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We present high signal-to-noise measurements of three-point shear correlations and the third mo-
ment of the mass aperture statistic using the first 3 years of data from the Dark Energy Survey.
We additionally obtain the first measurements of the configuration and scale dependence of the
four three-point shear correlations which carry cosmological information. With the third-order mass
aperture statistic, we present tomographic measurements over angular scales of 4 to 60 arcminutes
with a combined statistical significance of 15.00. Using the tomographic information and measuring
also the second-order mass aperture, we additionally obtain a skewness parameter and its redshift
evolution. We find that the amplitudes and scale-dependence of these shear 3pt functions are in
qualitative agreement with measurements in a mock galaxy catalog based on N-body simulations,
indicating promise for including them in future cosmological analyses. We validate our measure-
ments by showing that B-modes, parity-violating contributions and PSF modeling uncertainties are
negligible, and determine that the measured signals are likely to be of astrophysical and gravitational
origin.

I. INTRODUCTION (2019), Amon et al. (2021), Secco & Samuroff et al.,
(2021)). One of the main products of years of effort by

the community is the accurate determination of the am-

Two-point (2pt) auto-correlation functions of the shear
field (sometimes referred to as cosmic shear) have been
widely used in the recent literature to constrain cosmo-
logical parameters. Current works utilize different statis-
tical measures and exploit the shear distributions in both
real (configuration) space as well as harmonic space (As-
gari et al. (2021), Hamana et al. (2020), Hikage et al.
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plitude parameter Sg = 051/ /0.3, where og is the
root mean square amplitude of the linear-theory matter
power spectrum at z = 0 over an 8 Mpc/h scale, and
Qu, is the matter density at z = 0. This amplitude is
in mild tension with the value inferred from fluctuations
of the Cosmic Microwave Background (Planck Collabo-
ration 2020) by about 20 (depending on the survey data
sample used) and its origin remains unresolved.

Extracting more cosmological information from the



shear field than that encoded in 2pt statistics may help
better characterize this tension and is an important goal
in itself. To be useful, the additional information should
have its systematics well-understood and controlled. The
aim of this work is to address both points above: we use
data from DES Y3, the first 3 years of data from the
Dark Energy Survey (DES Collaboration (2022), Gatti,
Sheldon et al. (2021b), Sevilla-Noarbe & Bechtol et al.,
(2021)) to obtain high signal-to-noise measurements of
three-point (3pt) correlation functions of the shear field
and show that potential contaminants in these measure-
ments coming from observational and instrumental ori-
gins are negligible.

The benefits of utilizing higher order correlations as a
cosmological probe are plenty and go far beyond simply
enabling access to non-Gaussian information in the shear
and matter bispectrum. Compared to 2pt functions,
3pt correlations in lensing carry different cosmological
parameter degeneracies (Bernardeau et al. 2002, Kayo
& Takada 2013, Takada & Jain 2003b) and when com-
bined with 2pt functions can additionally constrain as-
trophysical and systematic nuisance parameters (Huterer
et al. 2006, Pyne & Joachimi 2021, Semboloni et al. 2013,
Troxel & Ishak 2012). The combination of 2pt and 3pt
lensing data vectors is thus greater than the sum of its
parts, and enables degeneracy-breaking in both the cos-
mological and nuisance parameter spaces.

The community has followed several approaches to ex-
tracting the information contained in higher order shear
statistics. For example, non-Gaussian information can be
obtained with position-dependent or integrated 2pt lens-
ing signatures (Halder et al. 2021, Jung et al. 2021), peak
statistics (Kacprzak et al. 2016, Ziircher et al. 2021), den-
sity splits of the shear field (Friedrich et al. 2018, Gruen
et al. 2018) as well as with techniques borrowed from
artificial intelligence and neural networks (Cheng et al.
2020, Fluri et al. 2019, Jeffrey et al. 2021, Lu et al. 2021).
Another approach is to directly measure 3rd or higher
order statistics of the shear field in the form of elliptic-
ity correlations (Van Waerbeke et al. (2002), Benabed &
Scoccimarro (2006)), mass aperture moments (Fu et al.
2014, Jarvis et al. 2004, Semboloni et al. 2011) or lensing
mass maps (Gatti et al. 2021a).

In this work, we follow the latter approach and di-
rectly measure 3pt statistics of the DES Y3 data in the
form of “natural” correlation functions (the three-point
equivalents of £1) (Schneider & Lombardi 2003) and the
third moment of the mass aperture statistic (Schneider
et al. 1998). We detect both statistics at high signifi-
cance and additionally explore the triangle configuration
dependence, tomographic signals and redshift evolution
of the 3pt lensing signal, none of which have been previ-
ously measured at high significance in survey data.

We also verify that several null tests of great impor-
tance for cosmological applications (such as B-mode con-
tamination, PSF residual errors and parity-violating con-
tributions) are consistent with zero or otherwise negligi-
ble compared to the EF-mode signal for these 3pt statis-

tics in DES Y3. This work, therefore, represents the first
step towards a cosmological analysis with DES Y3 data
using the statistics presented here, which we leave for the
future.

This paper is structured as follows. In Sec. II we pro-
vide an overview of the DES Y3 weak lensing shear cat-
alog and an N-body simulation that we utilize as a check
on the rough scale dependence and amplitude of the 3pt
signatures. In Sec. III we review the underlying theory
of three-point lensing correlations as a probe of the mat-
ter bispectrum and describe the estimators we utilize in
the data. In Sec. IV we present the main results of this
paper: the measured signals of the mass aperture skew-
ness, natural shear correlations, and some explorations
of their configuration and redshift dependence, as well
as a comparison with existing detections. In Sec. V we
validate the measured signals and verify that their ori-
gin must be astrophysical and gravitational by checking
that B-mode, PSF and parity-violating contaminations
are negligible and that our data estimator is robust. We
conclude and mention future avenues and challenges in
Sec. VII.

II. DATA

We describe below the data utilized in this work, the
DES Y3 shape catalog and a simulated (N-body) mock.
We regard the latter as providing a simplified theory esti-
mate, serving as a basic check of the data measurement.

A. DES Y3 Data

The first 3 years of data from the Dark Energy Sur-
vey (DES Y3) cover the full footprint of the survey’s
six-year campaign. Its nominal area is over 5,000 deg?,
which is reduced to 4143 deg? after data selections and
cuts that optimize the observed samples for weak lens-
ing and galaxy clustering measurements, with a baseline
mask described in Sevilla-Noarbe et al. (2021). The DES
data were collected using the 570 megapixel Dark Energy
Camera (DECam; Flaugher et al. (2015)) in five pho-
tometric bands grizY at the Blanco telescope at Cerro
Tololo Inter-American Observatory (CTIO) in Chile.

Here we are interested in the METACALIBRATION (Huff
& Mandelbaum 2017, Sheldon & Huff 2017) shape cata-
log produced and validated in the DES Y3 analysis (Gatti
& Sheldon et al., (2021c)). This is the largest shear cat-
alog to date in number of objects and area, with over
100 million objects with a mean redshift of z = 0.63 and
a weighted source number density neg = 5.59 arcmin 2.
An overview of the DES Y3 weak lensing and galaxy clus-
tering cosmological analysis is available in DES Collab-
oration (2022), where further specifications of the data
and analysis tools are available in references contained
within.



In the DES Y3 cosmological analysis, source galaxies
were separated into four redshift bins each with approxi-
mately equal numbers of galaxies (Myles & Alarcon et al.,
(2021)). In some of the measurements presented in this
work, we also separate the shear data into tomographic
bins. However, since the 3pt statistics have lower signal-
to-noise than the 2pt measurements, we instead divide
the DES Y3 METACALIBRATION catalog into just 2 red-
shift bins, which we label z; and z;. The lower red-
shift bin, z;, is a combination of the galaxies assigned
to bins 1 and 2 in the fiducial analysis, while bin z3 is
a combination of the galaxies originally assigned to bins
3 and 4 in that analysis. Weighting the galaxy redshifts
in these two newly defined bins by their inverse-variance
ellipticity and shear response, we obtain mean redshifts
(z1) = 0.42 and (z) = 0.81 with widths of 0.30 and 0.27
respectively.

Since the shape catalog used to derive the cosmic shear
results in DES Y3 (Amon et al. (2021), Secco & Samuroff
et al., (2021)) has been extensively validated, we use the
same data quality cuts and sample specification in the
3pt analysis below.

B. T17 Mock Catalog

To support our findings reported in the following
sections, the same 3rd order correlation measurement
pipelines applied to DES Y3 data are also applied to an
N-body mock galaxy catalog based on Takahashi et al.
(2017) [hereafter T17].

We use full-sky lensing convergence and shear maps
from T17 to create a DES Y3-like, tomographic shape
catalog. In particular, we used a single one out of their
108 available sets of convergence and shear map snap-
shots, which span a redshift range between z = 0.05
and 5.3 at intervals of 150 h~! Mpc comoving distance.
The maps have been obtained via ray-tracing using the
algorithm GRAYTRIX (Hamana et al. 2015), based on
the output of different N-body simulations. The N-body
simulations have been run using the code L-GADGET-2
(Springel 2005), assuming a flat ACDM WMAP 9 cos-
mology (Hinshaw et al. 2013) with parameters given by
(08, sy By i, Q) = (0.82,0.97,0.7,0.279,0.046).

The shear and convergence maps come in the form of
HeALPIX! (Gérski et al. 2005, Zonca et al. 2019) maps
with resolution NSIDE = 4096. We first produced shear
maps for each of the tomographic bins by averaging the
shear snapshots weighted by the redshift distributions of
the bins. To this aim, we used the approximate DES Y3
redshift distributions (Myles & Alarcon et al., (2021)).
Galaxy catalogs are then created by sampling the simu-
lated shear maps at the positions of real DES Y3 galax-
ies, matching their number density. While, in principle,

! http://healpix.sf.net

shape noise can be added to the mock in order to closely
match the real data specifications, we do not include it
in our mock and instead regard simulation measurements
as simple theory estimates.

III. THREE-POINT SHEAR CORRELATIONS

We now describe the basic theory of the higher order
correlations we are interested in, the estimator methods
that are applied to the simulated and observed data de-
scribed in the previous section, as well as data covariance
matrix estimates based on jackknife.

A. Theory Basics

Second order statistics (two-point correlation func-
tions, power spectra, second moments etc.) contain only
the Gaussian part of the shear field. To probe non-
Gaussian information, one has to appeal to higher-order
statistics. We focus here on lensing 3rd order correla-
tions. A fundamental aspect of these correlations is that
they are projections of the matter bispectrum under some
lensing kernel, so we take that as our starting point.

We first define the matter bispectrum Bs(k1, k2, k3),
that is, the Fourier transform of 3-point correlations of
matter overdensities d(k) in wavenumbers k:

<($(k1)(5(k2)($(k§3)> = B(;(k‘,l, k?27 k‘3)($D(k1 + ko —l—kg), (1)

where the Dirac delta dp enforces the bispectrum defini-
tion over wavenumbers k; forming triangles, though with
statistical isotropy the dependence is only on the mag-
nitude of the modes ki, ko and k3 of the triangle. The
matter fluctuations give rise to a lensing signal that de-
pends on the redshift distribution of the sources along a
unit line-of-sight 7. This is quantified in real space by
the lensing convergence k(7):

K(R) = / " 0 W08, ), (@)

where y = x(z) is the comoving distance to redshift z
and the lensing efficiency along the line-of-sight is

dx' n(z(x)) — , (3
| v gt @

where Qp, is the matter density at redshift z = 0,
Hy = 100h km/s/Mpc is the Hubble parameter, a is the
scale factor, n(z) is the normalized redshift distribution
of sources, and c is the speed of light. Under this lensing
kernel, the 3-dimensional matter bispectrum in eq. (1)
can be projected down to the 2-dimensional harmonic
space convergence bispectrum using the Limber approx-
imation (Limber 1953, LoVerde & Afshordi 2008):

co w 3
B (51732,53):/ dx —)(;f) Bs (k1, k2, k3;x)  (4)
Jo



With a weak lensing survey, we can probe the shear
field at the positions of source galaxies and quantify its
statistics with the lensing bispectrum above. We can de-
fine the spin-2 shear field along some direction (e.g., a line
connecting two source galaxies) as v(0) = v(0)+ivx (0),
where v, is the shear component oriented perpendicularly
with respect to that direction, v« is the 45° orientation,
and @ are vectors on the plane of the sky with magni-
tude 6. A natural choice for two-point correlations of the
shear field is to take the direction 0 to be that of the line
separating a pair of source galaxies, in which case these
correlations are given by

§x(0) = (ne) (0) £ (vxvx) (0) = e £vxn, ()

with the angle brackets denoting averages taken over
all possible pairs of galaxies, and where the right-hand
equivalence introduces a shorthand notation for the mul-
tiplication of shears.

While the choice for an orientation of shear projections
in the three-point case is less obvious (e.g., the orthocen-
ter of the triangle, or the side directions, etc.), there are
“natural components” of cosmic shear with rotation and
invariance properties analogous to {1 that we can uti-
lize (Schneider & Lombardi 2003) [hereafter SL03]. We
follow SLO3 and define:

Lo = (7(01)7(02)7(03)) = Yerr — Yexx — Yxtx — Vxxt
+ 0 [Veex + Vext T Vxtt — Vxxx] 5
(6)
(Y (01)7(02)7(03)) = Verr — Vesx + Vxex + Vxxt
+ 4 [Yeex F Yext — Vxtt T Yxxx) s
(7)
(Y(01)7" (02)7(03)) = Vert + Vixx — Vxix + Vxxt
+1 ['Yttx — Vext + Yxtt + '7><><><} ,
(8)
(Y(01)7(02)7"(03)) = Veve + Vescx + Vxex — Vxxt

I'y

—
no
Il

r 3

+i[*’7tt>< + Yext + Yxte +’Y><><><] .

(9)

It has been shown by SLO03 as well as by Schneider
et al. (2002), Takada & Jain (2003a) that, for general
triangle configurations, all of the correlations above can
be non-zero and their imaginary parts do not necessarily
vanish. Parity invariance, however, implies that the IT;
for equilateral configurations are purely real (all terms
with an odd number of x-components vanish) and that
some, but not all, imaginary components of these statis-
tics for isosceles configurations vanish. The correlations
above thus have a complex configuration dependence and
can be divided into a total of 8 data vectors (the real and
imaginary part of each I';), and should contain the entire
3pt information in the shear field.

The T'; are connected to the convergence bispectrum
in eq. (4) since, in harmonic space, the shear compo-
nents can be written in terms of the convergence as

v(€) = €*Pk(L), where B is the polar angle of £. The
exact expressions for each I'; in terms of the convergence
bispectrum is worked out in detail in Schneider et al.
(2005); for brevity, we simply quote their result for T'g in
simplified notation:

> fide * Uodl
Iy (91792793):(270/ #/ 22
0 0

@2 Jy (2r)2
27 3 )
X [ dd By (01,02,0) Y €' Jo(A;),
0 j=1

(10)

where Jg is the 6-th order Bessel function of the first
kind, and B, = B (¢1,l2,¢) due to statistical isotropy,
with ¢ ithe polar angle between €; and €5. We refer
readers to Schneider et al. (2005) for the definitions of
the coefficients a; and A; = A; (61,62,03) (see their eq.
15).

The shear field can also be decomposed into a different
pair of statistics: the mass aperture statistic M, and its
cross-component M (Crittenden et al. 2002, Schneider
et al. 1998). The mass aperture term is generally defined
as a filtered version of the convergence k:

Map(®) = [ rUs(rtr). (1)
and we can also introduce it in terms of the tangential
shear in circular apertures plus a cross-component shear
term (expected to be null for an E-mode field) as:

M(0) = M,p(0) + iM (0)
= /dQT'Qg(T)’Yt(T')+i/d2rQ0(T)’7X(T)7 (12)

where again 6 is the magnitude of a planar vector (an
“aperture radius” over which the integrals above are com-
puted), and r is a vector on the plane of the sky.

There is some freedom in defining the filter functions
Up(r) and Qp(r), but in this work we stick to the form
proposed by Crittenden et al. (2002):

1 r? r?
Us(r) = 55 (1 - ﬁ) exp (ﬁ) , o (13)

Qo(r) = —Up(r) + % /07" v dr’ Ug(rl)

_ el
T ot P\ T2 )0

for an aperture of radius 8. The statistics defined by eqgs.
(12)-(15) have several interesting properties which have
been explored in the literature (Crittenden et al. 2002,
Kilbinger & Schneider 2005, Schneider et al. 2005). In
particular, M,, and My cleanly separate, respectively, E-
and B-modes of the shear ficld (Shi et al. 2014) and offer

(14)

(15)



a relatively compact weighting over angular scales (note
that the filter Qg (r) can be significantly non-zero for radii
r up to a factor of a few larger than the nominal aperture
0, a feature we will come back to later). Additionally,
these forms are mathematically tractable as they mainly
involve Gaussian integrals. The ease of integration means
that the connection between the third-order correlation of
the mass aperture and the bispectrum is straightforward.
Again following Schneider et al. (2005), we have:

27
(M >(91792,93 / €1d€1/ lodls do
H(€17€2?¢)) (0160)U (9252) 7 (65')
(16)
where U(z) = (22/2)e * /2 is the Fourier trans-

form of the filter Up(r) in eq. (13) and ¢ =
/03 + 03 + 20105 cos ¢. The relatively compact weight-
ing over ¢ multipoles provided by the filter and the ab-
sence of fast oscillatory functions in eq. (16) compared to
eq. (10) make it a computationally tractable tool for the-
ory predictions leading to cosmology, and indeed it has
been a preferred statistic in the literature for cosmolog-
ical constraints employing real space shear correlations
(Fu et al. 2014, Jarvis et al. 2004, Semboloni et al. 2011).

As a data vector, <JV[§p> (01,04,03) is easily tractable
because it contains all three-point E-mode information
in the field over all triangle configurations, as opposed to
the complex splitting of the signal across the 8 non-zero
T;(61,02,05)’s. We will also obtain measurements in the
special case 1 = 03 = 03 = 6 so that (M3 ) = (M3 ) (6),
which means all aperture radii are the same (though still
accounting for different triangle configurations inside the
apertures, not to be confused with a strict equilateral
assumption). A schematic example of the angle variables
used above and in Sec. IIIB below is shown in Fig. 8
(Appendix B).

It is interesting to consider, additionally, that as struc-
ture in the universe becomes more non-Gaussian at lower
redshifts, the third order moments of the 3-dimensional
density field should increase towards z — 0. For lens-
ing fields, projection along the line of sight must also be
included, and the evolution of non-Gaussian features is
quantified via the reduced skewness S(6;z) (Schneider
et al. 1998), showing the amplitude of the third moment
relative to the second moment:

v, 3 zZ
(M)

S(0;2) = 5 (17)

(M2, (2))
which is tightly related to the wusual defini-
tion of the reduced bispectrum in terms of

B(ky, ka, k3)/[P(k1)P(k2) + perm.] (Cooray & Sheth
2002). This ratio encapsulates the contribution of
non-Gaussian statistics to our low-redshift lensing
data, arising predominantly from nonlinear structure
formation at the scales considered in this work.

B. Estimating I'; and <Ma3p>

Motivated by the connection between theory and ob-
servables in Sec. IITA above, we now turn to the main
objective of this work: to obtain and validate a measure-
ment of shear correlations I'; and < p>

Our starting point is to measure the I';’s. Their most
straightforward data estimator is not conceptually dif-
ferent from estimating the usual 2pt statistics &4 (6) in
eq. (5). It relies on counting triplets (or pairs in the
2pt case) of galaxies in the survey, and accumulating the
product of their shears in tangential and crossed orienta-
tions. So, for a catalog with ellipticities e = e; +iey with
per-galaxy weights w, the estimator fo, for example, is

. Z“k W W W e;e;ey
Fo - ) (18)
Zijk Wi W W

where the sum (ijk) runs over all galaxy triplets. In DES
Y3, the weighting w is given by the inverse variance of
the ellipticity estimates in METACALIBRATION (see Gatti
& Sheldon et al., (2021c) Sec. 4.3), and the ellipticities e
are mean-subtracted and divided by the combination of
shear and selection responses?. Similar to the two-point
&4 case, this estimator is largely unaffected by masking
and geometry of the survey.

For the other statistic, <M§p>, there are at least two
conceptually different estimators. One relies on sampling
apertures over the survey footprint and averaging over
the tangential and cross components, directly probing
integrals on the right-hand side of equation (12) as pro-
posed by Schneider et al. (1998). One of the main ben-
efits of this method is that the estimation runtime can
be made very fast (Porth et al. 2020), and consequently
it becomes feasible to obtain empirical survey covariance
matrices of nearly arbitrary order in the mass aperture
moments (Porth & Smith 2021). A potential drawback
of this estimator, however, is that survey masks, holes,
edges and other common observational issues in real data
can potentially bias the mass aperture estimate.

A second method, which is our favored choice for the
present work and was originally proposed by Schneider
et al. (2002) and Crittenden et al. (2002), relies on esti-
mating the n-point statistics of the aperture mass by in-
tegrating over the n-point shear correlations themselves,
as estimated from data. It was shown by Jarvis et al.
(2004) that, by assuming the filtering function of Crit-
tenden et al. (2002), one obtains concise expressions for
the M () integration:

sds d2t’
0= % |t

(s,t)Tp (9 tg) (19)

2 Example usage of the DES Y3 shear catalogs is provided in
https://github.com/des-science/DESY3Cats/



. sds d2t’
(MM / / T
where we have used the special case 0 = 0; = 05 = 03,
where s and t' are triangle sides as defined in eq.(B1),
and the functions T; and 7; are defined in egs.(B2) and
(B3) (see Appendix B). The separate tangential and cross
components < p> and <M3> can be written as linear

combinations of the (M?) and (M?M*) defined above.
In particular, with R denoting the real part of an imagi-
nary quantity, we have

(M) (6) = (M?) ()] . (21)

We utilize TREECORR (Jarvis et al. 2004) in or-
der to estimate the quantities in egs. (18)-(21) above.
TREECORR is an efficient tree-based algorithm for com-
puting 2pt and 3pt correlation functions in real space
data. The estimator follows closely equations (18), (19)
and (20) in the sense that galaxy shears are first aggre-
gated by their triangle configuration and side lengths,
and in a post-processing step the I'; are integrated over
with the Tp 1 functions to obtain M, /.. The base algo-
rithm itself is the same utilized for correlation function
measurements in the two-point DES Y3 cosmology re-
sults (DES Collaboration 2022). We refer the reader to
the source code and documentation webpage for more
information?.

Even with a highly efficient tree algorithm, we find that
runtime is a limiting factor when computing 3pt corre-
lations of the spin-2 shear fields in our data (see Sec.
V A further below). Therefore, for all measurements pre-
sented in this work, we divide the survey (and simula-
tion) footprints into 100 patches of nearly equal number
of galaxies. With DES Y3 data, each patch contains
about N = 1M galaxies. The main advantage of this ap-
proach is to significantly reduce the number of galaxies
dealt with in each measurement and to better parallelize
it.

We define the patch centers and assign galaxies to them
using the k-means implementation in TREECORR, which
yields patches of roughly similar area >40 deg? (a char-
acteristic length > 6 deg). This choice is sub-optimal,
because measuring correlations in finite patches of an
otherwise contiguous area necessarily neglects the signal
contributions coming from triangles formed by galaxies
that lie in different patches. However, since the area of
the DES Y3 footprint is large compared to the relatively
small angular scales over which we present our measure-
ments in Sec. IV, this is not a significant issue. We return
to this and other estimator tests in Sec. V A.

Due to the angular binning performed by TREECORR,
for triangles of side lengths d3 < do < dy, we define, more
conveniently

iR [3(M*M*) () +

emedium = d2 (22)

3 nttps://github.com/rmjarvis/TreeCorr

as a proxy to index the I'; data vector, and unless explic-
itly noted otherwise we average over all triangles that fall
within a bin around 0,cqium. TREECORR uses internal
variables u and v (defined in eqs. B4 and B5) that char-
acterize triangles by their configuration (eg. squeezed or
equilateral). We then estimate the mean 3pt signals for
each natural component i of T'; (@ edium ) via the weighted
sample mean over the patches «, with « € [1, 100]:

2o 2w (1/Var [Tio])T
2o 2 (1/Var [Ti ) ’
(23)

where inverse-variance weights are estimated in the shape
noise regime (more details in Sec. IITC). Analogously, we
compute the skewness of the mass aperture in each patch
using eq. (21) and then combine them so the mean signal
is

i.o(Pmedium, U, V)

Fi (emcdium) =

>_o(1/Var [Mgp]) <M3P>a
Y. (1/Var [M,gp])

<M§p> (01,62,03) = (24)

C. Covariance Matrix

With the computation of the measurement over N =
100 patches of the DES Y3 data, we can readily obtain
a jackknife estimate of the covariance matrix:

Cov [¢(6:),C(6;)] = N ZAca )AG(0;)" (25)

where ( is the data vector of the statistic under consid-
eration (<M§’p>(6) or T';(Omedium) for instance), (¢) is its
average value over the N patches, and A(, = (., — ().
When inverting the covariance matrix, we also apply a
“Hartlap correction” factor (Dodelson & Schneider 2013,
Hartlap et al. 2007, Sellentin & Heavens 2016, Taylor
et al. 2013) given by (P — N —1)/(N — 2) where P is
the dimension of the data vector and N is the number
of patches (P = 7 and 55 for <M§p>(9) and I'; (Omedium )
respectively, and N = 100 in both cases).

In Fig. 1, we show the normalized covariance matrices
(correlation matrices) for the <M§’p>(0) and o (Omedium)
estimates which we present in the following Section. We
additionally show, on the bottom panel of that Figure,
how the diagonal <M3p> standard deviation compares
with empirical and analytic estimates of the error in the
shape noise dominated regime. We obtain an empirical
estimate of the shape noise signal (light blue curve in Fig.
1) by repeating the <J\/[3p> measurement over patches in
which each individual galaxy shear has been randomly ro-
tated. This effectively cancels out the cosmic signal and
variance, leaving us with an estimate of the shape noise
that preserves any masking or geometry effects of the real
data. We additionally overplot in that same panel an
analytic estimate of shape noise. The analytic estimate
comes from the propagation of the weighted variance of
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FIG. 1. Normalized covariance matrix estimates for <M§’p>
(top panel), I'g (middle panel) and (M) standard deviation
diagonal (bottom panel). With the exception of the analytic
shape noise estimate (dashed line in bottom panel), all other
estimates are obtained from the jackknife measurements on
DES Y3 data. We note that in most scales below around
20 arcmin, the shape noise contribution to the error bars is
of around 50% or more, and at larger scales the errors are
dominated by cosmic variance.

T'; into <M§’p>, which in turn can be written as

2,2, 2
Zijkwiijk

Var [R{T}] = 40° 3
(Zijk wiwa‘wk)

(26)

where w are weights associated to the data ellipticities,
02 = ((e; — (e;))?) is the variance of single-component el-
lipticities, and the sums (ijk) run over all possible triplets
of galaxies. We note that this reduces to Var [R {T'}] =
408 /N, for equal galaxy weighting, where N, is the num-
ber of triangles in a given angular bin. We find that, for
values of 0 less than ~20 arcmin, the shape noise con-
tributes > 50% of the estimated error bars in (M2,).

While jackknife covariances are known to be biased on
scales that approach the characteristic length of an indi-
vidual patch, the covariances we utilize should be reliable
for the simple S/N estimates at the relatively smaller an-
gular scales studied in this work. Survey data covariances
are generally difficult to obtain and can directly impact
likelihood analyses, especially at the 3pt level (Joachimi
et al. 2009, Sato & Nishimichi 2013). We therefore intend
to further study the suitability of our existing jackknife
matrices in a follow-up work focusing on the inference of
cosmology constraints.

IV. MEASUREMENT RESULTS

We now apply the estimators defined in Sec. IIIB
to the DES Y3 data split into 100 patches. We mea-
sure the 3pt correlations I'; within an angular range of
Omedium € [1,240] arcmin, approximately the same range
of scales validated in DES Y3 for weak lensing appli-
cations. For I';, angular bins in 6yeqium are log-spaced
(with 0.1 spacing, leading to 55 bins) and TREECORR’s
internal variables u and v are linearly-spaced (0.1 spac-
ing, leading to respectively 10 and 20 bins; see Appendix
B) to ensure stability of the integrals that lead to M,y
moments. When plotting I'; results and obtaining its co-
variance, we further average over every 5 bins in 0,e6dium
for ease of visualization and to reduce noise. For the
results on the M, estimation, however, we focus on a
narrower range of scales and limit aperture radii to the in-
terval 6 € [4,60] arcmin in 7 bins, avoiding measurement
biases that can arise if the aperture filtering in eq.(15)
spans scales over which the T'; were not obtained (fur-
ther details in Sec. V A).

We present the non-tomographic signal in Sec. IV A
along with splits of triangles by configuration type, and
then we divide our data into two tomographic bins in
Sec. IV B. In what follows, we define the signal-to-noise
(S/N) of our detections as (see Appendix C, where this
is derived)

2 _ : 2 >
S/N = {\/ X? = Naof if X* > Ngor+1 (27)

“Null” otherwise ’
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FIG. 2. The non-tomographic 3rd order natural shear correlations I'; in DES Y3 as a function of angular scale in arcminutes of
the medium-length side of triangles, Omedium (eq. 22). Solid lines correspond to averaged measurements over 100 patches of the
DES Y3 footprint; error bars are estimated with a jackknife method. To guide the eye, the dashed lines show corresponding
measurements on a T17 N-body mock catalog (Sec. IIB) with DES Y3-like redshift distributions but without shape noise
and for an older set of cosmological parameters. Signal-to-noise (S/N) estimates are obtained with eq.(27). Left panel: Real
parts of the natural 3pt shear components. The lensing signal is distributed rather evenly across the 4 components, and for
most of them the null-hypothesis is clearly rejected at high confidence. Right panel: Imaginary parts of the natural 3pt shear
components, which are expected to be zero for certain triangle configurations (e.g., equilateral) but not in general, thus leading

to smaller overall S/N.

where Ny ¢ is degrees of freedom (here the number of
data points) and x? = dTC~1d with d representing the
measurement vector and C'~' representing the inverse
data covariance. In the low signal-to-noise regime (which
is the case for many of the null tests presented later), it
may be that x? < N4 + 1, in which case S/N is less
than 1.0 or imaginary, which we consider a “Null” signal
(consistent with no detection). Additionally, for practi-
cal purposes, we define a data vector to be significantly
rejecting the null-hypothesis (at Xo) if S/N = X > 2.5,
which as an equivalent p-value yields p < 0.01.

A. Non-tomographic 3pt Shear Signal

We first focus on the non-tomographic setting, treating
all galaxies in the survey as if their line-of-sight distances
belonged to a thin plane on the sky. We show the real
and imaginary parts of the non-tomographic I'; and their
S/N in Fig. 2. We report significant detections (ruling
out the null-hypothesis at 2.50 or more) of the real parts
of all natural shear components I'; (fmedium ), and an over-
all lower significance for their imaginary parts. This is
expected since, in specific triangle configurations, but not
generally all of them, the imaginary parts vanish due to

parity conservation. We overplot measurements obtained
from the T17 N-body mock with dashed lines as a guide
to the eye, though it should not be expected that these
curves serve as a fit to the data, which we return to below.

We additionally report a strong detection (ruling out
the null hypothesis at more than 1lo) of the non-
tomographic lensing E-mode term <J\I §p> in the left panel
of Fig. 3, in the special case of a single aperture ra-
dius 6; = 0y = 63. The higher S/N of the mass aper-
ture in comparison with individual I';’s is in principle ex-
pected: the tangential projection of shears for a given tri-
angle configuration contains a large fraction of the signal
(Takada & Jain 2003b) and the (M3,) statistic sums over
that projection across many configurations in an aperture
0, while T'; splits the contribution over a total of 8 inde-
pendent correlations 7, with a, b, ¢ € [t, X].

We find that the overall amplitude of the simulated and
data signals in both I'; and <M§’p> closely resemble each
other. A more careful assessment beyond the scope of this
work would be necessary to verify whether discrepancies
between solid and dashed lines in Fig 3 imply our data
are statistically rejecting the cosmology (or gravity-only
implementation) of the T17 simulations.

Several known factors could result in these differences:
the difference in assumed cosmology, small scale astro-
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FIG. 3. The 3rd order mass aperture correlations in DES Y3 for the special case of a single aperture radius (61 = 62 = 635 = 0)
in arcminutes. Solid lines correspond to averaged measurements over 100 patches of the DES Y3 footprint, and error bars are
estimated with a jackknife method. As in Fig. 2, dashed lines show measurements for the T17 N-body mock (Sec. IIB), and
S/N estimates are obtained with eq.(27) . Left panel: non-tomographic M., and My moments. We find a significant detection
of the pure E-mode term <M§’p>, and find the other combinations, which either violate parity or imply significant B-mode
contamination, to be consistent with the null-hypothesis. Right panel: Tomographic mass aperture cross-correlations using
DES Y3 data split into 2 wide redshift bins z; and z2. We find a significant detection of the cross-correlations that include the

higher redshift bin 22, and the total combined data vector is detected with 15.00 significance.

physical systematic effects, and shear calibration. Dis-
cerning between these factors would entail obtaining 3pt
functions in the ensemble of 108 mocks in T17 as op-
posed to the single shape-noise free mock utilized in this
work, a computationally expensive task (see Sec. V A for
details on the estimator performance), and carrying out
likelihood analyses over scales where the theory model-
ing is not excessively uncertain. We do note, however,
that based on the left panel of Fig. 3 the largest off-
sets are on small scales (roughly below 10”) and result
in a Ax? ~ 40 when comparing data and mock within
(M3,) (0 < 10') for the non-tomographic case. Similarly,
the tomographic measurements (M, (21) Map(22)?) (6 <
10") and (Map(21)*Map(22)) (8 < 10') over the same
scales show a combined Ax? = 30, so it may be possi-
ble that the origin of the non-tomographic discrepancy is
driven by the redshift cross-correlations. This likely rules
out strong baryonic feedback in the data as an explana-
tion for the discrepancy (as that would also have shown
up strongly in the lowest-redshift (M,p(21)3) (6 < 10')
for most feedback scenarios) as well as significant contri-
butions from shear calibration bias (which would likely
have appeared as a scale-independent offset affecting ad-
ditionally the auto-redshift correlations). We leave fur-
ther detailed explorations for a future work.

Comparing the <M§p/x> (0) and T'; (Omedium ) Statistics

presented in Fig. 2 and in the left panel of Fig. 3 we find
that they separate the signal contributions in different
ways. While for general triangle configurations the F
and B mode signals are split rather evenly between the
I';, they are more concentrated in M, as opposed to M.
We will exploit this feature in more detail in Sec. V as
an assessment of systematics.

While the mass apertures involve a sum over many
triangles and effectively mix their contributions to the
signal, egs. (6)-(9) on the other hand suggest that the
natural components I'; can be combined to separate spe-
cific triangle configurations and projections. Several tri-
angle geometries were used by Takada & Jain (2003b) to
demonstrate that certain configurations (e.g., equilateral
and isosceles triangles) have vanishing projections due to
parity conservation, and that for general triangle shapes
all 8 possible projections of 7y, with a,b, ¢ € [t, X] are
non-zero.

We can similarly explore the dependence of the signal
on projection and configuration in our data by construct-
ing v+ and yx x x, the components with all shears pro-
jected tangentially and at 45° with respect to the triangle
center respectively, via

1
Vet = Z_LR [Co+T1+ Ty + T3] (28)
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detection is clear in the tangential case and, according to expectations the equilateral, odd-parity yx x x is consistent with zero.

1
Ixxx = ZI[—FO‘FFl +T2+F3]7 (29)

where R and Z correspond to real/imaginary parts. Us-
ing the triangle side lengths (di, d2, d3) we obtain the
shear signal for two types of configurations: isosceles tri-
angles (di ~ ds # ds, with ¢ being the opening angle
between d; and dz), and equilateral triangles (d; ~ do ~
d3)4. Furthermore, we can separate “small scale” isosceles
triangles with sides dy & dy smaller than 5 arcmin, and
“large scale” isosceles with 5 < dy ~ dy < 60 arcmin. We
show our results in Fig. 4, where again dashed lines corre-
spond to a measurement on a T17 mock. The left panel of
the figure shows a characteristic oscillatory dependence
on opening angle, somewhat similar to what was pre-
dicted for even-parity modes in Takada & Jain (2003b)
using a halo model approach, and in qualitative agree-
ment with the T17 simulation result. The right panel
of Fig. 4 shows the tangential and cross components of
equilateral triangles as a function of angular separation
Omedium = do ~ di ~ d3. We find a significant signal in
the even-parity 4 part, while the parity-violating term
Yxx x 18 consistent with zero; both are thus consistent

4 These relations are only approximate in the data. For these spe-
cific configuration tests, we allow for small departures from exact
triangle shapes, with side ratios binned with a +15% tolerance
in relative side lengths.

with expectation. While the similarity of our signals with
halo model studies such as Takada & Jain (2003b), Zal-
darriaga & Scoccimarro (2003) and Ho & White (2004)
is visually striking, it is not exact. In particular, we find
peaked signals on isosceles opening angles ¢ — 0° and
¢ — 180° that do not exactly match the expectation
based on either work, but follow closely the T17 result.
We believe that a quantitative comparison of these mea-
sured signals with theory and the information this could
provide on gravity, nonlinear structure evolution and halo
shapes certainly merits further exploration.

We further explore the general definition of the mass
aperture skewness for three different aperture radii
(M3,) (01,62,05) in equation (16), and obtain the sig-
nal in some specific setups as shown in Fig. 5. We fix
the aperture radius #; at 4, 15 and 60 arcmin, repre-
senting roughly the smallest, intermediate and largest
scales probed with this statistic, and plot the signal as
a function of the two other apertures. We find that the
amplitude of the third-order mass aperture tends to be
higher as we go to smaller scales. We note also that,
while the generalized (M3)) (61,05, 63) contain the entire
E-mode information of the field, they do not necessarily
contain the highest signal-to-noise individually, a factor
that should be taken into account in a future likelihood
inference study. Nevertheless, in all cases we again find
a significant detection of this particular lensing signal.
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B. Tomography

Motivated by the significant detections obtained in the
non-tomographic regime, we proceed to split the DES Y3
catalog into redshift bins and attempt a first tomographic
measurement of the third moment of the mass aperture.

We implement the same 2-bin redshift split described
in Sec. ITA on the T17 mock described in Sec. IIB.
The original, 4-bin redshift distributions in that mock
resemble the actual DES Y3 n(z)’s but do not reproduce
their substructure exactly, so we expect that 3pt statistics
obtained from the mock should provide an approximate
expectation for the scale dependence and amplitude of
the tomographic signal on the data.

We present our results for the cross-tomographic mass
apertures in the right-hand panel of Fig. 3, in qualitative
agreement with the T17 result at most scales and redshift
bins. We compute the signal-to-noise ratios S/N again
using eq. (27), and find significant detections of cross-
correlations of <M§p> that include the high-redshift bin
z2. For the complete data vector built with the 4 con-
catenated cross-tomographic measurements and includ-
ing their cross-covariances, we find a total S/N of 15.00.
Interestingly, this detection is non-zero on angular scales
that are relatively large (# ~ 1°), reaching quasi-linear
and linear regimes. This implies that non-Gaussian sig-
nals may add significant information to common two-
point analyses even if these mostly rely on the linear
regime due to conservative scale cuts (see, for instance,
Gatti et al. (2021a)).

We note several points related to this tomographic
measurement. First, the signal in the higher redshift
bin 25 (red curve in the right panel of Fig. 3) is sig-
nificantly larger than that for the lower bin z;. As with
the 2pt shear measurement, this trend can be attributed
to the fact that the lensing kernel for the higher red-
shift bin probes more large-scale structure than the ker-
nel limited to low redshifts. Second, the signal-to-noise
of (Map(21)Map(22)%) (S/N = 13.3) and (M,,(22)*)
(S/N = 11.5) are both higher than the non-tomographic
case (S/N = 11.2). While this may seem counter-
intuitive at first, it is not against expectations: there are
many low-redshift galaxy triplets in the non-tomographic
sample whose 3pt correlations add significant noise but
insignificant signal due to the lack of depth of the lens-
ing kernel in the lowest redshift bin, and the overall S/N
goes up once these are removed. Third, it is expected
that (Map(21)Map(22)?) should have the highest S/N:
for redshift bins with approximately the same number
of galaxies, a cross-correlation contains a larger number
of galaxy triplets than any auto-correlation, and addi-
tionally shot-noise contributions to the uncertainties are
diagonal on the redshift bins.

In addition to the signals presented above, we mea-
sure the reduced skewness parameter in eq. (17). We
again use TREECORR in order to estimate <Ma2p> in our
data and mocks over the same patches where the 3pt ob-
servables were obtained. We show S(6;z) in Fig. 6. A
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FIG. 6. A measurement of the reduced mass aperture defined
in eq. (17). Solid lines and error bars correspond to mea-
surements on the DES Y3 data split into 2 wide redshift bins,
and dashed lines correspond to measurements on an N-body
mock based on the T17 simulations (see Sec. II B), which are
not expected to fit the data, but serve as a guiding compari-
son. The redshift evolution of the skewness parameter S(6; z)
indicates, according to expectation, that more non-Gaussian
structure contributes to the signal at low-z than at high-z.

significant redshift evolution of the reduced skewness pa-
rameter can be seen, with the low-z bin showing more
power than the high-z bin. This is in line with our ex-
pectation that the shear field should be more Gaussian
at higher redshift. This is due to the larger projection
distance for high redshift, which means more uncorre-
lated structure contributes to the lensing and a version
of the central limit theorem (considering the accumulated
signal as a random walk along the line-of-sight) makes
the resulting shear field closer to Gaussian (Bernardeau
et al. 1997, Jain & Seljak 1997). Note that there is
no such expectation for the 3-dimensional density field,
where the skewness is redshift-independent in leading or-
der perturbation theory. The lensing skewness is largely
independent of the power spectrum shape and normaliza-
tion, and its approximate redshift evolution was given by
e.g. Bernardeau et al. (1997) who obtained S ~ z71:3°.
While that scaling depends on the cosmological model
and the assumptions on the source redshift distribution,
we find it to be in qualitative agreement with our mea-
surement: for a representative scale of 10’ the ratio
S0 = 107;21)/S(0 = 10';29) is about 2 to 3, with the
mean of redshift bins z; and 29 being at 0.42 and 0.81
(see Sec. II), roughly following the expected scaling.

13
V. ASSESSMENT OF SYSTEMATICS

We now turn to the validation of the signal with the
aim of showing that the detection is not contaminated
by systematics of observational/instrumental origin. The
results of the tests detailed below indicate that the sig-
nificant 3rd order lensing signals found in DES Y3 data
are of astrophysical and gravitational origin.

A. Estimator Uncertainties

Potential uncertainties in the estimation of I';’s and
<M§'p> have three different sources, two of them originat-
ing from approximations needed to bring the computa-
tional runtime to a reasonable level and one, much casier
to mitigate, stemming from the mass aperture filtering.
We begin by describing this last one, the filtering fea-
ture, which we have essentially mitigated in this work by
employing angular scale cuts at the measurement level.

The filter defined in eq. (13) decays quickly as a func-
tion of angular separation, and is small (but not negligi-
bly so) at separations of a factor A of about 3x wider than
the angular bin at which <M§p> is evaluated. This non-
localization of the filter implies that, for a measurement
of <M§’p> at an angular separation é, the integrals over T';
have significant support over a range [/, O] where X is
a characteristic scale of filter. We employ a factor A =4
after empirically testing estimates of <]\12p> over differ-
ent angular ranges and finding them to stabilize very well
at that chosen width. This choice is similar to previous
studies (Fu et al. 2014) and justifies our choice of scales
of [1/, 240'] for T';(Omedium) and [4/, 60] for the aperture
radii in <M,§p>.

The other two potential sources of estimator uncer-
tainties that we have explored are a decreased binning
accuracy w.r.t. analogous calculations of 2pt functions,
and the jackknifing method utilized. Binning accuracy in
TREECORR is determined by code parameters binslop
and binsize. Larger values of the former allow for
larger errors when binning triangles by ratios of their side
lengths (see App. B), and larger values of the latter imply
coarser binning by triangle configuration. We empirically
vary both on a reduced number of data patches to verify
their impact on our measurement. First, we find that
the recommended value of binsize=0.1 is sufficient for
the integration over I'; and yields a stable <M§’p>. Sec-
ond, while runtime increases prohibitively with smaller
binslop, we find that a value of binslop=1.0 makes
computing time feasible and does not bias the correlation
functions, although it increases the diagonal covariance of
the measurement by around 15%. With these choices, we
find that the computing time for 1M objects in 28 2.4GHz
CPUs on the Midway2 cluster® is around 300 minutes

5 nttps://rcc.uchicago.edu/



(still very expensive when compared to a timing of un-
der 20 minutes for the 2pt £ (#) auto-correlation of 25M
galaxies in one redshift bin of DES Y3 with binslop=0.0,
which approximates brute-force pair-counting).

Finally, there are the uncertainties associated with the
jackknife method, which we employ for more efficient par-
allelization and to obtain an estimate of the covariance
matrix. A source of uncertainty comes from triangles
whose corners are not all located on the same patch, be-
cause these triangles are not included in the subsequent
calculations. We run a feasibly short test on the full
100M-object catalog by focusing only on several angular
scales of approximately equilateral triangles and find that
splitting the full footprint into disjoint patches misses ap-
proximately 10% of the nearly equilateral triangles with
a side length of 200 arcmin. The missing triplets en-
hance the shot noise contribution in those large scales,
but should not contribute a bias because there is no pref-
erential shear projection that is missed due to the patch
splitting.

B. B-modes and Parity

In general, a three-point signature of B-modes of as-
trophysical original can come from a limited number of
effects. In particular, at the 3pt level the main sources
of B-modes are intrisic alignments (Semboloni et al.
2011, Troxel & Ishak 2012, 2015) and the spatial clus-
tering of source galaxies which are otherwise expected to
randomly sample the survey footprint (Schneider et al.
2002). These effects are expected to be small compared
to the lensing-induced E-mode signal, so at first a rea-
sonable approach is to consider any significant B-mode
detection as pointing to potential data systematics (PSF
residuals, for instance).

Within the statistics we explore, the main correlations
where B-modes could be searched for are (Map,M2) (6),
which would point to B-modes correlated with E-modes.
In the non-tomographic case, as shown in the left panel of
Fig. 3, we find that the signal-to-noise of (M, M2 ) (6) is
compatible with the null-hypothesis according to the def-
inition in eq. (27), meaning S/N is lesser than 1 or imag-
inary. In a similar way, we verify that (Map,(z1) M2 (22))
and (Map(22)M2(21)), the tomographic versions of the
same test which would respectively point to B-modes in
the higher(lower) redshift bin correlating with E-modes
in the lower(higher) redshift bin, are also consistent with
the “Null” condition defined in eq. (27).

Other correlations including odd powers of the B-mode
field M, such as (M2,M,) (0) are expected to vanish
due to parity (Schneider 2003). A parity-violating field
would necessarily come from systematics of the data, as
no astrophysical source could produce it. We indeed find
the parity-violating terms <M3PMX> () and (M3) ()
presented in the left panel of Fig. 3 to be consistent
with the null-hypothesis. Finally, we have also shown
in Fig. 4 another parity-violating correlation, 7y xx (6)
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for approximately equilateral triangles, which is similarly
consistent with zero.

C. PSF Residuals

We follow the approach of Rowe (2010) in order to es-
timate the contribution of additive PSF modeling errors
to our lensing observables. We obtain the mass aperture
skewness of the so-called “p-statistics” (see Appendix A),
which quantify the residual correlations caused by errors
in the PSF modeling and deconvolution, modulated by
empirically-obtained coefficients o and .

We estimate the PSF uncertainty impact via eq. (A7)
using a catalog of stars to compare them to the actual
data signal. In doing so, we need input values for the co-
efficients a and 8 that multiply deconvolution errors and
modeling residuals, respectively. We set a = 0.01 and
B = 2 as inputs for the additive contaminations, consid-
ering the bounds on these parameters presented in Gatti
& Sheldon et al., (2021¢) (respectively oz = 0.001 £ 0.005
and 8 = 1.09+£0.07). This choice of input values is a very
conservative one, which amplifies the estimated impact of
these systematics. As the additive PSF contaminations
considered here have their origin in the 1-point elliptic-
ities, we do not expect the values of those coefficients
to depend on which statistics are used to measure them
(apart from practical aspects such as the signal-to-noise
of the chosen statistic). We therefore do not pursue a
measurement of o and § based on 3pt observables, and
utilize those bounds obtained in Gatti & Sheldon et al.,
(2021c) based on 1- and 2-point PSF correlations.

Despite the conservative choice in input coefficients, we
find additive PSF systematics to be entirely negligible.
We show in Fig. 7 a breakdown of the PSF contributions
to individual skewness component ((M32)), (MZ, M),
etc) and by PSF correlation type (<e]‘z>7 <612)q>, etc), where
ep is the PSF ellipticity and g the ellipticity residual error
after modeling. In all cases, we find the 3rd order mo-
ments of PSF uncertainties to be negligible, well below a
percent of the E-mode data signal <]\J§’p .

D. Mean Shear and Other Observational Systematics

Several other features of 3pt statistics are also relevant
for their robustness against systematics. In particular
we consider contributions to the signal arising from a
residual mean shear in ellipticities (e1) and (e3).

While a mean shear that is coherent across angular
scales produces a &, signal (eq. 5) at the 2pt level, it
does not produce any signature on the I';. This can
easily be demonstrated by considering a constant shear
field in cartesian coordinates, v = v; + iy2 = ¢1, co-
herent across some angular length scale. For 2pt func-
tions &4 we project shears along the direction a + v,
where « is the direction of the line that connects the
galaxy pair and v is the (random) orientation of the



pair with respect to the reference of the cartesian co-
ordinates, so v — v = yexp[—2i(a+)]. Then the
natural 2pt functions of the field are £, = (y/4"*) = ¢2
and £& = (/) = & (exp [—4i (o + 1)]) = 0 as the aver-
aging is essentially over the multiple random orientations
For the natural 3pt functions, in comparison, the pro-
jection of each of the 3 shear components is along a
different direction (o + v, S+ ¥ or § + ¢) and many
reference points are possible - the triangle incenter, the
center of the side opposing a given angle, etc (Schnei-
der & Lombardi 2003), with some projections leading
to a4+ B+ 6 = 0. In the same situation of a constant
shear in cartesian coordinates we have, for an example
case: T'g = (cfexp[—6i(a+ B+ ) — 6iy]) = 0 due to
the averaging over 1, and similarly for all other I'; with
i = 1,2,3 defined in egs. (6)-(9). This insensitivity to
an additive mean shear over coherent scales can be use-
ful when compared to 2pt functions because it would not
lead to the requirement of an extra correction at the data
level as in (Gatti & Sheldon et al., (2021c)), and would
potentially minimize the need for corrections due to ad-
ditive systematics such as presented in Kitching et al.
(2021).

We additionally expect that any other observational
systematics that arise from statistics that are well de-
scribed by Gaussian processes should have negligible con-
tributions to 3pt functions. A potential example which
we leave for a further exploration is the atmospheric con-
tribution to PSFs. As that is well characterized by Gaus-
sian processes with vanishing odd-order correlations, we
expect it to be significantly suppressed in importance
when dealing with 3pt shear correlations.

VI. COMPARISON WITH PREVIOUS WORK

Among the several types of 3pt shear statistics pre-
sented so far, some had already been detected and ex-
plored in the survey science literature while others had
not. In what follows, we compare our findings with a
number of previous results.

As a starting point, our 3pt S/N can be compared
with the 2pt DES Y3 cosmic shear measurements. The
null-hypothesis signal-to-noise defined in eq. (27) yields
S/N = 40.2 for the joint Y data vector (eq. 5) presented
in Amon et al. (2021), Secco & Samuroff et al., (2021)°
before the removal of relatively small angular scales that
are not included in the likelihood due to modeling uncer-
tainties (a total Ng o = 400 degrees of freedom). After
“fiducial” scale cuts, the DES Y3 cosmic shear data vec-
tor has S/N = 27.5 (Ng.o.r = 227), and after “optimized”
scale cuts we obtain S/N = 30.1 (Nq.o.f = 273).

6 Note that the definition of S/N utilized in these works is different
than the one employed here.
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While the signal-to-noise ratio of our 3pt measure-
ments are smaller than the corresponding 2pt S/N, it is
realistic to expect that real-space 3pt shear correlations
can tighten posteriors in key cosmology results because
parameter degeneracies are different between two- and
three-point functions. That is indeed the case with Gatti
et al. (2021a), wherein an improvement of ~ 15% is seen
in the lensing amplitude Sg when combining second and
third order moments of the lensing convergence.

Regarding three-point detections of cosmic shear ob-
servables, Stage-II surveys presented some of the first re-
sults: a first detection was claimed by Bernardeau et al.
(2002) in the VIRMOS-DESCART 8.5deg? survey (Van
Waerbeke et al. 2002), followed by detections of the third
moment of the mass aperture by Jarvis et al. (2004) with
the CTIO 75deg? survey data, Semboloni et al. (2011)
with HST COSMOS data (Schrabback et al. 2010, Scov-
ille et al. 2007) and, more recently, Fu et al. (2014) with
CFHTLenS data (Erben et al. 2013). These first de-
tections of lensing third moments with signal-to-noise
around 30 advanced the field. Our measurements sig-
nificantly improve upon those detections and bring them
up to S/N of around 150, a significance that enables
quantitative interpretation.

To the best of our knowledge and at the time of this
writing, we have reported in this work the first signifi-
cant detection of the four natural 3pt cosmic shear com-
ponents (Fig. 2), the first detection of tomographic 3pt
mass aperture signals (right panel of Fig. 3), and the
first significant detection of components split by their
configuration dependence (Fig. 4). Equally important,
our measurement (along with the Gatti et al. (2021a)
measurement of the skewness of x in the same data), ex-
tends to large scales approaching 1 degree, where quasi-
linear theory is reliable and uncertainties due to baryonic
physics can be neglected. Thus it will enable robust in-
terpretations of cosmology and gravitational physics.

VII. CONCLUSIONS AND OUTLOOK

Using over 100M galaxies spread across the 4,143deg?
footprint of the first 3 years of data from the Dark Energy
Survey, we presented measurements of the three-point
correlations of the lensing shear field. We also combined
all three point correlations into the third moment of the
mass aperture statistic and verified that systematics of
observational origin are negligible in our measurements.
We expect this work to be a stepping stone for future
applications of these 3pt statistics, in particular a joint
2pt and 3pt cosmology analyses. Our main results are
summarized below:

e In a non-tomographic analysis, we measure the nat-
ural cosmic shear correlations I'; (the 3pt functions
analogous to the two-point functions ¢ ) in DES
Y3 data at high signal-to-noise (2.5 < S/N < 7.0
for the real part of the correlations) and also ex-
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FIG. 7. Upper bound on PSF systematics due to their potentially incorrect modelling and deconvolution, assuming coefficients
a = 0.01 and B8 = 2.0 in eq. (A7). Horizontal axes show angular separations and vertical axes in each panel, from top to
bottom respectively, show the absolute value of PSF <M§p>, <prM><>, <MapM§> and <M§> correlations divided by the E-
mode signal <M :p> of the data, which is always at the sub-percent level and significantly smaller than the measurement errors.
The dashed black line shows the 1% level and blue, light blue, salmon and red lines correspond to different cross-correlation of
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plore the triangle configuration dependence of 3pt
shear projections (respectively Figs. 2 and 4);

e Also in a non-tomographic setting, we measure the
skewness of the mass aperture statistic (M2)) both
in 1 aperture radius and in the generalized case of
3 aperture radii (left panel of Fig. 3 and Fig. 5).
The detection significance in all cases is very high
(7.0 < S/N £ 11.0);

e We detect, for the first time, a tomographic
(M3,)(0) signature with high significance (total to-
mographic S/N = 15.0) and additionally verify an
expected redshift evolution of the skewness param-
eter S(6; z) (respectively the right panel of Fig. 3
and Fig. 6);

e We verify that the third-order signatures found
are robust against B-mode systematics, parity-
violating contributions and PSF modeling errors,
thus validating that our measurements are likely a
result of astrophysical and gravitational phenom-
ena (left panel of Fig. 3, right panel of Fig. 4 and
Fig. 7);

o We reproduce the main results in an N-body mock
catalog and verify that overall angular scale de-
pendences and signal amplitudes of our measure-
ments are broadly consistent with theoretical ex-
pectations.

Given the high S/N of the data vectors here presented
and the fact that systematics of observational origin are
well under control, carrying forward with a cosmological
analysis is a reasonable path. It is also interesting to note
that our detected signals are non-zero even on relatively
large angular separations of a degree or more, implying
that non-Gaussian information coming from quasi-linear
and linear scales could significantly add even to a conser-
vative 2pt cosmic shear analysis. We do, however, iden-
tify below several challenges that a joint 2pt+3pt pro-
gram would face.

First, analytic covariances for higher order moments
of shear are notoriously complex, and their uncertain-
ties can significantly affect parameter posteriors. While
it remains to be tested, it is possible that the jackknife
approach employed here for the simple S/N estimates
might not be sufficiently accurate for the more subtle
inference of cosmological parameters. A mock-based co-
variance would be straightforward method, but we note
that the 3pt measurement runtime is computationally ex-
pensive and could make that approach impractical unless
we select 3pt statistics that minimize that computational
cost. In particular, <M§’p> and its generalized form have
a high signal-to-noise with a relatively small number of
data points, which would make the use of mock covari-
ances more feasible.

Second, the modeling of astrophysical systematics such
as intrinsic alignments and baryons is likely to preclude
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the use of small angular scales presented in our measure-
ments, and therefore it might be necessary to remove part
of those data points when fitting a theory model. How-
ever, the statistical uncertainties in our measurements
are large compared to those for 2pt cosmic shear, so it is
not unreasonable to expect that in fact relatively simple
theory modeling can be used for the 3pt data vector and
still maintain an acceptable level of potential biases. We
also point out that the nonlinear dark matter bispectrum
modeling itself is a challenge, although methods based on
fitting formulas calibrated against simulations have been
employed in the literature (Lazanu et al. 2016, Takahashi
et al. 2020).

Third, redshift and shape measurement uncertainties
propagate significantly into 3pt observables. These un-
certainties are calibrated to high accuracy and precision
in 2pt analyses, and a comparably careful analysis is
needed for 3pt correlations to determine their contribu-
tion to the error budget.

Many of the challenges above have already been ad-
dressed in cosmology studies including higher order lens-
ing correlations, in particular in the convergence mo-
ments work of Gatti et al. (2021a). In detail, the covari-
ance matrix estimation was made feasible in that work
with a data compression technique retaining a number
of data points smaller than the full length of the data
vector. Also, scale cuts were determined by the impact
of baryonic physics and other astrophysical contaminants
(such as intrinsic alignments and 3rd order contributions
such as source clustering) were modeled or shown to be
negligible. Finally, the nonlinear matter bispectrum was
obtained with a fitting formula calibrated on simulations
(Scoccimarro & Couchman 2001), and its computation
was made faster with an emulator technique.

We expect to employ similar methodologies for the real
space analysis of 2pt+3pt cosmic shear, but with some
differences in the details owing to the different choice
of estimators. The resulting constraints would provide
an important consistency check to the results of Gatti
et al. (2021a), with the advantage that the real space
statistics presented in this work (specifically the general,
three-aperture radii (M3)) (61,02, 603)) are guaranteed to
contain the total F-mode content in the shear field along
with specific configuration-dependent information. Fi-
nally, our measurements of the full 3-point function of
the shear field lay the groundwork to test for primordial
non-Gaussianity in the density field, e.g. via constraints
on the fxr, parameter, as studied theoretically by Takada
& Jain (2003a) and Hilbert et al. (2012).

With many practical challenges overcome and a
steadily increasing level of maturity, it is realistic to ex-
pect that that lensing 2pt+3pt analyses will be among
the central probes of Sg and the Dark Energy equation-
of-state parameter w in current and future surveys such
as the Vera C. Rubin Observatory’s Legacy Survey of



Space and Time” (LSST), ESA’s Euclid mission® and the
Roman Space Telescope?. That is especially important
since these experiments represent a massive investment
of resources, and extracting as much useful information
as possible from their data is highly desirable.
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Appendix A: Derivation of PSF corrections

As ecllipticities ¢ are measured from galaxy images,
their PSF must be deconvolved. As in Gatti & Sheldon
et al., (2021c), we define the errors in the PSF modeling
as well improper deconvolution both as additive contri-
butions to the measured ellipticities:

e=v+ 567 (Al)
where the additive factor J. is defined by
0. = ael + Bq; qg=e, —€P, (A2)

where e is the modeled PSF elipticity (referred to as
emodel In Gatti & Sheldon et al., (2021¢)) and e, is the



actually measured PSF. That means the coefficients «
and (3 are respectively interpreted as a leakage of the
modeled PSF shape onto the galaxy ellipticity e (coming
possibly from incorrect deconvolutions) and errors in the
interpolation of the PSF shape. The shear fields eP and ¢
are estimated from reserved stars which do not contribute
to the PSF fitting, that is, where both the modeled PSF
and the true PSF are known, otherwise we would have
q — 0 by construction.

Using the same definitions in eq. (12), we can propa-
gate the PSF correction in eq. (Al) to the 1-point quan-
tities:

Mop(R) = / PRQ(R)y + / PRQ(R) [ae? + Bai
- / PRQ(R)yx + / PRQ(R) [ack + Bgx] -

=0
As the cross-projections of the PSF residuals e, and ¢y
can generally have non-zero statistical moments, we see
that the additive PSF errors defined above can contam-
inate both E-modes and B-modes. As a stepping stone
for the third-order case, we can again follow Jarvis et al.
(2004) and get, for the second-order mass aperture:

(W) = [ @R R QURIQR) (o +60) 6+ 62)
X exp (=21 (61 + 62))
A1) = [ @R R QURQUR) (745 (14 5.)°)
X exp (—2i (61 — 62)

We can safely assume that the expected value of correla-
tions between the gravitational shear and PSF residuals is
zero so the cross-terms (yd.) vanish. Then, defining the
PSF correlations fff analogously to how the (gravita-
tional) shear correlations are defined, that is £+ = (yy*),
¢ = (yyexp(—4ib)), we see that the PSF corrections
are simply additive at the mass aperture level:

[35 (€@ +ese) - (3) (43

a8 = [ 55 (€6 + &) T () @0

(M?) (R) =

where €2 = a® (epep) . + aB(epg) . + 52 (qq)y, and
where the functions T are defined in Appendix B.

The terms <M§p> and (M2 ) can be expressed as sim-
ple linear combinations of the quantities above (Jarvis
et al. 2004). While (M2) would represent B-mode sig-
nal which can generally become non-zero in the presence
of uncorrected PSF errors, the term (M,,My), if found
to be non-negligible, would additionally imply a parity-
violating contribution.

The reasoning above also applies to the third-order mo-
ments of the same observables. We define the 3pt PSF
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correlations in the same way we define the natural com-
ponents of the shear signal and write

(M) (R) = — / 02 Ryd* Rpd R Q(Ry)Q(R2) Q(Rs)

x <<7+5p>3exp[ 22(@+6+5)])>

) ne
(A5)

2m

OPA) (R) = [ @ Rad Rad Ra QU Q(R2)QURa)

% ((+0° (v +6.)" exp [~2i(a+ 3= 9)])

sds "
/ /2 2 (T 1) Tics, )
(A6)

where we have introduced the PSF correction at the 3pt
level as
resf b1 =a’ <e§’,>0)1+30z25 (e2q
(A7)
The derivation above assumes that cross-terms of
the type <752> or <725e> are null when averaged over
large ensembles, as both of these terms boil down to
whether the 1(2)-point gravitational shear correlates with
the 2(1)-point PSF’s, which should not be the case.
The expressions for <M§p>, <M,§p]%x>, <Map]tf§> and
<M §> can be obtained from the ones above as shown in
Jarvis ct al. (2004), and it remains true that (M2 M. )
and <M §> are null in order to conserve parity, while
(M,p M2 ) may include non-zero PSF B-modes that cor-
relate with E-modes (in addition to astrophysical B-mode
contributions).

Appendix B: Definition of coordinates and TreeCorr internal
variables

Here we clarify some of the notation utilized in this
draft, mainly in what refers to coordinates and definitions
of triangle sides and their respective angles. We use the
same conventions of Jarvis et al. (2004) and reproduce
their Fig. 1 below in our Fig 8.

With q1, g2 and g3 defined as the vectors from each of
the triangle vertices to the centroid of the triangle, and s
and t’ the sides of the triangle (notice that without loss
of generality we fix s and take t' to be at an angle « with
respect to that line), we have
(s+t) (t' —2s)

' 3

_ (s —2t)
3 g2 =

3

q = qs; = . (B1)
The functions Ty and T3 that enter the mass aperture

computations such as eq.(19) are purely geometrical and

>0,1+3O‘52 <6Pq2>0,1+*33 <q3>0,1 :



FIG. 8. Convention for coordinates systems. Top panel:
TREECORR internal variables and side length definitions as
utilized in egs. (B1)-(B5), reproduced from Jarvis et al.
(2004). Bottom panel: definition of distances of interest
and shear projections (¢, X) relevant in the I';(Omedium) and
(Map(61,02,03)) measurements. Notably, the reference scale
Omeaium 1s a side length, while the scales 0; (i = 1,2,3) are
radii from the triangle center.

dependent on the vectors above:

* % _x\2 2 2 2
To (s, t) = _Gins) exp (- LR TG (B2)
24 9
(19593)°  digsqs | 4i* +245q3
T (s,8) = —
1(5:2) < 24 o T o7
X exp ( @i + q2 i ) (B3)
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where bold symbols are vectors in complex notation with
x/y on the real/imaginary direction, eg v = v, + iv,.

Additionally, internal TREECORR units utilized to bin
triangles are such that, for triangles of side lengths d; <
ds < d3, we have

vl d) (B5)
ds3

where the positive and negative signs of v correspond
to whether side lengths are in clockwise or counterclock-
wise order respectively, and recall that we have named
Omedium = ds to conveniently bin the I'; functions in
eq.(22). Note that with these definitions we have u €
[0,1] and v € [-1,1]. In practice, selecting i.e. equilat-
eral triangles of characteristic side length 0y,cqium Within
the output corresponds to sub-selecting the galaxies in
bins u ~ 0 and v ~ 0.

Appendix C: Signal-to-noise of a Vector

The signal-to-noise ratio of a scalar value, X, with a
Gaussian uncertainty, o, is well-defined. The signal is the
expectation value of the measurement (X), and the noise
is the standard deviation of the uncertainty E. Thus, the
signal-to-noise is simply the ratio of these.

X =(X)+E (C1)

E ~ N(0,0) (C2)

S/N(X) = % (C3)
X

B Var(X) (©4)

However, it is less obvious what the corresponding quan-
tity should be for a vector d, where each component of
the vector is itself a measurement with an uncertainty.
We start by considering a data vector of independent
measurements, each with its own Gaussian uncertainty.

d={d:} (s)
d; = {d;) + F; (C6)
E; ~ N(0,0;) (C7)

We consider all possible linear combinations of the vector
elements,

szw~d:Zw7;d,;, (C8)

for arbitrary weight vectors w. For each choice of w, the
scalar quantity X, of course has a well-defined signal-
to-noise, given by Equation C4, but each choice may be
different, depending on the specific weights being used.



Among all such possible choices, we take the one with
the largest signal-to-noise to define the signal-to-noise of
(Xw)

the vector d.
< Var(Xw)>

We therefore need to determine what choice of weights

S/N(d)

= max
w

(C9)

w gives the largest signal-to-noise for Xy . For a given
choice of w, we have
(Z; w; <dJ>)
(S/N)? = =55 (C10)
ZJ wl 0-7

As usual, we find w; at the extremum by setting the

2 B 2( wj 211%‘0,‘2 (ZJ “’j(dj>)2

9 (S/N)

derivative to 0.
2

> wf%
(di) > wios = wio} Y w;(d;)
J J

<d;> (C11)

(x,uio?)

(C12)

Aside from the expectation value in the numerator,
this is equivalent to \/? , which is a relatively common
approximation used to estimate the signal-to-noise of a
vector. Calculating the expectation value of x2, we find

(%) = <Zj—2>

(C13)
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Thus, we have derived the relatively simple relationship,

S/N = \/(x?) — Nq.o.t.- (C14)

In practice, one does not have access to the expectation
value {x?), so we replace it with its measured value, which
is the best we can do:

S/N =+/x? — Naot.- (C15)

For high signal-to-noise vectors, the approximation
S/N = \/? is not bad. But when x? is only moder-
ately larger than the number of degrees of freedom, the
correction is important, and one should instead use Equa-
tion C15. And of course if the measured x? is less than
Ny.of., there is no detection, and the signal-to-noise is
essentially zero.

Finally, what if the uncertainties are correlated? That
is, what if the data vector has a non-diagonal covariance
matrix C?7 It turns out that this case can be reduced
to the same formula as above by diagonalizing C and
changing to the basis where the covariance is diagonal.

Cov(d) =C =VAVT (C16)

z=V"d (C17)
Cov(z) = VT Cov(d)V
=VIvAavTy

=A (C18)

Given our definition (Equation C9), the signal-to-noise
of z is the same as the signal-to-noise of d. Furthermore,
the x? for the two vectors are also equal:

XZ:ZTAflz:Z -

Asi
= (VTa)"A~vd
=d"vA~'vTd
=d"(vavT)!
=d’c'q, (C19)
V- 1

We know that the signal-to-noise of z is given by Equa-
tion C15, since it has uncorrelated uncertainties. Since d
has the same signal-to-noise as z, and it has the same x>
and Ng.o.r., this must also be the correct formula for d.

Therefore, Equation C15 applies even to a vector with a
non-trivial covariance matrix.

where we used the fact that VT =
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