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Arc volcanism is a key process influencing Earth’s climate, continental growth,

and the formation of mineral deposits. Therefore in this contribution, we have

compiled whole-rock geochemistry of frontal arc and rear-/back-arc basalts,

crustal thickness, and slab parameters (e.g., slab age, slab dip, and convergence

velocity) from global convergent margins to investigate the factors controlling

along-arc and across-arc variations. Crustal thickness or lithosphere thickness

plays a dominant role in elements immobile in aqueous fluids (e.g., Zr/Yb and

Nb/Yb). The effect is imposed throughmantle partial melting for both frontal arc

and rear-/back-arc rocks. Slab thermal structure also affects these immobile

elements and gives rise to along-arc variations. Both slab sediment and altered

oceanic crust can melt especially in hot subduction zones which yield across-

arc variations (e.g., Nd isotope). Aqueous fluids (represented by element ratios

such as Ba/Nb and Sr/Nd) also show across-arc variations as they decrease

toward rear-/back-arc. This meanwhile decreases mantle wedge melting as

rear-/back-arcs show higher Zr/Yb and Nb/Yb. However, no correlations

between aqueous fluids and slab parameters suggest aqueous fluids in arc

rocks are controlled by complex processes. We summarize factors such as slab

alteration, slab dehydration, and mantle metasomatism might impose an effect

on the content of fluid mobile elements in arc rocks.
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1 Introduction

Arc magmatism is a critical process in the formation of

continental crust (e.g., Plank, 2005; Lee et al., 2007; Lee et al.,

2012; Kelemen, 2013), climate change (e.g., CO2 recycling;

Johnston et al., 2011), and the formation of economically

important mineral deposits (e.g., Cu-porphyry and Li deposits;

Chiaradia, 2015; Chen et al., 2020; Barber et al., 2021).

Magmatism in arc settings is fundamentally related to the

dehydration (Pearce and Peate, 1995; Schmidt and Poli, 1998;

Tatsumi, 2005; Grove et al., 2009) and melting (Defant and

Drummond, 1990; Skora and Blundy, 2010) of subducting

lithospheric components at high pressures and temperatures.

The liberated fluids (including aqueous fluids and melts) ascend

into the overlying mantle wedge, where they substantially lower

the solidus temperature of the mantle wedge, thus driving

hydrous mantle melting (up to 2 wt.% H2O in bulk peridotite;

Grove et al., 2009; Grove et al., 2012) and ultimately volcanic

activity (Davies and Stevenson, 1992; Grove et al., 2009; Grove

et al., 2012; Schmidt and Poli, 2014; Zheng et al., 2020).

Therefore, arc magmatism differs from that in plume-related

or mid-ocean ridge systems, where magma forms through only

adiabatic decompression melting (Klein and Langmuir, 1987;

Langmuir et al., 1992; Niu, 1997) of relatively water-poor mantle

reservoirs (<.02 wt.% H2O; Asimow and Langmuir, 2003; Green

et al., 2010).

A global correlation between overriding arc crustal

thickness and arc basalt composition has been addressed by

several studies (Plank and Langmuir, 1988; Mantle and

Collins, 2008; Turner and Langmuir, 2015; Niu, 2021). This

correlation can be attributed to crustal or lithosphere

thickness modulating degrees of mantle melting (Plank and

Langmuir, 1988; Niu, 2021) based on the hypothesis that arc

magmas derive from flux-assisted decompression melting

(Plank and Langmuir, 1988; Niu, 2021). Another

interpretation suggests thickened lithosphere cools down

the mantle wedge by depressing its isotherm which reduces

degrees of mantle melting (Turner and Langmuir, 2015).

Given the processes involved in the genesis of arc magmas,

it is common that the composition of arc primary melts

displays a clear influence of slab fluids (generating the so-

called “arc signature,” i.e., Nb-Ta trough due to the

enrichment of Ba, Th, U, and La on the multi-element

diagram) (Pearce and Peate, 1995; Tatsumi, 2005). Despite

the importance of aqueous fluids on primitive magma

composition and mantle melting, the processes of mantle

wedge beneath arc fronts being hydrated by these fluids are

not well understood. The release of aqueous fluids is suggested

to be significant for the uppermost part of the slab beneath and

above the sub-arc depth (van Keken et al., 2011; Schmidt and

Poli, 2014). The aqueous fluids that metasomatize the mantle

source of arc magmas derive from dehydration of hydrous

minerals in the subducting slab (Grove et al., 2009) or fore-arc

mantle wedge (Tatsumi et al., 1986; Davies and Stevenson,

1992; Hattori and Guillot, 2003; Tonarini et al., 2011).

In this study, we have compiled arc basalt geochemistry and

parameters of the subducting plate (e.g., slab dip, convergence

velocity, and slab age) and the overriding plate (e.g., crustal

thickness) from convergent margins to investigate the relative

roles of slab materials and crustal thickness on the along- and

across-arc variations.

2 Data compilation

Subduction zones can be divided into frontal arc and rear-arc

or back-arc magmatic systems (Figure 1). Both rear-arc and

back-arc volcanic systems are typically located behind the frontal

arc (Taylor and Nesbitt, 1998), and we differentiate between the

two based on the presence (back-arc; e.g., the East Scotia Ridge

and Central Mariana Trough) or absence (rear-arc; e.g., the

Reventador-Sumaco-Puyo rear-arc in the northern Andes and

Apoyo rear-arc in Central America) (Duggen et al., 2007;

Ancellin et al., 2017) of active spreading. In this study, a rear-

arc system is considered to lie >30 km behind the Holocene

volcanic front, where the location is based on data from the

Smithsonian Global Volcanism Program (Global Volcanism

Program, 2013). While arc magmatism is commonly

associated with the dehydration and melting from a

subducting slab (Tatsumi et al., 1986; Defant and Drummond,

1990; Pearce and Peate, 1995; Schmidt and Poli, 1998; Skora and

Blundy, 2010), it can also occur in regions above a “slab window”

(that is, an asthenosphere-filled gap that forms between a pair of

diverging, subducting oceanic plates in response to ridge

subduction; Thorkelson and Breitsprecher, 2005). These slab

windows allow hotter asthenospheric mantle from below the

subducted plate to ascend into the mantle wedge and melt.

Examples of arc magmatism associated with slab windows

include Tahoe-Truckee in the Cascades arc (Juan de Fuca-

Pacific plate boundary; Cousens et al., 2011), Costa Rica/

Western Panama (Cocos-Nazca plate boundary; Abratis et al.,

2001), Taitao and Hudson in the South Andes (Nazca-Antarctic

plate boundary; Gutiérrez et al., 2005), and Solomon arc

(Solomon Sea plate spreading centre; Schuth et al., 2009). We

exclude these locations from our compilation as magmatism

associated with slab windows is primarily driven by

asthenospheric decompression melting (Thorkelson, 1996) and

slabmarginmelting (Thorkelson and Breitsprecher, 2005), which

is different from arc magmatism. Similarly, arc systems with

continental rifting such as the Trans-Mexican Volcanic Belt

(Verma et al., 2016), where flux melting might play a minor

role if any, in arc magmatism are also not considered. Cases of

mantle wedge affected by mantle plume such as in North Tonga

(i.e., Beier et al., 2017; Wendt et al., 1997) are also excluded. In

addition, we only include samples that were collected from

regions of oceanic plate subduction, i.e., we excluded any
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rocks that were sampled from regions of continental plate

subduction beneath an oceanic plate (Batu Tara in Bunda arc)

or continental plate (Aeolian arc, Aegean arc, Apenninic arc).

Bismarck arc in a complex setting with several active subduction

zones nearby (Ryan and Marlow, 1988; Woodhead et al., 1998;

Bird, 2003; Tregoning and Gorbatov, 2004) is also not

discussed here.

2.1 Geochemical data

We compiled Quaternary volcanic rocks from continental

and oceanic arcs from GEOROC in December 2019 (Appendix

A). These data represent the recent volcanic history of

continental and oceanic arcs worldwide and, therefore,

mitigate temporal changes in magma chemistry. A series of

filters are applied to our geochemical data to ensure the

compiled samples reflect primitive magmas.

Firstly, rocks with a sum of major elements between 97 and

101.5 wt% (Farner and Lee, 2017; Schmidt and Jagoutz, 2017)

were considered to minimise the effects of chemical alteration.

Data with Nb/Ta>30 were removed due to the possibility of

analytical error (Elliott, 2003; Pearce et al., 2005; Beier et al.,

2017). Secondly, we only consider samples with 6–16 wt% MgO

which are mainly basalt with a few andesites to ensure that our

samples are minimally affected by fractional crystallisation or

crustal assimilation. The lower limit of MgO (6 wt%) was selected

as crustal assimilation and fractionation of minerals other than

olivine tend to be most apparent below this value (Turner et al.,

2016) and the upper limit (16 wt%) is based on the equilibrium

between primitive melts and mantle olivine (Schmidt and

Jagoutz, 2017). More than 90% have EuN/Eu* between

.9–1.2 which suggests the effect of plagioclase crystallization is

minor (Appendix B1). As a result, trace element ratios such as Zr/

Yb, Nb/Yb, Sr/Nd, Ba/Nb, Ba/La, and Th/Nb (each data point has

analysed values for these elements) and isotopes in our filtered

data likely reflect the primitive melt composition. After filtering,

the data were averaged within volcanoes and then the averaged

volcanos were averaged for arc sections (based on the definition

by Syracuse and Abers, 2006). The compiled database contained

major element, trace element, and Nd isotope data from

228 volcanos (150 frontal arc volcanos and 78 rear-/back arc

volcanos) split across 60 arc sections (34 frontal arc sections and

26 rear-/back-arc sections).

2.2 Crustal thickness

Crustal thickness estimates are highly dependent on seismic

data quality and the crustal velocity structure (Zellmer, 2008). To

minimise uncertainty caused by variable data quality in different

arc segments, we obtain crustal thickness estimates from CRUST

1.0 (Laske et al., 2013). TheMoho depth in CRUST1.0 is based on

1-degree averages crustal thickness from active source seismic

FIGURE 1
Quaternary arc volcanos compiled for this study. The background map was processed with GeoMapApp (https://www.geomapapp.org).
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studies as well as from receiver function studies. For cells with no

such constraints, crustal thicknesses are estimated using gravity

constraints. For cells with no local seismic or gravity constraints,

statistical averages of crustal thickness were extrapolated (Laske

et al., 2013). Each 1 × 1-degree cell in CRUST 1.0 has a unique 8-

layers profile which includes water, ice, upper sediments, middle

sediments, lower sediments, upper crust, middle crust, and lower

crust. One-third of arc volcanos in this study are underwater and

most of the water depths are <2 km. The crustal thickness in this

study is the sum of the sediment layer and crust layer. The

averaging method for arc sections is the same as that for

geochemical data above, which is also the same as slab

parameters below.

2.3 Slab parameters

Plate boundaries were digitized and outlined by Bird (2003).

The outlined plate boundaries are comprised of the “digitization

step” which is the short great-circle arc between adjacent

digitized plate boundary points. There are 5,819 steps (Bird,

2003) ranging from 1 to 109 km with a mean length of 44.7 km.

Each step has an estimate of the divergent component of relative

velocity convergence, which is considered as the convergence

velocity in the present study. Another important parameter for

this study is the age of the slab crust below the volcanic arcs.

These ages are represented by the age of the slab at the plate

boundary and can be estimated using the age grid of Müller et al.

(2008). The latitude and longitude of age sites are the same or

close to the ones chosen for the convergence velocity. Slab dip

and slab sub-arc depth for each volcano is from Hayes et al.

(2018). If no data is available for a particular location, the values

from the closest volcano to that location are chosen.

3 Results and discussion

Beneath each volcanic arc, different volumes of slab-derived

aqueous fluids, sediment melts, and altered oceanic crust (AOC)

melts metasomatize the overlying ambient mantle wedge which

enrichs the mantle in fluid-mobile elements such as large ion

lithophile elements (LILEs), light rare earth elements (LREEs),

and Th relative to N-MORB (Pearce and Peate, 1995; Pearce

et al., 2005; Zheng, 2019) and may also modify the mantle

isotopic signature (e.g., Sr, Nd, Pb, B; Leeman et al., 1994;

Elliott, 2003; Cooper et al., 2020). As aqueous fluids increase

the content of LILEs through mass transfer but also decrease it

through increasing the degree of mantle melting, it is

inappropriate to use the concentration or ratios of LILEs to

investigate the melt fraction of the mantle wedge. Instead, it is

necessary to consider the ratios of fluid-immobile elements that

are fractionated during mantle melting (e.g., Zr/Yb, Nb/Yb) to

evaluate the degree of mantle melting and ratios of fluid-mobile

to fluid-immobile trace elements that are not fractionated during

mantle melting (e.g., Sr/Nd, Ba/Nb, Ba/La, Pb/Ce; Tatsumi et al.,

1986; Hawkesworth et al., 1993; Brenan et al., 1995; Elliott et al.,

1997; Elliott, 2003; Kessel et al., 2005; Plank, 2013) to constrain

the slab aqueous fluids beneath an volcanic arc system. The ratio

of fluid-immobile element Th to Nb can be considered to

constrain slab sediment component which is most likely

transferred as melts (Elliott et al., 1997).

Previous studies have shown that sediment has an important

influence on concentrations of Ba, Sr and Th (Plank and

Langmuir, 1993). However, trace element ratios, especially Ba/

Nb, Sr/Nd, and Th/Nb are not correlated with sediment Ba, Sr,

and Th respectively and neither with sediment thickness

(Appendix B2). This finding is consistent with Patino et al.

(2000) which suggests Ba, Sr, and U are less efficiently

liberated from the slab to volcanos relative to other elements

such as Cs, Rb, and K. This indicates indices of slab component in

this study are not dictated by composition and amount of

subducted sediment. Therefore, we can use these ratios to

discuss other factors such as slab parameters which possibly

control aqueous fluids.

3.1 The effect of crustal thickness on fluid
immobile elements through mantle
melting

Positive correlations between crustal thickness and

incompatible element ratios of frontal arc rocks such as Zr/Y

and Dy/Yb which are immobile in aqueous fluids have been

addressed by several studies (Mantle and Collins, 2008; Turner

and Langmuir, 2015; Turner et al., 2016). Our data reveals that

Zr/Yb and Nb/Yb show positive correlations with crustal

thickness, in agreement with Turner and Langmuir (2015)

(Figures 2A,B). Besides, after ruling out the effect of the slab

thermal parameter (discussed below), the partial correlation

coefficient for crustal thickness versus Zr/Yb is .705 with a 2-

tailed significance smaller than .001 and the partial correlation

coefficient for crustal thickness versus Nb/Yb is .560 with the

significance smaller than .001. This suggests a significant linear

correlation between crustal thickness and Zr/Yb or Nb/Yb and

therefore crustal thickness plays an important role on ratios of

incompatible elements such as Zr/Yb and Nb/Yb.

In addition, these correlations also occur in rear-arc/back-arc

rocks (Figure 2). The R-square (i.e., .683) is greater than the

frontal arc rocks in crustal thickness versus Zr/Yb. The partial

correlation coefficient is also high in both diagrams. All of these

indicate crustal thickness plays an important role in controlling

the primitive magma composition for both frontal arc and rear-/

back-arc systems. In other words, crustal thickness controls

along-arc variations for both systems. The plots for arcs above

slab window are sparse which suggests different and complex

processes of mantle melting in this tectonic setting.
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FIGURE 2
Crustal thickness of the overriding plate vs. immobile incompatible trace element ratio Zr/Yb (A) and Nb/Yb (B). The partial correlation
coefficient r is calculated when the slab thermal parameter (discussed below) is taken as the control variable, with 2-tailed significance. The rear-arc
in Java (Muriah and Ringgit-Besar volcano) which has extremely high Nb/Yb is excluded in B and other figures below. Frontal arc* from Turner and
Langmuir (2015) is also plotted for comparison. As these two ratios are not given in their paper so they are calculated based on the average trace
element ratios given in their supplement. For example, Zr/Yb = average La/Yb divided by average La/Zr.

FIGURE 3
(A) A phase diagram to illustrate how crust or lithosphere thickness and slab-derived aqueous fluids exert their effects on across- and along-arc
variations through mantle melting degrees [solidus is from Katz et al., 2003: wet solidus S1 is the solidus with .1% water and wet solidus S2 is .05%
water; geotherm P1 is modified fromHall, (2012)] (B) A sketch to showmantle thermal structure under thin and thick crust [modified from Turner and
Langmuir (2015)]. 1) Flux melting. For along-arc variation caused by lithosphere thickness, the geotherm for the mantle wedge beneath thick
lithosphere is more depressed than the one beneath thin lithosphere (e.g., P3 versus P1). Assuming the same wet solidus S1 for both cases, the
average melting degrees for the whole melting column (the area between the wet solidus and wedge geotherm divided by the vertical length C
between the two intersection points) beneath thick lithosphere is lower for the one beneath thin lithosphere (area [S1-P3]/C3 vs. area [S1-P1]/C1). For
across-arc variations caused by aqueous fluids, the wet solidus for the rear-arc (solidus S2) is closer to the dry solidus than the solidus for the frontal
arc magmatism (solidus S1). The average mantle melting degree for the rear-arc (area [S2-P2]/C2) is smaller than the one for the frontal arc. 2)
Decompression melting. When explained by decompression melting, the melting degree is represented by the length of the melting column. For
example, C1 >C2 indicates themelting degree of frontal arcmantle is higher than that of the rear-/back-arcmantle and C1 >C3 indicates themelting
degree of the frontal arc mantle beneath thin lithosphere is higher than that beneath thick lithosphere.
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The exact processes of mantle wedge melting and melt

extraction are not well understood (Plank and Langmuir,

1988; Katz et al., 2003; Grove et al., 2012; Niu, 2021).

Currently, there are two main mechanisms for the crust/

lithosphere thickness controlling melting degrees of mantle

wedge: flux melting and decompression melting. For flux

melting, a constant water content distributed evenly over a

melting column is applied for simplicity (Katz et al., 2003),

although the reality is more complex (Davies, 1999; Gaetani

and Grove, 2004; Grove et al., 2006). Similar to adiabatic

decompression melting in middle ocean ridges (Klein and

Langmuir, 1987; Langmuir et al., 1992), the degree of mantle

melting above the subduction zone should be the average value of

melting degrees through the whole melting column. Therefore,

the average melting degree can be represented by the area

between the wet solidus and wedge geotherm divided by the

vertical length between the two intersection points (Figure 3A).

For along-arc variations in frontal arcs, the mantle wedge

beneath thick lithosphere has a depressed geotherm

P3 compared with P1 of the mantle wedge beneath thin

lithosphere (Figures 3A,B). Assuming the mantle wedge is

metasomatized by a similar volume of water, i.e., the wet

solidus (e.g., S1) is the same for both cases, the average

melting degree for the mantle beneath thin lithosphere is

higher than the one for the mantle beneath thick lithosphere

(Figure 3A). This is similar to the rear-/back-arc systems. The

rear-arc beneath thick lithosphere possesses a depressed

geotherm P4 compared with the P2 beneath thin lithosphere

(Figure 3A). Assuming the same wet solidus S2 for both cases, the

average melting degree for the mantle beneath thin lithosphere is

higher than for the mantle beneath thick lithosphere. In this

regard, the mantle wedge structure differs due to the overriding

lithosphere thickness and the geotherm of the mantle wedge

beneath thick lithosphere is depressed deeper giving rise to the

lower maximum melting degree and average melting degree.

Therefore, mantle thermal structure which is modulated by

overriding plate thickness is the key factor controlling mantle

wedge melting. For decompression melting, slab-derived fluids

trigger mantle wedge melting and the hydrous melt facilitates the

formation of a diapir (Niu, 2021). This diapir upwells and goes

through decompression melting which stops at the base of the

lithosphere where it reaches the maximum melting degree. The

average melting degree of this melting column is proportional to

themaximum degree similar to the case in themiddle ocean ridge

(Klein and Langmuir, 1987; Niu, 1997). Therefore, the longer the

melting column is (C in Figure 3A), the higher the average

melting degree is. The melting column under thin lithosphere

(C1) is longer than that under thick lithosphere (C2) which can

explain why the mantle wedge under thin lithosphere goes

through the lower degree of partial melting. However, this

model cannot be used to explain why the rear-/back-arc

mantle has a lower melting degree than the frontal arc mantle

as both systems can possess the same crust/lithosphere thickness

(discussed below) unless different wet solidi are applied (Niu,

2021). In addition, the temperature of the upwelling diapir

decreases and reaches a minimum at the top of the melting

column during adiabatic decompression melting. Therefore, the

diapir at the onset of flux melting should have a reasonably high

initial temperature (not likely a water-saturated solidus

temperature) as the primitive magma is ca. 1,200°C at the

crust-mantle boundary (Gaetani and Grove, 2004) and the

melting temperature for the mantle above cold subduction

zones such as Izu-Bonin is still >1,100°C (Lee et al., 2009).

3.2 The effect of slab thermal structure on
fluid immobile elements through mass
transfer

Slab thermal parameterΦ/100 [Φ is the product of convergence

velocity V, slab age A, and the sin value of slab dip sin?; (Kirby et al.,
1991)] is used to constrain slab thermal structure. The trace element

ratios correlate negatively with Φ/100 (Figure 4), consistent with

previous work (Turner and Langmuir, 2015). All these correlations

can also be found in rear-/back-arc rocks (Figure 4). However, as

crust thickness plays a dominant role in Zr/Yb andNb/Yb (Figure 2)

and crust thickness correlates negatively with slab dip (Perrin et al.,

2018) (Appendix B3), the correlation between Φ and Zr/Yb or Nb/

Yb might be affected by crustal thickness. To rule out the effect of

crustal thickness, partial correlation coefficient is calculated with

crustal thickness as the control variable. Low significance (<.05) and
intermediate |r| for frontal arcs in Figure 4A indicate slab thermal

structure (represented by Φ/100) imposes an effect on immobile

trace element ratios such as Zr/Yb. This suggests that these elements

which are immobile in aqueous fluids can be affected by the thermal

state of the subducting slabwhich controlsmass transfer from slab to

mantle wedge. However, high significances and low partial

correlation coefficients for rear-/back-arcs (Figures 4A,B) indicate

no significant correlation between these trace element ratios and Φ

as rear-/back-arcs are further away from trench than frontal arcs. To

determine how components in Φ control Zr/Yb and Nb/Yb, V, A,

and sinθ versus Zr/Yb and Nb/Yb are plotted (Figure 5). For frontal
arc rocks, all components have variable degrees of negative

correlations with Zr/Yb or Nb/Yb with slab age having the

highest correlation coefficients with the element ratios

(Figures 5A,B).

The effect of mass transfer from the slab can also be investigated

by isotope data from the frontal arc and rear-/back-arc systems. The

value of ƐNd [the present-day 143Nd/144Nd value .512638 of CHUR is

from Goldstein et al. (1984)] is low in the subducting sediment

(−13.1–2.5; Plank, 2013) but is high in the underlying MORB-like

AOC (8.9–10.4 for the Pacific domain; Peate et al., 1997; Hauff et al.,

2003; Werner et al., 2003; White and Klein, 2013; Shu et al., 2017).

The Th/Nb value is high in slab sediment (Plank, 2013) and hence

can be considered as an index for sediment input (.2–1.1; Kelemen,

2013; Turner and Langmuir, 2015). Therefore, the difference
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between the frontal arc and rear-/back-arc in 143Nd/144Nd and Th/

Nb can provide insights into the nature and volume of slab-derived

material. A negative 1000Δ143Nd/144Nd (the value of frontal arc

minus that of rear-/back-arc) is usually accompanied by a positive

ΔTh/Nb. This suggests a greater sediment component in the frontal

arc relative to the rear-/back-arc (Figure 6A). However, a positive

1000Δ143Nd/144Nd can occur with a positive ΔTh/Nb in some arc

sections which may be explained by a higher volume of AOC

component (e.g., AOCmelts) in the frontal arc. Furthermore, all arcs

with positive 1000Δ143Nd/144Nd are found in the hot subduction

FIGURE 4
Bivariant diagrams of slab thermal parameter Φ/100 (Φ=convergence velocity × slab age × the sine of slab dip) vs. incompatible trace element
ratio Zr/Yb (A) and Nb/Yb (B) of frontal arc and rear-/back-arc rocks. The partial correlation coefficient r is calculated when the crustal thickness is
taken as the control variable, with 2-tailed significance.

FIGURE 5
Slab parameters vs. ratios of trace elements which are immobile in aqueous fluids. Slab age vs Zr/Yb (A) and Nb/Yb (B). Sinθ vs Zr/Yb (C) and Nb/
Yb (D). Convergent velocity vs Zr/Yb (E) and Nb/Yb (F).
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zone with Φ/100 < 20 (Figure 6B). This is consistent with the

previous idea that AOCmelting can occur in a hot subduction zone

(Defant and Drummond, 1990).

We conclude that slab input plays an important role in along-arc

variations at frontal arcs and across-arc variations. As the

subduction zone becomes hotter along arcs, more sediment melts

and AOC melts can be liberated, implying that Zr and Nb may be

readily mobilised in slab-derived materials [the partition coefficient

between melt and solid can be >1; (Kessel et al., 2005; Hermann and

Rubatto, 2009; Skora and Blundy, 2010)], and consequently, become

enriched in the overlying mantle. Furthermore, sediment melts and

AOC melts play an important role in across-arc chemical and

isotopic variations. The amount of sediment component is higher

in frontal arcs than that in rear-/back-arcs which gives rise to higher

sediment-related element ratios such as Th/Nb in frontal arc

magmas. Meanwhile, frontal arc magmas possess lower

1000Δ143Nd/144Nd due to the low 143Nd/144Nd of sediment

components in cold subduction zone systems. However, in hot

subduction zones, AOC melts could form and more AOC melts in

frontal arc magmas increases 1000Δ143Nd/144Nd which gives rise to

an across-arc variation.

3.3 Possible factors controlling the
content of fluid mobile elements

The rear-/back-arcs are lower in Ba/Nb, Sr/Nd, and U/Nb

(Figures 7A,B,C) in comparison to frontal arc sections with

similar crustal thickness. This suggests rear-/back-arcs are less

affected by slab aqueous fluids with no effect imposed by crustal

thickness, which is consistent with large quantities of previous

studies (Ishikawa and Nakamura, 1994; Ryan et al., 1995; Patino

et al., 2000; Tollstrup et al., 2010; Leeman et al., 2017).

Furthermore, rear-/back-arc systems generally have higher Zr/

Yb and Nb/Yb values (Figure 2). This across-arc variation is not

likely caused by mantle thermal structure as high mantle

temperature can persist for a long distance from the arc to

rear-/back-arc (~500 km for the Cascadia subduction zone;

Currie et al., 2004; Curie and Hyndman, 2006) and both

frontal arc and rear-/back-arc possess similar mantle thermal

structure. Alternatively, lower mantle melting degrees by less

aqueous fluids or greater input of slab melts in rear-/back-arcs

are two possibilities. However, aqueous fluids should account for

this across-arc variation as the rear-/back-arc is affected by less

aqueous fluids (lower Ba/Nb, Sr/Nd, and U/Nb; Figures 7A,B,C)

and fewer slab melts (lower Th/Nb, Figure 7D and Figure 6A)

than the frontal arc. Lower volumes of slab-derived aqueous

fluids metasomatizing the mantle source beneath rear-/back-arc

result in lower degrees of mantle melting, consequently giving

rise to higher Zr/Yb and Nb/Yb. However, mantle fertility cannot

be ruled out as the mantle beneath back-arc could be more

enriched or less depleted than the mantle beneath frontal arc as

the melt-extracted mantle in back-arc could serve as the mantle

wedge through advecting (Pearce and Parkinson, 1993;

Woodhead et al., 1993). For across-arc variations, the mantle

wedge under the rear-arc has a similar or slightly higher

maximum temperature (geotherm P2 in Figure 3A) than the

one under the frontal arc (geotherm P1). However, the efficiency

of mantle metasomatism by aqueous fluids in the rear-/back-arc

is low so that the wet solidus of the rear-arc (solidus S2) is closer

to the dry solidus than the one of the frontal arc (solidus S1).

Therefore, the average degree of mantle melting of the rear-arc is

FIGURE 6
Comparison of 143Nd/144Nd and Th/Nb between the frontal arc and rear-/back-arc sections. (A) 1000Δ143Nd/144Nd vs. ΔTh/Nb. Negative
1000Δ143Nd/144Nd (frontal arc minus rear-/back-arc) with positive ΔTh/Nb indicates more sediment melts in the frontal arc than the rear-/back-arc
while positive ΔƐNd with positive ΔTh/Nb indicates more AOCmelts in the frontal arc. (B)Φ/100 vs. 1000Δ143Nd/144Nd. Positive 1000Δ143Nd/144Nd are
found in subduction zones with small Φ/100 indicating AOC can melt in hot subduction zones. The high-potassium rocks in the Java rear-arc
are considered to form by partial melting of an enriched mantle (Edwards et al., 1991; Edwards et al., 1994) which shows an anomaly in B.
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smaller than that of the frontal arc giving rise to higher Zr/Yb or

Nb/Yb in the rear-/back-arc (Figure 2).

In addition to the across-arc variation dictated by slab-

derived aqueous fluids in terms of fluid mobile elements

(represented by Ba/Nb, Sr/Nd, and U/Nb), whether along-arc

variation affected by these aqueous fluids or not is also explored

in this study. As can be seen from Figure 7, no significant

correlation between crustal thickness and fluid mobile

elements suggesting aqueous fluids in frontal arc magmas are

not dictated by crustal thickness. Besides, Φ/100 vs. fluid mobile

element indices in Figure 8A also shows no significant

correlation. Furthermore, the components of Φ (i.e., slab age,

convergent velocity, slab dip) along with sub-arc slab depth H

show no significant correlation with fluid mobile elements of

frontal arc rocks (and also rear-/back-arc rocks) (Figures 8B–E).

All these indicate aqueous fluids in frontal arc magmas are not

simply dictated by slab parameters and crustal thickness. The

content of fluid mobile elements in frontal arc magmas could be

affected by the initial slab hydration, slab dehydration and

mantle metasomatism.

Firstly, oceanic lithosphere usually goes through alteration

after its formation in middle ocean ridge prior to subducting.

Alteration of oceanic crust differs in terms of the degree of

alteration and the type of alteration. Hydrothermal alteration is

intense in young and hot crust such as in middle ocean ridge and

it weakens away from ridge as the crust ages and is covered by

sediment (Staudigel, 2014). Different alteration types such as

spilitization, epidotization and chloritization occurs due to the

composition and age of oceanic crust and the type of the

hydrothermal fluids (Hernández-Uribe et al., 2020). Fluids

release in subduction zones are affected by alteration types

and alteration degrees (Hernández-Uribe et al., 2020) and

therefore oceanic lithosphere alteration imposes an effect on

the content of fluid mobile elements in frontal arc rocks.

Secondly, slab dehydration in subduction zones is a complex

process. Subducting slab is comprised of the uppermost sediment

layer, the middle AOC layer, and the lowermost serpentinized

peridotite layer with sediment dehydrating first and serpentinized

peridotite the last (Rüpke et al., 2004). When the slab subducts to a

shallow fore-arc level (<15 km; Bebout, 2013), the sediment and

FIGURE 7
Comparison of trace element ratios between the frontal arc and rear-/back-arc sections. Crustal thickness vs. (A)Ba/Nb, (B) Sr/Nd and (C)U/Nb.
Lower Ba/Nb, Sr/Nd, and U/Nb indicate the rear-/back-arc sections are less affected by aqueous fluids compared with the frontal arc sections. (D)
Crustal thickness vs. Th/Nb. Lower Th/Nb indicates the rear-/back-arc sections are less affected by sediment melts.
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AOC layer experience large amounts of compaction, resulting in a

mechanical expulsion of pore waters (Moore and Vrolijk, 1992).

Beyond this depth of ~15 km, the AOC enters into the blueschist

facies, in which themajor hydrousminerals are chlorite, amphiboles,

phengite, lawsonite (Sorensen, 1986). These hydrous minerals can

dehydrate significantly to release large volume of aqueous fluids,

through various continuous and discontinuous reaction beneath

fore-arc or frontal arc or rear-/back-arc (Rüpke et al., 2004; van

Keken et al., 2011; Schmidt and Poli, 2014). For example, the

pressure-sensitive mineral amphibole breaks down at 2.2–2.4 GPa

while small amount of water remaining in hydrous phases of AOC

(e.g., lawsonite and phengite) might go further down to sub-arc

depth (Schmidt and Poli, 2014; Niu and Green, 2018). However,

recent studies show that aqueous fluids release completely before

reaching ~60 km at hot subduction zones such as Cascadia while

lawsonite can still survive to the sub-arc depth in cold subduction

zone such as Honshu (Hernández-Uribe and Palin, 2019; Barber

et al., 2022). Most of the fluid released from slab in the forearc depth

will either serpentinize the cold corner of the mantle wedge, or

eventually pass through to the ocean floor in the forearc region [e.g.,

Mariana arc, (Fryer et al., 1999; Fryer, 2012)]. Serpentine remains

stable in hydrated slab mantle to at least 2 GPa regardless of slab

thermal structure (Ulmer and Trommsdorff, 1995). It starts to

dehydrate in slab sub-arc depth in hot subduction zones (Rüpke

et al., 2004). Therefore, slab dehydration is controlled by continuous

and discontinuous reactions of different hydrous minerals under

different slab thermal condition. In addition, slab dehydration is also

affected by slab geometry. Slab fractures facilitate hydrating slab

mantle peridotite and the additional aqueous fluids released from

this serpentinized mantle in fractured zones are evidenced in

Aleutian arc (Singer et al., 2007; Manea et al., 2014) and Lesser

Antilles (Cooper et al., 2020).

The relationship between slab thermal structure and slab

parameters is unclear which further decorrelates slab parameters

and aqueous fluids. Slab thermal parameter Φ is the first to

represent slab thermal structure (Kirby et al., 1991). Some also

use the product of convergent velocity and slab age as the indice

(van Keken et al., 2011). More recently, Maunder et al. (2019)

suggests slab temperature is controlled by slab age in slab-

overriding plate decoupling depth (70–80 km). At slab sub-arc

FIGURE 8
Slab thermal parameter (A), slab age (B), convergent velocity (C), slab dip (D), and slab depth (E) vs. elements mobile in aqueous fluids.
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depth, the slab mantle temperature is also negatively correlated

with slab age but temperature of slab crust is dominated by

convergent velocity. In addition to the slab parameters, slab

thermal structure is also affected by the thickness of the

overriding plate with slab AOC cooling down due to

increasing thickness of upper plate (Holt and Condit, 2021).

Besides, slab thermal structure is dynamic and it changes as

subduction zone evolve from subduction initiation to mature

subduction (Holt and Condit, 2021). The mantle wedge for arcs

at different stage goes through metasomatism by fluids derived

from different slab dehydration.

Thirdly, the processes of mantle wedge metasomatism are also

unclear. The firstmodel is that large volume of aqueous fluids release

in the fore-arc and metasomatize the fore-arc mantle wedge as

indicated by the serpentinite seamount in IBM (Fryer et al., 1999;

Fryer, 2012). These hydrous minerals (e.g., serpentine) can be

transported downward by movement of subducting slab and

releases their fluids to trigger flux melting (Hattori and Guillot,

2003). The fluid release of the hydrous mantle wedge might be a

complex process as suggested by geodynamicmodelling (Davies and

Stevenson, 1992). This is supported by geochemical evidence as

boron isotope of the arc rocks is too heavy and need materials from

the serpentinized fore-arc (Tonarini et al., 2011; Leeman et al., 2017).

The second model is melange-style melting (Marschall and

Schumacher, 2012; Nielsen and Marschall, 2017). Bulk sediment

and AOCmix with serpentinized mantle wedge peridotite to form a

buoyant melange in the fore-arc mantle wedge. This melange goes

up and away from trench to the hot corner under frontal arc where it

partially melts to form arc magmas. Similar to the first model, it is

beneath fore-arc rather than frontal arc where aqueous fluids release

from AOC. The conventional model of mantle wedge melting is

AOC fluids along with sediment melts release from slab beneath

frontal arc (Ryan and Chauvel, 2014; Schmidt and Poli, 2014). The

serpentinized peridotite can also release aqueous fluids beneath

frontal arc which either mix with the AOC fluids or facilitate

melting of AOC and sediment (Ulmer and Trommsdorff, 1995;

Rüpke et al., 2004). This mixture of aqueous fluids and melts from

different layers of the subducting slab percolates upward through

mantle wedge to trigger mantle melting where frontal arc magmas

derive. Therefore, this model differ with first twomodels in that slab

dehydration occurs under frontal arc rather than fore-arc. Besides,

sediment melt rather than bulk sediment is suggested to play a role

in arc magmatism. All these complex processes make aqueous fluids

in arc magmas hard to constrain.

Subduction zone magmatism is caused by a series of

complex processes affected by the subducting plate and

overriding plate. The aqueous fluids are controlled by

oceanic alteration prior to subducting, slab dehydration,

and mantle metasomatism with the exact processes highly

debated. Even though the mechanism of mantle wedge

melting is unclear, the melting degrees are modulated by

the thickness of the overriding plate as revealed by the

elements immobile in aqueous fluids. Besides, mass transfer

even for fluid immobile elements are common especially in

subduction zones with hot slab thermal structure.

4 Conclusion

The thickness of the overriding plate exerts its effect on the

composition of primitive arc magmas through mantle melting

degrees. The mantle wedge geotherm is deepened or the

melting column shortens under thick crust/lithosphere so

the degrees of mantle melting decrease. Trace element ratio

Zr/Yb and Nb/Yb in frontal arc rocks show a good positive

correlation with crustal thickness which are also found in

rear-/back-arcs. Crustal thickness gives rise to along-arc

variations for both systems.

The slab thermal structure influences the composition of arc

basalts (e.g., elements immobile in aqueous fluids) by mass

transfer from the subducting slab to the mantle wedge. It

contributes to the across- and along-arc variations in

incompatible elements (e.g., Zr/Yb and Nb/Yb) as well as in

isotopic characteristics (i.e., 143Nd/144Nd). Hot subduction zones

with a low value of slab thermal parameter can liberate AOC

melts apart from sediment components.

Slab-derived aqueous fluids play an important role in across-

arc variations through mass transfer. The subducting slab

releases less aqueous fluids in the rear-/back-arc than the

frontal arc resulting in depletion of aqueous fluids elements in

rear-/back-arcs. Besides, less aqueous fluids give rise to smaller

degrees of mantle melting and therefore higher Zr/Yb and Nb/Yb

values in the rear-/back-arc rocks. No significant correlations

between aqueous fluids and slab parameters indicate the volume

of aqueous fluids in arc magmas are controlled by complex

processes. Oceanic lithosphere alteration prior to subducting,

slab dehydration, slab geometry, and factors unrelated to slab

such as the mechanism of mantle wedge metasomatism and

melting and thickness of overriding plate possibly impose effects

on aqueous fluids in primitive arc magmas.
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