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External validation of an 18F‑FDG‑PET radiomic model predicting 

survival after radiotherapy for oropharyngeal cancer  

Martina Mori1 · Chiara Deantoni2 · Michela Olivieri1 · Emiliano Spezi1,2 · Anna Chiara2 · Simone Baroni2 ·  

Maria Picchio3,4 · Antonella Del Vecchio1 · Nadia Gisella Di Muzio2,6 · Claudio Fiorino1 · Italo Dell’Oca2 

Abstract 
Purpose/objective The purpose of the study is to externally validate published 18F-FDG-PET radiomic models for outcome 

prediction in patients with oropharyngeal cancer treated with chemoradiotherapy. 

Material/methods Outcome data and pre-radiotherapy PET images of 100 oropharyngeal cancer patients (stage IV:78) 

treated with concomitant chemotherapy to 66–69 Gy/30 fr were available. Tumors were segmented using a previously 

validated semi-automatic method; 450 radiomic features (RF) were extracted according to IBSI (Image Biomarker 

Standardization Initiative) guidelines. Only one model for cancer-specific survival (CSS) prediction was suitable to be 

independently tested, according to our criteria. This model, in addition to HPV status, SUVmean and SUVmax, included 

two independent metafactors  (Fi), resulting from combining selected RF clusters. In a subgroup of 66 patients with complete 

HPV information, the global risk score R was computed considering the original coefficients and was tested by Cox 

regression as predictive of CSS. Independently, only the radiomic risk score  RF derived from  Fi was tested on the same 

subgroup to learn about the radiomics contribution to the model. The metabolic tumor volume (MTV) was also tested as a 

single predictor and its prediction performances were compared to the global and radiomic models. Finally, the validation 

of MTV and the radiomic score  RF were also tested on the entire dataset. 

Results Regarding the analysis of the subgroup with HPV information, with a median follow-up of 41.6 months, seven 

patients died due to cancer. R was confirmed to be associated to CSS (p value = 0.05) with a C-index equal 0.75 (95% 

CI=0.62–0.85). The best cut-off value (equal to 0.15) showed high ability in patient stratification (p=0.01, HR=7.4, 95% 

CI=1.6–11.4). The 5-year CSS for R were 97% (95% CI: 93–100%) vs 74% (56–92%) for low- and high-risk groups, 

respectively.  RF and MTV alone were also significantly associated to CSS for the subgroup with an almost identical C-

index. According to best cut-off value (RF>0.12 and MTV>15.5cc), the 5-year CSS were 96% (95% CI: 89–100%) vs 65% 

(36–94%) and 97% (95% CI: 88–100%) vs 77% (58–93%) for RF and MTV, respectively. Results regarding RF and MTV 

were confirmed in the overall group. 

Conclusion A previously published PET radiomic model for CSS prediction was independently validated. Performances of 

the model were similar to the ones of using only the MTV, without improvement of prediction accuracy. 
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Introduction 

Head and neck cancer (HNC) is the sixth most common 

malignancy, with an incidence of about 650,000 cases and 

330,000 deaths annually worldwide [1, 2]. It continues to be 

a clinically challenging problem because of several factors, 

including delayed detection, heterogeneous tumor subtypes 

that respond differently to treatment, difficult anatomical 

locations leading to adverse events, risk factors resulting in 

tumor recurrence, and comorbidities [3]. Although 

technologies are reaching their developmental peak, the 

question that still remains is inside the tumor that dictates 

different treatment responses from individuals despite 

similar tumor classification and/or clinical characteristics. 

Therefore, the interest in exploring biomarkers that could 

reliably and individually predict the tumor response to 

treatment is high. Quantitative extraction of high-

dimensional data from medical images dealt with the field 

of Radiomics, a highly promising diagnostic, prognostic, 

and predictive tool for cancer characterization. Ideally, the 

integration of multiple-omics, i.e., “panomics” data 

(genomics, transcriptomics, proteomics, metabolomics, 

etc.), could efficiently unravel biological mechanisms [4–

6]; in this context, radiomics may quantify tumor’s texture, 

shape, and other geometric features, aiming to characterize 

tumor behavior, ideally functioning as a non-invasive, low-

cost bridge between “biology” and “clinic” at individual 

level. 

The translation of radiomic biomarkers into standard 

cancer care, to support treatment decision-making, involves 

the development of prediction models. Nowadays, there are 

several studies dealing with the development of models of 

outcome prediction for HNC [7–19] with the general 

impression that the scientific community is dragged by the 

current trend of a chaotic run in developing in-house 

models, mostly with limited validation. In addition, it is well 

known that still several aspects may impact the reliability of 

radiomic features (RF) as delineation, image 

acquisition/reconstruction, and bin size. Due to this lack of 

standardization, robustness studies are needed to assess the 

sensitivity of RF. A document with standardized feature 

definition was recently provided by the Image Biomarker 

Standardization Initiative (IBSI) [20] and is gradually 

becoming a reference guide. This implies that prognostic 

models based on RF analyses not IBSI compliant are 

expected to be discarded in the near future. In addition, 

models may intrinsically be more generalizable and easier 

to be adopted if the variables included are few, simple, and 

interpretable [21, 22]. 

To date, many studies were conducted in order to assess 

prognostic value of RF. Importantly, very few investigations 

considered functional imaging, primarily PET [7, 9, 19], that 

should in principle be more suitable in capturing tumor 

biological characteristics, potentially associated to a worse 

outcome. 

CT radiomics was much more explored with several 

recent studies dealing with large cohorts [10–18], although 

external validation studies remain very rare and most 

investigations showed a clear correlation between RF-based 

scores and CT-based tumor volume [9–11, 13]. 

At our institute, PET imaging was introduced in planning 

optimization since mid-00s’ [23, 24] and IBSI compliant 

procedures for radiomic analyses and outcome prediction 

studies in radiotherapy were implemented in the last years 

[25]. In this context, the aims of the current study were (1) 

to select from published PET-FDG radiomics prognostic 

models the ones, IBSI-consistent, considered to be suitable 

for an external validation on our population of patients 

treated for oropharyngeal cancer with radio-chemotherapy 

with PETFDG available; (2) to validate such models to 

possibly predict local recurrence (LRFS), distant metastasis 

(DRFS), and overall survival (CSS); and (3) to compare the 

performance of such models against the PET-based 

metabolic tumor volume (MTV) used as a single outcome 

predictor. 

Materials and methods 

Selection of published models 

An extensive literature review was preliminary conducted to 

define suitable models for the current validation study. 

PubMed was used with the following search query: (“head 

neck”[Journal] OR (“head”[All Fields] AND “and”[All 

Fields] AND “neck”[All Fields]) OR “head and neck”[All 

Fields]) AND “pet”[All Fields] AND (“radiomic”[All 

Fields] OR “radiomics”[All Fields]) AND (“outcome”[All 

Fields] OR “outcomes”[All Fields]). Synonyms “cancer,” 

“tumor,” etc. were intentionally not used in the search to 

increase the comprehensiveness/inclusiveness of the search 

and to screen as much as possible the available literature on 

HNC. No date limit was used, and the search was updated 

until January 2022. As reported in the Supplementary 
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material (Table S1), 24 articles were selected. Papers were 

excluded because focused on hypoxia (5), reviews (1), 

works including the development of models based on 

imaging acquired during the treatment (4), presence of 

surgery (1), works based on (68)GA-DOTATOTE (1), RF 

extracted from CT and PET fusion (2), and no stated 

declaration of compliance with the IBSI guidelines (8). 

Finally, only one paper from the group of Martens [18] was 

selected: the resulting models were internally validated, in 

accordance with the TRIPOD level 2a of validation [26], 

while no independent validation is available. 

Patient dataset 

Outcome data and pre-radiotherapy PET images of 100 

oropharyngeal cancer patients (stage IV: 78/100) treated at 

our institute between 2006 and 2021 according to an internal 

protocol delivering moderate hypo-fractionation (66 Gy/30 

fr) were available: details of contouring, planning, and 

delivery procedures may be found elsewhere [23, 24]. 

Current study was approved by the Institutional Ethical 

Committee (n° 12/INT/2022). All patients underwent a 

planning 18F-fluorodeoxyglucose (FDG) positron emission 

tomography/computed tomography (PET/CT) at most one 

month before Radiotherapy, to assess MTV, and were 

treated with Helical TomoTherapy (HiArt 2, Accuray Inc.). 

Written informed consent for the execution of PET/CT and 

anonymous publication of disease-related information was 

signed by each patient. All patients were treated with SIB 

delivering 54 Gy (1.8 Gy/fr), 66 Gy (2.2 Gy/fr), and 69 Gy 

(2.3 Gy/fr) in 30 fractions on PTV-N, PTV-T, and MTV, 

respectively; in 84% of patients, concomitant CDDP 

chemotherapy (at least 200 mg/m2 total dose) or cetuximab 

was also administered. For a subgroup of 66 patients, the 

HPV information was available. Table 1 summarizes the 

patient characteristics of both, the subgroup and of the 

complete dataset; patients were staged according to 

American Joint  

Committee on Cancer (AJCC) staging manual 7th edition.  

In the Martens et al. study, treatment consisted of a 

chemoradiotherapy (CRT) during a period of 7 weeks 

followed by 70 Gy in 35 fractions with concomitant 

cisplatin (100 mg/ m2 on days 1, 22, and 43 of radiotherapy) 

or cetuximab (400 mg/m2 loading dose followed by seven 

weekly infusions of 250 mg/m2). Like in the Martens et al. 

study, loco-regional recurrence was measured from the end 

of CRT to the date of local or regional proven relapse. 

Metastases were defined as a distant location from the loco-

regional primary tumor and lymph nodes. CSS time was 

measured from the end of CRT until death or the last follow-

up date. 

Image acquisition, target segmentation, and RF 

extraction 

The characteristics of scanners and acquisition protocols as 

well as the differences with the Martens et al. study are 

reported in detail in the Supplementary material. 

Segmentation of tumor MTV was performed using the semi-

automatic contour method, named “PET_Edge,” based on a 

gradient edge search (MIM Software Inc., Cleveland, OH, 

USA). The method was previously tested as reproducible 

and accurate compared to manual segmentation [27]. In the 

Martens’ study, delineation of primary tumors was 

performed semiautomatically on 18F-FDG-PET/CT using a 

50% isocontour of the SUV-peak of the tumor volume. SUV 

was normalized to body weight. Since this part of the study 

was the  

Table 1  Patient’s characteristics 

 Subgroup of 66 

patients with HPV 

data 

Complete 

dataset of 100 

patients 

Age (years), (range) 65 (38–84) 65 (38–89) 

Gender (male vs female) 51 vs 15 68 vs 32 

Smoking history 

Yes 

No 
Missing 

45 (68.1%) 
16 (24.4%) 

5 (7.5%) 

60 (60.0%) 
26 (26.0%) 

14 (5.0%) 
Alcohol history 

Yes 

No 
Missing 

11 (16.7%) 
49 (74.2%) 

6 (9.1%) 

23 (23.0%) 
61 (61.0%) 
16 (16.0%) 

HPV status 

Positive 
Negative 

Missing 

50 (75.8%) 
16 (24.2%) 
0 (0%) 

50 (50.0%) 
16 (16.0%) 
34 (34.0%) 



 

 

Clinical stage 

II 
III 
IV 

1 (1.5%) 
13 (19.7%) 
52 (78.8%) 

3 (3.0%) 
19 (19.0%) 
78 (78.0%) 

Concomitant chemotherapy 

No 
Cetuximab 

Cisplatin 

9 (13.6%) 
9 (13.6%) 
48 (72.8%) 

16 (16.0%) 
10 (10.0%) 
74 (74.0%) 

only which could be done prospectively, all images were 

processed to reach conditions similar to those reported by 

Martens et al. Given the different activities administered to 

patients, we limited the adaptation to the process of all the 

PET images to the same voxel size of 4×4×4  mm3. Images 

were discretized to a fixed bin number of 64, due to the 

improved reproducibility as reported by Tixier et al. [28] 

and confirmed in an ad hoc phantom study [29]. As Martens 

et al. used a fixed bin size (0.25 SUV) approach, potentially 

different results could derive from this different technical 

process. Similar to Martens et al., RF directly computed 

from the DICOM images were scaled to the interval [0, 1] 

to avoid a situation where the features with the largest scale 

dominate the analysis. DICOM files were imported to 

MATLAB using the Computational Environment for 

Radiological Research (https://cerr .github .io /CERR /) . 

RF extraction was performed with SPAARC Pipeline for 

Automated Analysis and Radiomics Computing (SPAARC 

[30, 31]) developed at Cardiff University School of 

Engineering. SPAARC complies with the IBSI guidelines 

[20]. We extracted 450 RF belonging to all the families 

included in IBSI: Morphology, Statistical, Intensity 

Histogram, Grey Level Co-occurrence Matrix 3D_average 

(GLCM3D_avg), Grey Level Co-occurrence Matrix 

3D_combined (GLCM3D_comb), Grey Level Run Length 

3D_average (GLRL3D_avg), Grey Level Run Length 

3D_combined (GLRL3D_comb), Grey Level Size  

Zone Matrix 3D, Neighbors Grey Tone Difference Matrix 

3D (NGTDM3D), and Grey Level Distance Zone Matrix 3D 

(GLDZM3D). In Fig. 1, a workflow of the whole pipeline 

was summarized. 

Validating the Martens model and comparing 

performances against MTV 

Martens et al. condensed the predictive RF in 8 independent 

meta-factors  (Fi), consisting of a combination of selected 

RF with variable importance weight. According to their 

publications [18],  Fi were built using the weights reported 

for each RF. A global score risk R was computed for DRFS 

(not including  Fi), LRFS (including HPV, SUVmean, 

SUVpeak, F3, F4, F6) and CSS (including HPV, SUVmean, 

SUVmax, F1 and F5). Due to the limited availability of the 

HPV-status, we limited the validation of the Martens 

models to the subgroup of 66 patients with HPV information 

available, testing the global score risk R prediction by Cox 

regression. R was computed as a liner combination of the 

original coefficients of the Martens study and the covariates 

selected. Moreover, a radiomic risk score  RF involving only  

Fi was tested on both the subgroup and on the complete 

dataset. It was computed as well using the original 

coefficients of the Martens model applied to F i in order to 

compare results between the global and an “only radiomic” 

model. The resulting R and  RF indexes were then used to 

stratify risk according to the best cut-off value derived from 

the ROC analysis [25]. Kaplan-Meier test was finally 

performed. Due to the evidence that RF may be a surrogate 

of the tumor volume as reported for CT-based volumes [9–

11, 13], the semi-automatically segmented MTV was 

https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
https://cerr.github.io/CERR/
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independently tested as a single potential predictor of 

outcome. The same procedures followed for the considered 

R and  RF scores to test their prediction performances were 

applied. The performances of the two approaches, Martens 

risk model (global and radiomic) vs MTV, were compared 

in terms of concordance index (C-index), hazard ratios 

(HR), and p value. 

Results 

The median follow-up was 42.7 months (IQR: 21–71). At 

the time of analysis, 69/100 patients were alive and 4, 13, 

and 15 events for LRFS, DRFS, and CSS were registered. 

Regarding the subgroup with HPV data information, the 

median follow-up was 41.6 months (IQR: 19.1–67.4). At the 

time of analysis, 41/66 patients were alive and 2, 10, and 7 

events for LRFS, DRFS, and CSS were registered. In 

Martens et al., RF selected as predictive were found only for 

LRFS and CSS prediction. Due to the too small number of 

LRFS events in our population, only the model for CSS 

could be tested. The significant radiomic predictors for CSS 

in Martens’ study were F1 and F5 [18]. F1 and F5 together 

with HPV, SUVmean, and SUVmax were included in the 

global model. The global risk score R was calculated by 

using the original coefficients derived by Martens on the 

subgroup with HPV data. The radiomic risk score R F was 

calculated  

 

Fig. 1  Summary of the workflow followed for model’s validation Table 2  Cox regression of global, radiomic risk scores (R and R F) and the MTV 

for the prediction of CSS on the same subgroup of patients with  
HPV information 
Risk score b p Exp(b) C-index 

Global risk score R 3.4962 0.050 12.99 (95% CI: 0.90–47.25) 0.75 (95% CI: 0.62–0.85) 

Radiomic risk score  RF 3.6132 0.030 17.09 (95% CI: 1.41–58.44) 0.75 (95% CI: 0.62–0.85) 

MTV 3.3524 0.041 28.57 (95% CI: 1.90–49.35) 0.76 (95% CI: 0.67–0.89) 



 

 

 
Fig. 2   Kaplan Meier curves of CSS patients’ stratification according 

to the best cut-off for the risk score R (low risk: R<0.15 grey line; high 

risk: R>0.15 black line) 

from F1 and F5 as well, but, as the coefficients referred to 

the “combined” model, we assumed that the relative weight 

of the two meta-factors was independent on the other 

variables. Then, we used the original coefficients 

renormalized to the value referred to F1 (1 and 1.04 for F1 

and F5, respectively). From the Cox regression analysis, the 

resulting risk scores R and  RF resulted associated to CSS 

(Table 2) (p=0.05 and p=0.03, respectively) and for both the 

C-index was found equal to 0.75 (95% CI=0.62–0.85). 

According to the Youden criterion, the best cut-off for R and 

RF were found >0.15 and >0.12 respectively, showing in 

both cases a high ability in patients’ stratification, as 

depicted by the Kaplan Maier curves reported in Fig. 2 

(p=0.01, HR=7.4, 95% CI=1.6–11.4 for R) and in Fig. 3 

(p=0.006, HR=11.1, 95% CI=2.02–15.3 for RF). The 5-year 

CSS for R were 97% (95% CI: 93–100%) vs 74% (56–92%) 

and for  RF 96% (95% CI: 89–100%) vs 65% (36–94%) for 

low- and high-risk groups, respectively. 

MTV alone was significantly associated to CSS in this 

subgroup (p=0.04) with a C-index=0.76 (95% CI=0.67–

0.89). When considering the best cut-off value 

(volume<15.5cc), patients were well stratified (p<0.0097, 

HR=7.5, 95% CI=1.6–34.4), and the 5-year CSS were 97% 

(95% CI: 88–100%) vs 77% (58–93%) for low- and high-

risk groups, respectively (Fig. 4). 

When looking to the complete dataset, the validation of 

the radiomic score R F and the MTV was confirmed.  

Fig. 3  Kaplan Meier curves of CSS patients’ stratification according to 

the best cut-off for the radiomic risk score (low risk: RF<0.12 grey line; 

high risk: RF>0.12 black line) 

 

Fig. 4  Kaplan Meier curves of CSS patients’ stratification according to 

the best cut-off of the semi-automatically segmented PET-based 

volume (low risk: MTV<15.5 cc grey line; high risk: MTV>15.5 cc 

black line) 

The results are similar (C-index=0.75 (95% CI=0.66–0.83, 

p=0.008 for RF and C-index=0.76 (95% CI=0.67–0.85, 

p=0.008 for MTV). Results are summarized in the 

Supplementary material. 

Discussion 

Currently, pre-treatment imaging of head and neck cancers 

serves the purpose of evaluating primary tumor dimensions, 

anatomical extent, involvement of regional lymph nodes, 

and detecting distant metastases, which constitute the basis 

for staging and therapeutic choice. While PET/CT 

represents a mainstay of disease work-up, human visual 

interpretation cannot seize the full prognostic utility 

encoded in metabolic and structural bioimaging patterns. By 

capturing such bioimaging features, radiomic biomarkers 

may, in principle, improve stratification of patient risk 

groups and patient selection in better guiding personalized 

therapy. Quantitative imaging biodata reflecting tissue 

0 

20 

40 

60 

80 

100 
Cancer Specific Survival (CSS) 

60 80 100 20 0 40 12 0 1 40 
Time (months) 

0 

20 

40 

60 

80 

100 
Cancer Specific Survival (CSS) 

0 40 60 20 80 100 12 1 0 40 
Time  ( months ) 

0 

20 

40 

60 

80 

100 
Cancer Specific Survival (CSS) 

100 50 0 150 200 
Time (months) 



European Journal of Nuclear Medicine and Molecular Imaging  

 

density, texture patterns, lesion shape, and metabolic 

activity of primary tumors and metastatic cervical nodes 

may encode valuable information pertaining to tumor 

behavior with potential prognostic relevance. 

To date, many studies were conducted to assess 

prognostic value of RF. Although functional imaging should 

in principle be more suitable in capturing tumor biology, CT 

radiomics was much more explored with several recent 

studies dealing with large cohorts [10–18]. 

Focusing on CT radiomic investigations with extensive 

validation, results are in part contradictory with few 

negative studies reporting no advantage in including 

radiomic features compared to clinical and 

geometrical/anatomical features into models [9, 10]. These 

results were explained by the strong correlation of most 

selected features with tumor volume that was able alone to 

perform predictions similarly to more complex radiomic 

scores, as previously shown by Welch et al. [11] in re-

analyzing the early study by Aerts et al. [8]. The issue of the 

dependence of many RF on tumor volume is relevant and, 

due to this, results showing high performances of radiomic 

scores that did not consider this issue should be regarded 

with caution. Our study, despite the use of PET in place of 

CT, indirectly confirmed that tumor volume is likely to be 

the major predictor, making difficult to demonstrate an 

additional value of more complex radiomic patterns. 

Among the positive studies using radiomic CT, the ones 

with the strongest ability of radiomic scores to stratify 

patients according to their prognosis were driven to identify 

few, highly predictive, features taken as the major 

predictors, once redundancy filters were applied. For 

instance, Elhalawani et al. [30] showed that the addition of 

a radiomic score composed of the combination of only two 

features (“intensity direct local range max” and “neighbor 

intensity difference 2.5 complexity”) improved the 

prediction of local recurrences in a population of 465 

oropharyngeal patients. Cozzi et al. [12] identified the 

combination of two-three features in stratifying 110 patients 

in high- and low-risk groups. Meneghetti et al. [13] recently 

showed that the combination of tumor volume with two 

independent radiomic features improved prediction of loco-

regional relapses in a large population merging 6 German 

cohorts. They showed that, once properly managed, 

additional contribution of radiomic features not depending 

on volume can be detected. Similarly, Zhai et al. [14] 

showed that the combination of one feature related to the 

volume (least axis length) and one independent (gray level 

co-occurrence base correlation) extracted from positive 

nodes can carefully predict individual lymphnode failure in 

a group of 112 patients (with 558 analyzed nodes). 

More sophisticated advanced machine learning and deep 

learning approaches to build radiomic scores have also been 

explored, most of them still using CT [15–17]. Among them, 

the most relevant is probably the one by Giraud et al. [17], 

due to their effort to make the resulting models for 

locoregional and overall survival interpretable though a 

graphic representation of the weight of many features 

(radiomic and clinical) included in the models. On the other 

hand, the large number of features compared to the number 

of patients could have generated some overfit. The same 

study still reported the “shape voxel volume” features, 

strongly correlated with tumor volume, as the most 

prominent predictor. CT radiomic in the field of HN cancer 

was also investigated in HPV classification [33] or in 

assessing outcome of therapies other than radiotherapy [34, 

35]. 

When considering PET imaging, very few investigations 

were reported: for instance, Ger et al. [9] in the previously 

discussed negative study tested also PET-FDG-related 

features, and none was retained in the final model. Feliciani 

et al. [19] found one single feature (“low-intensity longrun 

emphasis”) able to predict outcome in a heterogeneous 

cohort of 129 patients. In the pioneer work by Vallieres et 

al. [7], several PET-FDG features were combined to develop 

radiomic models in predicting outcome. The combination of 

features extracted by using different processing parameters 

made these models hard to apply. In addition, PET features 

did not demonstrate any additional benefit compared to 

clinical/volume variables neither to CT features. 

More in general, the possibility to replicate performances 

is a critical issue for radiomic models. As a matter of fact, 

our exercise was in the direction of selecting models that 

could be replicated, even considering the consistency with 

IBSI guidelines. Not by chance, it is hard to find models that 

explicitly satisfy these criteria, also due to the quite recent 

publications of these guidelines that appeared only in 2020 

[20]. After a careful selection, the paper by Martens et al. 

[18] was found to satisfy them and chosen for independent 

validation on our institutional cohort. Their study applied a 

quite innovative, cluster-based, analysis that allowed to 

identify different scores representing “meta-features” 

independently predictive of outcome. In particular, due to 

our available data, we focused on the “radiomic-only” 

model for overall survival. Interestingly, the above-

mentioned approach made possible to split the contributions 

of features depending on tumor volume (as identified by a 

previously validated semi-independent method based on 

SUV gradient, F1) against the ones not depending on 

volume (F5). 

Our results show a good replication of the previously 

reported ability of the Martens risk score R in stratifying 

patients in low and high risk based on cancer-specific 

survival. 



 

 

On the other hand, very importantly, R showed 

performances similar to the ones of the radiomic-only score  

RF, suggesting that the additional benefit of HPV and other 

variables SUV-related could be already included in the 

radiomics information, according to a recent published work 

[36]. On the other hand, the limited statistics cannot permit 

to fully clarify this issue. 

If considering MTV, the performances are quite similar 

in terms of C-index; when assessing best cut-off values, 

MTV showed a similar trend in stratifying patients 

compared to R and  RF. Very importantly, results regarding  

RF and MTV were confirmed on the complete dataset, 

corroborating our positive results. 

Of note, the outcome prediction power of MTV was 

already reported in other investigations [37–40] and 

confirms the potential of using a simple, reproducible, 

operatorindependent parameter to classify patients 

according to their outcome. Of note, MTV can be reliably 

obtained semi-automatically [27], as done in current study, 

overcoming the issue of contouring uncertainty, so relevant 

in the case of CT. 

To the best of our knowledge, this is the first study 

reporting an independent validation of a published PET-

based radiomic model predicting outcome in patients treated 

with radio-chemotherapy for head-neck cancer. In our 

population, the performances of such radiomic score in 

predicting CSS were not significantly superior to using just 

the MTV. The unavailability of the HPV status for all 

patients limited the possibility to replicate the prediction of 

the combined model incorporating this and other factors. 

Conclusions 

Pre-treatment PET/CT radiomics biomarkers may provide 

complementary prognostic value for oropharyngeal cancer 

via systematic quantification of tissue density, texture 

patterns, lesion geometry, and metabolic properties. We 

independently confirmed the value of a previously 

published model based on clinical data and radiomic meta-

factors for CSS prognostication and risk stratification. The 

reproducibility of the dataset used, as results, probably 

depict the prognostic potentials of radiomic biomarkers for 

CSS in a realistic fashion. However, a similar predictive 

power was reached if using only the (semi-automatically 

segmented) MTV, suggesting that the additional benefit of 

more complex PET RF-based signatures remains to be 

demonstrated and, consistently with recent CT-based 

radiomic results, could be limited. Despite this promising 

result, more studies are needed to evaluate the predictive 

power of different PET RF-based signatures and their 

potential benefit to clinical practice. 
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