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Polygenic risk scores (PRS) have been widely adopted as a tool for measuring common variant liability and they have been shown
to predict lifetime risk of Alzheimer’s disease (AD) development. However, the relationship between PRS and AD pathogenesis is
largely unknown. To this end, we performed a differential gene-expression and associated disrupted biological pathway analyses of
AD PRS vs. case/controls in human brain-derived cohort sample (cerebellum/temporal cortex; MayoRNAseq). The results
highlighted already implicated mechanisms: immune and stress response, lipids, fatty acids and cholesterol metabolisms,
endosome and cellular/neuronal death, being disrupted biological pathways in both case/controls and PRS, as well as previously
less well characterised processes such as cellular structures, mitochondrial respiration and secretion. Despite heterogeneity in terms
of differentially expressed genes in case/controls vs. PRS, there was a consensus of commonly disrupted biological mechanisms.
Glia and microglia-related terms were also significantly disrupted, albeit not being the top disrupted Gene Ontology terms. GWAS
implicated genes were significantly and in their majority, up-regulated in response to different PRS among the temporal cortex
samples, suggesting potential common regulatory mechanisms. Tissue specificity in terms of disrupted biological pathways in
temporal cortex vs. cerebellum was observed in relation to PRS, but limited tissue specificity when the datasets were analysed as
case/controls. The largely common biological mechanisms between a case/control classification and in association with PRS
suggests that PRS stratification can be used for studies where suitable case/control samples are not available or the selection of
individuals with high and low PRS in clinical trials.
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INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disorder char-
acterised by progressive cognitive decline, molecular changes
including, but not limited to the accumulation of beta-amyloids
(extracellular Aß plaques) and tau tangles in the human brain [1].
The molecular changes are detectable much earlier than the
clinical phenotype, occurring ~10–20 years before cognitive
deterioration [2]. Currently, there are no approved pharmacologi-
cal or other treatments that have been shown to reverse or stop
the symptoms and/or the associated molecular changes. An
accurate diagnostic test in early (preclinical) and late stages of the
disease is a prerequisite not only for the successful application of
future treatments, but also for the correct stratification of
individuals for clinical trials.
Polygenic Risk Scores (PRS) are a mathematical aggregate (i.e. a

single value) indexing an individual’s relative genetic liability to a
trait conferred by hundreds or indeed thousands of risk alleles [3].
The scores are the output of statistical models developed using
data from large genome-wide association studies (GWAS). PRS
analysis has been widely adopted as a tool for measuring common

variant liability in cardiometabolic disease, schizophrenia, AD,
diabetes and cancer [4–9]. Furthermore, there have been efforts to
develop the use of PRS as a diagnostic tool (i.e. as a biomarker) for
early identification of people at an increased risk for manifestation
of clinical disease [8].
In AD, PRS have been used to predict lifetime risk of AD

development [4, 10, 11], yielding Area Under the Curve estimates
in identifying individuals with pathologically confirmed AD vs.
controls of ~82–84% [11], including the APOE locus. In addition,
the sensitivity (true positives) increases to ~90% for PRS extremes
[12]. Thus far, efforts to exploit GWAS associations to identify
pathological mechanisms underpinning AD have met with varying
success [13], but immune response, lipid metabolism, regulation
of Aß formation and cholesterol metabolism, have been identified
as likely to be key disrupted biological mechanisms [14] and
macrophages and microglia as likely key drivers of pathology [15].
As for AD PRS, based on many variants in a cumulative fashion,
understanding the underlying molecular or biological mechanisms
that comprise the polygenic component in AD through gene-
expression data, have not been explored before.
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To address the paucity of knowledge with respect to the
downstream molecular consequences of genetic liability to AD
and to understand the biological mechanisms that are likely to
be impacted upon by increased liability, we analysed the
differential gene-expression from bulk RNA sequencing in the
MayoRNAseq publicly available dataset with respect to PRS.
We also compare the findings to a case/controls differential
gene-expression analysis (Fig. 1). This offers a potential to

extend the clinical utility of PRS beyond diagnosing individuals
at high risk of AD by pointing to putative causal processes at the
molecular level.

MATERIALS AND METHODS
Sample data
The MayoRNAseq [16–18] study (part of Accelerated-Medicine Partnership
(AMP-AD)) is a post-mortem brain cohort of individuals with a
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Fig. 1 Experimental flowchart. A MayoRNAseq comprise individuals with matched genetic (WGS) and gene-expression data (bulk brain RNA-
seq) from two brain regions: cerebellum and temporal cortex. B Differentially expressed genes were derived separately for case/controls and
PRS. C Gene-ontology enrichment analysis was performed separately for both case/control and PRS outcomes and compared pairwise across
all analyses.
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neuropathological diagnosis of AD, progressive supranuclear palsy,
pathological ageing and elderly controls with samples from both temporal
cortex and cerebellum tissues. Sample descriptors can be found in
Table S1. We retained only data from samples with a label of AD or control.

RNA-seq QC and differential gene-expression
The original rna-seq bam files (https://www.synapse.org/#!
Synapse:syn9702085) were re-aligned to GRCh38.98 followed by a quality
control using RNA-SeQC 2.3.5 [19] (Table S2). Read counts were derived
using htseq-count and samples were removed from further analysis with 0
read counts across all genes. Genes were removed from further analysis if
they had 0 read counts across all samples and if the trimmed mean of
M-values were <0.5 in 50% of the samples (edgeR [20]). Further details
are provided in supplementary methods. Differentially expressed genes
were derived using DESeq2 [21] with raw counts adjusting for age at death,
sex and APOE (Table S3) status (DESeq2 model matrix: design= ~
age_at_death+ sex+ APOE_status+ diagnosis for case/control analysis
and design= ~age_at_death+ sex+ APOE_status+ PRS for PRS; log fold
changes and p-values are returned for the last variable in the design
matrix). FDR was used for multiple hypotheses testing correction. RNA-seq
were matched to VCF samples with verifyBamID [22] (IBD ≥ 0.8).

VCF QC and PRS calculation
WGS recalibrated vcf files (https://www.synapse.org/#!Synapse:syn22264775)
were converted to a PLINK [23] format and variants converted to GRCh38
(http://genome.ucsc.edu/cgi-bin/hgLiftOver). For ethnicity estimates we used
the phase3 1000 Genomes Project reference data [24] (https://www.cog-
genomics.org/plink/2.0/resources#1kg_phase3). Variants with HWE
p≤ 1.0 × 10−06, missingness≥ 0.05 andMAF ≤ 0.01 were excluded from further
analysis. Ancestry was estimated using Principal Component Analysis in PLINK2
by plotting the first two eigenvectors and samples were excluded from further
analysis if a sample deviated from the 1000 Genomes EUR cluster (Fig. S1).
Individuals with inbreeding coefficient F≤ 0.2 were deemed females and
F≥ 0.8 males. All pair of samples that had PI-HAT≥ 0.22 were excluded from
further analysis.
For PRS calculation we used the summary statistics from a clinically

assessed case/control study on AD [14], excluding the AMP-AD samples.
PRS were calculated using PLINK for pT ≤ 0.1 on LD-clumped SNPs by
retaining the SNP with the smallest p value excluding SNPs with r2 > 0.1 in
a 1000 kb window. PRS were adjusted for five consecutive PCs then
standardised within the MayoRNAseq samples.

Gene ontology
The Wilcoxon rank-sum test (Catmap [25]), was used to test for enrichment of
Gene Ontology (GO) categories (supplementary methods). Ranks of genes
were based on the p value from the significance of the differential gene-
expression. For all tests, three lists were derived comprising (1) differentially
expressed genes based on p value only (termed no-direction), (2) the most
differentially up-regulated (p value and log-fold > 0) genes at the top of the
list and most differentially down-regulated genes (log-fold < 0) at the bottom
of the list (termed up-regulated) and (3) the most differentially down-
regulated genes at the top of the list and most differentially up-regulated
genes at the bottom of the list (termed down-regulated). We used random
gene null hypothesis as it was deemed computationally unfeasible to perform
sample-label permutations [25]. For comparison we also performed a GO
enrichment analysis using a separate method (topGO [26]). FDR was used to
account for multiple hypotheses testing. Semantic similarity (GOSemSim [27])
was used to cluster statistically significant GO terms (Rel and classical
multidimensional scaling (CMD)). The most representative (manually curated)
GO term was chosen as the name for describing CMD clusters.

RESULTS
Sample numbers after QC
After our quality control (genotypes and RNA-seq), there were
288 samples with matched genetic and RNA-seq samples in the
MayoRNAseq dataset (170 genetically unique individuals; Table S1).

AD case/control differential gene-expression and GO
enrichment
Differentially expressed genes were derived using DESeq2
separately for the two tissue samples in the MayoRNAseq

(temporal cortex and cerebellum), including covariates for age at
death, sex and APOE status. There were >5000 differentially
expressed genes after correction for multiple hypothesis testing in
both cerebellum (~8000) and temporal cortex (~5000; Data S1, S2)
with a statistically significant overlap of differentially expressed
genes between the two tissues (Fig. S2). There was no statistically
significant enrichment of AD-associated GWAS risk genes in any of
the three gene lists (p= 0.97 and p= 0.31 for cerebellum and
temporal cortex respectively for genes based only on p value (no-
direction); p= 0.42 and 0.06 for up-regulated (order by p value
and logfc); p= 0.58 and p= 0.94 for down-regulated; Data S10; list
of AD GWAS risk genes given in Data S3 and description in
supplementary methods).
We performed GO enrichment analysis (biological process (BP),

cellular component (CC) and molecular function (MF)) using the
three sets of differential expression gene lists, that is no-direction
(based on p value only), up-regulated and down-regulated (log-
fold change and p value). There was a statistically significant
overlap of significantly enriched GO terms (separately for all three
gene lists) between the two tissues (Fig. S3a–e) in addition to a
significant GO rank profile similarity (Fig. S3f–h). This suggests that
both tissues share an overall statistically significant similarity in
terms of disrupted biological pathways with respect to a case/
control analysis. It is of note that overlap of GO and testing for
profile similarity achieved much stronger statistical significance in
the up and down-regulated significant GO terms as compared to
the no-direction results (gene order based on p value only).
The statistically significant GO terms from both tissues (no-

direction gene-list; p value only) were combined and clusters were
derived using semantic similarity (BP and CC). This was done to
reduce the complexity and functional redundancy of GO terms.
Significantly disrupted biological processes included response to
stimulus, regulation of signal transduction, cell motility and
metabolism, aerobic respiration, differentiation, organelles (Golgi
apparatus, endoplasmic reticulum (ER), mitochondria), oxidore-
ductase complex, cell cycle, regulation of cell death (Fig. S4).
We also performed the same semantic similarity clustering

separately for the up-regulated and down-regulated GO terms.
Significantly disrupted up-regulated biological processes included
regulation of metabolism (including lipid and cholesterol), stress
and immune response, signalling, DNA repair, differentiation/
morphogenesis/development, organelles (Golgi apparatus, ER,
mitochondria), senescence, neuronal cells (Fig. S5). Significantly
disrupted down-regulated biological processes mainly included
cellular respiration such as mitochondrial electron transport,
respiratory chain complexes, mitochondrial membrane, etc.
(Fig. S6). GO-terms in all semantic similarity clusters (both up
and down-regulated analysis) were from both tissue samples,
replicating the statistically significant GO profile similarity and
overlap of GO terms, suggesting limited overall brain region
specificity.
GO enrichment analysis showed that several biological pathways

previously implicated fromGWAS [14] in ADwere significantly enriched
in the AD case/control differential gene-expression analysis (Data S4,
S5, Figs. 2a, 5a), although we have not formally tested if this is
statistically significant, thus it could be a chance finding. Significantly
up-regulatedGO terms included immune system processes (GO:0002376,
p= 1.13 × 10−06 and p= 4.09 × 10−43 for cerebellum and temporal
cortex respectively), response to lipids (GO:0033993, p= 7.41 × 10−03

and p= 1.05 × 10−27), inflammatory response (GO:0006954,
p= 4.87 × 10−02 and p= 5.83 × 10−15), endosome (GO:0005768,
p= 6.27 × 10−07 and p= 2.30 × 10−11), regulation of cell death
(GO:0010941, p= 1.78 × 10−08 and p= 1.26 × 10−32), regulation of
neuron death (GO:1901214, p= 6.46 × 10−03 and p= 1.32 × 10−04).
There was also evidence for the involvement of glial cells in the
temporal cortex (up-regulated GOs, glial cell projection GO:0097386
p= 1.62 × 10−04, astrocyte projection GO:0097449 p= 6.55 × 10−04,
regulation of microglial cell activationGO:1903978 p= 1.24 × 10−02), but
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not in cerebellum. In addition, we were only able to confirm such
previous AD GWAS-derived disrupted biological pathways by sorting
(log-fold change and p value) or in other words using the direction of
effect of the genes (mostly up-regulated andmostly down-regulated at
the top of the gene lists), but not based on p value only (no-direction).
For example, immune system process (GO:0002376) was not
significantly enriched GO-term in the no-direction (genes sorted by p
value only; FDR p= 1 and p= 8.07 × 10−01 in cerebellum and temporal
cortex respectively), but it was significantly enriched in both cerebellum
and temporal cortex in the up-regulated GO-terms analysis.
We also performed the GO-terms enrichment analysis using a

separate enrichment method (topGO [26]) with the same three
gene lists (no-direction, mostly up-regulated and mostly down-
regulated at the top). The results from both Catmap and topGO
(paired GO ranks) display extremely similar rank profile of GO-
terms with r2 ranging from 0.65 to 0.8 (Fig. S7).

PRS differential gene-expression and GO enrichment
Similarly, to the case/control differential gene-expression analysis,
for each gene we derived differentially expressed genes
associated with PRS using DESeq2 separately for the two tissue
samples in the MayoRNAseq, including a covariate for age at
death, sex and APOE status.
There were three and 351 genes differentially expressed genes

in the cerebellum and the temporal cortex respectively following
an FDR correction for multiple hypothesis testing (Data S6). There
were fewer differentially expressed genes in cerebellum as
compared to temporal cortex associated with PRS, in contrast to
the fewer differentially expressed genes in the temporal cortex as
compared to cerebellum in the case/control analysis. Due to few
genes being differentially expressed in cerebellum, we performed
an overlap of the top 300 genes in both tissue samples. There was
a statistically significant overlap of genes in both datasets in the
same direction (including a significant rank correlation of all
genes; Fig. S8).
There was also a statistically significant enrichment of previous

AD-associated GWAS risk genes (Wilcox rank-sum test
p= 2.99 × 10−02; not corrected for multiple hypothesis testing)
in the temporal cortex no-direction gene list (ordered by p value
only), but not in cerebellum (p= 2.44 × 10−01). The top ranked 15
genes in the temporal cortex also found in AD GWAS hits were
HAVCR2, MS4A6A, INPP5D, ECHDC3, SPI1, ADAMTS4, ADAMTS1, CR1,

IL34, PICALM, HLA-DRB1, CD33, APH1B, FERMT2, and PLCG2,
although only HAVCR2 and MS4A6A (p= 1.61 × 10−02, beta= 0.21
and p= 3.72 × 10−02; beta= 0.29), passed FDR correction. In
addition, there was a statistically significant enrichment of AD-
associated GWAS genes in the up-regulated gene list in temporal
cortex (p= 1.22 × 10−05 and p= 0.49 for temporal cortex and
cerebellum respectively), but not in the down-regulated gene list
for both temporal cortex and cerebellum (p= 0.5 and p= 0.99).
This suggests that overall GWAS-hits are on average ranked
significantly higher in the temporal cortex gene expression list in
the PRS analysis than expected by chance alone and these are
more likely to be up-regulated than down-regulated (only IL34
was down-regulated among the top 15 GWAS hits). Furthermore,
in temporal cortex, higher AD PRS was associated with increased
gene-expression of 52 out of 75 AD GWAS associated genes
[14, 28–32] (Fisher’s exact test p= 2.79 × 10−04; 10319 up and
11071 down-regulated among all genes).
There was a statistically significant overlap of significantly

enriched GO terms (separately for all three gene lists) between the
two tissues (Fig. S9a–e) in addition to a significant GO rank profile
similarity (Figs. S9f–h). This suggests that both tissues share an
overall similarity in terms of disrupted biological pathways with
respect to PRS.
The statistically significant GO terms from both tissues (no-

direction gene-list; p value only) were combined and clusters were
derived using semantic similarity. Significantly disrupted biological
processes (no-direction gene list) included immune response,
stress response, regulation of metabolism, transport and signal-
ling, aerobic respiration, organelles (Golgi apparatus, ER, mito-
chondria), oxidoreductase complex, cell cycle, regulation of cell
death (Fig. S10). Nevertheless, GOs in immune-related clusters (i.e.
immune response, regulation of T/B cells and interferon/inter-
leukin) were statistically significant only in temporal cortex (Fig.
S10a), but not in cerebellum.
The semantic similarity clustering was also performed separately

for the up-regulated and down-regulated GO terms. Significantly
disrupted up-regulated biological processes included regulation of
metabolism (including fatty acids and cholesterol), stress and
immune response (adaptive and innate), signalling, DNA repair,
differentiation/morphogenesis/development, organelles (Golgi
apparatus, ER, mitochondria), senescence and neuronal cell death,
neuronal cells (Fig. S11 and Fig. 3a). Significantly disrupted down-
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B Overlap of GO terms (BP, CC and MF up-regulated GOs). Proportional Venn diagram. Numbers represent significant GO terms (FDR) in the two
lists with the middle number representing the number of GOs that overlap. Red colour represents cerebellum, blue- temporal cortex.
Hypergeometric test p= 4.11 × 10−287.
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regulated biological processes mainly included cellular respiration
such as mitochondrial electron transport, respiratory chain com-
plexes, mitochondrial membrane, mitochondrial ATP synthesis,
metabolism, neuronal processes such as neurotransmitter secre-
tion/transport, neuron projection, postsynaptic membrane
(Fig. S12). The semantic similarity clusters comprised up-regulated
GO terms from both tissues (semantic similarity Fig. S11), but there
were notable differences in the down-regulated GOs, suggesting
tissue specificity. All synaptic-associated GO-terms were found to be
significantly down-regulated in temporal cortex, but up-regulated
cerebellum. These include synaptic/neuronal processes such as
synaptic signalling, synaptic and pre/postsynaptic membranes,
regulation of synaptic plasticity, synaptic vesicle, neurotransmitter
secretion, glutamatergic synapse, etc. (Figs. 3c, 5a).
Similarly, to the case/control analysis GO enrichment analysis

showed that a wide range of previously implicated (from GWAS)
biological pathways in AD were also found to be significantly
enriched (Data S9 and Figs. 3a, b, 5a), including immune system
processes (GO:0002376, p= 2.72 × 10−05 and p= 2.67 × 10−98 for
cerebellum and temporal cortex respectively), response to lipids
(GO:0033993, p= 1.44 × 10−07 and p= 1.17 × 10−21), inflammatory
response (GO:0006954, p= 7.98 × 10−04 and p= 3.24 × 10−29),
endosome (GO:0005768, p= 2.44 × 10−03 and p= 4.48 × 10−19),

regulation of cell death (GO:0010941, p= 2.26 × 10−07 and
p= 1.12 × 10−27), regulation of neuron death (GO:1901214,
p= 2.55 × 10−03 and p= 2.96 × 10−02). There was also some
evidence for the involvement of glial cells in both tissues (up-
regulated GOs, glial cell projection GO:0097386 p= 1.95 × 10−03

and p= 3.48 × 10−02 for cerebellum and temporal cortex respec-
tively, astrocyte activation GO:0048143 p= 3.66 × 10−02 and
p= 1.26 × 10−02, microglial cell activation GO:0001774
p= 4.09 × 10−02 and p= 3.09 × 10−07).
Similarly, to the case/control GO analysis, the results from both

Catmap and topGO (paired GO ranks) displayed extremely similar
rank profile of GO-terms with r2 ranging from 0.65 to 0.81 (Fig. S13).

Molecular mechanisms shared/different between cases/
controls and PRS with respect to differential gene expression
We compared the differential expression results in terms of genes
from the case/control and PRS analyses for cerebellum and temporal
cortex respectively. There was no statistically significant overlap of
differentially expressed genes in cerebellum (Figs. S14, S15), but
there was a statistically significant overlap of differentially up and
down-regulated genes in the temporal cortex (Fig. S16).
Contrary to the results with respect to overlap of differentially

expressed genes, the overlap of GO terms for both cerebellum and
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temporal cortex showed remarkable similarity in terms of both
overlap of significantly disrupted GOs and rank profiles in all three
gene lists (no-direction, most up-regulated at the top and most-
downregulated at the top; Figs. S17, S18), although fewer GOs
overlapped if no-direction of gene effect was used.
The statistically significant GO terms from both tissues (no-direction

gene-list; p value only) from the case/control and PRS analyses were
combined and clusters were derived using semantic similarity,
separately for cerebellum and temporal cortex. There were fewer
significantly disrupted GO terms in the case/control analysis as
compared to PRS (57 vs. 389 in cerebellum and 264 and 695 for
temporal cortex for the case/control and PRS respectively; Data S4a,
S5a, S7a, S8a). The only processes that were in common in cerebellum
were GOs related to organelles and metabolic processes (Fig. S19).
Similarly, the commonly disrupted biological processes in temporal
cortex were extracellular space/structure, organelles, response to
stimulus/lipids, signal transduction (Fig. S22). Most of the semantically
similar clusters of up/down-regulated GOs in cerebellum with respect
to case/controls and PRS comprised GOs from both analyses (case/
controls and in response to PRS), suggesting similarly disrupted
biological processes with very few differences (Figs. S20, S21).
Differences included significantly down-regulated biological processes
found only in response to PRS such as, WNT/NF-kappaB signalling,

rRNA processing, protein import in mitochondria (Fig. S21) and
significantly up-regulated processes only found in case/control
analysis such as, histone acetyltransferase complexes (Fig. S20).
Similarly to cerebellum, most of the up-regulated semantically

similar clusters in temporal cortex (case/control vs. PRS) have GO
terms from both case/control and PRS analysis, suggesting little
differences in terms of significantly disrupted up-regulated
biological processes (Figs. S23 and Fig. 4a). This was in contrast
to down-regulated terms that showed differences. These included
mainly neuronal/synaptic down-regulated processes only found in
response to PRS as compared to case/control analysis such as,
neuronal plasticity, synaptic signalling/transmission, neurotrans-
mitter levels and secretion, post/pre-synaptic membrane, gluta-
matergic and GABA-ergic synapse (Fig. S24 and Fig. 4b).
We parsed all the GO-terms from all the analyses (case/control

and PRS in cerebellum and temporal cortex) using search terms
from previously reported molecular mechanisms disrupted in AD
[14, 33]. The search terms were grouped in eight categories,
ageing/senescence, death/apoptosis, neuron/synapse, glial cell
populations, amyloid, immune response, stress response, lipid/
cholesterol/fatty acid metabolism. GO-terms matching any of the
search terms and are statistically significant in at least one analysis
were retained and sorted by the mean -log10(p) FDR across all the
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analyses. The most statistically significant categories were immune
and stress response, asserting an important role of the immune
system in the development of AD [14] (Fig. 5a). The least
significant were glial cell populations and amyloid. This analysis
does not take into account the overlap of genes within different
GOs and the overall redundancy of GO terms. It is of note that in
all the differential gene-expression analyses (case/control and PRS)
we included age of death as a fixed covariate and despite this,
ageing GO term is still a significant molecular mechanism
associated with the development of AD.
Even though, themost significantly disrupted ADGWAS-associated

molecular mechanisms were immune/stress response and death/
apoptosis, there were other statistically significant GO-terms that

have not been reported associated with AD previously and were
shared between the case/control and PRS analyses in cerebellum and
temporal cortex. These included variety of respiration-related
processes (e.g. respiratory electron transport chain, mitochondrial
inner membrane), Golgi apparatus and ER (Fig. 5b).

DISCUSSION
We performed an integrative transcriptomics analysis using case/
control and genetic liability paradigms. The main aim of the study
was to try to understand the biological correlates of elevated
common variant liability to AD, and their relationship with these
associated with AD per se.
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Fig. 5 AD GWAS and novel mechanisms statistically significant in MayoRNAseq temporal cortex and cerebellum (case/control & PRS).
A AD GWAS mechanisms (details are provided in the supplementary methods). B Novel AD disrupted mechanisms. Heatmap of GO terms that
are statistically significant in at least one dataset (cas/con & PRS MayoRNAseq temporal cortex and cerebellum). cascon Case/control analysis;
CER cerebellum; TEMP temporal cortex. Heatmap p-values are capped at 1.0 × 10−30. blue colour represents down-regulated GOs and red-
colours represent up-regulated GOs. All full GO term names from the up and down-regulated GO term results were searched using stress,
immun, neuro/synap, death/apoptosis, lipid/cholesterol/fatty, aging/senescence, glia/astrocyte, abeta, endosome, golgi, reticulum and
mitochond/respir and GO terms selected if FDR p value was ≤0.05. GO terms within each category were ordered by mean −log10 p and the
top 8 selected for visualisation (3 for lipid and cholesterol and 2 for fatty acid metabolism).
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Our overall findings suggest that disrupted biological pathways
associated with affected status and increased PRS show remark-
able profile similarities with respect to biological pathways derived
from gene-expression (bulk brain-derived RNA-seq). In temporal
cortex, we found evidence for a modest degree of similarity with
respect to genes that are differentially expressed in AD cases
compared to controls, and those are associated with increased
PRS values. However, the degree of similarity between case status
and elevated PRS was much stronger at the level of the GO-term
enrichments for differentially expressed genes. This suggests a
disease heterogeneity in terms of changes in the gene-expression
of individual genes [34], but a convergence in terms of disrupted
disease biological mechanisms underlying AD. Crucially, this also
suggests that both a case/control and PRS classifications elucidate
similar molecular mechanisms. There was some evidence for
tissue specificity for the associations with PRS, higher PRS being
associated with down-regulation of neuronal process genes in
temporal cortex, but up-regulation of the same categories in
cerebellum. In contrast, there was limited tissue specificity when
the dataset was analysed as a case/control sample.
Our gene ontology analysis of differential gene-expression in

cases vs. controls shows a degree of convergence with analogous
analyses of GWAS studies [14, 35, 36], highlighting immune (both
adaptive and innate) and stress response, lipid, fatty acids and
cholesterol metabolisms, endosome and cellular/neuronal death. Our
results also suggest a significant involvement of previously less
well characterised processes in AD. These include the involvement
of cellular structures (ER, ER stress, Golgi apparatus, actin
cytoskeleton, lamellipodium) and cellular mitochondrial respiration
and secretion (exocytosis and endocytosis). Most of the AD GWAS
implicated loci are non-coding [14, 29] and choosing the closest
gene to an index variant could miss genes that are further away or
miss other regulatory mechanisms. Therefore we did not expect to
find enrichment of GWAS hits (closest genes) among the
differentially expressed genes, although some SNPs have been
shown to be directly related to AD [37]. Nevertheless, there was a
significant enrichment of differentially expressed genes in the
temporal cortex associated with PRS. Thus, some of the putative
GWAS implicated genes, as defined as those closest to the
associated index SNP at the locus are also likely to show a
differential gene-expression in relationship with PRS in temporal
cortex. Tissue specificity is also likely to account for some of the
differences. The top ranked genes among the differential
expression gene list include HAVCR2, MS4A6A, INPP5D, ECHDC3,
SPI1, ADAMTS4, ADAMTS1, CR1, IL34, PICALM, HLA-DRB1, CD33,
APH1B, FERMT2, and PLCG2, although only HAVCR2 and MS4A6A
passed FDR correction. Strikingly, 69% (52/75; p= 2.79 × 10−04) of all
GWAS implicated genes were up-regulated in response to different
PRS among the temporal cortex samples. While it is beyond the
scope of this work, this result suggests a potential common
regulatory mechanism or mechanisms. MS4A6A, INPP5D and SPI1
have been previously shown to be dysregulated specifically in
microglial cells [33, 38, 39]. Furthermore, the GO term microglial cell
activation involved in immune response (GO:0002282) was sig-
nificantly disrupted in temporal cortex with respect to PRS and it
comprises TYROBP, TREM2, GRN and IL33. TYROBP was significantly
up-regulated in response to higher PRS in temporal cortex and has
been shown as a strategic and causal regulator in several microglial
activation signalling cascades and the complement pathway in late
onset AD [40]. Even though the gene-expression data we used are
brain-derived (cerebellum and temporal cortex) bulk RNA-seq, we
found several disrupted GO terms specifically related to glial cells
(Fig. 5a). Glial and microglia-related GO terms were not the top
ranked GO terms, but it is remarkable that this signal is detectable in
bulk brain-derived RNA-seq.
The strongest GO-terms enriched in all datasets (both case/

control and PRS) were the ER, Golgi apparatus, mitochondria and
associated mitochondrial respiratory chain complexes. These

cellular structures have received relatively little attention in AD,
although both ER and mitochondrial function have been shown to
be altered in AD [41–44]. The ER-mitochondria interaction is
tightly linked to changes in lipid and cholesterol metabolism
pathways [44], both of which have been found to be significantly
disrupted mechanisms in all datasets used in this work.
Furthermore, Aß interacts with ER, Golgi apparatus and mitochon-
dria to disrupt their normal function [45].
Although age is one of the main risk factors for the

development of AD, there is little understanding of the molecular
mechanisms involved in this relationship. Most of the AD genetic
and genomic statistical analysis use age at death or age of onset
to account for the differences in chronological age of research
participants and ageing is interchangeably used with age. In this
study, despite adjusting our differential gene-expression analysis
for age at death, we still found the GO term ageing to be enriched
for genes that are up-regulated in a case/control and in response
to higher PRS. This suggests that on average the gene-expression
of ageing-related genes is markedly changed in individuals with
AD as compared to controls and with respect to PRS. This indicates
that the use of chronological age in the statistical modelling of
genetic/genomic data in AD-research could be flawed. Following
Horvath’s seminal paper on estimating biological age using an
epigenetic clock [46], AD individuals have indeed been shown to
exhibit an accelerated epigenetic clock and the rate might be also
different in different brain regions [47]. Thus, constructing such
epigenetic clocks in AD individuals could help delineate the
difference between ageing and chronological age and provide
further understanding of AD development.
Our study is an integrative computational approach of publicly

available data to try to highlight the biological processes
associated with PRS in comparison to case/control classification
in AD. Our results point to a considerable heterogeneity in terms
of changes in gene-expression with respect to case/control design
and genes associated with PRS, but a convergence in terms of
disrupted biological pathways, including novel and previous
GWAS implicated biological processes and cellular structures.
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