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Observational determination of squeezing in relic gravitational waves
and primordial density perturbations
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We develop a theory in which relic gravitational waves and primordial density perturbations are generated
by strong variable gravitational field of the early Universe. The generating mechanism is the superadiabatic
~parametric! amplification of the zero-point quantum oscillations. The generated fields have specific statistical
properties of squeezed vacuum quantum states. Macroscopically, squeezing manifests itself in a nonstationary
character of variances and correlation functions of the fields, the periodic structures of the metric power
spectra, and, as a consequence, in the oscillatory behavior of the higher order multipolesCl of the cosmic
microwave background anisotropy. We start with the gravitational wave background and then apply the theory
to primordial density perturbations. We derive an analytical formula for the positions of peaks and dips in the
angular power spectruml ( l 11)Cl as a function ofl. This formula shows that the values ofl at the peak
positions are ordered in the proportion1:3:5: . . . , whereas at the dips they are ordered as1:2:3: . . . . We
compare the derived positions with the actually observed features, and find them to be in reasonably good
agreement. It appears that the observed structure is better described by our analytical formula based on the
~squeezed! metric perturbations associated with the primordial density perturbations, rather than by the acous-
tic peaks reflecting the existence of plasma sound waves at the last scattering surface. We formulate a forecast
for other features in the angular power spectrum that may be detected by the advanced observational missions,
such as the Microwave Anisotropy Probe and Planck. We tentatively conclude that the observed structure is a
macroscopic manifestation of squeezing in the primordial metric perturbations.

DOI: 10.1103/PhysRevD.66.043529 PACS number~s!: 98.80.Cq, 04.30.2w, 42.50.Dv, 98.70.Vc
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I. INTRODUCTION

A direct search for relic gravitational waves is one of t
important goals of the forthcoming gravitational wave obs
vations ~for reviews, see Refs.@1–3#!. Relic gravitational
waves are inevitably generated by a strong variable grav
tional field of the very early Universe through the mech
nism of superadiabatic~parametric! amplification of the
zero-point quantum oscillations@4#. The word ‘‘superadia-
batic’’ emphasizes the fact that this effect takes place o
and above whatever effects occur during very slow~adia-
batic! changes. That is, we are interested in the increas
occupation numbers, rather than in the gradual shift of
ergy levels. The word ‘‘parametric’’ emphasizes the under
ing mathematical structure of the wave equations. It is
sufficiently quick change of a parameter of the oscillat
namely, variation of its properly defined frequency, that
responsible for the considerable increase of energy of
oscillator.

Apparently, Schro¨dinger @5# was the first to notice the
‘‘alarming phenomenon’’ in an expanding universe. Spec
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cally, Schrödinger discusses the ‘‘mutual adulteration
positive and negative frequency terms in the course of tim
The frequency mixing means that a traveling wave can
amplified, with the simultaneous appearance of a ‘‘reflecte
wave, i.e., a wave traveling in the opposite direction. Af
Schrödinger, out of unawareness of his work, this effect h
been rediscovered several times. Schro¨dinger speaks abou
the mutual adulteration of electromagnetic waves, wh
would mean the generation of photons. We now know t
the coupling of the electromagnetic field to gravity is su
that the generation of photons is impossible, so that
alarming phenomenon does not take place. A detailed st
of the Schro¨dinger paper shows that, in fact, he was oper
ing with a variant of scalar electrodynamics, that is, with
scalar wave equation in an expanding universe model~for a
discussion of this point, see Ref.@6#!. Then, indeed, the cou
pling of a scalar field to gravity can be chosen in such a w
~minimal coupling!, that the generation of scalar particle
becomes possible. Parker@7# undertook a systematic study o
the quantized version of the scalar wave equation in FLR
~Friedmann-Lemaitre-Robertson-Walker! cosmologies. For a
summary of the subject, see Refs.@8,9#. As for gravitational
waves, there is no ambiguity in their coupling to gravi
because the coupling follows directly from the Einste
equations. It was shown that the gravitational wave equa
for each of the two polarization components is exactly
same as the equation for the minimally coupled mass
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SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 ~2002!
scalar field@4#. The early studies were concerned with fr
test fields superimposed on a given space-time, wherea
are interested in fields arising in the context of perturb
Einstein equations~cosmological perturbations!. This dis-
tinction is especially important for the issue of quantum n
malization of the fields.

Already at this elementary level of discussion, one c
make an important observation that will play a crucial role
our study below. If a classical traveling wave, of any phy
cal nature, is going to be strongly amplified, the result
wave field will form an almost standing wave. A travelin
wave can never convert itself into a strict standing wa
because of the conservation of linear momentum. But
final amplitudes of the amplified left-moving and righ
moving waves will be large and almost equal, so they in
fere to form a practically standing wave.

The amplification process is linear, and the final amp
tude of a classical wave is proportional to the initial amp
tude. If the amplitude of a classical oscillator is zero initial
the oscillator will not get excited by the parametric influenc
However, a quantum oscillator in its vacuum state does p
sess tiny ‘‘zero-point’’ quantum oscillations. One can thi
of these vacuum oscillations as the ones that are being
plified. The generation of relic gravitational waves~as well
as the generation of other cosmological perturbations,
cussed below! is a genuine quantum-gravity process, in t
sense that the final result inherently contains all the fun
mental constants\, G, and c. The gravitational energy
momentum tensor containsG and c, while the Planck con-
stant \ enters through the requirement of having init
energy 1

2 \v per mode of the perturbation field. The fund
mental constants naturally combine in the Planck lengthl Pl
5(G\/c3)1/2 or the Planck massmPl5(\c/G)1/2, but l Pl or
mPl must stay in the numerator of the final expression, no
its denominator, so that the final result vanishes if\ is for-
mally sent to zero.

The gravitational field of a FLRW universe is given by th
metric

ds252c2dt21a2~ t !gi j dxidxj

5a2~h!@2dh21gi j dxidxj #, ~1.1!

where the scale factora(t) @or a(h)# is driven by matter
distribution with some effective~in general, time-dependen!
equation of state. The scale factor has the dimensionalit
length, whileh andxi are dimensionless. Without restrictin
in any way the physical content of the problem, one c
write the perturbed gravitational field of a FLRW univer
~for simplicity, spatially flat! as

ds25a2~h!@2dh21~d i j 1hi j !dxidxj #, ~1.2!

hi j ~h,x!5
C

~2p!3/2E2`

`

d3n (
s51,2

s
pi j ~n!

1

A2n

3@
s
hn~h!ein•x

s
cn1

s
hn* ~h!e2 in•x

s
cn

†#. ~1.3!
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The functionshi j (h,x) have been expanded over spat
Fourier harmonicse6 in•x, where n is a constant~time-
independent! wave vector. The wave number,n, is related to
n by n5(d i j n

inj )1/2. The wave numbern defines the wave-
length measured in units of laboratory standards~so to say, in
centimeters! by l52pa/n. Using the Fourier expansion, w
are able to reduce the perturbed dynamical problem to
evolution of mode functions

s
hn(h) for each moden. Two

polarization tensors
s
pi j (n),s51,2 have different forms de

pending on whether they represent gravitational waves, r
tional perturbations, or density perturbations. If (n/n,l,m)
are three unit and mutually orthogonal~spatial! vectors, then
we have for gravitational waves,

1
pi j 5 l i l j2mjmi ,

2
pi j 5 l imj1 l jmi ,

s
pi j d

i j 50,
s
pi j n

j50,

for rotational perturbations,

1

pi j 5
1

n
~ l inj1 l jni !,

2

pi j 5
1

n
~minj1mjni !,

s
pi j d

i j 50,
s
pi j n

inj50,

and for density perturbations,

1
pi j 5A2

3
d i j ,

2
pi j 52A3

ninj

n2
1

1

A3
d i j .

In all three cases,
s
pi j (n) obey

s8
pi j ~n!

s
pi j ~n!52dss8 ,

s
pi j ~2n!5

s
pi j ~n!.

In general relativity, rotational and density perturbatio
can only exist if they are supported by the correspond
perturbations of matter. Their propagation speeds depen
the properties of matter and can range from zero to the sp
of light, c. For instance, the propagation speed of dens
perturbations in the radiation-dominated fluid isc/A3; and it
was very close toc if the very early universe was driven b
a scalar field@11#. However, in alternative theories of gravity
solutions with the polarization structure of rotational a
density perturbations can exist even in the absence of m
fields, in which case the metric perturbations represent gr
tational waves with new polarization states, in addition to
usual gravity-wave polarization states of general relativ
@10#. If one concentrates on metric perturbations alone, te
porarily leaving aside the accompanying perturbations
matter variables, then all three types of cosmological per
bations in general relativity can be thought of as gravitatio
waves, even though some of them have unusual polariza
states and unusual propagation speeds. There is no wo
that the dynamical equations for cosmological rotational a
9-2
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OBSERVATIONAL DETERMINATION OF SQUEEZING IN . . . PHYSICAL REVIEW D66, 043529 ~2002!
density perturbations are similar to, and sometimes exa
the same as, equations for cosmological gravitational wa
The common ‘‘master equation,’’ whose solutions allow o
to derive all the metric components along with all the mat
perturbations~when they are present!, has the universal form
@11#:

f 91 f Fn2
cl

2

c2
2W~h!G50, ~1.4!

where8ªd/dh, cl is a function ofh and is interpreted as th
propagation speed of the perturbation, andW(h) is a func-
tion of a(h) and its derivatives. For density perturbations
a perfect fluid with the fixed equation of statep5we, cl is a
constant. In the case of gravitational waves,cl

2/c251 and
W(h)5a9/a @4#. One can view Eq.~1.4! as the equation o
an oscillator with variable frequency~the term in square
brackets!, or as the Schro¨dinger equation of a particle mov
ing in the presence of a potential barrierW(h) ~while re-
membering thath is a time coordinate rather than a spat
coordinate!. In what follows, we will be discussing gravita
tional waves and density perturbations.

For a classical gravitational field, the quantities
s
cn ,

s
cn

† in
Eq. ~1.3! are arbitrary complex-conjugate numbers. The c
stantC can be incorporated into them. In the quantized v

sion, the quantities
s
cn ,

s
cn

† are annihilation and creation op
erators satisfying the conditions

@
s8
cn ,

s
cm

† #5ds8sd
3~n2m!,

s
cnu0&50, ~1.5!

whereu0& ~for eachn ands) is the fixed initial vacuum state
defined at someh0 in the very distant past, long before th
superadiabatic regime for the given mode has started. In

early era, the mode functions
s

hn(h) behaved as}e2 inh, so
that each moden represented a strict traveling wave prop
gating in the direction ofn. The normalization constantC is
A16p l Pl for gravitational waves, andA24p l Pl for density
perturbations.

A detailed study shows@12# that the quantum-mechanica
Schrödinger evolution brings the initial vacuum state of co
mological perturbations into the final multiquantum sta
known as the squeezed vacuum state. It is the varianc
phase that is being strongly diminished~squeezed!, while the
mean number of quanta and its variance are being stro
increased. A squeezed vacuum state is conveniently cha
terized by the squeeze parameterr. The squeeze paramete
grows fromr 50 in the vacuum state up tor @1 by the end
of the amplifying superadiabatic regime. The mean num
of quanta in a 2-mode squeezed vacuum state is^N&
52 sinh2 r. Squeezed vacuum states possess specific sta
cal properties. In particular, the generated field, viewed a
random field, obeys the statistics of a Gaussian nonstatio
process. The nonstationarity means that the variance of
field is an explicit oscillatory function of time, and the two
time correlation function depends on individual moments
time, not only on the time difference. The calculation
04352
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quantum-mechanical expectation values and correla
functions provides the link between quantum mechanics
macroscopic physics.

Using the representation~1.3! and definitions above, one
finds the variance of metric perturbations:

^0uhi j ~h,x!hi j ~h,x!u0&5
C 2

2p2E0

`

n2 (
s51,2

u
s
hn~h!u2

dn

n
.

~1.6!

The quantity

h2~n,h!5
C 2

2p2
n2 (

s51,2
u

s
hn~h!u2 ~1.7!

gives the mean-square value of the gravitational field per
bations in a logarithmic interval ofn and is called the~di-
mensionless! power spectrum. In the case of gravitation
waves, it is relatively easy to evolve the mode functions
to the present era, and to find that

h2~n,h!}sin2@n~h2he!#, ~1.8!

wherehe is a constant discussed below. The explicit tim
dependence of the power spectrum is a consequenc
squeezing and can be also viewed as a reflection of
standing-wave pattern of the generated field. For every fi
moment of time~for instance, today! the power spectrum
contains many maxima and zeros at certain wave numb
even though the spectrum was perfectly smooth before

plification, i.e., when the mode functions
s
hn(h) behaved as

}e2 inh. As soon as the amplifying process takes place,
increase of the mean number of quanta, squeezing, non
tionarity, formation of standing wave pattern and oscillato
features in the power spectrum, are all the different facet
the same phenomenon.

The relative spacing of zeros is very dense at laborat
scales~largen’s!, but is quite sparse at cosmological sca
~small n’s!. Specifically, the spectrum contains about 1020

zeros in the interval from 100 to 200 Hz, but only a dozen
zeros in the interval from 1000 to 2000 Mpc. The oscillato
time-dependence~1.8! is known in advance, and this infor
mation would certainly help, in a very narrow-band gravit
tional wave detector, to find the signal against the instrum
tal noise, and to provide evidence for the primordial origin
the detected gravitational wave background@3#. However, in
a broadband detector, there are too many zeros together
the nonstationary process is practically indistinguisha
from the stationary process of the same power density.
recent paper, Allen, Flanagan, and Papa@13# agree that the
nonstationarity in the relic background is present, but th
argue that this feature can hardly give any advantage in p
tice. Without presently being able to offer a realistic sche
of exploiting the nonstationarity at small scales, we shift o
attention to cosmological scales, where the spacing of ze
is sparse. The natural place to look for the consequence
squeezing is the distribution of multipolesC, of the cosmic
microwave background~CMB! anisotropies@14#.
9-3
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SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 ~2002!
Relic gravitational waves should be important at low
multipoles, of the CMB anisotropies, but they are not e
pected to give significant contribution at,;200 and higher.
It is the density perturbations that are expected to be pri
rily responsible for the behavior of theC,’s in the latter
range. However, we study in great detail the simpler cas
gravitational waves in order to resolve a number of princi
issues and to get a guidance for the analysis of the tec
cally more difficult case of density perturbations. The ph
nomenon of squeezing is universal, and if the primord
density perturbations have a quantum-mechanical or
~which, we believe, is likely to be true!, then many features
must be common with the case of relic gravitational wav
Some differences arise at the late stages of evolution~in
particular, they explain why the gravitational wave~gw! con-
tribution is subdominant at,;200 and higher!, but we take
them into account. Developing the conjecture of Ref.@15#,
we argue that it is the modulated structure of the me
power spectrum~which is caused, on a fundamental level,
squeezing! that is responsible for the downturn of the risin
function ,(,11)C, at the peak, and for the appearance
subsequent peaks and dips, a few of which have been
cently observed@16#. On the ground of our simple analytica
treatment we make a forecast for the positions of furt
peaks and dips that may be observed by future missi
such as the Microwave Anisotropy Probe~MAP! and Planck.
In general, our forecast agrees with that of Ref.@17#, made
on the grounds of numerical codes, but discrepancies bec
significant somewhere around the fourth expected peak.

The structure of the paper and its conclusions are as
lows. We start, in Sec. II, with the gravitational wave so
tions in the present universe, that is, at the matter-domin
stage. We consider the general solution for the time dep
dent mode functions

s
hn(h), regardless of whether a give

particular solution is likely to emerge from the very ear
universe or not. In general, a given moden is neither a trav-
eling wave nor a standing wave. We formulate conditio
under which a given mode is a strict traveling wave o
strict standing wave. These conditions are constraints on
~Fourier! coefficientsAn ,Bn in front of two linearly indepen-
dent solutions for the mode functions. Then, we explore
issue of stationary versus nonstationary variance. We dem
strate that oscillations in the power spectrum are most p
nounced when the modes are standing waves, and they
appear when the modes are traveling waves. Thus the o
made~incorrect! statement that the relic gravitational wav
background should be stationary is equivalent to the assu
tion that it is being formed by traveling waves. We return
this issue later on~in Sec. IV! and show that, whether th
nonstationarity on small scales is measurable or not, the
assumption of the stationary gravitational wave backgro
is in conflict with some other cosmological considerations
Sec. III we present a ‘‘physical’’ model for the gravitation
wave background. We call it ‘‘physical’’ because we evol
the field through all three relevant stages of cosmolog
evolution: initial, radiation-dominated, and matte
dominated. In this way we distinguish the ‘‘physical’’ mod
from the ‘‘alternative’’ model, which postulates that th
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gravitational wave background is stationary, irrespective
its physical origin. The waves generated in the physi
model are squeezed~standing!. We demonstrate that the evo
lution of standing waves through the effective barriera9/a at
the matter-dominated stage results in the appearance o
oscillatory behavior of the Fourier coefficientsAn ,Bn as
functions of the wave numbern. We later show~in Sec. V!
that this oscillatory behavior ofAn ,Bn is the origin of oscil-
lations in the multipole moment distributionC, as a function
of ,.

Section IV compares the physical and alternative grav
tional wave backgrounds. We introduce the notion of a f
comparison, which requires that today’s band-powers of
two backgrounds be equal at all scales. By evolving the c
responding solutions backwards in time, we show that
alternative background would have had too much powe
long waves at the era of last scattering of the CMB radiati
In terms of ‘‘growing’’ and ‘‘decaying’’ solutions, this mean
that the amplitude of the decaying solution in the alternat
background becomes dangerously large when one ret
deeper and deeper into the past. The further evolution ba
wards in time would have destroyed our sacred belief t
the Universe was homogeneous and isotropic~up to small
perturbations! at the time of the primordial nucleosynthes
and its past. Most importantly for our study, we demonstr
that the alternative background does not produce oscillat
in theC, multipoles. This shows that the squeezing is obs
vationally distinguishable, even if, at the present level
observational capabilities, it is better to search on la
scales rather than on small scales.

Section V presents the results of numerical calculations
the C,’s caused by relic gravitational waves. We show th
our analytical formula for the positions of peaks and dips
in a fairly good agreement with numerical calculations. Th
analysis demonstrates that, at least in the case of gra
tional waves, theC, oscillations are produced by modula
tions in the power spectrum of metric perturbations, and
by acoustic waves at the last scattering surface, simply
cause there are no matter perturbations at all.

In Sec. VI, we turn to the primordial density perturb
tions. The evolution of density perturbations through the i
tial and radiation-dominated stages is almost identical to
evolution of gravitational waves. We show that the Four
coefficientsAn ,Bn of metric perturbations associated wi
density perturbations develop a periodic structure, as fu
tions of n, in the course of transition from the radiation
dominated phase to the matter-dominated phase. In a ma
similar to the gravitational wave case, we derive the expec
positions of peaks and dips in theC, distribution. Because of
the damping, features beyond the second peak may no
easily discernible@18–20#, but they seem to be less likely t
be washed out if they are produced by modulations in
metric power spectrum rather than by modulations in
plasma matter power spectrum. We show that the peak p
tions should obey the rule1:3:5:7. . . , whereas the dip po-
sitions should be ordered as1:2:3:4 . . . . Wedemonstrate
that the observed positions agree better with our analyt
formula than with the concept of ‘‘acoustic peaks.’’ The d
tection of late features may be especially interesting as
9-4
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OBSERVATIONAL DETERMINATION OF SQUEEZING IN . . . PHYSICAL REVIEW D66, 043529 ~2002!
analytical forecast is somewhat different from what follow
from conventional numerical codes. We tentatively conclu
that the observed structures in the angular power spec
,(,11)C, are macroscopic manifestations of squeezing
gravitational field perturbations.

II. PROPERTIES OF GRAVITATIONAL WAVE SOLUTIONS

The perturbed Einstein equations for gravitational wa
can be reduced to the ‘‘master equation’’

s

mn91
s

mnFn22
a9

a G50, ~2.1!

where the functions
s

mn(h) are related to the mode function
s
hn(h) by

s
mn~h![a~h!

s
hn~h!. ~2.2!

We suppress the polarization indexs when it causes no am
biguity.

The scale factora(h) at the matter-dominated stage, go
erned by whatever matter with the effective equation of s
p50, behaves asa(h)}h2. It is convenient to writea(h) in
the explicit form

a~h!52l H~h2hm!2, ~2.3!

wherel H is the Hubble radius today (l H5c/H0, whereH0 is
the present value of the Hubble parameter! andhm is a con-
stant explained below. The moment of time ‘‘today’’~in the
cosmological sense! is labeled byh5hR ~the subscriptR
denoting ‘‘reception’’!. It is convenient to choose

hR2hm51. ~2.4!

With this convention,a(hR)52l H , and the wave, of any
physical nature, whose wavelengthl today is equal to to-
day’s Hubble radius, carries the constant wave numbernH
54p. Longer waves have smallern’s and shorter waves
have largern’s, according to the relationshipn54p l H /l.
For example, the ground-based gravitational wave detec
are most sensitive to frequencies around 30–3000 Hz.
corresponding wavelengths have wave numbersn some-
where in the interval 1020–1022.

For the scale factor~2.3!, Eq. ~2.1! is easily solved to
yield

mn5Ay@AnJ3/2~y!2 iBnJ23/2~y!#

[
Ay

2
@~An2Bn!H3/2

(1)~y!1~An1Bn!H3/2
(2)~y!#,

~2.5!

where

y[n~h2hm!, ~2.6!
04352
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(1,2)(y) are Bessel and Hankel function

respectively@21#. We will also be using spherical Bess
functions j i(y)5Ap/2yJi 11/2(y). The ~Fourier! coefficients
An andBn are, so far, arbitrary complex numbers. In the lim
y→`,

H3/2
(1)~y!;2A 2

py
eiy, H3/2

(2)~y!;2A 2

py
e2 iy

and j 1~y!;2
1

y
cosy, j 22~y!;2

1

y
siny.

~2.7!

Thus, at late times,mn(h) is a combination of sine and co
sine functions of time:

mn~h!52
1

A2p
@~An2Bn!eiy1~An1Bn!e2 iy#

52A2

p
~An cosy2 iBn siny!. ~2.8!

A. Standing versus traveling waves

We now consider aclassicalfield ~1.3!. Thenth mode of
the field is given by the real function

hn~h,x![hn~h!ein•xcn1hn* ~h!e2 in•xcn* , ~2.9!

where a complex numbercn can be conveniently presente
in its polar form:

cn[rcn
eifcn. ~2.10!

The gravitational wave solutions at late times are given
Eq. ~2.8!. Thus we have

hn~h,x!'2
rcn

a~h!
A2

p
@~An cosy2 iBn siny!

3ei (n•x1fcn
)1~An* cosy1 iBn* siny!e2 i (n•x1fcn

)#.

~2.11!

If the coefficientsAn ,Bn are arbitrary, Eq.~2.11! is neither a
traveling wave nor a standing wave. A traveling wave
characterized by two real numbers, namely, an amplitudA
and a phasef; its general form isA sin(6nh1n•x1f). The
minus/plus sign describes a wave traveling in the positi
negative direction defined by the fixed vectorn. A standing
wave is characterized by three real numbers, viz., an am
tude A and two phases, and its general form isA sin(nh
1f1)sin(n•x1f2). Different choices of these free param
eters are responsible for concrete space-time patterns
they do not change the wave classification.

A little investigation shows that Eq.~2.11! describes a
traveling wave if and only if

An56Bn . ~2.12!
9-5
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This constraint can also be written as

An5rneifn and Bn56rneifn, ~2.13!

where rn and fn are two arbitrary real numbers. We wi
refer to this constraint as thetraveling wavecondition. On
the other hand, Eq.~2.11! describes a standing wave if an
only if

An5rAn
eifn and Bn56 irBn

eifn, ~2.14!

whererAn
, rBn

, andfn are three arbitrary real numbers. W
will refer to this constraint as thestanding wavecondition.
Two special cases of the standing wave condition are w
either An50 or Bn50. This classification of traveling an
standing waves was based on the regime when a given m
satisfies the requirementy@1 ~short-wave regime!, but it
can now be applied at earlier times too, when this requ
ment is not satisfied~long-wave regime!.

B. Stationary versus nonstationary variance

The variance of aquantizedfield ~1.3! is defined by Eq.
~1.6!. The essential part of this expression is the power sp
trum given by Eq.~1.7!. At the matter-dominated stage, th
general solution for the gravitational wave mode functions
represented by Eq.~2.5!. One can now find the power spe
trum. We use spherical Bessel functions and replace the s
mation overs by the multiplication factor 2. Then, the gen
eral expression for the power spectrum is

h2~n,h!5
2C 2n2y2

p3a2~h!
@ uAnu2 j 1

2~y!1uBnu2 j 22
2 ~y!

12 Im~An* Bn! j 1~y! j 22~y!#. ~2.15!

Using the constraints~2.13! and~2.14!, one can now special
ize the power spectrum to traveling and standing wave ca
In the traveling wave case one obtains

h2~n,h!5
2C 2n2y2rn

2

p3a2~h!
@ j 1

2~y!1 j 22
2 ~y!#, ~2.16!

and in the standing wave case,

h2~n,h!5
2C 2n2y2

p3a2~h!
@rAn

j 1~y!6rBn
j 22~y!#2. ~2.17!

When considering the waves that are shorter than the Hu
radius,y@1, one can use asymptotic formulas~2.7! for the
Bessel functions. One can also replacea(h) with 2l H , since
the scale factor does not practically change during any
sonable observation time. Then, in the traveling wave ca
the oscillations of the power spectrum fully disappear, as
oscillating terms cos2 y and sin2 y combine to 1. However
the oscillations are most pronounced in the standing w
case, as Eq.~2.17! exhibits a periodic structure
04352
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h2~n,h!5
C 2n2

2p3l H
2 @rAn

cosy6rBn
siny#2, y@1.

~2.18!

In other words, the power spectrum of traveling waves
stationary, whereas the power spectrum of standing wave
nonstationary. These two classes of power spectra are s
cases of the general situation in whichAn5rAn

eifAn, Bn

5rBn
eifBn, and correspondingly,

h2~n,h!5
C 2n2

2p3l H
2 @rAn

2 cos2 y1rBn

2 sin2 y

12rAn
rBn

sin~fBn
2fAn

!siny cosy#, ~2.19!

y@1.

At a fixed moment of time, for instance today, the pow
spectrum~2.18! reduces to

h2~n,hR!5
C 2n2

2p3l H
2 @rAn

cosn6rBn
sinn#2, n@1.

~2.20!

As one can see, the power spectrum of standing waves
tains, quite generically, many maxima and zeros at cer
n’s due to the oscillatory factors cosn, sinn. The coefficients
rAn

, rBn
are still arbitrary and could, in principle, be smoo

functions ofn. However, as we will show in the next sectio
the preceding evolution of standing waves through the tr
sition from the radiation-dominated era to the matt
dominated era, gives rise to additional oscillations, namely
oscillations in the coefficientsrAn

, rBn
themselves, as func

tions of n.

III. THE PHYSICAL MODEL FOR RELIC
GRAVITATIONAL WAVE BACKGROUND

A. The behavior of the scale factor: Pump field

The matter-dominated~m! era with the scale factor~2.3!
was preceded by the radiation-dominated~e! era with the
scale factora(h)}h. To simplify the analysis, and withou
any essential loss of generality, we assume that the trans
from e era tom era was instantaneous and took place at so
h5h2. The redshift of the transition iszeq : a(hR)/a(h2)
511zeq . It is believed thatzeq is somewhere near 63103.
In its turn, the radiation-dominated era was preceded by
initial ~i! era of expansion, whose nature and scale factor
strictly speaking, unknown. To simplify the analysis, a
since the wave equations admit simple exact solutions
case of power-law scale factors, we assume that thei era,
similar to thee andm eras, was also described by a powe
law scale factor. We parametrize thei era bya(h)}uhu11b

~compare with@4#!. The transition fromi era toe era takes
place at someh5h1 and at redshiftzi : a(hR)/a(h1)51
1zi . Further analysis shows~see below! that in order to get
9-6
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the right amplitude of the generated perturbations, the
merical value ofzi should be somewhere near 1030.

We now write the full evolution of the growing scale fa
tor explicitly:

a~h!5 l ouhu11b, h<h1 , h1,0, b,21, ~3.1!

a~h!5 l oae~h2he!, h1<h<h2 , ~3.2!

a~h!52l H~h2hm!2, h2<h. ~3.3!

The continuous joining ofa(h) anda8(h) at the transition
points fully determines all the participating constants
terms ofl H , zi , zeq , andb. Concretely,

hR511hm , hm52
1

2A11zeq
F12b

11zeq

11zi
G ,

h25
1

2A11zeq
F11b

11zeq

11zi
G , ~3.4!

he5
1

2
b

A11zeq

11zi
, h15

1

2
~11b!

A11zeq

11zi
,

and

l oae5
4l H

A11zeq

,

~3.5!

l o5 l H

221b

u11bu11b

~11zeq!
2(b11)/2

~11zi !
2b

.

The caseb522 is known as the de Sitter inflation. In th
particular case,

l oub5225 l H

A11zeq

~11zi !
2

. ~3.6!

For the CMB calculations we will also need the redsh
zdec of the last scattering surfaceh5hE ~with the subscript
E denoting ‘‘emission’’!, where the CMB photons have de
coupled from rest of the matter:a(hR)/a(hE)511zdec.
The numerical value ofzdec is somewhere near 1000. Th
time of decouplinghE is

hE5
1

A11zdec

2
1

2A11zeq

1b
A11zeq

2~11zi !
. ~3.7!

All the formulas above are exact and we will be usi
them often, but surely one can get an excellent approxi
tion by neglecting 1 in comparison withzi , zeq , andzdec.

B. Squeezed gravitational waves

As soon as the scale factor and initial conditions for
mode functions are strictly defined, the coefficientsAn ,Bn in
Eq. ~2.5! are strictly calculable@22,23#. The general solution
for mn at thee stage is
04352
u-

t

a-

e

mn~h!5B1e2 in(h2he)1B2ein(h2he), ~3.8!

but the preceding evolution allows one to specifyB1 andB2.
The waves subject to amplification at thei stage have the
wave numbersn satisfying the conditionnuh1u!2pu11bu,
that is,

n

nH
!

11zi

A11zeq

.

For these waves, one finds

B1'2B2'F~b!S nA11zeq

11zi
D b

[B, ~3.9!

where

F~b!52ei (x01pb/2)
Apu11bub11

22(b11)G~b13/2!cosbp
,

~3.10!

andx0[nh0 @22#. Note that in the particular caseb522,

uBu25
4~11zi !

4

n4~11zeq!
2

, b522. ~3.11!

The fact thatB1'2B2 demonstrates that the gravitation
wave modesn are ~almost! standing waves at thee stage.
These standing waves are encountering the nonzero ba
a9/a at them stage. To find the coefficientsAn ,Bn in Eq.
~2.5! one needs to join continuously themn(h) andmn8(h) at
the transition pointh5h2. This calculation allows one to
find the coefficientsAn ,Bn , but it also shows~as expected!
that the standing-wave character of the field at thee stage
leads to the appearance of oscillations in the coefficientsAn ,
Bn of the field at them stage. This is a general phenomen
which we will also discuss in connection with density pe
turbations. Explicitly,

An52 iAp

2

B

4y2
2 @~8y2

221!siny214y2 cosy21sin 3y2#,

~3.12a!

Bn52Ap

2

B

4y2
2 @~8y2

221!cosy224y2 siny21cos 3y2#,

~3.12b!

where

y25n~h22he!5
n

nm
, and nm52A11zeq.

The numerical value ofnm is about 160. This corresponds t
wavelengths that are 15 times shorter thanl H . Clearly, the
coefficients~3.12! satisfy the standing wave condition~2.14!.
It is easy to check that had one artificially chosen travel
waves at thee stage, by assuming that eitherB150 or B2
50, the oscillations inAn , Bn would have been suppresse
9-7
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The asymptotic expressions forAn , Bn are as follows. For
relatively short waves, i.e.,y2@1, n@nm , one has

An'2 i2Ap/2B siny2 , Bn'22Ap/2B cosy2 .
~3.13!

Using these coefficients in Eq.~2.8!, one finds themn(h) at
the m stage, forn@nm :

mn~h!'2 i2B sin@n~h2he!#.

Of course, this function is simply a continuation of the re
evant standing wave solution (B1'2B2'B) at thee stage,
Eq. ~3.8!, to them stage. Indeed, the height of the barrier
the m stage is

a9

a U
h5h2

5
1

2
nm

2 ,

so the waves withn@nm stay above the barrier and expe
ence no changes. However, the waves withn'nm and n
!nm are affected by the barrier. For relatively long wave
i.e., n!nm , one has

An'2 i
3Ap

2A2
By2

21 , Bn'
8Ap

45A2
By2

4 , ~3.14!

such thatuBnu!uAnu. The formulas above are in full agree
ment with@22# if one takes into account the change of no
tions: An5Ap/2C1n , Bn5 iAp/2C2n . In particular, the
long-wavelength part of the power spectrum at the time
decouplingh5hE is given by

h2~n,hE!'
4

p

l Pl
2

l H
2 ~11zeq!n

4uBu2, n!ndec5A11zdec.

~3.15!

This part of the spectrum is primordial, in the sense tha
has not changed since the beginning of amplification. In
particular caseb522, and using Eq.~3.11!, we obtain the
flat ~independent ofn) primordial spectrum

h2~n,hE!'
16

p

l Pl
2

l H
2

~11zi !
4

~11zeq!
, b522,

~3.16!
n!ndec5A11zdec.

In preparation for the discussion of CMBR anisotropie
we show in Fig. 1 the numerically calculated spectru
h2(n,hE), including the beginning of its oscillations. We us
the notations

x[y25
n

nm
, b[

nm

ndec
5

2A11zeq

A11zdec

.

The substitution ofAn ,Bn given by Eq.~3.12! into the gen-
eral expression~2.15! produces the exact power spectrum
04352
t

,

-

f

it
e

,

h2~n,hE!5
l Pl
2

4p l H
2 ~11zdec!n

4uBu2g2~x,b!, ~3.17!

where

g2~x,b!5@r1~x! j 1~bx!2r2~x! j 22~bx!#2,

x[
n

nm
, b[

nm

ndec
,

r1~x!5
1

x2
@~8x221!sinx14x cosx1sin 3x#,

r2~x!5
1

x2
@~8x221!cosx24x sinx1cos 3x#.

Note that the rigorously evolved mode functions single o
the lower sign in the general formula~2.17! for standing
waves. Figure 1 shows the functiong2(x,b) for b55.

The positions of maxima and zeros of the power spectr
are well approximated by the short-wavelength limit
g2(x,b):

g2~x,b!'
64

b2x2 sin2@~b21!x#.

In the case ofb55, the maxima and zeros of the functio
sin24x are ordered as follows:

Maxima: xk
max5

p

8
~2k11!,

~3.18!
xk

max5x0
max~2k11!, k50,1,2,3, . . . ,

Zeros: xk
min5

p

8
2k,

~3.19!
xk

min5x1
mink, k51,2,3, . . . .

The analytical forecast~3.18!,~3.19! shifts the first few fea-
tures to the left~smallerx) as compared with the more ac

FIG. 1. Plot ofg2(x,b55) vs x.
9-8
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curate numerical calculation, but the forecast becomes
gressively more accurate for later features. For example,
analytical formula predictsx1

min50.79, x1
max51.18, x8

min

56.28,x8
max56.68, whereas the numerical calculation plac

these features atx1
min50.91, x1

max51.21, x8
min56.29, x8

max

56.68. The zeroth maximumx0
max would be placed, accord

ing to the analytical formula~3.18!, atx0
max50.393. The cru-

cial rule, however, is that the positions of minima, starti
from x1

min , are ordered in the proportion1:2:3:4. . . ,
whereas the positions of maxima, starting from the zer
‘‘would-be’’ maximum, are ordered in proportion
1:3:5:7 . . . . Wewill see in Sec. V how these features a
being reflected in the oscillations of theCl multipoles.

IV. DISTINGUISHING BETWEEN THE PRESENCE
AND THE ABSENCE OF SQUEEZING

As demonstrated above, the quantum-mechanically ge
ated ~squeezed! gravitational waves form a nonstationa
background, whose power spectrum is fully determined
fundamental constants and parameters of the gravitati
pump field. In this section we show that the hypothe
whereby the gravitational wave background is postulated
be stationary, and therefore nonsqueezed, is in conflict w
some other cosmological data. Since we concentrate on
tionarity versus nonstationarity, the comparison of the t
backgrounds should be fair, in the sense that their tod
~for h5hR) band-powers should be assumed equal. Ho
ever, as we will show below, when one returns back in ti
to, say, the decoupling era, the alternative background
bound to have too much power in long-wavelength pertur
tions. The further extrapolation back in time destroys
usual~and partially tested! assumption that the cosmologic
perturbations remain small all the way down to the nucl
synthesis era and beyond. In Sec. V we will also show t
the alternative background does not produce oscillation
the Cl multipoles, whereas the physical background does

The power spectrum of the physical background is giv
by the general expression~2.15! where An ,Bn are deter-
mined by Eq.~3.12!. The substitution of Eq.~3.12! in Eq.
~2.15! results in formula~2.17! ~with the lower sign! where
rAn

,rBn
are absolute values of the coefficients~3.12!. On the

other hand, the general form of the power spectrum for
alternative~stationary! background is given by Eq.~2.16!,
wherern should be found from the fair comparison:

rn
2@ j 1

2~n!1 j 22
2 ~n!#5@rAn

j 1~n!2rBn
j 22~n!#2. ~4.1!

We will find rn using asymptotic expressions~3.13! and
~3.14! in different intervals ofn. In the regionn@nm , for-
mula ~3.13! yields

rAn
'A2puBuUsin

n

nm
U, rBn

'A2puBuUcos
n

nm
U. ~4.2!

In the regionn!nm formula ~3.14! yields to
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rAn
'

3Ap

2A2
uBu

nm

n
, rBn

'
8Ap

45A2
uBuS n

nm
D 4

. ~4.3!

Let us start fromn@nm . Using asymptotic expression
~2.7! for the spherical Bessel functions, and replacing sin2 n
with 1/2 in the right-hand side of Eq.~4.1!, one finds

rn
2'puBu2, n@nm . ~4.4!

Now turn to the intervalnm@n@1. The rAn
, rBn

are now
given by Eq.~4.3!. One can still use the asymptotic formula
~2.7!, but the second term in the right-hand side of Eq.~4.1!
is much smaller than the first one and therefore can be
glected. Then, one derives

rn
2'

9p

16
uBu2

nm
2

n2
, nm@n@1. ~4.5!

Finally, in the regionn!1, one uses asymptotic formula
j 1(n);n/3, j 22(n);1/n2. In either side of Eq.~4.1!, the
first term is smaller than the second term, and can be
glected. Then, one obtains

rn
2'

p

8
uBu2nm

2 n4, n!1. ~4.6!

These formulas give a piece-wise representation for
smooth alternative spectrum which today has, in all interv
of n, approximately the same power as the physical spect
does.

Since the coefficientsrAn
, rBn

, rn are fully determined,
one can now derive the forms of the two power spectra
other times. We will compare the two backgrounds at
time of decouplingh5hE . One needs to consider formula
~2.16! and ~2.17!, wherea(h)5a(hE) andy5yE ,

yE5n~hE2hm!5
n

ndec
5

n

A11zdec

. ~4.7!

Clearly, in the band of sufficiently short waves,n
@A11zdec, both spectra increase power in the same prop
tion, simply as a result of changinga(h) from a(hR)52l H
to the smaller valuea(hE)52l H /(11zdec). So, in this range
of n the ratio of powers in the two backgrounds is 1:

h2~n,hE!ualt

h2~n,hE!uphys

51, n@A11zdec. ~4.8!

However, this ratio is significantly larger than 1 in long
waves. This is seen from the general formula

h2~n,hE!ualt

h2~n,hE!uphys

5
rn

2@ j 1
2~n/ndec!1 j 22

2 ~n/ndec!#

@rAn
j 1~n/ndec!2rBn

j 22~n/ndec!#
2

~4.9!

applied to longer waves. Indeed, in the interval 1!n
!A11zdec ~and, hence,n!nm) one uses the small argu
9-9
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ment approximation for the Bessel functions, neglects s
ond terms in the numerator and denominator, and takesrn

2

from Eq. ~4.5!. This calculation results in

h2~n,hE!ualt

h2~n,hE!uphys

5
9

2

~11zdec!
3

n6
, 1!n!A11zdec.

~4.10!

This ratio is comparable with 1 only atn;A11zdec where
Eq. ~4.10! goes over into Eq.~4.8!. But the ratio~4.10! is
much larger than 1 for smallern’s. As for the regionn!1,
one applies the same approximations as in the previous c
but takesrn

2 from Eq. ~4.6!. This gives the result

h2~n,hE!ualt

h2~n,hE!uphys

5~11zdec!
3, n!1. ~4.11!

This ratio is universally~independently ofn in this region!
much larger than 1.

It is easy to understand these results. The parts of
general solution~2.5! with j 1(y) and j 22(y) are called, re-
spectively, the growing and decaying solutions. This cla
fication reflects their different behavior in the small argum
approximation for the Bessel functions. The growing a
decaying solutions are necessarily present in the power s
tra of both backgrounds. However, the stationary backgro
contains j 1

2(y) and j 22
2 (y) always with equal coefficients

whereas the nonstationary background containsj 1(y) and
j 22(y) with equal~up to oscillations! coefficients~4.2! only
for sufficiently short waves. In longer waves, the decay
solution of the stationary background becomes progressi
more important when one goes back in time. Since the ph
cal background is expected to have enough power to prod
the lower order anisotropy in the CMB temperature at
level dT/T;1025, the alternative background would hav
produced this anisotropy at the unacceptably high le
dT/T;331021.

V. MICROWAVE BACKGROUND ANISOTROPIES
CAUSED BY RELIC GRAVITATIONAL WAVES

The key element in formula for the temperature variat
dT/T seen in a given directione @24# is theh-time derivative
of metric perturbations evaluated along the CMB photo
path between the event of reception~R! and the event of
emission~E!:

dT

T
~e!5

1

2E0

w1F]hi j

]h
eiej G

path

dw. ~5.1!

The upper limit of integration is

w15hR2hE512
1

A11zdec

,

and the integration is performed along the pathh5hR2w,
x5ew. In the case of density perturbations, the integral
formula ~5.1! should be augmented by the additive term re
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resenting initial conditions: an intrinsic variation of temper
ture ath5hE and a possible velocity of the last scatterin
electrons with respect to the chosen coordinate syst
which is synchronous and comoving with the perturbe
gravitationally dominant pressureless matter, possibly, c
dark matter~CDM!.

Similar to the perturbation fieldhi j itself, the temperature
variation dT/T is also a quantum-mechanical operator.
establish contact with macroscopic physics, we need to
culate the correlation function

^0u
dT

T
~e1!

dT

T
~e2!u0&.

We use the mode functions~2.5! and the normalization con
stantC5A16p l Pl . Then, it can be shown@22# that the cor-
relation function takes the elegant form

^0u
dT

T
~e1!

dT

T
~e2!u0&5 l Pl

2 (
l 52

`

Kl Pl~cosd!, ~5.2!

wherePl(cosd) are Legendre polynomials for the separati
angled between the unit vectorse1 ande2, and

Kl5~2l 11!~ l 21!l ~ l 11!~ l 12!Fl ,

where

Fl5E
0

`

n2U E
0

w1Jl 11/2~nw!

~nw!5/2
f n~hR2w!dwU2

dn, ~5.3!

and

f n~hR2w!5
1

A2n
S mn

a D 8U
h5hR2w

. ~5.4!

We will also be using the multipole momentsCl defined by

l Pl
2 Kl5

2l 11

4p
Cl .

The central quantity for the calculation ofFl is the func-
tion

S mn

a D 8
52

n

a
Ay~AnJ5/2~y!1 iBnJ25/2~y!!. ~5.5!

To get more insight intoFl we introduce the two new func
tions: c6 l , defined by the respective integrals:

c6 l~nw1!5E
0

nw1
dx

Jl 11/2~x!

x5/2

J65/2~n2x!

~n2x!3/2
. ~5.6!

Then, the general expression forFl takes the form

Fl5
1

8l H
2 E

0

`

dn n5@ uAnu2c l
21uBnu2c2 l

2

12 Im~An* Bn!c lc2 l #. ~5.7!
9-10
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This expression simplifies when the coefficientsAn ,Bn rep-
resent traveling@Eq. ~2.12!# or standing@Eq. ~2.14!# waves.
For a stationary background one gets

Fl5
1

8l H
2 E

0

`

dn n5rn
2@c l

21c2 l
2 #, ~5.8!

while for the physical nonstationary background one gets

Fl5
1

8l H
2 E

0

`

dn n5@rAn
c l2rBn

c2 l #
2. ~5.9!

These formulas explain the different behavior of the mu
pole momentsCl in the two cases. We demonstrate this w
the help of numerical calculations.

In Fig. 2 we show by a solid line the graph of the functio
l ( l 11)Cl calculated with the help of Eqs.~5.9! and ~3.12!.
The cosmological parameters were chosen, for illustration
zeq5104, zdec5103, b522. The parameterzi is adjusted in
such a manner (zi51029.5) that the graph goes through th
point l ( l 11)Cl56.4310210 at l 510, which agrees with
observations. Our attention is focused, however, on the
cillations in this function. The dashed line shows the sa
function for the alternative stationary background. The c
mological parameters are the same as above, but the c
lation is performed with the help of Eq.~5.8! and the coef-
ficients rn , found from the condition~4.1! of the fair
comparison. The remarkable~even if expected! result is that
the stationary background of gravitational waves does
produce oscillations in the angular power spectrumCl ,
whereas the nonstationary background does.

The numerical positions of minima and maxima in t
oscillating graph are ordered as follows:

FIG. 2. The solid line depicts the plot ofl ( l 11)Cl versusl in
the physical model, normalized such that atl 510, we havel ( l
11)Cl56.4310210, which tallies with observations. The~red!
dashed line is the corresponding plot in the alternative model. H
we takeb522, and the redshifts ath2 andhE to bezeq510 000
andzdec51000, respectively.
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Minima: l 15137, l 25237, l 35344, l 45456,

l 55569, l 65682, l 75796,

Maxima: l 15161, l 25269, l 35381, l 45494,

l 55609, l 65723, l 75839.

Clearly, these features reflect the oscillations in the me
power spectrum. Judging from the mathematical structure
the participating Bessel functions, it is likely that the po
tions of features in then space are related to the positions
features in thel-space by a simple numerical coefficient
order 1. It is difficult to find out this coefficient analytically
though. Remembering that the positions of first features m
be displaced by 10%–15%, as compared with the analyt
forecast~3.19! and ~3.18!, we put the zeroth ‘‘would be’’
maximum atl 0

max556. Then, our simple analytical formul
places the next features in the following positions:l 1

min

5112, l 1
max5168, l 2

min5224, l 2
max5280, l 3

min5336, l 3
max

5392, l 4
min5448, l 4

max5504, l 5
min5560, l 5

max5616, l 6
min

5672, l 6
max5728, l 7

min5784, l 7
max5840. Comparing this

prediction with the numerically calculated positions, we fi
them in a fairly good agreement.

This investigation of gravitational waves provides us w
guidance for the technically more complicated case of d
sity perturbations.

VI. DENSITY PERTURBATIONS AND THE Cø FEATURES

The general expression for metric perturbations, ass
ated with density perturbations, is given by Eq.~1.3! with the
polarization tensors explained in the Introduction. When o
is actually writing down the perturbed Einstein equations
turns out that it is more convenient to work with the mo
functionsh(h) andhl(h) instead of the original mode func

tions
s
hn(h). The relationship between them is

1
hn~h!5A3

2S h~h!2
1

3
hl~h! D ,

2
hn~h!5

1

A3
hl~h!,

~6.1!

where the wave-number indexn on the mode functionsh(h)
andhl(h) is implicit. The functionh(h) is the purely scalar
part of perturbations, it entershi j with the polarization struc-

ture
1
Pi j 5d i j , whereas the functionhl(h) is the purely

longitudinal-longitudinal part of perturbations, it entershi j

with the polarization structure
2
Pi j 52ninj /n2. We will fol-

low the same strategy as in the case of gravitational wa
and will start from exact solutions to the perturbed Einst
equations in different cosmological eras.

A. Density perturbations at the matter-dominated stage

The matter-dominated stage is driven by a pressure
matter; possibly, cold dark matter. The general solution to
perturbed equations at them stage can be simpli-

e,
9-11
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SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 ~2002!
fied by using the available freedom within the class of s
chronous coordinate systems. By using this freedom,
specializes to the unique coordinate system, which is s
chronous and comoving with the perturbed pressureless
ter. In this coordinate system, the general solution is

h~h!5C1 ,
~6.2!

hl~h!5
1

10
C1n2~h2hm!22

1

3
C2

~h22hm!3

~h2hm!3
,

where C1 ,C2 are arbitrary complex numbers. The matt
density perturbation is

de

e0
5

1

2
hl~h!, ~6.3!

and the velocityv j of matter elements, including perturba
tions,

v j

c
5

T0
j

T0
0

, ~6.4!

is by construction zero, i.e.,

v j

c
50. ~6.5!

The above solution is well known since the times
E.M. Lifshitz and can be found in various publications, up
possible misprints. For instance, this solution follows fro
equations given in Ref.@25#, if one corrects for a misprint in
the last line of Eq.~A8!: the second term there should act
ally enter with coefficient 2.

The adopted choice of the unique coordinate syst
which is both comoving and synchronous, not only grea
simplifies the form of solutions, but is also needed for
proper formulation of thedT/T calculations. As long as the
emitter and the receiver are riding on the time-like geode
xi5const of this perturbed metric, the Sachs-Wolfe integ
~5.1! is the full answer; there are no extra velocity contrib
tions to this integral. The additive velocity contribution
arise only if the emitter or the receiver are moving w
respect to this unique coordinate system, that is, when
are not described by the world-linesxi5const.

For the growing solution~namely, the terms with coeffi
cient C1), the Sachs-Wolfe integral can be taken exactly
appears that astrophysical literature calls by gravitatio
‘‘Sachs-Wolfe effect’’ only a part of what is actually con
tained in the Sachs-Wolfe paper@24#. Invariably, by the
‘‘Sachs-Wolfe effect’’ are meant only two terms, which ar
roughly speaking, the difference of ‘‘gravitational potential
at the events of emission~E! and reception~R!. Two other
terms in their full formula~43!, which are the difference o
the ‘‘gradients of the gravitational potential,’’ are being sy
tematically ignored. Possibly, this happened because S
and Wolfe addressed one of these gradient terms in
words: ‘‘this second term is normally small.’’ This secon
term is indeed small for small wave numbers, but it is in fa
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dominant for large wave numbers, which are responsible
the dipoleC1 and for theCl multipoles near the peak atl
;200. For example, correct implementation of the f
Sachs-Wolfe formula~43! for calculation of the dipoleC1
gives a number that is five orders of magnitude greater t
the number following from the ‘‘Sachs-Wolfe effect’’ coun
terpart of the full formula. The lack of ergodicity on
2-sphere provides a 1s uncertainty in theCl ’s, roughly at the
level DCl.A2/(2l 11)Cl . We say ‘‘roughly’’ because the
statistic of the underlying random variable is not Gaussian
is described by the product of an exponent and the modi
Bessel functionK0 @14#. In the case of the dipoleC1, the
uncertainty amounts toDC1 /C1'0.8. Clearly, this factor-of-
two uncertainty cannot cover the five orders of magnitu
disparity in the results; quite simply, the result based on
misinterpreted ‘‘Sachs-Wolfe effect’’ is what is wrong. Fo
details, see Ref.@15#.

The coefficientsC1 ,C2 in the general solution~6.2! are,
so far, arbitrary, but they are determined by the previo
evolution of density perturbations~dp!.

B. Density perturbations at the radiation-dominated stage

The ‘‘master equation’’ at thee stage is

n91
1

3
n2n50, ~6.6!

where the coefficient 1/3 enters because we have usedcl /c
51/A3, which is valid deep in the radiation-dominated e
By the time of decoupling, the plasma sound speed decre
slightly below this value, depending on the baryon conte
and we will account for this fact by returning back tocl /c in
appropriate places. The general solution to Eq.~6.6! is al-
ways oscillatory as a function of time:

n5B1e2 i (n/A3)(h2he)1B2ei (n/A3)(h2he), ~6.7!

whereB1 ,B2 are arbitrary complex numbers. All the metr
and matter perturbations can now be found from solutio
~6.7!. For metric perturbations, one has:

h~h!5
a8

a2 F E
h1

h
ndh1CeG ~6.8!

and

hl85
a

a8
F3h919

a8

a
h81n2hG . ~6.9!

The constantCe reflects the remaining coordinate freedom
the e stage. TheCe should be chosen in such a way that t
comoving synchronous coordinate system of them stage
joins smoothly to the employed~unique! coordinate system
at thee stage; we will discuss this specific choice ofCe later
on. The constantsB1 ,B2 are still arbitrary and should be
found from solutions at thei stage.

The ‘‘master equation’’ at thei stage is
9-12
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OBSERVATIONAL DETERMINATION OF SQUEEZING IN . . . PHYSICAL REVIEW D66, 043529 ~2002!
mn91mnFn22
~aAg!9

aAg
G50, ~6.10!

where

g[11S a

a8
D 8

[2
Ḣ

H2

and thet-time derivative is related with theh-time derivative
by cdt5adh. For the power-law scale factorsa(h)
}uhu11b, which we are working with, the functiong be-
comes a constant, and it drops out of the Eq.~6.10!. So, the
‘‘master equation’’~6.10! is exactly the same as Eq.~2.1! for
gravitational waves. By quantum-normalizing the initial me
ric perturbations, and evolving them through thei stage, we
finally find that

B1'2B2[Bdp. ~6.11!

It was shown@11# that the crucial quantityBdp for density
perturbations is related with the crucial quantityBgw for
gravitational waves, introduced in Eq.~3.9!, by the relation-
ship

Bdp5A6Bgw . ~6.12!

In what follows, we will work withBdp only and, henceforth
drop the subscript dp.

Combining all the results together, we write down expl
itly the exact solution at thee stage, including the require
choice ofCe . In doing this, we use the following new nota
tions:

y[
n

A3
~h2he!, ~6.13!

y2[
n

A3
~h22he!5

n

A32A11zeq

5
n

nc
,

~6.14!

nc[2A3A11zeq, Y[
1

2
y2 siny21cosy2 .

Then, the exact solution is

h~h!5
A

y2
@cosy2Y#, ~6.15!

hl~h!53AF2
siny

y
2E

y

y2cosy

y
dy2Y ln

y

y2

1
1

3

siny2

y2
1

2

3
cosy2G , ~6.16!

de

e0
52AF 2

y2
~cosy2Y!1

2

y
siny2cosyG ,

~6.17!
04352
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v j

c
52 iA

nj

nA3
F2

y
~cosy2Y!1sinyG , ~6.18!

where

A[
inBA11zeq

2A3l H

. ~6.19!

One can check that all the participating function
h(h),h8(h),hl(h),hl8(h),de/e0 ,v j , join continuously with
the solution~6.2!,~6.3!,~6.5! at the transition pointh5h2.
This transition fully determines the coefficientsC1 andC2:

C152
A

2y2
siny2 ,

~6.20!

C25
3A

5y2
@~1023y2

2!siny2210y2 cosy2#.

The oscillatory behavior ofC1 ,C2, as functions ofn, is
analogous to the oscillatory behavior of the gravitation
wave coefficients~3.12! and has the same physical origi
The fact thatB1'2B2 demonstrates that each moden of the
metric perturbations, and the associated matter perturbat
at thee stage forms a standing wave pattern. In the limit
short waves,y@1, one recovers from Eqs.~6.17! and~6.18!
the familiar solutions for standing sound waves:

de

e0
'A cosy, ~6.21!

v j

c
'2 iA

nj

nA3
siny. ~6.22!

C. Perturbations at the last scattering surface

Having found the quantum-normalized exact solution
the m stage, we are in a position to calculate the met
power spectrum, which is defined by Eq.~1.7!. Taking into
account our mode functions, the spectrum can be written

h2~n,h!5
C 2

2p2 n2F3

2 Uh2
1

3
hlU2

1
1

3
uhl u2G . ~6.23!

We will calculate this quantity at the last scattering surfa
h5hE . By that time, the second term in the functionhl(h)
is a factor@(11zdec)/(11zeq)#5/2 smaller than the first term
@see Eqs.~6.2! and ~6.20!#. We neglect this decaying part o
the solution, participating with the coefficientC2. For the
explicit form of uC1u2 we use Eqs.~6.20! and ~6.19!. Then,
we obtain

h2~n,hE!5
C 2

2p2

n4uBu2~11zeq!

48l H
2 S siny2

y2
D 2

3
~300220p2y2

21p4y2
4!

200
, ~6.24!
9-13
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SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 ~2002!
where we have introduced the quantity

p[
2A3A11zeq

A11zdec

,

related to a similar quantity,b, from the gw case, byp
5A3b. The spectrum certainly retains its primordial form
the band of long wavesn!A11zdec. Taking into account
Eq. ~6.12! and the numerical value ofC5A24p l Pl for den-
sity perturbations, one finds that the primordial spectrum
metric perturbations associated with density perturbatio
Eq. ~6.24!, is a factor of 9/16 lower than its gravitationa
wave counterpart, Eq.~3.15!. In particular, forb522, one
finds

h2~n,hE!'
9

p

l Pl
2

l H
2

~11zi !
4

~11zeq!
, n!ndec5A11zdec.

~6.25!

For relatively short waves,n/nc@1, the crucial part of the
power spectrum~6.24! is the modulating~transfer! function

M2S n

nc
D5S siny2

y2
D 2

5
sin2~n/nc!

~n/nc!
2 . ~6.26!

The primordial metric spectrum is encoded in the fac
n4uBu2. Whatever this spectrum is, the modulating functi
leaves it intact at large scales, but bends the spectrum d
and introduces oscillations at smaller scales. In Fig. 3
show the metric power spectrumh2(n,hE), up to numerical
coefficients.@To avoid confusion, we emphasize again th
this is the spectrum of the~squeezed! metric perturbations
associated with density perturbations, and not
gravitational-wave spectrum@26#.# Specifically, by a solid
line, we plot the functionf 2(x,p), where

f 2~x,p![S sinx

x D 2

@300220p2x21p4x4#,

x[y25n/nc and, for illustration, we takep58. By a dashed
line, we plot the functionM2(x), multiplied by the artificial

FIG. 3. The plot depicted by the solid line is that off 2(x,p
58) vs x. The dashed line shows the behavior ofM2(x)3106.
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numerical factor 106 in order to facilitate the visual compari
son of maxima and zeros in the two graphs.

We now turn to the ordinary matter perturbations at t
last scattering surface. The photon-electron-baryon fluid
gravitationally subdominant ath5hE . The fluid does not
significantly contribute to metric perturbations, but it retai
its own perturbations. The plasma speed of sound is given

cl

c
5

1

A3~11R!
, ~6.27!

whereR53rb /4rg'27Vbh2 @19,20#. For the popular value
Vbh2'0.02, it means thatcl /c decreases from the nomina
value 0.58 to approximately 0.47. The plasma stand
waves~6.21! and ~6.22!, continued to the decoupling erah
5hE , take the form:

deg

eg
'A cos

n

ns
, ~6.28!

v j

c
'2 iA

cl

c

nj

n
sin

n

ns
, ~6.29!

where

ns5
c

cl
A11zdec[

c

cl
ndec. ~6.30!

@The velocityv j is always defined with respect to the uniqu
synchronous coordinate system, which is comoving with
gravitationally dominant pressureless~dark! matter.# At the
same time, the leading metric perturbation is given by

hl~hE!52
3

5
A

11zeq

11zdec

n

nc
sin

n

nc
. ~6.31!

There are a number of differences between the me
perturbations and the plasma perturbations at the last sca
ing surface. First, the amplitude ofhl(hE) is, at least, a fac-
tor of 3(11zeq)/@5(11zdec)# greater than the amplitudes o
deg /eg and v j /c, near the most interesting scalesn'nc .
After all, the original motivation for the introduction of a
cosmological dark matter was precisely this: to avoid co
flicts with dT/T observations by allowing the plasma pertu
bations at decoupling to be small, but, nevertheless, to
able to develop the large scale structure of luminous ma
at the expense of large gravitational field perturbatio
driven by the dark matter. So, we have to pay the price
this idea by exploring in more detail the consequences
large metric perturbations for the CMB anisotropies.

Second, the characteristic frequenciesnc and ns are dif-
ferent. Their ratio is

nc

ns
52A3

cl

c
A 11zeq

11zdec
. ~6.32!

The zeq is given by 11zeq'43104Vmh2 @19#. For the
popular valuesVm50.3,h50.7, this amounts tozeq'6
3103. So, the rationc /ns can be a number close to 4.
9-14
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Third, although the sound waves before the decoup
are standing waves, they are still not processed by the q
drop of the sound speed to zero at the decoupling. This
cessing will later lead to the baryonic matter power spectr
modulations known as the Sakharov oscillations@27#. They
would have taken place even in laboratory conditions, wh
gravity plays no role. The Sakharov oscillations are imp
tant for the formation of oscillating features in the lumino
matter power spectrum, but they are unlikely to be direc
responsible for the peaks and dips in the observedCl ’s. In a
broad sense, the periodicity in the metric power spectr
related to the transitionh5h2, can also be called Sakharo
oscillations, but this is not what was originally meant by t
Sakharov oscillations. In short, the zeros in the metric po
spectrum are ‘‘frozen’’ zeros, they are determined
M2(n/nc); whereas the zeros in the plasma power spectr
at the times before decoupling, are still ‘‘moving’’ zero
they change their positions at slightly different moments
time h5const@28#.

Fourth, the wave-number periodicity in the metric pow
spectrum is governed by the sine function, whereas the p
odicity in Eq. ~6.28! is governed by the cosine function
Presently, there exists a tendency to distinguish between
‘‘acoustic peaks’’ in theCl @supposedly caused by Eq.~6.28!
and by the ‘‘effective temperature’’# and the ‘‘Doppler
peaks’’ @supposedly caused by the velocity in Eq.~6.29!#.
The authors of@29# emphasize that ‘‘the acoustic peaks a
not Doppler peaks,’’ arguing that the irrotational veloci
cannot produce strong peak structures in theCl spectrum.
They say that ‘‘the observed peaks must be acoustic pe
and they give the ratio of the peak locations:,1 :,2 :,3
;1:2:3. So, themain contenders for the explanation of th
peaks seem to be the sine function in the metric power s
trum and the cosine function in the ‘‘acoustic peaks.’’

Before proceeding to the discussion of peaks and dips
need to make one more comment. It was shown above
the primordial power spectra of gravitational waves and d
sity perturbations are of the same order of magnitude, w
some small numerical preference for gravitational waves
particular, this is true for the flat spectra (b522), as dem-
onstrated in Eqs.~3.16! and ~6.25!. Therefore, the lower or-
der CMBR anisotropies~starting from the quadrupole mo
mentC2) are expected to be of the same order of magnit
@11#. One should be aware that the story is dramatically d
ferent in an inflationary scenario. The ‘‘standard result’’ of
inflationary scenario@30–37# predicts the infinitely large
density perturbations, in the limit of the flat spectrum~that is,
the Harrison-Zel’dovich-Peebles spectrum, with spectral
dex n51, parameterb522, and the relationship betwee
them being n52b15), through the set of evaluations
dr/r;hS;H2/ẇ;V3/2(w)/V8(w);1/A12n. By compos-
ing the ratio of the gravitational wave amplitudehT to the
predicted divergent amplitude of the scalar metric pertur
tions hS ~the so-called ‘‘consistency relation:’’hT /hS

'A12n), inflationary theorists substitute their prediction
arbitrarily large density perturbations for the claim that it
the amount of gravitational waves that should be zero,
almost zero, at cosmological scales and, hence, dow
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laboratory scales. This claim has led to many years of m
treatment of a possible gw contribution to the CMBR data
is only in a few recent papers~for example,@38#! that the
inflationary ‘‘consistency relation’’ is not being used whe
analyzing the CMBR and large scale structure observatio
with some interesting conclusions. For the latest statem
that the initial spectrum of gravitational waves is ‘‘con
strained to be small compared with the initial density sp
trum’’ see the latest article praising inflationary predictio
~for instance,@29#!. For the critical analysis of the ‘‘standar
inflationary result’’ see the end of Sec. VI in@3# and refer-
ences therein.

D. Peaks and dips in the angular power spectrum

We will now analyze the zeros and maxima of the met
power spectrumf 2(x,p) shown in Fig. 3. The crucial peri
odic dependence is provided by the function sin2(x)
[sin2(n/nc). We will use this function for our analytica
evaluation, in full analogy with the case of gravitation
waves. The positions of maxima and zeros are determine
the rules:

Maxima: xk
max5

p

2
~2k11!,

~6.33!
xk

max5x0
max~2k11!, k50,1,2,3, . . . ,

Zeros: xk
min5

p

2
2k,

~6.34!
xk

min5x1
mink, k51,2,3, . . . .

Obviously, the zeros of the function sin2(x) are exactly the
same as the zeros of the full functionf 2(x,p). But the posi-
tions of maxima are somewhat different. The difference
significant for the zeroth maximum, but it fully disappea
for later maxima. The locations of the first few maxim
derived from the simple analytical formula~6.33!, arex0

max

51.57, x1
max54.71, x2

max57.85, x3
max511.00. At the same

time, accurate positions from the numerical calculation
x0

max52.05,x1
max54.92,x2

max57.98,x3
max511.09. Thus for-

mula ~6.33! predicts the positions of the first two maxim
somewhat to the left~smallerx) than they should actually
appear, but the positions of zeros and further maxima
described very well. In terms of the percentage correctio
the zeroth maximum, derived from Eq.~6.33!, should be
shifted to the right by 30%, and the first maximum should
shifted to the right by 4%.

Accepting zeq563103, one obtainsnc5268. With this
nc and x0

max51.57, the position of the zeroth maximum
the n space would be, according to Eq.~6.33!, at n0

max

5421. Positions of all the subsequent features in the po
spectrum follow from the general rules~6.34! and ~6.33!.
The problem now is to relate these features in the me
power spectrum with the peaks and dips in the angular po
spectruml ( l 11)Cl . Judging from the previous numerica
experience@15#, the characteristic features of the metr
power spectrum are reflected in thel-space via a numerica
9-15
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SUKANTA BOSE AND L. P. GRISHCHUK PHYSICAL REVIEW D66, 043529 ~2002!
coefficienta close to 1/2:l 5an. Accepting the provisiona
valuea'1/2, the location of the zeroth peak in thel space
would be nearl 05210. This is a satisfactory intermedia
result, but we want to do better. Remembering that the p
tion of the zeroth peak, following from the analytical fo
mula ~6.33!, should be shifted to the larger values ofl, we
place our zeroth peak atl 0

max5170. The 30% correction o
this number shifts the zeroth peak tol 0

max5221. Of course,
we keep an eye on the actually detected peak in this reg
Our aim is to derive the full structure of peaks and dips in
angular power spectruml ( l 11)Cl from the simple analyti-
cal formulas~6.33! and ~6.34!, allowing only for the 30%
correction to the zeroth peak and the 4% correction to
first peak. Following this strategy, we formulate our full for
cast:

Peaks: l 0
max5170~221!, l 1

max5510~530!,
~6.35a!

l 2
max5850, l 3

max51190, l 4
max51530,

Dips: l 1
min5340, l 2

min5680, l 3
min51020,

~6.35b!
l 4
min51360, l 5

min51700.

As a consequence of Eqs.~6.33! and~6.34!, the general rule
for the peak positions is1:3:5:7. . . , for the dippositions:
1:2:3:4. . . , and thedips appear between the peaks at

l k
min5

1

2
~ l k

max1 l k21
max!.

Everywhere in this paper, both for gravitational wav
and density perturbations, we perform calculations under
simplifying assumption that the Universe is spatially flat.
is obvious, however, that neither the generating mechan
itself nor the results, for wavelengths comfortably shor
than the putative curvature radius, depend on this simplifi
tion. The unaccounted factors, such as the possible pres
of a spatial curvature, or aL term, or a ‘‘quintessence,’’ or a
‘‘dark energy,’’ can move the entire structure of peaks a
dips, but these factors can hardly change the general rule
their relative positions.

One should note that what is following from our classi
cation as the ‘‘zeroth gravitational peak,’’ which we place
l 0
max5170 plus the correction shifting it tol 0

max5221, is of-
ten interpreted as the ‘‘first Doppler peak’’ or the ‘‘firs
acoustic peak.’’ The notion of the ‘‘zeroth Doppler pea
was introduced and discussed by Weinberg@19,20#. In gen-
eral, all three sources: gravitational field perturbations,
trinsic temperature variations, and velocities, contribute
the peak structure. The gravitational field contribution is re
resented by the Sachs-Wolfe integral~5.1!, while the two
other sources are represented by Eqs.~6.28! and ~6.29!.
However, the raising functionl ( l 11)Cl would not have
turned down without the modulating functionM2(n/nc)
@15#, so we focus our attention on the gravitational contrib
tion.
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The numerical graph of Fig. 3 also shows a little depr
sion atxdep50.41. This depression arises entirely due to
polynomial term inf 2(x,p) rather than from the modulating
functionM2(x). Accepting the same valuenc5268, this fea-
ture corresponds tondep5110. Assigning some significanc
to this feature, and following the same logic as before,
have to conclude that this depression in the metric po
spectrum may be reflected as a small local minimum in
angular power spectrum. Applying the numerical factora
51/2, this minimum is expected to be seen aroundl dep
'55. This may be one of the areas in thel space to analyze
closely in future experiments, such as the Microwave Anis
ropy Probe~MAP! and Planck.

To compare our forecast with observations, we take
the face value the central positions of peaks and dips
ported by de Bernardiset al. @17#. We take the liberty of
calling their Peak 1 as our zeroth peak, Peak 2 as the
peak, and so on. The reported measured positions are as
lows:

Peaks: l 0
max5213, l 1

max5541, l 2
max5845,

~6.36a!

Dips: l 1
min5416, l 2

min5750. ~6.36b!

Their forecast for the next features is as follows:

Peaks: l 3
max51139, l 4

max51442, ~6.37a!

Dips: l 3
min51025, l 4

min51328, l 5
min51661.

~6.37b!

Comparing the observed positions~6.36! with our formulas
~6.35!, we find them in reasonably good agreement. T
peaks and dips appear, at least roughly, in the right positio
On the other hand, the periodic function cos2(n/ns), appropri-
ate for the ‘‘acoustic peaks,’’ implies the reversed rules
the dip and peak positions:

Dips: l k
min5 l 0

min~2k11!, k50,1,2,3, . . . ;

Peaks: l k
max5 l 1

maxk, k51,2,3, . . . .

So, the structure is supposed to start from the zeroth dip,
dip positions are ordered as1:3:5:7. . . , thepeak positions
are ordered as1:2:3:4. . . , and thepeaks appear betwee
neighboring dips atl k

max5(1/2)(l k
min1 l k21

min ). If the first
acoustic peak is atl'213, the second one is supposed to
at l'426, almost in the same place where observations in
cate the first dip. Most importantly, there is no observatio
evidence whatsoever for the zeroth dip. We do not see h
the observed structure~6.36! can be explained by the acou
tic peaks.

The forecast~6.35! on one side, and the forecast~6.37! on
the other side, go out of phase at late features. We place
fourth peak in between the positions where de Berna
et al. @17# place their l 4

max and l 5
min . If these features are
9-16
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not washed out by damping@19,20,29# the MAP and Planck
missions will provide the answer. So far, we tentatively co
clude that the structures in the angular power spectrum
caused by squeezing in the primordial gravitational field p
turbations associated with the density perturbations.

Note added in proof.The latest Cosmic Background Im
ager observations@39# have detected four peaks, atl;550,
800, 1150, 1500, and four dips, atl;400,700, 1050, 1400.
These positions are in very good agreement with the theo
ical formula ~6.35! of the present paper. We interpret the
data as confirmation of our conclusion that it is gravity, a
not acoustics, that is responsible for the observed struct
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d
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