PHYSICAL REVIEW D 66, 043529 (2002

Observational determination of squeezing in relic gravitational waves
and primordial density perturbations

Sukanta Bost
Department of Physics and Astronomy, P. O. Box 913, Cardiff University, CF24 3YB, United Kingdom
and Max Planck Institut fluGravitationsphysik, Albert Einstein Institut, Am klenberg 1, Golm, D-14476, Germany

L. P. Grishchuk
Department of Physics and Astronomy, P. O. Box. 913, Cardiff University, CF24 3YB, United Kingdom
and Sternberg Astronomical Institute, Moscow University, Moscow 119899, Russia
(Received 29 November 2001; published 29 August 2002

We develop a theory in which relic gravitational waves and primordial density perturbations are generated
by strong variable gravitational field of the early Universe. The generating mechanism is the superadiabatic
(parametri¢ amplification of the zero-point quantum oscillations. The generated fields have specific statistical
properties of squeezed vacuum quantum states. Macroscopically, squeezing manifests itself in a nonstationary
character of variances and correlation functions of the fields, the periodic structures of the metric power
spectra, and, as a consequence, in the oscillatory behavior of the higher order mullipofethe cosmic
microwave background anisotropy. We start with the gravitational wave background and then apply the theory
to primordial density perturbations. We derive an analytical formula for the positions of peaks and dips in the
angular power spectrur{l+1)C, as a function ofl. This formula shows that the values bft the peak
positions are ordered in the proportidn3:5:. . ., whereas at the dips they are orderedla®:3: ... . We
compare the derived positions with the actually observed features, and find them to be in reasonably good
agreement. It appears that the observed structure is better described by our analytical formula based on the
(squeezedmetric perturbations associated with the primordial density perturbations, rather than by the acous-
tic peaks reflecting the existence of plasma sound waves at the last scattering surface. We formulate a forecast
for other features in the angular power spectrum that may be detected by the advanced observational missions,
such as the Microwave Anisotropy Probe and Planck. We tentatively conclude that the observed structure is a
macroscopic manifestation of squeezing in the primordial metric perturbations.
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[. INTRODUCTION cally, Schralinger discusses the “mutual adulteration of
positive and negative frequency terms in the course of time.”
A direct search for relic gravitational waves is one of theThe frequency mixing means that a traveling wave can be
important goals of the forthcoming gravitational wave obser-amplified, with the simultaneous appearance of a “reflected”
vations (for reviews, see Refd.1-3]). Relic gravitational wave, i.e., a wave traveling in the opposite direction. After
waves are inevitably generated by a strong variable gravitaSchralinger, out of unawareness of his work, this effect has
tional field of the very early Universe through the mecha-been rediscovered several times. Scimger speaks about
nism of superadiabatid¢parametri¢ amplification of the the mutual adulteration of electromagnetic waves, which
zero-point quantum oscillationg!]. The word “superadia- would mean the generation of photons. We now know that
batic” emphasizes the fact that this effect takes place ovethe coupling of the electromagnetic field to gravity is such
and above whatever effects occur during very sl@dia- that the generation of photons is impossible, so that the
batic) changes. That is, we are interested in the increase aflarming phenomenon does not take place. A detailed study
occupation numbers, rather than in the gradual shift of enef the Schrdinger paper shows that, in fact, he was operat-
ergy levels. The word “parametric” emphasizes the underly-ing with a variant of scalar electrodynamics, that is, with a
ing mathematical structure of the wave equations. It is acalar wave equation in an expanding universe mddela
sufficiently quick change of a parameter of the oscillator,discussion of this point, see R¢&]). Then, indeed, the cou-
namely, variation of its properly defined frequency, that ispling of a scalar field to gravity can be chosen in such a way
responsible for the considerable increase of energy of thaminimal coupling, that the generation of scalar particles
oscillator. becomes possible. Pargt undertook a systematic study of
Apparently, Schrdinger [5] was the first to notice the the quantized version of the scalar wave equation in FLRW
“alarming phenomenon” in an expanding universe. Specifi-(Friedmann-Lemaitre-Robertson-Walkeosmologies. For a
summary of the subject, see Rdfg,9]. As for gravitational
waves, there is no ambiguity in their coupling to gravity
*Permanent address: Department of Physics, Washington Stalkecause the coupling follows directly from the Einstein
University, 1245 Webster, Pullman, WA 99164-2814; electronic ad-equations. It was shown that the gravitational wave equation
dress: sukanta@wsu.edu for each of the two polarization components is exactly the
"Electronic address: grishchuk@astro.cf.ac.uk same as the equation for the minimally coupled massless

0556-2821/2002/6@)/04352917)/$20.00 66 043529-1 ©2002 The American Physical Society



SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 (2002

scalar field[4]. The early studies were concerned with free  The functionsh;;(#,x) have been expanded over spatial
test fields superimposed on a given space-time, whereas Waurier harmonicse™'"*, where n is a constant(time-
are interested in fields arising in the context of perturbedndependentwave vector. The wave numbaer, is related to
Einstein equationgcosmological perturbatiops This dis-  n by n=(8;n'n’)2 The wave numben defines the wave-
tinction is especially important for the issue of quantum nor-length measured in units of laboratory standdgtsto say, in
malization of the fields. centimetersby A = 2mra/n. Using the Fourier expansion, we

Already at this elementary level of discussion, one carare able to reduce the perturbed dynamical problem to the
make an important observation that will play a crucial role ingyglyution of mode functiomﬁn(n) for each moden. Two
our study below. If a classical traveling wave, of any physi- L s ,
cal nature, is going to be strongly amplified, the resultingPPlarization tensorg;;(n),s=1,2 have different forms de-
wave field will form an almost standing wave. A traveling Pending on whether they represent gravitational waves, rota-
wave can never convert itself into a strict standing wavetional perturbations, or density perturbations. if/f,1,m)
because of the conservation of linear momentum. But th@re three unit and mutually orthogor{apatia) vectors, then
final amplitudes of the amplified left-moving and right- we have for gravitational waves,
moving waves will be large and almost equal, so they inter- L )
fere to form a pra_\ctlcally stan(_jlng wave. _ _ pi=lilj—mm;,  pi=lLm+1;m;,

The amplification process is linear, and the final ampli-
tude of a classical wave is proportional to the initial ampli-
tude. If the amplitude of a classical oscillator is zero initially, Sij si=0, Sij ni=0,
the oscillator will not get excited by the parametric influence.
However, a quantum oscillator in its vacuum state does POt (otational perturbations
sess tiny “zero-point” quantum oscillations. One can think P '
of these vacuum oscillations as the ones that are being am- .1 ., 1
plified. The generation of relic gravitational wavess well Pij =ﬁ(linj+ljni), Pij =ﬁ(minj+mjni),
as the generation of other cosmological perturbations, dis-
cussed beloyis a genuine quantum-gravity process, in the s s
sense that the final result inherently contains all the funda- pij61=0, p;n'n'=0,
mental constantd:, G, and c. The gravitational energy-
momentum tensor contair@ and c, while the Planck con-

. Z P and for density perturbations,
stant # enters through the requirement of having initial

energysfw per mode of the perturbation field. The funda- 1 2 5 nn: 1
. . [
mental constants naturally combine in the Planck lergth pij= \[55” , o Pij= \/§ —2+—5ij .
=(G#h/c®)Y? or the Planck massip;=(%c/G)Y2 butlp, or n? |3
Mp,; Must stay in the numerator of the final expression, not in s
its denominator, so that the final result vanishe i for-  In all three casesp;;(n) obey
mally sent to zero.
The gravitational field of a FLRW universe is given by the s s s s

metric pij (N P (N =285y,  pij(—n)= p;j(n).

ds?= — c2dt2+ az(t)gijdxidxj In general relativity, rotational and density perturbations

o can only exist if they are supported by the corresponding
=a’(n)[—dn*+g;d'dx'], (1.1)  perturbations of matter. Their propagation speeds depend on

the properties of matter and can range from zero to the speed

where the scale factoa(t) [or a(#)] is driven by matter ©f light, c. For instance, the propagation speed of density
distribution with some effectivéin general, time-dependent Perturbations in the radiation-dominated fluictis/3; and it
equation of state. The scale factor has the dimensionality oas very close ta if the very early universe was driven by
length, whilen andx' are dimensionless. Without restricting @ scalar field11]. However, in alternative theories of gravity,
in any way the physical content of the problem, one carsolutions with the polarization structure of rotational and

write the perturbed gravitational field of a FLRW universe density perturbations can exist even in the absence of matter
(for simplicity, spatially flat as fields, in which case the metric perturbations represent gravi-

tational waves with new polarization states, in addition to the
usual gravity-wave polarization states of general relativity
[10]. If one concentrates on metric perturbations alone, tem-
porarily leaving aside the accompanying perturbations of
C o < 1 matter variables, then all three types of cosmological pertur-

hij (7,x) = —3/2f d3n > pij(N)— bations in general relativity can be thought of as gravitational
(2m)") == s=12 V2n waves, even though some of them have unusual polarization

s s s o states and unusual propagation speeds. There is no wonder
X[ ho(m)e™*c,+ h*(n)e”™*cl]. (1.3  that the dynamical equations for cosmological rotational and

ds?=a?(n)[ —dn?+(5;+h;;)dx dx'], 1.2
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density perturbations are similar to, and sometimes exactlguantum-mechanical expectation values and correlation
the same as, equations for cosmological gravitational wavesunctions provides the link between quantum mechanics and
The common “master equation,” whose solutions allow onemacroscopic physics.

to derive all the metric components along with all the matter Using the representatiofl.3) and definitions above, one
perturbationgwhen they are presenhas the universal form finds the variance of metric perturbations:

[11]:

2

y c? (= dn
¢ (Olhyj(7,0h" (7,)[0)=~— JO 23 Ih(ml*
nZ?—W(n) ™ T

"+ f (1.6

-0, (1.4

where ' :=d/dy, c, is a function ofy and is interpreted as the The quantity

propagation speed of the perturbation, af¢») is a func- 02
tion of a(#) and its derivatives. For density perturbations in 2 _- 2 : 2
a perfect fluid with the fixed equation of stgie=we, ¢, is a ho(n,7)= 22 n s=21,2 [ ol )] .7
constant. In the case of gravitational waveg/c>=1 and
W(#n)=a"/a [4]. One can view Eq(1.4) as the equation of gives the mean-square value of the gravitational field pertur-
an oscillator with variable frequencfthe term in square bations in a logarithmic interval af and is called thedi-
brackets, or as the Schidinger equation of a particle mov- mensionless power spectrum. In the case of gravitational
ing in the presence of a potential barrdf( %) (while re-  waves, it is relatively easy to evolve the mode functions up
membering thaty is a time coordinate rather than a spatial to the present era, and to find that
coordinate. In what follows, we will be discussing gravita-
tional waves and density perturbations. . . h?(n, m)esir{n(7— 7)1, 1.8

For a classical gravitational field, the quantities, ¢ in

Eq. (1.3 are arbitrary complex-conjugate numbers. The Con_vvhere 76 IS @ constant discussed below. The explicit time-

stantC can be incorporated into them. In the quantized verdeéPendence of the power spectrum is a consequence of
) s sy o i squeezing and can be also viewed as a reflection of the
sion, the quantitie,, ¢, are annihilation and creation op- standing-wave pattern of the generated field. For every fixed

erators satisfying the conditions moment of time(for instance, todaythe power spectrum
contains many maxima and zeros at certain wave numbers,

[é, éT]z Sgs83(N—m) é 10)=0 (1.5) even though the spectrum was perfectly smooth before am-
n»%m s’'s ' n ’ .

plification, i.e., when the mode funCtiOl‘I';](n) behaved as

—iny ra
where|0) (for eachn ands) is the fixed initial vacuum state xe 7. As soon as the amplifying process takes' place, the
increase of the mean number of quanta, squeezing, nonsta-

defined at somey, in the very distant past, long before the ionarity, formation of standing wave pattern and oscillator
superadiabatic regime for the given mode has started. In th%f) Y, | 9 P . y
eatures in the power spectrum, are all the different facets of

early era, the mode functior‘r;q(n) behaved asce "7, S0 the same phenomenon.

that each mod@ represented a strict traveling wave propa- The relative spacing of zeros is very dense at laboratory
gating in the direction of. The normalization constaitis  scales(largen’s), but is quite sparse at cosmological scales
V167l p, for gravitational waves, and/24mxlp, for density  (small n's). Specifically, the spectrum contains about®0
perturbations. zeros in the interval from 100 to 200 Hz, but only a dozen of
A detailed study showgl2] that the quantum-mechanical zeros in the interval from 1000 to 2000 Mpc. The oscillatory
Schralinger evolution brings the initial vacuum state of cos-time-dependencél.8) is known in advance, and this infor-
mological perturbations into the final multiquantum statemation would certainly help, in a very narrow-band gravita-
known as the squeezed vacuum state. It is the variance dibnal wave detector, to find the signal against the instrumen-
phase that is being strongly diminishestjueezeqd while the  tal noise, and to provide evidence for the primordial origin of
mean number of quanta and its variance are being stronglthe detected gravitational wave backgroli8fi However, in
increased. A squeezed vacuum state is conveniently charaa-broadband detector, there are too many zeros together, and
terized by the squeeze parameteiThe squeeze parameter the nonstationary process is practically indistinguishable
grows fromr =0 in the vacuum state up t&>1 by the end from the stationary process of the same power density. In a
of the amplifying superadiabatic regime. The mean numberecent paper, Allen, Flanagan, and P&p3] agree that the
of quanta in a 2-mode squeezed vacuum statg/N$ nonstationarity in the relic background is present, but they
=2 sinifr. Squeezed vacuum states possess specific statistirgue that this feature can hardly give any advantage in prac-
cal properties. In particular, the generated field, viewed as tice. Without presently being able to offer a realistic scheme
random field, obeys the statistics of a Gaussian nonstationagf exploiting the nonstationarity at small scales, we shift our
process. The nonstationarity means that the variance of thatention to cosmological scales, where the spacing of zeros
field is an explicit oscillatory function of time, and the two- is sparse. The natural place to look for the consequences of
time correlation function depends on individual moments ofsqueezing is the distribution of multipol€, of the cosmic
time, not only on the time difference. The calculation of microwave backgroundCMB) anisotropieg14].

043529-3



SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 (2002

Relic gravitational waves should be important at lowergravitational wave background is stationary, irrespective of
multipoles ¢ of the CMB anisotropies, but they are not ex- its physical origin. The waves generated in the physical
pected to give significant contribution &t-200 and higher. model are squeezddtanding. We demonstrate that the evo-

It is the density perturbations that are expected to be primdution of standing waves through the effective bargéfa at

rily responsible for the behavior of th€,’s in the latter the matter-dominated stage results in the appearance of an
range. However, we study in great detail the simpler case ofscillatory behavior of the Fourier coefficienss,,B, as
gravitational waves in order to resolve a number of principafunctions of the wave number. We later show(in Sec. V)
issues and to get a guidance for the analysis of the technihat this oscillatory behavior ok, ,B,, is the origin of oscil-
cally more difficult case of density perturbations. The phe-|ati0nS in the multipole moment distributiad®, as a function
nomenon of squeezing is universal, and if the primordialof ¢.

density perturbations have a quantum-mechanical origin Section IV compares the physical and alternative gravita-
(which, we believe, is likely to be triethen many features tional wave bac_kgroundg. We introduce the notion of a fair
must be common with the case of relic gravitational wavescomparison, which requires that today’s band-powers of the
Some differences arise at the late stages of evolution two baclggrounds. be equal at all spalgs. By evolving the cor-
particular, they explain why the gravitational wafgav) con- respondmg solutions backwards in time, we show that the
tribution is subdominant at~200 and higher but we take alternative background would have had too much power in

them into account, Developing the conjecture of HaB] long waves at the era of last scattering of the CMB radiation.
: ping ) ’ In terms of “growing” and “decaying” solutions, this means

we argue that it IS th_e modulated structure of the memcthat the amplitude of the decaying solution in the alternative
power s_pectrun_@whlch IS c_aused, on a fundamental Ieve_l,_ by background becomes dangerously large when one returns
squeezingthat is responsible for the downturn of the rising yeeper and deeper into the past. The further evolution back-
function €(¢+1)C, at the peak, and for the appearance Ofyards in time would have destroyed our sacred belief that
subsequent peaks and dips, a few of which have been rgqe ynjverse was homogeneous and isotrdpic to small
cently observed16]. On the ground of our simple analytical nertyrhations at the time of the primordial nucleosynthesis
treatment we make a forecast for the positions of furthernq jts past. Most importantly for our study, we demonstrate
peaks and dips that may be observed by future missiongyat the alternative background does not produce oscillations
such as the Microwave Anisotropy Pro@AP) and Planck. i, the ¢, multipoles. This shows that the squeezing is obser-
In general, our forecast agrees with that of Re&f], made \5iionally distinguishable, even if, at the present level of
on the grounds of numerical codes, but discrepancies becomgseryational capabilities, it is better to search on large
significant somewhere around the _fourth exp(_acted peak. gcales rather than on small scales.

The structure of the paper and its conclusions are as fol-  gection V presents the results of numerical calculations of
lows. We start, in Sec. Il, with the gravitational wave solu-yhe ¢ s caused by relic gravitational waves. We show that
tions in the present universe, that is, at the matter.-domlnategur analytical formula for the positions of peaks and dips is
stage. We consider the general solution for the time depeng, 4 fajrly good agreement with numerical calculations. This
dent mode functionsh,(7), regardless of whether a given analysis demonstrates that, at least in the case of gravita-
particular solution is likely to emerge from the very early tional waves, theC, oscillations are produced by modula-
universe or not. In general, a given maalés neither a trav-  tions in the power spectrum of metric perturbations, and not
eling wave nor a standing wave. We formulate conditionsby acoustic waves at the last scattering surface, simply be-
under which a given mode is a strict traveling wave or acause there are no matter perturbations at all.
strict standing wave. These conditions are constraints on the In Sec. VI, we turn to the primordial density perturba-
(Fouriep coefficientsA, ,B,, in front of two linearly indepen-  tions. The evolution of density perturbations through the ini-
dent solutions for the mode functions. Then, we explore thdial and radiation-dominated stages is almost identical to the
issue of stationary versus nonstationary variance. We demom@volution of gravitational waves. We show that the Fourier
strate that oscillations in the power spectrum are most procoefficientsA,,B, of metric perturbations associated with
nounced when the modes are standing waves, and they didensity perturbations develop a periodic structure, as func-
appear when the modes are traveling waves. Thus the oftdions of n, in the course of transition from the radiation-
made(incorrec} statement that the relic gravitational wave dominated phase to the matter-dominated phase. In a manner
background should be stationary is equivalent to the assumimilar to the gravitational wave case, we derive the expected
tion that it is being formed by traveling waves. We return topositions of peaks and dips in tk distribution. Because of
this issue later oriin Sec. IV) and show that, whether the the damping, features beyond the second peak may not be
nonstationarity on small scales is measurable or not, the vergasily discernibl¢18—-20, but they seem to be less likely to
assumption of the stationary gravitational wave backgroundbe washed out if they are produced by modulations in the
is in conflict with some other cosmological considerations. Inmetric power spectrum rather than by modulations in the
Sec. Il we present a “physical” model for the gravitational plasma matter power spectrum. We show that the peak posi-
wave background. We call it “physical” because we evolvetions should obey the rule:3:5:7. . ., whereas the dip po-
the field through all three relevant stages of cosmologicasitions should be ordered ds2:3:4 ... . Wedemonstrate
evolution: initial, radiation-dominated, and matter- that the observed positions agree better with our analytical
dominated. In this way we distinguish the “physical” model formula than with the concept of “acoustic peaks.” The de-
from the “alternative” model, which postulates that the tection of late features may be especially interesting as our
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analytical forecast is somewhat different from what followsandJ.. 3(y) andH{:?(y) are Bessel and Hankel functions,
from conventional numerical codes. We tentatively concludeespectively[21]. We will also be using spherical Bessel
that the observed structurgs in the angular power spgctrl_JMnctions ji(y)=\mI2yJ, . 1(y). The (Fourieh coefficients
¢(¢+1)C, are macroscopic manifestations of squeezing inA  andB, are, so far, arbitrary complex numbers. In the limit

gravitational field perturbations. y—®,
Il. PROPERTIES OF GRAVITATIONAL WAVE SOLUTIONS 1) 2 iy 2) 2 iy
o _ o Hap(y)~— PV H3a(y) ~ — e
The perturbed Einstein equations for gravitational waves y y
can be reduced to the “master equation” 1 1
and ji(y)~—ccosy, j_p(y)~—siny.
s, s 2 a” y y
Mt N 3 =0, 2.1 2.7

Thus, at late timesy,(#) is a combination of sine and co-

S
where the functionsu,(#) are related to the mode functions sine functions of time:

S
hn(7) by 1
=— —[(A,—BpeY+(A,+Bye
. . n(7) \/ﬁ[( n n (An n) ]
un(m)=2a(n) hn(n). (2.2 5
o ] =-— \ﬁ(An cosy—iB,siny). (2.9
We suppress the polarization indexvhen it causes no am- ™
biguity.
The scale factoa(#) at the matter-dominated stage, gov- A. Standing versus traveling waves

erned by whatever matter with the effective equation of state
p=0, behaves aa(7)> 7. It is convenient to write(») in
the explicit form

We now consider &lassicalfield (1.3). Thenth mode of
the field is given by the real function

3(7]):2|H(7]_ nm)Z' (23) hn("?vX)Ehn( 77)9 ’ Cn+hn(77)67 ) Cn ’ (29)

wherel, is the Hubble radius today (= c/Hy, whereH is
the present value of the Hubble paramgterd 7,,, is a con-
stant explained below. The moment of time “todagi the
cosmological sengeis labeled byn= ng (the subscriptR
denoting “reception’). It is convenient to choose

where a complex numbaer, can be conveniently presented
in its polar form:

Ch=pc, € %en. (2.10

The gravitational wave solutions at late times are given by
Mr— 7m=1. (2.4) Eqg. (2.8). Thus we have

With this convention,a(zng)=2l,, and the wave, of any Pe, \/E . .

physical nature, whose wavelengthtoday is equal to to- h(7.%)~ = a(n) - [(An cosy—iB,siny)

day’s Hubble radius, carries the constant wave nunmper X+ de) . . ixtde )
=47. Longer waves have smallers and shorter waves xe e’ +(Ajcosy+iBpsiny)e e’].
have largern’s, according to the relationship=4l/\. (2.12
For example, the ground-based gravitational wave detectors

are most sensitive to frequencies around 30-3000 Hz. Thg the coefficientsA,,,B, are arbitrary, Eq(2.11) is neither a
corresponding wavelengths have wave numbersome- traveling wave nor a standing wave. A traveling wave is

where in the interval -10%2. characterized by two real numbers, namely, an amplitde
For the scale factof2.3), Eq. (2.1) is easily solved to and a phase; its general form iA sin(xny+n-x+ ¢). The
yield minus/plus sign describes a wave traveling in the positive/
negative direction defined by the fixed vectorA standing
0= Y[ Anday) —iBpd _3Ay)] wave is characterized by three real numbers, viz., an ampli-
N tude A and two phases, and its general formAsin(h»
57[(An_Bn)Hg}2)(y)+(An+ B, HZ(y)], +¢y)sin(n- x+ ¢,). Different choices of these free param-

eters are responsible for concrete space-time patterns, but
(2.5  they do not change the wave classification.
A little investigation shows that Eq2.11) describes a
where traveling wave if and only if

y=n(n—1m), (2.6 A,=%B,. (2.12
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This constraint can also be written as C2n2

h*(n, 7)=——>[pa,cOSy=pg, siny]?, y>1.
271" n
(2.18
In other words, the power spectrum of traveling waves is
stationary whereas the power spectrum of standing waves is

nonstationary These two classes of power spectra are sub-
cases of the general situation in whim=pAne'¢An, B,

A,=pp € and B,=zxipge?, (2.14 =aneid’Bn, and correspondingly,

A,=p,e? and B,=xp,.e?, (2.13

where p,, and ¢, are two arbitrary real numbers. We will
refer to this constraint as theaveling wavecondition. On
the other hand, Eq2.11) describes a standing wave if and
only if

212

wherep, , pg , and ¢, are three arbitrary real numbers. We Cn :
A PBy n h%mm=;3;wiw§Wwaa¥y
TH

will refer to this constraint as thstanding wavecondition.
Two special cases of the standing wave condition are when

either A,=0 or B,=0. This classification of traveling and +2pp pe, SiN(¢g — da )sinycosy],  (2.19
standing waves was based on the regime when a given mode

satisfies the requirement=>1 (short-wave regime but it y>1.

can now be applied at earlier times too, when this require-

ment is not satisfiedong-wave regime At a fixed moment of time, for instance today, the power

spectrum(2.18 reduces to
B. Stationary versus nonstationary variance
2.2
The variance of ajuantizedfield (1.3) is defined by Eq. 2 _un + L2
(1.6). The essential ?)qart of this expression is the poxergpec- h™(n. 7s) 2773|E|[pA“ cosn=pg, sinn ", n>1.
trum given by Eq.1.7). At the matter-dominated stage, the (2.20
general solution for the gravitational wave mode functions is
represented by Eq2.5). One can now find the power spec- As one can see, the power spectrum of standing waves con-
trum. We use spherical Bessel functions and replace the sunmins, quite generically, many maxima and zeros at certain

mation overs by the multiplication factor 2. Then, the gen- n’s due to the oscillatory factors cassinn. The coefficients

eral expression for the power spectrum is pa, pe, are still arbitrary and could, in principle, be smooth
> 2 o functions ofn. However, as we will show in the next section,
2 n7y A |2-2( )+|B |2-2 (y) the preceding evolution of standing waves through the tran-
h“(n,n)= ——— < I o .
() ma( 77)[ Y =l sition from the radiation-dominated era to the matter-
e _ dominated era, gives rise to additional oscillations, namely to
+21IM(ATBR)j1(Y)]-2(y)]. (219 oscillations in the coefficients,, , pg, themselves, as func-
tions ofn.

Using the constraint€2.13 and(2.14), one can now special-
ize the power spectrum to traveling and standing wave cases.

In the traveling wave case one obtains lll. THE PHYSICAL MODEL FOR RELIC

GRAVITATIONAL WAVE BACKGROUND

2C?n%y?p? A. The behavior of the scale factor: Pump field
h’(n,n)=——5—Li{y+i%(], (216 .

m3a%(n) The matter-dominatedm) era with the scale facta2.3)

was preceded by the radiation-dominat@yl era with the
and in the standing wave case, scale factora( 7)o 5. To simplify the analysis, and without

any essential loss of generality, we assume that the transition

22,2 from e era tom era was instantaneous and took place at some

h2(n, )= — 5 Lpaji(y)£ps i_(y)]% (2.1 n=n,. The redshift of the transition ig.q: a(7g)/a(7,)
ma(n) " " =1+2,. Itis believed that, is somewhere near%10°.

In its turn, the radiation-dominated era was preceded by the
When considering the waves that are shorter than the Hubbieitial (i) era of expansion, whose nature and scale factor are,
radius,y>1, one can use asymptotic formulgs?) for the  strictly speaking, unknown. To simplify the analysis, and
Bessel functions. One can also replagey) with 21, since  since the wave equations admit simple exact solutions in
the scale factor does not practically change during any ressase of power-law scale factors, we assume that tbe,
sonable observation time. Then, in the traveling wave caseimilar to thee andm eras, was also described by a power-
the oscillations of the power spectrum fully disappear, as théaw scale factor. We parametrize thera bya(7)«=|»|*"#
oscillating terms cdsy and sify combine to 1. However, (compare with[4]). The transition froni era toe era takes
the oscillations are most pronounced in the standing wavelace at somey= 7, and at redshifiz;: a(#ngr)/a(n)=1
case, as Eq2.17) exhibits a periodic structure +z;. Further analysis showsee belowthat in order to get
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the right amplitude of the generated perturbations, the nu- Mn(ﬂ)=|319_i”(”_ 7e) 4 Bze”‘(”‘ 7). (3.9
merical value ofz; should be somewhere near*10
We now write the full evolution of the growing scale fac- but the preceding evolution allows one to spe@fyandB,.
tor explicitly: The waves subject to amplification at thestage have the
wave numbers satisfying the conditiom| »,|<2w|1+ 8],

a(m=lo| 7", m=n, m<0, B<-1,(BD thatis,
a(n)=loae(n—17e), mMmsn<n., (3.2 n_ 1+7,
a(m)=2lu(n=nm? m=7 (3.3 M V1t Zeq
The continuous joining o&(7) anda’(7) at the transition For these waves, one finds
points fully determines all the participating constants in B
nyl+z
terms ofly, z;, z¢q, and 8. Concretely, B,~—B,~F(B) ?zeq =B, (3.9
(|
1+ L ,81+Zeq h
= , =— - , where
7R m m > /—1+Zeq 1+z
B+1
1 142 F(B)=—e/or s 1+ 4| :
No= 1+ = (3.4) 228+ ( 8+ 3/2)cosBm
2\1+z,, 1+7z (3.10
1 Jil+ze, 1 V142 andXxo=nmg [22]. Note that in the particular cagg= -2,
Ne=5PB —, m=51+B) =,
27 1+z 2 1+z 2
| |2:M =—2 (3.1D
and n4(1+zeq)2, : .
| a— aly The fact thaB,~ — B, demonstrates that the gravitational
0de™ N+z. ' wave modes are (almos) standing waves at the stage.
ed 3.5 These standing waves are encountering the nonzero barrier
228 (147, (B+DR2 ' a"la at them stage. To find the coefficien&,,B,, in Eq.
o=y T = - (2.5) one needs to join continuously the,(7) andu/(7) at
|1+ 8] (1+z) the transition pointy= 7,. This calculation allows one to

find the coefficientA,,B,,, but it also showsgas expected
that the standing-wave character of the field at ¢hatage
leads to the appearance of oscillations in the coefficidpts

The caseB= —2 is known as the de Sitter inflation. In this
particular case,

1tz B, of the field at theam stage. This is a general phenomenon
Lol g=—2=1n e;‘_ (3.6)  which we will also discuss in connection with density per-
(1+Zz) turbations. Explicitly,
For the CMB calculations we will also need the redshift - B
Z4ec Of the last scattering surfacge= n¢ (with the subscript A = —i 5—2[(8y§— 1)siny,+4y, cosy,+sin 3y,],
E denoting “emission’), where the CMB photons have de- 4y5
coupled from rest of the mattea(ng)/a(7e) =1+ Zgec. (3.12a
The numerical value ofy.. is somewhere near 1000. The
time of decouplingyg is T B .
plingzne B,=— \[h—yz[(syg— 1)cosy,—4y, siny,+cos 3/,],
2
1 1 V142 (3.12b
T Tize 2Viize P2drzy 87
Zdec Zeq ' where
All the formulas above are exact and we will be using n
t_hem often, buj[ sure]y one can get an excellent approxima- Yo=N(7—7e)=—, and ny=2 /1+Zeq-
tion by neglecting 1 in comparison with, z¢q, andzgec. Nm

The numerical value afi,, is about 160. This corresponds to

wavelengths that are 15 times shorter thhan Clearly, the
As soon as the scale factor and initial conditions for thecoefficients(3.12) satisfy the standing wave conditié®.14).

mode functions are strictly defined, the coefficieftsB,, in It is easy to check that had one artificially chosen traveling

Eq. (2.5 are strictly calculabl¢22,23. The general solution waves at thee stage, by assuming that eithBf=0 or B,

for u, at thee stage is =0, the oscillations irA,,, B,, would have been suppressed.

B. Squeezed gravitational waves
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The asymptotic expressions fay,, B, are as follows. For
relatively short waves, i.ey,>1, n>n,,, one has

A,~—i2ym/2Bsiny,, B,~—2m/2Bcosy,.
(3.13

Using these coefficients in E¢R.8), one finds theu,(7) at
the m stage, fom>n,,:

Hn(m)~—i2Bsinn(n—ne)].

Of course, this function is simply a continuation of the rel-
evant standing wave solutiol(~ —B,~B) at thee stage,
Eq. (3.9, to them stage. Indeed, the height of the barrier at
the m stage is

so the waves witin>n,,, stay above the barrier and experi-
ence no changes. However, the waves withn, andn
<n,, are affected by the barrier. For relatively long waves,
i.e., n<ng,, one has
A 37 8\m Byt
~—| — —_— y s
" 22 452 72

such thatB,|<|A,|. The formulas above are in full agree-
ment with[22] if one takes into account the change of nota-
tions: A,=\7/2Cy,, B,=iVm/2C,,. In particular, the
long-wavelength part of the power spectrum at the time of
decouplingn= ng is given by

-1

By, ", By~ (3.19

413 —
hz(n:"’]E)%;|_2(1+Zeq)n4|B|21 N<Ngec= 1+Zdec-

H
(3.19
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FIG. 1. Plot ofg?(x,b=5) vsx.

|2
h2(n, 7g) = — = (1+ Zgedn*[B[2g%(x,b), (3.17
4l

here

9%(x,0) =[p1(x)j1(bX) = p2(X)j - 2(bX) 1%,

n
b=—"

X=—,

Nm ndec’

1
p1(x)=—[(8x*—1)sinx-+4x cosx+sin 3],
X

1
p2(X)=—[(8x*—1)cosx—4x sinx+cos X].
X

Note that the rigorously evolved mode functions single out
the lower sign in the general formui@.17) for standing
waves. Figure 1 shows the functigi(x,b) for b=5.

. . . L . The positions of maxima and zeros of the power spectrum
This part of the spectrum is primordial, in the sense that it;ra el approximated by the short-wavelength limit of

has not changed since the beginning of amplification. In th@z(x b):

particular casg8= —2, and using Eq(3.11), we obtain the
flat (independent oft) primordial spectrum

1613, (1+z)*
h2 nl %__—y

N<Ngec= V1+ Zgec

In preparation for the discussion of CMBR anisotropies,
we show in Fig. 1 the numerically calculated spectrum
h2(n, »g), including the beginning of its oscillations. We use
the notations

p=-2,

(3.19

n Nm  2V1+2zg
XEyzz—, = =
Nm Ndec 1+ Zgec

The substitution ofA,,,B,, given by Eq.(3.12 into the gen-
eral expressiofi2.15 produces the exact power spectrum

64
g2(x,b)~ Wsinz[(b— 1)x].

In the case ob=5, the maxima and zeros of the function
sinf4x are ordered as follows:

n
Maxima: Xﬂqax=§(2k+1)*
(3.18
XpP=xg®(2k+1), k=0,123...,
. an
Zeros: XE"'"=§2|<:
o (3.19
kam=Xka, k=1,2,3....

043529-8
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curate numerical calculation, but the forecast becomes pro- 3Jmr  n 8 4

. m
gressively more accurate for later features. For example, the pa~ —|B|—, pB.~ —|B|(—) .43
analytical formula predictsx]'"=0.79, x['**=1.18, xJ'" 22 n 452" "\ Nm

— max__ H H
=6.28,Xg 6.68, whereas the numerical calculation places Let us start fromnsn,,. Using asymptotic expressions

these features atrlnmzo_'gl' XT:::LZL Xg ' =6.29, X5 (2.7) for the spherical Bessel functions, and replacing sin
=6.68. The zeroth maximump'®* would be placed, accord- with 1/2 in the right-hand side of Ed4.1), one finds

ing to the analytical formul&3.18, atxg'®*=0.393. The cru-

cial rule, however, is that the positions of minima, starting pi==|B|%, n>ng,. (4.4
from x7"'", are ordered in the proportiod:2:3:4...,

whereas the positions of maxima, starting from the zerotiNow turn to the intervah,,>n>1. Thep, , pg are now

“would-be” maximum, are ordered in proportion given by Eqg.(4.3). One can still use the asymptotic formulas

1:3:5:7 ... . Wewill see in Sec. V how these features are (2.7), but the second term in the right-hand side of Eq1)
being reflected in the oscillations of ti multipoles. is much smaller than the first one and therefore can be ne-
glected. Then, one derives
IV. DISTINGUISHING BETWEEN THE PRESENCE 9 n2
AND THE ABSENCE OF SQUEEZING pi~ 6 B|2—’;, Np>n>1, 4.5
n

As demonstrated above, the quantum-mechanically gener-
ated (squeezey gravitational waves form a nonstationary Finally, in the regionn<1, one uses asymptotic formulas
background, whose power spectrum is fully determined by, (n)~n/3, j_,(n)~1/n?. In either side of Eq(4.1), the
fundamental constants and parameters of the gravitationgirst term is smaller than the second term, and can be ne-
pump field. In this section we show that the hypothesisglected. Then, one obtains
whereby the gravitational wave background is postulated to
be stationary, and therefore nonsqueezed, is in conflict with
some other cosmological data. Since we concentrate on sta-
tionarity versus nonstationarity, the comparison of the two
backgrounds should be fair, in the sense that their today'$hese formulas give a piece-wise representation for the
(for »=ng) band-powers should be assumed equal. Howsmooth alternative spectrum which today has, in all intervals
ever, as we will show below, when one returns back in timeof n, approximately the same power as the physical spectrum
to, say, the decoupling era, the alternative background idoes.
bound to have too much power in long-wavelength perturba- Since the coefficientpAn, Ppe,» Pn are fully determined,
tions. The further extrapolation back in time destroys thepne can now derive the forms of the two power spectra at
usual(and partially testedassumption that the cosmological other times. We will compare the two backgrounds at the
perturbations remain small all the way down to the nucleotime of decouplingy= 5e. One needs to consider formulas

synthesis era and beyond. In Sec. V we will also show that? 16) and(2.17), wherea(7) =a(7g) andy=ye,
the alternative background does not produce oscillations in

a
pi~ §|B|2n§nn4, n<1. (4.6)

the C, multipoles, whereas the physical background does. n n
Th t f the physical back dis gi =n(ng— = =—. 4.
e power spectrum of the physical background is given Ye=N(7g— 7m) Naee Ltz (4.7)

by the general expressiof2.15 where A,,B,, are deter-
mined by Eq.(3.12. The substitution of Eq(3.12 in Eq.

(2.15 results in formula2.17) (with the lower sign where : .
. >\/1+z4., both spectra increase power in the same propor-
pa,.pa, are absolute values of the coefficie(is12. On the tion, simply as a result of changiraf#) from a(#g)=2I4

other hand, the general form of the power spectrum for thg, the smaller value(7g) =21y /(1+ 2400 So, in this range

alternative(stationary background is given by E42.18,  of n the ratio of powers in the two backgrounds is 1:
wherep,, should be found from the fair comparison:

Clearly, in the band of sufficiently short waves)

22 L2 : - 2 le ns>\1+z (4.9
pALIS(M) + 1% o(M]=[pa ja(M) —ps i —2(M% (4.1 h*(n,7e)lpnys e '
However, this ratio is significantly larger than 1 in longer

We will find p, using asymptotic expressior8.13 and waves. This is seen from the general formula

(3.149 in different intervals ofn. In the regionn>n,,, for-
mula (3.13 yields

h2(n,7e)lan  PRLIT(N/NGed +i2 (NV/Nged ]
h?(n, 7g)| [pa,i1(NNged —pe j ~2(N/Nged 12
. n n » //E) Iphys Al de B, -2 de
n =278 sinr | o = 2718l cost|. 42 49
m m
applied to longer waves. Indeed, in the intervakki
In the regionn<n,, formula (3.14) yields to <y1+2z4.. (@and, hencen<ng,) one uses the small argu-
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ment approximation for the Bessel functions, neglects secesenting initial conditions: an intrinsic variation of tempera-
ond terms in the numerator and denominator, and t@lﬁes ture at »= ng and a possible velocity of the last scattering
from Eq. (4.5). This calculation results in electrons with respect to the chosen coordinate system,
which is synchronous and comoving with the perturbed,

h2(n, 7g) 9 (1+2400° gravitationally dominant pressureless matter, possibly, cold

h2(n nE)||alt =3 ngw , 1<n<y1+2Zgee dark matterCDM). o '
1T/ Iphys 4.10 Similar to the perturbation fielt;; itself, the temperature
' variation ST/T is also a quantum-mechanical operator. To

This ratio is comparable with 1 only @t~ 1+ zy,. where  €stablish contact with macroscopic physics, we need to cal-
Eq. (4.10 goes over into Eq(4.8). But the ratio(4.10 is  culate the correlation function

much larger than 1 for smaller's. As for the regionn<1, ST ST

one appliezs the same approxi_mat_ions as in the previous case, (0| ?(e1)7(e2)|0>-

but takesp;, from Eq. (4.6). This gives the result

We use the mode functiori2.5) and the normalization con-

2
Mn’—”E)L”‘“:(lJrzdeaa' n<i. (417  stantC=16wlp . Then, it can be show[22] that the cor-
h2(n, 7e)| phys relation function takes the elegant form

This ratio is universallyindependently of in this region 6T oT
much larger than 1. (0l T (e (&)|0)= |p|2 K|Pi(coss), (5.2
It is easy to understand these results. The parts of the

general solutior(2.5) with j;(y) andj_,(y) are called, re-  whereP,(cosé) are Legendre polynomials for the separation

spectively, the growing and decaying solutions. This classiangle 5 between the unit vectors ande,, and
fication reflects their different behavior in the small argument

approximation for the Bessel functions. The growing and Ki=2l+1L)(I=DI(+1)(1+2)F,
decaying solutions are necessarily present in the power spec—
tra of both backgrounds However, the stationary backgroun¥here

contalnSJl(y) and]_z(y) always with equal coefficients, . wed (nw) 2
whereas the nonstationary background contgif(y) and FFJ n2 f 2t (pr—w)dw| dn, (5.3)
j —2(y) with equal(up to oscillation$ coefficients(4.2) only 0 o (nw)°?

for sufficiently short waves. In longer waves, the decaying

solution of the stationary background becomes progresswel?n

more important when one goes back in time. Since the physi- )

cal background is expected to have enough power to produce f(pa—W)= —— Hn (5.4)
the lower order anisotropy in the CMB temperature at the 7R J2n! a S ’

level 6T/T~10°, the alternative background would have
produced this anisotropy at the unacceptably high leveiye will also be using the multipole momen® defined by
STIT~3x10 L.

2l+1

Tam

V. MICROWAVE BACKGROUND ANISOTROPIES oK, =
CAUSED BY RELIC GRAVITATIONAL WAVES

The central quantity for the calculation Bf is the func-
The key element in formula for the temperature variationjgp,

STIT seen in a given directioa[24] is the 5»-time derivative
of metric perturbations evaluated along the CMB photon’s

!

Mn n .
path between the event of receptiéR) and the event of ry 5\/§(An~]5/2(y)+|Bn‘]—5/2(Y))- (5.9
emission(E):
To get more insight intd-; we introduce the two new func-
ﬂ(e)= EJWl ﬂeiel‘ dw. (5.1) tions: .|, defined by the respective integrals:
T 2Jo0 | dm path
Wiy (X)) Jesp(N—X)
The upper limit of integration is pei(Nwy) = fo dx 2 (-9 (5.6
Wi= pr—7e=1— 1 Then, the general expression fer takes the form
17— //IR E™ ’
\/1+Zdec
Fi= “dn re[|A +|B
and the integration is performed along the path 7z—w, 812 Jo [1Anl*0i+ Bl
x=ew. In the case of density perturbations, the integral in .
formula(5.1) should be augmented by the additive term rep- +21Im(AR B 1y ]. (5.7
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1F Minima 1,=137, 1,=237, 15=344, |,=456,
ls=569, |5=682, |,=796,

Maxima |,=161, 1,=269, [,=381, |,=494,
ls=609, lg=723, |,=839.

Clearly, these features reflect the oscillations in the metric
power spectrum. Judging from the mathematical structure of
the participating Bessel functions, it is likely that the posi-
tions of features in the space are related to the positions of
features in thd-space by a simple numerical coefficient of
order 1. It is difficult to find out this coefficient analytically,
though. Remembering that the positions of first features may
be displaced by 10%-15%, as compared with the analytical

IXI020(:2(I)04(I)06(I)08(I)01000 forecast(3.19 and (3.18, we put the zeroth “would be”
I maximum atl3'**=56. Then, our simple analytical formula
places the next features in the following positioh§:"
FIG. 2. The solid line depicts the plot &€l +1)C, versusl in =112, 17**=168, |2min:224, |5%%= 280, |3mi”:336, |32
the physical model, normalized such thatlat10, we havel(| =392, |4min:448, | M= 504, |5min:560, |Max_ 516, Ig’nin

+1)C,=6.4x10 1% which tallies with observations. Thé&ed —672, M= 728, |MN_ 784, |T*_840. Comparing this
= g = 7= 1777 .

dashed line is the corresponding plot in the alternative model. Here L . . o .
we takeB= — 2, and the redshifts aj, and 7 to be z,,= 10 000 prediction with the numerically calculated positions, we find
= ) 2 E eq

and zy4..= 1000, respectively. them .in.a fair!y gpod agreer_nent. . .
This investigation of gravitational waves provides us with
This expression simplifies when the coefficieAts, B, rep- guidance for the technically more complicated case of den-

resent travelindEqg. (2.12)] or standing Eq. (2.14] waves. sity perturbations.

For a stationary background one gets
VI. DENSITY PERTURBATIONS AND THE C, FEATURES

Flzizf dn n5p§[¢,2+ ¢§|], (5.9 The general expression for metric perturbations, associ-
8li1Jo ated with density perturbations, is given by Ef.3) with the
polarization tensors explained in the Introduction. When one
is actually writing down the perturbed Einstein equations, it
1 [ turns out that it is more convenient to work with the mode
FI:%J'O dn n5[pAn¢,|_an,/,7l]2_ (5.9 funcuqsnsh(n) andh,(») instead of the original mode func-

tions h,(#). The relationship between them is

while for the physical nonstationary background one gets

These formulas explain the different behavior of the multi-
pole moment<, in the two cases. We demonstrate this with 1 3 1 2 1
the help of numerical calculations. hn(7)= \[5( h(#n)— §h|(77)), hn(7)= Thl(ﬂ),

In Fig. 2 we show by a solid line the graph of the function 3
[(1+1)C, calculated with the help of Eq$5.9) and(3.12. 6.3
The cosmological parameters were chosen, for illustration,
Zeq=10%, Z4e=10°, B=— 2. The parametez; is adjusted in
such a mannerz{=10°%9 that the graph goes through the
point 1(1+1)C,=6.4x10 1% at =10, which agrees with . _
observations. Our attention is focused, however, on the odure Pij=4&jj, whereas the functiorn () is the purely
cillations in this function. The dashed line shows the samdongitudinal-longitudinal part of perturbations, it enters
function for the alternative stationary background. The cosyith the polarization structur&iz’ij =—n;n;/n? We will fol-

mological parameters are the same as above, but the calciy the same strategy as in the case of gravitational waves,

lation is performed with the help of E5.8) and the coef- 5 will start from exact solutions to the perturbed Einstein
ficients p,, found from the condition(4.1) of the fair equations in different cosmological eras.

comparison. The remarkableven if expectedresult is that
the stationary background of gravitational waves does not
produce oscillations in the angular power spectr@n

A¥here the wave-number indexon the mode functions( )
andh,(#) is implicit. The functionh( %) is the purely scalar
part of perturbations, it enterg; with the polarization struc-

1

A. Density perturbations at the matter-dominated stage

whereas the nonstationary background does. The matter-dominated stage is driven by a pressureless
The numerical positions of minima and maxima in the matter; possibly, cold dark matter. The general solution to the
oscillating graph are ordered as follows: perturbed equations at then stage can be simpli-
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fied by using the available freedom within the class of syn-dominant for large wave numbers, which are responsible for
chronous coordinate systems. By using this freedom, onthe dipoleC; and for theC, multipoles near the peak &t
specializes to the unique coordinate system, which is syn—200. For example, correct implementation of the full
chronous and comoving with the perturbed pressureless masachs-Wolfe formulg43) for calculation of the dipoleC,
ter. In this coordinate system, the general solution is gives a number that is five orders of magnitude greater than
the number following from the “Sachs-Wolfe effect” coun-
h(7)=Cy, terpart of the full formula. The lack of ergodicity on a
3 (6.2 2-sphere provides asluncertainty in theC,’s, roughly at the
hy(7)= iclnz(n_ nm)z_lcz(”f m) ' Ieve] AC,:\/ZI(ZI +1)p|. We say “rqughly" because t'he '
10 3 (g— ) statistic of the underlying random variable is not Gaussian, it
is described by the product of an exponent and the modified
where C,,C, are arbitrary complex numbers. The matter Bessel functionk, [14]. In the case of the dipol€;, the

density perturbation is uncertainty amounts tAC,/C,~0.8. Clearly, this factor-of-
two uncertainty cannot cover the five orders of magnitude
f: Eh (7) 6.3 disparity in the results; quite simply, the result based on the
© 27 ' misinterpreted “Sachs-Wolfe effect” is what is wrong. For

o ) _ details, see Refl5].
a_md the velocityv! of matter elements, including perturba-  The coefficientsC,,C, in the general solutiori6.2) are,
tions, so far, arbitrary, but they are determined by the previous
evolution of density perturbatior(gip).

v! Té)
C Tp B. Density perturbations at the radiation-dominated stage
is by construction zero, i.e., The “master equation” at the stage is
vl v”+£n2v=0 (6.6
—=0. (6.5 3 ' '

The above solution is well known since the times Ofwhere the coefficient 1/3 enters because we have cged

E.M. Lifshitz and can be found in various publications, up to = 1/\5’_Wh'Ch is valid deep in the radiation-dominated era.
possible misprints. For instance, this solution follows fromBY the time of decoupling, the plasma sound speed decreases
equations given in Ref25], if one corrects for a misprint in  Slightly below this value, depending on the baryon content,
the last line of Eq(A8): the second term there should actu- @1d we will account for this fact by returning backdg'c in

ally enter with coefficient 2. appropriate places. The g_eneral _solutlon to Exgo) is al-

The adopted choice of the unique coordinate systemVays oscillatory as a function of time:
which is both comoving and synchronous, not only greatly - -
simplifies the form of solutions, but is also needed for a v=B,e (V31770 1 Bl (V3 (r-7e), (6.7)
proper formulation of theST/T calculations. As long as the . )
emitter and the receiver are riding on the time-like geodesic¥/hereB:,B, are arbitrary complex numbers. All the metric
x' = const of this perturbed metric, the Sachs-Wolfe integraland matter pe_rturbatlons can now be found from solutions
(5.1) is the full answer; there are no extra velocity contribu- (6-7). For metric perturbations, one has:
tions to this integral. The additive velocity contributions
arise only if the emitter or the receiver are moving with a'| (»
respect to this unique coordinate system, that is, when they h(#n)= ;[I vdn+C, (6.8
are not described by the world-lines= const. !

For the growing solutiorinamely, the terms with coeffi-
cient C,;), the Sachs-Wolfe integral can be taken exactly. It
appears that astrophysical literature calls by gravitational a
“Sachs-Wolfe effect” only a part of what is actually con- h/=—
tained in the Sachs-Wolfe pap¢R4]. Invariably, by the a’'
“Sachs-Wolfe effect” are meant only two terms, which are,
roughly speaking, the difference of “gravitational potentials” The constanC, reflects the remaining coordinate freedom at
at the events of emissiofE) and receptionR). Two other thee stage. TheC, should be chosen in such a way that the
terms in their full formula(43), which are the difference of comoving synchronous coordinate system of thestage
the “gradients of the gravitational potential,” are being sys-joins smoothly to the employe@linique coordinate system
tematically ignored. Possibly, this happened because Saclas thee stage; we will discuss this specific choice®@f later
and Wolfe addressed one of these gradient terms in then. The constant8,,B, are still arbitrary and should be
words: “this second term is normally small.” This second found from solutions at the stage.
term is indeed small for small wave numbers, butitis in fact The “master equation” at thé stage is

and

a/
3h”+9gh’+n2h . (6.9
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2_ (a\/;)”
aVy

Juh+ fio| =0, (6.10

where

a

" H
a/

=

and thet-time derivative is related with thg-time derivative
by cdt=ad»n. For the power-law scale factora(#)
«|»|**#, which we are working with, the functiory be-
comes a constant, and it drops out of the Eq10. So, the
“master equation”(6.10 is exactly the same as E.1) for
gravitational waves. By quantum-normalizing the initial met-
ric perturbations, and evolving them through th&age, we
finally find that

Blm_BZEde. (611)
It was shown[11] that the crucial quantityBg, for density
perturbations is related with the crucial quanty, for
gravitational waves, introduced in E.9), by the relation-
ship

Bop= V6B (6.12

In what follows, we will work withBy, only and, henceforth,
drop the subscript dp.

Combining all the results together, we write down explic-
itly the exact solution at the stage, including the required
choice ofC,. In doing this, we use the following new nota-
tions:

v= (=m0l 613
ey "
Yo= \/5(772 7]6)_\/52\/1+—zeq_nc’
(6.149

1
n=2v3\1+z,, Y= 5Y2siny,+cosy,.

Then, the exact solution is

A
h(n)=}7[cosy—Y], (6.15
siny ¥2C0SYy y
h =3A|———— | —=dy—-YIn—
) y Ty YTy,
1siny, 2
§ Yl +§C05y2 , (616)
Se A 2( Y)+2 ,
—=—A|—(cosy— —siny—cosy |,
. v y y y Y
(6.17
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i nl [2
—=—iA——=|—(cosy—Y)+siny|, 6.1
c 03 y( y—Y) y (6.18
where
inBy1+z
A= —— 29 (6.19
23l

One can check that all the participating functions,
h(7),h"(7),hi(7),h/ (), €l €5,v), join continuously with
the solution(6.2),(6.3),(6.5 at the transition pointy= 7,.
This transition fully determines the coefficier@s andC,:

A

Ci=- 2y,

SinyZ!

(6.20
3A e
C2=5—y2[(10— 3y3)siny,— 10y, cosy,].

The oscillatory behavior oC,,C,, as functions ofn, is
analogous to the oscillatory behavior of the gravitational
wave coefficientd3.12 and has the same physical origin.
The fact thaB,~ — B, demonstrates that each madef the
metric perturbations, and the associated matter perturbations,
at thee stage forms a standing wave pattern. In the limit of
short wavesy>1, one recovers from Eq#6.17) and(6.18

the familiar solutions for standing sound waves:

e

—~Acosy, (6.21)
€0

vl ni

—~—iA——=sin 6.2
: ehk (6.22

C. Perturbations at the last scattering surface

Having found the quantum-normalized exact solution at
the m stage, we are in a position to calculate the metric
power spectrum, which is defined by E4.7). Taking into
account our mode functions, the spectrum can be written as

2

C
T

2

2 2 L 1 2
h (n,ﬂ) E h—§h| +§|h|| . (623

We will calculate this quantity at the last scattering surface
n=ne. By that time, the second term in the functiby{ )
is a factor] (1+24e/(1+2¢g) 12 smaller than the first term
[see Eqs(6.2) and(6.20]. We neglect this decaying part of
the solution, participating with the coefficie@,. For the
explicit form of |C,|?> we use Eqs(6.20 and(6.19. Then,

C? n*|B|A(1+ 2o

we obtain
2
27 492 ( )

v
(300~ 20p%y3+py3)
200 '

siny,
Y2

hz(n, ng) =

(6.29
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1x10°[. numerical factor 10in order to facilitate the visual compari-
son of maxima and zeros in the two graphs.
We now turn to the ordinary matter perturbations at the
last scattering surface. The photon-electron-baryon fluid is
gravitationally subdominant af= nz. The fluid does not

1x10°L

=
gf E significantly contribute to metric perturbations, but it retains
“'i 1000 its own perturbations. The plasma speed of sound is given by
} c 1
10 i _ (6.27
¢ J3(1+R)

10

whereR=3py,/4p ~ 270,h? [19,20. For the popular value
Q,h?~0.02, it means that,/c decreases from the nominal
value 0.58 to approximately 0.47. The plasma standing

FIG. 3. The plot depicted by the solid line is that t(x,p  Waves(6.21) and(6.22, continued to the decoupling e

—_
TTTT

25

=8) vsx. The dashed line shows the behavior\f(x) x 1¢°. = 7e, take the form:
where we have introduced the quantity ?mAcosni, (6.28
v s
2\31+z,q j j
p=—F—, v . ¢cgn n
V1+Zgec . _IAElFSIHn_’ (6.29

S
related to a similar quantityb, from the gw case, by
=/3b. The spectrum certainly retains its primordial form in
the band of long wavea<1+z4.. Taking into account c c
Eq. (6.12 and the numerical value @f= 24wl p, for den- Ns=V1+Zgec=  Ndec- (6.30
sity perturbations, one finds that the primordial spectrum of ' !
metric perturbations associated with density perturbations*[,-rhe velocityv! is always defined with respect to the unique
Eq. (6.24), is a factor of 9/16 lower than its gravitational synchronous coordinate system, which is comoving with the
wave counterpart, Eq3.15. In particular, for3=—2, one  gravitationally dominant pressurele@ark) matter] At the

where

finds same time, the leading metric perturbation is given by
912, (1+z)* 3 1+zy n N
2 ~_ S < =/ E— €q _ &in—
h“(n, »g) p |E| (11209’ N<Ngec= V1+Zgec h(7e) 5A1+Zdec n. Smnc- (6.32

(6.29 There are a number of differences between the metric
For relatively short wavesi/n.>1, the crucial part of the perturbations and the plasma perturbations at the last scatter-
power spectrunt6.24) is the modulatingtransfey function  ing surface. First, the amplitude bf( zg) is, at least, a fac-
. tor of 3(1+2z¢4)/[5(1+z4ed | greater than the amplitudes of
o[ N\ _[sinyz\? sirf(n/n,) e, /e, andvl/c, near the most interesting scales-n;.

M n_C oy, ~ (n/ng)? (6.26 After all, the original motivation for the introduction of a
cosmological dark matter was precisely this: to avoid con-
The primordial metric spectrum is encoded in the factorflicts with ST/T observations by allowing the plasma pertur-
n*|B|2. Whatever this spectrum is, the modulating functionbations at decoupling to be small, but, nevertheless, to be
leaves it intact at large scales, but bends the spectrum dowable to develop the large scale structure of luminous matter,
and introduces oscillations at smaller scales. In Fig. 3 wat the expense of large gravitational field perturbations
show the metric power spectrunf(n, 7g), up to numerical  driven by the dark matter. So, we have to pay the price for
coefficients.[To avoid confusion, we emphasize again thatthis idea by exploring in more detail the consequences of
this is the spectrum of thésqueezedmetric perturbations large metric perturbations for the CMB anisotropies.
associated with density perturbations, and not the Second, the characteristic frequencigesand ng are dif-
gravitational-wave spectruf26].] Specifically, by a solid ferent. Their ratio is
line, we plot the functiorf?(x,p), where

Ne C 1+zeq
n—s—zﬁc Tz, (6.32

i 2
sSinX
PGP =| =~ ) [300-20p*x*+p*x],

The zq is given by 1t+ze~4Xx10°Qh? [19]. For the
X=Yy,=n/n; and, for illustration, we takp=8. By a dashed popular values(),,=0.3h=0.7, this amounts toz.,~6
line, we plot the functiorM?(x), multiplied by the artificial X 10°. So, the ration./ng can be a number close to 4.
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Third, although the sound waves before the decouplindaboratory scales. This claim has led to many years of mis-
are standing waves, they are still not processed by the quidkeatment of a possible gw contribution to the CMBR data. It
drop of the sound speed to zero at the decoupling. This prds only in a few recent papergor example,[38]) that the
cessing will later lead to the baryonic matter power spectruninflationary “consistency relation” is not being used when
modulations known as the Sakharov oscillati§#g]. They  analyzing the CMBR and large scale structure observations,
would have taken place even in laboratory conditions, wher&vith some interesting conclusions. For the latest statement
gravity plays no role. The Sakharov oscillations are impor-that the initial spectrum of gravitational waves is “con-
tant for the formation of oscillating features in the IuminousStr"’“Tecj to be small compared with the initial density spec-
matter power spectrum, but they are unlikely to be directlytrum_ see the latest article praising mfIgtlonary E)red|ct|ons
responsible for the peaks and dips in the obse@gsl In a _(for ||_1$tance[29]);, For the critical analysis of the “standard
broad sense, the periodicity in the metric power spectrummﬂat'onalry Fesu't see the end of Sec. VI [8] and refer-

o ences therein.
related to the transitiom= #7,, can also be called Sakharov
oscillations, but this is not what was originally meant by the
Sakharov oscillations. In short, the zeros in the metric power
spectrum are “frozen” zeros, they are determined by We will now analyze the zeros and maxima of the metric
M2(n/n.); whereas the zeros in the plasma power spectrurrpower spectrunf?(x,p) shown in Fig. 3. The crucial peri-
at the times before decoupling, are still “moving” zeros; odic dependence is provided by the function *in
they change their positions at slightly different moments of=sin®(n/n). We will use this function for our analytical
time »=const[28]. evaluation, in full analogy with the case of gravitational

Fourth, the wave-number periodicity in the metric powerwaves. The positions of maxima and zeros are determined by
spectrum is governed by the sine function, whereas the perthe rules:
odicity in Eq. (6.28 is governed by the cosine function.

Presentjy, there gxists a tendency to distinguish between the paxima: ernax:Z(ZKJr 1),

“acoustic peaks” in theC, [supposedly caused by E@®.28 2

and by the “effective temperatur¢”and the “Doppler (6.33
peaks” [supposedly caused by the velocity in E§.29]. X P=xg(2k+1), k=0,1,23...,

The authors of29] emphasize that “the acoustic peaks are
not Doppler peaks,” arguing that the irrotational velocity
cannot produce strong peak structures in @espectrum.
They say that “the observed peaks must be acoustic peaks” _ _ (6.39
and they give the ratio of the peak locations;:€¢,: € xg'"=x1""k, k=1,23....

~1:2:3. So, themain contenders for the explanation of the

peaks seem to be the sine function in the metric power spe®@bviously, the zeros of the function 4{®) are exactly the
trum and the cosine function in the “acoustic peaks.” same as the zeros of the full functiéf(x,p). But the posi-

Before proceeding to the discussion of peaks and dips, wdons of maxima are somewhat different. The difference is
need to make one more comment. It was shown above thaignificant for the zeroth maximum, but it fully disappears
the primordial power spectra of gravitational waves and denfor later maxima. The locations of the first few maxima,
sity perturbations are of the same order of magnitude, witltlerived from the simple analytical formu(&.33, are xg'®*

some small numerical preference for gravitational waves. In=1 57, X'¥*=4.71, x3'=7.85, x§*=11.00. At the same

particular, this is true for the flat spectr@€ —2), as dem-  time, accurate positions from the numerical calculation are
onstrated in Eqs(3.16 and(6.25. Therefore, the lower or-  ymax— 5 g5 yMax=4 92 x73*=7.98 xT®*=11.09. Thus for-
der CMBR anisotropiegstarting from the quadrupole mo- myja (6.33 predicts the positions of the first two maxima
mentC,) are expected to be of the same order of magnitudgomewhat to the leftsmallerx) than they should actually
[11]. One should be aware that the story is dramatically dif-appear, but the positions of zeros and further maxima are
ferent in an inflationary scenario. The “standard result” of an yegcriped very well. In terms of the percentage corrections,
inflationary scenarig30—-37 predicts the infinitely large the zeroth maximum, derived from E¢6.33, should be
density perturbations, in the limit of the flat spectritimatis,  ghifted to the right by 30%, and the first maximum should be
the Harrison-Zel'dovich-Peebles spectrum, with spectral inpjfted to the right by 4%.

dex n=1, parameted=—2, and the relationship between Accepting zeq=6><103, one obtainsn,=268. With this

them beingn=2p+5), through the set of evaluations: ne and xT¥=1.57, the position of the zeroth maximum in

Splp~hs~H? o~V3%(¢)/V'(¢)~1/y1—n. By compos- the n space would be, according to E¢6.33, at nI'®*

ing the ratio of the gravitational wave amplitutle to the =421, positions of all the subsequent features in the power
predicted divergent amplitude of the scalar metric perturbaspectrum follow from the general rulg§.34 and (6.33.
tions hs (the so-called “consistency relation’hr/hs  The problem now is to relate these features in the metric
~+/1—n), inflationary theorists substitute their prediction of power spectrum with the peaks and dips in the angular power
arbitrarily large density perturbations for the claim that it is spectruml (1 +1)C,. Judging from the previous numerical
the amount of gravitational waves that should be zero, oexperience[15], the characteristic features of the metric
almost zero, at cosmological scales and, hence, down tpower spectrum are reflected in thgpace via a numerical

D. Peaks and dips in the angular power spectrum

. n
Zeros: ka'"=§2k,

043529-15



SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 (2002

coefficienta close to 1/2: = an. Accepting the provisional The numerical graph of Fig. 3 also shows a little depres-
value a~1/2, the location of the zeroth peak in thepace sion atxq.,=0.41. This depression arises entirely due to the
would be nead,=210. This is a satisfactory intermediate polynomial term inf?(x,p) rather than from the modulating
result, but we want to do better. Remembering that the posifunction M?(x). Accepting the same value.= 268, this fea-
tion of the zeroth peak, following from the analytical for- ture corresponds toge,=110. Assigning some significance
mula (6.33, should be shifted to the larger valueslpfve  to this feature, and following the same logic as before, we
place our zeroth peak &§'®*=170. The 30% correction of have to conclude that this depression in the metric power
this number shifts the zeroth peak If8**=221. Of course, spectrum may be reflected as a small local minimum in the
we keep an eye on the actually detected peak in this regio@ngular power spectrum. Applying the numerical factor
Our aim is to derive the full structure of peaks and dips in the=1/2, this minimum is expected to be seen arougg,
angular power spectruti{l +1)C, from the simple analyti- ~55. This may be one of the areas in thgpace to analyze
cal formulas(6.33 and (6.34), allowing only for the 30% closely in future experiments, such as the Microwave Anisot-
correction to the zeroth peak and the 4% correction to th&opy Probe(MAP) and Planck.

first peak. Following this strategy, we formulate our full fore- ~ To compare our forecast with observations, we take for

cast: the face value the central positions of peaks and dips re-
ported by de Bernardist al. [17]. We take the liberty of
Peaks: I7®=170221), |7'**=510530), calling their Peak 1 as our zeroth peak, Peak 2 as the first
(6.353 peak, and so on. The reported measured positions are as fol-
’ I :
Imax_ g5, |T=1190, |T=1530, ows
. Peaks: 1§#=213, 17¥=541, 13'%*=845,
Dips: 11""=340, 13""=680, I7'""=1020, (6.363
(6.35h
IMn=1360, 1""=1700. Dips: I""=416, |I7"=750. (6.36h

As a consequence of Eg$.33 and(6.34), the general rule  Their forecast for the next features is as follows:
for the peak positions i4:3:5:7. .., for the dippositions:

1:2:3:4. .., and thedips appear between the peaks at Peaks: 17%=1139, |7#*=1442, (6.373
ymin_ L (max max) Dips: 17"=1025, 17"=1328, 1""=1661.
2 (6.37bH

Everywhere in this paper, both for gravitational wavesComparing the observed positiof&.36) with our formulas
and density perturbations, we perform calculations under thes.35, we find them in reasonably good agreement. The
simplifying assumption that the Universe is spatially flat. It peaks and dips appear, at least roughly, in the right positions.
is obvious, however, that neither the generating mechanision the other hand, the periodic function #oén,), appropri-

itself nor the results, for wavelengths comfortably shorterate for the “acoustic peaks,” implies the reversed rules for
than the putative curvature radius, depend on this simplificathe dip and peak positions:

tion. The unaccounted factors, such as the possible presence
of a spatial curvature, or A term, ora “quintessence,” or a Dips: |E1in:|0min(2k+1), k=0123
“dark energy,” can move the entire structure of peaks and
dips, but these factors can hardly change the general rules for
their relative positions. g ’ ’ Peaks: I¥=17%, k=123....

One should note that what is following from our classifi-
cation as the “zeroth gravitational peak,” which we place atSo, the structure is supposed to start from the zeroth dip, the
I5®*=170 plus the correction shifting it t4§'®*=221, is of-  dip positions are ordered ds3:5:7. . ., thepeak positions
ten interpreted as the “first Doppler peak” or the “first are ordered ag:2:3:4. .., and thepeaks appear between
acoustic peak.” The notion of the “zeroth Doppler peak” neighboring dips atl”“'J‘X—(llz)(l”“”JrIm'n If the first
was introduced and discussed by Weinbgl§,20. In gen-  acoustic peak is dt=213, the second one is supposed to be
eral, all three sources: gravitational field perturbations, inatl~426, almost in the same place where observations indi-
trinsic temperature variations, and velocities, contribute tacate the first dip. Most importantly, there is no observational
the peak structure. The gravitational field contribution is rep-evidence whatsoever for the zeroth dip. We do not see how
resented by the Sachs-Wolfe integfall), while the two the observed structur®.36) can be explained by the acous-
other sources are represented by E@28 and (6.29. tic peaks.
However, the raising functiom(l+1)C, would not have The forecast6.35 on one side, and the forecd6t37) on
turned down without the modulating functioM?(n/n,)  the other side, go out of phase at late features. We place our
[15], so we focus our attention on the gravitational contribu-fourth peak in between the positions where de Bernardis
tion. et al. [17] place theirl 7@ and IT'". If these features are
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not washed out by dampir{d.9,20,29 the MAP and Planck ACKNOWLEDGMENTS
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These positions are in very good agreement with the theorefx. Dimitropoulos for interesting discussions. L.P.G. would
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