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Abstract: Changes in rainfall onset and cessation dates are critical for improving decision making
and adaptation strategies in numerous socio-economic sectors. An objective method of determining
onset and cessation date is employed over Southern West Africa (SWA) in this study. The method is
applied over 34 years of the quasi-global rainfall dataset from the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) and five High Resolution Model Intercomparison Project
(HighResMIP) model datasets under the Coupled Model Intercomparison Project Phase 6 (CMIP6)
experiment. Generally, a strong agreement exists between CHIRPS and the HighResMIP models
in capturing the behaviour of seasonal rainfall over SWA, with models able to capture the bimodal
rainfall season. The ability of models in capturing onset and cessation dates as observed in CHIRPS
shows the strength of these models in representing the short break between the two wet seasons
that is otherwise known as the ‘Little Dry Season’. Patterns observed in the onset and cessation
dates over the SWA region are consistent with the northward and southward displacement of the
Intertropical Convergence Zone (ITCZ). The seasonal timing of the models shows good agreement
with observations such that most mean onset/cessation dates agree within 26 days. While IPSL-
CM6A-ATM-HR, a model among the five HighResMIPs used in the study, best agrees with CHIRPS in
representing onset and cessation dates during the unimodal rainfall season, no one model best agrees
with CHIRPS during the bimodal season, with models outperforming each other in representing
onset/cessation dates with little variation.

Keywords: high resolution model; onset; cessation; seasonal rainfall; Southern West Africa

1. Introduction

The economy of many sectors (e.g., hydroelectric power generation, industries, health,
and agriculture) in Southern West African countries (including Benin, Ghana, and the Ivory
Coast) rely on climate information to function efficiently. For instance, hydroelectric power
generation and agriculture are typically rain fed and thus are heavily reliant on rainfall
information such as onset, cessation, intensity, and frequency of rainfall.
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The climate of Southern West Africa (SWA) is mainly driven by the West African
monsoon (WAM; [1]). The timing of the seasonal cycle determines the length of the
growing season and agricultural yields [2] and this is critical for agriculture and food
security in the region. The region has been identified to have low adaptive capacity to the
impacts of climate change, making it one of the most vulnerable regions according to the
Intergovernmental Panel on Climate Change [3]. Recent studies [4–9] have also pointed out
the likelihood of more extreme rainfall events over the region, which may possibly lead to
increased incidences of flooding. Thus, understanding the possible changes in rainfall onset
and cessation dates is critical for improving decision making and adaptation strategies in
numerous socio-economic sectors of countries in SWA.

Generally, low- to medium-resolution global climate models (GCMs) have shown
notable deficiencies in simulating seasonal rainfall in West Africa [10–12]. This has fre-
quently been attributed to the absence of the regional drivers of rainfall, such as the role
of vegetation and orography in these GCMs [13] and also the correct representation of
Sea Surface Temperature (SST) patterns along the Guinea Coast [14]. Consequently, the
GCMs have difficulty in reproducing rainfall associated with synoptic, sub-synoptic, and
mesoscale convective systems [13,15,16]. This difficulty has led climate scientists to often
use statistical or dynamical downscaling techniques to improve the resolution of such
models to produce useful regional climate information. However, this information from
downscaled GCMs can often have high uncertainties as a result of uncertainties from
driving GCMs and/or the poor resolution of large-scale processes by the regional climate
model under certain conditions [15,17–19].

Studies on onset and cessation determination over West Africa have mainly used
empirical models [20–22]. Ref. [23] also pointed out that the forecasting of onset relied
on the interannual variability of certain atmospheric and climate factors that are known
to influence onset and cessation determination, such as the African Easterly Jet (AEJ),
the Tropical Easterly Jet (TEJ), and the Sahara Heat Low. Due to the low forecast skills of
empirical models and their inability to account for these important factors driving the WAM
dynamics, recent studies have resorted to using dynamic climate models to understand
and improve onset and cessation information over West Africa [24,25]. Ref. [26] proposed
a methodology to objectively analyse onset and cessation dates. This methodology is an
extension of a method proposed earlier by [27]. Ref. [26] presents a robust methodology
that is able to identify regimes over regions with timing biases where the use of the standard
meteorological seasons may underestimate the seasonal cycle. The reader is referred to the
methods section and additionally to [26] for more information on the technique.

Recently, some modelling groups participating in the Coupled Model Intercomparison
Project, Phase 6 (CMIP6; [28]) have focused on addressing this challenge of uncertainties
and biases from downscaling by introducing the High-Resolution Model Intercomparison
Project (HighResMIP) which is geared towards improving regional climate information
from the models [29,30]. It is asserted that these HighResMIP simulations have the ability to
simulate mesoscale convective systems and represent multi-scale interactions that may not
be well represented by the low- to medium-resolution GCMs [30,31]. Ref. [32] has explored
the impact of the higher resolution of HighResMIP models on the West African climate
and found that high-resolution GCMs without regional components such as topography,
vegetation, or waterbodies may be biased in providing accurate and regionally resolved
climate information.

This study examines how a set of HighResMIP models that participated in the CMIP6
experiment captured onset and cessation information over SWA using the methodology
proposed by [26]. The paper is organised as follows: Section 2 summarises the data and
methods used in the study, while in Section 3 the results are discussed and concluded in
Section 4.
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2. Data and Methods
2.1. Observation Data and Model Output

Long records of gauge-based observed daily precipitation data are a scarce resource
(particularly in parts of the tropics) and are only available over limited land regions.
Due to the scarcity of gauge-based observational precipitation datasets over SWA, data
from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) were
used in this study as the observation data for the validation of the GCMs to reproduce
precipitation. CHIRPS is a quasi-global rainfall dataset. The main aim of CHIRPS is to
monitor meteorological hazards, especially drought events [33]. CHIRPS is made up of
many inputs, namely, the monthly precipitation climatology CHPclim, thermal infrared
measurements from geostationary satellites issued from National Oceanic and Atmospheric
Administration-Climate Prediction Centre, the National Climatic Data Centre, and Tropical
Rainfall Measurement Mission 3B42. These inputs are merged with in situ rain gauge
observation data to estimate precipitation. CHIRPS extends over the band of 50◦ N and
50◦ S latitude, with a spatial resolution of 0.05◦ for daily observation and 0.25◦ for monthly
coverage. It provides daily, pentad, and monthly precipitation from 1981 to present. To
overcome uncertainties that may result from the scarcity of rain gauge observation, blended
station data have been added to CHIRPS to enhance its performance [33]. CHIRPS was
used to assess how the high-resolution GCMs simulate onset and cessation dates over the
study area. Based on previous studies by [34–36], the mean precipitation of West Africa
from the CHIRPS dataset shows a similar performance when compared with the commonly
used satellite products such as CMORPH, PERSIANN, and TRMM at the monthly and
seasonal time scales. There has been the recognition of a satisfactory replication of the
seasonal trends (1981–2015) of the mean precipitation and the number of wet days from
the CHIRPS dataset against 18 daily rain gauge stations across the Guinea Coast and the
Sahel [37,38]. An exception was mentioned, however, along the Guinea Coast that the
CHIRPS dataset shows a tendency towards more (less) frequent and less (more) intense
precipitation during both rainy seasons (during the first rainy season) when compared
with the rain gauge stations [37,38].

The study also incorporates historical simulations from five (5) high-resolution models
covering the period 1950–2014 (Table 1). These datasets are archived on the Earth Sys-
tem Grid Federation (ESGF) portal under CMIP6 HighResMIP, which can be found at
https://esgf-node.llnl.gov/search/cmip6/, accessed on 18 February 2021. The High-
ResMIP model dataset is an approved CMIP6 model inter-comparison effort designed
mainly to assess the role of model resolution in the representation of relevant climate
processes. The HighResMIP experimental design comprises both atmospheric-only and
coupled simulations performed at standard (~100 km or coarser) and enhanced (~25 km)
horizontal resolution in the atmosphere and the ocean. Here, 65-year simulations of the
forced atmosphere experiment that cover the present climate are considered, in which
observed sea surface temperature, sea–ice concentration, and incoming radiation are used
as forcings. This type of experiment under HighResMIP is known as ‘HighRes-SST-present’.
Within these model experiments, only models having a ‘365 day’ calendar year and also
possessing a resolution with grid spacings of 50 km or finer were used due to the nature of
the indices calculated. Based on the selection criterion employed for robust analysis, only
5 of the CMIP6 HighResMIP models were suitable (Table 1).

The datasets were re-gridded using bilinear interpolation to a common 0.5◦ × 0.5◦ grid
to enable comparison in multi-models. Onset and cessation dates of rainfall seasons
were calculated after re-gridding. For these simulations, onset and cessation dates were
calculated over the 34-year period 1981 to 2014 due to CHIRPS being available only from
1981 and also the historical simulations of the HighResMIP models ending in 2014.

https://esgf-node.llnl.gov/search/cmip6/
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Table 1. Details of the 5 CMIP6 HighResMIP models used in this study.

No. Model Institute Horizontal Resolution
(lon. × lat.) References

1 NICAM16-8S

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute, The University of Tokyo, National

Institute for Environmental Studies, RIKEN Center
for Computational Science, Japan

0.28◦ × 0.28◦ [39]

2 IPSL-CM6A-ATM-HR Institut Pierre Simon Laplace, Paris, France 0.70◦ × 0.50◦ [40]
3 MRI-AGCM3-2-S Meteorological Research Institute, Tsukuba, Japan 0.19◦ × 0.19◦ [41]

4 CAMS-CSM1-0 Chinese Academy of Meteorological Sciences,
Beijin, China 0.46◦ × 0.46◦ [42]

5 EC-Earth3P-HR EC-Earth-Consortium 0.49◦ × 0.35◦ [43]

2.2. Methodology for Identifying Onset and Cessation of Rainfall Seasons

To calculate the onset and cessation dates for the unimodal and bimodal regimes,
the methodology of [26], which is an extension to the methodology of [27] to produce a
precipitation climatology over the African continent, was used.

The processes for calculating onset dates are in three phases, with full subtleties laid
out in [26]. To begin with, harmonic analysis was used to categorise the number of rainfall
seasons experienced in a year. The rainfall regime at each grid point is categorised as
being dominantly unimodal (one rainfall season per year) or bimodal regime (two rainfall
seasons per year). This is accomplished by computing the ratio of the amplitude of the
second harmonic to the first harmonic. If the ratio is greater than 0.75, the amplitude of
the second harmonic is larger, and the grid point is classified as having a bimodal rainfall
regime. If the ratio is less than 0.75, the grid point is classified as having a unimodal rainfall
regime. This is marked in Figure 1 as a contour line. The second harmonic is relatively
large generally near the equator and portrays the two wet seasons that occur following the
two crossings of the solar zenith [27]. The harmonic analysis approach used in this study is
similar to that used in [26,27] to analyse the number of wet seasons per year over Africa,
although [27] used a threshold ratio of 0.75 over monthly rather than daily precipitation
data and [26] used a threshold ratio of 1.0. The threshold ratio value of 0.75 is chosen due
to its sensitivity to the unimodal and bimodal rainfall regimes. Choosing a lower threshold
ratio (less than 0.75) means some regions observing a unimodal rainfall regime become
part of R1, making it challenging to refer to all grid points under R1 as bimodal. On the
other hand, a larger threshold ratio (greater than 0.75) means region R1 becomes smaller,
with part of R1 merging with R2. The choice of the selected threshold ratio (here 0.75) is
seen, in this instance, to better represent the two regimes with little or no overlapping over
Southern West Africa.

Furthermore, a process to identify minima and maxima in the climatological cumu-
lative daily mean rainfall anomaly is carried out to determine when the rainfall season
occurs in a calendar year. The climatological cumulative daily mean rainfall anomaly is
determined by initially computing the climatological mean rainfall for each day of the
calendar year and the long-term climatological daily mean rainfall. The climatological
period of the two rainy seasons for areas with a bimodal regime is identified using the
extension in the method of [27] presented in [26]. Onset and cessation dates are finally
determined for each season and year by computing the daily cumulative rainfall anomaly
in each season and the minima and maxima in the daily cumulative rainfall anomaly.
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Figure 1. Annual average precipitation (mm) from 1981 to 2014 from CHIRPS data. Region R1
indicates unimodal regions, while region R2 represents areas defined as bimodal regions for each grid
point in CHIRPS based on the ratio of the amplitudes of the first two harmonics. A ratio greater than
0.75 indicated a bimodal point and a ratio less than 0.75 indicated a point with a unimodal regime.

Analysis of mean onset and mean cessation dates were carried out for both unimodal
and bimodal rainfall regimes to compare the CMIP6 HighResMIP models with the CHIRPS
observations using Taylor diagrams. Taylor diagrams are most useful in gauging the relative
skill of many different models [44]. This was done to assess the statistical performance of
how closely models match observation patterns in terms of the correlation, the amplitude
of variations (represented by the standard deviation), and the centred root-mean-square
(RMS) difference. Correlations, RMS difference, and standard deviations are calculated
based on the observed (here CHIRPS) over a specified region under R1 and R2 for a fair
comparison. The correlation coefficient and the RMS difference provide corresponding
statistical information quantifying the relationship between two patterns. The variances (or
standard deviations) of fields are also given for a more complete characterisation of the
fields. Considering two variables, mn and rn, which are defined at N discrete points (in
time and/or space), the correlation coefficient R between m and r is defined as

R =
1
N ∑N

n=1(mn − m)(rn − r)
σmσr

(1)

and the centred pattern RMS difference is defined by

E =

{
1
N

N

∑
n=1

[(mn − m)(rn − r)]2
} 1

2

(2)

where m and r are the mean values and σm and σr are the standard deviations of m and r,
respectively. The standard deviations of the model field (σm) and the observation field (σr)
are given by

σ2
m =

1
N

N

∑
n=1

(mn − m)2 (3)

and

σ2
r =

1
N

N

∑
n=1

(rn − r)2 (4)
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3. Study Area

The SWA region was divided into two regions such that each represents a consistent
unimodal or bimodal regime across all data sets (Figure 1). Region R1 experiences a
unimodal regime while region R2 experiences a bimodal regime (Figure 1). Precipitation
over the SWA is mostly rainfall and so the two words (rainfall and precipitation) will be
used interchangeably.

4. Results and Discussion

The map of annual mean precipitation based on CHIRPS data (1981–2014) to show the
spatial distribution of precipitation over the years is analysed (Figure 1). Regions occupying
the north of 15◦ N receive less than 500 mm yr−1 of precipitation, while the wettest areas
located south of 10◦ N realise an average of 1500 mm yr−1 of precipitation. Areas with
maximum rainfall in West Africa are observed mostly in regions with high altitudes such
as the Guinea Highlands and Mount Cameroon.

4.1. Characteristics of the Rainfall Regime

The representation of the unimodal and bimodal rainfall regimes in the observation
and model simulations is explored. In West Africa, a bimodal rainfall regime is observed
over a small region that lies on the coast [45].

4.2. Unimodal Rainfall Regime

From Figures 2 and 3, good agreement is observed between the observation dataset
(CHIRPS) and the CMIP6 HighResMIP datasets with respect to the onset and cessation
dates. Onset dates generally are observed between late March and late June over regions
with unimodal rainfall patterns, marking the start of the monsoon. Onset dates agree
closely with that observed by [23,46] using different definitions for onset. The rainfall
season starts close to the southernmost coast of West Africa in early March. Figure 2 shows
that onset dates for MRI-AGCM3-2-S, EC-Earth3P-HR, CAMS-CSM1-0, and IPSL-CM6A-
ATM-HR agree closely with CHIRPS, while in Figure 3 all models show good agreement in
representing cessation dates as observed in CHIRPS. The general meridional progression
of onset and cessation dates across the region is seen as ‘late onset’ as rainfall progresses
northward and ‘late cessation’ as rainfall progress south. The observed late start in onset
dates as the rainfall progresses north has been associated with the delay transport of
moisture into the continent due to the processes of the West African Monsoon [22,23,47].

4.3. Statistical Evaluation of Models for the Unimodal Rainfall Regime

To investigate the performance of the CMIP6 HighResMIP models, Taylor diagrams
were constructed to provide a graphical summary of how close models behave with
respect to observations. The similarities between CHIRPS and selected CMIP6 High-
ResMIP are quantified in terms of their spatial correlation, their centred root mean square
(RMS) difference, and the amplitude of their spatial variations (represented by their spatial
standard deviations).

Figure 4 depicts how close models simulate onset and cessation dates of rainfall as
compared with observations. It is evident from the statistical evaluations that all CMIP6
HighResMIP models have a low pattern correlation of r < 0.5, with MRI-AGCM3-2-S
recording the highest r of about 0.26 (Figure 4a). IPSL-CM6A-ATM-HR agrees well with
CHIRPS in capturing onset dates in the unimodal rainfall regime having the smallest
root mean square error of about 9.1 days and a slightly higher spatial variability (with a
standard deviation of about 7.5 days compared with the observed value of 6.2 days), with
EC-Earth3P-HR and MRI-AGCM3-2-S giving a close performance as IPSL-CM6A-ATM-HR
in capturing onset dates. On the poor performing models, CAMS-CSM1-0 depicts much
larger variations when compared with CHIRPS, resulting also in a relatively large (about
12.2 days) centred root mean square error in capturing onset dates.
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Five-pointed star represents the observational dataset.
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For the cessation of rainfall, although all models show very low pattern correla-
tions, IPSL-CM6A-ATM-HR presents a similar standard deviation to CHIRPS (Figure 4b).
IPSL-CM6A-ATM-HR agrees best with the observation data in capturing cessation dates,
followed closely by MRI-AGCM3-2-S shown by their small root mean square errors. CAMS-
CSM1-0, EC-Earth3P-HR, and NICAM16-8S weakly capture cessation dates with all ob-
serving equal root mean square errors a little above the good performing models when
compared with CHIRPS and a very high amplitude in variations, specifically in EC-Earth3P-
HR. There is not much of a difference in RMS values across models.

4.4. Bimodal Rainfall Regime

The SWA region experiences a bimodal rainfall season with two wet seasons per year.
Figures 5 and 6 show the mean onset and cessation for the first (major) rainfall season,
respectively. It is evident from the figures that all models show onset and cessation periods
for bimodal regions along SWA, indicating that the models are capturing the biannual
regime, which is not always captured in model simulations [10]. The biannual region in
these CMIP6 models, however, is found to cover a larger region (Sierra Leone through to
Nigeria for NICAM16-8S, MRI-AGCM3-2-S, and CAMS-CSM1-0, and central Sierra Leone
to eastern Benin for IPSL-CM6A-ATM-HR and EC-Earth3P-HR) than the smaller biannual
region that is depicted by observations (from eastern Sierra Leone to Togo for CHIRPS). We
find that the mean onset and cessation dates for the first (major) rainfall season are well
captured by the models (late March and late July, respectively) with a late start (early May)
for NICAM16-8S and a late cessation (late July) in MRI-AGCM3-2-S. Patterns observed
from the CHIRPS observation dataset are similar to findings from [26,27].

For the second (minor) rainfall season, some differences are observed in onset dates
as compared with cessation dates which have subtle differences (Figures 7 and 8). Onset
dates are observed to be between late August and late September for observations, which
is also found in EC-Earth3P-HR over the majority of the region, but NICAM16-8S, IPSL-
CM6A-ATM-HR, and CAMS-CSM1-0 observe onsets of the minor rainfall season from
late September to late October for the majority of the region, with small portions of the
region recording onsets of late August. The ability of models in capturing onset dates as
observed in CHIRPS depicts the strength of these models in representing the short break
between the two wet seasons which is otherwise known as the ‘Little Dry Season’. This
indicates that the majority of the models are reliable in representing seasonal rainfall over
SWA. Cessation dates are observed to have a subtle variation between early November and
late November.

It is evident from the statistical evaluations that most CMIP6 HighResMIPs have a
low pattern correlation of r < 0.5 compared with CHIRPS during the first onset and second
cessation of rains (Figure 9a,d), suggesting the difficulty of the models in simulating onset
of the major rainfall season and cessation of the minor rainfall season. All models reproduce
similar but little spatial variability compared with CHIRPS in representing the onset dates
(Figure 9a). However, MRI-AGCM3-2-S agrees well with CHIRPS, having the smallest root
mean square error in capturing onset dates during the first (major) bimodal rainfall regime.
EC-Earth3P-HR and IPSL-CM6A-ATM-HR poorly pick up the onset date signals, with the
former having a very high RMS error and the latter exhibiting a much lower amplitude
of the variation (i.e., the standard deviation) when compared with CHIRPS. In Figure 9b,
although models EC-Earth3P-HR, MRI-AGCM3-2-S, and IPSL-CM6A-ATM-HR perform
very well in capturing the cessation dates in the first (major) rainfall regime, with the models
observing remarkably close spatial variations to that of the observation, EC-Earth3P-HR is
highly correlated with the observation, and this results in a relatively low root mean square
error in EC-Earth3P-HR. On the poor performance of models, although all models show
relatively good correlation with CHIRPS, NICAM16-8S and CAMS-CSM1-0 both show
variations much smaller (~8 days) than the observation (~12 days), while MRI-AGCM3-2-S
and IPSL-CM6A-ATM-HR show high centred root mean square error capturing cessation
dates in the first (major) rainfall regime.



Atmosphere 2022, 13, 999 10 of 20Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Mean onset date for first (major) rains for all data sets. Dark grey indicates regions with a 
unimodal regime and white indicates dry regions. 

Figure 5. Mean onset date for first (major) rains for all data sets. Dark grey indicates regions with a
unimodal regime and white indicates dry regions.



Atmosphere 2022, 13, 999 11 of 20Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Mean cessation date for first (major) rains for all data sets. Dark grey indicates regions 
with a unimodal regime and white indicates dry regions. 

For the second (minor) rainfall season, some differences are observed in onset dates 
as compared with cessation dates which have subtle differences (Figures 7 and 8). Onset 
dates are observed to be between late August and late September for observations, which 
is also found in EC-Earth3P-HR over the majority of the region, but NICAM16-8S, IPSL-
CM6A-ATM-HR, and CAMS-CSM1-0 observe onsets of the minor rainfall season from 
late September to late October for the majority of the region, with small portions of the 
region recording onsets of late August. The ability of models in capturing onset dates as 
observed in CHIRPS depicts the strength of these models in representing the short break 
between the two wet seasons which is otherwise known as the ‘Little Dry Season’. This 
indicates that the majority of the models are reliable in representing seasonal rainfall over 
SWA. Cessation dates are observed to have a subtle variation between early November 
and late November. 

Figure 6. Mean cessation date for first (major) rains for all data sets. Dark grey indicates regions with
a unimodal regime and white indicates dry regions.



Atmosphere 2022, 13, 999 12 of 20Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 7. Mean onset date for second (minor) rains for all data sets. Dark grey indicates annual 
regimes and white indicates dry regions. 

Figure 7. Mean onset date for second (minor) rains for all data sets. Dark grey indicates annual
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During the onset of the second (minor) rainfall regime, it can be seen that IPSL-CM6A-
ATM-HR and EC-Earth3P-HR generally agree best with CHIRPS, with both recording
similar RMS error of about 12 days and both models also have a relatively high correlation
(Figure 9c). CAMS-CSM1-0, however, simulates the amplitude of the variations much
better than the other models while observing the highest RMS error. For the cessation
dates in the second (minor) rainfall regime, it can be seen that models EC-Earth3P-HR
and CAMS-CSM1-0 simulate better the amplitude of the variations than other models
(Figure 9d). NICAM16-8S, although having much lower variations, agrees well with the
observation due to its small RMS error and its relatively high pattern correlation.
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4.5. Interannual Variability in Observations and CMIP6 HighResMIP over West Africa

Notable differences in onset and cessation dates can be observed in the time series
analysis of rainfall events over the region (Figure 10). The interannual variability over
region R1 (regions with unimodal rainfall regime) indicates an earlier onset in MRI-AGCM3-
2-S, with a mean onset date of 6 May and a late mean onset date of 4 June in NICAM16-8S,
with all other datasets recording mean onset dates between 14 May and 20 May (Figure 10a).
Less variability is observed in cessation dates, with EC-Earth3P-HR exhibiting an early
cessation at the beginning of October and the latest cessation in IPSL-CM6A-ATM-HR
around mid-October.
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Figure 9. Statistical evaluation of models using Taylor diagram analysis to show the coefficient of
correlation, standard deviation, and centred root mean square error of (a) first onset, (b) first cessation,
(c) second onset, and (d) second cessation over region R2. Different colour dots represent different
datasets as described in the legend. Five-pointed star represents the observational dataset.

Regions that observe the bimodal rainfall regime show an early onset in MRI-AGCM3-
2-S, with the mean onset date of 16 March, and the NICAM16-8S showing a late mean
onset date of 19 April for the major rainfall period (Figure 10b). The rainfall cessation for
the major rain season observes the CHIRPS mean cessation date around 8 July, with EC-
Earth3P-HR recording a late mean cessation date of 13 July. NICAM16-8S, MRI-AGCM3-2-S,
and CAMS-CSM1-0 observe an earlier cessation, with NICAM16-8S recording a cessation
date as early as 18 June.

In the minor rainfall season, EC-Earth3P-HR observes an early mean onset date of
6 September, CAMS-CSM1-0 observes a late mean onset date of 4 October, while all other
models recorded mean onset dates between 22 September and 27 September. The cessation
dates observed in the minor rainfall regime are observed to be between 31 October and
12 November for both observation and models, with MRI-AGCM3-2-S recording a late
cessation date.

The length of the wet season is shown in Figure 11. The time series from Figure 11a,
shows that CHIRPS records a longer mean wet season annually of about 150 days, with
IPSL-CM6A-ATM-HR observing the same length in the wet season in region R1. NICAM16-
8S observes the shortest length in rainy days over areas with a unimodal rainfall season,
with a mean length of about 127 days. This is possible due to the late start and early
cessation of rainfall in NICAM16-8S. MRI-AGCM3-2-S, on the other hand, witnessed the
longest period of rainy days. In Figure 11b, it can be observed that for the major rainy
season during the bimodal regime, the mean length of days from observation was about
105 days, with EC-Earth3P-HR overestimating the mean length in rainy days by 3 days.
NICAM16-8S continues to perform poorly in capturing the early onset in the observation,
therefore realising a time lag of over a month to CHIRPS.
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For the minor rainfall season, it is observed that the length of the wet season varies
largely over time, with most models lasting a few days shorter than the observation
(Figure 11c). This reflects the earlier onset of rainfall in EC-Earth3P-HR (as observed in
CHIRPS) during the second rainy season of the bimodal regime. The variations observed
between CHIRPS and CMIP6 HighResMIP models can be attributed to the differing onset
dates, since there are similarities in their cessation dates (Figure 11b).
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5. Summary and Conclusions

The performance of CMIP6 HighResMIP models, which have been forced by observed
SSTs, in capturing onset and cessation of seasonal rainfall across Southern West Africa were
evaluated against CHIRPS. This was achieved by applying a robust method of calculat-
ing onset and cessation dates using cumulative daily mean precipitation anomalies for
quantifying seasonal rainfall [26,27].

We find that, generally, regions (R1 and R2) with early onset dates coincide with areas
that experience maximum rainfall along the coast of West Africa (Figure 1). It is noteworthy
that all the datasets show good agreement in capturing onset and cessation dates during
both unimodal and bimodal rainfall regimes, especially in the southern part of West Africa.
This depicts the ability of high-resolution models in representing the seasonal cycle of
rainfall due to their ability in capturing similar patterns of seasonal rainfall over SWA,
although there exist differences in their spatial extent. The timing of the rainfall season
over SWA depicts a northward progression of onset dates and a southward progression of
cessation dates. The coast of SWA that exhibits the bimodal regime receives a relatively
high amount of rainfall, with a region characterised by reduced rainfall amounts separating
the two seasons. Onset/cessation patterns observed over the SWA region are consistent
with the northward and southward displacement of the ITCZ. The forced atmosphere
experiments represent the bimodal rainfall regime well over the coast SWA. Seasonal
timing in the SST forced atmosphere simulations shows good agreement with observations,
such that most mean onset/cessation dates agree within 26 days, with MRI-AGCM3-2-S
exhibiting an early onset of the major season (~9 days early) and NICAM16-8S displaying
a late onset of about 25 days. NICAM16-8S exhibits an early cessation as compared with
observation (~25 days early), and EC-Earth3P-HR shows about 5 days delay in cessation
in the major rainfall season. Similar agreements existed during the minor season, with
EC-Earth3P-HP presenting an early onset of about 3 days and CAMS-CSM1-0 presenting a
late onset (~25 days late).

Using Taylor diagrams, we were able to quantitatively determine how well High-
ResMIP datasets compare with observation in representing the onset and cessation of
rainfall. Most of the GCM models had a relatively low correlation with the observation
dataset. While IPSL-CM6A-ATM-HR best agrees with CHIRPS in representing onset and
cessation dates in the unimodal rainfall region, the models outperform each other in rep-
resenting onset/cessation dates in the bimodal rainfall season with little variation. This
means that no immediate conclusion can be arrived at as to which model simulation
best represents onset/cessation dates in Southern West Africa during the bimodal rainfall
regime. It is encouraging to note, however, that the seasonal cycle of rainfall based on onset
and cessation is typically consistent among models. This demonstrates that high-resolution
models can be employed in the understanding of seasonal rainfall in SWA to enhance
future climate predictions based on climate change projections.
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