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Abstract 

Drawing the strengths of data science and machine learning, process mining has recently emerged 

as an effective research approach for process management and its decision support. Bottleneck 

identification and analysis is a key problem in process mining which is considered a critical 

component for process improvement. While previous studies focusing on bottlenecks have been 

reported, visible gaps remain. Most of these studies considered bottleneck identification from local 

perspectives by quantitative metrics, such as machine operation and resource requirement, which 

can not be applied to information and knowledge-intensive processes. Moreover, the root cause of 

such bottlenecks has not been given enough attention, which limits the impact of process 

optimisation. This paper proposes an approach that utilises fusion-based clustering and hyperbolic 

neural network-based knowledge graph embedding for bottleneck identification and root cause 

analysis. Firstly, a fusion-based clustering is proposed to identify bottlenecks automatically from a 

global perspective, where the execution frequency of each stage at different periods is calculated 

to reveal the abnormal stage. Secondly, a process knowledge graph representing tasks, 

organisations, workforce and relation features as hierarchical and logical patterns is established. 

Finally, a hyperbolic cluster-based community detection mechanism is researched, based on the 

process knowledge graph embedding trained by a hyperbolic neural network, to analyse the root 

cause from a process perspective. Experimental studies using real-world data collected from a 

multidisciplinary design project revealed the merits of the proposed approach. The execution of the 

proposed approach is not limited to event logs; it can automatically identify bottlenecks without 

local quantitative metrics and analyse the causes from a process perspective.  

 

Keywords: Process Mining; Bottleneck Identification; Root cause Analysis; Knowledge Graph; 

Hyperbolic Neural Network. 
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1. Introduction 

Process management is the science of observing how work is executed and taking advantage 

of improvement experience learned from previous processes. Due to higher requirements for 

manufacturers and service providers, including reducing costs and execution times, enhancing 

quality and efficiency, and improving the productivity of processes, process management has been 

utilised for defining, analysing, optimising, monitoring and controlling processes. In process 

management, bottlenecks have been regarded as crucial and valuable information [1]. For example, 

bottlenecks such as machine failures and supply chain delays in the manufacturing process will 

cause task congestion and case delay. Therefore, identifying bottlenecks is the key to accelerating 

the optimisation process management, which aims to improve work quality and efficiency [2]. For 

example, identifying production bottlenecks in the automotive assembly process can provide 

manufacturers with essential decision input [3], identifying bottleneck manufacturing resources in 

the intelligent workshop can provide a decision-making basis for subsequent production 

management [4], and identifying bottleneck machines can reduce the influence on the maximum 

completion time [5]. 

In recent years, the wide use of information systems facilitated the storage of process data, 

and a means to bridge the gap between Data Science and Process Science [6] called process mining 

exists. Process mining plays an essential role in many process management issues, including 

identifying bottlenecks. Researchers have conducted in-depth research on bottlenecks and proposed 

various bottleneck identification and analysis methods, especially in the manufacturing process [7]. 

The universal approach is to define or select a quantitative metric, such as throughput, machine 

load, and the working time of the machine. When the metric exceeds the constraint, it is considered 

that a bottleneck has occurred. This approach has been used to reference specific business processes, 

such as medical and surgical processes. However, this approach does not always work, especially 

for knowledge-intensive processes, such as some business and design processes, due to the nature 

of both data and the process. 
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The first is the diversity of data structures. Besides event logs, more process data can be 

collected, providing valuable information for different processes, such as the knowledge-intensive 

process. Contrary to the structured datasets in the manufacturing process, 80% of data in the 

knowledge-intensive process is unstructured texts [8], for example, design reports, emails, and 

meeting transcripts. The data does not contain explicit information about the relevant process, 

which leads to process information lacking visibility and increases the difficulty of selecting a 

quantitative metric. Therefore, the universal bottleneck identification and analysis approach can 

not be extended to processes that primarily contain unstructured data. Converting this gap requires 

combining domain knowledge to fully understand the process information from these data. 

Another reason is the difference between the manufacturing process and the knowledge-

intensive process. The former is formal and repetitive, while the latter is flexible and unpredictable 

[9]. In the manufacturing process, the bottleneck can be identified from a local perspective that 

observes a quantitative metric of a single object, usually the machine [10]. And these metrics can 

intuitively explain the cause of the bottleneck [11]. For example, the throughput and load of 

machines are two standard metrics. However, in the information and knowledge-intensive process,  

the factors causing the bottleneck are more uncertain, which leads to the difficulty of using a 

quantitative metric to measure these factors. Usually, researchers can only identify the bottleneck 

from the global perspective, such as identifying a bottleneck in a sub-process by its delay. However, 

this approach has a substantial limitation. The metric, from a global perspective, can not explain 

the cause of the bottleneck. Solving this problem calls for an in-depth analysis of the bottleneck. 

To meet the requirements of improving various processes, this paper presents a data-driven 

methodology for identifying bottlenecks and analyzing the root causes in the knowledge-intensive 

process. In detail, the proposed method contains two main stages: identifying the bottleneck first 

and then analyzing its root causes. The first stage is identifying bottlenecks from unstructured input 

documents using a  fusion-based clustering algorithm. The second stage focuses on analyzing the 

root causes of bottlenecks from a process perspective to enable empirical knowledge learning 
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considering multiple elements, e.g., task decomposition, human interaction and resource allocation. 

To analyse the root cause of bottlenecks that many previous works do not consider, a knowledge 

graph-based root cause analysis algorithm is studied. A knowledge graph is built to represent tasks, 

organisations and people as hierarchical and logical patterns. Based on this knowledge graph, we 

extract the element features and the relation features using the knowledge graph embedding. 

Considering the hierarchical and logical structure of the knowledge graph, the hyperbolic neural 

network is used to do knowledge graph embedding because of its high-fidelity and parsimonious 

representation compared with more Euclidean space approaches. Based on the knowledge graph 

embedding obtained, hyperbolic clustering-based community detection is applied to analyse the 

root cause of bottlenecks. The main contribution of this work includes:  

 Focusing on unstructured data, we proposed an automatic process-oriented bottleneck 

identification method. Through knowledge extraction, it no longer relies on human 

intervention.  

 Promoting process-oriented multi-dimensional root-cause analysis by combining knowledge 

graph-related technologies with universal process mining technologies.  

 Based on the process knowledge graph embedding trained by a hyperbolic neural network, a 

hyperbolic cluster-based community detection mechanism is researched. 

The rest of this paper is structured as follows. Section 2 reviews relevant studies of process 

mining, bottlenecks analysis in process management and knowledge graph embedding. Section 3 

outlines the proposed methodology for bottleneck identification and its root cause analysis. Section 

4 reports an experimental study using real-world business process data to demonstrate the 

effectiveness of the method. Section 5 gives the results and discussions of the experimental study. 

Section 6 concludes the paper. 
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2. Literature Review 

2.1 Process Mining 

Process mining is a technique providing insight into real processes, discovering, monitoring 

and improving them by analysing the process data. Three main tasks in process mining are model 

discovery, conformance checking and process enhancement. Process model discovery aims to 

support process improvements by discovering models from historical event logs, and it is the basis 

of various downstream tasks [6]. Traditionally, process mining focuses on automatically 

discovering a model that describes the causal relations or execution patterns of activities. In recent 

years, process mining has been applied successfully in many real cases, such as cases in the 

manufacturing industry [12], financial industry [13,14], and healthcare processes [15,16]. However, 

traditional process mining approaches cannot be applied directly to the knowledge-intensive 

processes that contain semi-structured and unstructured data, such as reports, emails, meetings and 

conversation records.  

As a remedy, approaches mining from natural language texts were proposed. For example, Aa 

H et al. [17] presented a tailored natural language processing approach to identify activities and 

their relations. Friedrich et al. [18] augmented natural language processing techniques with an 

anaphora resolution mechanism to generate a process model. These process mining approaches 

follow a similar scheme. First, tokenize and tag texts by syntactic analysis, then detect activities 

and operators using semantic analysis and domain knowledge, and generate a model by discovering 

sequence flows using predefined signal words. These approaches have a significant limitation: the 

input text is required to describe a model sequentially, and the statements must be related to the 

process model. To solve this limitation, advanced process information extraction approaches were 

conducted. For example, Lijun Lan et al. focused on design process knowledge extraction and 

design process discovery from email data without explicit process information [9]. She proposed a 

deep belief net (DBN) that can automatically extract hidden process information and then model 

the design process. Elleuch M et al. achieved frequent activity discovery via a pattern discovery-
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based approach. These process mining approaches can perform well in extracting hidden 

information from unstructured data and discovering process models. Still, the limitation that these 

approaches rely on the help of expert knowledge remains to be resolved. 

 

2.2 Bottlenecks Analysis in Process Management 

A process bottleneck is a crucial factor restricting the efficiency of the process, which is also 

the essential factor process analysts need to consider for improving or redesigning processes. 

Usually, a bottleneck is defined as the congestion points that slow down the process [19,20]. 

Identifying the bottleneck accurately dramatically improves the process, including time efficiency, 

cost and resource allocation. Some scholars have researched specific processes, such as medical 

processes [13,14], surgical processes [21] and especially manufacturing processes [3].  

Some in-depth research on bottleneck identification has been widely used in the 

manufacturing process. For example, Lei Q et al. proposed a constraint and sensitivity analysis-

based identification approach for a bottleneck in a job shop [2]. Caesarita Y et al. proposed a 

machine operational bottleneck identification and ranking model in mine operations [5]. Wang S 

et al. focused on energy storage investment requirements and proposed an operational bottleneck 

identification approach to analyse them [22]. These bottleneck identification approaches follow a 

similar scheme containing three steps: define or select a quantitative metric, calculate the normal 

value range of the metric, and detect objects outside the normal range. One major limitation of 

these approaches is that a quantitative metric reflecting processes is difficult to find or define.  

It is feasible to reflect process performance by observing single objects, such as machine states 

in manufacturing and some specific processes, reducing the difficulty of defining quantitative 

metrics. However, it is difficult for a single object to reflect the entire process performance in 

information and knowledge-intensive processes due to its complexity and flexibility. To solve this 

problem, researchers can only identify the bottleneck from the global perspective. For example, 

identifying a bottleneck in a sub-process by its delay and identifying bottlenecks in mixed multiple-



7 

 

concurrency short-loop structures using Petri nets and unbounded Petri nets [23, 4]. However, this 

approach has a substantial limitation compared with quantitative metrics of single objects. 

Quantitative metrics of single objects such as throughput, machine load, and the machine's working 

time can explain the bottleneck's causes, while the metric from a global perspective can not.  

 

2.3 Knowledge Graph Embedding 

To analyse the root cause of bottlenecks in information and knowledge-intensive processes, 

the individual workflow, tasks, organisation, time information, and the relation between them 

should be paid attention to. It is difficult to explain the root causes of bottlenecks by process metrics 

such as control flow in information and knowledge-intensive processes. However, the knowledge-

intensive process is complex, which means the additional information, such as task decomposition, 

social network and organization, will significantly impact the process. These factors cannot be 

ignored when analyzing the causes of bottlenecks. But in the current flat and linear model, the 

information of each part is independent. The graph structure characteristics of the knowledge graph 

can well represent the feature of elements and the relation between elements. The knowledge graph 

can effectively connect and integrate each part of the information. 

The knowledge graph has been applied in the industrial field due to its excellent representation 

ability [24,25]. For example, Mingfei Liu et al. used a knowledge graph to represent data in IIoT-

enable cognitive manufacturing [26]. Xinyu Li et al. used ontology to represent process knowledge 

for decision support [27]. Akshay G. Bharadwaj constructed a product design knowledge graph 

from large CAD model repositories [28]. Pouya Zangeneh used ontology-based knowledge 

representation to support industrial megaprojects [29]. These studies focused on using knowledge 

to represent complex knowledge or large data. The knowledge graph embedding methods make it 

possible to use machine learning and deep learning approaches to analyse knowledge graph data, 

which can be utilized to analyze the correlation between each part of process information. For 

example, traditional graph analysis approaches can also be developed based on knowledge graph 
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embedding technology, such as community detection. Traditional community detection approaches are 

always based on graph features, such as nodes, edges and paths [30]. The combination of graph 

embedding and clustering provides a new approach to community detection [31, 32].  

Traditional knowledge graph embedding methods rely on geometric properties that have few 

parameters and fail to encode logical properties [33]. Recent complex embedding approaches such 

as ComplEx, RotatE and QuatE models can effectively capture logical properties [34-36]. However, 

these embedding models require high dimensional space. A deep neural network is another 

approach [37]. However, pre-trained knowledge graph embedding requirements limit its 

application. Process knowledge graphs exhibit hierarchical and logical patterns, which means the 

above approaches are not effective enough. For these data, hyperbolic embedding methods can 

achieve high-fidelity and parsimonious representations. MuRP is the first method that studies 

knowledge graph embedding in hyperbolic space [38]. However, MuRP also fails to encode some 

logical properties. Ines Chami combined hyperbolic embedding with an attention mechanism to 

solve this problem, and an improved model was proposed for complex relational patterns [39]. 

 

2.4 A Brief Summary 

According to the literature review, existing research into identifying bottlenecks has drawn 

much attention and applied to some areas. Unfortunately, current works on bottleneck identification 

have significant limitations facing unstructured data due to the difficulty of selecting a quantitative 

metric for process-oriented bottlenecks. Although root cause analysis has been studied for decades, 

its focus has always been in the engineering domain and has not been extended to multiple aspects 

of the process. This paper proposes an approach for process-oriented bottleneck identification and 

its root cause analysis, which aims to extend the state-of-the-art to processes of various domains.   
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3. Methodology 

This paper proposes a machine learning-based bottleneck identification and root cause analysis 

approach. The framework of the proposed approach is shown in Figure 1, which contains three 

stages. We start with a data preprocessing step, extracting information from unstructured process 

documents. In stage 2, we combine the topic model and clustering to identify bottlenecks. In stage 

3, a process knowledge graph is built based on the information extracted. Then, a hyperbolic neural 

network is applied to do knowledge graph embedding, and a clustering-based community detection 

approach is combined to analyse the bottlenecks' root causes.  

 

3.1 Bottleneck Identification: BTMDW-Fusion K-means 

Considering that the distance function significantly affects the clustering accuracy in K-means, 

the BTMDW (Biterm topic model with dynamic window)-Fusion K-means clustering-based 

bottleneck identification algorithm was proposed [40]. Process documents are collected and 

preprocessed and then represented as vectors. Due to the advantages of the topic model approach 

in distinguishing meaning and Doc2vec in dealing with polysemy, process documents are modelled 

with the topic model and Doc2vec. Since the document length affects the performance of traditional 

topic model approaches, such as LDA and BTM [41], BTMDW (Biterm topic model with dynamic 

window) was proposed by introducing a sliding window to BTM, which can adapt to different 

lengths of the process documents. After BTMDW topic modelling and Doc2vec modelling, 

documents are represented as two kinds of vectors. JS divergence and Euclidean are adopted to 

calculate the document similarity, respectively. Finally, the fusion distance is applied to K-means 

to achieve high-quality clusters to improve the quality of discovered topics from document clusters.  
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Figure 1. The framework of bottlenecks identification and its root cause analysis (the dotted line is the process 

of extracting the core topic from the obtained document clusters) 

 

3.1.1 BTMDW-based document similarity 

The process of BTMDW-based document similarity measurement is divided into two parts. 

The first part obtains the document vector representations by BTMDW modelling. The second part 

calculates the document similarity using JS divergence. 

The probability ܲሺݖ|݀ሻ was used to represent the document, in which ݀ donates the document 

and ݖ donates the topic. The number of documents is ௗܰ and the number of topics is ௭ܰ. Then, 

document ݀௜ can be represented by a vector of the posterior distribution of topics that are trained 

by the BTMDW model [42]: ݀௜_஻்ெ஽ௐ ൌ ሼ݌ሺݖଵ|݀௜ሻ, ,ଶ|݀௜ሻݖሺ݌ … ,    ே೥|݀௜ሻሽ                                      (1)ݖሺ݌

JS divergence is often utilised to measure the distance between two distributions and is used 

to calculate the distance between two document vectors ݀௜_஻்ெ஽ௐ  and ௝݀_஻்ெ஽ௐ	 trained by 

BTMDW, which reflects the similarity between the two documents ݀௜ and ௝݀. The distance ܫܦ ௃ܵௌ 

is as function (2): 
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ܫܦ ௃ܵௌ൫݀௜_஻்ெ஽ௐ, ௝݀_஻்ெ஽ௐ൯ ൌ ஽ூௌ಼ಽሺௗ೔|ฬ೏೔శ೏ೕమ ൰ା஽ூௌ಼ಽሺௗೕ||೏೔శ೏ೕమ ሻଶ                            (2) 

 

3.1.2 Doc2vec-based document similarity 

The process of Doc2vec-based document similarity measurement also has two steps. The first 

step uses  Doc2vec to model the process documents. The second step uses Euclidean distance to 

calculate document similarity. The vector size is donated as ܯ, the maximum epoch is donated as ݉ܽݏ݄ܿ݋݌݁_ݔ, and the hyperparameter ݈݄ܽܽ݌. The output of the Doc2vec is the ܯ  dimension 

document vector as function (3). ݀௜_஽௢௖ଶ௏௘௖ ൌ ሼݒଵሺ݀௜ሻ, ,ଶሺ݀௜ሻݒ … ,  ெሺ݀௜ሻሽ                                           (3)ݒ

Doc2vec solves the high dimensionality of document vectors so that Euclidean distance can 

work well. Euclidean distance was used to calculate the distance between two document vectors ݀௜_஽௢௖ଶ௏௘௖  and ௝݀_஽௢௖ଶ௏௘௖  trained by Dov2Vec. The distance ܵܫܦா  is as function (4), in which || ∙ ||ଶ donates the ܮଶ norm. ܵܫܦா൫݀௜_஽௢௖ଶ௏௘௖ , ௝݀_஽௢௖ଶ௏௘௖൯ ൌ |ห݀௜_஽௢௖ଶ௏௘௖ െ ௝݀_஽௢௖ଶ௏௘௖ห|ଶ                              (4) 

 

3.1.3 Fusion distance K-means 

After obtaining the statistical document vector by BTMDW and the semantic document vector 

by  Doc2vec, the fusion distance 	ܵܫܦ based on these two document vectors was applied to K-

means. The fusion distance between two documents ݀௜and ௝݀ is defined as a linear combination of ܫܦ ௃ܵௌ  and ܵܫܦா , with a combination coefficient ߣ  (0 ൏ λ ൏ 1) shown as formula (5). Firstly, 

randomly select ܭ initial centres of clusters from document collection ܦ. After that, use the fusion 

distance to calculate the similarity between the cluster centre and other documents. Each document 

will be assigned to the most similar cluster. Then, the cluster centre is updated according to the 

calculation. ܵܫܦ൫݀௜ , ݀௃൯ ൌ ߣ ∙ ܫܦ ௃ܵௌ൫݀௜_஻்ெ஽ௐ, ௝݀_஻்ெ஽ௐ൯ ൅ ሺ1 െ ሻߣ ∙ ா൫݀௜_஽௢௖ଶ௏௘௖ܵܫܦ , ௝݀_ವ೚೎మೇ೐೎൯      (5) 
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The overall procedure of BTMDW-Fusion K-means shows in Algorithm 1. 

Algorithm 1: BTMDW-Fusion K-means 

Input: Design process document set ܦ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ே೏ሽ, hyperparameter ߙ and ߚ, window 

size ݊݅ݓ , similarity threshold ߤ , sampling parameters ܵ , vocabulary ܸ , fusion coefficient ߣ , 

cluster number (task number) ܭ, vector size ܯ, document length threshold ߬ 

Output: Document clusters 

1. Select unordered word pair co-occurring in a dynamic window as biterms, and get the biterm 

set ࡮. 

2. Calculate word similarity matrix in vocabulary ܸ using Glove and Cosine distance. 

3. Randomly initialise the topic assignments for all the biterms. 

4. for iter=1 to ௜ܰ௧௘௥ do: 

           for each biterm ܾ௜ ൌ ሺݓ௜,ଵ, ௜,ଶሻݓ ∈  ࡮

         Draw topic ݇ from ܲሺݖ௜ ൌ ௜ିࢠ|݇ ,  ሻ according to [6]࡮

         Update ݊௞ and ݊௪|௞ 

     Compute ࣘ and ࣂ  

5. Calculate ܲሺݖ|݀ሻ and get a representation of documents: ݀௜_஻்ெ஽ௐ. 

6. Train Doc2Vec and get documents representation ݀௜_஽௢௖ଶ௏௘௖. 

7. Randomly select ܭ design documents from data set ܦ as the initial cluster centres ܿ௘ , ݁ ൌ 							1, … ,  .ܭ

      Repeat:  

            Calculate the distance between documents and ܿ௘ according to the distance function (5). 

            Update cluster centres ܿ௘. 

      Until: 

            Cluster centre ܿ௘ is no longer changed. 

 ௜,∙ donates the word in ܾ௜ݓ *
* ݊௞ donates the number of biterms assigned to topic ݇ 

*	݊௪|௞ donates the number of times that word ݓ assigned to topic ݇ 

 are the multinomial distribution parameters [27] ࣂ ,ࣘ *

  

3.2  Root Cause Analysis of Bottlenecks  

The second part proposed a root cause analysis algorithm for bottlenecks. The root cause refers 

to the factor that influences the bottlenecks, for example, the people executing the task, the 

rationality of the task, and the efficiency of the organisation. The algorithm includes three steps. 

Process analysis has several perspectives. However, these perspectives are independent and 

difficult to correlate. The knowledge graph is an effective way to connect information from 

different perspectives. Considering that, a process knowledge graph was built from process 

documents first. Secondly, community detection was used to analyse the correlation between each 

factor and bottlenecks before which Knowledge graph embedding was conducted. Then,  
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knowledge graph embedding was trained from the process knowledge graph. Last, hyperbolic 

clustering-based community detection was used to analyse the root cause of bottlenecks based on 

the knowledge graph embedding. 

 

3.2.1 Process Knowledge Graph Building 

For knowledge graph building, the problem statement is to formulate raw texts into a 

knowledge graph using natural language processing, including sentence segmentation, entity 

extraction and relation extraction. Sentence segmentation is splitting the text documents into 

shortlisted sentences only where there are precisely a few subjects and objects. Nodes and edges 

are the two main elements in a knowledge graph. In the process knowledge graph, nodes are the 

entities presented in the sentences, which entity extraction approaches can extract with the help of 

parts of speech tags. Usually, the nouns and the proper nouns are more likely to be entities. 

However, in the process document, the sentence is more complicated because an entity can span 

multiple words, and some entities are composed of compound words. To address these problems, 

rule matching-based dependency analysis of the sentence was also used to help entity extraction. 

For example, ܺ	݄ܿݑݏ	ݏܽ	ܻ  is a pattern where the type of ܻ is found out from ܺ. Edges in the 

knowledge graph are the relations connecting these entities. These elements are extracted in an 

unsupervised manner using the grammar of the sentences. The extracted entities and relations are 

stored as triples [source entity, relation, object entity]. The package called networkx in Spacy can 

build the process knowledge graph from these extracted triples. 

 

3.2.2 Hyperbolic Convolution Neural Network-based Knowledge Graph Embedding 

Based on the process knowledge graph, the knowledge graph embedding is used to extract 

features and express them as vectors. In the knowledge graph embedding problem, we got a set of 

triples ሺ݄, ,ݎ ሻݐ ∈ ,݄ in which ܩ ݐ ∈ ݎ and ܧ ∈  and, respectively, represent entity and relation ܧ .ܴ

sets. The knowledge graph embedding is to map entities ݁ ∈ ܧ  to a vector named entity 
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embeddings ݒ௘ ∈ ܸௗ೐ and map relations ݎ ∈ ܴ to a vector named relation embeddings ݒ௥ ∈ ܸௗೝ of 

some vector space ܸ (traditionally Real Space) to preserve the knowledge graph structure. These 

embeddings are trained by optimising a score function ܵሺ∙,∙,∙ሻ:	ܧ ൈ ܴ ൈ ܧ → Թ (Real Space) that 

measures similarity between triples. Embedding models aim to optimise the score function for each 

triple to ensure valid triples will receive lower scores than invalid triples. This work aims to learn 

hyperbolic embeddings that can preserve the latent hierarchies of knowledge graphs, which can 

better encode complex logical patterns such as symmetry, anti-symmetry and inversion. 

We briefly review hyperbolic geometry. Hyperbolic geometry has constant negative curvature 

and belongs to non-Euclidean geometry [40]. In this study, we use the Poincare ball model with 

negative curvature െܿ	ሺܿ ൐ 0ሻ. A ݀-dimensional Poincare ball is ܤௗ,௖ ൌ ሼ࢞ ∈ Թௗ: ଶ||࢞|| ൏ ଵ௖ሽ, in 

which || ∙ ||ଶ  denotes the ܮଶ  norm. To build a hyperbolic counterpart, we use the following 

primitives: 

Mobius addition: 

ݔ ⊕௖ ݕ ൌ ቀଵାଶ௖〈௫,௬〉ା௖ห|௬|หమమቁ௫ାሺଵି௖||௫||మమሻ௬ଵାଶ௖〈௫,௬〉ା௖మ||௫||మమ||௬||మమ                                               (6) 

Mobius subtraction: ݔ ⊝௖ ݕ ൌ ݔ	 ⊕௖ ሺെݕሻ                                                            (7) 

Mobius “matrix-vector” multiplication: 

ݔ௖⨂ࡹ ൌ ଵ√௖ tanh	ሺห|ࡹ௫|หమ||௫||మ ଶሻሻ||ݔ||ܿ√ଵሺି݄݊ܽݐ  ௫||మ                                      (8)ࡹ||௫ࡹ

The hyperbolic convolution neural network (HCNN) based knowledge graph embedding 

model has some notions. The valid triple set is donated by ܩ . Corrupt some samples in ܩ  to 

generate an invalid triple set ܩ′ . The dimension of embeddings is donated by ݉  and each 

embedding triple ሺݒ௛, ௥ݒ , ࡭ ௧ሻ can be donated by a matrixݒ ൌ ሾࢎ࢜, ,࢘࢜ ሿ࢚࢜ ∈ Թ௠ൈଷ. A filter ࣐ ∈Թଵൈଷ  is repeatedly operated on the convolution layer over each row of ࡭. A feature map ܞ ൌሾ࢜૚, ,૛࢜ … , ሿ࢑࢜ ∈ Թ௠ will be generated finally, in which:  ࢏࢜ ൌ ݃ሺ࣐⨂௖ࢀ:,࢏࡭⨁௖ܾሻ                                                              (9) 
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where ܾ ∈ Թ is a bias term, and ݃ is the activation function, usually select  ReLU. 

To generate various feature maps, a set of different filters ߔ is used, and ߛ ൌ |߶| denotes the 

number of filters. These ߛ feature maps generated by different filters are connected into a single 

vector ∈ Թఉ௠ൈଵ  which is then inputted into a full connection layer with a weight vector ࢃ ∈Թఉ௠ൈଵ  to calculate a score for the triple ሺ݄, ,ݎ  ሻ. The formula (10) is the definition of scoreݐ

function ݂: ݂ሺ݄, ,ݎ ሻݐ ൌ ,ࢎ࢜ሺ݃ሺሾݐܽܿ݊݋ܿ ,࢘࢜ ሿ࢚࢜ ∗  (10)                                         ࢃሻሻ⨂௖ߔ

Where * denotes a convolution operator, and ݐܽܿ݊݋ܿ	  denotes the connection operator. In the 

optimisation stage, to minimise the loss function L, the Adam optimiser is used to train HCNN [43]. ܮ ൌ ∑ ݃݋݈ ቀ1⨁௖ ݌ݔ݁ ቀܵሺ௛,௥,௧ሻ⨂௖݂ሺ݄, ,ݎ ሻቁቁ⨁௖ݐ ఒଶ⨂௖||ࢃ||ଶଶሺ௛,௥,௧ሻ∈ሼ஽∪஽ᇲሽ                      (11) 

where ܵሺ௛,௥,௧ሻ ൌ ൜ ,ሺ݄	ݎ݋݂	1 ,ݎ ሻݐ ∈ ,ሺ݄	ݎ݋݂	െ1ܩ ,ݎ ሻݐ ∈  .′ܩ
 

3.2.3. Hyperbolic Clustering-based Community Detection 

This work analysed the root cause of process bottlenecks by hyperbolic clustering-based 

community detection, which can extract subtasks and operator networks closely related to 

bottlenecks. To preserve the hierarchical nature of process data, knowledge graph embedding was 

done in the hyperbolic space. Similarly, clustering was also performed in the hyperbolic space. 

Knowledge graph embeddings obtained through HCNN were used as the input of hyperbolic 

clustering, and the community centred on each main task can be obtained. Then, analyse its root 

cause based on the knowledge graph of the community where the bottleneck is located. The 

distance in hyperbolic space used in clustering is as follows: for a d-dimensional Poincare ball ܤௗ,௖ ൌ ሼ࢞ ∈ Թௗ: ଶ||࢞|| ൏ ଵ௖ሽ, ࢞ and ܡ are two points in this Poincare ball. The hyperbolic distance 

between ࢞ and ܡ on ܤௗ,௖ has the explicit formula: ݀௖ሺ࢞, ሻ࢟ ൌ ଶ√௖  ሻ                                               (12)||࢟௖⨁࢞ሺ√ܿ||െ	݄݊ܽݐܿݎܽ

where || ∙ || denotes the ܮଶ norm. 
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The overall procedure of root cause analysis of bottlenecks shows in Algorithm 2. 

Algorithm 2: Root cause analysis of bottlenecks (BRCA) 

Input: Design process document set ܦ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ே೏ሽ, cluster number (task number) K,  

Output: community graph 

1. Preprocess the input data ܦ, including word segmentation, named entity recognition and  

    relation extraction, and get triples set ሾ݄, ,ݐ  .including ݊ triples ,ܦ ሿ of dataݎ

2. Encode the entity and relation of the triples set and get the encoded triples list ࢍ࢑ (size:݊ ൈ3). 

3. Input the initial embeddings of triples list ࢍ࢑ into HCNN to train it, and get the final  

    knowledge graph embedding ࡱ ൌ ሺࢋ૚, ,૛ࢋ … ,  .is the embedding of the ݅th triple ࢏ࢋ ,ሻ࢔ࢋ

4. Select ܭ triples from ࢍ࢑ as the initial cluster centres, ܿ௘ , ݁ ൌ 1,… ,  ܭ

      Repeat: 

          Calculate the distance between each triple and ܿ௘ according to the distance function (12) 

          Update cluster centres ܿ௘. 

      Until: 

          Cluster centre ܿ௘ is no longer changed. 

5. Find the community where the bottlenecks locate and build its community graph. 

 

 

4. Experimental Study 

The experimental study was conducted using the historical data collected from a real design 

process hosted by a university. The dynamic and complex environment and the inherently uncertain 

nature of innovative design processes lead to an industrial reality in which bottlenecks are 

widespread. Identifying the bottleneck and analysing its root cause can support designers in 

avoiding these bottlenecks in future design projects and reduce design risks. Design process 

analysis is a multi-dimensional problem, including analysing activities, control flow, decisions 

made throughout the workflow, and changes in the design process [44].   

The design process is a knowledge-intensive process in which most data is unstructured. The 

project in this case study aims to design an Ants transportation system to track the traffic wave 

problem in the highway system. During the design process, the activities of all participants are 

recorded in the communication emails. During the two years of the project, all 569 emails were 

required to be sent to a shared address and stored as an XLM file. This XLM file contained all 

information during the design process, such as activities, resources and personnel interactions. An 
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initial experimental study was conducted to identify the bottleneck and analyse its root cause from 

a process perspective.  

 

4.1 Data Acquisition and Preparation 

The data in this study was collected from a design process. The raw data regarding the design 

process were emails extracted from Outlook as an XML file. The raw data is unstructured text 

containing process information, including design activities, participants, resources, and time. After 

filtering blank emails and useless information such as links and marker symbols, 357 emails were 

kept for subsequent analysis and the vocabulary size |ܸ| ൌ 2928. For the two goals in this study, 

the bottleneck identification and its root cause analysis, some preprocessing was taken. 

Bottleneck identification is mainly realised by the topic model BTMDW and the fusion-based 

K-means. In BTMDW, the word filter sets the semantic similarity threshold to increase the 

probability of sampling similar words and enhance the topic clustering effect and the difference 

between selected topics. To calculate the word similarity, preprocessing was conducted to 

transform words into 100-dimension vectors using the Glove algorithm [45]. The root cause 

analysis of bottlenecks is mainly realised by the process knowledge graph. The construction of the 

process knowledge graph needs to transform the data into triples. Therefore, named entity 

recognition and relation extraction are carried out to obtain triples like [head-entity, relation, tail-

entity]. 

 

4.2 Experimental Setup  

This paper proposed a bottleneck identification algorithm BTMDW-Fusion K-means and a 

root cause analysis algorithm based on the process knowledge graph. Three experimental studies 

were set up to examine proposed algorithms. The first experimental study aims to identify design 

bottlenecks and prove the proposed algorithm's effectiveness. The second experimental study aims 

to build the design process knowledge graph from extracted triples to represent the design process 
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documents as a graph structure. The third experimental study analyses the root cause of the 

bottleneck identified in the first experimental study through clustering-based community detection. 

In the first experimental study, BTMDW extracted topics from design process emails. Then the 

fusion-based K-means divides these topics into several clusters. In BTMDW, a dynamic sliding 

window is introduced to select biterms from documents in different lengths. For different lengths, 

the size of the sliding window is also different. We set a document length threshold ߬ and a sliding 

window size ݊݅ݓ. If the document length is less than the ߬ ൌ ݊݅ݓ ,40 ൌ 1. Otherwise, ݊݅ݓ ൌ 0.4. 

Only when the distance between two words is less than ݊݅ݓ ∗  select these two ,݄ݐ݈݃݊݁	ݐ݊݁݉ݑܿ݋݀

words as a biterm. According to expert experience, set the number of selected top topics ݖ݌ ൌ 5 

and the topic vector dimension ݖݓ݌ ൌ 10. In topic clustering, based on previous experience, the 

number of design stages in this design process is usually between five and nine, so the cluster 

number ܭ was selected from 5 to 9. Another parameter, the fusion coefficient parameter ߣ was 

selected from 0.2 to 0.9 [40]. To determine optimal K and ߣ,  three measures evaluation metrics: 

silhouette-score (S score), Calinski-Harabaz score (CH score), and Davies-Bouldin score (DBI 

score) [45], are utilised. From the analysis result in Figure 2, when 7=ܭ and ߣ ൌ 0.8 , the 

performance is best. Under the optimal parameters, the S score is 0.36, the CH score is 125.43, the 

DBI score is 1.16, and the values indicate the clusters are effective. 
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(a) S score 

 

(b) CH score 

 

(c) DBI score 

Figure 2. S value, CH value and DB value for different parameters ܭ	and ߣ value ( (a) is the S score, (b) is the 

CH score, and (c) is the DBI score) 
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The second experimental study used entity recognition and relation extraction to extract triples 

from design process texts. A design process knowledge graph was built from these triples. The 

whole process is shown in Figure 3: 

 

Figure 3. The Knowledge graph building  

According to Figure 3, an email shown in Figure 4 can be divided into five sentences based 

on punctuation, such as the period and the question mark. Then, extracting and labelling named 

entities in each sentence utilising the named entity recognition algorithm. For example, in Table 1,  

entities including person name (PER), place name (LOR), city name (GPE) and organization (ORG) 

are labelled. Furthermore, the dependency syntactic parsing analysis is performed on the sentence 

structure, and the syntactic relation between labelled entities is analysed, as shown in Figure 5. For 

example, the first sentence in Table 1 includes two named entities, “Zhou Quan” and “DCC-FTS-

Group-5”. From the dependency tree (a) in Figure 5, the prepositional case (PREP) “from” connects 

the named entities, which represents the relation. Combining the above two points, every two 

entities and their relationships form a triple, such as in Table 2. These triples were used as input to 

machine learning to build a design process knowledge graph. 
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Figure 4. Example email 

 

Table 1. Sentence and named entity extraction 

Sentences and named entity extraction 

 This is Zhou Quan from DCC-FTS-Group-5. 

 Koh Wei Ru and I are currently the leaders of this group. 

 I am writing to you on Prof. Lim's request to report the progress of our group. 

 Our group currently has 8 members, making it the largest group in DCC FTS. 

 Among the 8 members, there are 5 ME and 3 EE undergraduates. 

 

 

Table 2. Entity-relation-entity triples extracted from the example email. 

Triples extracted 

[Zhou Quan, leader of, DCC FTS Group 5], [Koh Wei Ru, leader of, DCC FTS Group 5], 

[DCC FTS Group 5, report, process], [DCC FTS Group 5, has, 8 members], [DCC FTS Group 

5, is in, DCC FTS], [8 members, has, 5 ME undergraduates], [8 members, has, 3 EE 

undergraduates] 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5. Syntactic dependency analysis (from (a) to (e) are the dependency analysis of the example email) 

 

In the third experimental study, a hyperbolic convolution neural network was proposed to train 

the knowledge graph built in the second experimental study and get knowledge graph embeddings. 
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Then, hyperbolic clustering-based community detection was proposed to analyse the root cause of 

bottlenecks identified in the first experimental study. 

This study uses a link prediction task to evaluate knowledge graph embeddings to optimise 

knowledge graph embeddings [46]. Following Bordes et al., invalid triples are needed in training. 

In invalid triples, either ݄ or ݐ is replaced by each of the other entities in ܧ for each valid test triple ሺ݄, ,ݎ  ሻ [46]. The initial entity and relation embeddings were produced by TransE (Translatingݐ

Embeddings) [47]. According to [47], we train TransE for 500 epochs, and the hyperparameters 

are as follows: select the dimensionalities of embeddings ݇  from ሼ50, 100ሽ , select the SGD 

(Stochastic Gradient Descent) learning rate from  ሼ1݁ିସ, 5݁ିସ, 1݁ିଷ, 5݁ିଷሽ,  using ݈ଵ norm or ݈ଶ 

norm, and select  margin	ߛ from 	ሼ1,3,5,7ሽ [48]. 

We use Adam as the optimisation algorithm to learn the entity and relation embeddings, filters ࣐ and the weight vector [43] ࢃ. The parameters setting is shown in Table 3. The maximum epoch 

is 200. 

Table 3. Parameters setting of HCNN 

Name Value Ranges Description 

initial learning rate 	ሼ5݁ି଺, 1݁ିହ, 5݁ିହ, 1݁ିସ, 5݁ିସሽ - ݃ ReLU activation function λ 0.001 loss function parameter 

initial [0.1- ,0.1 ,0.1] ࣐ initial filter ߚ ሼ50, 100, 200, 400, 500ሽ the number of filters 

 

 

5. Results and Discussion  

5.1  Bottleneck Identification via BTMDW-Fusion K-means  

Due to the value of ܭ being 7, seven topic clusters are obtained. The seven main stages of the 

design process come from extracting the topics from these clusters. Each stage is represented by 

the top four words of topic clusters. According to the generation time of the emails related to stages, 
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the workflow of this design process is obtained. In Figure 6, we compared it with the planned 

workflow. It can be seen that both workflows include seven stages, and most of the stages and their 

sequence in the extracted workflow are consistent with the planned one. The extracted workflow 

combines two specific design phases in the planned workflow into one. Besides, some additional 

academic activities during the project have been considered because students also need to write 

related papers, which were also recorded in the emails. The result proved the workflow extracted 

based on BTMDW-Fusion K-means has high accuracy. 

 

Figure 6. Comparison between extracted workflow and planning workflow 

 

To verify the effectiveness of our algorithm BTMDW-Fusion K-means, we compared it with 

five advanced algorithms, BTM K-means, TFIDF K-means, BTMDW K-means, BTM-TF K-

means [49] and BTMDW-TF K-means. Metrics S score, CH score, and DBI score were used to 

evaluate the quality of the extracted topic clusters. We believe a high-quality topic should contain 

top words with higher cohesion, corresponding to the metrics, a higher S score and CH score, and 

a lower DBI score. The result is shown in Figure 7. BTM K-means, TFIDF K-means and BTMDW 

K-means are three single-distance algorithms. Among them, BTMDW K-means shows the best 

performance according to the three metrics, proving that the topic model BTMDW can effectively 

improve the quality of document vectors. Comparing the performance of BTM-TF K-means, BTM 

K-means and  TFIDF K-means, it can be found that the fusion distance can effectively improve the 

clustering performance. The performance of BTMDW-TF K-means, BTMDW K-means and 
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TFIDF K-means can also prove this conclusion. The performance of BTMDW-Fusion K-means is 

better than that of BTMDW-TF K-means, which indicates the fusion distance combining the 

statistical and semantic in this study can further improve the performance. We can see among these 

six algorithms, the algorithm BTMDW-Fusion K-means this paper proposed has the highest S score, 

CH score and lowest DBI score. Compared with the other five algorithms, BTMDW-Fusion K-

means has significant advantages.  

 

(a) 

 

(b) 
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(c) 

Figure 7. Comparison of evaluation metrics between BTMDW-Fusion K-means, BTM K-means, TFIDF K-

means, BTMDW K-means, BTM-TF K-means and BTMDW-TF K-means ((a) is the S score, (b) is the CH 

score and (c) is the DBI score) 

To identify the bottleneck, we analysed the execution period of each stage. The durations 

attached to each stage were used to discover and analyze bottlenecks. The stages where most time 

is spent and most reworks occur were highlighted, and cases in the stages will be further 

investigated to identify bottlenecks [6]. The result is shown in Figure 8. The design process lasted 

23 months, and the project cycle is divided into 46 time periods based on half a month. The entire 

process can be divided into seven stages, and all stages are completed sequentially. In the plan, the 

previous stage will not appear in the later stage, and the specific design phase (task 3) will take the 

longest time.  

 

Figure 8. Last time of each task (Each scale on the time-axis represents half a month, a total of 23 months. The 

blue line in the figure indicates that the task corresponding to the y-axis is in progress during this time.) 
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Figure 8 shows the actual completion of each stage. We can see that stage 1 lasted about four 

months, stage 2 lasted about five months, stage 3 lasted about seven months, stage 4 lasted about 

five months, stage 5 lasted about six months, stage 6 lasted about eight months, and stage 7 lasted 

about four months. From the point of lasting time, stage 6 consumed the longest time and exceeded 

the planned time. Besides, we can see that stages 1, 3 and 5 appear more than once. The second or 

third occurrence occurs during stage 6, which means some problems happened in the hardware 

level verification stage that requires changes to the previous design and re-simulation verification. 

From the point of causing rework, stage 6 is easy to cause the reworks of previous stages. From 

both metrics, bottlenecks occurred during stage 6 in this design process. 

 

5.2 Process Knowledge Graph Building based on Rules  

According to triples extracted from design process emails, a design process knowledge graph 

was built. The whole email contains 1476 sentences. At least one entity is detected in each sentence. 

The edge in the knowledge graph has three kinds: the attributes of people, the relations between 

people, and the task operation.  
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(a) Design process knowledge graph                                  (b) Attributes of people 

 

(c) Relations of people                                                 (d) Task operation 

Figure 9. Process knowledge graph ((a) is the whole process knowledge graph, (b) is the part about attributes of 

some people, (c) is the part about relations of some people and (d) is the part about some task operations.) 

Attributes of people reflect the basic information of students and teachers participating in this 

design project, including name, email, role and major, as shown in Figure 9 (b). There are 12 people 

in this research group, including eight students and four teachers. The attributes include name, 

email address, major and role in the project. Relations of people reflect the leadership between 

participants, as shown in Figure 9 (c). Among eight students, people_0 and people_1 are leaders. 

Among four teachers, people_8 and people_10 are professors and people_9 and people_11 are 
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teachers. Task operation reflects the task completion, as shown in Figure 9 (d), including the 

affiliation between the activities and the person executing the activity. 

 

5.3 The Root cause Analysis Result via BRCA 

Based on the above knowledge graph, a hyperbolic convolution neural network was used to 

train knowledge graph embeddings. Then, hyperbolic clustering-based community detection was 

applied to these knowledge graph embeddings, and several community graphs were obtained. 

According to the bottlenecks identified in 5.2, the community graph where the bottleneck stage is 

located can be found. In 5.2, the identified bottleneck stage is stage 6. The community graph where 

stage 6 is located was divided into three sub-community graphs from task, people-task and people-

people perspectives, as shown in Figure 10 to Figure 12. 

 

(a)                                                                                    (b) 

Figure 10. Sub-community graph from the task perspective. (a) is the sub-community graph, the blue nodes are 

people, and the orange nodes are tasks. (b) is the task decomposition coming from the sub-community graph. 

Figure 10 (a) is the task sub-community graph, and the tree diagram of task decomposition 

was extracted, as shown in Figure 10 (b). The nodes are divided into people and tasks. The task 



30 

 

nodes indicate that the computer simulation test occupies the main part of the task in the whole 

system-level testing. In the computer simulation test, multiple events requested the right to use 

some software, obtain software information and learn the use of this software which slowed down 

the whole process. 

 

Figure 11. Sub-community graph from the people-task perspective.  

 

Figure 11 is the task-people sub-community graph, the people_0-11 are teachers and students 

participating in this project, and people_ex0-5 are external people such as regional sales of some 

software. It can be seen that people_1 is the main person contacting external people. Through 

several meetings, external people provide software guidance for the teachers and students in the 

project team. People_4, people_6 and people_11 settled on the Wireless Module of the system and 

are responsible for purchasing related hardware. From the perspective of people-task, 

communication with external personnel is inefficient due to the lack of integration of information 
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among group members, which results in repeated and ineffective communication and slows down 

the whole process. 

 

Figure 12. Sub-community graph from the people-people perspective 

 

Figure 12 is the people-people sub-community graph. The weight of each edge represents the 

communication frequency, and the higher the weight, the greater the frequency of communication. 

It can be seen that people_1 and people_6 are in close contact with the rest of the students and 

teachers participating in this project. These two people are team leaders and maintain close contact 

with others. However, apart from them, there is a lack of communication among the other team 

members.  

Three main root causes for this bottleneck from the three perspectives above exist. First, most 

students are unfamiliar with the relevant software and start learning them before needed. Second is 

the low efficiency of communication with external personnel. For example, the time of face-to-face 

meetings is difficult to coordinate. The third is that the division of the group is not clear, and the 

communication between team members is not enough. 
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5.4 Discussion 

Bottleneck identification is crucial for improving processes and has been studied in specific 

domains. However, current studies still have some limitations in data and processes when extended 

to more domains. The information invisibility nature of unstructured data leads to the difficulty of 

extending quantitative metric-based approaches. A single local perspective can not satisfy process-

oriented bottlenecks’ root cause analysis. Hence, this paper focuses on automatically identifying 

the bottleneck from unstructured data without local quantitative metrics and analysing the root 

cause of the process-oriented bottleneck from multi perspectives. 

 

For process-oriented bottleneck identification, experiment 1 indicates that the bottleneck 

identification framework can effectively extract tasks from process text and identify bottlenecks. 

However, this approach also has some limitations in the current stage. This paper only focuses on 

identifying bottlenecks from previous process data, while identifying bottlenecks of ongoing 

processes in time will provide more significant support to current processes. However, extending 

our approach to ongoing processes is difficult in which dynamic change (including new data and 

data distribution changes) is challenging. According to our research, incremental learning is a 

standard method for learning data streams. An incremental bottleneck identification approach may 

be a solution for ongoing processes. 

 

For bottlenecks’ root cause analysis, experiments 2 and 3 indicate that BRCA can analyse the 

root cause of bottlenecks identified from multiple perspectives and provide support for further 

bottleneck prediction and recommendation. This study introduced several knowledge graph-based 

technologies to help analyse root causes, which are seldom used in previous studies. The process 

knowledge graph helps enhance the feature representation of the data used in this study by 

integrating entity and relation features. Compared with the graph search method, the complexity of 
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the proposed clustering-based community detection is significantly reduced, and the basis of its 

realisation is knowledge graph embedding. The proposed knowledge graph embedding model 

based on a hyperbolic neural network can fit the hierarchical characteristics of data and extract 

higher quality features, which provide powerful support for discovering task-centric sub-

knowledge graphs. These sub-knowledge graphs analyse the root cause of the bottlenecks from 

three perspectives: task-task, task-people and people-people. Although the introduction of 

knowledge opened a new door for root cause analysis, it also has some limitations. For big process 

data, the established process knowledge will also be complex, increasing the calculation cost of 

knowledge graph embedding. Perhaps divide-and-conquer training methods should be considered. 

 

6. Conclusions 

Bottleneck analysis is an important problem in process management and improvement. 

Identification and root cause analysis of process bottlenecks can bring significant benefits to 

process improvement and optimisation and can serve as the foundation for many other decision-

support tasks. In the present study, to identify the bottleneck and analyse its root cause in the 

process, we have studied the possibility of achieving so by automatically identifying bottlenecks 

from process data that is not limited to event logs compared to previous studies. The proposed 

fusion-based clustering can identify bottlenecks in process documents with less human intervention 

and achieve better performance than the other prevailing algorithms. Furthermore, this paper has 

proposed and tested a knowledge graph and hyperbolic space-based multi perspectives root cause 

analysis approach, which enables critical support for further downstream tasks, e.g., bottleneck 

prediction and recommendation.  
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