of nonlinearity in bathing water quality prediction and encourages further25

utilisation of nonlinear models for this application.26

INTRODUCTION27

Water-borne pathogens in waterbodies cause illnesses such as gastrointestinal infection, eye28

infection, skin complaints, and nose and throat infections (Pruss 1998;Pandey et al. 2014). Faecal29

indicator organisms (FIO), e.g. E Coli and Enterococci, are commonly used to indicate the level30

of pathogens in waterbodies (Dufour 1984;Pandey et al. 2014). In Europe, the European Union31

(EU) revised Bathing Water Directive (rBWD) (European Commission 2006) requires member32

states to monitor at least the concentrations of two FIO species in designated bathing waters for33

compliance. The rBWD recognises short-term occasional pollution and includes provisions for34

discounting compliance requirements when there is a predictive and warning system to alarm35

the public of impending poor water quality. Traditionally, FIO concentrations in bathing water36

samples are determined by culture-based methods. These methods require a minimum of 18-2437

hour (USEPA 2010) laboratory assay. However, FIO concentrations change continuously (Boehm38

et al. 2002; Whitman et al. 2004; Kim et al. 2004; King et al. 2021), causing culture-based warning39

systems to give outdated water quality alerts. More rapid FIO analysis methods such as quantitative40

polymerize chain reaction (qPCR) can determine FIO concentrations in less than 6 hours, but these41

methods require significant up-front investments and trained personnel (Zhang et al. 2018) and still42

cannot be used as a predictive tool. While field sampling and analysis are important, they do not43

provide predictions to impending bathing water quality.44

Two- and three-dimensional hydro-environmental models are commonly applied to assess FIO45

concentrations in waterbodies. These models numerically solve the mass and momentum equations46

of fluids as well as the fate and transport of FIOs, including decay and interaction with sediment.47

These models have been applied in a wide range of studies (e.g. Lee and Qu 2004; Lin et al. 2008;48

Schippmann et al. 2013; Huang et al. 2017; Abu-Bakar et al. 2017) to provide relatively accurate49

predictions of the spatial and temporal concentration distributions of FIOs. Nevertheless, these50
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models require detailed knowledge of flow and FIOs at the boundary of the modelling domain, which51

are generally very expensive and time consuming to acquire. Moreover, such models are usually52

computationally demanding and require a long run time even on modern computers. Therefore,53

using such models in real-time as a part of early warning systems is not practical.54

Data-driven models are promising alternatives in providing timely predictions of FIOs for55

bathing water quality warning systems due to their lower computational requirements. Such models56

utilize data obtained by environmental sensors to predict FIO concentrations in bathing waters. The57

public could then be warned about occasions with high FIO concentrations. The development of58

such data-driven models requires identifying FIO predictive variables and establishing relationships59

between these variables and FIO concentrations. These two steps have been previously conducted60

mainly by stepwise multi-linear regression (MLR) (e.g. Crowther et al. 2001; Nevers and Whitman61

2005; Gonzalez et al. 2012; Wyer et al. 2013b; Gonzalez and Noble 2014). In a stepwise MLR,62

variables are included or excluded in a linear regression equation in a stepwise manner. Such63

inclusion or exclusion is decided by the influence of the input variables on estimating the target64

variables through linear regression analysis. This linear approach does not account for possible65

nonlinear relationships which could affect predicting extremes. A promising nonlinear approach66

is Artificial Neural Network (ANN), in which the predictive variables and FIO concentrations are67

linked by simplified yet nonlinear network-like models (Masters 1993; Garrett 1994; Russell and68

Norvig 2010). ANN has been applied to predict FIO concentrations in several studies e.g. Jin and69

Englande 2006; He and He 2008; Zhang et al. 2012; Thoe et al. 2015; Zhang et al. 2018. ANN70

models have shown better performance in predicting extreme FIO concentration (both high and71

low) (Zhang et al. 2012) and give higher sensitivity to poor water quality events (Thoe et al. 2015)72

compared to stepwise MLR. However, ANN models cannot identify predictive variables from a73

data set; manual selection of predictive variables is highly dependent on the users’ judgement. This74

could be challenging in data-rich sites which will become more common as a result of enhancements75

in sensor and implementation of digital environments. While stepwise MLR can be conducted to76

identify predictive variables prior to ANN, stepwise MLR is not capable of identifying nonlinear77
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relationships between variables and FIO concentrations.78

A nonlinear alternative method to identify predictive variables is Gamma test. Gamma test79

determines the significance of a set of input variables in predicting the target data, e.g. FIO con-80

centrations, by quantifying the residue variance that cannot be explained by any smooth nonlinear81

models (Jones 2004). Gamma test does not require an assumed nonlinear function relating input82

variables and target data a priori. On the other hand, Gamma test does not determine the nonlinear83

model itself. To identify predictive variables in a data set, Gamma tests can be applied to each84

possible combination of variables and choose the best combination to be the one that gives the85

smallest residue variance. However, for data sets containing large number of variables, searching86

the entire input combination space requires many Gamma test computations and large computa-87

tional power. A Genetic-Algorithm (GA) model can be utilised to circumvent the need for such88

high computational power (Jones 2004). Although a cross validation approach (Stone 1974) may89

be applied for nonlinear variable identification, the approach usually requires a priori regression90

equations or network architectures and can be computation intensive for large data sets because of91

the increased number of networks needed for cross-comparison.92

This paper develops a data-driven model for FIO concentration prediction based on a limited93

number of critical input variables. Essential variables were identified with be a combination of94

Gamma test and GA (Gamma-GA-test). This approach was compared with the stepwise MLR,95

which has been commonly applied in water quality prediction (Crowther et al. 2001; Nevers and96

Whitman 2005; Wyer et al. 2013b; Thoe and Lee 2014). From the variables identified by Gamma-97

GA test and stepwise MLR, ANN and linear regression models were developed and evaluated.98

These techniques were applied to a data-rich test site, namely Swansea Bay, UK, where a significant99

amount of FIO and environmental data were collected. This is the first time Gamma test has been100

applied to identify FIO predictive variables at bathing water sites. Gamma test has been applied in101

Kashefipour et al. 2005 and Lin et al. 2008 in bathing water quality modelling, but the test was not102

used for variable identification. The test has also been applied in Choubin and Malekian 2017 and103

Ghaderi et al. 2019 for variable identification, but their focuses were not bathing water quality. The104
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improvements in predicting FIO concentrations using the complex model proposed in this study at105

the case study site are highlighted.106

METHODOLOGY107

The first step in developing data-driven models is identifying the input variables. However, there108

may be dependencies among the available variables. To identify linearly independent variables109

amongst all available variables, a singular value decomposition-based collinearity analysis was110

conducted. The output variables from the analysis became the input variables for the Gamma-111

GA tests or stepwise MLRs. ANN models were developed from predictive variables identified112

with Gamma-GA tests (GG-ANN) and stepwise MLRs (SL-ANN) respectively. Linear regression113

models were also developed from the identified variables (GG-Linear and SL-Linear models).114

Fig. 1 shows a flow chart of the modelling approach in this paper and the following section gives115

further details to the aforementioned tests and models.116

Collinearity analysis117

Linear correlation may exist among the variables within the measured data set. This is referred118

to as collinearity (Belsley et al. 1980). Correlation analysis was conducted in this paper to remove119

redundant variables. The correlation coefficients between variable pairs were computed. When120

the correlation coefficient was high (e.g. > 0.6), one of the variables was removed; the variable121

to remove was selected by mechanistic-process-based judgement. Correlation analysis was also122

conducted to determine the lag-time required for the time-lagged variables not to have a high123

correlation with the original un-lagged variables.124

Gamma test and Genetic Algorithm125

Gamma test determines the part of the variance of target data which cannot be accounted for by126

any smooth nonlinear models. Nevertheless, Gamma test does not determine the model itself. The127

Gamma test is briefly explained below but further details can be found in Stefansson et al. 1997,128

Evans and Jones 2002, and Jones 2004. Consider a data set of input variables (the independent129

environmental variables selected by the collinearity test in this paper) X and target data (FIO130
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concentrations in this paper) y:131

X =



𝑥11 𝑥21 · · · 𝑥𝑁1

𝑥12 𝑥22 · · · 𝑥𝑁2
...

...
. . .

...

𝑥1𝑀 𝑥2𝑀 · · · 𝑥𝑁𝑀


(1)132

y =



𝑦1

𝑦2
...

𝑦𝑀


(2)133

where 𝑥 𝑗𝑖 is the 𝑗-th input variable at time 𝑖 (1 ≤ 𝑖 ≤ 𝑀); 𝑦𝑖 is the target data at time 𝑖. The row134

vectors of matrix X, that is:135

x𝑖 =
[
𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑁𝑖

]
(3)136

where superscript 𝑇 denotes matrix transpose, are the environmental variable data points measured137

at time instant 𝑖 (1 ≤ 𝑖 ≤ 𝑀). Assume that x𝑖 and 𝑦𝑖 are related as:138

𝑦𝑖 = 𝑓 (x𝑖) + 𝑟 (4)139

where 𝑓 is a nonlinear and smooth function; 𝑟 is a random variable (i.e. noise that is excluded from140

the input-target relationship). We define an imaginary data point x′
𝑖
near x𝑖 and:141

𝛾 =
1

2𝑀

𝑀∑︁
𝑖=1

[𝑦(x′𝑖) − 𝑦(x𝑖)]2 (5)142

substitute Eq. 4 into Eq. 5 and consider the Taylor expansion 𝑓 (x′
𝑖
) = 𝑓 (x𝑖) + (x′𝑖 −x𝑖) ·∇ 𝑓 +𝑂 ( |x′

𝑖
−143

x𝑖 |2), where ∇ is the gradient operator. Eq. 5 becomes:144
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𝛾 =
1

2𝑀

𝑀∑︁
𝑖=1

[(x′𝑖 − x𝑖) · ∇ 𝑓 ]2 + 1
2𝑀

𝑀∑︁
𝑖=1

(𝑟2 − 𝑟1)2 (6)145

where 𝑟1 and 𝑟2 are two realizations of the random variable 𝑟 corresponding to 𝑦(x𝑖) and 𝑦(x′
𝑖
)146

respectively. It is obvious from Eq. 6 that if x′
𝑖
→ x𝑖, 𝛾 → 1

2𝑀
∑𝑀

𝑖=1(𝑟2 − 𝑟1)2 = 𝑉𝑎𝑟 (𝑟) where147

𝑉𝑎𝑟 (𝑟) is the variance of 𝑟 in probability. Note that 𝑉𝑎𝑟 (𝑟) is obtained without knowing the148

expression of 𝑓 .149

The data point x′
𝑖

that is arbitrarily close to x𝑖 does not exist in the measured data set X. An150

approach to estimate the first term in the right-hand side in Eq. 6 is required to obtain 𝑉𝑎𝑟 (𝑟) from151

𝛾. In Gamma test, x′
𝑖
is replaced by x𝑁 [𝑖,𝑘] , the 𝑘-th nearest data point to x𝑖. For example, x𝑁 [𝑖,𝑘=1]152

and x𝑁 [𝑖,𝑘=2] are the nearest and the second nearest points to x𝑖. With this replacement, Eq. 6153

becomes:154

𝛾(𝑘) = 𝐴(𝑘)𝛿(𝑘) + Γ (7)155

where156

𝛿(𝑘) = 1
𝑀

𝑀∑︁
𝑖=1

|x𝑁 [𝑖,𝑘] − x𝑖 |2 (8)157

158

𝛾(𝑘) = 1
2𝑀

𝑀∑︁
𝑖=1

(𝑦𝑁 [𝑖,𝑘] − 𝑦𝑖)2 (9)159

160

𝐴(𝑘) =
∑𝑀

𝑖=1 [(x𝑁 [𝑖,𝑘] − x𝑖) · ∇ 𝑓 ]2∑𝑀
𝑖=1 |x𝑁 [𝑖,𝑘] − x𝑖 |2

(10)161

162

Γ =
1

2𝑀

𝑀∑︁
𝑖=1

(𝑟2 − 𝑟1)2 = 𝑉𝑎𝑟 (𝑟) (11)163

where | · | denotes Euclidean distance; 𝑦𝑁 [𝑖,𝑘] is the target value associated with x𝑁 [𝑖,𝑘] (note that164

𝑦𝑁 [𝑖,𝑘] is not necessarily the 𝑘-th nearest point to 𝑦𝑖 in the data set). Evans and Jones 2002 showed165

that 𝐴(𝑘) = 𝐴 is a constant given 𝑀 is sufficiently large. Eq. 7 becomes:166
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𝛾(𝑘) = 𝐴𝛿(𝑘) + Γ (12)167

𝐴 and Γ in Eq. 12 can be obtained by conducting linear regression with 𝛾(𝑘) and 𝛿(𝑘) computed168

from the 𝑘-th nearest points to x𝑖 for 𝑖 = 1, . . . , 𝑀 and 𝑘 = 1, . . . , 𝑝 where 𝑝 is the maximum value169

of 𝑘 used. In this study, 𝑝 = 10 as suggested by Jones 2004. x𝑁 [𝑖,𝑘] for each x𝑖 in 𝛾(𝑘) and 𝛿(𝑘) are170

obtained by an efficient 𝑘-dimensional tree approach (computational time in the order of 𝑀𝑙𝑜𝑔𝑀)171

in Bentley 1975.172

Gamma tests need to be applied to all possible combinations of input variables in order to173

identify the strongest predictive variables from all available data. This is the combination which174

gives the lowest absolute value of Γ (i.e. the combination of input variables that gives the smallest175

noise variance). However, this approach is computationally demanding for large data sets; the176

number of possible combinations for a data set of m variables is 2𝑚 − 1. To circumvent the need for177

high computational power, the variable selection problem is expressed as a minimization problem178

which is solved using GA (Jones 2004). The combination of input variables that minimizes |Γ| is179

selected as the solution. Combinations of input variables in the GA model are represented by a180

binary vector of length 𝑁 (a mask) in which the inclusion or exclusion of a variable is indicated by181

1 or 0, respectively. In this work, the GA function "ga" in MATLAB Global Optimization Toolbox182

(Mathworks 2020b) is used. Readers are also referred to Deb 2000 and Deep et al. 2009 for the183

detail of the GA approach.184

M-test (Jones 2004) can be used to determine the minimum required length of the input and185

target data set, the value of 𝑀 in Eq. 1. This value of 𝑀 is also the minimum data length required186

for model training if a nonlinear model is applied to the data set. In an M-test, Gamma tests are187

conducted sequentially with progressively increasing 𝑀 . The computed |Γ| is plotted against data188

length. The minimum required 𝑀 is the value of 𝑀 beyond which |Γ| becomes constant. M-test189

results are expected to be different when the ordering of the data is different. In this work, the data190

order was randomly generated and three different realizations (Realization 1, 2 and 3) of data in191

different order was tested to reduce reliance on the order of the data.192
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Artificial Neural Network (ANN)193

Feedforward back-propagation ANN models were used to predict Faecal Indicator Organism194

concentrations, including Enterococci and E Coli, based on the predictive variables selected by195

the Gamma-GA tests. Each network consists of an input layer, an output layer, and one hidden196

layer. One hidden layer suffices in this case since Masters 1993 showed that networks with one197

hidden layer are generally capable of approximating most underlying functions. The authors also198

tested GG-ANN and SL-ANN networks with two hidden layers and no significant improvement in199

performance was obtained compared to one-hidden-layer networks. The number of nodes required200

in the hidden layer was determined by experimentation to give the best results without overfitting.201

The networks were trained and validated with the ANN function "train" in MATLAB deep202

learning toolbox (Mathworks 2020a). To retain a portion of the data for model validation and203

to avoid over-training, the data set was divided to three sets, namely the training, validation, and204

testing sets. For each of the three realizations in the M-test, the data were grouped into the three sets205

according to the data order (i.e. the 1st to nth data were put into the training set; the 𝑛+1-th to 𝑚-th206

data were put into the validation set; the 𝑚 + 1-th to the end of the data were put into the testing set;207

𝑛 < 𝑚). The performance function used in this study was the mean squared error (MSE) between208

model outputs and target data. Training of a network was stopped when no further improvement209

in MSE for the validation data set can be achieved after six iterations. While this method avoids210

parameter (weights and bias) over-training, it does not avoid over-training due to over-complicated211

network architecture and redundant predictive variables. For each network, 300 training runs with212

random initial weights were conducted and the network that provided the minimum MSE was213

chosen. (Iyer and Rhinehart 1999) showed that the network obtained from this approach has a 95%214

confidence level that its MSE is within the lowest 1.0%.215

Linear regression models with their predictive variables selected by the Gamma-GA tests (GG-216

Linear models) and stepwise MLR models (SL-Linear models) were also developed to assess ANN217

model performance.218
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MODEL APPLICATION219

The model was applied to Swansea Bay, located on the north of the Bristol Channel in the220

South West of the UK, as shown in Fig. 2a. Along the bay are two sandy beaches with bathing221

water status: the Swansea Beach and the Aberavon Beach. Potential sources of FIO in the Bay are222

the discharges from rivers, streams, surface water drains, three offshore outfalls from wastewater223

treatment works, and transport by currents from sources outside of the Bay. Large amount of data224

were collected as a part of the previous Smart Coast Sustainable Communities (SCSC) research225

project (Wyer et al. 2013b, Wyer et al. 2018) which alongside the variety of the sources make the226

bay an ideal case study for data-driven modelling. The stream and drain discharges are generally227

low (< 1𝑚3/𝑠); River Tawe, Clyne, Neath, and Afan have relatively high flow rates (> 5𝑚3/𝑠). The228

water is well mixed in the Severn Estuary and Bristol Channel (Uncles 1981; Evans et al. 1990;229

Ahmadian et al. 2013). FIO concentrations in the beaches are governed by the sources and the230

hydrodynamics in the Bay (Ahmadian et al. 2013).231

The concentrations of two FIO species, namely E Coli and Enterococci, were sampled at various232

sources and receptors at high frequency, i.e. intervals of 15-30 min, in year 2011 and 2012. In233

Swansea Beach, the large tidal range (exceeding 10 m) and sloping beach results in a tidal flat234

exposed up to 1500 m from shore during high spring tides. The large extent of the tidal flats235

makes single point FIO concentration measurement impossible. In the data collection scheme, FIO236

concentrations were measured along a sampling transect consisting of Designated Sampling Points237

(DSPs) in Swansea Bay, as shown in Fig. 2a. Fig. 2b shows the DSPs in the sampling transect in238

the 2011 bathing season. Environmental variables such as stream flow, tidal, meteorological, and239

water quality data at the locations are also shown in Fig. 2a. The samples were collected in sterile 1240

L containers (Aurora Scientific) and stored in a refrigerator before analysis. The samples were then241

analysed for intestinal Enterococci and E Coli with standard membrane filtration techniques and242

analysed for turbidity with a bench turbidity meter (Hannah Instruments LP2000). Salinity was also243

measured with a conductivity meter (Mettler Toledo SevenGo). Fig. 2a also shows the sampling244

locations of the environmental variables in the SCSC project. Tide level and the flow rates at river245
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Tawe, Neath and Afan were measured by the existing gauges in the hydrometric monitoring network246

operated by Natural Resources Wales (NRW), the official natural resource management organisation247

in Wales. The water depths and velocities at the five smaller streams were measured by pressure248

transducers (OTT Orpheus Mini) and electro-magnetic velocity meters (Sensa RC2) respectively.249

Global radiation, temperature, relative humidity, rainfall, and wind speed were measured at the250

meteorological station. Global radiation was measured by a pyranometer (Skye Instruments SKS251

1110); air temperature and relative humidity were measured by a sensor (Rotronic HygroClip2252

HC2-S3); rainfall was measured with a tipping bucket rain gauge (Met One Instruments 370C 20.3253

cm aperture, 0.2 mm tip); Wind speed and direction were measured with an anemometer (Gill254

Instruments WindSonic). Offshore wastewater discharge volumes were also measured in the SCSC255

project but were not included as potential model outputs because the tracer study conducted as a part256

of the SCSC project (Ahmadian et al. 2013) and the two-dimensional TELEMAC hydrodynamic257

simulation conducted by the authors suggested that they are not important for FIO concentrations258

at the DSPs compared to other FIO sources (not shown).259

Table 1 and 2 summarises the data set used in this paper. The target variables were Enterococci260

and E Coli concentrations measured at the Bathing Water Designated Sampling Points (DSPs)261

during a bathing season, namely 22 June to 28 September, 2011. The input data set included 16262

environmental variables measured in the same bathing season as shown in Table 2. The range263

of values of different input and target variables were significantly different, as shown in Table 1264

and 2, due to the large number of factors that affects bacteria concentrations. In order to ensure265

consistency between data and reduce the impact of variation ranges on the model, all the data have266

been normalized to the range of 0-1 using the following equation:267

𝑥 𝑗 ,𝑛𝑜𝑟 =
𝑥 𝑗 − 𝑥 𝑗 ,𝑚𝑖𝑛

𝑥 𝑗 ,𝑚𝑎𝑥 − 𝑥 𝑗 ,𝑚𝑖𝑛
(13)268

where 𝑥 𝑗 and 𝑥 𝑗 ,𝑛𝑜𝑟 are the un-normalized and normalized 𝑗-th variable; 𝑥 𝑗 ,𝑚𝑎𝑥 and 𝑥 𝑗 .𝑚𝑖𝑛 are269

the maximum and minimum of the time series 𝑥 𝑗 , before data processing and model training.270

Logarithmic transformation was applied to the variables that have relatively high skewness to271
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transform them from a lognormal-like distribution to a normal-like distribution. This transformation272

is necessary because stepwise-MLR models assume normally distributed data (skewness=0). If the273

data has a significant skewness, the stepwise-MLR variable inclusion/exclusion procedures may not274

be suitable and subsequently the model would not result in good validation. Collinearities among275

variables were identified and redundant variables were removed. In order to build memory of the276

past conditions, e.g. solar radiation or rain prior to the simulation, and time required for transport277

of bacteria across the bay, which could significantly affect the concentration of bacteria, in the278

data-driven model, time-lagged variables were also considered as the input variables. Correlation279

analysis was conducted to identify collinear variables and determine and lag time that does not280

cause additional collinearity issues.281

RESULTS AND DISCUSSION282

Input variable selection283

From the correlation analysis, 23 input variables were identified as shown in the column284

“Variables identified from the correlation analysis” in Table 3. Only one single representative285

stream flow, the flow of the Tawe River, was selected since flows at different streams with no time286

lag were found highly correlated. Such a high correlation could be explained by the small size287

of catchment associated with each stream, which means all streams are influenced with similar288

weather, and particularly rainfall, patterns. Burton et al. 2013 reported that the spatial correlation289

of rainfall at the site remains higher than 0.5 for two points that are 100 km apart, implying that the290

rainfall is correlated within a 100 x 100 = 10,000 km2 area. This area is larger than the sum of the291

watersheds of three major rivers discharging to the Bay (506.4 km2), namely the watershed for River292

Tawe (227.7 km2), River Neath (190.9 km2), and River Afan (87.8 km2). Turbidity and salinity293

were also found highly correlated with the streamflow and thus eliminated from the data set. This294

is consistent with the idea in Thoe and Lee 2014 that salinity reflects the mixing between riverine295

freshwater and the ambient sea water. The correlation analysis also shows high correlations between296

a time-lagged variable and the same variable with no time-lag if the time lag is not sufficiently long297

as expected. The correlation between the no time-lag and time-lagged streamflow remains high (>298
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0.6) for a lag time from 0.25-36 hours; only the streamflow with 10-hour lag was selected following299

hydrodynamic model results (Lam and Ahmadian 2022). For other variables, the minimum time-300

lag from the FIO data was 2 hours to render the AI model predictive. Additional time-lags were301

applied to these variables at suitable time intervals such that the correlations between time-lagged302

and unlagged variables were not significant (< 0.6). The time intervals determined by correlation303

analysis were as follows: 2 hours for tides; 2 hours for radiation; 6 hours for humidity; 0.25-hour304

intervals for rainfall; 4 hours for temperature; 4 hours for wind speed N; 8 hours for wind speed305

E. Table 3 shows that the time interval for rainfall is greater than 0.25-hour; it is because rainfall306

was not expected to have an immediate effect on FIO concentrations from physical process point307

of view.308

Table 3 shows the predictive variables identified by the Gamma-GA tests and stepwise MLRs.309

For consistency of comparison between the methods and prevent over-paramatization, both Gamma-310

GA tests and stepwise MLRs were constrained to choose a maximum of eight variables. Ideally,311

an interpretability analysis of the variables identified by Gamma-GA tests and stepwise MLRs is312

desirable to assess the performance of Gamma-GA tests, but such comparison requires a priori313

knowledge about the relative importance of the variables in the site, which is not available to date.314

Nevertheless, the physical plausibility of the selected variables is discussed as follows. Tide level315

was selected to be an important variable by both Gamma-GA tests and stepwise-MLR models. The316

results are consistent with the fact that tides were shown important to the flow in Swansea Bay317

(Ahmadian et al. 2013) as well as FIO concentrations (Lam and Ahmadian 2022). Tides were also318

identified as an important variable in other data-driven models for other nearshore coastal waters319

(Crowther et al. 2001; Nevers and Whitman 2005; He and He 2008; Zhang et al. 2012). Wind was320

also shown important for FIO concentration by both predictive variable identification methods. It321

is consistent with the stepwise-MLR results in Wyer et al. 2013b. Streamflow, as a known FIO322

source (e.g. Wyer et al. 2010; Wyer et al. 2013a; Lam and Ahmadian 2022), was included by323

only Gamma-GA model for Enterococci but the variable was not included for other tests. This is324

attributed to the small spatial and temporal scale (in a watershed of about 500 km2 and sampling325

13 Lam, October 3, 2022



interval of 30 minutes) of the site. In this study, flow rates of different rivers under a time lag326

of less than 36 hours are highly correlated and one representative streamflow (River Tawe) at one327

particular time lag (10 hours) was selected. Information concerning the exact riverine FIO sources328

for the measured FIO concentration was lost. In summary, Gamma-GA test can identify predictive329

variables that are consistent with the literature.330

M-test331

M-test was conducted for variables identified by the Gamma-GA tests and stepwise MLRs to332

determine the data length needed for model training. Fig. 3 shows that the Gamma-GA tests selected333

variables that achieve lower (i.e. better) |Γ| compared to the stepwise MLRs given a sufficiently334

long data (e.g. beyond 500 data points) which means that the data length for model training335

should be greater than 200 for Gamma-GA test to give better results compared with stepwise MLR.336

Following the M-test, the ratio of data points in training, validation and testing sets is 0.6:0.2:0.2,337

giving 949 x 0.6 = 571 data points in the training set, which satisfies the minimum of 200 data338

points imposed by the M-test. The mean and standard deviation values of the training, validation,339

and testing data sets are checked to be approximately comparable in all three realizations.340

ANN model results341

Selection of number of nodes342

Fig. 4 shows a typical relationship between MSE and number of hidden layer node for Entero-343

cocci. SL-ANN models reached lower MSEs when there were few nodes in the hidden layer. As344

there were more hidden layer nodes (>10), GG-ANN models achieved better performance. For E345

Coli, Fig. 5 shows that GG-ANN and SL-ANN models gave similar MSEs. The fact that GG-ANN346

and SL-ANN models gave similar MSEs does not conflict with the M-test results. Although the347

M-test results suggested that the Gamma-GA tests identified variables had the potential to achieve348

lower MSEs, M-test does not specify the nonlinear model that gives such results. It is possible349

that other nonlinear models other than ANN give better results in comparison to the Gamma-GA,350

however, this is out of the scope of this study. For further comparison between models developed351

from the Gamma-GA tests and stepwise MLRs, networks with 1 to 50 nodes in the hidden layer352
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were tested and the number of nodes in the hidden layer was selected based on providing the lowest353

validation MSE. The MSE resulting from different networks with a different number of nodes in354

the hidden layer is illustrated in Fig. 4 and 5.355

Mean squared error (MSE) and 𝑅2
356

Fig. 6 and 7 show the comparison between GG-ANN model results and target FIO concentrations357

for training, validation, and test data sets, as well as all data. Table 4 and 5 show the comparison358

between GG-ANN, SL-ANN, GG-Linear, and SL-Linear models. For most ANN models, the359

optimal SL-ANN models consisted of fewer hidden layer nodes compared to GG-ANN models,360

which is consistent with the section "Selection of number of nodes". GG-ANN and SL-ANN361

models gave better MSE and 𝑅2 than GG-Linear and SL-Linear models. This shows the capacity362

of nonlinear models in capturing inherent nonlinear relationships between variables and FIO363

concentrations. GG-ANN models gave better training, validation, and testing results than SL-ANN364

models for Enterococci, but SL-ANN models gave better validation and testing results for E Coli.365

The better GG-ANN performance for Enterococci can be explained by the fact that GG-ANN better366

captures extreme FIO concentrations as illustrated in section "Performance Table". This GG-ANN367

property helps the models perform better for Enterococci because there are more extreme values368

for the data series of Enterococci (17.8% of the data was below 0.1 or above 0.9) compared to E369

Coli (8.9% of the data was below 0.1 or above 0.9). The MSE of SL-Linear models was better370

than the one of the GG-Linear models, verifying the fact that stepwise MLR chooses variables that371

optimize linear model performance compared to Gamma-GA test.372

Performance tables373

The ability to identify the most hazardous circumstances, namely poor water quality conditions,374

are particularly important when a real-time predictive model is used as an early warning system.375

The EU rBWD (European Commission 2006) considers the water quality in a bathing site "poor" if376

the 90-percentile FIO concentration in the log-normal distribution obtained from the last assessment377

period (usually the last four bathing seasons) exceeds a given threshold. The threshold is 185 cfu/100378

mL for Enterococci and 500 cfu/100 mL for E Coli. In this study, the use of 90-percentile values is379
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not sensible since water quality is being predicted at a 30-minute interval. To test the models’ ability380

to identify poor water quality events, individual Enterococci and E Coli concentration values were381

compared to the 185 cfu/100 mL and 500 cfu/100 mL thresholds, respectively. Fig. 8 shows the382

performance tables of the data-driven models in correctly predicting poor water quality under the383

EU rBWD classification for the testing sets. In this context, sensitivity and specificity are defined384

as:385

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑜𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑞𝑢𝑎𝑙𝑖𝑡𝑦
(14)386

387

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑜𝑡 𝑝𝑜𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑜𝑡 𝑝𝑜𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑞𝑢𝑎𝑙𝑖𝑡𝑦
(15)388

To explain, sensitivity represents the likelihood that a poor water quality event is correctly predicted.389

Specificity represents the likelihood that a "not poor" water quality event is correctly predicted.390

It can be alternatively interpreted as a minus false alarm rate. Being consistent with the result391

that the ANN models gave better MSE and 𝑅2 values, the ANN models gave significantly higher392

sensitivity than the linear regression models: 24-62% and 0%-14% respectively. The observation393

that nonlinear models give more accurate FIO predictions is consistent with Thoe et al. 2015. The394

results are also consistent with Zhang et al. 2012 that ANNs capture extreme FIO values better than395

linear regression models. Sensitivities of GG-ANN models were higher than the ones for SL-ANN396

models for both Enterococci and E Coli, despite the MSEs for SL-ANN models being lower than397

the ones for GG-ANN models for E Coli. It suggests that GG-ANN models better capture high398

FIO concentrations compared to SL-ANN models. The sensitivity of SL-Linear models was better399

than the one of GG-Linear models as expected from the MSE and 𝑅2 results. Specificities for all400

the models tested were always higher than 90%. This is probably due to the small proportion of401

poor water quality events during the study period.402

Sensitivity was higher for Enterococci concentrations than for E Coli in Fig. 8 for GGANN403

models. The same was observed in the performance tables for the entire data set (949 data points).404

An explanation can be given from the probability distribution of the Enterococci and E Coli data.405
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A Chi-square test showed that both data follow lognormal distributions with a confidence level of406

above 95% if very small values (<3 cfu/100 mL) were removed. From the respective probability407

distribution functions, the exceedance probability of the Enterococci threshold (15.9%) was higher408

than the one of E Coli (5.5%) from the entire data set. With a lower exceedance probability, models409

that better capture extreme values are required to achieve a better sensitivity for E Coli compared410

to Enterococci concentrations.411

DISCUSSION412

Gamma test is a promising tool to identify input data for a data-driven model because it is413

nonlinear, and it does not require a regression equation a priori. Nevertheless, these advantages414

do not imply that Gamma tests can be applied with no knowledge about the waterbody or the415

data to which the test is applied. In this paper, a correlation analysis was conducted prior to the416

Gamma-GA tests to remove highly correlated candidate predictive variables.417

The GG-ANN and SL-ANN models fitted better to the measured FIO concentrations and418

captured better the extreme FIO concentrations compared to GG-Linear and SL-Linear models.419

This is consistent with Zhang et al. 2012 for FIO concentrations and Keiner and Yan 1998 for420

chlorophyll-a and suspended sediments. While Zhang et al. 2012 arrived at this conclusion by421

comparing 15-variable ANN models to 5 or 6-variable linear regression models, this study confirms422

their findings with the same number of explanatory variables used in the ANN and linear models.423

This demonstrates the importance of including nonlinearity in capturing high FIO concentrations.424

The effect of nonlinearity of ANN is also reflected in higher sensitivities of GG-ANN and SL-425

ANN models compared to GG-Linear and SL-Linear models. Comparing GG-ANN and SL-ANN426

models, GG-ANN models gave better results for Enterococci for all training, validation and testing427

sets and most of the training sets for E Coli. While SL-ANN models gave better testing results428

for E Coli, GG-ANN models gave higher sensitivities for both Enterococci and E Coli, showing429

that Gamma-GA models select variables that capture better extreme FIO concentrations compared430

to the stepwise MLR. The results suggest that GG-ANN model is more suitable for bathing water431

quality warning applications in which predicting high FIO concentrations is the major concern.432
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This paper presented a GG-ANN model training and validation framework which is generally433

applicable to different sites, although a new GG-ANN model development is required for every new434

study. Once the GG-ANN model is developed, it can discern critical parameters from redundant435

parameters for water quality prediction and to keep the sampling cost of running the model in436

real-time limited by only measuring critical parameters. The data used in this paper had a very437

short (0.5 hr) sampling interval, while the commonly used sampling intervals are usually in the438

order of days (He and He 2008; Zhang et al. 2012; Thoe et al. 2015; Zhang et al. 2018). The439

models used in this paper generally gave lower 𝑅2 than the daily predictions of water quality in the440

literature. This highlights the difficulty of short-term water quality prediction; further study of the441

effect of time-scale on prediction accuracy is needed. While Zhang et al. 2018 attempted to predict442

water quality with ANN at different time-scales, their results were not conclusive. Nevertheless,443

this paper highlights the potential for a combination of Gamma-GA test and a nonlinear predictive444

model to give timely bathing water quality prediction. This can be used as early warning systems445

on impending poor water quality together with real-time environmental sensors.446

CONCLUSION447

This paper develops a data-driven model for FIO concentration prediction with only limited448

number of critical and without unnecessary input variables. The performance of Gamma-GA test449

as a tool for predictive variable identification of Enterococci and E Coli at interval of 30 minutes450

was evaluated. ANN and linear regression models were developed from the variables identified451

from Gamma-GA test and stepwise MLR for comparison. The GG-ANN models gave better results452

for Enterococci for all training, validation and testing sets and most of the training sets for E Coli.453

The results also demonstrated the potential for Gamma-GA test to identify variables that give a454

better model compared to stepwise MLR. While SL-ANN models usually gave better MSE and 𝑅2
455

for testing results of E Coli, GG-ANN model was better in identifying events of poor water quality.456

This illustrates the merit of nonlinear variable identification approach – the variables identified are457

more capable of predicting high FIO concentrations. Therefore, GG-ANN model is more suitable458

for bathing water warning applications in which predicting high FIO concentrations is the major459
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concern. For the two variable identification approaches, ANN models were better than linear460

regression models in terms of MSE, 𝑅2 as well as sensitivity. This result again highlighted the461

importance of including nonlinear effects in prediction models.462

In conclusion, this paper demonstrated the potential of combining Gamma-GA test and ANN463

to predict bathing water quality. Prior to the variable identification tests, a correlation analysis was464

conducted to remove redundant variables in the data set. The need of such an analysis illustrates465

the importance of understanding the data set in the development and application of data-driven466

models.467
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The following symbols are used in this paper:481

𝐴 = the slope for the Gamma test regression equation;

𝑓 (·) = the nonlinear smooth function relating x𝑖 and 𝑦𝑖;

𝑀 = the total number of time instants of the data;

𝑟 = random variable (noise);

X = the linearly independent environmental variables;

x𝑖 = the linearly independent environmental variables at time instant 𝑖 (i.e. the data point at 𝑖);

x′
𝑖

= the imaginary environmental variables at time instant 𝑖;

x𝑁 [𝑖,𝑘] = the 𝑘-th nearest data point to x𝑖;

𝑥 𝑗 = the 𝑗-th environmental variable;

𝑥 𝑗 ,𝑛𝑜𝑟 = the normalized 𝑥 𝑗 ;

𝑥 𝑗 ,𝑚𝑎𝑥 = the maximum value of variable 𝑥 𝑗 ;

𝑥 𝑗 ,𝑚𝑖𝑛 = the minimum value of variable 𝑥 𝑗 ;

y = target data (FIO concentrations);

𝑦𝑁 [𝑖,𝑘] = the target data value associated with x𝑁 [𝑖,𝑘] ;

𝛾 = an estimate of variability among x𝑖, 1 ≤ 𝑖 ≤ 𝑀;

Γ = the intercept for the Gamma test regression;

𝛿 = an estimate of variability among 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑀

482
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TABLE 1. Measured FIO concentrations during 22 June-28 September, 2011. Ln denotes natural
logarithm.

Variables Ln transformation
Range after transformation
min max

FIO Data:
E Coli (cfu/100 mL) Yes 1.10 8.04

Enterococci (cfu/100 mL) Yes 1.10 8.37
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TABLE 2. Measured environmental variables during 22 June-28 September, 2011. Ln denotes
natural logarithm.

Variables Ln transformation
Range after transformation
min max

Stream flow data:

Washinghouse Brook (m3/s) Yes -4.71 -0.03
Brockhole Stream (m3/s) Yes -5.30 -1.94

Clyne River (m3/s) Yes -2.42 1.98
Brynmill Stream (m3/s) Yes -4.20 1.33

River Tawe (m3/s) Yes 0.843 5.15
River Neath (m3/s) Yes 0.642 5.03
River Afan (m3/s) Yes 0.298 4.23

Tidal data: Normalized Tide level at Mumbles (–) No -0.499 0.483

Meteorological data:

Global radiation (W/m2) Yes -1.97 6.86
Temperature (𝑜C) No 8.92 23.2

Relative humidity (%) No 34.3 99.0
Rainfall (mm) Yes -13.8 0.588

Wind speed to the North (m/s) No -11.6 4.14
Wind speed to the East (m/s) No -5.90 6.64

Water quality data:
Turbidity (NTU) Yes 0.843 4.97

Salinity (ppt) No 1.90 153
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TABLE 3. Predictive variables selected by the Gamma-GA tests and stepwise MLRs

Variables identified from the
correlation analysis

Enterococci E Coli
Gamma-GA

test
Stepwise Linear

model
Gamma-GA

test
Stepwise Linear

model
Streamflow [lag 10 h] 1 0 0 1

Mumbles Level [lag 2 h] 0 0 0 0
Mumbles Level [lag 4 h] 1 0 1 1
Mumbles Level [lag 6 h] 1 1 1 0

Global Radiation [lag 2 h] 0 1 0 1
Global Radiation [lag 4 h] 0 0 1 0
Global Radiation [lag 6 h] 1 0 0 0

Temperature [lag 2 h] 1 0 0 1
Temperature [lag 6 h] 1 0 1 0

Relative Humidity [lag 2 h] 0 1 0 1
Relative Humidity [lag 8 h] 1 0 1 0

Cum. of Rain [lag 2 h] 0 0 0 0
Cum. of Rain [lag 3 h] 0 0 0 0
Cum. of Rain [lag 4 h] 0 0 0 0
Cum. of Rain [lag 6 h] 0 0 0 0
Cum. of Rain [lag 8 h] 0 0 0 0
Cum. of Rain [lag 10 h] 0 0 0 0
Cum. of Rain [lag 12 h] 0 1 0 0
Wind Speed N [lag 2 h] 0 1 1 1
Wind Speed N [lag 6 h] 0 0 1 0
Wind Speed N [lag 10 h] 0 1 0 1
Wind Speed E [lag 2 h] 1 1 1 1
Wind Speed E [lag 10 h] 0 1 0 0

"1" denotes selected and "0" denotes not-selected.
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TABLE 4. MSE and unadjusted 𝑅2 between computed and measured Enterococci concentrations.
The best results for each Realization are bolded.

Realization 1
Hidden layer

node no.
MSE 𝑅2

Training Validation Testing Training Validation Testing
GG-ANN 35 0.0074 0.0157 0.0214 0.8369 0.6654 0.5361
SL-ANN 11 0.0210 0.0232 0.0260 0.5400 0.5079 0.4357

GG-Linear N/A 0.0357 0.0399 0.2224 0.1348
SL-Linear N/A 0.0311 0.0328 0.3235 0.2883
Realization 2

Hidden layer
node no.

MSE 𝑅2

Training Validation Testing Training Validation Testing
GG-ANN 38 0.0134 0.0172 0.0227 0.7177 0.6025 0.4993
SL-ANN 6 0.0257 0.0194 0.0295 0.4542 0.5518 0.3611

GG-Linear N/A 0.0368 0.0352 0.2021 0.2246
SL-Linear N/A 0.0312 0.0322 0.3229 0.2895
Realization 3

Hidden layer
node no.

MSE 𝑅2

Training Validation Testing Training Validation Testing
GG-ANN 40 0.0071 0.0188 0.0199 0.8292 0.6457 0.6156
SL-ANN 12 0.0192 0.0243 0.0225 0.5385 0.5418 0.5699

GG-Linear N/A 0.0359 0.0393 0.1944 0.2403
SL-Linear N/A 0.0320 0.0293 0.2812 0.4337
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TABLE 5. MSE and unadjusted 𝑅2 between computed and measured E Coli concentrations. The
best results for each Realization are bolded.

Realization 1
Hidden layer

node no.
MSE 𝑅2

Training Validation Testing Training Validation Testing
GG-ANN 25 0.0067 0.0159 0.0214 0.8396 0.6077 0.5312
SL-ANN 18 0.0096 0.0154 0.0174 0.7705 0.6198 0.6177

GG-Linear N/A 0.0325 0.0342 0.2166 0.2482
SL-Linear N/A 0.0297 0.0305 0.2838 0.3290
Realization 2

Hidden layer
node no.

MSE 𝑅2

Training Validation Testing Training Validation Testing
GG-ANN 13 0.0119 0.0178 0.0205 0.7208 0.5939 0.4801
SL-ANN 18 0.0113 0.0135 0.0188 0.7370 0.6914 0.5221

GG-Linear N/A 0.0331 0.0315 0.2294 0.1996
SL-Linear N/A 0.0299 0.0295 0.3041 0.2484
Realization 3

Hidden layer
node no.

MSE 𝑅2

Training Validation Testing Training Validation Testing
GG-ANN 25 0.0073 0.0146 0.0196 0.8066 0.6747 0.6337
SL-ANN 27 0.0091 0.0155 0.0186 0.7582 0.6539 0.6501

GG-Linear N/A 0.0321 0.0363 0.1873 0.3181
SL-Linear N/A 0.0297 0.0310 0.2501 0.4167
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Fig. 1. Flow chart for the modelling approach.
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(a)

(b)

Fig. 2. (2a) Site layout and key sampling locations in Swansea Bay, UK. (2b) A close-up of
Designated Sampling Points (DSPs, in purple) in the sampling transect in Figure 2a in the 2011
bathing season at 30-minute intervals from 07:00 to 16:00. Base map: (2a) Esri; (2b) Google
Earth.
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(a)

(b)

Fig. 3. M-test results for (3a) Enterococci, Realization 3 and (3b) E Coli, Realization 1.
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(a)

(b)

(c)

Fig. 4. Mean squared errors (MSEs) for the (4a) training, (4b) validation, and (4c) testing sets of
GG-ANN and SL-ANN models versus number of hidden layer nodes for Enterococci, Realization
3.
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(a)

(b)

(c)

Fig. 5. Mean squared errors (MSEs) for the (5a) training, (5b) validation, and (5c) testing sets of
GG-ANN and SL-ANN models versus number of hidden layer nodes for E Coli, Realization 1.
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(a) (b)

(c) (d)

Fig. 6. Regressions between target Enterococci concentrations and GG-ANN model outputs for
(6a) training; (6b) validation; (6c) testing; and (6d) all data sets, Realization 3. LCC: Linear
correlation coefficient.
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(a) (b)

(c) (d)

Fig. 7. Regressions between target E Coli concentrations and GG-ANN model outputs for (7a)
training; (7b) validation; (7c) testing and (7d) all data sets, Realization 1. LCC: Linear correlation
coefficient.
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Fig. 8. Performance tables for data-driven models; (left) Enterococci, Realization 1, testing sets;
(right) E Coli, Realization 3, testing sets. (8a, 8b) GG-ANN models; (8c, 8d) SL-ANN models;
(8e, 8f) GG-Linear models; (8g, 8h) SL-Linear models.

40 Lam, October 3, 2022


	Collinearity analysis
	Gamma test and Genetic Algorithm
	Artificial Neural Network (ANN)
	Input variable selection
	M-test
	ANN model results
	Selection of number of nodes
	Mean squared error (MSE) and R2
	Performance tables


