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Abstract Text: The Tibetan Plateau is a key region to understand the evolution of the 23 

Tethys Oceans. To better constrain the tectonic evolution of the Proto-Tethys Ocean on 24 

the western margin of the Yangtze plate, we present an integrated petrography, 25 

geochemistry, and zircon U-Pb-Lu-Hf isotope study on newly recognized early Silurian 26 

gabbro and serpentinite rocks from the eastern Yidun terrane of the Tibetan Plateau. 27 

Zircon U-Pb dating of the gabbro yields an Early Silurian age of 438.2 ± 2.8 Ma. Zircon 28 

εHf(t) values of 5.4 to 8.5 suggest a single-stage model age (TDM1) ranging from 729 to 29 

858 Ma. The gabbros exhibit low total rare earth element abundances but are 30 

moderately enriched in the light rare earth elements and the large-ion lithophile 31 

elements (e.g., Rb, Ba, and Sr), and display representative negative high-field strength 32 

elemental anomalies for Nb, Ta, Zr, and Hf on spidergrams. The gabbro and 33 

serpentinites were derived from a depleted mantle-like source made of garnet-spinel 34 

lherzolite composition, from a sub-arc mantle wedge that was metasomatized by slab 35 

dehydration. Thus, the gabbro and serpentinites record an Early Silurian subduction 36 

event of the Proto-Tethys Ocean under the Yangtze plate. Furthermore, this study 37 

confirms that the Yidun terrane on the western margin of the Yangtze plate is 38 

underlined by a Precambrian crystalline basement. 39 
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1. Introduction 44 

Tethys, also known as the Tethys Sea or Tethys Ocean, was proposed in 1893 by 45 

the Austrian geologist Eduard Suess (Sengör, 1984), as a vast Mesozoic paleo-ocean 46 

that separated the Gondwana continent in the south, from the Angolan paleo-continent 47 

in the north. Much research has been devoted to geological studies of the East Tethys 48 

tectonic belt, mainly on the Tibetan Plateau, due to the importance of this extensive 49 

tectonic belt for understanding past plate reconstructions and geodynamics (Reid et al., 50 

2005; Yan et al., 2005; Jian et al., 2008; Hu et al., 2009; Jian et al., 2009a; b; Roger et 51 

al., 2010; Wang et al., 2012; Zi et al., 2012; Hu et al., 2013; Hu et al., 2014; Wang et 52 

al., 2016a; Li et al., 2017; Zhao et al., 2017; Zhao et al., 2018; Liu et al., 2019; Xu et 53 

al., 2021). Based on a multidisciplinary dataset, four Tethyan ocean basins have been 54 

recognised in Asia (Metcalfe, 2021), the Proto-Tethys (Sinian-Silurian), Paleo-Tethys 55 

(Middle Devonian-Late Triassic), Meso-Tethys (Middle Permian-Late Cretaceous) and 56 

the Ceno-Tethys (Late Middle Triassic-Eocene). 57 

The Sanjiang orogenic belt in southwest China has a complex geological 58 

architecture, being the result of intensive interactions between the Tethys Ocean, the 59 

Pan-Cathaysian terrain group and the Gondwana continental margin, and is formed by 60 

amalgamation of small continental blocks and arc terranes as a result of oceanic 61 

subduction (Jian et al., 2008; Jian et al., 2009a; b; Pan et al., 2016; 2020; Wang et al., 62 

2021). The amalgamation of island arcs and oceanic basins with multiple small terranes, 63 

makes it difficult to determine the polarity of paleo-oceanic plate subduction in this 64 

orogenic belt. For example, previous studies have shown that the subduction polarity 65 
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of the Proto-Tethys Ocean only involved southward subduction (Li et al., 2016a; b). 66 

However, recent research indicates that there was actually a complex subduction 67 

polarity during the Early Paleozoic, in the East Gondwana region (Liu et al., 2021). 68 

Although the Meso-Neotethyan domain in southern Tibet has been well studied, 69 

previous studies on the Tibetan Proto-Tethys have mainly focused on the Longmucuo-70 

Shuanghu and the Changning-Menglian suture zones (Figure 1)–referred to collectively 71 

as the Longmucuo-Shuanghu-Changning-Menglian suture zones (Li et al., 2008; Wang 72 

et al., 2008; Jian et al., 2009b; Zhai et al., 2010; Mao et al., 2012; Zi et al., 2012; Wang 73 

et al., 2013; Zhai et al., 2013; Hu et al., 2014; Zhai et al., 2016; Wang et al., 2019a; 74 

Wang et al., 2020a; Wang et al., 2020b; Liu et al., 2021). More specifically, the lack of 75 

research on pre-Mesozoic igneous rocks from the Yidun terrane raises questions 76 

regarding the existence or absence of a Precambrian basement, and the overall tectonic 77 

evolution of the Proto-Tethys Ocean in the region.    78 

This study explores the geological, geochemical, and geochronological 79 

significance of mafic-ultramafic rocks from Zeluo, Litang County, on the eastern edge 80 

of the Yidun terrane. We investigate their petrogenesis, tectonics and formation ages of 81 

the mafic-ultramafic rocks, and provide new constraints on the tectonic evolution and 82 

subduction polarity of the Proto-Tethys Ocean in the Sanjiang orogenic belt.  83 

 84 

2. Geological setting  85 

The Tibetan Plateau, composed of several micro-continental blocks, is an essential 86 

part of the Himalayan-Tethys tectonic domain (Zhao et al., 2020). From south to north 87 
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(Figure 1), the Himalayan, Lhasa, Qiangtang, Songpan-Garze, and East Kunlun blocks 88 

constitute the central tectonic units of the Tibetan Plateau (Dewey et al., 1988; Zhu et 89 

al., 2013). These blocks assembled after the closure of the Proto-Tethys, the paleo-90 

Tethys, and the neo-Tethys sutures (Pan et al., 2012; Zhao et al., 2018; Xu et al., 2021). 91 

This study concentrates on the Garze Tibetan Autonomous Prefecture, close to the 92 

Garze-Litang suture zone, Sichuan Province (Figure 2), and is divided into the Yidun 93 

and Zhongza-Zhongdian terranes, based on stratigraphic differences (Reid et al., 2005). 94 

The Zhongza-Zhongdian terrane consists mainly of Paleozoic clastic and weakly 95 

metamorphosed carbonate lithologies, accompanied by a small amount of 96 

Neoproterozoic granitic gneisses and metamorphosed volcanic rocks (Xu et al., 2021).  97 

In contrast, the Yidun terrane is more complex, consisting largely of Triassic 98 

volcano-sedimentary rocks and Late Triassic granitic-type lithologies (Figure 2). 99 

However, Early Paleozoic sequences were identified in the eastern part of the Yidun 100 

terrane (i.e., O1t, Figure 3). The results of detrital zircon U-Pb radiometric dating and 101 

sediment source analysis indicates that the Yidun terrane was a part of the Yangtze plate 102 

in the Early Paleozoic, before being rifted apart during the Late Paleozoic (Xu et al., 103 

2021). The Triassic volcano-sedimentary rocks are primarily divided into the Tumugou 104 

and Lamaya Formations (Figure 3). The Tumugou Formation is composed of andesite, 105 

tuff, and clastic sandstones, while the Lamaya Formation consists of epizonal 106 

metamorphic sandstone and slate which have a conformable contact with each other. 107 

The Tumugou and Lamaya Formations were deposited 225–216 Ma and were derived 108 

from the Qiangtang and Zhongza-Zhongdian terranes (Xu et al., 2021). The Zeluo 109 
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ultramafic-mafic rocks are the focus of this study and have a fault-controlled contact 110 

with the Tumugou Formation and Triassic granite (Figure 3). 111 

 112 

3. Petrographic characterization 113 

All samples were collected from Zeluo village, Litang County, on the eastern 114 

margin of the Yidun terrane. Field photographs and sample microphotographs are 115 

shown in Figure 4 and Figure 5, respectively. Twenty-five zircon crystals were obtained 116 

from a mafic intrusive rock sample (TW5546) for zircon U-Pb geochronology. Sixteen 117 

mafic, and three ultramafic rocks, were sampled for whole-rock geochemical analysis. 118 

The ultramafic rocks consist of partially serpentinized peridotites, made up 119 

primarily of harzburgite and strongly serpentinized dunites. The peridotite samples 120 

show various degrees of serpentinization (Figure 4a-c), while the heavily serpentinized 121 

dunites, which contain small amounts of olivine crystals and magnesiochromite (Figure 122 

5e, f), occur as lenses or patches in the Zeluo gabbro (Figure 4a-c). In some of the dunite 123 

samples, the magnesiochromite is altered to magnetite (Figure 5e, f). 124 

The metamorphosed gabbro is composed mainly of tabular, subhedral to prismatic 125 

plagioclase and subhedral granular pyroxene crystals (Figure 5d). Most of the 126 

plagioclase crystals have been replaced and altered to zoisite, albite and sericite. In 127 

addition, the majority of altered actinolite and biotite crystals are subhedral with a 128 

granular texture. Based on pseudo crystal shape, it is speculated that the altered crystals 129 

were originally pyroxenes, with minor quantities of amphibole crystals having also 130 

been replaced. 131 
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 132 

4. Analytical Methods 133 

4.1. LA-ICP-MS U-Pb isotopes 134 

Zircon crystals from one fresh sample (TW5546) were separated by using standard 135 

heavy liquid and magnetic techniques. Representative crystals were selected under a 136 

binocular microscope, set in a resin mount, and polished until their centers were 137 

exposed. Cathodoluminescence (CL) images of the zircon crystals were obtained to 138 

observe their internal textures and help select appropriate analytical sites. Zircon U-Pb 139 

dating was conducted using a laser ablation inductively-coupled plasma mass 140 

spectrometer (LA-ICP-MS) at the State Key Laboratory of Geological Processes and 141 

Mineral Resources (GPMR), China University of Geosciences (Wuhan). A GeoLas 142 

2005 platform and an Agilent 7500a ICP-MS instrument was used to sample and 143 

acquire the ion-signal intensities. The detailed analytical techniques and data 144 

processing procedures were as described by Liu et al. (2009); Liu et al. (2008);Liu et 145 

al. (2010). A common Pb correction method was applied as described by Andersen 146 

(2002). The U-Pb ages were calculated and plotted using the ISOPLOT software 147 

(Ludwig, 2003).  148 

 149 

4.2. LA-MC-ICP-MS Lu-Hf isotopes 150 

In situ Lu-Hf isotope analysis was conducted using a Neptune Plus MC-ICP-MS 151 

(Thermo Fisher Scientific, Germany) in combination with a Geolas HD excimer ArF 152 

laser ablation system (Coherent, Göttingen, Germany) at GPMR. A “wire” signal 153 
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smoothing device was included in this laser ablation system, to enable the production 154 

of a smooth signal (Hu et al., 2015). Helium was used as carrier gas within the ablation 155 

cell and was merged with argon after exiting the ablation cell. Small amounts of 156 

nitrogen were added to the argon gas flow to enhance signal sensitivity (Hu et al., 2012). 157 

All data acquired on the zircon crystals was done by using a single spot ablation 158 

technique, with a spot size of 44 μm. The energy density used in this study was ~7.0 J 159 

cm−2. Each measurement consisted of 20s of acquisition of the background signal 160 

followed by 50s of ablation signal acquisition. The operating conditions for the laser 161 

ablation system and the MC-ICP-MS instrument, and analytical methodology, were as 162 

described by Hu et al. (2012). The 179Hf/177Hf and 173Yb/171Yb ratios were used to 163 

calculate the mass bias of Hf (βHf) and Yb (βYb), normalized to 179Hf/177Hf = 0.7325 164 

and 173Yb/171Yb = 1.132685 (Fisher et al., 2014) using an exponential correction for 165 

mass bias. Interference of 176Yb on 176Hf was corrected by measuring the interference-166 

free 173Yb isotope and using 176Yb/173Yb = 0.79639 (Fisher et al., 2014) to calculate 167 

176Yb/177Hf. Similarly, the relatively minor interference of 176Lu on 176Hf was corrected 168 

by measuring the intensity of the interference-free 175Lu isotope and using the 169 

recommended 176Lu/175Lu = 0.02655 (Fisher et al., 2014) to calculate 176Lu/177Hf. We 170 

used the mass bias of Yb (βYb) to calculate the mass fractionation of Lu because of 171 

their similar physicochemical properties. Off-line selection and integration of analyte 172 

signals, and mass bias calibrations were performed using ICPMSDataCal (Liu et al., 173 

2010). 174 

During the LA-MC-ICP-MS analysis, three standard zircons, 91500, GJ-1 and 175 
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Temora-2 were used. Zircon 91500 was utilised as the external standard, whereas GJ-1 176 

and Temora-2 were treated as unknown samples to verify the accuracy of the calibration 177 

method. Measured 176Hf/177Hf ratios of standard zircons 91500, GJ-1 and Temora-2 178 

were 0.282308 ± 0.000019 (2σ, n = 36), 0.282011 ± 0.000021 (2σ, n = 16) and 0.282671 179 

± 0.000034 (2σ, n = 16), respectively, which are consistent with their recommended 180 

values of 0.282305 ± 6, 0.282000 ± 5, and 0.282686 ± 8 (2σ) (Fisher et al., 2014). 181 

 182 

4.3. Whole-rock geochemistry 183 

Preliminarily processing of fresh samples was carried out at the Geological Survey 184 

Institute, China University of Geosciences, Wuhan. Samples were powdered to grain 185 

size of less than 75 μm at the State Key Laboratory of Biogeology and Environmental 186 

Geology, China University of Geosciences, Wuhan. Care was taken during the 187 

preparation of the powder to eliminate possible contamination. Major and trace element 188 

analyses were carried out at ALS Minerals–ALS Chemex, Guangzhou, China. Whole-189 

rock major element concentrations were determined by initial acid digestion in lithium 190 

borate, followed by X-ray fluorescence (ME-XRF26d) analysis, with errors being less 191 

than 1%. Trace element and rare earth element concentrations were determined by 192 

mixed acid digestion and plasma mass spectrometry (M61-MS81). Most of the 193 

illustrations in this paper were produced using GEOKIT software (Lu, 2004). 194 

 195 

4.4. Mineral chemistry 196 

Mineral chemical compositions for olivine and clinopyroxene were obtained at the 197 
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Center for Global Tectonics, School of Earth Sciences, China University of 198 

Geosciences, Wuhan, using a JEOL JXA-8230 electron microprobe with an 199 

acceleration voltage and beam current of 5 kv and 20 nA, respectively. An analytical 200 

beam diameter of 3 μm and background counting time of 5s was implemented. 201 

Elemental calibration standards set according to procedures outlined in Wang et al. 202 

(2019b), produced analytical errors of generally less than 2%. 203 

 204 

5. Results 205 

5.1. Zircon U-Pb geochronology 206 

The zircon LA-ICP-MS U-Pb analytical results are given in Table S1 and Figure 207 

6. Analyzed zircons were euhedral to subhedral, being mostly rhombic, prismatic, or 208 

short columnar in shape. A few were irregular or broken ~120–200 μm long crystals 209 

with an aspect ratio of ~1.5–3. Their Th and U contents range from 158–883 ppm and 210 

236–603 ppm, respectively, with generally high Th/U ratios of 0.67–1.55 (Table S1). 211 

Cathodoluminescence (CL) imaging revealed that the 25 analyzed zircon crystals were 212 

non-metamorphic, possessing typical ring structures apparently of igneous origin 213 

(Figure 6a). The 206Pb/238U–207Pb/235U associated ages of 23 zircons ranged from 410 214 

to 445 Ma, with a weighted average 206U/238Pb age of 438.2 ± 2.8 Ma and a greater than 215 

95% data concordance (Figure 6b). Zircon test on crystal No.6 and No.16 were 216 

discarded because they yielded a younger and older age corresponding to a poor 217 

concordance of 92% and 95%, respectively, with large analytical errors (Figure 6a). 218 

   219 
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5.2. Mineral chemistry 220 

The major element content and geochemical parameters calculated by Geokit 221 

Geochemistry (Lu, 2004), of olivine and pyroxene crystals from the Zeluo mafic-222 

ultramafic samples are listed in Table S2 and Table S3, respectively.  223 

 224 
 225 
5.2.1. Olivine 226 

Olivine crystals in the Zeluo ultramafic rocks occur as fine-grained 10–50μm 227 

aggregates (Figure 5e, f). They are characterized by high Fo values, calculated as Fo = 228 

(100 × Mg)/(Mg + Fe) in moles, spanning 92.64–93.54, a MnO content of 0.28–0.39 229 

wt.%, NiO concentrations down to 0.101 wt.%, and widely varying low CaO values of 230 

0.03–0.22 wt.%. 231 

 232 

5.2.2. Pyroxene 233 

The pyroxene crystals are characterized by relatively high MgO (16.04–93.54 234 

wt.%), CaO (25.66–26.1 wt.%), and FeO (1.13–2.8 wt.%). The En values range from 235 

44.41–46.47 and Fs from 3.19–4.3, indicating that they are of diopside composition 236 

(Morimoto, 1988). The cation number for the pyroxenes were calculated based on 6 237 

oxygen atoms and 4 cations. 238 

 239 

5.3. Bulk-rock geochemical compositions 240 

5.3.1. Major elements  241 

The major and trace element concentration data obtained from this study are 242 

displayed in Table S4. For the ultramafic samples loss-on-ignition (LOI) values range 243 
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from 7.94 to 8.37 wt.%, with an average of 8.11 wt.%. They contain 35.37–36.72 wt.% 244 

SiO2 with an estimated average of 36.23 wt.%. Measured MgO content was high and 245 

range from 27.7–30.4 wt.%, while the TFe2O3 composition span 13.64–15.61 wt.%, 246 

being generally low in TiO2 (0.45–0.53 wt.%) and total alkali (K2O+Na2O) (0.01–0.12 247 

wt.%) contents. These ultramafic rocks record an associated Al2O3 and CaO 248 

concentration of 4.66–4.88 wt.% and 5.25–7.08 wt.%, respectively.  249 

Comparatively, LOI values for the mafic samples change from 0.85 to 2.74 wt.%, 250 

averaging 1.65 wt.%. They contain up to 43.14–50.59 wt.% SiO2 that average 46.65 251 

wt.%. They record a high MgO content of up to 6.98–17.65 wt.%, 6.79–15.94 wt.% 252 

TFe2O3, 0.45–2.45 wt.% TiO2, and a total alkali concentration of 1.17–5.48 wt.%. The 253 

tholeiitic mafic rocks (Figure 7a) with up to 8.11–14 wt.% CaO concentrations, were 254 

found to be relatively enriched in TiO2 and alkali metals compared to the ultramafic 255 

rocks.  256 

 257 

5.3.2. Trace element variations 258 

The ultramafic rocks display REE chondritic distribution patterns (Figure 7b) that 259 

are characterized by decreasing enrichment from left to right. The sloping down REE 260 

pattern exhibits negative Eu anomalies (δEu = 0.66–0.71) and on a primitive mantle 261 

plot, the rocks are shown to be depleted in large-ion lithophile elements (LILEs) such 262 

as Rb, Ba, and Sr, but relatively enriched in Nb, Ta, Zr, and HF compared to neighboring 263 

elements (Figure 7c). Compared to typical OIB and MORB, the ultramafic rocks are 264 

more depleted in the HREEs. 265 
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To the contrary, the mafic rocks tend to possess slightly positive Eu anomalies 266 

(δEu = 1.04–1.41) and an average δEu of 1.18 (Figure 7b). Their REE chondritic 267 

distribution reveals a smooth curve with a tendency to decline to the right. They are 268 

characterized by LREE/HREE ratios of 2.75–5.30 (Avg = 3.44) and an E-MORB-like 269 

La/Yb(N) range of 2.42–6.78. The LILEs Rb, Ba, Pb, and Sr are enriched on the 270 

primitive mantle plot, while the HFSEs Nb, Ta, Zr, and Hf are depleted (Figure 7c). 271 

Collectively these observations suggest a predominantly arc-like geochemical signature 272 

(Zhao and Zhou, 2007).  273 

 274 

5.4. Lu-Hf isotope distribution 275 

Spot analyses on 23 zircon crystals purified from the gabbro yielded Lu/Hf values 276 

ranging from -0.91 to -0.95 (Table S5). These values are much lower than the average 277 

values of -0.34 and -0.72 observed for the mafic and siliceous crusts, respectively 278 

(Vervoort and Jonathan Patchett, 1996; Amelin et al., 1999). The gabbroic 176Hf/177Hf 279 

zircon grain ratios vary from 0.282679 to 0.282760 and correspond to εHf(t) values of 280 

5.3–8.5 with a mean of 6.7 (Figure 8a). This points to single-stage Hf model ages (TDM1) 281 

of 858–729 Ma with a mean of 802 Ma for when the gabbro formed. 282 

 283 

6. Discussion 284 

6.1. Timing of Early Paleozoic mafic-ultramafic magmatism at Zeluo 285 

Based on data compiled from Western Australia, zircons of igneous origin rarely 286 

possess Th/U values <0.1, while metamorphic zircons encompass values ranging from 287 

<0.01 to >10 (Yakymchuk et al., 2018). However, it has been proposed that a Th/U ratio 288 
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of <0.4 is generally a good first-order indicator for distinguishing recycled 289 

metamorphic zircons from igneous lithologies (Yakymchuk et al., 2018). This is 290 

because Th4+ has a larger ionic radius than U4+, and therefore exhibits a weaker stability 291 

than U in the zircon crystal lattice. As a result, Th4+ is easier to expel from the zircon 292 

crystal than U4+ during metamorphic recrystallization, lowering the Th/U ratio in 293 

recycled metamorphic zircons (Hoskin and Black, 2000). Twenty-three of the 25 294 

analyzed zircon crystals exhibit high Th/U ratios ＞0.4 and ranging from 0.67–1.55 295 

(Table S1), pointing to an igneous origin. Moreover, cathodoluminescence images show 296 

that these zircon crystals possess ring structures typical of an igneous source and lack 297 

any evidence for metamorphic recrystallization. The zircon crystals clustered at ~438 298 

Ma, about 200 Ma older than the ~237–216 Ma Triassic magmatism previously 299 

recorded from the region (Figure 3) (Fang et al., 2017). Therefore, an Early Silurian 300 

age of ~438 Ma is taken as the most parsimonious crystallization age of the gabbro.  301 

Early Paleozoic ultramafic-mafic rocks, including ophiolites and arc igneous rocks 302 

(Figure 1) are also present in the Longmucuo-Shuanghu-Changning-Menglian suture 303 

in the Tibetan Plateau, China. For example, U-Pb ages of 438 ± 11 Ma and 431.7 ± 6.9 304 

Ma have been reported by two independent studies on zircons retrieved from a gabbro 305 

pile in the western section of Guoganjianian, south Qiangtang (Li et al., 2008; Wang et 306 

al., 2008). Furthermore, zircon U-Pb ages of ~437–429 Ma for arc igneous rocks in the 307 

same suture zone have also been reported (Liu et al., 2021). Another example of 308 

middle–late Silurian intermediate-mafic magmatism was located just south of the 309 

Changning-Menglian suture zone, at 421.2 ± 1.2 Ma (Mao et al., 2012). These ages 310 
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coincide with the ~450 to 400 Ma late-stage evolution of the Proto-Tethys oceanic basin 311 

(Li et al., 2016b; Wu et al., 2020). Collectively, the data (Figure 1) show that the Proto-312 

Tethys Ocean, in the Tibetan Plateau, underwent continuous evolution during the Early 313 

Paleozoic, and that the Zeluo mafic-ultramafic rocks represent a likely final phase of 314 

the Early Paleozoic magmatism. 315 

 316 

6.2. Alteration 317 

The influence of alteration and metamorphism needs to be evaluated before 318 

pursuing any discussion on source characteristics and tectonic setting (Polat et al., 2002; 319 

Polat and Hofmann, 2003). Previous studies have shown that the LOI value can be used 320 

as a proxy of hydrothermal alteration and that the reconstructed chemical composition 321 

of pristine basaltic melts are reliable when LOI values are <2% (Rosenstengel and 322 

Hartmann, 2012; Hartmann et al., 2015). In this regard, the 0.85–2.74 wt.% LOI values 323 

for the mafic rocks imply weak alteration, while the higher 7.94–8.37 wt.% 324 

concentrations for the ultramafic rocks indicate more extensive alteration (Table S4). 325 

To assess whether highly susceptible elements such as K or Rb, have been altered we 326 

utilize a K2O vs. Rb plot (Figure S1a). This is because K and Rb have opposite alteration 327 

trends, whereby K content decreases at the expense of significant Rb increase during 328 

alteration (Hartmann et al., 2015). The constant K2O vs. Rb slope, together with the 329 

strong positive correlation recorded for the mafic samples are consistent with minimal 330 

alteration, while the ultramafic sample suite is harder to assess due to the lack of 331 

sufficient data spread.  332 
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HFSEs (e.g., Zr, Th, Ta, and Nb, etc.) are geochemically stable and resistant to 333 

metamorphism, alteration, and weathering (Pearce and Cann, 1973; Winchester and 334 

Floyd, 1977). The Zr and Hf concentrations in the Zeluo pluton are seen to 335 

progressively decrease proportionally (Figure S1b), likely related to the crystallization 336 

properties of heavy minerals such as zircon. In reality, a near-constant Zr/Hf ratio has 337 

been observed in many magmatic suites, including low to moderate metamorphic 338 

magmas (Dostal and Chatterjee, 1995; Bryant et al., 1997; Zhang et al., 2014; Wu et al., 339 

2016b), while the Zr/Hf ratio of most crustal rocks is close to 37 (Brooks, 1970). 340 

However, in some cases, these elements are actually mobile and can be transported by 341 

magmatic-, metamorphic-, and submarine-hydrothermal solutions (Jiang et al., 2005). 342 

Studies show that Zr and Hf have obvious differentiation in fluorine-rich fluids or 343 

highly evolved hydrothermal fluids, where the activity of Hf is higher than that of Zr, 344 

resulting in a very low Zr/Hf ratio of ~1–2 in the host rock or heavy minerals (Jiang et 345 

al., 2005; Wang et al., 2010). On a Zr vs. Hf, and a Ta vs. Nb diagram (Figure S1b, c), 346 

there is a strong linear relationship for both the ultramafic and mafic rock samples. 347 

Therefore, the HFSEs in the Zeluo samples were likely resistant to change from any 348 

alteration processes that occurred.  349 

In summary, the constant K2O/Rb ratio, low LOI and high alkali content of the 350 

mafic rocks indicate insignificant modification by alterative processes, while the 351 

ultramafic rocks have undergone more significant alteration.  352 

 353 
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6.3. Crustal contamination  354 

The process of crustal contamination can change a magmas composition and 355 

thermal properties. However, if a magma ascends quickly through the lithosphere or 356 

crust, it may avoid significant contamination (O'Hara, 1968). 357 

A combination of Ce/Pb and La/Nb values can be used to assess the degree of 358 

crustal contamination and mantle mixing processes (e.g., Barry et al. (2003); Rooney 359 

et al. (2007); Sheldrick et al. (2018)), and basalts with high Ce/Pb ratios in the range of 360 

~20–30, are unlikely to have assimilated crustal material (Rooney et al., 2007). La/Nb 361 

ratios of 0.81–1.9 and Ce/Pb ratios of 0.38–3.3 for our samples, plot in the crust-mantle 362 

mixing region on a La/Nb-Ce/Pb diagram (Figure 9a). However, previous work has 363 

shown that Pb is preferentially incorporated into fluids produced by slab dehydration 364 

(Gill and Condomines, 1992; Johnson and Plank, 2000). Therefore, Pb concentrations 365 

in a source region can be enriched by metasomatism following slab dehydration, 366 

resulting in melts from the metasomatised source possessing low Ce/Pb ratios. 367 

Furthermore, when we consider that many crustal components are enriched in Th and 368 

Pb (Zhao and Zhou, 2007), the low Th, Th/Yb, and high Nb/Th in the mafic and 369 

ultramafic rocks indicate that crustal contamination was likely small (Figure 9b, c). 370 

Thus, the extremely low Th content of the mafic rocks is uncharacteristic for significant 371 

crustal contamination. The contribution of crustal materials in the generation of high 372 

Pb concentrations in the mafic rocks is therefore considered to be insignificant. Crustal 373 

xenoliths are absent from both the ultramafic and mafic rocks, which together with the 374 

lack of evidence for inherited zircon crystals, further supports minimal crustal 375 
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contamination.  376 

Overall, although it seems unlikely that the ultramafic and mafic magmatism could 377 

have moved through the continental crust without undergoing crustal contamination, 378 

based on the results discussed above, crustal contamination was broadly minimal. 379 

 380 

6.4. Nature of the mantle source region 381 

The presence of oscillatory zoning in the zircon crystals indicate that they have 382 

not been significantly modified by metamorphic processes and therefore likely retain 383 

their original geochemical composition. Zircon 176Hf/177Hf ratios are believed to 384 

represent the Hf composition of a magmatic system, at the time of their crystallization 385 

(Wu et al., 2007). Many scientists attribute low εHf(t) values of <0 to an ancient crustal 386 

source (e.g., Iizuka et al. (2009)). Alternatively, εHf(t) values >0 may indicate a depleted 387 

mantle magma source (e.g., Amelin et al. (2000)). 388 

As a corollary, the varying zircon εHf(t) values of 5.3–8.5 for the Zeluo mafic rocks 389 

(Figure 8a), imply a depleted mantle source for the magma. However, if we consider 390 

what the theoretical εHf(t) values for depleted mantle should be at ~438 Ma when the 391 

mafic magmatism occurred, the values should be closer to ~15 (Figure 8b). The Zeluo 392 

mafic rocks have an εHf(t) signature lower than expected for a melt extracted from an 393 

isolated and depleted mantle source. These positive εHf(t) values are comparable to 394 

zircons from a mid-Ordovician metamorphic gabbro in the Longmucuo-Shuanghu 395 

suture zone in northern Tibet, with εHf(t) = 4.5–5.9 (Zhai et al. (2010)), or to the 396 

Dongzhulin layered gabbro with εHf(t) = 10.3–12.6 in the Devonian, Jinshajiang suture 397 
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zone (Wang et al. (2012); Figure 1 and Figure 8b), which confirms the existence of a 398 

depleted mantle beneath the crust in the studies area during the early Paleozoic. If the 399 

zircon Hf isotope two-stage crust model ages (TDM) are older than their formation ages, 400 

it can be concluded that the magma was contaminated by crustal materials (Wu et al., 401 

2007; Su et al., 2011), implying the calculated model ages may represent an average 402 

age of the contamination source (Arndt and Goldstein, 1987; Ortega-Obregón et al., 403 

2014). In other words, TDM provides age information for crust contamination (Liu et 404 

al., 2016b). The Zircon Hf model ages of TDM1 = 729–858, TDM2 = 972–1132 for the 405 

Zeluo mafic rocks are much older than their formation ages. Such an observation 406 

indicates that crustal material was incorporated into the depleted mantle prior to mafic 407 

melt extraction. This raises questions as to how and where Neoproterozoic strata were 408 

added to the Early Silurian mafic-ultramafic system. Previous studies indicate that 409 

Neoproterozoic sequences may exist in Yidun terrane (Wu et al., 2016a; Tian et al., 410 

2020; 2022). Thus, the mafic rocks may have acquired their depleted mantle-like εHf(t) 411 

signature from subducted Proto-Tethys oceanic crust components or the Neoproterozoic 412 

strata of the Yidun terrane being melted and incorporated into the source region. The 413 

mafic rocks are enriched in the LILEs and LREEs, and relatively depleted in the HFSEs 414 

and HREEs (Figure 7b, c). The simplest explanation for the enrichment and depletion 415 

of these different trace element systems would be to invoke a source which had 416 

undergone fluid metasomatism from the subduction of oceanic crust (Pearce, 1982). 417 

During fluid processes, Th is an immobile element compared to Ba and Pb (Gill and 418 

Condomines, 1992; Johnson and Plank, 2000), but is efficiently transferred from the 419 
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slab in sediment melt (Johnson and Plank, 2000). Fluids derived from dehydration 420 

reactions, from subducted pelagic sediments, are expected to have a high Ba/Th and 421 

Ba/La ratios, but low (La/Sm)N and Th/Yb ratios (e.g., Woodhead et al. (2001) and 422 

Elliott (2003), Figure 10a, b). Such a source seems possible when we consider that the 423 

Zeluo mafic-ultramafic rocks are located on the western margin of the Yangtze plate, 424 

which is adjacent to the Proto-Paleo-Tethys suture. Such fluids would enrich the mantle 425 

in Pb through metasomatism, consistent with the results observed in Figure 7c. In 426 

addition, previous work which studied the subduction of Proto-Tethys oceanic crust 427 

(Figure 1) details magmatism with similar geochemical signatures near adjacent regions 428 

(Figure 7b and Figure 10a, b). Overall, the data suggest that the source region was 429 

probably a sub-arc mantle wedge, which was metasomatized by fluids extracted from 430 

the Proto-Tethys subducting slab. 431 

 432 

6.5. High Fo olivine values 433 

Previous studies have shown that olivine in peridotite of typical Archean 434 

lithospheric mantle has high Fo values ~92 (Boyd, 1989). For example, elevated olivine 435 

Fo values of ~92 in Hebi high-Mg# peridotite and Siziwangqi peridotite xenoliths were 436 

considered as residues of the Archean lithospheric mantle (Zheng et al., 2001; Tang et 437 

al., 2013; Zhang et al., 2021). In addition, the CaO content of <0.1 wt.% is another 438 

significant feature of Archean mantle-derived olivine (Simkin and Smith, 1970; Xu et 439 

al., 2010; Prelević et al., 2013). On the other hand, olivine crystallized from melts tend 440 

to have >0.1 wt% CaO concentrations and higher MnO contents compared to the mantle 441 
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or lithospheric xenocrysts (Tang et al., 2004; Kamenetsky et al., 2006; Guo et al., 2015; 442 

Cheng and Guo, 2017). In this study, the high CaO concentration in the analyzed olivine 443 

opposes an Archean mantle residue source for the Zeluo ultramafic rocks, likely 444 

indicating that the olivine crystals are a product of fractional crystallization in the melt. 445 

Harker diagrams (Figure 11a-c) show a positive relationship between MgO versus 446 

Cr2O3, TFe2O3, and NiO for the mafic-ultramafic samples, reflecting potential 447 

fractionation of olivine, pyroxene, and accessory minerals (e.g., chromite). Compared 448 

with Fe, Mg in a magma is easily captured and incorporated by early fractional olivine 449 

crystallization. Therefore, the slope of Mg/Fe ratios can be expected to increase 450 

gradually during magma evolution and differentiation (Figure 11b), which supports 451 

olivine crystallization from the melt. In addition, SiO2 correlates with Al2O3, TFe2O3, 452 

and MgO (Figure 11d-f), further indicating that fractional crystallization of pyroxene, 453 

amphibole and plagioclase played a key role in the evolution of the mafic-ultramafic 454 

suite (Meng et al., 2020). 455 

During the crystallization of primitive magma, the exchange of Fe and Mg 456 

between olivine and melt follows a certain partition coefficient, defined by KD = 457 

(FeO/MgO)Ol/(FeO/MgO)melt = 0.3 ± 0.03 (Roeder and Emslie, 1970). Therefore, the 458 

Fo value and molar MgO/FeO ratios in primary olivine are often used to estimate the 459 

composition of primitive magma (e.g., Chai and Naldrett (1992); Sun et al. (2009); Jia 460 

et al. (2018)). It is worth noting that when using olivine to estimate the composition of 461 

parent magma, two preconditions need to be met: (1) olivine is the only or main 462 

cumulate phase in the rock and (2) ultramafic rocks have a small LOI (Bao et al., 2020). 463 
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In this study, ultramafic rocks have a high LOI and are rich in magnetite (Figure 5e, f), 464 

shown by recent studies to be a direct product of serpentinization (Maffione et al., 2014; 465 

Nutman et al., 2021). Thus, Zeluo ultramafic rocks experienced strong serpentinization, 466 

which might have resulted in variable Fo values in olivine (Nutman et al., 2021). During 467 

serpentinization, Fe-rich olivine is transformed into Fe-poor olivine, according to the 468 

following formula: Secondary-olivine (Fe-rich) + water = Secondary-olivine (Fe-poor) 469 

+ SiO2 (aq) + magnetite + H2 (Dandar et al., 2019). Serpentinized olivine usually has 470 

high narrow-range distributed Fo values, i.e., Fomax－Fomin ＜ 2 (e.g., Nutman et al. 471 

(2021) and Dandar et al. (2019)). On the contrary, the unaltered primitive olivine 472 

usually has a larger range of variable Fo values, because the Mg content in the magma 473 

gradually decreases with olivine crystallization (Sun et al., 2009).  474 

In conclusion, olivine in this study has high and relatively concentrated Fo values 475 

and coexists with magnetite, indicative of strong secondary changes and therefore 476 

cannot be used to estimate the composition of the primitive magma, but Mg# of the 477 

whole rock is less affected. To avoid the error caused by LOI, we have recalculated the 478 

Zeluo ultramafic-mafic rock MgO and TFe2O3 concentrations, with their total major 479 

element contents being 100 wt.%. This resulted in a Mg#ultramafic = 77.5–81.2 and 480 

averaging 79.3, and a Mg#mafic = 51.3–72.3, with an average of 63.1. Although the Mg# 481 

of the samples fluctuated greatly due to magma differentiation, we agree that the Mg# 482 

of the Zeluo ultramafic-mafic rocks conform to the Mg# ＝ 63–73 range of primitive 483 

mantle-derived magma (Green (1975)). 484 

 485 
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6.6. Partial melting of mantle peridotite 486 

The typical Archean cratonic mantle is generally composed of harzburgites and 487 

cpx-poor lherzolites (Boyd, 1989). Generally, spanning the Archean to the Phanerozoic 488 

Eon, the lithospheric mantle changes from dominant harzburgites to being 489 

predominantly lherzolites (Tang et al., 2008). For mantle-derived rocks, REE 490 

abundances and ratios can be used to determine the composition of their source, and 491 

the degree of melting (Aldanmaz et al., 2000; Zhao and Zhou, 2007). It has been shown 492 

that Sm, La, and Yb have similar partition coefficients (Dspinel/melt) of ~0.01 in spinel 493 

(McKenzie and O'Nions, 1991). When spinel lherzolite undergoes partial melting, the 494 

mantle and extracted melt inherit similar Sm/Yb ratios (Aldanmaz et al., 2000) and a 495 

relatively flat melting trend on a Sm/Yb vs. Sm and La/Sm diagram. On the other hand, 496 

garnet has a high partition coefficient for Yb (Dgarnet/melt) of ~4.03 relative to ~0.01 for 497 

Sm (McKenzie and O'Nions, 1991), in basaltic melts. The partial melting of garnet 498 

lherzolite, when garnet remains as a remnant mineral, produces a steeper melting trend 499 

than for spinel lherzolite (Figure 12a, b). The Zeluo mafic-ultramafic samples plot near 500 

the garnet-spinel lherzolite melting trend (Figure 12a, b). However, La/Sm ratios 501 

decrease with increasing degrees of partial melting (Aldanmaz et al., 2000), resulting 502 

in the mafic samples plotting towards a melting curve with a greater garnet control. 503 

Overall, this model indicates that the Zeluo mafic-ultramafic rocks may have 504 

crystallized from a melt produced by ~20% partial melting of garnet-spinel lherzolite 505 

(Figure 12a, b). 506 

We have interpreted the Zeluo mafic-ultramafic intrusions on the western margin 507 
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of the Yangtze plate as evidence for arc magmatism, with a source region that was 508 

modified by fluids derived from a subducted slab. But such an interpretation raises a 509 

question of whether the mantle relic was produced by older subduction events or 510 

whether magmatism coincided with an ongoing subduction event. Firstly, 439.3 ± 3.5 511 

Ma continental flood basalts have been identified from the Jinshajiang suture zone on 512 

the western margin of the Yangtze plate, which are associated with an early continental 513 

rifting episode (Jian et al., 2009a; b). Secondly, a ~422 ± 6.1 Ma mafic rock block with 514 

OIB characteristics, from the Jinshajiang suture zone, was interpreted to have formed 515 

in a tectonic setting that was undergoing a subduction accretion (Liu et al., 2019). This 516 

suggests that the Jinshajiang paleo-Tethys was most likely produced in a back-arc basin, 517 

which was the result of the subduction of the Proto-Tethys ocean (Wang et al., 2012). 518 

The opening of the Jinshajiang-Ailaoshan paleo-Tethys also led to the separation of the 519 

Simao terrane from the Yangtze plate in the mid-late Paleozoic (Jian et al., 2009b). The 520 

combination of these observations leads us to believe that the Zeluo intrusions were in 521 

fact related to active subduction during the early Silurian. 522 

 523 

6.7. Geodynamic implications for the East Proto-Tethys Ocean 524 

In the Proto-Tethys oceanic domain there are many microcontinents/continents, 525 

including the Yangtze, Cathaysia, Tarim, Qaidam, Qilian, Indochina, north Qiangtang, 526 

and south Qiangtang blocks/micro-continental blocks which were distributed widely 527 

during the Early Paleozoic (Li et al., 2016b). Most of them were either located on the 528 

northern margin of the eastern Gondwana continent, amalgamated with the Gondwana 529 
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continent, or dispersed amongst each other and the oceans (Figure 13a). A 530 

paleomagnetic study by Huang et al. (2018) concluded that the South China Plate 531 

maintained its relative position next to the western part of the Australian plate and the 532 

northern part of the Indian plate from the beginning of the Neoproterozoic, to the end 533 

of the Paleozoic (Figure 13a).  534 

Studies on gabbro samples, from ophiolites, aged between 432–507 Ma from the 535 

Longmucuo-Shuanghu suture zone and Changning-Menglian suture zone, indicate that 536 

there was an ocean basin (Longmucuo-Shuanghu-Changning-Menglian Proto-Tethys 537 

Ocean, LSCMTO, Liu et al. (2021)) of uncertain size at the northern margin of the 538 

Cambrian-Silurian Gondwana continent (Li et al., 2008; Wang et al., 2008; Zhai et al., 539 

2010; Wang et al., 2013; Hu et al., 2014; Liu et al., 2021). The LSCMTO (Figure 13a) 540 

may have separated the South China plate from the Gondwana continental region 541 

(Condon et al., 2005; Wu et al., 2020)  542 

Magmatism derived from arc processes, when located on the edge of a tectonic 543 

plate, provides the best opportunity to determine the subduction polarity of a paleo-544 

ocean. The discovery of the Zeluo early Silurian mafic-ultramafic rocks provide 545 

evidence for oceanic plate subduction, and therefore indicates that there was 546 

northwestward subduction along the western side of the Yangtze plate, of the LSCMTO 547 

(Figure 13b). On the other hand, a large number of 446–430 Ma magmatic rocks have 548 

also been identified from the south Qiangtang and Baoshan blocks (Zhao et al., 2016; 549 

Liu et al., 2021), which are considered to be the products of southeastward subduction 550 

of the LSCMTO oceanic plate in the Early Paleozoic (Wang et al., 2020b). Therefore, 551 
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taken together, this information indicates bidirectional subduction of the LSCMTO 552 

oceanic crust, southeastward towards East Gondwana and northwestward towards 553 

Yangtze (Figure 13a, b).  554 

Although the Zeluo mafic-ultramafic rocks are products of early Silurian 555 

magmatism on the western margin of the Yangtze plate, they were displaced by the NW-556 

trending Litang active fault during the Holocene (Figure 2; Xu et al. (2005)). However, 557 

a study which looked at a combination of geophysical measurements, 558 

geomorphological features, and quaternary neo-tectonic plate movements, indicates 559 

that the displacement distance of individual blocks within the Litang Fracture Zone 560 

since the Holocene did not exceed 1 km (Xu et al., 2005). Therefore, the Zeluo mafic-561 

ultramafic rocks are not products of an event from outside the Yidun terrane but rather 562 

are magmatic rocks which formed within it. These Paleozoic magmatic rocks record 563 

oceanic subduction and supports the idea of a Precambrian crystalline basement beneath 564 

the Late Triassic sediments in the Yidun terrane (He et al., 2013; Wu et al., 2016a), 565 

while others propose the Yidun terrane developed on an oceanic crust (e.g., Leng et al. 566 

(2014)) 567 

 568 

7. Conclusion 569 

(1) The Zeluo mafic-ultramafic rocks formed during the Early Silurian, at 438.2 ± 570 

2.8 Ma, by ~20% partial melting of a garnet-spinel lherzolite enriched mantle. The 571 

dehydration of subducting oceanic crust metasomatized the overlying mantle wedge 572 

source.  573 
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(2) Primitive mantle-derived magma from an ancient supra-subduction zone 574 

complex formed the mafic and the ultramafic magmas. 575 

(3) The Longmucuo-Shuanghu-Changning-Menglian Proto-Tethys Ocean, located 576 

between Yangtze and East Gondwana, underwent bidirectional subduction in the Early 577 

Silurian. The Zeluo mafic-ultramafic rocks provide evidence for the northwestward 578 

subduction of this ocean. 579 

(4) The laterally continuous early Silurian magmatic rocks found in the Yidun 580 

terrane confirm the existence of a Precambrian crystalline basement. 581 

 582 
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Figures 

Figure 1. (a) Location of the Tibetan Plateau in the Tethyan realm modified from Liu et al. 

(2016a). (b) Simplified geological map of the Tibetan Plateau. The numbered key (in Figure b) 

reflects data from: (1) Yan et al. (2005); (2) Wang et al. (2012); (3) Jian et al. (2009b); (4) Jian 

et al. (2008); (5) Li et al. (2010); (6) Wang et al. (2013); (7) Wang et al. (2019a); (8) Mao et al. 

(2012); (9) Zi et al. (2012); (10) (Liu et al., 2016a); (11) Zhai et al. (2010); (12) Li et al. (2008); 

(13) Wang et al. (2008); (14) Zhai et al. (2016); (15) Hu et al. (2014); (16) Zhang et al. (2014); 

(17) Liu et al. (2021); (18) Wang et al. (2020b); (19) Wang et al. (2020a); (20) Wang et al. 

(2016a); (21) Sun et al. (2017); (22) Wang et al. (2016b). ANMQS = Animaqing suture zone; 

WJSJS = Western Jinshajiang suture zone; SJSJS = Southern Jinshajiang suture zone; GLS = 

Litang-Garze suture zone; LS-CMS = Longmucuo Shuanghu-Changning Menglian suture 



zone; SNS = Bangong Nujiang suture zone; ALSS = Ailaoshan suture zone; LMSF = 

Longmenshan fault; GXF = Garze-Xiangcheng fault; LF = Litang fault; LMF = Luobadui-

Milashan fault; SGF = ShiJie fault. 

 

Figure 2. Regional tectonics and location of the west Sichuan and eastern Tibet area, China, 

after Hou et al. (2007). 



 

Figure 3. Geological sketch map of the Heni area, eastern Tibet, China. Previous sedimentary 

rock data and sampling sites were obtained from Xu et al. (2021). Previous granite data was 

obtained from Qin et al. (2019), and regional igneous rock data from Fang et al. (2017). 

 



Figure 4. Field photographs of the mafic-ultramafic rocks from the Heni area, eastern Tibet, 

China: (a-c) Serpentinite and fine-grained peridotite outcrop. (d-f) Meta-gabbro (amphibolite) 

lenses/blocks in a metasedimentary matrix. (g) Dark colored harzburgite and light-colored 

melts. (h) Undeformed gabbro, composed of hornblende and pseudo pyroxene crystals. 

 



Figure 5. Photomicrographs of different samples from the Zeluo mafic-ultramafic rocks, 

Sichuan Province, SW China: (a) Strongly deformed metamorphic gabbro. (b, c) Undeformed 

metamorphic gabbro showing its mineral distribution. (d) Undeformed metamorphic gabbro 

showing its mineral distribution, plagioclase crystals are replaced by zoisite, albite and sericite, 

while most pyroxene crystals are altered/occupied by actinolite and a small amount of biotite. 

(e, f) Fine-grain dunites with euhedral magnesiochromite and strongly serpentinized olivine, 



most magnesiochromite (Spl) is altered to magnetite (Mgt). Ab = albite; Act = actinolite; Amp 

= amphibole; Bi = biotite; Cpx = clinopyroxene; Ol = olivine; Pl = plagioclase; Serp = 

serpentine; Spl = magnesiochromite; Zo = Zoisite. 

 

Figure 6. (a) CL image of zircon crystals from the Zeluo metamorphosed gabbro (TW5546-2) 

and (b) a U-Pb concordant diagram. In Figure a, the red circles reflect the analytical spots for 

U-Pb dating with associated ages; blue circles reflect Lu-Hf analytical spots with 

corresponding εHf(t) values.   

 
 
 



 

Figure 7. (a) AFM, a chemical classification for the common volcanic rocks, A = Na2O+K2O, 

F = FeO+Fe2O3, M = Mg. (b) Chondrite-normalized REE diagrams. The gray area indicates 

mafic rock data from an Early Paleozoic spreading ridge, from the Longmucuo-Shuanghu-

Changning-Menglian suture zone (Hu et al., 2009; Zhai et al., 2010; Hu et al., 2014; Zhai et al., 

2016), and the pink area indicates mafic rock data recording an Early Paleozoic subduction 

event in the same suture zone, with arc-like characteristics (Mao et al., 2012; Zhang et al., 2014; 



Wu et al., 2016b; Wang et al., 2019a; Liu et al., 2021). (c) Primitive mantle-normalized multi-

element diagrams for the Zeluo mafic-ultramafic rocks, Sichuan Province, SW China. 

Normalizing values are from McDonough and Sun (1995). 

  



Figure 8. (a) Frequency distribution histogram for the zircon Hf isotope data. (b) Zircon εHf(t) 



versus age diagram. The zircon Hf isotope data (mafic rocks) is from Zhai et al. (2010) (blue 

square) and Wang et al. (2012) (red triangle). DM = depleted mantle evolution line, CHUR = 

chondrite average reservoir. 

 
 

 

Figure 9. Geochemical variation diagrams for Zeluo mafic-ultramafic intrusions in Heni area, 

eastern Tibet, China, , (a) La/Nb vs. Ce/Pb. (b) Nb/Th vs. Th. (c) Nb/Ta vs. Th/Yb. 

Uncontaminated basalts data from Rooney et al. (2007). Values of N-MORB, E-MORB, and 



OIB are from Sun and McDonough (1989). Values of primitive mantle (PM) are form 

McDonough and Sun (1995). Values for the upper crust (UC) and lower crust (LC) are from 

Wedepohl (1995). 

 

 



Figure 10. Geochemical plots for the Zeluo mafic-ultramafic rocks from Heni area, eastern 

Tibet, China: (a) Th/Yb vs. Ba/La. (b) Ba/Th vs. (La/Sm)N. 

 

Figure 11. (a-f) Harker diagrams for Zeluo mafic-ultramafic samples, Eastern Tibet, China. 

	



 

Figure 12. Geochemical plots for the Zeluo mafic-ultramafic rocks fromHeni area, eastern 

Tibet, China: (a) Sm/Yb vs. Sm. (b) Sm/Yb vs. La/Sm. Depleted mantle (DM) data from 

McKenzie and O'Nions (1991), primitive mantle (PM) data from McDonough and Sun (1995). 

Melting curves for spinel lherzolite (Ol53 + Opx27 + Cpx17 + Sp03) and garnet peridotite (Ol60 + 



Opx20 + Cpx10 + Gt10) are from Aldanmaz et al. (2000), numbers along the lines represent the 

degree of partial melting; green circles for mafic rocks, red squares for ultramafic rocks. Blue 

area in (a-d) indicate data from Early Paleozoic subduction-derived mafic rocks from the 

Longmucuo-Shuanghu-Changning-Menglian suture zone (Mao et al., 2012; Zhang et al., 2014; 

Wu et al., 2016b; Wang et al., 2019a). 

 

 



Figure 13. Schematic illustrates a model for the generation and evolution of the Zeluo pluton, 

eastern Tibet, China, (a) Schematic tectonic cartoons showing the Early Paleozoic tectonic 

evolution of the northern margin of Gondwana (Huang et al., 2018; Zhao et al., 2018; Liu et al., 

2021). SQ = South Qiangtang, LS = Lhasa, BS = Baoshan, Si = Sibumasu, NQ = North 

Qiangtang, IC = Indochina, YZ = Yangtze, C = Cathaysian, TA = Tarim, QAI = Qaidam, C-

QIL= Central-Qilian, AL = Alex, SC = South China, NC = North China. (b) A sketch map only 

showing the northwestward subduction of the Longmucuo-Shuanghu-Changning-Menglian 

Proto-Tethyan Ocean, forming the Zeluo mafic-ultramafic rock intrusion on the western margin 

of the Yangtze plate. 
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Figure S1. Alteration assessment plots for the mafic-untramafic rocks from Zeluo, Sichuan  
Province, SW China, (a) K 2 O (wt.%) vs. Rb (ppm), (b) Zr (ppm) vs. Hf (ppm), and (c) Ta (ppm) vs.  



Supp. Table 1: LA-ICP-MS U-Pb data of zircons from the metamorphic gabbro (TW5546-2) in Zeluo, Eastern Tibet, China 
Analysis 

Spots 

PbTotal 232Th 238U PbC  Ratio  Age (Ma) 
Con. 

ppm ppm ppm ppm  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 238U/232Th  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 

TW5546-2-1 203 686 550 61.1  0.0556 0.0026 0.5409 0.0244 0.0703 0.0010 0.0216 0.0006 0.9232  435 136 439 16 438 6 432 11 99% 

TW5546-2-2 87 283 306 43.8  0.0557 0.0036 0.5353 0.0307 0.0699 0.0012 0.0213 0.0007 1.2331  439 144 435 20 435 7 425 13 99% 

TW5546-2-3 118 395 410 41.5  0.0556 0.0035 0.5276 0.0322 0.0686 0.0012 0.0210 0.0007 1.1834  435 143 430 21 428 7 421 14 99% 

TW5546-2-4 119 408 404 49.3  0.0569 0.0029 0.5493 0.0257 0.0708 0.0010 0.0202 0.0005 1.1240  500 113 445 17 441 6 405 9 99% 

TW5546-2-5 92 288 304 37.4  0.0582 0.0035 0.5690 0.0324 0.0710 0.0012 0.0222 0.0006 1.1975  600 133 457 21 442 7 444 12 96% 

TW5546-2-6 113 381 396 46.2  0.0595 0.0047 0.5454 0.0443 0.0658 0.0014 0.0209 0.0008 1.1718  583 170 442 29 411 8 417 17 92% 

TW5546-2-7 137 443 429 59.4  0.0554 0.0042 0.5555 0.0368 0.0707 0.0013 0.0218 0.0008 1.0673  428 166 449 24 441 8 436 16 98% 

TW5546-2-8 187 656 542 59.0  0.0559 0.0046 0.5357 0.0419 0.0697 0.0013 0.0206 0.0007 0.8932  456 183 436 28 434 8 412 14 99% 

TW5546-2-9 71 226 252 52.0  0.0518 0.0046 0.5500 0.0283 0.0705 0.0014 0.0226 0.0007 1.2584  276 204 445 19 439 8 451 15 98% 

TW5546-2-10 135 447 439 40.9  0.0551 0.0029 0.5265 0.0271 0.0694 0.0010 0.0215 0.0005 1.0283  417 117 429 18 433 6 430 10 99% 

TW5546-2-11 237 821 603 54.5  0.0532 0.0027 0.5290 0.0263 0.0715 0.0009 0.0218 0.0005 0.7959  345 119 431 17 445 5 435 11 96% 

TW5546-2-12 95 314 328 65.9  0.0543 0.0032 0.5414 0.0288 0.0702 0.0011 0.0211 0.0006 1.0530  383 133 439 19 438 7 422 12 99% 

TW5546-2-13 103 359 335 50.9  0.0524 0.0032 0.5257 0.0294 0.0695 0.0011 0.0205 0.0006 0.9384  306 136 429 20 433 7 411 11 99% 

TW5546-2-14 171 585 518 33.8  0.0565 0.0039 0.5403 0.0339 0.0703 0.0012 0.0213 0.0005 0.9072  478 147 439 22 438 7 426 10 99% 

TW5546-2-15 82 263 289 51.9  0.0548 0.0044 0.5576 0.0400 0.0707 0.0015 0.0220 0.0010 1.1352  406 181 450 26 441 9 439 19 97% 

TW5546-2-16 115 391 365 59.1  0.0531 0.0049 0.5470 0.0498 0.0744 0.0021 0.0209 0.0010 0.9760  332 211 443 33 463 13 418 20 95% 

TW5546-2-17 91 307 327 35.6  0.0550 0.0033 0.5445 0.0304 0.0703 0.0011 0.0213 0.0006 1.1302  413 133 441 20 438 7 425 13 99% 

TW5546-2-18 53.1 158 236 56.4  0.0542 0.0034 0.5643 0.0301 0.0699 0.0011 0.0228 0.0009 1.6226  389 143 454 20 436 7 456 17 95% 

TW5546-2-19 247 883 571 68.2  0.0559 0.0029 0.5503 0.0250 0.0709 0.0009 0.0217 0.0005 0.7121  450 117 445 16 442 6 435 11 99% 

TW5546-2-20 71 232 257 34.7  0.0528 0.0058 0.5340 0.0447 0.0681 0.0019 0.0221 0.0010 1.1976  320 249 434 30 425 12 442 19 97% 

TW5546-2-21 84 275 301 63.2  0.0548 0.0031 0.5503 0.0294 0.0708 0.0010 0.0219 0.0007 1.1805  467 128 445 19 441 6 438 14 99% 

TW5546-2-22 108 345 354 50.9  0.0571 0.0030 0.5694 0.0283 0.0715 0.0010 0.0227 0.0006 1.1045  494 116 458 18 445 6 454 12 97% 

TW5546-2-23 152 531 462 64.7  0.0547 0.0028 0.5389 0.0268 0.0712 0.0010 0.0209 0.0005 0.9462  467 113 438 18 443 6 417 11 98% 

TW5546-2-24 103 342 340 36.0  0.0544 0.0035 0.5286 0.0333 0.0704 0.0013 0.0220 0.0007 1.0628  387 144 431 22 438 8 439 14 98% 

TW5546-2-25 135 459 445 52.4  0.0575 0.0031 0.5432 0.0281 0.0687 0.0010 0.0215 0.0006 1.0392  509 120 441 18 428 6 429 11 97% 

PbC: Common Pb 



Supp. Table 2: Chemical compositions for Olivine from the ultramafic rocks in Zeluo, Eastern Tibet, China 
Olivine 0003-4 0003-5 0003-6 0003-7 0003-17 0004-1 0004-2 0004-3 0004-4 0004-5 0004-6 0004-7 0004-8 0004-9 0004-10 0004-11 0004-12 0004-13 0004-14 0004-15 0004-16 0004-18 0004-19 0004-20 

SiO2 42.22 42.23 42.2 42.42 41.31 42.05 41.82 41.97 42.39 42.02 41.91 42.1 42.18 41.73 42.18 42.6 42.35 42.17 42.22 42.29 42.25 42.31 41.89 42.56 

TiO2     0.02 0.01 0.03          0.01 0.01 0.01  0.03  0.01  

Al2O3    0.01 0.01   0.02   0.02  0.01 0.01        0.01 0.02  

Cr2O3 0.03 0.04 0.05 0.01 0.01 0.04 0.04 0.05 0.05  0.11 0.01 0.02 0.01  0.07 0.05 0.03  0.07 0.05   0.02 

FeO 6.75 6.8 6.95 6.62 6.46 6.47 6.92 6.57 6.28 6.52 6.73 6.14 6.35 6.53 6.1 6.57 6.52 6.88 7.01 6.19 6.78 6.3 6.39 6.34 

MnO 0.32 0.35 0.3 0.33 0.27 0.32 0.39 0.33 0.32 0.3 0.36 0.32 0.31 0.28 0.32 0.32 0.35 0.34 0.32 0.36 0.31 0.34 0.35 0.32 

MgO 51.49 51.8 51.33 51.93 50.48 51.35 51.63 51.87 51.56 51.87 51.58 51.86 51.32 51.62 52.21 51.74 51.26 51.8 52.26 52.16 52.38 51.94 51.68 51.15 

   NiO 0.04 0.029 0.082 0.072 0 0.04 0.08 0.014 0.048 0.079 0.049 0.07 0.101 0.075 0.021 0.1 0.035 0.037 0.095 0.09 0.081 0.079 0.003 0.066 

CaO 0.21 0.03 0.04 0.12 1.25 0.11 0.09 0.17 0.14 0.11 0.05 0.15 0.06 0.12 0.15 0.04 0.20 0.07 0.15 0.06 0.05 0.05 0.09 0.22 

Total 101.077 101.29 100.954 101.511 99.81 100.381 101.001 100.991 100.797 100.909 100.801 100.656 100.353 100.393 100.987 101.455 100.774 101.331 102.063 101.233 101.957 101.042 100.432 100.694 

Fo 92.84 92.81 92.65 93.01 93.04 93.09 92.64 93.05 93.30 93.13 92.84 93.46 93.21 93.11 93.54 93.04 93.00 92.74 92.70 93.41 92.94 93.30 93.18 93.19 

 



Supp. Table 3: Chemical compositions for Pyroxene from the mafic-ultramafic rocks in Zeluo, Eastern Tibet, China 
Pyro

xene  

0001-1 0001-3 0002-2 0002-3 0003-1 0003-2 0003-3 0003-8 0003-9 0003-11 0003-12 0003-13 0003-14 0003-16 0003-18 0003-20 

SiO2 56.813 52.401 55.374 53.606 55.478 54.194 54.604 55.621 55.244 55.75 55.639 56.229 56.21 54.832 55.273 54.834 
TiO2 0 0.471 0.127 0.356 0.176 0.272 0.24 0.212 0.142 0.05 0.018 0.093 0.038 0.170 0.212 0.104 

Al2O

3 

0.259 3.533 0.877 2.585 0.938 1.629 1.44 0.896 1.504 0.872 0.540 0.314 0.201 1.580 1.076 0.864 

Cr2O

3 

0.135 0.023 0.181 0.037 0.102 0.037 0.117 0.038 0.141 0.09 0.094 0.137 0.113 0.052 0.111 0.005 

FeO 2.071 2.419 2.131 2.241 2.795 2.547 2.675 2.440 2.098 2.454 2.190 2.481 2.184 2.591 2.212 2.387 

MnO 0.040 0.019 0.036 0.018 0.031 0.069 0.030 0.042 0.014 0.055 0.061 0.032 0.076 0.012 0.017 0.044 

MgO 17.292 16.038 17.041 16.546 16.841 16.588 16.632 16.798 17.207 16.938 17.112 16.884 17.087 17.144 16.927 16.922 

CaO 26.102 26.034 25.937 25.842 25.733 25.901 25.923 26.068 25.931 25.903 25.743 25.78 25.657 25.968 25.902 25.921 

Na2O 0.023 0 0 0 0.030 0.013 0.021 0.027 0 0.025 0.024 0.011 0.013 0.018 0.036 0.005 

K2O 0 0 0.002 0 0.010 0.003 0.016 0.007 0 0.005 0.003 0 0.004 0 0.002 0.011 

NiO 0.001 0.020 0 0.072 0.038 0.017 0.003 0.018 0.054 0.027 0.008 0 0 0.030 0 0 

Total     
 

102.736 100.958 101.706 101.303 102.172 101.27 101.701 102.167 102.335 102.169 101.432 101.961 101.583 102.397 101.768 101.097 

Wo 50.34 51.79 50.52 51.03 50.03 50.74 50.62 50.68 50.33 50.30 50.13 50.30 50.09 50.05 50.52 50.45 
En 46.40 44.41 46.18 45.48 45.56 45.22 45.18 45.44 46.47 45.78 46.37 45.82 46.42 45.96 45.94 45.82 

Fs 3.19 3.80 3.30 3.49 4.30 4.00 4.13 3.77 3.20 3.81 3.43 3.84 3.46 3.91 3.40 3.69 

Ac 0.07 0.00 0.00 0.00 0.11 0.04 0.07 0.11 0.00 0.11 0.07 0.04 0.04 0.07 0.14 0.04 

 



Supp. Table 4: Major oxides (ωt%) and element (ppm) abundances for the mafic-ultramafic rocks in Zeluo, Eastern Tibet, China 
Samples D5533-2 D5533-3 HF5517-3  D5533-4 D5533-6 D5537 D5539-1 D5533-7 D5540-2 D5545-1 D5546-1 D5546-2 D5546-3 HF5517-1 HF5517-2 HF5517-4 HF5517-6 HF5517-8 HF5517-9 D5546-1 D5546-2 D5546-3 HF5517-1 

Types Ultramafic Rocks  Mafic Rocks 

SiO2 36.72 36.61 35.37  44.80  48.22  50.59  46.05  44.77  45.95  43.14  48.97  49.70  49.97  45.46  43.80  45.93  45.59  47.29  46.22  48.97  49.70  49.97  45.46  

Al2O3 4.66 4.88 4.84  10.60  15.74  17.71  9.01  15.39  17.95  14.24  18.22  17.34  17.33  13.21  14.47  13.30  14.51  13.10  13.30  18.22  17.34  17.33  13.21  

TFe2O3 14.28 13.64 15.61  12.94  11.12  6.81  12.26  10.70  9.76  15.94  6.79  8.34  8.19  14.10  14.63  12.10  11.46  11.53  11.67  6.79  8.34  8.19  14.10  

MgO 28.40 30.40 27.70  17.65  8.60  7.64  17.40  10.70  8.75  9.13  6.98  8.00  8.35  8.65  9.24  10.85  12.00  12.40  12.30  6.98  8.00  8.35  8.65  

CaO 7.08 5.25 6.88  8.11  9.36  10.80  10.15  12.45  10.45  9.87  11.70  8.68  9.32  12.10  10.60  14.00  11.20  11.45  11.35  11.70  8.68  9.32  12.10  

Na2O 0.10 0.11 0.01  0.96  3.83  3.87  1.08  1.85  2.32  1.48  2.62  3.57  3.42  2.25  2.75  1.65  2.11  2.18  2.06  2.62  3.57  3.42  2.25  

K2O 0.01 <0.01 0.01  0.31  0.54  0.42  0.21  0.93  0.97  1.61  1.46  1.10  1.03  0.61  0.43  0.64  0.39  0.25  0.33  1.46  1.10  1.03  0.61  

MnO 0.33 0.31 0.34  0.25  0.18  0.14  0.22  0.20  0.23  0.30  0.14  0.16  0.16  0.31  0.35  0.31  0.22  0.20  0.21  0.14  0.16  0.16  0.31  

TiO2 0.50 0.45 0.53  1.46  1.41  0.55  0.76  1.24  1.26  1.51  0.72  0.72  0.73  2.16  2.45  0.45  0.91  0.81  0.79  0.72  0.72  0.73  2.16  

P2O5 0.10 0.07 0.10  0.14  0.17  0.06  0.07  0.13  0.12  0.18  0.12  0.06  0.06  0.20  0.27  0.03  0.06  0.02  0.04  0.12  0.06  0.06  0.20  

LOI 8.03 8.37 7.94  2.74  1.36  1.11  2.14  1.29  1.81  2.29  2.26  1.92  2.06  1.52  1.50  0.86  1.57  0.85  1.11  2.26  1.92  2.06  1.52  

Total 92.18 91.72 91.39  97.22  99.17  98.59  97.21  98.36  97.76  97.40  97.72  97.67  98.56  99.05  98.99  99.26  98.45  99.23  98.27  97.72  97.67  98.56  99.05  

FeO 4.10 4.03 4.60  10.55  8.44  5.36  9.54  8.27  7.76  12.65  5.14  6.56  6.42  10.90  11.25  9.18  8.78  9.00  9.02  5.14  6.56  6.42  10.90  

Mg# 0.79  0.81  0.78   0.71  0.59  0.67  0.72  0.65  0.62  0.51  0.66  0.64  0.65  0.53  0.54  0.62  0.66  0.66  0.66  0.71  0.59  0.67  0.72  

Rb 0.60 0.20 1.30  15.80  20.80  21.60  7.10  43.20  48.60  71.20  96.10  56.30  61.20  18.90  10.70  25.80  16.00  8.20  13.70  96.10  56.30  61.20  18.90  

Ba 7.40 9.90 1.10  36.30  90.80  113.00  18.30  100.50  117.50  270.00  176.50  165.00  137.00  56.00  26.40  122.00  35.50  9.70  16.10  176.50  165.00  137.00  56.00  

Th 0.54 0.31 0.56  0.59  1.06  0.39  0.49  0.76  0.70  0.87  0.41  0.40  0.40  0.75  0.78  0.25  0.31  0.17  0.26  0.41  0.40  0.40  0.75  

Ti 0.30 0.26 0.309  0.793 0.828 0.331 0.458 0.729 0.739 0.938 0.439 0.443 0.444 1.18 1.38 0.257 0.501 0.462 0.456 0.439 0.443 0.444 1.18 

U 0.74 0.25 0.90  0.17  0.26  0.05  0.28  0.25  0.17  0.35  0.05  0.08  0.05  0.40  0.34  0.27  0.22  0.12  0.20  0.05  0.08  0.05  0.40  

Sc 14.80 14.10 14.80  25.40  35.30  30.50  21.30  41.00  29.70  29.90  34.00  29.40  29.50  40.10  44.50  31.10  43.80  48.90  45.50  34.00  29.40  29.50  40.10  

V 145 135 153  284  250  151  138  258  220  221  154  132  137  576  659  131  266  273  265  154  132  137  576  

Cr 2972 3039 3060  1113  292  526  1287  263  200  406  240  144  172  120  190  1410  450  550  490  240  144  172  120  

Co 123.5 115.5 119  73.40  41.90  33.30  71.90  45.00  41.10  39.90  36.80  41.20  41.60  38.60  44.30  34.10  54.00  55.40  58.50  36.80  41.20  41.60  38.60  

Ni 1180 1260 1090  754  97.1  117  774  141  79.1  213  62.2  60.4  67.9  82  85.4  241  372  339  326  62.2  60.4  67.9  82  

Pb 1.80 1.40 1.50  6.70  13.30  13.00  3.30  5.90  31.50  6.80  11.60  8.90  9.50  26.70  9.70  18.70  9.90  7.10  8.20  11.60  8.90  9.50  26.70  

Zn 493 594 555  101  78  71  110  101  77  144  60  77 76  192  98  138  85  74  82  60  77  76  192  



Ga 9.40 8.30 9.10  18.60  17.10  14.30  15.10  19.00  19.90  19.30  15.90  15.10  13.60  19.30  20.50  14.10  15.70  13.50  14.10  15.90  15.10  13.60  19.30  

Ta 0.15 0.11 0.14  0.27  0.70  0.22  0.27  0.60  0.48  0.66  0.24  0.24  0.24  0.42  0.47  0.13  0.19  0.11  0.14  0.24  0.24  0.24  0.42  

Nb 3.80 2.60 3.10  5.20  12.10  3.70  4.60  9.40  8.20  11.30  4.00  3.90  3.80  8.90  8.10  2.00  3.00  1.90  2.20  4.00  3.90  3.80  8.90  

Sr 8.60 7.80 16.60  47.10  279.00  308.00  44.90  284.00  379.00  134.00  438.00  268.00  283.00  173.00  223.00  260.00  412.00  351.00  333.00  438.00  268.00  283.00  173.00  

Zr 32.00 25.00 30.00  87.00  90.00  30.00  69.00  63.00  68.00  103.00  39.00  40.00  40.00  61.00  72.00  20.00  37.00  27.00  31.00  39.00  40.00  40.00  61.00  

Hf 0.90 0.60 0.70  2.20  2.20  0.80  1.50  1.50  1.60  2.40  1.00  1.00  1.20  1.60  1.90  0.60  1.00  0.80  0.90  1.00  1.00  1.20  1.60  

Y 9.40 6.40 8.90  20.00  22.00  9.20  10.50  15.80  16.80  24.70  11.20  10.80  10.80  22.60  23.60  6.50  11.20  10.50  10.60  11.20  10.80  10.80  22.60  

La 7.30 3.60 7.20  5.40  9.80  3.90  4.50  13.70  7.70  9.80  4.00  3.70  3.90  10.20  8.70  3.80  4.40  3.30  3.60  4.00  3.70  3.90  10.20  

Ce 8.70 6.40 8.90  13.60  21.70  8.30  10.90  19.60  17.70  22.40  9.20  8.70  8.90  18.80  20.90  7.20  11.10  8.70  9.60  9.20  8.70  8.90  18.80  

Pr 1.81 1.06 1.82  2.04  2.86  1.06  1.49  3.79  2.25  3.07  1.20  1.20  1.20  3.02  2.69  1.05  1.58  1.23  1.30  1.20  1.20  1.20  3.02  

Nd 8.50 4.40 7.90  10.20  12.90  5.00  7.10  16.30  10.30  13.80  5.60  5.90  5.50  13.80  12.50  4.70  7.40  6.20  6.30  5.60  5.90  5.50  13.80  

Sm 2.03 1.19 1.89  3.50  3.63  1.41  1.98  3.82  2.85  3.70  1.68  1.70  1.78  3.84  3.94  1.32  2.16  1.98  1.94  1.68  1.70  1.78  3.84  

Eu 0.47 0.27 0.41  1.26  1.29  0.57  0.78  1.29  1.19  1.32  0.78  0.73  0.73  1.46  1.48  0.62  0.89  0.86  0.86  0.78  0.73  0.73  1.46  

Gd 2.00 1.22 1.90  3.91  3.87  1.56  2.05  3.43  2.89  3.94  1.89  1.94  1.79  4.44  4.75  1.36  2.37  2.30  2.24  1.89  1.94  1.79  4.44  

Tb 0.30 0.19 0.28  0.63  0.61  0.27  0.33  0.50  0.47  0.67  0.31  0.30  0.30  0.73  0.77  0.23  0.40  0.37  0.36  0.31  0.30  0.30  0.73  

Dy 1.68 1.08 1.62  3.74  3.99  1.61  1.98  3.05  3.01  4.03  2.01  1.95  1.85  4.36  4.45  1.27  2.22  2.19  2.07  2.01  1.95  1.85  4.36  

Ho 0.33 0.22 0.31  0.74  0.79  0.33  0.39  0.58  0.60  0.86  0.39  0.39  0.39  0.88  0.93  0.25  0.45  0.42  0.42  0.39  0.39  0.39  0.88  

Er 0.83 0.58 0.82  1.95  2.36  0.88  1.02  1.57  1.68  2.42  1.18  1.08  1.14  2.41  2.43  0.60  1.16  1.05  1.13  1.18  1.08  1.14  2.41  

Tm 0.12 0.08 0.11  0.27  0.32  0.12  0.14  0.23  0.25  0.36  0.17  0.15  0.15  0.33  0.35  0.08  0.16  0.14  0.15  0.17  0.15  0.15  0.33  

Yb 0.68 0.46 0.70  1.60  2.01  0.74  0.87  1.45  1.60  2.34  1.00  0.96  0.98  1.99  2.17  0.52  0.92  0.83  0.87  1.00  0.96  0.98  1.99  

Lu 0.10 0.07 0.11  0.23  0.30  0.12  0.13  0.21  0.25  0.38  0.15  0.15  0.15  0.30  0.32  0.08  0.13  0.12  0.12  0.15  0.15  0.15  0.30  

ΣREE 34.85 20.82 33.97  49.07  66.43  25.87  33.66  69.52  52.74  69.09  29.56  28.85  28.76  66.56  66.38  23.08  35.34  29.69  30.96  29.56  28.85  28.76  66.56  

LREE 28.81 16.92 28.12  36.00  52.18  20.24  26.75  58.50  41.99  54.09  22.46  21.93  22.01  51.12  50.21  18.69  27.53  22.27  23.60  22.46  21.93  22.01  51.12  

HREE 6.04 3.90 5.85  13.07  14.25  5.63  6.91  11.02  10.75  15.00  7.10  6.92  6.75  15.44  16.17  4.39  7.81  7.42  7.36  7.10  6.92  6.75  15.44  

LREE/HREE 4.77  4.34  4.81   2.75  3.66  3.60  3.87  5.31  3.91  3.61  3.16  3.17  3.26  3.31  3.11  4.26  3.52  3.00  3.21  3.16  3.17  3.26  3.31  

LaN/YbN 7.70  5.61  7.38   2.42  3.50  3.78  3.71  6.78  3.45  3.00  2.87  2.76  2.85  3.68  2.88  5.24  3.43  2.85  2.97  2.87  2.76  2.85  3.68  

 



Supp. Table 5: Zircon in-situ Lu–Hf isotopic compositions of the metamorphic gabbro (TW5546-2) in Zeluo, Eastern Tibet, China	
Sample Spots 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ Age (Ma) 176Hf/177Hf (t) εHf(t) 1σ TDM1 fLu/Hf 

TW5446-2-01 0.282690  0.000022  0.002940  0.000024  0.101114  0.001100  438  0.282666  5.9  1.0  840  -0.91  

TW5446-2-02 0.282732  0.000016  0.002387  0.000049  0.082513  0.001645  435  0.282713  7.5  0.8  765  -0.93  

TW5446-2-03 0.282697  0.000017  0.002564  0.000021  0.086965  0.000645  428  0.282676  6.0  0.8  820  -0.92  

TW5446-2-04 0.282717  0.000016  0.002289  0.000040  0.079411  0.001298  441  0.282698  7.1  0.8  785  -0.93  

TW5446-2-05 0.282703  0.000016  0.002303  0.000033  0.078409  0.001008  442  0.282684  6.6  0.8  805  -0.93  

TW5446-2-06 0.282687  0.000016  0.002530  0.000035  0.090051  0.001407  411  0.282668  5.3  0.8  834  -0.92  

TW5446-2-07 0.282709  0.000021  0.002312  0.000027  0.080026  0.001046  441  0.282690  6.8  0.9  796  -0.93  

TW5446-2-08 0.282722  0.000020  0.002571  0.000034  0.088393  0.001489  434  0.282701  7.0  0.9  784  -0.92  

TW5446-2-09 0.282696  0.000017  0.002377  0.000016  0.080784  0.000676  439  0.282676  6.3  0.8  818  -0.93  

TW5446-2-10 0.282702  0.000020  0.002685  0.000013  0.090793  0.000374  433  0.282681  6.3  0.9  815  -0.92  

TW5446-2-11 0.282679  0.000018  0.003034  0.000084  0.101250  0.003135  445  0.282654  5.6  0.9  858  -0.91  

TW5446-2-12 0.282717  0.000015  0.001908  0.000053  0.064589  0.001933  438  0.282702  7.1  0.8  776  -0.94  

TW5446-2-13 0.282688  0.000016  0.002066  0.000022  0.071098  0.000638  433  0.282671  5.9  0.8  823  -0.94  

TW5446-2-14 0.282704  0.000017  0.002533  0.000028  0.088888  0.001334  438  0.282683  6.5  0.8  809  -0.92  

TW5446-2-15 0.282760  0.000017  0.002640  0.000016  0.089435  0.000723  441  0.282738  8.5  0.8  729  -0.92  

TW5446-2-16 0.282707  0.000017  0.002137  0.000051  0.074404  0.001997  463  0.282688  7.2  0.8  796  -0.94  

TW5446-2-17 0.282693  0.000015  0.002744  0.000029  0.094042  0.000919  438  0.282671  6.1  0.8  830  -0.92  

TW5446-2-18 0.282727  0.000015  0.001556  0.000031  0.048930  0.001346  436  0.282714  7.5  0.8  755  -0.95  

TW5446-2-19 0.282720  0.000015  0.002193  0.000055  0.075176  0.002085  442  0.282702  7.2  0.8  778  -0.93  

TW5446-2-20 0.282684  0.000017  0.003067  0.000015  0.104438  0.000740  425  0.282659  5.4  0.8  852  -0.91  

TW5446-2-21 0.282688  0.000017  0.002006  0.000025  0.067680  0.000659  441  0.282671  6.1  0.8  821  -0.94  

TW5446-2-22 0.282697  0.000017  0.002402  0.000031  0.082690  0.001009  445  0.282677  6.4  0.8  817  -0.93  

TW5446-2-23 0.282707  0.000016  0.001958  0.000023  0.067541  0.000864  443  0.282691  6.9  0.8  792  -0.94  

TW5446-2-24 0.282722  0.000015  0.002440  0.000057  0.083369  0.001832  438  0.282701  7.2  0.8  781  -0.93  

TW5446-2-25 0.282726  0.000017  0.002398  0.000051  0.081705  0.001874  428  0.282707  7.1  0.8  774  -0.93 

   


