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Abstract

CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to
significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and
evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial
gravitational waves is a central driver of the experimental design. This work details the development of a
forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly
toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and
gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved
performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-
polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop
process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several independent analysis methods. We document
multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference
design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our
science goals of detecting primordial gravitational waves for r> 0.003 at greater than 5σ, or in the absence of a
detection, of reaching an upper limit of r< 0.001 at 95% CL.

Unified Astronomy Thesaurus concepts: Cosmic background radiation (317); Cosmological parameters (339);
Gravitational waves (678); Cosmic inflation (319)

1. Introduction

Determining the origin of structure in the universe is one of
the most important open problems in cosmology. CMB
anisotropies sourced by early-universe density perturbations
are currently the most powerful observational probe of the
earliest mechanisms of structure formation. It is possible that
the same processes that produced the density perturbations also
sourced tensor perturbations, or primordial gravitational waves
(PGWs). If this is the case, detecting a PGW signal would yield
insight into physics far earlier than the epoch of recombination,
and allow us to build an unprecedented understanding of the
earliest moments of time.

PGWs leave imprints on the polarization of the CMB (Hu &
White 1997; Kamionkowski et al. 1997; Seljak & Zaldar-
riaga 1997). In particular, the sensitivity of CMB measure-
ments to gravitational waves arises from the generation of
polarization at the surface of last scattering: to first order, scalar
perturbations produce only even-parity E-mode polarization,
while tensor perturbations produce odd-parity B-mode polar-
ization as well. Thus, a measurement of primordial B-mode
polarization in the CMB, parameterized by the tensor-to-scalar
ratio r, is a direct measurement of the amplitude of tensor
perturbations. Detecting r has profound implications for high-
energy physics and the quantum nature of gravity (Krauss &
Wilczek 2014), and the potential to shed light on the
mechanism that produced these primordial perturbations.

Cosmic inflation is our current leading paradigm for what
occurred in the very early universe. It was first put forward to
explain the lack of observed magnetic monopoles and to solve
the flatness and horizon problems (Kazanas 1980;

Starobinsky 1980; Sato 1981; Guth 1981; Linde 1982, 1983;
Albrecht & Steinhardt 1982) and has since been an active field
of research. The theory describes a period of exponential
expansion in which quantum fluctuations are magnified to
cosmic size and become the seeds for all structure in the
universe (Mukhanov & Chibisov 1981, 1982; Guth & Pi 1982;
Hawking 1982; Starobinsky 1982; Mukhanov 1985; Bardeen
et al. 1986). In addition to the production of PGWs (for a recent
review, see Kamionkowski & Kovetz 2016), inflation makes
several predictions, most of which—superhorizon fluctuations,
Gaussian perturbations, adiabatic fluctuations, spatial flatness,
and a nearly scale-invariant scalar spectral tilt—have been
confirmed, most recently by the Planck collaboration (Planck
Collaboration et al. 2020b).
There are currently a number of ground-based experiments

measuring the CMB polarization to high precision on a range of
scales, and attempting to constrain the tensor-to-scalar ratio,
including ACT (Aiola et al. 2020), BICEP/Keck (BICEP2/
Keck Array Collaborations X 2018), CLASS (Harrington et al.
2016), POLARBEAR/Simons Array (Suzuki et al. 2016;
Hasegawa et al. 2018), and SPT (Bender et al. 2018; Sayre
et al. 2020), with Simons Observatory to follow soon (Ade et al.
2019). Additionally, there are current and future balloon and
satellite missions such as SPIDER (Gualtieri et al. 2018) and
LiteBIRD (Hazumi et al. 2019), which we expect to complement
ground-based measurements. The current best constraints are
r(ks= 0.05Mpc−1, nt= 0)< 0.06 at 95% confidence (BICEP2/
Keck Array Collaborations X 2018), where ks is the scalar pivot
scale and nt is the spectral index of the tensor modes. Ongoing
efforts in both the Atacama Desert and at the South Pole,
between now and the start of CMB-S4, will steadily improve
these constraints while continuing to prove the methodologies on
which CMB-S4 will rely.
CMB-S4, anticipated to start observations in 2027, is

intended to be the definitive ground-based CMB polarization
experiment. It is designed to cross critical thresholds in
constraining the B-mode polarization signature of primordial
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gravitational waves and in sensitivity to new light relics, while
also improving our understanding of the nature of dark energy
and General Relativity on large scales (Abazajian et al. 2016).
To achieve these goals requires a significant increase in
sensitivity, from 2 to 4× 104 detectors in Stage 3 experiments
to roughly 5× 105 detectors, and an unparalleled control over
other sources of signal (e.g., Galactic foregrounds, gravitational
lensing, etc.) and of systematics. Therefore, CMB-S4 will
require telescopes at multiple frequencies, each with a
maximally outfitted focal plane of pixels utilizing super-
conducting, photon-noise-limited detectors, and likely novel
analysis techniques. To understand the optimal design for
achieving the desired science goals, in particular focusing on
primordial gravitational waves, we present the development of
the CMB-S4 r forecasting framework and its application toward
determining the CMB-S4 baseline r survey.

The sensitivity achieved by a CMB experiment, which
observes for a given number of years with a given number of
detectors, is subject to a number of efficiency factors. These
include the fraction of detectors that are actually functional, the
achieved sensitivity per detector versus model prediction, the
fraction of days per year spent observing, the fraction of
observing time spent “on field,” and the fraction of data passing
weather and other cuts. As an illustrative example, if each of the
above efficiency factors were 0.65 then the product is 0.655∼ 0.1.
Forecasts for the sensitivity to r, where excess low-frequency
noise or systematic contamination can lead to additional
(potentially large) sensitivity loss, are particularly challenging.
Most previous forecasts of the sensitivity of CMB experiments to
r have been ab initio—requiring assumptions as to the value of all
efficiency factors. Possibly due to the human tendency toward
optimism, many of these forecasts have not in practice been
achieved once the data have been taken and analyzed:
ABS (Essinger-Hileman 2011; Kusaka et al. 2018); BICEP/
Keck (Hivon & Kamionkowski 2002; Yoon et al. 2006; Nguyen
et al. 2008; BICEP2/Keck Array Collaborations VI 2016);
EBEX (Reichborn-Kjennerud et al. 2010; Abitbol et al. 2018);
Planck (Planck Collaboration 2006; Planck Collaboration et al.
2020b); POLARBEAR (Lee et al. 2008; Kermish et al. 2012;
Polarbear Collaboration et al. 2020); QUIET (Lawrence et al.
2004; Araujo et al. 2012); SPIDER (Montroy et al. 2006; Fraisse
et al. 2013; Gualtieri et al. 2018); SPTpol (McMahon et al. 2009;
Austermann et al. 2012; Sayre et al. 2020). Therefore, for CMB-
S4, we take an alternate approach, scaling from the overall
performance achieved in the best available existing experimental
results. We scale directly from published B-mode noise spectra
and bandpower covariance matrices derived from multiyear maps
that have passed systematics null tests. This bypasses the need for
an unbiased, individual accounting of the various efficiency
factors, and naturally incorporates all effects that impact real-
world experiments. This also differentiates our current approach
from forecasts other groups have made for CMB-S4 prior to the
formal existence of our collaboration (Wu et al. 2014; Errard et al.
2016; Barron et al. 2018).

1.1. The CMB-S4 r Forecasting Loop

The CMB-S4 baseline r survey, described below, has been
continuously evolving by translating science requirements to
measurement and instrument requirements, based on our under-
standing of the impact of astrophysical foregrounds, instrumental
systematics, delensing nonidealities, and analysis methodology.
To maintain forecasting realism as complexity increases, our

general approach has been an iterative one. We rely on a closed
forecasting loop, presented in Figure 1, to tie the semianalytic
tools (which allow for fast optimizations) to map-based studies
(which can include multiple layers of additional complexity). To
establish our measurement requirements and the baseline
experiment configurations that can achieve them, we perform
multiple passes through this loop. In the figure, the section
number accompanying each stage of the loop indicates the paper
section in which that stage is described in detail.
The main steps describing this process are as follows.

1. Develop a semianalytic power-spectrum-level forecast,
assuming noise performance that is scaled from analyses
of real experiments.

2. Use this forecasting tool to optimize the allocation of
detector effort across observing frequencies, determining
certain “checkpoints” in survey definition space.

3. Use the checkpoint configurations to create standardized,
version-numbered, map-based data challenges (DCs) for
validation.

4. Estimate science parameters from the DC maps with
independent component-separation analysis methods.

5. Check that independent analyses show recovery of
science parameters from these challenge maps that match
analytic forecasts, either in terms of variance or bias. If
they do not, we revise the forecasts accordingly.

6. Iterate steps 1–5, injecting increasing realism in the form
of: (a) sky model complexity informed by the latest data
and modeling efforts; (b) survey coverage based on proven
observing strategies; (c) systematics whose form, para-
meterization, and likely amplitude are likewise guided by
real-world experience; and (d) treatment of lensing.

1.2. CMB-S4 r Forecasting Workflow and Evolution

Developing the forecasting machinery for CMB-S4, and
increasing the robustness and realism of its results, has been an
ongoing, ever-evolving, group effort, performed under the
auspices of the CMB-S4 r Forecasting Working Group. This
work has undergone three major iterations, with results
presented in the CMB-S4 Science Book (Abazajian et al.
2016), the CMB-S4 Concept Definition Task Force (CDT)
Report (Lawrence et al. 2017), and most recently in the CMB-
S4 Reference Design Report (Abazajian et al. 2019).
Each stage in the evolution of this framework has been

collectively considered, and carefully documented in the CMB-
S4 Simulation and Forecasting Logbook.94 The resulting
baseline survey definitions have been translated to publicly
available, version-numbered, map-based Data Challenges
(DCs).95 Thus far, two independent groups have participated
in testing the strengths and shortcomings of different analysis
methods on these simulations, as well as improving the
simulations themselves, as described in Sections 5 and 6.
Given the difficulty in describing a continuously evolving

process, for this paper we present several snapshots of our
forecasting work and describe the relevant details. Sections 2–6
represent a full pass through the forecasting loop, as presented
in Figure 1. In Sections 2 and 3, we present the full
semianalytic forecasting framework and optimization process,
as used in the CMB-S4 CDT Report. In Section 4, we discuss

94 https://cmb-s4.org/wiki/index.php/Simulation_and_Forecasting_Logbook
95 https://cmb-s4.org/wiki/index.php/Data_Challenges
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the creation of the DC4 simulation suite, corresponding to the
baseline presented in that report. Sections 5 and 6 describe two
independent analysis methods and the results obtained from
applying these methods to DC4. In Section 7, we describe
several recent updates to the framework and the resulting
findings presented in the CMB-S4 Reference Design Report.
We conclude this paper with a discussion of the path forward.

2. Semianalytic Forecasting Framework

For the CMB-S4 Science Book (Abazajian et al. 2016), we
developed a semianalytic forecasting framework specifically
targeted toward optimizing sensitivity to the tensor-to-scalar
ratio, r, in the presence of Galactic foregrounds and gravita-
tional lensing of the CMB. Currently, only small-aperture
telescopes (SATs) have reached the level of systematics control
and noise performance necessary to pursue a ground-based,
high-precision measurement of B-mode polarization down to
low multipoles (ℓ; 30), targeting the ℓ; 80 peak from the
polarization signature generated by PGWs at the epoch of
recombination. Therefore, to forecast the performance of next-
generation SATs, this machinery is based on scaling the
bandpower covariance matrices (BPCMs) and noise power
spectra (Nℓ) of current published SAT analyses, such as those
from BICEP/Keck (BICEP2/Keck Array Collaborations
VI 2016; BICEP2/Keck Array Collaborations X 2018). This
automatically builds into the forecast all real-world inefficien-
cies including (but not limited to): imperfect detector yield;

nonuniform detector performance; read-out noise; observing
inefficiency; losses due to timestream filtering; beam smooth-
ing; and nonuniform sky coverage.
At its core, this code is based on the BICEP/Keck parametric

power-spectrum-based likelihood analysis. Such types of para-
metric analyses have also been extensively used by the Planck
collaboration for ℓ� 50 (Planck Collaboration XV 2014; Planck
Collaboration XI 2016; Planck Collaboration et al. 2020a). We
validate this approach using map-based simulations as part of the
forecasting loop, and present detailed results in Section 6. Our
confidence in the projections is grounded in the connection to
achieved performance and published results.
Figure 2 presents a schematic representation of the

semianalytic forecasting framework, identifying the user
inputs, code modules, and outputs. The subsections that follow
describe this framework in detail.

2.1. Fisher Formalism

Given a likelihood function of the form

⎡⎣ ⎤⎦( )
( ( )) ( ) ( ( ))

( ( ))
( )q

m q q m q

q
µ

- - S -

S

-

L d
d d

;
exp

det
, 1

1

2
1T

where d are the data bandpowers, θ are the theory parameters,
μ(θ) and Σ(θ) are the bandpower expectation values and the
bandpower covariance matrix given the parameters, and T

Figure 1. Schematic representation of the CMB-S4 r forecasting loop. Green boxes represent inputs, purple boxes represent outputs, yellow boxes represent large code
frameworks, and gray boxes represent iterable code modules. For each stage of the loop, we identify the sections of this paper in which more detail is available. We
start with the achieved performance of Stage 3 data sets, in the form of full covariance matrices and noise spectra, and a set of scalable instrument specifications, as
well as a fiducial sky model. These are fed as inputs to the semianalytic optimization framework, yielding an optimized detector allocation and a baseline survey
definition. Based on this definition, we develop standard data challenge (DC) noise maps, as well as a suite of signal maps with various degrees of complexity. We
proceed by analyzing these maps with multiple independent component-separation analysis methods, and check for parameter recovery and the presence of biases. If
the results suggest a necessary change in survey definition, or additional studies are required, the process is iterated as needed.
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denotes the transpose, we can calculate the expectation value of
the log-likelihood curvature, evaluated at the position of the
best-fit model:

( ) ( )q
q q

= -
¶

¶ ¶
F

L dlog ;
. 2ij

i j

2

This quantity, called the Fisher information matrix, measures
how steeply the likelihood falls as we move away from the
best-fit model, and F−1 can be thought of as the best possible
covariance matrix for the measurement errors on the parameters
θi. It can be shown that ( )-F ii

1 is the minimum obtainable
standard deviation on the desired parameters (e.g., Cramér
1946; Kendall & Stuart 1979; Tegmark et al. 1997).

Inserting Equation (1) into Equation (2) yields
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We then calculate our parameter constraints as

( ) ( )s = -F . 4i ii
1

In all the projections below, for each fiducial model considered,
we choose to fix the covariance matrix with respect to the
theory parameters, i.e., Σ(θ)=Σ, making the second term of
Equation (3) identically zero.96 Equation (3) provides a clear
picture of how the construction of the covariance matrix Σ

impacts the final constraints, and how its misestimation could
lead to constraints that are far too optimistic. It is with this in
mind that we have decided to compute our BPCMs by directly
scaling the values in achieved covariance matrices (see
Section 2.5).

2.2. Forecasting Inputs

In this section, we briefly describe the set of inputs to the
forecasting code, shown as green boxes in Figure 1. We discuss
the key inputs in more detail in Sections 2.3 and 2.4.
Achieved Performance: The code takes signal and noise

simulations of the BICEP/Keck data sets (BICEP2/Keck
Array Collaborations VI 2016; BICEP2/Keck Array Colla-
borations X 2018) and derives the bandpower covariance
matrix and the ensemble-averaged signal and noise band-
powers. These inputs contain information about the actual on-
sky map noise achieved from multiple receivers, over multiple
years, at 95, 150, and 220 GHz, including all real-world
penalties. A more detailed description of these simulations is
available in Appendix H of BICEP2/Keck Array Collabora-
tions X (2018). Similar information from another experiment
could easily be substituted. To project the performance of
CMB-S4 channels, we assume that we can scale down the
achieved noise based on increased detector count and
integration time, and that we can apply beam size and noise-
equivalent temperature (NET) rescalings to account for the
differences in experimental design.
Scalable Instrument Specification: To specify the forecast

instrument, we start by selecting a set of observing frequency
bands, with bandpass functions describing the response of each
band. Then, for each observing band, we must provide the
beam size, number of detectors, and ideal per-detector NET.
The last two items can be used to make an idealized calculation
of the instrument sensitivity in each band. We emphasize that
we use these ideal performance numbers only for scaling
between frequency bands, by comparing to similarly calculated
ideal sensitivities of BICEP/Keck. The scaling factors are
ultimately applied to the achieved sensitivities, as described in
Section 2.5, to obtain performance-based sensitivities in our
desired bands. We note that, for the frequency bands in which
we do not currently have existing data, we extrapolate from the
closest frequency for which we do. A test of such extrapola-
tions has been presented in Buza (2019), where the BICEP2/
Keck Array Collaborations VI (2016) data set has been used to
forecast the BICEP2/Keck Array Collaborations X (2018)
results.
Fiducial Sky Model: A fiducial parametric model describing

the foreground and CMB signal. Our standard model, which has
14 parameters, is discussed in Section 2.4 and in Appendix A.
Priors: If we have external prior knowledge for a given

parameter θi, we can introduce this information by adding
s=P 1i i

2 to the diagonal of the Fisher matrix, where σi is the
width of the prior.

Figure 2. Schematic representation of our semianalytic forecasting framework.
Green boxes represent user inputs, yellow boxes represent code modules, and
purple boxes represent outputs. BPCM = bandpower covariance matrix.

96 This recipe produces constraints that are equivalent to the standard deviation
of maximum-likelihood parameter estimates derived from an ensemble of
simulations with bandpower covariance Σ (Buza 2019).
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2.3. CMB-S4 Scalable Instrument Specification

To span the four atmospheric windows available to ground-
based experiments (Figure 3) and have enough channels to
mitigate against complex foregrounds, we assume eight
channels at 30, 40, 85, 95, 145, 155, 220, and 270 GHz,
which are placed on small-aperture telescopes. For these low-
resolution instruments, we pick 0.52 m apertures, motivated by
proven SAT Stage-3 experiments (Kang et al. 2018), yielding
the beams presented in Table 1. In addition, we also include a
20 GHz channel on a large-aperture telescope (LAT).97

We derive the split in each window by separating the
overlapping bands as far as possible while still keeping the
calculated per-detector NET within 10%–15% of the NET for a
detector that spans the full window. The ideal per-detector

NETs were calculated with NETlib.py98,99 at the South Pole
and Chile, using the 10 yr MERRA2 median atmospheric
profiles (Gelaro et al. 2017). We use the average of NET
calculated for detectors at the two sites, which are 214, 177,
224, 270, 238, 309, 331, 747, and 1281 μKCMB s for our nine
channels at 20–270 GHz, respectively.100 These NETs are
lower than similar BICEP/Keck channels (which are 287.6,
313.1, and 837.7 μKCMB s for 95, 150, and 220 GHz,
predominantly because they are calculated for a 100 mK
thermal bath, as opposed to 250 mK (which was also used in
the CMB-S4 Science Book forecasts).
We also fold in information from two WMAP channels, 23

and 33 GHz, and seven Planck channels, 30, 44, 70, 100, 143,
217, and 353 GHz, though this extra information is only
relevant in the early stages of CMB-S4 observation.

Figure 3. Calculated atmospheric brightness temperature spectra (at zenith) for the South Pole at 0.5 mm precipitable water vapor (PWV) and Atacama at 1.0 mm
PWV (both are near the median values). Atmospheric spectra are generated using the am Atmospheric Model (Paine 2017). The top-hat bands, in red and blue, are
plotted on top of these spectra, with the height of each rectangle equal to the band-averaged brightness temperature using the South Pole spectrum. Details about the
bands, such as fractional bandwidths, are presented in Table 3-1 of Abazajian et al. (2019).

Table 1
Optimized Instrument Configuration for the PGW Survey, as Presented in the CMB-S4 CDT Report

Frequency (GHz)

Science Goal Item 20 30 40 85 95 145 155 220 270 DL Total

r No. of detectors 130 260 470 17 k 21 k 18 k 21 k 34 k 54 k 84 k 250 k
Angular resolution [FWHM] 11′ 77′ 58′ 27′ 24′ 16′ 15′ 11′ 8 5 1 0

97 The inclusion of a 20 GHz channel is the result of insight gained from an
earlier iteration through the forecasting loop (performed for the CMB-S4
Science Book), which demonstrated that, for specific foreground models,
sizable biases were present due to synchrotron residuals. To mitigate against
such biases, the reference design was updated to include this additional
channel. Placing this low-frequency band on an SAT would result in a very
broad beam, which would dominate the noise at the relevant scales; to
circumvent this, as mentioned above, we place it on an LAT. This means that,
while the scaling of the noise for this channel is still calculated from achieved
performance, we use noise parameters (see Equation (7)) that are more in tune
with what has been achieved by LATs at the time of this forecasting (Louis
et al. 2017; Henning et al. 2018), i.e., the 1/f noise component is characterized
by an ℓknee = 200, keeping γ—the slope of this component—the same as for
the small-aperture noise, and a beam of Q = ¢n 11 full width at half maximum
(FWHM) (assuming a 6 m aperture).

98 https://cmb-s4.org/wiki/index.php/New_NET_Calculator_and_Validation
99 https://github.com/dbarkats/NET_forecast_python
100 Going beyond the number of bands for the current reference design
increases manufacturing complexity and costs, and decreases the per-channel
NET, thereby reducing the overall sensitivity in each channel; while exploring
alternative options with five bands (20, 30, 95, 155, 270 GHz) and seven bands
(20, 30, 95, 155, 220, 270 GHz) has shown that choosing fewer bands leads to
statistically significant biases on r after marginalization over foreground
residuals (an increase in bias of up to Δr = 1.5 × 10−4 when compared to the
current count). Balancing these considerations, we have chosen the proposed
configuration with nine frequency bands for this work. Going forward, as
instrumentation choices are finalized, we anticipate a possible revision of this
design.
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Since the forecasts use scaled BICEP/Keck bandpower
statistics, they also use the same bandpower window functions
and uniform binning: nine multipole bins with Δℓ= 35,
spanning a multipole range of 21� ℓ� 335.

2.3.1. Delensing Treatment

One of the main challenges for detecting primordial B modes
is the lensing B-mode contribution from the weak lensing of E
modes as the CMB photons travel to us. For instrument noise
levels below 5 μK-arcmin, this lensing signal becomes an
important source of contamination and its sample variance
significantly worsens our constraining power on PGWs (Smith
et al. 2012). Unlike Galactic foregrounds, the lensing signal is
achromatic and cannot be mitigated with multifrequency
observations. However, its contribution can be reduced by
knowing the cumulative gravitational lensing potential f along
the line of sight and having a high-fidelity E-mode map.
Together, the two can be combined to form a lensing B-mode
template by lensing the E-mode map with the f field and
subtracting this template from the measured B-mode map. This
technique is known as delensing (Knox & Song 2002; Seljak &
Hirata 2004; Carron & Lewis 2017; Carron et al. 2017).

Reconstructing f with high S/N requires high-sensitivity, high-
angular-resolution CMB polarization maps (Lewis & Challinor

2006). Therefore, in addition to the low-resolution effort, we
assume a separate high-resolution large-aperture instrument
dedicated to measuring the intermediate- and small-scale informa-
tion necessary to delens the B-mode map. This instrument is
assumed to have 1′ resolution and noise performance equivalent to
the 145 GHz channel from the small-aperture telescopes. These
experiment specifications are revised for the CMB-S4 Reference
Design Report and updated in Section 7. The translation between
detector effort and map noise in the delensing instrument is based
on the method used for the low-resolution instrument (as described
in Section 4.1 and Equation (7)), but using SPTpol achieved
performance (Sayre et al. 2020), i.e., without incurring penalties
from nonidealities specific to low-resolution instruments and low-ℓ
analysis, such as low-ℓ mode filtering and nonuniform coverage.
Following the iterative formalism in Smith et al. (2012),101 using

=ℓ 300min and =ℓ 4000max for the f reconstruction and
=ℓ 30min for the E-mode map, we convert the map noise in the

delensing survey to a delensing efficiency, or equivalently a
fractional residual in the lensed B-mode power, specified by
setting the residual lensing amplitude AL to the corresponding
level.
The detector effort dedicated to the delensing instrument

comes out of the total detector effort budget for the r survey,
and the distribution of effort between the low-resolution and
delensing instruments is part of the optimization process, as
shown in Figures 4 and 5.

2.4. Multicomponent Theory Model

Our model includes a CMB component (Planck Collabora-
tion et al. 2014) parameterized by r and the residual lensing
amplitude, AL, and components of polarized dust and
synchrotron emission. We assume that the synchrotron scales
as a simple power law in both frequency and ℓ. For the dust, we
assume a power-law scaling in ℓ and a modified blackbody
spectral energy distribution (SED). We allow for spatially
correlated synchrotron and dust, parameterized by a single

Figure 4. Top: optimized constraints on r for 3% sky fraction as a function of
total effort. We include in solid black the case with delensing, allowing for
decorrelation of the foregrounds, in solid gray the case without delensing, in
dotted gray the case where no decorrelation is allowed in the model (with
delensing), and in dashed black the raw sensitivity in the absence of
foregrounds and lensing. Bottom: for the delensed case (with decorrelation), we
show the fraction of effort spent on removing the lensing sample variance and
the resulting rms lensing residual.

Figure 5. Optimized map depth in each of the small-aperture channels as well
as in the delensing channel, for fsky = 3%, corresponding to the delensed (with
decorrelation) case in Figure 4.

101 Delensing estimators that are technically more optimal have been
introduced in Carron (2019) and Millea et al. (2020), and we are currently
developing tools to test their feasibility in further iterations of our forecasting.
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correlation parameter ò (Choi & Page 2015; Krachmalnicoff
et al. 2018); the effective frequency scaling of this correlation
depends on the relative strength of the two components. In
addition, we also consider dust and synchrotron frequency
decorrelation parameters, which allow their spatial pattern to
change with frequency, suppressing the correlation of fore-
ground signals between observing bands. A detailed descrip-
tion of the full parametric model is presented in Appendix A.
The current model is easily extendable to accommodate
additional complexities that have not yet been captured;
alternatively, other models could be substituted here as well.

The model parameters are:

1. r, tensor-to-scalar ratio, at pivot scale ks= 0.05Mpc−1;
2. and spectral index of the tensor modes nt= 0;
3. AL, residual lensing amplitude;
4. Adust, dust amplitude, in mKCMB

2 , at 353 GHz and ℓ= 80;
5. βd, dust spectral index;
6. Td, dust temperature;
7. αd, dust spatial spectral index;
8. Δd, dust frequency correlation, between 217 and

353 GHz, at ℓ= 80;
9. EE/BBdust, power ratio for dust;
10. Async, synchrotron amplitude, in mKCMB

2 , at 23 GHz
and ℓ= 80;

11. βs, synchrotron spectral index;
12. αs, synchrotron spatial spectral index;
13. Δs, synchrotron frequency correlation, between 23 and

33 GHz, at ℓ= 80;
14. EE/BBsync, power ratio for synchrotron;
15. ò, dust/synchrotron spatial correlation.

For a given auto- or cross-spectrum, we step through the
model components, combine the appropriate amplitude func-
tions for the two bands contributing to the spectrum, and apply
the bandpower window functions to obtain the binned
expectation values. Finally, we sum over model components
to find the total expectation value for that spectrum. In addition,
because a Fisher forecast requires knowledge of the response of
the model expectation values with respect to the model
parameters, we also output the derivatives of the model
expectation values.

The Fisher matrix that we consider is usually 10-dimen-
sional. The parameters we constrain are r, Adust, βd, αd, Δd,
Async, βs, αs, Δs, and ò. We fix Td= 19.6 K because this
parameter is mostly degenerate with Adust for observations
below 300 GHz, where the SED is in the Rayleigh–Jeans limit.
The parameter AL is assumed to be known, but its value is
adjusted to represent varying levels of delensing, as discussed
in Section 2.3.1. The EE/BB ratios are not relevant for
calculations presented here, because we are focusing on
constraints from the BB spectrum only; however, these
parameters are left in for possible future forecasting. The
fiducial model used for forecasting is centered at either r= 0 or
0.003, with m=A 4.25 Kdust CMB

2 (best-fit value from BICEP2/
Keck Array Collaborations VI 2016) and m=A 3.8 Ksync CMB

2

(95% upper limit from BICEP2/Keck Array Collaborations
VI 2016). In Sections 2–6, we assume no variation of these
foreground amplitudes over the sky fractions relevant to this
study, i.e., they are always pinned to the values listed above.
We revisit this assumption in Section 7. The spatial and
frequency spectral indices are centered at the preferred Planck
and WMAP values (Fuskeland et al. 2014; Planck

Collaboration XXII 2015): βd= 1.59 (with Gaussian prior of
width 0.11); βs=− 3.10 (with a Gaussian prior of width 0.30);
αd=− 0.42; αs=− 0.6; and the dust/synchrotron correlation
is centered at ò= 0. Following Planck Collaboration (2017),
the central dust correlation value is taken to be Δd= 0.97 (3%
decorrelation) and the synchrotron correlation value is assumed
to be Δs= 1 (no fiducial synchrotron decorrelation). Unless
otherwise stated, the parameters have flat unbounded priors.

2.5. Bandpower Covariance Matrix Rescaling

2.5.1. Signal Scaling

The output model expectation values are also useful in the
construction of our bandpower covariance matrix. To construct
the BPCM components, we use lensed-ΛCDM + BICEP/Keck
noise simulations. However, because we have the individual
signal-only, noise-only, and signal× noise terms, we can
record all the individual BPCM components:

sig= signal-only terms Cov(Si× Sj, Sk× Sl);
noi= noise-only terms    ( ´ ´Cov ,i j k l);
sn1= signal× noise terms  ( ´ ´S SCov ,i j k l);
sn2= signal× noise terms  ( ´ ´S SCov ,i j k l);
sn3= signal× noise terms  ( ´ ´S SCov ,i j k l);
sn4= signal× noise terms  ( ´ ´S SCov ,i j k l).

Here, S are signal simulations,  are noise simulations, and the
indices i, j, k, and l run over the experimental frequency
channels.
While calculating the covariances from the signal and noise

simulations, we also record the average signal bandpowers
from the simulations. For a new signal sky model, we can
calculate the new bandpower expectation values, and rescale
the signal components in the bandpower covariance matrix by
the appropriate power of the ratio of the recorded average
signal bandpowers and the newly calculated expectation
values. The full BPCM construction and rescaling procedure
is presented in Appendix B.
When we do this, we set to zero any term that has an

expectation value of zero (under the assumption that signal and
noise are uncorrelated, and different signals are uncorrelated) to
reduce the Monte Carlo error in the resulting covariance matrix,
given the relatively modest number of 499 realizations used.
We also set to zero the covariance between bandpowers that are
separated by more than one bin in ℓ, but importantly, preserve
the covariance between the auto- and cross-spectra of the
different frequency bands.
It is worth noting that this procedure allows us to have

different numbers of degrees of freedom per bandpower for
noise than for signal, which is a byproduct of signal and noise
entering differently in a real analysis. This complication is
often ignored in other forecasts by setting the noise and signal
degrees of freedom to be identical.
The ability to estimate a BPCM for any model means that

only a single set of simulations is necessary, and one does not
have to run simulations for any and all conceivable scenarios.
As already mentioned, in all the projections below we choose
to fix Σ(θ)=Σ, and hence we only apply the rescaling step
once per fiducial model considered, i.e., we do not rescale our
BPCM at every step along the way.
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2.5.2. Noise Scaling

In addition to scaling from one signal model to another,
recording all the covariance terms allows us to rescale the noise
components as well. Given a data set for which we have
simulations, the noise scaling can be performed in one of two
ways. The first is to take a frequency present in the data set and
scale down the noise in the BPCM by the desired amount. In
particular, each BPCM component is scaled independently by

N Nℓ ℓ,S4 ,BK for each factor of  present. The second way is
to add an additional frequency, for which we do not yet have
data, by taking the covariance structure of an existing
frequency, scaling down the noise by the amounts described
above, and then expanding the BPCM by filling it in with the
appropriate variance and covariance terms between the new
band and all the existing ones. These tools facilitate the
construction of a new data structure to explore any combination
of frequency bands, with any sensitivity in each band.

To obtain Nℓ values for a CMB-S4 channel by scaling the
achieved Nℓ values of a Stage-3 channel, we have to first scale
by the ratio of their respective survey weights and then scale by
the ratio of beam window functions, Bℓ

2. The survey weight is
defined as s=w f2 sky map

2 , where fsky is the effective sky area
and σmap is the Q/U map noise level. The input simulations use
measured non-Gaussian Bℓ shapes, but we rescale based on
Gaussian approximations that are close to the true functions.
We can write the noise spectrum of a CMB-S4 channel as

( )=N N
w

w

B

B
, 5ℓ ℓ

ℓ

ℓ
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, Θν is the FWHM, in radians, of

the Gaussian beam, and wi,achieved is the achieved integrated
survey weight of a particular instrument.

To obtain the projected achieved survey weight for any of the
CMB-S4 channels, we rescale the achieved survey weights as
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where -nS4
det yr is the number of detector-years assumed for

CMB-S4 at any particular frequency, and -nBK
det yr is the number

of detector-years in the BK15 data set, with the instruments in
their final state (BICEP2/Keck Array Collaborations X 2018).

The implicit assumption in this step is that the performance
of this new CMB-S4 frequency channel falls short of idealized
performance by the same factor as the real map from which we
are scaling. The survey weight scaling is always performed
from the closest frequency for which we have available
simulation inputs: 20–95 GHz are scaled from BICEP/Keck
95 GHz data; 145 and 155 GHz are scaled from BICEP/Keck
150 GHz data; and 220 and 270 GHz are scaled from BICEP/
Keck 220 GHz data.

Since we are using BICEP/Keck products, which are calculated
with a particular sky mask m (with = åp

W
f m 1i isky

BK
4

pix %,
where the sum is over the pixel i), we must also scale these
products appropriately to evaluate the effect of different sky
fractions. We propagate the effects of fsky in the noise spectra
and BPCM in two ways: first, we inflate the Nl values by a
factor b = f fsky

S4
sky
BK, which boosts the (signal× noise) and

(noise× noise) terms of the covariance matrix by β and β2, to
take into account the redistribution of the achieved sensitivity onto

a larger patch. Note that the (signal× signal) component remains
unchanged in this step. Second, we scale down the entire
covariance matrix by a factor of β to increase the number of
degrees of freedom in the BPCM, accounting for the fact that we
are now observing more modes. This procedure scales the signal
and noise degrees of freedom independently, preserving the
relative effects that filtering and nonuniform coverage have on the
covariance structure. We revisit the way this scaling is performed
in Section 7, where we separately take into account the impact of
realistic observing strategies on the various components.
With the Nℓ scalings in hand, we can perform the

aforementioned BPCM operations to arrive at a scaled
CMB-S4 BPCM that encompasses the intricacies of realistic
observing conditions.

3. Optimized Forecasting for r

In this section, we answer the following question: given a
fixed amount of effort and the instrument specifications offered
in the previous sections, what is the optimal distribution of
effort for foreground cleaning and delensing such that the
tightest constraint on r is achieved? To do this, we set up an
optimization process that calculates the steepest descent
through the ten-dimensional space (effort in the nine single-
frequency low-resolution channels plus one high-resolution
channel for delensing).
We operate in discrete units of effort, with a single unit defined

to be equivalent to 500 detector-years at 150 GHz (similar to a
BICEP/Keck 150GHz receiver observing for 1 yr). For other
channels, the number of detector-years per unit of effort is
calculated as ( )n´n 150 GHzdet,150

2. We define “effort” in
these units because it is proportional to focal plane area, which is
one of the strongest drivers of the overall project cost.
At each step of the algorithm, we allocate a unit of effort in

each dimension. For each separate allocation, we rescale the
BPCM, compute a new Fisher matrix, and calculate the
resulting σ(r). We then compare the constraints and perma-
nently assign one half of the unit of effort to the channel that
produces the largest improvement in σ(r) and the other half to
its atmospheric window counterpart (the groupings are 30/40,
85/95, 145/155, and 220/270 GHz). This last step, motivated
by earlier iterations through the forecasting loop, is enforcing a
split in order to reduce the foreground biases obtained under
various foreground models. Projections run to a total of 6000
units of effort, which would be equivalent to 500,000 150 GHz
detectors operating for six years. Stage-4 scale surveys seem
likely to be in the range of (1–3)× 106 detector-years, an order
of magnitude increase from Stage-3 experiments. Though it is
generally prohibitive to calculate the entire 10-dimensional
hypercube of σ(r), we have validated our approach with a full-
grid calculation at various points in the optimization.
Figure 4 shows the optimized constraints on r as a function of

total effort, as well as the fraction of effort spent on removing the
lensing sample variance and the resulting map rms lensing
residual, for the no-detection scenario (i.e., r= 0).102 To reach

102 The correlation r qr j
between r and the foreground parameters, given by

( ) ( ( ) ( ))r q s s q=q r rCov ,r j jj
, is on the order of a few percent for the case

with no decorrelation, and increases to a few tens of percent for the case which
includes decorrelation. Given the chosen decorrelation parameterization and its
strength, the increase in correlation values for the latter case is driven by the
arising degeneracies between the dust decorrelation parameter and the rest of
the dust parameters and r when Δd < 1. While the parameters are more
correlated, we fully marginalize over them, resulting in a <40% increase in
σ(r).
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the desired science goal of σ(r)= 5× 10−4, for fsky= 3% (see
discussion on sky fraction below), requires 1.2× 106 150 GHz
equivalent detector-years (or 1.8× 106 when including margin-
alization over the decorrelation parameters).

Upon obtaining the optimized detector count distribution, we
obtain the input noise spectra according to Equation (5). To use
these spectra to create noise simulations (discussed in
Section 4.1), it is useful to distill them to a few input
parameters. To that end, we fit them to the formula

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( ) ( )
p

s=
+ W

+
g

N
ℓ ℓ

B

ℓ

ℓ

1

2
1 7ℓ

ℓ
,fit

pix

2
knee

map
2

and obtain the map depth σmap, slope γ, and ℓknee values. For
the small-aperture data, we find ℓknee= 50–60 with γ of −2 to
−3, depending on the frequency. The optimal distribution of
effort is presented in Figure 5, and the configuration that
achieves the science goal in 4 yr (or 6 yr when marginalizing
over decorrelation) is summarized in Table 1.

As mentioned, it is also necessary to optimize the sky
fraction. The trade-off between raw sensitivity, ability to
remove foregrounds, and ability to delens results is a
complicated optimization problem with respect to sky cover-
age. Figure 6 shows the r sensitivity forecast for CMB-S4 as a
function of the observed sky fraction for the case that we only
have an upper limit (r= 0). In this case, the optimization
prefers a deep survey that targets as small an area as possible.
This conclusion, of course, depends on the forecasting
assumptions; to that end, we would like to draw attention to
several key factors.

First, holding the desired constraint on r fixed, the level to
which we rely on delensing to decrease the sample variance
increases at smaller sky fractions, as expected. For example, as
shown in Figure 6, achieving the forecasted sensitivity on r for
a survey targeting 1% of the sky will require a >80% reduction
in the map rms level of the CMB lensing B-modes. While from
a sensitivity standpoint it is possible to achieve these levels, the
extent to which systematic effects and small-scale foregrounds
will need to be constrained may become too stringent (Carron
et al. 2017; Polarbear Collaboration et al. 2020).

Second, the current optimization assumes uniform fore-
ground behavior across the sky (with amplitude equal to that in
the BICEP2/Keck region), while in reality the average
amplitude, and possibly the complexity of foregrounds,
increase as larger sky areas are targeted. This effect would
steepen the optimization curve at larger sky fractions and
increase our preference for small amounts of sky.

Third, in the case of a detection, a practical consideration for
the robustness of the final r result is its reproducibility across
the sky. It is therefore useful to observe multiple 1% patches
from which we can derive and compare separate cosmological
constraints.

Finally, technical aspects of E/B separation of CMB maps
may heavily disfavor patches smaller than about 1% of the sky
due to cut-sky effects (Bunn et al. 2003; Smith & Zaldar-
riaga 2007; BICEP2/Keck Array Collaborations VII 2016).

Balancing the forecasting results with these concerns, we
have chosen 3% as the default sky fraction for CMB-S4 r
constraints (assuming a true value of r= 0). This choice was
made for both the CMB-S4 Science Book (Abazajian et al.
2016) and CMB-S4 CDT Report (Lawrence et al. 2017)
versions of the forecasts. As mentioned in Section 2.5.2, we

revisit the issue of sky coverage in Section 7 with updated
assumptions about our survey strategy and how we perform the
fsky scaling from the achieved products.

4. Map-based Simulations

Using simulations to optimize the design of a CMB
experiment inevitably involves a trade-off between the degree
of detail that the simulations are able to capture and the
computational cost of generating and analyzing them. This
trade-off includes the choice of the domain in which the
simulation is generated, ranging from the most detailed (but
most expensive) time domain, through the map domain, to the
most simplified (but most flexible) spectral domain. Inclusion
of additional detail can help validate semianalytic results,
explore their sensitivity to assumptions about foreground
models, sky coverage, and instrumental noise and systematics,
and in more mature stages of design, can inform specific
instrument and survey strategy choices.
Here, we review the methods used to explore the parameter

space for the PGW survey, including map-level noise
simulations, sky models, and observation strategy. We also
describe our approach to modeling instrumental systematics,
the delensing survey, and the analysis methods.

Figure 6. Top: optimized constraints on r as a function of sky fraction, for a
fixed effort of 1.2 × 106 150 GHz equivalent detector-years. We include in
solid black the case with delensing, allowing for decorrelation of the
foregrounds, in solid gray the case without delensing, in dotted gray the case
where no decorrelation is allowed in the model (with delensing), and in dashed
black the raw sensitivity in the absence of foreground and lensing. Bottom: for
the delensed case (with decorrelation), we show the fraction of effort spent on
removing the lensing sample variance and the resulting rms lensing residual.
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In addition, we use these simulations to validate the spectral
domain forecasts for configurations where the approaches are
directly comparable, thereby closing the loop presented in
Figure 1.

4.1. Map Noise Simulations

We use Equation (7) to obtain the desired noise prescription,
for a fixed total effort, and then generate 499 Gaussian noise
realizations at each band. As in the Science Book, we have
mostly used a circular sky area of 3%. Small-aperture cameras
have a very wide instantaneous field of view, and hence the
observed sky region necessarily has a large edge taper. For the
nominal 3% sky coverage simulations, we assumed a circular
sky patch centered at R.A.= 0°, decl.=−45° (slightly below
the BICEP/Keck patch) with full coverage out to radius
θ< 12° and “relative hits” tapering to zero with a cosine-
squared shape for 12° < θ< 27°. The noise realizations are
divided by the square root of this coverage pattern such that the
noise “blows up around the edge” as it does in real maps. We
also assume an =ℓ 30min cutoff, below which we do not
recover any information.

For the CMB-S4 Reference Design Report (and Section 7),
we include an explicit scan strategy on the sky and produce
more realistic sky coverage patterns, but for the moment we
regard the above as a reasonable compromise between idealism
and reality.

4.2. Foreground Models

To make simulated sky maps, we add realizations of lensed
CMB (Planck Collaboration et al. 2020d), both with and
without a PGW component, to models of the Galactic
foregrounds. So far, we have run simulations with seven
foreground models, which we now describe.

1. Simple Gaussian realizations of synchrotron and dust
with power-law angular power spectra at amplitudes set
to match the observations in the BICEP/Keck field, and
simple uniform SEDs (power law for synchrotron,
modified blackbody for dust).

2. The PySM103 model a1d1f1s1, where the letters refer
to anomalous microwave emission (AME), dust, free–
free, and synchrotron, respectively, and the numbers are
the base models described in Thorne et al. (2017). Free-
free and AME are assumed to be unpolarized in this
model, and thus do not affect the analysis in this paper.

3. The PySM model a2d4f1s3, where the models have
been updated to variants that are also described in Thorne
et al. (2017). Note that these include 2% polarized AME,
a curvature of the synchrotron SED, and a two-
temperature model for dust.

4. The PySM model a2d7f1s3, where the dust model has
been updated to a more sophisticated physical character-
ization of dust grains as described in Hensley (2015).
This model is interesting in that it does not necessarily
conform to the modified blackbody SED.

5. The dust in Model 3 is replaced by a model of polarized
dust emission that incorporates HI column density maps
as tracers of the dust intensity structures, and a
phenomenological description of the Galactic magnetic
field as described in Ghosh et al. (2017). The model is

expanded beyond what is described in that paper to
produce a modest amount of decorrelation of the dust
emission pattern as a function of frequency motivated by
the analysis of Planck data in Planck Collaboration
(2017).

6. A toy model where the strong dust decorrelation suggested
in Figure 3 of Planck Collaboration (2017) is taken at face
value (Δ217×353= 0.85, at ℓ= 80) and scaled to other
frequencies using the functional form given in Appendix B
of Vansyngel et al. (2017), with a linear scaling in ℓ. While
such a model is not ruled out by current data, it appears to
be very hard to produce such strong decorrelation in
physics-based models. We also note that Sheehy & Slosar
(2018) and Planck Collaboration et al. (2020c) have
reanalyzed the same Planck data, and while they find that
the high level of decorrelation in this model is still
consistent with the data, their best fit to that same data has
no decorrelation.

7. A model based on MHD simulations (Kritsuk et al. 2017)
of the Galactic magnetic field, which naturally produces
non-Gaussian correlated dust and synchrotron emission.

Models 1 to 3 use the large-scale modes of the real sky as
measured above the noise in the Planck data. This means that
these models are intrinsically “single-realization,” and this must
be borne in mind when interpreting the results. Models 4 and
6 are not based on Planck data, but still contain a fixed signal
realization. Models 0 and 5 have different seeds for each signal
map and include the (Gaussian) sample variance. The PySM
models fill in the small-scale structure with power-law
Gaussian extrapolations, while Models 4 and 6 naturally
produce non-Gaussian small-scale structure. However, all of
these models are consistent with current data, and the more
complex models are not necessarily more accurate reflections
of reality.

4.3. Instrumental Systematics

Control of instrumental systematics is a critical design
consideration. However, predicting and modeling these effects
realistically is a difficult task that is dependent on actual
instrument and survey design details, and furthermore, their
impact on actual results comes not through the modeled effects
but through unmodeled residuals. Many existing CMB
experiments have published in-depth studies that use calibra-
tion data and simulations to set upper limits on a wide variety
of effects, e.g., Keisler et al. (2015), BICEP2 Collaboration III
(2015), Essinger-Hileman et al. (2016), Polarbear Collabora-
tion et al. (2020), and BICEP2/Keck Array Collaborations XI
(2019). There have also been several publications that examine
the effect of specific classes of instrumental systematics on a
generic polarization experiment, e.g., Hu et al. (2003), O’Dea
et al. (2007), Shimon et al. (2008), Wallis et al. (2014), and
Duivenvoorden et al. (2019).
For this study, in the absence of detailed instrument and

survey designs, we have taken the first steps in simulating
various generic classes of additive systematic by injecting
additional noise-like components into the maps and then
reanalyzing them without knowledge of what was put in. We
have experimented with components that are both correlated
and uncorrelated across frequency bands, and that have white,
1/ℓ, and white +1/ℓ spectra, at varying levels compared to
single-frequency map noise, or for correlated cases, combined103 https://github.com/bthorne93/PySM_public
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map noise. The leading-order effects of such components can
be mitigated via explicit modeling or filtering, but they may
still produce map-level residuals. Examples of mechanisms in
this class include bandpass mismatches, beam and pointing
variations, calibration variations, cross-talk effects, half-wave
plate leakage, ground pickup, and readout irregularities.

To assess the impact of instrumental systematics on
measurement requirements, for the purpose of determining
both the required survey depths and the maximum allowable
levels of systematic effects in the final single-frequency survey
maps, our general procedure is to feed parameterizations of
various systematic effects into semianalytic forecasts and judge
at what levels classes of systematics introduce parameter biases
or additional uncertainties that are significant compared to the
science targets for those parameters.

For the uncorrelated systematic, we add power indepen-
dently to each frequency map, scaled by the noise power in that
map. This systematic is “noise-like,” and therefore the power in
the map does not roll off at high multipoles due to beam
smoothing. The expression for the auto-spectrum of the
systematic is
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where σmap, lknee, and γ are same as found in Section 3; A and B
are the amplitudes of the white and 1/ℓ components, in units of
fraction of noise power.

For the correlated systematic, we add a common signal at the
same amplitude to all frequency maps. Since this signal is
common, it affects both auto- and cross-spectra as
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In place of the per-frequency noise power levels, we define the
overall level of this systematic relative to scomb

2 , which is the
inverse quadrature sum of the per-frequency noise power
levels. We use a common lknee= 50 and γ=− 2. Since this
systematic is “CMB signal-like,” we calculate the bias
assuming that it has been smoothed in each map according to
the beam size of that frequency.

Other classes of systematics could be simulated by
manipulating the analysis procedure only. Examples of such
effects include uncertainties in the bandpasses, polarization
angles, calibration, and beam shapes. Such examples are not
presented here and are left for future work.

4.4. Delensing

We have generated high-resolution simulated maps on which
we intend to run explicit lensing reconstruction and then
include that information in the analysis. While we are currently
working on this analysis, this process has not yet converged,
and so for the present, we approximate delensing by scaling
down the ΛCDM lensing signal by the appropriate factor, as
described in Section 2.3.1.

5. Simulation Analysis Methods

To make simulated maps, the noise realizations described in
Section 4.1 are added to the sky models described in
Section 4.2. For each realization, one then has a stack of

multifrequency I, Q, and U maps containing nonuniform noise,
foregrounds, and signal, and the challenge is to reanalyze them
to recover the parameter of interest (in this case, r). This can be
done by different teams using different methods, and could be
carried out in a blind manner, although we have not done
this yet.
So far, we have experimented with two methods. The first is

a spectral internal linear combination (ILC) method (e.g.,
Tegmark et al. 2003), which determines the linear combination
of multipole coefficients that minimizes the foreground and
noise power without altering the CMB contribution. This
method only relies on the frequency dependence of the CMB,
and does not rely on assumptions about the spectral depend-
ence of foreground components. Determination of cleaning
coefficients in each bin (Δℓ= 31) leads to the smallest
foreground residuals, but yields foreground residuals that are
difficult to model. Relying on a single cleaning coefficient
across all bins leads to foreground residuals that are easy to
model but large. As a consequence, we use the same cleaning
coefficients in three neighboring bins, which results in residuals
that are acceptable and can still be marginalized in the power
spectrum likelihood analysis. For the marginalization, since
foreground residuals are typically dominated by dust, we
assume an ℓ-dependence of the residuals across the three bins
that share a common cleaning coefficient that is consistent with
the ℓ-dependence observed by Planck for dust. For models that
exhibit decorrelation between different dust components, this
model is no longer correct. This could be improved with better
understanding of foregrounds, but no attempts were made to do
so in this analysis method.
The second method is an evolution of the parametric

multicomponent fit to the ensemble of auto- and cross-spectra,
as used for the BICEP/Keck analysis to date (BICEP2/Keck
Array & Planck Collaborations 2015; BICEP2/Keck Array
Collaborations VI 2016; BICEP2/Keck Array Collaborations
X 2018). This method fits the observed bandpowers to a model
composed of the lensing expectation plus dust and synchrotron
contributions and a possible r component. Dust and synchro-
tron each have an amplitude (Adust and Async), a spatial spectral
parameter (αd and αs), and a frequency spectral parameter (βd
and βs). We also allow a dust/synchrotron correlation (ò), and
decorrelation of the foreground patterns over frequency (Δd

and Δs). This model is equivalent to the one described in
Section 2.4.
Both of these analysis methods are only close to optimal

when the foreground behavior is close to uniform across the
observing field. For analysis of larger fields, algorithms that fit
more complex behavior will likely be required, for example,
modeling the frequency spectral indices individually in (large)
pixels.

6. Map-based Results

Table 2 summarizes the results of the analysis for
simulations of the optimized configuration obtained in
Section 3 (1.2× 106 150 GHz equivalent detector-years) and
residual lensing power AL= 0.1.104 The lensing residual is
expected for iterative EB delensing according to Smith et al.
(2012) for the sensitivity and angular resolution of the

104 The distributions are close to normal, with no distribution showing
significant skewness or kurtosis, and therefore well-characterized by the quoted
mean and standard deviation values.

13

The Astrophysical Journal, 926:54 (23pp), 2022 February 10 Abazajian et al.



delensing survey. The results from the parametric analysis
naturally depend on whether a marginalization over decorrela-
tion is performed, while the ILC analysis did not attempt to
capture the effects of decorrelation on the recovery of r and σ
(r). This is evidenced by the large bias for the ILC method for
Model 5 when compared to the parametric analysis that directly
accounts for a possible decorrelation (last column). In general,
we see that for r= 0 the simple Gaussian foreground Model 0
gives σ(r)≈ 5× 10−4, exactly as expected from the semiana-
lytic formalism. As we progress to the more complex
foreground models, σ(r) is generally in the range
(5–8)× 10−4.

The level of biases is generally below 1.0σ for all the
models. These simulations are sets of 499 realizations, so the
statistical uncertainty on the bias is approximately 0.04σ.
However, the strong decorrelation in Model 5, as well as the
high-significance detection of decorrelation in the parametric
analysis of Model 4, do significantly increase σ(r) and the level
of bias. While the parametric method is able to account for the
decorrelation, by construction information is lost, and in fact, if
one believed in such a scenario, a different re-optimization to
concentrate the sensitivity at closer-in (less decorrelated)
frequencies would be called for.

Table 3 shows results on detection significance for the CDT
Report configuration for sky Model 6. For r= 0, the 95% upper
limit is about 2.1σ(r). The value of the tensor-to-scalar ratio for
which we expect a 5σ detection after 4 yr of operation is
r= 0.004.105 For a tensor-to-scalar ratio of r= 0.003, the
median detection significance after 4 yr is expected to be 4σ. If
a detection were to be emerging at this point, extending the run
time to 8 yr would be justified in order to reach a 5σ detection.
While σ(r) can be precisely forecast for given assumptions,

the true achieved detection level for r depends on the particular
realization of the B-mode field in the observed patch of sky.
Therefore, we can only forecast a distribution of detection
levels. For a tensor-to-scalar ratio of r= 0.003 and 8 yr of
observing, we expect to achieve more than a 3σ detection with
a probability of 0.99, more than 4σ with a probability of 0.93,
more than 5σ with a probability of 0.53, and more than 6σ with
a probability of 0.14. For simplicity, we focus on σ(r), and on
median detection levels as well as median 95% confidence
upper limits to state the typical outcome.
The numbers in Table 2 clearly show dependence on the

foreground model used in the simulation. If the actual

Table 2
Results of Two Analysis Methods Applied to Map-based Simulations Assuming the CMB-S4 CDT Report (Lawrence et al. 2017) Configuration and Our Suite of Sky

Models (DC4)

ILC Parametric (No Decorrelation) Parametric (Incl. Decorrelation)

r Value Sky Model σ(r) × 10−4 r Bias ×10−4 σ(r) × 10−4 r Bias ×10−4 σ(r) × 10−4 r Bias ×10−4

0 0 4.4 −0.2 4.4 0.2 5.7 0.3
1 4.6 0.8 4.7 6.8 6.4 5.2
2 4.7 0.7 4.8 3.8 6.5 1.9
3 4.6 1.2 4.7 6.0 6.7 0.7
4 6.5 4.8 7.9 43 8.3 −7.7
5a 18 17 31 340 15 0.2
6 4.8 −1.8 4.8 0.6 6.5 1.8

0.003 0 6.6 −0.7 6.2 0.3 8.1 0.4
1 6.9 0.9 6.5 6.9 8.5 5.4
2 6.5 −0.1 6.4 3.9 7.9 1.9
3 7.0 1.4 6.6 6.7 8.7 0.9
4 11 7.1 10 51 11 −6.2
5a 23 17 34 350 17 0.4
6 7.5 −0.2 7.1 1.4 8.6 2.5

Notes. All simulations assume an instrument configuration including a (high-resolution) 20 GHz channel, a survey of 3% of the sky with 1.2 × 106 150 GHz
equivalent detector-years, and AL = 0.1. (These analyses hold the AL model parameter fixed to the simulated value. When freeing this parameter in the analysis, we
recover similar σ(r) values to within ∼1% for the case with decorrelation, and ∼9% for the case without; imposing a Gaussian prior of σ(AL)/AL = 0.05 reduces the
differences to ∼0.2% and ∼2% respectively.)
a An extreme decorrelation model—see Section 4.2. In the right column, the parametric analysis includes a decorrelation parameter. No attempt is made in the ILC
analysis to model the decorrelation. The middle columns shows the parametric analysis when we do not include decorrelation parameters.

Table 3
Results on Detection Significance for the CMB-S4 CDT Report (Lawrence et al. 2017) Configuration, Using the Two Analysis Methods

ILC Parametric (Incl. Decorrelation)

r Value Duration Sky Model 95% CL UL Detection Significance 95% CL UL Detection Significance

0 4 yr 6 1.0 × 10−3 L 1.0 × 10−3 L

0.003 4 yr 6 L 4.0 L 4.2
8 yr 6 L 5.1 L 5.6

Note. For the r = 0 model, we report the 95% confidence level upper limit (CL UL).

105 The reason this is larger than five times the quoted σ(r) is sample variance.

14

The Astrophysical Journal, 926:54 (23pp), 2022 February 10 Abazajian et al.



foregrounds are substantially different than any of these cases,
then the biases could be larger. To obtain some understanding
of how large the biases could be, and what instrument
modifications might help to reduce them, we have also looked
at ILC biases in the extreme case that the foreground residuals
are not modeled or marginalized over, but simply absorbed into
the estimated B-mode power spectrum. Doing so with
dedicated simulations based on sky Model 6 increases the
magnitude of the bias on r to 4.1× 10−4. The dominant
contribution to the bias comes from synchrotron residuals,
which motivated placing a lower-frequency 20 GHz channel on
the LAT (see footnote 96), reducing the magnitude of the bias
to 1.8× 10−4, as shown in Table 2.

Table 4 summarizes the results of the analysis of simulations
including additive systematic effects on top of foreground
Model 3 (note: these simulations correspond to DC3). Different
combinations of uncorrelated and correlated contamination
with varying spectra are considered. The levels of systematic
contamination for these simulations were chosen to predict
biases on r of 1× 10−4 in semianalytic forecasts. We can see
that the different combinations explored increase the bias on r
by amounts that typically vary from 0.5 to 1.5× 10−4 for the
two separate analyses, over the different cases. We find that, to
restrict the bias on r to this level, the sum of additive
contamination effects needs to be controlled to 3%−7% of the
single-frequency survey noise, or (in the case of correlated
systematics) 6%−11% of the total combined noise levels. Such
percentages are consistent with the upper limits currently
achieved for residual additive systematic contamination
compared to survey noise by small-aperture experiments (e.g.,
BICEP2/Keck Array Collaborations VI 2016). Assuming that
CMB-S4 will include a sustained effort to continue to control,
understand, and model systematic effects down to levels
limited by survey noise, these percentages provide reasonable
benchmark requirements.

Results of simulating systematic errors in the determination
of bandpasses vary by analysis method. The construction of the
ILC method makes it largely insensitive to such errors. The
parametric analysis, which includes parameterized models of
the frequency spectra of different foregrounds, shows biases on
r at the 1× 10−4 level for uncorrelated random deviations in
band-center determination of 0.8%, or for correlated deviations
of 2%; we adopt these as reasonable benchmark requirements

to accommodate a variety of both blind and astrophysical
foreground modeling approaches.

7. Modifications Leading to the Reference Design

In this section, we describe updates to the framework and the
reference design that attempt to take into account the impact of
realistic observing strategies, realistic focal-plane layouts, and
mapping onto optics tubes, as well as a more conservative
approach to our delensing forecasts. We also seek to answer the
question of siting, with the South Pole and Chile being the two
choices considered. The work in this section has led to the
forecasts and plans presented in the most recent CMB-S4
document—the CMB-S4 Reference Design Report (Abazajian
et al. 2019). While this section is self-contained, we direct the
reader to the aforementioned source for more details.
In previous versions of our forecasting, we have had the

ability to choose the number of detectors in each frequency
band in a continuously variable manner, as shown in Figure 5.
For the reference design, a mapping of detectors into dichroic
optics tubes has been carried out, while seeking to maintain the
band distribution as determined in the optimization calcula-
tions. In scaling the achieved performance from the existing
monochromatic instruments to dichroic detectors and optics, no
degradation of optical performance has been assumed at this
stage, but this assumption should be verified with upcoming
data. This results in the configuration described in Abazajian
et al. (2019) with 18 SAT tubes, observing for 7 yr. We use this
configuration to scale the BICEP/Keck noise bandpower
covariance matrix in the same way as described in
Section 2.5. A further rescaling is applied to account for sky
coverage, as explained below.

7.1. Sky Coverage Effects

The semianalytic calculations of Section 2.5 assumed a
simplified rescaling for sky area, while the map-based
simulations of Section 6 assumed an idealized circular sky
patch, which is not actually achievable with a practical
instrument from a site at any latitude. Figure 7 compares our
prior assumptions to more realistic hit patterns.
From the South Pole, it is possible to concentrate the

coverage onto a compact region of sky, but from Chile, the
region that can be observed is affected by Earth’s rotation,
resulting in more extended coverage. The large instantaneous

Table 4
Map-based Simulation Results for Dedicated Simulations Containing Systematics (DC3)

Uncorrelated Correlated ILC Parametric

Systematic A (%) B (%) A (%) B (%) σ(r) × 10−4 r bias × 10−4 σ(r) × 10−4 r bias × 10−4

None 0 0 0 0 5.3 L 7.2 L
Uncorrelated white 3.3 0 0 0 6.0 0.84 8.0 0.63
Uncorrelated 1/ℓ 0 6.8 0 0 5.0 0.99 7.0 0.85
Correlated white 0 0 5.8 0 6.3 1.2 7.3 1.4
Correlated 1/ℓ 0 0 0 11 5.2 1.0 6.7 0.97
Uncorrelated white + 1/ℓ 1.6 3.5 0 0 5.6 0.89 7.5 0.76
Correlated white + 1/ℓ 0 0 2.9 5.3 5.5 0.98 6.9 1.0
Both, white + 1/ℓ 0.8 1.7 1.5 2.6 5.6 1.1 7.9 0.98

Notes. Simulations here assume the Science Book Configuration (Abazajian et al. 2016), i.e., an instrument configuration including a (low-resolution) 20 GHz
channel, a survey of 3% of the sky with 1.0 × 106 150 GHz equivalent detector-years, and AL = 0.1. We report sky Model 3 and r = 0 (no decorrelation), with
additive systematic effects in varying combinations, the amplitudes of which are specified as percentages of survey noise, for the white (A) and 1/ℓ (B) components.
The r bias columns list the bias due solely to systematic effects, i.e., the shift relative to the “None” case.
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field of view of the SAT telescopes means that there is a
minimum field size that can be achieved, and that there is
always a strong edge taper in the coverage pattern.

We have performed a calculation that attempts to optimize
simulated SAT observations from Chile to produce the densest
possible coverage on a 3% patch of low-foreground sky,
resulting in the overall pattern shown in Figure 7 as “Chile
full.” We segment this into its deepest part, which we call
“Chile deep,” and the remainder, which we call “Chile
shallow.”

From the South Pole, one can scan the same patch at all
times of the day and year at the same observing elevation, with
the size of the observed patch controlled by the length of the
scan throw in R.A. A minimal-length scan results in the pattern
shown in the figure as “Pole deep.” Lengthening the scan while
remaining in the low foreground sky results in the pattern “Pole
wide.” In the results below, “Pole deep” and “Pole wide” are
therefore “either/or” options.

Because the noise increases in regions with less observing
time, the effective sky area for noise is larger than the effective
sky area for signal—and both of these also depend on the
weighting applied when analyzing the maps. The patterns
shown in Figure 7 have the effective sky fractions reported in
Table 5, assuming inverse noise-variance weighting.

We can take into account the above effects by rescaling the
BICEP/Keck BPCM in a more sophisticated manner. First, we
need to scale the noise due to distributing the effort on a patch
of sky larger than the original BICEP/Keck one. The noise is
scaled by the effective noise factor
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where Ωpix is the solid angle of a single pixel, wi are the
weights for pixel i, and hi are the hit counts.

Second, since we observe a different number of modes, we
need to scale the signal, noise, and signal-cross-noise
contributions of the BPCM by the factors
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We also need to take out the effect of these factors from the
original BPCM. In the BICEP/Keck analysis, the weights are
the inverse noise variance, i.e., wi= hi. In the case of CMB-S4,
we will never be noise-dominated, either due to an actual
primordial signal, or due to the lensing and foreground
residuals, so here we use the inverse variance of the total
signal and noise to determine the optimal weighting.

Last, while the scanning strategy used here has been
optimized to mostly observe the cleanest available sky, some
regions with high Galactic emission are also observed.
Realistically, we would mask such regions when analyzing
the maps. To assess this effect, we used masks based on a
smoothed Planck 353 GHz polarized intensity map, keeping the
cleanest 30% or 60% of the full sky (28% and 58% after

Figure 7. Hit patterns on the sky for small-aperture telescope surveys. Top
panel: the actual BICEP3 2017 hit pattern (peak normalized). Second panel:
idealized circular pattern as used in Section 4. Third panel: simulated “Chile
full” pattern, Fourth panel: simulated “Pole wide” pattern. Fifth panel:
simulated “Pole deep” pattern. Each pattern is normalized to the same hit sum
as in the top panel, and the color scales are the same. The “Chile deep” and
“Chile shallow” regions referred to in the text are subregions of the “Chile full”
pattern.
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apodization). We then used these masks to disregard some of
the pixels, resulting in a degradation of the constraints on r.

7.2. Delensing Revised

The CMB-S4 PGW science goal can only be achieved if the
majority of the lensing B modes can be removed. The
optimization in Section 3 assumed a single frequency channel
assigned to the higher-resolution delensing observations. The
strength of polarized foregrounds at small angular scales is
currently poorly constrained by data, and though studies related
to the role polarized small-scale galactic foreground residuals
play in the delensing process have been performed (e.g.,
Fabbian et al. 2019; Beck et al. 2020), a complete under-
standing of their impact is still missing.106 Separately, while
small-scale extragalactic foregrounds limit the temperature
reconstruction of the lensing potential, experiments such as
CMB-S4 will be dominated by polarization reconstruction, for
which these are much less pertinent. To the extent that
temperature reconstruction will contribute nontrivial weight to
the analysis, Sailer et al. (2020) shows that robust foreground-
hardened estimators can be constructed. Furthermore, analyses
of delensing with external tracers such as the CIB, for which
such foreground-induced biases become yet more important,
have also shown that they can be effectively mitigated with
multifrequency cleaning techniques (Baleato Lizancos et al.
2021). Balancing these considerations, the high-resolution
instrument reference design, therefore, includes some addi-
tional coverage at higher and lower frequencies.

To forecast the delensing performance, we proceed in two
steps. For a given LAT configuration and sky coverage, we
derive the noise levels for an ILC that minimizes the variance
of components with a frequency dependence that differs from
that of a blackbody (Tegmark & Efstathiou 1996). In this step,
we assume that polarized foreground emission is dominated by
Galactic synchrotron and thermal dust emission.107 Using the
ILC noise power spectrum, we then forecast the performance
expected for iterative EB delensing (Smith et al. 2012).

The LAT reference design, established independently from
this work, and described in detail in Section 2.2.2 and
Appendix A of Abazajian et al. (2019), includes two LATs
in Chile for the wide-field survey targeting science goals other

than PGWs, and one LAT at the South Pole for the PGW
delensing survey. For the Chile LATs, and a wide-area survey
covering 70% of the sky, the two-step procedure predicts that
73% of the lensing power can be removed in the “Chile
shallow” region after 7 yr of observation. Similarly, for the
single LAT at the South Pole dedicated to delensing of the
approximately 3% “Chile deep” and “Pole deep” regions, we
expect to be able to remove close to 90% of the lensing power
after 7 yr of observation.
The numbers given above assume identical hits maps for the

South Pole LATs and SATs; they also assume inverse noise-
variance weighting rather than a weighting scheme that
accounts for both signal and noise. For the lensing residuals
achieved by the reference design, inverse noise-variance
weighting for the SAT maps is suboptimal because the signal
(e.g., for r= 0 lensing residual after foreground removal) is
measured with signal-to-noise ratio above unity over a region
that extends beyond the region that dominates the analysis in
inverse noise-variance weighting. As a consequence, in all the
forecasts presented below, we employ weights that account for
both signal and noise, which significantly increases the number
of modes that contribute to the analysis, especially for small,
deep patches. Even though, for the same survey, this leads to
slightly higher noise and lensing residuals, the increase in the
number of modes overall reduces the lensing sample variance
contribution to σ(r). In practice, we determine the optimal
weights iteratively, accounting for the effect on the SAT and
LAT analyses, and find rapid convergence.

7.3. Results

The covariance matrices calculated as described above are
used to produce the results given in this section, where the
number, siting, and coverage patterns of the SATs are varied.
In all cases, a delensing LAT at the South Pole is assumed to
concentrate its coverage on a small patch of sky, while
delensing over larger sky areas is assumed to be available from
the Chilean LATs.
As mentioned earlier, we split the Chilean coverage shown

as “Chile full” in Figure 7 into a deep patch, “Chile deep,”
which overlaps with the “Pole deep” region, and call the
remainder “Chile shallow.” We then make separate forecasts
for each Chilean subregion using the appropriate delensing
level for that subregion. To obtain forecasts for the full region,
we add the σ(r) results in simple inverse quadrature, thereby
making the approximation of independence of the measured
modes. When we combine these with South Pole observations,
we mimic a joint analysis over the overlapping region by taking
the sum of the “Pole deep” and “Chile deep” coverage maps
and computing the corresponding weights and lensing
residuals, and add the “Chile shallow” results in inverse
quadrature.
The foreground fiducial model is kept the same as in

Section 2.4, and we also explore the possibility of unmodeled
foreground residuals contributing residual power to the cleaned
maps, assuming a foreground cleaning to 1% at 95 GHz. We do
so by adding in quadrature to the r forecasts a foreground bias
equal to 1% of the equivalent r of the foreground minimum of
the BK15 data at 95 GHz and ℓ= 80.
Since some parts of the “Chile shallow” coverage lie closer

to the Galactic plane, we boost the foreground level in the
shallow region, and the foreground bias if it is included, by a
factor of 3 with respect to the deep patch. This scaling is based

Table 5
Effective Sky Fractions for Signal, Noise, and Signal-cross-noise, as

Percentages, for the Observation Patterns Shown in Figure 7, and the Case of
Inverse Noise-variance Weighting (i.e., Equations (11)–(13) with wi = hi)

SP Deep SP Wide CH Deep CH Shallow CH Full

fsky
sig 1.9 4.3 2.4 10 5.9

fsky
noi 2.9 6.5 3.4 20 18

fsky
cross 2.5 5.5 3.0 16 12

Notes. Here, “SP” is the South Pole and “CH” is Chile. The CH Shallow
numbers appear larger than CH Full due to the effects of the weighting.
For comparison, the BICEP2/Keck and BICEP3 values are (1.0, 1.3, and 1.1)
and (1.9, 2.7, and 2.3) for signal, noise, and signal-cross-noise respectively.

106 Of note, Beck et al. (2020) shows that delensing biases due to galactic
foregrounds can be mitigated with certain analysis choices.
107 In the ILC, power from unresolved/unmasked polarized extragalactic point
sources is not currently accounted for. With reasonable masking thresholds, we
expect the contribution to the ILC residuals from polarized sources to be
subdominant compared to instrument noise (Gupta et al. 2019).
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on the dust amplitude measured in the map-based simulations
for surveys observed from the South Pole or from Chile, using
a map with spatially varying foregrounds based on Planck data.
In Figure 8, we show the dependence of σ(r) on r for the

different coverage masks. We calculate these constraints for
r= 0, 0.003, 0.01, and 0.03, for the different Galactic cuts, and
show the linear interpolation between these points, sampled on
a high-resolution linearly spaced grid. We find that the survey
strategy from the South Pole is always favored in the limit of
small r, with the crossover point depending on the specific
assumptions. This comes as a direct result of the fact that, while
a larger fraction of the sky can be observed from Chile, one can
concentrate the available sensitivity more deeply from the
South Pole (see Figure 7). We note that the delensing
requirements are more stringent for the smaller surveys (such
as the South Pole one), highlighting the importance of
periodically revisiting the assumptions made for the delensing
survey of CMB-S4 as new data from Stage-3 experiments
become available.
In Tables 6–7, we present a set of σ(r) results for seven years

of observations and r= 0, and in Tables 8–9, we present a set
of significance of detection levels for r= 0.003, while varying
the number of optics tubes at the South Pole and Chile over a
wide range of options. We show results for two different
variants: (i) with no marginalization over the decorrelation
parameters and for the 28% cleanest polarized sky; and (ii) the
same as (i), but marginalizing over the foreground decorrela-
tion parameters.
In all these calculations, we assume that the observing

efficiency from Chile is 100% equivalent to that from the South
Pole. Despite long histories of CMB observations at both sites,
it is still quite challenging to make a clean comparison of their
observing efficiencies. Results from the BICEP/Keck program
are responsible for the leading constraints on r for the last
decade, but it is still not currently possible to disentangle the
role of the observing site from other factors that have
contributed to the success of that program, such as detector
performance, instrument design, observing strategy, and
operations management. However, note also that even assum-
ing equal observing efficiency at both sites (Table 6), there is
still a difference between σ(r) obtained for equivalent numbers
of optics tubes in Chile versus the South Pole, due to sky
fraction, foreground complexity, and delensing. In the CMB-S4
Reference Design Report, we also show forecasting results that

Figure 8. Constraints on r as a function of the value of r. We assume an
instrument with 18 SAT optics tubes and an observation time of 7 yr, with the
five masks defined in Section 7. Each band shows different Galactic cuts, based
on Planck polarized foregrounds: the upper edge uses the cleanest 28% of the
full sky, whereas the lower edge uses the 58% cleanest. We explore the effect
of turning on foreground decorrelation in the forecasting. We also explore
adding a foreground bias, in quadrature, with a 1% value of the equivalent r of
the current foreground minimum of the BK15 data at ℓ = 80.

Table 6
Combined 104 × σ(r) Values (Smaller Numbers are Better), Assuming r = 0
after 7 yr of Observation, Keeping only the 28% Cleanest Part of the Sky,

Assuming no Decorrelation and an Observing Efficiency in Chile the Same as
at the South Pole

Note. The bolded cells conserve the 18 SAT optics tube count of the reference
design, while nonbolded cells explore other counts at the South Pole and in
Chile.
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assume an observing efficiency from Chile equivalent to 50%
of the South Pole efficiency.

Note that the results where the total number of SAT optics
tubes is different from the assumed number of 18 are subject to
a caveat: the delensing effort is assumed to be held fixed to the
reference design—one LAT at the South Pole and two in Chile.
In principle, as the total effort is varied away from the reference
design, one should re-optimize the fraction of delensing effort
as per Figure 4.

8. Conclusions

In this paper, we have presented the CMB-S4 r forecasting
framework and its evolution through three major iterations. To
ensure forecasting realism, we have chosen to directly ground
our forecasting in the end-to-end on-sky achieved performance
of Stage 2–3 experiments, rather than rely on ab initio
assumptions. Additionally, we have checked the semianalytic

calculations with map-based simulations of increasing com-
plexity, thereby creating a closed forecasting loop (presented in
Figure 1). This approach allows us to confidently incorporate
all the effects that impact current real-world experiments, to
flexibly trace the end-to-end effects of changes to experimental
design or assumptions, and to iterate over the framework as
more sophisticated sky and instrument models become
available.
The semianalytic calculations described in Sections 2 and 3

indicate that, for a 3% sky fraction, 1.2× 106 150 GHz
equivalent detector-years (or 1.8× 106 when including margin-
alization over the decorrelation parameters) are required to
reach the science requirement of σ(r)= 5× 10−4, with 30% of
this effort assigned to the delensing survey. The resulting
optimal distribution of detectors across frequency bands is
summarized in Table 3.
The map-based simulations described in Sections 4–6

confirm the σ(r) results from the semianalytic calculations.
These simulations also indicate that bias in the recovered r
value is within 1σ for a suite of different foreground models.
However, we note that foregrounds remain a serious issue that
must be periodically revisited as the project progresses.
Additional map-based simulations indicate that the systema-

tic bias on r can be controlled to <1σ, provided that fractional
contamination levels similar to those already achieved by
small-aperture telescopes can be maintained.
Mapping the requirements from the semianalytic calculations

onto realizable instruments (see Section 7) results in the
reference design described in Abazajian et al. (2019) for a
seven-year survey period, and in the constraints presented in
Tables 6–9.
In Section 7, we have also extended the semianalytic

calculations to account for realistic observation patterns and
probed the dependence of σ(r) on r, as a function of experiment
siting, finding that the survey strategy from the South Pole is
always favored in the limit of small r. We note that surveys
with smaller footprints (such as the South Pole survey) depend
more tightly on the levels of achieved delensing. Therefore,
revising the delensing assumptions will be important as new
studies of small-scale foregrounds become available.
Going forward, as the CMB-S4 project matures, the

collaboration will need to converge on increasingly specific
instrumentation choices. To quantitatively discern between the
different options, we intend to continue using and developing
the closed-loop framework presented here. Among others, we
anticipate adding complexity to the following directions:
delensing treatment; foreground simulations; foreground para-
meterization; survey strategies; and instrumental systematics.
Additionally, we expect to apply new analysis methods to our
data challenges and incorporate new achieved performance
levels at multiple additional frequencies from multiple sites as
these data become available. The iterative nature of our
framework can easily accommodate these revisions, achieving
increased realism with each iteration.

The CMB-S4 collaboration (https://cmb-s4.org/) is work-
ing to plan, construct, and operate a next-generation, multisite
CMB experiment in the 2020s. The collaboration is led by an
elected Governing Board, Spokespeople, Committee Chairs,
and Executive Team. Funding for the CMB-S4 Integrated
Project Office is provided by the Department of Energy’s
Office of Science (project level CD-0) and by the National

Table 7
Same as Table 6, but Assuming Additional Foreground Decorrelation

Parameters

Table 8
Combined Detection Significance (Larger Numbers are Better) for r = 0.003
after 7 yr of Observation, Keeping only the 28% Cleanest Part of the Sky,

Assuming no Decorrelation and an Observing Efficiency in Chile the Same as
at the South Pole

Note. The bolded cells conserve the 18 SAT optics tube count of the reference
design, while nonbolded cells explore other counts at the South Pole and in
Chile.

Table 9
Same as Table 8, but Assuming Additional Foreground Decorrelation

Parameters
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Appendix A
Multicomponent Theory Model

The forecasting framework uses a parametric model to
describe the bandpower expectation values as a combination of
cosmological and foreground signals. This parameterization

follows the one presented in Appendix G of BICEP2/Keck
Array Collaborations X (2018).
The model includes signals from the CMB (lensed-scalar and

tensor contributions), Galactic dust, and Galactic synchrotron,
with the possibility of spatial correlation between dust and
synchrotron. Contributions from dust and synchrotron to the
BB spectrum between maps at frequencies ν1 and ν2 can be
written in the following form, after computing the expected
spectrum as a function of ℓ, and bandpower window functions
are applied to calculate binned bandpower expectation values:
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Parameters Adust and Async specify the dust and synchrotron
power in units of mKCMB

2 at angular scale ℓ= 80. These are
defined at pivot frequencies of 353 GHz for dust and 23 GHz
for synchrotron. The dust and synchrotron components scale as
power laws in ℓ with slopes αd and αs, respectively (note that
slope parameters are defined for  ( ) pº +ℓ ℓ C1 2ℓ ℓ ). The
parameter ò specifies the level of spatial correlation between
dust and synchrotron; this correlation coefficient is assumed to
be constant across all ℓ. If either Adust or Async are negative, the
contribution of the correlated component to the expectation
value flips sign. Negative foreground amplitudes are techni-
cally nonphysical, but this analytic continuation becomes
important when we explore entire parameter phase spaces—for
instance, in the simulation reanalysis steps.
Coefficients nfd and nfs , given by Equations (A5) and (A6),

describe the scaling of dust and synchrotron amplitude from the
pivot frequencies to the actual bandpasses of the maps at
frequencies ν1 and ν2. The SED model used for dust emission
is a modified blackbody, i.e., a Planck function multiplied by a
power law with emissivity spectral index βd (Planck Colla-
boration XXII 2015). We adopt a dust temperature
Td= 19.6 K. The SED model used for synchrotron is defined
as a power law with spectral index βs relative to a Rayleigh–
Jeans spectrum. The frequency scaling also includes the unit
conversion for μKCMB from the pivot frequency to the target
bandpass.
To integrate the SED and unit conversion over the bandpass

of the target map, we adopt the convention used by Planck
Collaboration IX (2014), in which our bandpass functions
describe response as a function of frequency to a beam-filling
source with uniform spectral radiance. For emissivity spectral
index βd and dust temperature Td, the modified blackbody
scaling (MBBS) from pivot frequency νpivot to a map with
bandpass R(ν) is given by
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For a synchrotron power-law scaling (PLS) with spectral index
βs, we calculate the coefficient in a similar way:
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The conversion between μKCMB units at the pivot frequency
and μKCMB units at the target map bandpass is given by
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Combining these factors, we obtain the scalings used in
Equation (A1):

( )= ´n n nf f f , A5Td MBBS CMB

( )= ´n n nf f f . A6Ts PLS CMB

We also consider dust and synchrotron frequency decorrela-
tion. The simplest possible model of a polarized foreground
component is one with a fixed spatial pattern on the sky that
scales with frequency according to a single SED. In this case,
the expectation value of the cross-spectrum between any two
frequencies is the geometric mean of the respective auto-
spectrum expectation values. In reality, the spatial pattern
might vary as a function of frequency, leading to the cross-
spectra being suppressed with respect to the geometric mean of
the auto-spectra (Planck Collaboration 2017). We refer to this
phenomenon as decorrelation.

We model decorrelation in the power spectrum domain using
a set of simple one-parameter models. We define the correlation
ratio of dust between two reference frequencies, 217 and
353 GHz, at pivot scale ℓ= 80 as
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where 80 is the dust power at ℓ= 80. Here, Δd< 1
corresponds to decorrelation. We scale to other frequency
combinations using the factor suggested by Planck Collabora-
tion (2017):
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Similarly, based on suggestions from Planck Collaboration
(2017), we consider three possible scalings with ℓ:
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The scalings above can produce extreme (and nonphysical)
behavior at high ℓ or for frequencies that are widely separated.
We therefore remap the scaled correlation coefficient using the
following function:

( ) [ ( ) ( ) ( )] ( )n n n nD¢ = Dℓ f g ℓ, , exp log , . A10d 1 2 d 1 2

With this remapping,D¢d remains in the range 0 (no correlation)
to 1 (perfect correlation) for all values of f and g. This
combination of frequency scaling and nonlinear remapping has

been shown to correspond to a Gaussian spatial variation in the
foreground spectral index parameter (Vansyngel et al. 2017).
In a similar vein, we define the parameter D¢s, which

describes decorrelation of the synchrotron pattern. We do not
include foreground decorrelation parameters in the dust–
synchrotron correlated component. A complete foreground
model would include all correlations between dust and
synchrotron foregrounds across observing frequencies, but the
current data do not provide useful guidance about the form of
such correlations.
In addition to foregrounds, we include CMB scalar and

tensor contributions. We make the simplifying assumptions
that the tensor BB spectrum is given by a template scaled by
parameter r and the BB spectrum from lensed CMB is given by
a template scaled by parameter AL. Using CMB temperature
units, the CMB contribution to the BB spectrum is given by

( )= +n n´D
r

D A D
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, A11ℓ BB ℓ BB ℓ BB, ,
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where Dℓ BB,
tensor is the BB template for a tensor signal with r= 0.1

and Dℓ BB,
lensing is the expected lensing BB spectrum for ΛCDM.

These are obtained using the CAMB108 package (Lewis &
Challinor 2011).

Appendix B
BPCM Construction and Rescaling

The BPCM construction relies on analytic rescaling of
simulations. We calculate and store the bandpower covariance
of signal and noise simulations for a particular sky and
instrument model; rescaling from these covariance matrices
eliminates the computational cost of creating large suites of
simulations for each desired model. In the rescaling process, we
explicitly set to zero terms that have zero expectation value
(under the assumption that signal and noise are uncorrelated,
and that physically unrelated signals are also uncorrelated) to
reduce Monte Carlo error in the covariance matrix that stems
from the modest number (499) of simulation realizations used.
This framework is described in detail in Buza (2019), but we
review it briefly here.
In a general case, let ma, mb, mc, and md denote the four

maps included in our analysis, with ma×mb denoting the
cross-spectrum between those maps. Each map is the sum of
independent signal components (CMB and foregrounds) plus a
noise contribution, i.e., ma=∑isai+ na. Since the synchrotron
and dust foregrounds could be spatially correlated, we choose
to divide them into three mutually independent components—
uncorrelated synchrotron, uncorrelated dust, and the correlated
part of synchrotron and dust. Using the properties that these
signal and noise fields are independent and have zero mean, the
expectation values for many spectra can be set to zero:
á ´ ñ =s s 0xi yj for i≠ j (independent signal fields) and
á ´ ñ =s n 0xi y (signal is independent of noise). Then, a generic
bandpower covariance term can be written as
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where the first three terms are signal-only covariances, the next
four terms are covariances between select signal-noise cross-
spectra, and the last term is a noise-only covariance. Additional
terms can be set to zero if we make the further assumption that
the noise is independent in each map, i.e., á ´ ñ =n n 0x y for
x≠ y. We also set to zero the covariance between any
bandpowers that are separated by more than one bin in ℓ (for
bins with Δℓ= 35), since these correlations are very small and
not well-measured.

Rather than running simulations with a complicated
combination of CMB and foreground signals, we calculate
the above covariance terms for a simple signal model and then
rescale to obtain the bandpower covariance matrix for an
arbitrary model. In practice, the signal simulations are CMB
realizations for a lensed ΛCDM model. Using sx0 to denote the
simulated signal component of map mx, the rescaled bandpower
covariance matrix term is given by

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

´ ´
= ´ ´

´ å
á ´ ñá ´ ñá ´ ñá ´ ñ

á ´ ñá ´ ñá ´ ñá ´ ñ

+ ´ ´

´ å å
á ´ ñá ´ ñá ´ ñá ´ ñ

á ´ ñá ´ ñá ´ ñá ´ ñ

+ ´ ´

´ å å
á ´ ñá ´ ñá ´ ñá ´ ñ

á ´ ñá ´ ñá ´ ñá ´ ñ

+ ´ ´

´ å
á ´ ñá ´ ñ
á ´ ñá ´ ñ

+ ´ ´

´ å
á ´ ñá ´ ñ
á ´ ñá ´ ñ

+ ´ ´

´ å
á ´ ñá ´ ñ
á ´ ñá ´ ñ

+ ´ ´

´ å
á ´ ñá ´ ñ
á ´ ñá ´ ñ

+ ´ ´

¹

¹

B3

m m m m
s s s s

s s s s s s s s

s s s s s s s s

s s s s

s s s s s s s s

s s s s s s s s

s s s s

s s s s s s s s

s s s s s s s s

s n s n

s s s s

s s s s

s n n s

s s s s

s s s s

n s s n

s s s s

s s s s

n s n s

s s s s

s s s s

n n n n

Cov ,
Cov ,

1

2
Cov ,

1

2
Cov ,

Cov ,

Cov ,

Cov ,

Cov ,

Cov , .

a b c d

a b c d

i
ai ai bi bi ci ci di di

a a b b c c d d

a b c d

i j i
ai ai bj bj ci ci dj dj

a a b b c c d d

a b c d

i j i
ai ai bj bj cj cj di di

a a b b c c d d

a b c d

i
ai ai ci ci

a a c c

a b c d

i
ai ai di di

a a d d

a b c d

i
bi bi ci ci

b b c c

a b c d

i
bi bi di di

b b d d

a b c d

0 0 0 0

0 0 0 0 0 0 0 0

1 2

0 0 0 0

0 0 0 0 0 0 0 0

1 2

0 0 0 0

0 0 0 0 0 0 0 0

1 2

0 0

0 0 0 0

1 2

0 0

0 0 0 0

1 2

0 0

0 0 0 0

1 2

0 0

0 0 0 0

1 2

The factors of 1/2 in the second and third terms are necessary
to account for the factor of 2 difference between the variance of
an auto-spectrum and the variance of the cross-spectrum
between two uncorrelated fields.
An important feature of this rescaling method is that it

considers signal and noise separately, rather than rescaling a
combined signal-plus-noise covariance matrix. This is impor-
tant because, for the highly nonuniform hit patterns (see
Figure 7) that result from a large field-of-view telescope
making deep maps, the spatial distribution of signal and noise
in the map are very different. This leads to a significant
difference in the number of signal versus noise degrees of
freedom, and therefore different amounts of bandpower
variance for the same overall power. This rescaling method
does not attempt to account for different degrees of freedom
between the different signal types, but that is a much smaller
effect.
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