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Abstract 

The practice of fitting a peak model constructed from bell-shaped components by nonlinear 

least squares to multiple spectra in unison is investigated and compared to similar concepts 

fundamental to the analysis of sets of spectra using linear algebra. A mathematical analysis 

of the least squares optimisation is presented which demonstrates the relationship between 

optimisation and the covariance matrix used in PCA. The act of fitting a peak model formed 

from bell-shaped curves similarly applies the least squares criterion to compute a curve from 

multiple spectra. A comparison between the results of PCA and nonlinear fitting of peak 

models to data is made to demonstrate that, while similar curves are created by PCA and 

nonlinear curve fitting, the results are different. X-ray Photoelectron Spectroscopy (XPS) of 

cellulose was used to create a set of spectra that evolve in shape upon sample surface 

exposure to X-ray beam which were analyzed by both nonlinear least squares applied to 

multiple spectra and linear least squares fitting of spectral forms calculated directly from data.  

These examples of fitting curves to data are used to demonstrate how both data analysis 

approaches combine to help in the understanding of chemistry at the surface using XPS. 
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Introduction 

Cellulose fibers provide a useful model system for spectroscopic polymer studies as the X-ray 

Photoelectron Spectroscopy (XPS) data obtained is usually subject to contamination, spectral 

artifacts, impurities as well as degradation due to the energetic X-ray beam [1,2].  Of particular 

interest is the ability to accurately interpret cellulose XPS spectra obtained from wide range 

of natural and modified cellulose sample surfaces.  The cellulose sample surface often is 

subjected to an oxidative treatment [3] due to the necessity to modify it both chemically 

(oxidation and hydrolysis) and structurally (type of crystal and degree of crystallinity) to 

change their reactivity [4] to tailor a wide range of applications [5].  A typical four-peak 

structure in the XPS C 1s region has been reported for cellulose surface subjected to a varying 

degree of oxidation, assigned to C-C, C-O, O-C-O or C=O and O=C-O bonds with chemical shifts 

of 1.7±0.1 eV, 3.1 ± 0.1 eV and 4.4 ± 0.2 eV, respectively [4,6].  However, the chemistry of the 

unmodified cellulose only warrants two peaks, e.g. C-O and O-C-O [2].  The monitoring of 

cellulose oxidation as a model system using XPS has been shown to generate a series of 

spectra whereby the evolution of the four-peak structure can be used to monitor the rate of 

oxidation [1] or evolution of other, non-cellulosic components [2].  Finally, charging artifacts 

can have a significant effect on the four-peak intensity distribution [1].  Since modern XPS 

instruments can acquire large amounts of data at speeds that tailor to combinatorial 

screening methods [7], large dataset processing methods need to be developed that alleviate 

the data analysis and provide for consistent peak fitting procedures. 

The technique of fitting simultaneously a single peak model to multiple spectra can be used 

to estimate peak full-width-half-maximum (FWHM) and binding energy for sets of bell-shaped 

components in a peak model that can be consistently applied to all spectra in a data set. The 

approach is appropriate for spectra measured from samples for which the chemistry present 

in each sample is assumed to be identical, typical for cellulose modified using oxidative 

treatment, but for which the proportions of chemical state may change. Spectra used in the 

analysis also need to be calibrated in energy to align variation in signal in each spectrum with 

corresponding energy. These conditions necessary for fitting multiple spectra by a single peak 

model are also the conditions, for the most part, required when performing linear analysis of 

such a data set and both approaches only perform well provided energy calibration is precise. 

To demonstrate how a common FWHM and energy are achieved by nonlinear optimization, 
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a set of spectra measured from cellulose comprised coffee filter paper is analyzed in this work. 

Repetitions of the same C 1s spectra are measured from the same location on a sample. 

Repeating measurements by XPS results in evolution in spectral shapes yielding spectra that 

are well aligned in energy for which signal intensity (over a range of energies) alters 

systematically throughout the experiment due to the exposure to X-rays. It can be assumed, 

when calculating FWHM and binding energy, that these spectra are simply altering in relative 

proportions in four different chemical states [3,4]. This assumption of four chemical states 

will be called into doubt by performing further analysis of the entire data set, the result of 

which suggests fitting cellulose spectra with four bell-shaped components is a crude model 

for chemical changes in the sample modified using X-rays.  In particular, analysis of the data 

set by PCA and linear optimisation [8–10] by constructing spectral-forms from data suggest 

at least six chemical states contribute to spectra as-measured from cellulose. 

Experimental and theoretical methods 

XPS data acquisition 

The experiment was performed on a Kratos Axis Ultra, using a pass energy of 10 eV (PE10) 

and field of view 1 (FoV1). Charge compensation via low-energy electrons was active 

throughout the experiment and provided a stable uniform potential on the surface of the 

sample over the 700x300 m2 analysis area. As-measured photoemission peaks are offset in 

energy (as a consequence of charge compensation) to lower binding energy from the 

expected binding energy. Nevertheless, all spectra appear to be stable in terms of the 

apparent binding energy for photoemission. No energy calibration was performed and 

spectra are displayed and processed using the apparent binding energy corresponding to the 

measured spectra. Only C 1s spectra are used in the following work, but the role of O 1s in 

the experiment is important since switching between energy intervals while acquiring data, 

represents a perturbation to the state of the sample with respect to charge compensation 

that may result is shifts in energy between measurement cycles. Careful investigations aimed 

at eliminating concerns of energy shifts between cycles were performed.  All data processing 

was performed using CasaXPS [11]. 
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Theoretical methods 

Two approaches to fitting curves to data are typically used for the analysis of XPS data. The 

first approach most commonly used is that of nonlinear optimization. The second approach 

is fitting curves to data using linear least squares. Both methods of fitting curves to data make 

use of a least squares criterion, however, nonlinear least squares are more flexible but less 

robust than linear least squares, since nonlinear least squares optimization does not provide 

a unique solution to an optimization problem for algorithmic reasons, whereas if a solution is 

possible then linear least squares does provide a unique solution. Nevertheless, both 

approaches indirectly or directly make use of least squares to solve fitting curves to data. The 

challenge for linear least squares fitting is to identify spectral forms of physical meaning that 

also allow a fit to data. PCA is central to establishing spectral forms that allow the use of linear 

least squares fitting, therefore the following provides the basis for least squares optimization, 

then mathematically shows how PCA is formulated in terms of least squares and how 

optimization is equivalent to solving an eigen analysis of the covariance matrix formed from 

a data set. 

Least Squares and Fitting Curves to Data 

Nonlinear optimisation fitting of a peak model constructed from bell shaped curves to data 

involves the use of the so-called least squares criterion. Therefore, before describing the 

analysis of spectra, concepts central to the use of least squares in data analysis are presented.  

When a curve is fitted to data, adjustments are made to parameters that alter the 

characteristics of the curve until, by some means, it is decided the curve fits all data. The 

decision to accept a curve as the best fit to data is performed by calculating a value (figure-

of-merit) which indicates a positive outcome has been achieved by some optimization 

algorithm. In the case of nonlinear optimization, the best set of parameters is obtained by 

performing a search in which a sequence of steps in parameters defining the curve is tested 

against a figure-of-merit. The figure-of-merit does not directly influence the next step toward 

a solution, but rather is a measure that indicates if a step moved the curve closer to a best fit 

to data. For XPS, the figure-of-merit is computed from two measures based on the difference 

between the curve and data for each data bin. To obtain a single number capable of guiding 

optimization algorithms to the best fit these differences are squared and then summed. Two 

variations on this theme for a figure-of-merit are now described. 
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Given a data vector 𝒅 = (𝑑1, 𝑑2, 𝑑3 … 𝑑𝑛) and the vector of expected values for the 

data vector 𝒆 = (𝑒1, 𝑒2, 𝑒3 … 𝑒𝑛), a measure for the deviation of the data vector 𝒅 

from the expected vector 𝒆 is given by (1) 

𝜒2 = ∑
(𝑑𝑖−𝑒𝑖)2

𝑒𝑖

𝑛
𝑖=1          (1). 

If data are measured using pulse counting, then the standard deviation expected for 𝑑𝑖 is 

modeled making use of Poisson statistics which implies uncertainty in counts 𝑑𝑖 for each data 

bin 𝑖  is √𝑒𝑖. When attempting to fit a vector 𝒚 = (𝑦1, 𝑦2, 𝑦3 … 𝑦𝑛) constructed with 

parameters that are determined to minimize a figure of merit (Equation (2)), then the fit of 𝒚 

to 𝒅 for pulse counted data is achieved through scaling each data vector coordinate to allow 

for the increased variance for high-intensity signals, such as peak maxima, compared to the 

low-intensity signal 

𝑓𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑚𝑒𝑟𝑖𝑡 = ∑
(𝑑𝑖−𝑦𝑖)2

𝑦𝑖

𝑛
𝑖=1 ≅ ∑ (√𝑑𝑖 −

𝑦𝑖

√𝑑𝑖
)

2
𝑛
𝑖=1     (2). 

In the context of XPS data measured by counting electrons emitted with given energy over a 

specific time, optimization using the figure-of-merit Equation (2) has the advantage that 

fitting parameters are determined with equal weight for both background signal and 

photoemission signal superimposed on background signal.  By contrast, due to variation in 

the magnitude of random noise with signal intensity in pulse counted data, optimization 

based on minimizing a direct sum of squares (Equation (3)) yields solutions that favor fitting 

data vector coordinates with high count rates, such as photoemission peak maxima, rather 

than uniformly treating all data vector coordinates equally 

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ∑ (𝑑𝑖 − 𝑦𝑖)
2𝑛

𝑖=1        (3). 

Fitting curves to data based on minimizing Equation (2) or Equation (3) may create different 

outcomes, but both are reasonably described as the figure-of-merit for least squares 

optimization. When these figure-of-merits are applied to a peak model and an individual 

spectrum the result is a curve that approximates the spectrum. 
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Covariance Matrix and Least Squares Optimisation 

Linear least squares fitting of data is achieved by making use of the covariance matrix formed 

from the set of spectral forms selected to represent distinct chemical states of a sample. The 

covariance matrix form taken from a set of spectra represents part of the construction of a 

PCA used to characterize and count the number of spectral shapes within a set of spectra.  

Therefore, a geometric interpretation of how a least squares criterion is transformed by the 

calculus of variation into an eigenproblem of fundamental importance to data analysis is 

presented in this section.  The mathematical reasoning described below makes use of scatter 

plots constructed from spectra. The reason for doing so is because plotting points in a 3-

dimensional diagram, where the coordinates for each point are the intensities for the same 

data-bin taken from three spectra, links together these three intensities from spectra for 

which a line within the 3-dimensional space can be determined that minimizes the distances 

between all such points formed from intensities and the line. While a line within a 3-

dimensional space may seem abstract from spectra, a line in 3-dimensions is linked to a 

specific curve corresponding to spectra by a transformation constructed by the mathematics 

of singular value decomposition (SVD). Therefore, before showing the mathematical 

relationship between least squares optimization and determining the eigenvalues of a 

covariance matrix 𝒁, the concept of singular valued decomposition for a set of spectra will be 

presented. 

Given three spectra with intensities measured at a set of 𝑛 corresponding energies, neglecting 

the absolute values for these energies at which intensities are measured and simply listing 

intensities, a spectrum can be written mathematically as a vector 𝒅𝟏 =

(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛). Simply because a graphical interpretation is possible in 3-

dimensions, three spectra are considered rather than being forced to work in higher 

dimensions by using more than three spectra. The mathematics as described generalizes to 

higher dimensions, but for the sake of clarity the following uses only three spectra 

represented as vectors: 𝒅𝟏 = (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛), 𝒅𝟐 = (𝑦1, 𝑦2, 𝑦3 … 𝑦𝑛) and  

𝒅𝟑 = (𝑧1, 𝑧2, 𝑧3 … 𝑧𝑛). The use of x, y and z in these vectors is intended to provide a 

narrative link to the coordinate axes in the scatter plot formed from these vectors. From these 

three vectors, a matrix 𝑫 is formed of dimension 𝑛 × 3, that is an array of three columns 

where each row contains three entries (𝑥𝑖 𝑦𝑖 𝑧𝑖). Thus, the columns of 𝑫 are the vectors 
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formed from spectra. The rows of 𝑫 are 3-dimensional coordinates for points that can be 

plotted as a scatter diagram. The mathematics of SVD [12] prescribes a method for expressing 

𝑫 in terms of three matrices 𝑼, 𝑾 and 𝑽 as follows in (4) 

𝑫 = 𝑼𝑾𝑽𝑇         (4). 

The matrix 𝑼 has the same dimensions as 𝑫. The matrices 𝑾 and 𝑽 are square matrices of 

dimension equal to the number of columns in 𝑫. These matrices 𝑼, 𝑾 and 𝑽 are not arbitrary 

but have specific mathematical properties. However, the critical point derived from Equation 

[4] for the following discussion is that assuming inverse matrices exist for matrices 𝑼, 𝑾 and 

𝑽, Equation (4) provides a means of converting 3-dimensional vectors into equivalent n-

dimensional vectors. Thus, a line in three dimensions passing through the origin for a scatter 

plot may be converted to a spectral shape. On this basis, constructing a scatter plot from three 

spectra and fitting a line to these scatter plot points in the least squares sense results in a 

curve that can be interpreted as a spectral shape, namely the first PCA AF. The following now 

considers the mathematics of fitting a line to points in a 3-dimensional scatter plot. 

The common practice in PCA of working directly with the covariance matrix 𝒁 = 𝑫𝑻𝑫 can be 

understood by following through the logic of minimizing the sum of squares of the 

perpendicular distances from each point in a scatter plot to the principal axis line. Note that 

Equation (3) is not the same figure of merit used in the following steps. The following makes 

use of Pythagoras to determine the distance from a point in the scatter plot to a line through 

the origin with direction cosines �̂� = (𝛼, 𝛽, 𝛾), the minimization problem can be expressed as 

follows. That is, a vector is computed that minimizes 𝐼 subject to the constraint that the vector 

has unit length, where 𝐼 and the constraint enforcing a non-zero vector �̂� is defined as follows 

in (5) 

𝐼 = ∑ 𝑝𝑖
2𝑛

𝑖=1  subject to the constraint 𝛼2 + 𝛽2 + 𝛾2 = 1    (5). 

The mathematical logic, now described for the case of three data vectors, shows how a least 

squares figure-of-merit is formulated such that calculus, when used to determine turning-

points for the figure-of-merit in terms of coordinates of a unit vector, results in systems of 

linear equations expressed as an eigenvalue/eigenvector problem, the solution of which 

determines the position vector line of best-fit for all points in the scatter plot (Figure 1). 
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(c)      (d) 

Figure 1. (a) Geometrical interpretation of a point within a scatter plot formed from three 
spectra. (b) Three dimensional scatter plot was formed from three spectra selected from the 
data set measured from cellulose. Two principal axes corresponding to the first and second 
most significant PCA AFs are plotted over the scatter points formed from the three spectra 
display to accompany the scatter plot.  (c) PCA AFs calculated from the 3 spectra shown in 
(b). The PCA AF labeled C 1s 1st PCA AF corresponds to the principal axes of greatest length 
displayed in (b). (d) PCA AFs calculated from all 102 spectra measured from cellulose. Figure 
2b is constructed by making use of the first two PCA AFs shown in (d). 

Each point in the scatter plot has coordinates 𝒓𝒊 = (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖), therefore using the vector 

algebra in Figure 1 the perpendicular distance of a point to the line is defined by the position 

vector �̂� is given by the following by (6) 

𝑝𝑖
2 =  𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2 − (𝛼𝑥𝑖 + 𝛽𝑦𝑖 + 𝛾𝑧𝑖)
2     (6). 

The sum of squares in Equation [5] can be written as follows in (7) 

𝐼 = ∑ (𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 − (𝛼𝑥𝑖 + 𝛽𝑦𝑖 + 𝛾𝑧𝑖)2)𝑛

𝑖=1      (7). 

The covariance matrix is derived by applying the method of Lagrange multipliers to include 

the constraint 𝛼2 + 𝛽2 + 𝛾2 = 1, namely the optimization of the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾  

subject to the constraint that �̂� is a unit vector that best fits all points in a scatter plot and is 

performed by computing extrema for the function (8) 

Ψ = 𝜆(𝛼2 + 𝛽2 + 𝛾2 − 1) + 𝐼       (8). 

C 1s 1st PCA AF
C 1s 2nd PCA AF

C 1s 3rd PCA AF

292 288 284 280 276

Binding Energy (eV)

C 1s 1st PCA AF
C 1s 2nd PCA AF

C 1s 3rd PCA AF

C 1s 4th PCA AF

292 288 284 280 276

Binding Energy (eV)
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Partial differentiating Ψ with respect to 𝛼 yields (9) 

𝜕Ψ

𝜕𝛼
= 2𝛼𝜆 + ∑(−2(𝛼𝑥𝑖 + 𝛽𝑦𝑖 + 𝛾𝑧𝑖)𝑥𝑖)

𝑛

𝑖=1

= 2𝛼𝜆 − 2𝛼 ∑ 𝑥𝑖
2 − 2𝛽 ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

− 2𝛾 ∑ 𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑧𝑖 

(9). 

Equating to zero yields (10) 

𝛼 ∑ 𝑥𝑖
2 + 𝛽 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 + 𝛾 ∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1 𝑧𝑖 = 𝛼𝜆     (10). 

Similarly, 
𝜕Ψ

𝜕𝛽
= 0 and 

𝜕Ψ

𝜕𝛾
= 0 provides two more equations as (11) and (12) 

𝛼 ∑ 𝑥𝑖𝑦𝑖 + 𝛽 ∑ 𝑦𝑖
2𝑛

𝑖=1 + 𝛾 ∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1 𝑧𝑖 = 𝛽𝜆     (11), 

𝛼 ∑ 𝑥𝑖𝑧𝑖 + 𝛽 ∑ 𝑦𝑖𝑧𝑖
𝑛
𝑖=1 + 𝛾 ∑ 𝑧𝑖

2𝑛
𝑖=1

𝑛
𝑖=1 = 𝛾𝜆      (12). 

Using 𝒅1. 𝒅1 = ∑ 𝑥𝑖
2𝑛

𝑖=1 , 𝒅2. 𝒅2 = ∑ 𝑦𝑖
2𝑛

𝑖=1 , 𝒅3. 𝒅3 = ∑ 𝑧𝑖
2𝑛

𝑖=1 , 𝒅1. 𝒅2 = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 , 𝒅1. 𝒅3 =

∑ 𝑥𝑖𝑧𝑖
𝑛
𝑖=1  and 𝒅2. 𝒅3 = ∑ 𝑦𝑖𝑧𝑖

𝑛
𝑖=1  and expressing the above simultaneous equations in matrix 

form the eigenvector problem expressed in terms of the original data vectors reduces as 

follows in (13) 

[

𝒅1. 𝒅1 𝒅1. 𝒅2 𝒅1. 𝒅3

𝒅1. 𝒅2 𝒅2. 𝒅2 𝒅2. 𝒅3

𝒅1. 𝒅3 𝒅2. 𝒅3 𝒅3. 𝒅3

] [

𝛼
𝛽
𝛾

] = 𝜆 [

𝛼
𝛽
𝛾

]      (13). 

Thus, the covariance matrix 𝒁 is recovered from the optimization problem by making use of 

the least squares figure-of-merit in Equation (5). 

Results 

Cellulose C 1s Peak Model Design 

An average spectrum is a curve that influences the selection of a common FWHM and energy 

determined by the nonlinear fitting of a peak model to data. An average spectrum is readily 

computed from the set of spectra by summation of spectra; however, the average spectrum 

does not provide any indication of how well it represents spectra within the data set. PCA AFs, 

on the other hand, provide feedback in the form of the less significant PCA AFs. The scatter 

plot in Figure 1b and corresponding PCA AFs shown in Figure 1c demonstrate that, even based 
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on three spectra, PCA (by the relative size for the second PCA AF shown in Figure 1c) highlights 

that an average spectrum is not entirely characteristic of all C 1s spectra in Figure 1. The 

outstanding question that justifies the use of an average spectrum to test for common FWHM 

and energy not answered by PCA is to what extent the second PCA AF exists because of 

changes in proportions in common components in a peak model. The obvious similarity 

between the average spectrum (an example of which is shown in Figure 2c) for these spectra 

measured from cellulose and the most significant PCA AF (first PCA AF) requires some 

explanation that may help to make an informed decision as to the number of components to 

use in a peak model.  In particular, the first PCA AF is computed based on the least squares 

principle in Equation (7), which is not the same as Equation (3) and also involves the use of a 

constraint stated in Equation (5).  

Figure 2a presents three raw spectra sub-sampled from the full set of 102 spectra measured 

as a function of time of cellulose surface. Principal Component Analysis for the full set of 102 

spectra indicates these spectra lie within a plane defined by the first two PCA AFs (as already 

shown in Figure 1d). In support of this assertion, approximations to raw spectra are computed 

by projecting raw spectra onto a 2-dimensional subspace defined by the two most significant 

PCA AFs yielding processed spectra that fit the original spectra with precision indicated by the 

residual plots (residual STD close to unity and uniform residual plots) in Figure 2b. Systematic 

changes in spectral shapes shown in Figure 2b and PCA both support the assumption that 

these data are well behaved in terms of the response of the sample to charge compensation. 

 

C 1s (21.93 mins)
C 1s (84.52 mins)
C 1s (240.88 mins)

292 288 284 280 276
Binding Energy (eV)

Residual STD = 0.988Residual STD = 0.988

292 288 284 280 276
Binding Energy (eV)
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   (a)      (b) 

 

      (c) 

Figure 2. (a) Three raw spectra sub-sampled from the data set corresponding to the 
processed spectra in (b) displayed normalized for each spectrum to a common display area.  
(b) PCA enhanced C 1s spectra for data measured from cellulose surface. The residual plots 
represent the normalized difference between raw spectra and PCA enhanced spectra, 
where these PCA enhanced spectra are computed by fitting the two most significant PCA 
AFs to raw spectra in the least squares sense. (c) Average spectrum constructed from all 
three spectra in (a). For each abscissa, there are three ordinates. Therefore, optimization for 
the peak model with four bell-shaped components yields a fit to the average spectrum 
rather than to individual spectra. 

 

A peak model designed to fit all three spectra in Figure 2a, when applied to each spectrum 

individually might yield anomalous FWHM. Nonphysical FWHM obtained after optimization 

for certain spectra is a consequence of insufficient signal such as signal corresponding to the 

high binding energy component in Figure 2c. When the peak model in Figure 2c is applied to 

the as-received cellulose spectrum in Figure 2a results in an FWHM for one component close 

to 0.5 eV, compared to an expectation (on the grounds of physics) of FWHM for all 

components close to unity. However, when presented with three spectra of the form shown 

in Figure 2a, the curve computed from a peak model such as that shown in Figure 2c is a fit 

that moderates non-physical FWHM by requiring the fit to be valid, in some sense for all three 

spectra. In terms of component area in the peak model, the optimum solution does not fit 
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any spectrum in the data set, but rather fits the average spectrum for the data as shown in 

Figure 2a and the alternative merged form for these same three spectra in Figure 2c. The 

objective of fitting data using the merged data from three spectra in Figure 2c is to estimate 

the FWHM and energy for components in the peak model that are common to all three 

spectra. The advantage of so doing lies in following the physics of the photoemission process, 

which implies electrons involved in the chemical state of atoms, on being excited by photons 

of a given energy, emit electrons with intensity and energy that match the component shapes 

and energy in the peak model. Once the best estimates for FWHM and energy are established, 

uncertainty in intensity is greatly reduced when determined by fitting a peak model to 

individual spectra with known FWHM and energy. 

Differences between the average spectrum and the first PCA AF become more apparent when 

PCA is performed on larger data sets with greater variation in spectral shapes than the 

example data set used here. Figure 3 is constructed from the data set of 102 C 1s spectra used 

in Figure 2, where PCA is performed on all 102 spectra and the average spectrum for all 102 

spectra is calculated. While remarkably similar, forming the difference between the 

normalized first PCA AF and the normalized average spectrum (Figure 3a) reveals a shape that 

is very similar to the second PCA AF (Figure 3b). The implication is that within the average 

spectrum there is a shape that is removed from the first PCA AF by the steps performed by 

SVD that underpins PCA calculations. 

 

   (a)      (b) 

First PCA AF - Average Spectrum
Average Spectrum

First PCA AF

292 288 284 280 276
Binding Energy (eV)

Second PCA AF

292 288 284 280 276
Binding Energy (eV)
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Figure 3. (a) Overlay of the normalized first PCA AF, the normalized average spectrum and the 
difference between the normalized first PCA AF and the normalized average spectrum. Data 
are scaled by averaging intensities over the interval marker by vertical lines. The difference 
curve (red) is small for this case constructed from 102 C 1s spectra illustrated in Figure 2, but 
mathematically the difference between the first PCA AF and the average spectrum is 
significant in the sense the shape includes characteristics of the second PCA AF. (b) Second 
PCA AF was computed for all 102 spectra used in (a). 

 

The peak model used to compute an estimate for the average spectrum for the spectra in 

Figure 2c is shown to be an oversimplification of the processes responsible for spectra 

measured from cellulose sample surface, by virtue of the analysis leading to the results in 

Figure 4. While the peak model offers FWHM and energy for the components as defined in 

Figure 2c, the analysis of all 102 spectra by means of considering spectral forms that emerge 

when difference spectra are calculated (Figure 4a), demonstrate an alternative interpretation 

for this data set. The analysis shown in Figure 4a and Figure 4b makes use of two spectral 

forms to fit one spectrum from the data set of 102 C 1s spectra. These two spectral forms 

(Comp 1 and Comp 2) are capable of fitting all spectra in the data set with similar precision. 

   

   (a)      (b) 

Comp 1
Comp 2
LLS Approximation
Raw Data

292 288 284 280 276
Binding Energy (eV)

Residual STD = 1.1Residual STD = 1.1

292 288 284 280 276
Binding Energy (eV)
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(c)  

Figure 4. (a) Analysis of data set in Figure 2b into two component spectral forms labelled 
Comp 1 and Comp 2. The selected spectral forms, Comp 1 and Comp 2 are capable of fitting 
all 102 spectra with residual standard deviations consistent with pulse counted data. Comp 1 
is a curve with spectral shapes compatible with cellulose. Comp 2 is a shape of unknown 
nature, but which is sufficient to illustrate that these cellulose spectra are constructed from 
at least six bell-shaped components to a peak model. (b) Data in both (a) and (b) are identical, 
however (b) illustrates a peak model determined via the fit of seven bell-shaped components 
to data in (a). The peak model was constructed with seven bell shaped components 
corresponding to two sets of bell-shaped components defined for each of the spectral forms 
labeled Comp 1 (three bell-shaped components) and Comp 2 (four bell-shaped components). 
The peak model in (b) is determined by using two separate nonlinear optimisation steps in 
which a fit of three bell-shaped components to Comp 1 is performed and then an independent 
fit to Conp 2 involving four bell-shaped components. The fit shown in (b) is the result of 
copying these two sets of bell-shaped components in the proportions calculated in (a) to (b). 
(c) The fit of the seven-component peak model in (b) to the entire data set of C 1s spectra in 
unison. Note how the separation in the energy of components achieved in (b) is not 
maintained in (c), but rather components appear to align in energy suggesting fewer 
components can be used in a peak model for this data set. 

The method used to compute these component spectra Comp 1 and Comp 2 in Figure 4a is 

described in detail in Garland et al. [8]. While the solution offered in Figure 4a is not unique, 

similar analyses reveal similar peak structures, namely, one spectral-component peak model 

contains three bell-shaped components while the other spectral-component peak model 

contains four bell-shaped components. The significance of being able to identify two 

component-spectra in the form Comp1 and Comp 2 is that from these two component-

spectra it is clear there are at least six bell-shaped curves that might underlie all spectra in 

292 288 284 280 276
Binding Energy (eV)
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the data set. The implication is that the fit in Figure 2c using four bell-shaped components is 

offering some information about the material, but is potentially hiding the true number of 

chemical states for these data. The peak model in Figure 4b highlights a problem that can limit 

the ability to fit a peak model to multiple spectra in unison in an attempt to determine the 

FWHM and energy for components in a peak model, namely, if it is assumed the peak model 

in Figure 4b is correct, then seven highly correlated bell-shaped components with no 

parameter constraints are unlikely to return appropriate FWHM and energy based on 

nonlinear optimization. The fit of two component-spectra Comp 1 and Comp 2 to the 

spectrum in Figure 4 is possible only because the shapes for these components derive from 

the data set and therefore represent any spectrum from the data set adequately by design. 

Linear analysis of a spectrum in terms of component-spectra calculates relative intensities for 

these seven bell-shaped components guided by the constraint of the specific shapes chosen 

for Comp 1 and Comp 2. By contrast, the peak model consisting of seven bell-shaped 

components when fitted to all 102 spectra results in the outcome shown in Figure 4c. No 

relational parameter constraints are applied to these bell-shaped components before the 

optimization is performed. The outcome of using nonlinear least squares to fit these seven 

bell-shaped components to all spectra without constraints is seldom repeatable. That is, the 

outcome for nonlinear optimization can be perturbed from the result shown in Figure 4c by 

changing the starting parameters, for example, so the conclusions drawn from the result in 

Figure 4c are subject to a degree of doubt. Nevertheless, Figure 4c does provide evidence that 

seven bell-shaped components when optimized to fit all spectra simultaneously, move 

components within the peak model so that bell-shaped components are less well defined in 

terms of energy, which suggests fewer than seven components are required to model these 

data in Figure 4c. 

The results from applying these two methods to the cellulose sample surface should be 

considered in the context of the sample and the measurement process. Charge compensation 

is performed for these data and the apparent binding energy for spectra indicated the sample 

is measured whilst a net negative charge establishes the potential experienced by emitted 

electrons. When making use of an analysis area defined by FoV1, there is the possibility that 

different zones within the analysis area achieve different potentials and as the sample is 

measured the relative proportions of these zones change. The counter to this line of thinking 
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for the coffee filter paper is the non-cellulose spectral component in Figure 4a (Comp 2) 

includes bell-shaped components that move to both lower and higher binding energy than 

the spectral component Comp 1. Further, an experiment in which the sample is imaged by 

XPS creating a data set of spectra over the analysis area shows little variation in C 1s spectra. 

Thus, at the micron scale, charge compensation appears to be uniform over the analysis area 

used to measure these data in Figure 4. The fact that both analyses Figure 2 and Figure 4 yield 

symmetrical bell-shaped components with FWHM close to unity and that data were measured 

using PE10 suggests the energy resolution achieved for these bell-shaped components is 

limited by the sample as measured with no obvious indication that charge compensation has 

distorted photoemission peak shapes. These observations about spectra used in the analysis 

shown in Figure 4 are compatible with results obtained by repeating the experiment using a 

range of cellulose samples measured by different researchers using different instruments. 

While the rate of change in these different cellulose samples differed depending on these 

variables in the analysis, the essential results shown in Figure 4 are reproducible.  An ability 

to perform an analysis of data based on the approach in Figure 2 and also an analysis resulting 

in Figure 4a combine tools that help move towards a better understanding of data and 

therefore of a sample. In this sense, both approaches provide insight into spectra that 

increase knowledge about a sample without necessarily providing the full solution. 

Testing the Stability of Charge Compensation  

Stable charge compensation for photoemission, when measuring spectra from an insulating 

material such as cellulose, is important to ensure sets of spectra measured over an extended 

period, as shown in Figure 2, correctly correlate counts with energy. The analyses of spectra 

in Figure 2 and Figure 4 rely heavily on spectra that are free from variations that might result 

if the analysis area includes zones of differing potentials. In an attempt to support the 

assertion that data used in these analyses are without significant artifacts caused by issues 

with charge compensation, imaging XPS was used to examine lateral changes to C 1s spectra. 

The image in Figure 5a is constructed for the C 1s peak area from a data set that contains 

image data measured sequentially, where each image binding energy is incremented over an 

energy interval expected to include C 1s photoemission. The image for C 1s intensity (CPSeV) 

shows evidence that intensity variations over the analysis area do occur. Such variations may 

be a result of shadowing effects for X-ray flux due to topographical characteristics of the X-
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ray spot on the sample. The dark triangular zone in the bottom left-hand corner of the C 1s 

image in Figure 5a is the edge of an aperture, however other measurement artifacts in the 

form of striations are due to the delay-line detector used to collect spatially resolved intensity. 

Despite the non-uniform appearance of the C 1s map in Figure 5a, by summing spectra-at-

pixels using the color mask shown in Figure 5b, spectra calculated from the image data set 

(Figure 5c) are generally stable concerning energy and the most intense photoemission signal 

in Figure 5c align for all sixteen spectra. The spectra in Figure 5c do vary to some extent in 

shape. However, a sample that changes chemistry during measurement by XPS may show 

lateral variation due to X-ray-induced changes at different points on the sample owing to 

variation in flux with the position. Another factor may be the sample itself started with 

differing levels of chemistry over the analysis area. A characteristic of cellulose is that damage 

or contamination of the pure chemistry for cellulose is a constant feature of spectra measured 

by XPS. It should also be noted that these spectra in Figure 5c are influenced by changes to 

sample chemistry observed in Figure 2. These changes in spectral shapes demonstrated in 

Figure 2 have an impact on spectra measured by imaging due to the length of time between 

the first image measured and the last. The period over which an imaging data set is measured 

compared to the time required to measure a spectrum in Figure 2 means spectral shapes in 

Figure 5c are not directly comparable to spectra in Figure 2. For these reasons and perhaps 

others, it is not surprising to observe minor differences in spectra such as those shown in 

Figure 5c. Nonetheless, the level of consistency of spectral shapes in Figure 5c suggests charge 

compensation applied to coffee filter paper is providing the necessary stability in energy 

required for the processing of C 1s spectra as performed in the paper. 
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    (a)     (b) 

 

(c) 

Figure 5. (a) C 1s map of the area (CPSeV) measured over the analysis area from which 

spectra in Figure 2 are collected. (b) Colour zones defined for the C 1s map are used to 

identify locations suitable for accumulating spectra-at-pixels to form C 1s spectra with 

signal-to-noise appropriate for assessing the alignment of signal with binding energy. (c) C 

1s spectra accumulated from spectra-at-pixels (color-coded to correlate with the color zones 

in (b)) computed from the XPS image data set used to construct the image in (a). 

Conclusions 

A commonly offered method for estimating FWHM and energy for bell-shaped components 

in a peak model obtained by fitting a peak model to multiple spectra in unison has been 

288 284 280 276
Binding Energy (eV)
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discussed. Concepts from the linear analysis are used to enhance an appreciation of this 

approach in which a fit of a peak model to multiple spectra identifies common trends in data 

sets capable of offering guidance when selecting FWHM and energy for components. Theory 

relating to least squares fitting of curves to data is developed which allows a comparison of 

results from PCA to the outcome for fitting a single peak model to multiple spectra. An 

example based on XPS of the cellulose sample surface is used to show that basic assumptions 

about the number of components in a peak model may yield plausible results without 

highlighting the need for further research into the possible chemistry of a sample. In 

conclusion, it is recommended to approach data treatment using a range of options, none of 

which individually provide a full picture but collectively can develop a more coherent picture 

for a sample composition. 
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Supporting information 

A tutorial on the spectral manipulation of the data described in this work using CasaXPS [11] 

software is presented in the form of the tutorial videos at 

https://www.youtube.com/watch?v=2rJHQBUx8HE and 

https://www.youtube.com/watch?v=YVuTmJu1F4E. 
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