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Abstract 
Identifying risky components are crucial to improving product reliability in the final redesign 
of products. Design failure mode and effects analysis has become a prevalent application in 
product redesign as a useful risk assessment method. However, critical data, which contain 
failure causality relationships (FCRs) between failure modes, correlations among risk factors, 
and user attention index of the product component, are not considered. This study develops an 
improved approach for identifying the target risky components considering customer 
requirement, user attention, and FCRs based on the design risky component (DRC) and 
nonlinear optimization model. The DRC, which integrates the customer requirement level, 
quality test level, and failure risk information of product components, is proposed to represent 
the risk degree of product components. The nonlinear optimization models are constructed to 
derive the weights of risk factors and final redesign of product components. Firstly, a two-stage 
fuzzy quality function deployment is established to map the customer requirements under a 
trapezoidal fuzzy number. A local-global normalization measure is implemented to calculate 
the importance level of the user attention based on quality test data. Secondly, the FCRs of 
failure modes between or within product components is characterized by a directed network 
model. In this network, the failure modes are modelled as vertices, and the causality 
relationships among failure modes are modelled as directed edges. The values of the directed 
edges are characterized by weighted risk priority numbers, and the weight of risk factors is 
optimized by a nonlinear optimization model. Then, the FCRs incorporates the internal failure 
effect and the external failure effect, which are characterized by PROMETHEE Ⅱ with the net 
flow. A 0-1 optimization model with the maximum redesign value and resource constraints of 
product components is constructed to decide on the final redesign of target risky components. 
Finally, a real-world case of display product is conducted to demonstrate the validity and 
feasibility of the proposed approach. The results demonstrate that the proposed method is more 
effective in identifying risk components. 
 
Keywords: Design failure mode and effects analysis; Fuzzy quality function deployment; 
Failure causality relationships; Design risky component; optimization model; Display products 
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1 Introduction 

Product reliability (PR) is one of the key dimensions of the quality of products. New products 

are usually developed by improving existing products to meet customer requirements (CRs) 

and PR, which is particularly true for electronic products such as mobile phones, personal 

computers, and other intelligent products (Zhang et al. 2018; Jiao et al. 2021; Deng and Yuan 

2021; Tang and Meng 2021). These products usually have high CRs for PR, leading to 

considerable delivery time (DT), engineering cost (EC), and technology risk (TR) during their 

redesign processes (Zhang et al. 2019). To improve PR, product redesign has become an 

important method in the process of new product research and development (Smith et al. 2012). 

Hence, the key issue of PR is to identify risky components (Ma et al. 2019; Zhou et al. 2021). 

To identify risky components, the CRs are primarily considered (Shin et al. 2015; Geyer 

et al. 2018; Yan and Ma 2015), while the failure information from enterprises and customers, 

which is critical to improving the PR, is often ignored. To improve the PR, both components 

with low customer satisfaction and those with high failure risk must be identified considering 

the failure information. The requirements and preferences are usually included in the bill of 

materials, it is critical to understand the customer’s preferences and failure risk of products to 

improve the PR in the redesign. 

Conventionally, CRs are extracted as the input of quality function deployment (QFD) 

through those methods of customer surveys, questionnaires, and interviews (Zhang et al. 2019; 

Hou and Jiao 2020), which are used by designers to select product components (PCs) to be 

improved (Ma et al. 2019). QFD is generally utilized to extract design characteristics from CRs 

with subjective qualitative evaluation (Fazeli and Peng 2021). Failure mode and effects 

analysis (FMEA) is used to determine the failure risk of PCs to enhance the PR (Yucesan and 

Gul 2021). Failure modes (FMs) are prioritized based on a risk priority number (RPN), which 

is an arithmetic product of three risk factors (RFs), namely, severity (S), occurrence (O), and 

detection (D). Risk factor takes a discrete value from designers (Zhou et al. 2021), an FM with 

a large RPN value has a higher failure risk and greater priority to be redesigned. However, the 

traditional QFD and FMEA have been intensively criticized for their weaknesses and 

limitations in subjective and stochastic (Ma et al. 2019; Fazeli and Peng 2021; Wang et al. 2019; 
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Yu et al. 2021). Considerable efforts have been made to improve the QFD and FMEA to 

accommodate various engineering and design problems. For example, to improve the PR, a 

redesign framework was presented to support the conceptual design of complex products and 

systems based on a modified QFD and FMEA (Ma et al. 2019). In addition, similar approaches 

have been presented to solve different problems, such as performance improvement of service 

demand selection (Chen 2016), risk assessment with fuzzy information (Liang and Li 2021), 

and customer needs analysis (Xu et al. 2009). In these studies, the CRs and failure risk were 

incorporated into the QFD process by FMEA and was treated as a constraint in the risk 

evaluation model. The studies discussed above show that the failure information of the product 

is accessible and usable for the improvement of PR. However, the evaluation value of CRs and 

PCs were subjective and uncertain, and the causality relationships among the FMs of PCs 

received quite a little attention (Ma et al. 2017; Zhou et al. 2021). In the product lifecycle, the 

design and manufacturing are closely related to each other. Failure information of quality test 

data, obtained by enterprises and customers, can be utilized to identify risky components in the 

stage of product redesign. Nevertheless, those aforementioned studies have not jointly 

considered interdependencies (namely, the mapping relations from CRs to PCs, causalities 

among FMs, interactions among RFs, and correlations among PCs) in the QFD and FMEA. 

As an effective reliability design method for identifying and eliminating potential failures 

in product design, manufacturing, and service processes (Huang et al. 2019), FMEA has been 

widely used in product design process (Zhou et al. 2021). Based on the application phases of 

FMEA, which can be divided into design FMEA (DFMEA), process FMEA (PFMEA), and 

service FMEA (SFMEA) (Chang and Wen 2010; Belu et al. 2013; Huang et al. 2019). The 

National Aeronautics and Space Administration adopted DFMEA in their product design 

processes in 1963 (Chang and Wen 2010). DFMEA is suitable for reliability improvement of 

products and plays a key role in risk prevention. DFMEA has become a prevalent application 

in product redesign as a useful risk assessment method, and those methods can also be applied 

to other types of FMEA due to FMEA’s similarity in both contents and structure (Rivera et al. 

2018; Huang et al. 2019; De et al. 2022). At present, DFMEA has become an integral part in 

product development of various industries, including aerospace, automotive, and precision 

mechanics (Sellappan et al. 2015; Rivera et al. 2018; Huang et al. 2019). 
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To identify target risky components for improving PR, an improved approach with fuzzy 

QFD (FQFD) and fuzzy DFMEA is proposed in this article. The main innovative points of the 

proposed method are concluded as follows: (1) An importance index of PCs and user attention 

is determined by a two-stage FQFD and a local-global normalization measure (LGNM), this 

index incorporates the preferences of customers and the interests of designers considering both 

subjective and objective data, and the uncertainty in the redesign process can be reduced 

effectively. (2) The design risky component (DRC) of PCs is defined and computed, the DRC 

incorporates the importance index, user attention index, and failure index, where the weight of 

the RFs is calculated by a nonlinear optimization model to modify the traditional RPN of 

DFMEA, and the risk components for redesign can be identified precisely. (3) The failure 

causality relationships (FCRs) among FMs between and within PCs are analyzed by the 

directed networks, the FCRs incorporates the internal failure effect (IFE) and the external 

failure effect (EFE), which are characterized by PROMETHEE Ⅱ with the net flow. Then, a 0-

1 optimization model considering maximum redesign value (MRV) and resource constraints of 

PCs is constructed to decide on the final redesign of target risky components. 

In summary, an improved FQFD and fuzzy DFMEA approach are developed to decide on 

the final redesign of PCs based on the indexes of user attention, design risky, and optimization 

model. The remainder of this paper is organized as follows. In Section 2, a brief review of 

related literature is presented. Then, in Section 3, the proposed approach for identifying risky 

components is introduced. Section 4 presents a real-world case of a display product to 

demonstrate the effectiveness of the proposed approach. Section 5 discusses the results of 

methods, and finally, Section 6 provides the conclusions. 

2 Literature review 

PR is often seen as a product quality attribute, which can be improved by identifying risky 

components. To ensure and improve PR, an organization must follow specific practices during 

the product design process. Acquiring CRs and identifying risky components in existing 

products have become an attractive research topic in recent years (Ma et al. 2019; Zhang et al. 

2019; Zhou et al. 2021). Customers tend to evaluate the functions of products and describe 

their defects from users’ perspectives (Smith et al. 2013; Mu et al. 2021). Moreover, designers 
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tend to acquire the CRs and failure information of products from the manufacturing process 

and product operation data (Hou and Jiao 2020; Yu et al. 2021). These evaluations, descriptions, 

and acquisitions of CRs and failure risk information are more reliable than interviews and 

brainstorming (Provost and Fawcett 2013; Kusiak 2017; Van et al. 2020; Xia et al. 2021). 

2.1 Acquiring and mapping of customer requirements 

Risky components can be identified through the analysis of CRs. The typical methods for 

acquiring CRs include brainstorming, interviews, market surveys, and online reviews (Serrano-

Guerrero et al. 2015; Zhang et al. 2019; Mu et al. 2021; Zheng et al. 2021). As a fundamental 

step for identifying risky components in product design, mapping the CRs has been studied for 

many years (Xu et al. 2009; Smith et al. 2013; Mu et al. 2021). Xu et al. (2009) developed an 

analytical Kano model with a focus on customer needs analysis. In their study, two alternative 

mechanisms were proposed to provide decision support for product design, and Kano 

classifiers were used as tangible criteria for categorizing customer needs. Zhou et al. (2013) 

proposed an affective and cognitive design perspective to satisfy the latent needs of customers. 

By revealing the latent CRs, mass personalization aims to assist customers in making better 

adapt to delight the customer. The classical method for mapping CRs was QFD. Wu and Liao 

(2021) introduced a modified QFD framework to solve complex customer-oriented design 

problems regarding uncertain information on CRs, design requirements (DRs), and alternative 

performances. Li et al. (2006) developed a redesign approach to resolve the conflicts between 

CRs and component capability, which were represented by component-attribute pairs and 

resolved by changing the component attributes and replacing the defective components. Bovea 

and Wang (2007) introduced a redesign approach to incorporate environmental requirements 

into the product development process. They conducted a component-level analysis to 

determine the individual components to improve customer satisfaction. Smith et al. (2012) 

applied QFD to identify risky components to influence CRs, which stimulate innovation, and 

improve product quality. Ma et al. (2019) proposed a redesign approach that considers both 

CRs and product failure knowledge. In their study, QFD was employed to map the CRs to PCs. 

QFD has become a popular method to map CRs in product design, engineering 

management, and service systems (Lee et al. 2015; Brenner and Uebernickel 2016). The 

methods discussed above mainly focus on CRs to identify risky components in the design 
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process and consider the failure information that is critical for improving PR (Ma et al. 2019; 

Zhang et al. 2019). However, the application of traditional QFD is limited by qualitative 

evaluation from designers, and the results are somewhat subjective. Therefore, to eliminate the 

subjectivity and uncertainty of the redesign procedure and practice application, a method that 

acquiring and mapping of CRs information needs to be improved. Meanwhile, an integrated 

method for the FCRs of PCs needs to be applied carefully. 

2.2 Identifying and analysis of failure risk knowledge 

Failure risk knowledge of product is a critical basis for evaluating reliability. For this, FMEA 

is a popular approach to identifying risky components based on various types of failure risk 

knowledge (Safari et al. 2016; Liang and Li 2021; Filz et al. 2021). Based on FMEA, when 

failure information is mapped to design knowledge, the target risky components are identified 

and product redesign can be implemented (Ma et al. 2019; Yucesan and Gul 2021; 

Bhattacharjee et al. 2022). 

In this research area, Ma et al. (2019) proposed an approach for identifying the PCs to be 

improved by combining the QFD and FMEA for product redesign based on historical data. 

Zhou et al. (2021) proposed a novel FMEA-based approach to facilitate risk analysis of product 

redesign in an uncertain environment. Zhang and Chu (2011) proposed an approach for 

supporting the product conceptual design by combining FMEA. Liu et al. (2016a) introduced 

a new FMEA model based on a fuzzy digraph and matrix approach to improve the effectiveness 

of FMEA. By considering the RFs and their relative importance, a fuzzy digraph was developed 

for the optimum representation of interrelations. Liu et al. (2016b) presented the critical RFs 

of product design through mutual assessments and investigations using a novel FMEA for the 

reliability improvement of package design in a thin-film transistor product. Aguirre et al. (2021) 

revealed an integrated method, where FMEA, fuzzy sets, and dimensional analysis are 

combined to identify key risks. Zheng et al. (2021) proposed a novel approach that integrates 

a probabilistic graphic model named product defect identification and analysis model with the 

FMEA to derive product defect information from social media data. 

FMEA has become a popular method to identify failure risk information in product design 

and engineering management (Ma et al. 2019; Zhou et al. 2021; Zheng et al. 2021; 

Bhattacharjee et al. 2022). As a useful risk assessment method, those methods of FMEA can 
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also be applied to other types of FMEA, such as, DFMEA and PFMEA, due to FMEA’s 

similarity in both contents and structure (Rivera et al. 2018; Huang et al. 2019; De et al. 2022). 

At present, DFMEA has become an integral part in product development of various industries, 

including aerospace, automotive, and precision mechanics (Sellappan et al. 2015; Rivera et al. 

2018; Huang et al. 2019). Those methods discussed above mainly focus on integrating of RFs 

to identify key failure modes in the process of product redesign and consider the failure 

information that is critical for improving PR (Ma et al. 2019; Zhang et al. 2019; Zhou et al. 

2021). However, those studies discussed above neglect the subjective human intervention 

during RFs assessment, which leads to imprecision and incomplete failure risk information to 

identify risky components for PR regarding product redesign. 

2.3 Summary 

The above works shed light on the diversity of CRs and customer satisfaction, which help 

designers and manufacturers to gain insights on not only how customer satisfaction correlates 

with product improvements, but also how to design products for a particular group of customers. 

The data of CRs are applied in redesign through FQFD, while the data of PR are applied in 

redesign through DFMEA. However, owing to the objectivity or subjectivity of the data source 

from designers, the conventional acquiring methods of CRs and identification of risky 

components for product redesign are resulted dependent, leading to difficulties in determining 

hidden CRs and in implementing and identifying risky components of the redesign procedure. 

Compared with the subjective evaluation data, the quality test data during the manufacturing 

process can provide reliable results for product redesign. Thus, the quality test data is employed 

to identify risky components, which are jointly considered causalities among FMs, interactions 

among RFs, and correlations among PCs. Hence, an approach, which integrates objectivity and 

subjectivity data source from customers, designers, and the manufacturing process, needs to be 

explored for PR. The main works of this study are as follows: 

(1) Based on the theory of trapezoidal fuzzy number (TrFN), a two-stage FQFD for 

converting the CRs to DRs and PCs is applied to reduce the ambiguity and uncertainty of 

mapping procedures to calculate the importance index of PCs. To eliminate the designers’ 

subjectivity on the importance index C, a data mining method of local-global normalization 

measure (LGNM) is applied to calculate the user attention index of PCs based on quality test 
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data. 

(2) Based on the fuzzy DFMEA, a nonlinear optimization model is constructed to derive 

the weight of RFs of FMs to calculate the weighted RPN. By considering the FCRs between 

and within PCs, a directed network model is constructed to obtain the failure index of product 

components. The failure index is divided into the IFE and EFE, which are obtained by 

PROMETHEE Ⅱ with the net flow. 

(3) The index of DRC is proposed to model the risk degree of product components 

considering the importance index, the user attention index, and the failure index. A 0-1 

optimization model of the target risky components is constructed to decide on the final redesign 

of PCs for PR. A real-world case of display products is conducted to demonstrate the validity 

and feasibility of the proposed approach. 

3 The proposed approach 

This section introduces the procedures and key techniques of the proposed approach in this 

paper. Firstly, the importance index of CRs and user attention index are calculated based on an 

improved FQFD (Ma et al. 2019) and LGNM (Zhang et al. 2019). Secondly, the weighted RPN 

of FMs is calculated based on a nonlinear optimization model. Then, the failure index of PCs 

is defined based on an improved directed network model and PROMETHEE Ⅱ (Molla et al. 

2021). Finally, the target risky components of an existing product are constructed based on a 

0-1 optimization model to decide on the final redesign PCs for PR. 

In this study, the DRC is proposed to represent the risk degree of component of an existing 

product considering the objective data and subjective information. The DRC is defined: 

 DRC = CWc·UWu+FIWf                                                               (1) 

where C represents the importance index of the PCs determined by a two-stage FQFD based 

on CRs; U denotes the user attention index, which modify the importance index of the PCs, is 

determined by the LGNM based on quality test data; FI represents the failure index determined 

by failure risk information based on directed network model and PROMETHEE Ⅱ. The Wc, 

Wu, and Wf are the weight factors of C, U, and FI, respectively (Wc+Wu+Wf = 1). The weight 

factors represent the importance of the three indexes. The weight factors can be assigned by 

designers according to the design characteristics and parameter levels. For example, for 
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smartphones, which are characterized by changing CRs or user attention and involved high 

interactions with customers, Wc and Wu are assigned high values. For mechanical product, 

which is characterized by long operation life and high PR, Wf is assigned a high value. To 

decide on the final redesign of risky components, a threshold t of the DRC must be predefined. 

Once the DRC of a component exceeds that of another, this component is identified for 

improvement. Usually, t is selected by decision makers according to the specific product case 

and constraints of redesign resources, including DT, EC, and TR. When sufficient redesign 

resources are available, a higher t can be selected to identify more target risky components. In 

contrast, when the redesign resources are insufficient, a lower t can be selected to identify fewer 

target risky components. 

So far, the detailed calculating procedures of C, U, and FI are described in Sections 3.1 

and 3.2, respectively. And the procedures for calculating FCRs and identifying target risky 

components are introduced in Sections 3.3 and 3.4. Thus, the flowchart framework of the 

proposed approach is depicted in Figure 1. 

 
Figure 1 Workflow framework of the proposed approach 

The flowchart framework of the proposed approach can be described as follows: 

3.1: Calculate 
importance index

Failure knowledge 
repository

3.2: Define FI
and RPN

3.3: Analyze  
FCRs of FMs

3.4: Identify risk 
component

Two-stage 
FQFD

Description of TrFN and 
calculation of C and U LGNM

Nonlinear 
model

Calculation of RFs and 
weighted RPNDFMEA

Directed 
network

Calculation of IFE, EFE, 
and FI

PROMET
HEE Ⅱ

Resource 
constraints

0-1 optimization model 
of target risky component 

MRV of 
PCs

Threshold selection t

Method comparison and 
sensitivity analysis
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Subsection 3.1: According to CRs information and quality test data, the importance 

indexes of C and U can be calculated based on FQFD and LGNM. 

Subsection 3.2: The FI and weight of RFs can be defined by the DFMEA and nonlinear 

optimization model. 

Subsection 3.3: The FCRs of FMs within PC or between PCs can be analyzed based on 

the directed network model, and the values of the IFE, EFE and FI of PC can be calculated 

based on PROMETHEE Ⅱ with the net flow. 

Subsection 3.4: According to the MRV and resource constraints of PCs, the target risky 

components can be identified to decide on the final redesign of PCs based on the 0-1 

optimization model. 

With the changes of design threshold t, different target risky components of PCs can be 

identified to improve the PR. Finally, the validity and feasibility of the proposed approach are 

verified by method comparison and sensitivity analysis. 

3.1 Calculate C and U by fuzzy quality function deployment and local-global 

normalization measure 

3.1.1 Description of trapezoidal fuzzy number 

To reflect the imprecise nature semantics of the mapping relationships in FQFD, the 

interrelationship value of Rih between the ith CR and the hth DR is quantified by TrFN, which 

includes the following semantic terms: VL (very low), L (low), M (medium), H (high), and VH 

(very high). The interrelationship value of Rjh between the jth DR and the hth PC is also 

quantified by semantic terms. All semantic terms are transformed into TrFN, as presented in 

Table 1 (Xia et al. 2006; Geyer et al. 2018). 
Table 1 Semantic terms and TrFN 

Semantic terms TrFN 
Very low causality relationship (VL) (0,0,1,2) 
Low causality relationship (L) (1,2,3,4) 
Medium causality relationship (M) (3,4,5,6) 
High causality relationship (H) (5,6,7,8) 
Very high causality relationship (VH) (7,8,9,10) 

The following is a detailed explanation of the TrFN (Xia et al. 2006). A quadruple m� = 

(m1, m2, m3, m4) is called a TrFN if its membership function is: 
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 um� (x) =

⎩
⎪
⎨

⎪
⎧

x - m1

m2 - m1
         ( m1 ≤ x < m2)

1                  ( m2 ≤ x ≤ m3)
m4 - x

m4 - m3
         ( m3 < x ≤ m4)

0              (x < m1 or x > m4)

                                         (2) 

where m1 ≤ m2 ≤ m3 ≤ m4 are real numbers and reflect the fuzziness of the evaluation data. 

The closed interval [m2, m3] is the mode of 𝑚𝑚� , while 𝑚𝑚1 and 𝑚𝑚4 are the lower and upper 

limits of 𝑚𝑚� , respectively. The Euclidean distance between two TrFNs m�  = (m1,m2,m3,m4) and 

n� = (n1,n2,n3,n4) is defined (Wan and Dong 2015): 

 d(m,� n�)=�1
6

[(m1 - n1)2 + 2(m2 - n2)2 + 2(m3 - n3)2 + (m4 - n4)2]                          (3) 

Here, the mean value method of the TrFN defuzzification process is given: 

 X = 
m1 + m2 + m3 + m4

2
                                                (4) 

3.1.2 Calculation of C by fuzzy quality function deployment 
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Figure 2 Two-stage FQFD for mapping CRs to PCs 
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A two-stage FQFD is applied to calculate the importance index of CRs to PCs, as shown in 

Figure 2. In this process, the CRs are mapped to calculate the DRs, which are mapped to 

calculate the importance index C of the PCs. 

As shown on the left of Figure 2 (Stage 1), the CRs are mapped to the DRs, where the ei 

∑ ei
I
i=1 =1 (i = 1, 2, …, I) represents the importance score of CRi. Generally, the ei  is 

predetermined by designers based on engineering practice. The interrelationship value Rih 

between the ith CR and the hth DR is quantified by TrFN. The interrelation rhH between DRs 

is quantified by TrFN. The wh (h = 1, 2, …, τ, …, H) is the important weight of the hth DR, 

which is calculated using Equation (5): 

 

⎩
⎪
⎨

⎪
⎧Rih

'  =
∑ (Riτ·rhH

' )H
τ=1

∑ ∑ (Riτ·rhH
' )H

τ=1
H
h=1

wh = � ei·Rih
'

I

i=1

                                                  (5) 

where Rih
'  is the normalized relationship value of Rih between the ith CR and the hth DR and 

is quantified using a TrFN. 

As shown on the right of Figure 2 (Stage 2), the DRs are mapped to the PCs, the ẅh is 

the normalized importance weight (wh) of DRh. The Cj is the importance index of the jth PC (j 

= 1, 2, …, J), which is calculated using Equation (6): 

 Cj=
∑ Rjh·ẅh

H
h=1

∑ ∑ Rjh·ẅh
H
h=1

J
j=1

                                                      (6) 

where Rjh represents the normalized relationship value between the hth DR and jth PC, and 

Rjh is quantified by TrFN. So far, the mapping relationships between CRs and DRs, as well as 

DRs and PCs, are determined. 

3.1.3 Calculation of U by local-global normalization measure 

To eliminate the enterprise designers’ subjectivity on the importance index C, a data mining 

method is applied to calculate the user attention index U of the PCs based on the quality test 

data during the manufacturing process. In this research, the LGNM is applied to evaluate the 

quantitative importance level for PC. Compared with subjective measures, the LGNM has 

some advantages because it uses three different terms (Zhang et al. 2019): local, global, and 

normalization. The global term reduces the effect of features that occur too often in all test 
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results of product quality. The normalization term mitigates the effect due to high term 

frequencies observed in all the tested products. 

Here, the LGNM is applied to calculate the user attention uj (j = 1, 2, …, J) based on the 

quality test data during the manufacturing process, and Uj is the normalized value of uj: 

 

⎩
⎪
⎨

⎪
⎧ Uj=

uj

∑ uj
J
j=1

uj= � Lij·Gj·
M

i=1
Zi

                                                         (7) 

where Lij is the local weight of the jth PC in the ith quality test, Gj is the global weight of the 

importance of the jth PC in all quality tests, and Zi is the normalization factor to compensate 

for the discrepancies due to the lengths of the quality tests. The local test frequency fij is defined 

as the number of occurrences of the jth PC in the ith quality test. It can be calculated from the 

local negative quality nij and positive quality pij of the jth PC in the ith quality test (yield and 

defect rates are derived from a statistical probability distribution). Then, the local factor Lij and 

local quality test frequency fij are calculated: 

 �
Lij = log2(1 + fij)

fij = nij + pij
                                                      (8) 

Then, the global quality test frequency Fj (which can be calculated from the local qualities 

nij and pij) is the frequency of the jth PC on all test products. The global factors Gj and Fj are 

calculated by: 

 

⎩
⎪
⎨

⎪
⎧Gj=1+ �

(fij/Fj)ln(fij/Fj)
lnM

M

i=1

Fj= � nij

M

i=1
+ � pij

M

i=1

                                           (9) 

Then, the normalization factor Zi is calculated by: 

 Zi= 1 �� �Lij·Gj�
2

j=1
�                                                (10) 

3.2 Define failure index and weighted risk priority number 

3.2.1 Description of failure index by the directed network model 

Suppose a product has J PCs, in which each PC has various design parameter levels and is 

accompanied by different FMs (i.e., j1, …, j2, …, jv). In the conventional methods for 
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calculating the DRC of PCs, the FCRs between or within the FMs of PCs are usually ignored. 

In this study, the DRC is considered an important index determined by the DFMEA considering 

the FCRs. Here, the FCRs can be divided into FMs of the same PC and different PCs. Therefore, 

the failure index FI of PCs with FCRs is defined (Ma et al. 2019): 

 FI = IFE + EFE                                                           (11) 

where the IFE is the index of the internal failure effect corresponding to the FCRs within FMs 

of the same PC, and EFE is the index of the external failure effect corresponding to the FCRs 

among FMs of different PCs. 

To model the FCRs within/among FMs, a directed network model can be constructed 

using the graph theory as G = (V, E) (Ma et al. 2019; Zhou et al. 2021). For a graph G = (V, E) 

with two sets, V and E are the vertex and edge of G, respectively. Here, a vertex represents an 

FM, and a directed edge represents the FCRs between FMs. For example, if FMA may cause 

FMB, a directed edge between the two vertices of FMA and FMB needs to be drawn. The two 

FMs can also act as both causes and effects. In this process, the bill of materials and design 

records of FMs in the failure knowledge repository are also used to build the FCRs. The 

directed network model of FCRs for PCs among FMs (Ma et al. 2019; Zhou et al. 2021) is 

shown in Figure 3, where the rectangle represents a product, the squares represent the PCs, and 

the circles represent the FMs. The dotted lines indicate that a PC may have many FMs with 

different design parameter levels. 

P
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PC1 ... PCj ... PCJ

FMjv FMjVFMj1 FMJvFMJ1

Product

Product 
component
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mode

...... ... ... ...... ... ...
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Inclusion relationship 
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External failure effect
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Internal failure effect
of FMs

FM11 FM1V FMjV

 
Figure 3 Directed network model of FCRs for PCs among FMs 

In Figure 3, the FCRs among FMs are divided into two types (IFE and EFE), which are 

described using the directed solid curves with solid arrows and the directed dotted curves with 
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solid arrows, respectively. The directed edge represents the causality relationship between FMs, 

and the weight of the edge denotes the strength of this relationship. Usually, the assessment of 

the weight of the causality relationship is subjective and qualitatively described in semantic 

terms. Therefore, TrFN is used to describe the FCRs to reflect this imprecise nature. 

3.2.2 Calculation of weighted risk priority number by the nonlinear optimization model 

For a directed network model, the RPN can be determined to calculate the result of each FMjv, 

as shown in Equation (19). With the help of a failure knowledge repository, the RFs of severity 

(S), occurrence (O), and detection (D) in the DFMEA can be obtained from Tables 2 to 4, which 

are presented in the section of Appendix. The rating scales of S, O, and D are converted into 

TrFN to reflect the imprecise nature of the subjective assessment, as indicated in Table 1. 

Meanwhile, the weights of S, O, and D need to be optimized. According to the principle of 

similarity measure (Selvachandran et al. 2018; Chutia and Gogoi 2018), the following 

optimization steps of weights are presented. 

Step 1. The qualitative evaluation RFs (S, O, and D) is obtained using the linguistic 

variables listed in Table 1. Then, each RFjv
P  is translated into a TrFN decision matrix as follows: 

 �RF� j�v

P
 = 

⎣
⎢
⎢
⎢
⎡r̃1

P

r̃2
P

⋮

r̃V
P⎦

⎥
⎥
⎥
⎤

                                                             (12) 

where r̃v
P = (m1, m2, m3, m4) is a normalized TrFN, which denotes the FMj for each risk factor 

�RF� j�v

P
 (j = 1, 2, ..., J; v = 1, 2, …, V; P = S, O, D). 

Step 2. Inspired by the principle of ideal solutions (Tian et al. 2018), the fuzzy reference 

preferences of the best and worst RFs are defined: 

 �
�B�j�v

 = (b�1, b�2, …, b�V)

�W� j�v
= (w�1, w�2, …, w�V)

                                                  (13) 

where b�v and w�v are the normalization values of bv and wv; bv = (7, 8, 9, 10) denotes the 

fuzzy preference of the best RFs of O, S, and D; and wv = (0, 0, 1, 2) represents the fuzzy 

preference of the worst RFs of O, S, and D. 

Step 3. Inspired by the principles of the similarity measure (Chutia and Gogoi 2018), a 

nonlinear optimization model is constructed to derive the weights of RFs as follows: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ Min f(ωv

P+) = � � (ωv
P+d(r̃v

P, b�v))
2

3

p=1

V

v=1

Max f(ωv
P−) = � � (ωv

P−d(r̃v
P, w�v))

2
3

p=1

V

v=1

s.t.

⎩
⎪
⎨

⎪
⎧ 0 < ωv

P+< 1, 0 < ωv
P− < 1

�ωv
P+

3

P=1

, �ωv
P−

3

P=1

 = 1

0 ≤ d(r̃v
p, b�v) ≤ d(r̃v

p, w�v) ≤ 1

                                           (14) 

where for each risk factors �RF� j�v

P
 (j = 1, 2, ..., J; v = 1, 2, …, V; P = S, O, D); ωv

P+ represents 

the weight of the RFjv
P  under �B�j�v

 = (b�1, b�2, …, b�V); ωv
P− represents the weight of the RFjv

P  

under �W� j�v
= (w�1, w�2, …, w�V) ; 𝑑𝑑(r̃v

p, b�v)  represents the Euclidean distances between 

�RF� j�v

P
 and �B�j�v

; and 𝑑𝑑(r̃v
p, w�v) is the Euclidean distances between �RF� j�v

P
 and �W� j�v

, 

respectively. To simplify model (14), a Lagrange function is given as follows: 

 Min F (ωv
P+, ωv

P−, θ) 

 = � � (ωv
P+d(r̃v

P, b�v))
2

3

p=1

V

v=1

-(ωv
P−d(r̃v

P, w�v))
2
+2θ( �ωv

P+
3

P=1

− 1)+2θ( �ωv
P−

3

P=1

− 1)        (15) 

Taking the partial derivative of Equation (15): 

 

⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝜕𝜕(ωv
P+, ωv

P−, θ)
𝜕𝜕ωv

P+  = 0 ↔  ∑ ωv
P+(d(r̃v

P, b�v))
2
+θ = 03

P=1

𝜕𝜕𝜕𝜕(ωv
P+, ωv

P−, θ)
𝜕𝜕ωv

P-  = 0 ↔  ∑ ωv
P−(d(r̃v

p, w�v))2+θ = 03
P=1

𝜕𝜕𝜕𝜕(ωv
P+, ωv

P−, θ)
𝜕𝜕θ

 = 0 ↔  ∑ ωP++V
v=1 ∑ ωv

P−V
v=1 − 2 = 0

               (16) 

Here, Equation (16) can be simplified: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
ωv

P+ =
( ∑ ( ∑ (d(r̃v

p, b�v))
23

p=1 )
-1

V
v=1 )

-1

∑ (d(r̃v
p, b�v))

23
p=1

ωv
P− =

( ∑ ( ∑ (d(r̃v
p, w�v))23

p=1 )
-1V

v=1 )
-1

∑ (d(r̃v
p, w�v))23

p=1

                                          (17) 

Then, the comprehensive weight ωv
P of S, O, and D can be derived: 

 ωv
P =

 ωv
P++ωv

P−

2
                                                          (18) 

Here, according to the ωv
𝑃𝑃 = (ωv

1, ωv
2, ωv

3) of RFs (S, O, and D), the RPNv of each FMjv for each 
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PCj is presented: 

 RPNv=Sωv
1
·Oωv

2
·Dωv

3
                                                     (19) 

3.3 Analyze failure causality relationships and failure index by directed network model 

and PROMETHEE Ⅱ 

3.3.1 Calculation of the internal failure effect within a product component 

According to Equation (19), the RPNv of FMjv is regarded as the vertex of the directed network 

model. Inspired by the principle of PROMETHEE Ⅱ (Sun and Zhu 2017; Molla et al. 2021), 

the directed network model of FCRs for the IFE of a PC (as shown in Figure 4) can be 

calculated using the following steps. 

PCj

FMjv FMjVFMj1 ... ...

Inclusion relationship 
between PCs and FMs

Internal failure effect
of FMs

Product 
component

Failure 
mode

 
Figure 4 Directed network model of FCRs for the IFE of a PC 

Step 1. Determine the preference function of FMs within a PC as follows: 

 F�PCj�=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ Rj

1 ⋯ rj
1v

⋮ ⋮ ⋮

⋯ rj
1V

⋮ ⋮

rj
v1 ⋯ Rj

v

⋮

rj
V1

⋮

⋯

⋮

rj
Vv

⋯ rj
vV

⋮

⋯

⋮

Rj
V ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                         (20) 

According to 𝑭𝑭(𝑷𝑷𝑷𝑷𝒋𝒋), failure modes Fi and Ft (i, t = 1, 2, …, v, …, V) are compared in pairs 

under different RPNv. Rj
v represents the RPN of the vth FM of the jth PC, and rj

1v,…, rj
1V 

denote the strength of fuzzy causality relationship among FMs. The result is a preference 

function of one over the other and is given as the accuracy value of an RPNv. There are 6 

common criteria for determining the preference function, where the Gaussian preference 

function has the characteristic of non-linear variation compared with others and is more in line 

with the actual decision-making environment. Hence, the Gaussian preference function is 
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chosen in this paper. The Gaussian preference function pj(Fi, Ft) ∈ [0, 1] between Fi and Ft is 

estimated as follows (Molla et al. 2021): 

 p(d) �
0              d ≤ 0
1 - e-d2/2∂2

  d > 0
                                                          (21) 

where 𝑑𝑑 = dj(Fi, Ft) = RPNi - RPNt = Fi - Ft, and 𝜕𝜕 = 0.2. 

Step 2. Calculate the weighted preference index of FMs: 

 H(Fi, Ft) = � 𝑟𝑟𝑗𝑗
vpj(Fi, Ft)

V

v=1

                                               (22) 

Step 3. Estimate the leaving flow L+, entering flow L-, and net flow L+L- of weighted 

preference index of FMi: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ L+(Fi) = � H(Fi, Ft)

I

i=1

L-(Fi) = � H(Ft, Fi)
I

i=1

L+L-(Fi) = L+(Fi) - L-(Fi)

                                                  (23) 

The leaving flow L+ denotes the dominance of FM over other FMs and is a measure of 

the outranking character. The entering flow L- is a measure of the outranked character. The 

net flow L+L- denotes the comprehensive dominance of FM between L+ and L-. Thus, the 

larger the value of the net flow L+L-, the higher is the ranking of FM. Then, the comprehensive 

IFE for PCj can then be calculated: 

 IFEj= � L+L-(Fi)
V

i=1
                                                     (24) 

3.3.2 Calculation of the external failure effect and failure index 

PCj PCh
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Product 
component

Failure 
mode

Inclusion relationship 
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External failure effect
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Internal failure effect
of FMs
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Figure 5 Directed network model of FCRs for the EFE between any two PCs 

Similarly, the FMs among different PCs interact with each other. For instance, panel extrusion 
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can cause display disorders in display products. Conventionally, existing FCRs analysis 

methods do not consider the interactions of FMs among different PCs. To interpret the EFE of 

the FMs among PCs, a directed network model comprising any two PCs, that is, PCj with Fj 

FMs and PCh with Fh FMs, is illustrated in Figure 5. 

If the jth FM of PCj leads to the hth FM of PCh, the directed dotted curves with solid 

arrows are drawn from FM node Fjv to FM node FhV (denoted as 𝑟𝑟𝑗𝑗ℎ
𝑣𝑣𝑣𝑣). To incorporate the 

FCRs content among PCs into the design process, the information matrix of the EFE between 

PCs is built: 

 F�PCjh�=

⎣
⎢
⎢
⎢
⎢
⎢
⎡Rjh

1 ⋯ rjh
1v

⋮ ⋮ ⋮

⋯ rjh
1V

⋮ ⋮

rjh
v1 ⋯ Rjh

v

⋮

rjh
V1

⋮

⋯

⋮

rjh
Vv

⋯ rjh
vV

⋮

⋯

⋮

Rjh
V ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                               (25) 

Then, the EFEj of PCj is defined: 

 EFEj= � � � � rjh
vV·Rjh

v
V

v=1

hV

h=1

jV

j=1

J

j=1, j≠h

                                             (26) 

where Rjh
v  and Rhj

v  are the RPNs of the jth FM of PCj and the hth FM of PCh, respectively. 

Thus, after defining and calculating the IFE and EFE of all PCs, the FI of PCs can be 

calculated. The normalized FIj of PCj is calculated: 

 FIj =
IFEj + EFEj

∑ (IFEj + EFEj)J
j=1

                                                           (27) 

3.4 Identify target risky components by 0-1 optimization model 

So far, the normalized DRCj of PCj, which is used to identify risky components of the product, 

is calculated. Because of the resource limitations of the primary constraints, such as DT, EC, 

and TR, a 0-1 optimization model is constructed to decide on the target risky components for 

the final redesign of PCs. The objective function of this optimization model is to achieve the 

MRV under various resource limitations. The 0-1 optimization model for identifying the target 

risky components of the product can be constructed as follows: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧MRV = Max � DRCj

J

j=1

∙ xj

s.t.

⎩
⎪⎪
⎨

⎪⎪
⎧

max(DTj ∙ xj) ≤ T

� ECj

J

j=1

∙ xj ≤ C

� TRj

J

j=1

∙ xj ≤ R

                                                               (28) 

where the threshold t = (T, C, R); and the decision variable xj = 1 if PCj is selected; otherwise, 

xj = 0. 

Assuming that all redesign tasks are conducted simultaneously, the final DT is determined 

by the task requirement with the longest DT among all the redesign tasks. The EC is determined 

by the requirements of the market or customer. The TR is defined as the quality fluctuation with 

the variables of reliability and serviceability (Gautam and Singh 2008): 

TRj = REj∙SEj                                                                     (29) 

where RE and SE are the changes in reliability and serviceability after the redesign, which can 

be obtained by a reliability test and service satisfaction evaluation by designers. The change in 

perceived value is applied to calculate RE and SE as follows (Zhang et al. 2019): 

 

⎩
⎪
⎨

⎪
⎧ REj= � Pj

J

j=1

·QREj
+ � � Pj

J

i=1

J

j=1

·QREj
·Pi

SEj= � SEj

J

j=1

·QSEj
+ � � SEj

J

i=1

J

j=1

·QSEj
·SEi

                                     (30) 

where Pj is binary for component change: Pj=1 if the jth component 

changes; otherwise, Pj=0. Pi is the forced change from the coupled part to the jth component. 

QREj
20T is the change in the perceived value of the jth component due to the reliability change 

caused by redesign. The SE can be defined and calculated similarly. Finally, the target risky 

component can then be identified from all candidate PCs through the optimization model. 

4 Case study 

To verify the validity and feasibility of the proposed approach, a case study of product redesign 

is executed accurately to identify target risky components of the existing products. In this case 
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study, the key techniques of the proposed approach are implemented to improve PR based on 

objectivity and subjectivity data source from customers, designers, and the manufacturing 

process. 

A real-world case of LCD-Module (LCM) for display products is presented to demonstrate 

the effectiveness of the proposed approach. The data for this case study were collected from a 

semiconductor manufacturing company located in the city of Xiamen, China. The company 

was planning to launch a series of quality renovations for the LCM to identify target risky 

components for the next-generation integrated panel module package with high PR to improve 

customer satisfaction. At the early design stage, the risky components must be identified 

because the given redesign tasks do not require changing all components. Because the LCM is 

composed of submodules, only the main PCs of LCM were selected for identification of the 

target risky components. 

 
Figure 6 Essential structure of LCM of display products 

The essential structure of LCM of display products is illustrated in Figure 6, and the 

descriptions of the FMs of PCs of LCM summarized in Table 5 were collected from the failure 

knowledge repository of the company. 
Table 5 Description of FMs of risky PCs 

Risky PCs Description of FMs 
Optically clear adhesive: PC1 Bubbles are produced after pasting 
Touch panel: PC2 Broken screen 
Color filter: PC3 Larger color tolerance in the sample submission stage 
Polarizer: PC4 There are cracks and color differences in the polarizer notch 

Full cell: PC5 
White screen shows character deviation, gamma offset, and residual 
shadow 
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Integrated circuit: PC6 ESD damage, flicker, and excessive power consumption 
Flexible printed circuit: PC7 Line break, fracture, pressure deviation, and integrated circuit pin off 

Backlight unit: PC8 
Size deviation, film warping, edge bright line, and unsuitable selection 
of LED 

Module: PC9 
Offset light leakage, LED off, improper tray, fragments, reversed 
connection of FPC, and foreign bodies in the drum 

Liquid crystal of TFT: PC10 
Bad point line, picture flicker, extrusion light leakage, power 
consumption problem, dark line, and serrated display 

Note: TFT Thin film transistor; ESD Electro-static discharge; LED Light emitting diode; FPC Flexible printed 
circuit 

4.1 Calculation of C and U 

Above all, the subjective semantic terms were quantified to determine the importance index of 

PCs. By browsing the design repository of the LCM, the CRs include appearance, size, screen 

display, packing and transportation cost, electro-static discharge test, environmental and 

mechanical tests, and assembly time, denoted as six CRi (CR1, CR2, CR3, CR4, CR5, and CR6). 

The DRs includes film thickness, optical performance, power consumption, product reliability, 

three new technologies, and number of processes, symbolized as six DRi (DR1, DR2, DR3, DR4, 

DR5, and DR6). The weights of the six CRi were specified as ei = (0.181, 0.194, 0.208, 0.139, 

0.167, and 0.111) based on historical statistical data of the total customer orders. 
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Figure 7 Mapping relationships between CRi and DRi, as well as DRi and PCj 

The mapping relationships between CRi and DRi, as well as DRi and PCj, based on a two-

stage FQFD are displayed in Figure 7. The designers’ semantic evaluation was quantified 

according to TrFN (as listed in Table 1). To implement Equations (2)-(6), the weights of the 

DRi were set as wh = 0.1748, 0.1688, 0.1697, 0.1732, 0.1821, and 0.1314, and the subjective 
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importance index of PCj were Cj = 0.0906, 0.0751, 0.0848, 0.1083, 0.1078, 0.0997, 0.1070, 

0.1040, 0.1142, and 0.1087 according to CRs, respectively. 

Secondly, the user attention index Uj of PCj was analyzed based on quality test data from 

the manufacturing process. According to the feedback with quality test data under 31 risk 

attributes of 10 components, the local and global negative/positive opinion frequencies were 

calculated using Equations (8)-(10) to obtain the local and global preferences, and the 

normalized user attention index Uj of PCj was calculated using Equation (7), as presented in 

Table 6, which is presented in the section of Appendix. Thus, the importance indexes of C and 

U were determined based on semantic evaluation and quality test data, respectively. 

4.2 Calculation of weighted risk priority number 

According to the failure information repository, the failure ranking of RFs is described in 

Tables 2 to 4, and the assessment values of S, O, and D of FMs are obtained in Table 7, which 

is presented in the section of Appendix. The assessment values of S, O, and D were converted 

to TrFN to reflect the imprecise nature of the subjective value. Then, the weights of S, O, and 

D, as well as the normalized RPN (n-RPN) of FMs were calculated using Equations (12)-(19), 

as listed in Table 8. 
Table 8 Weights of RFs and normalized RPN of FMs 

FMjv wS wO wD RPN n-RPN 
FM11 0.4565 0.0870 0.4565 6.2184 0.0482 
FM21 0.5931 0.2035 0.2035 6.0339 0.0468 
FM31 0.2513 0.2513 0.4975 4.1580 0.0322 
FM41 0.2513 0.3744 0.3744 3.9046 0.0303 
FM42 0.2513 0.3744 0.3744 3.9768 0.0308 
FM51 0.3190 0.2566 0.4245 2.7036 0.0210 
FM52 0.3190 0.2566 0.4245 4.0254 0.0312 
FM53 0.3190 0.2566 0.4245 4.3859 0.0340 
FM61 0.5033 0.2001 0.2967 4.3577 0.0338 
FM62 0.5033 0.2001 0.2967 4.2522 0.0330 
FM63 0.5033 0.2001 0.2967 4.2522 0.0330 
FM71 0.6340 0.1485 0.2175 5.8309 0.0452 
FM72 0.6340 0.1485 0.2175 5.2606 0.0408 
FM73 0.6340 0.1485 0.2175 5.2606 0.0408 
FM74 0.6340 0.1485 0.2175 5.8309 0.0452 
FM81 0.3988 0.2024 0.3988 3.6436 0.0283 
FM82 0.3988 0.2024 0.3988 3.6779 0.0285 
FM83 0.3988 0.2024 0.3988 3.6436 0.0283 
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FM84 0.3988 0.2024 0.3988 3.6436 0.0283 
FM91 0.3876 0.2729 0.3396 3.3538 0.0260 
FM92 0.3876 0.2729 0.3396 3.9554 0.0307 
FM93 0.3876 0.2729 0.3396 3.1864 0.0247 
FM94 0.3876 0.2729 0.3396 4.2450 0.0329 
FM95 0.3876 0.2729 0.3396 2.8527 0.0221 
FM96 0.3876 0.2729 0.3396 3.6568 0.0284 
FM101 0.4722 0.2272 0.3007 3.9620 0.0307 
FM102 0.4722 0.2272 0.3007 3.6838 0.0286 
FM103 0.4722 0.2272 0.3007 3.4365 0.0266 
FM104 0.4722 0.2272 0.3007 3.8183 0.0296 
FM105 0.4722 0.2272 0.3007 3.9620 0.0307 
FM106 0.4722 0.2272 0.3007 3.7954 0.0294 

4.3 Identification of failure index and design risky component 

Based on the FI defined by Equation (11), the FCRs among FMs of PCs was constructed using 

the directed network model, which was divided into IFE and EFE. To save space, only PC7 is 

shown in the calculation processes, tables, and figures. 

PC7

FM72 FM73FM71 FM74

Product 
component

Failure 
mode

Inclusion relationship 
between PCs and FMs

Internal failure effect
of FMs

 

Figure 8 Directed network model of FCRs for the IFE of PC7 

Firstly, in the directed network model of PCs, the IFE of PC7 is illustrated in Figure 8. 

Based on the n-RPN of FMs in PC7, the preference function was obtained using Equations 

(20)-(21). Thus, the L+, L-, and L+L- of the preference index of FMi were obtained using 

Equations (22)-(23). Then, the comprehensive IFE of PC7 was obtained using Equation (24), 

as listed in Table 9. 
Table 9 Values of the EFE, IFE, and FI for PCs 

Indices PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
IFEj 0.0000 0.0000 0.0000 0.0000 0.0071 0.0000 0.0020 0.0000 0.0119 0.0018 
EFEj 0.0024 0.0042 0.0026 0.0071 0.0071 0.0106 0.0123 0.0095 0.0124 0.0187 
FIj 0.0216 0.0384 0.0235 0.0652 0.1296 0.0972 0.1301 0.087 0.2211 0.1862 

Secondly, in the directed network model of PCs, the related EFE of PC7 is displayed in 

Figure 9. Based on the n-RPNs of the FMs of PC7, the EFE of PC7 was obtained using 
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Equations (25)-(26), as presented in Table 9. Finally, the normalized FI of PC7 was obtained 

using Equation (27), as listed in Table 9. 
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Figure 9 Directed network model of FCRs for the EFE of PC7 among other PCs 

Similarly, the FIj values of the other PCs are presented in Table 9. Here, the weights of C, 

U, and FI are specified as (Wc, Wu, Wf) = (0.25, 0.25, 0.5). Then, the DRC of all PCs were 

calculated using Equation (1), as listed in Table 10. The rank of PCs according to the DRC is 

presented in Table 10. Obviously, the rankings of PCs are different because of the different 

weights of indexes (C, U, and FI) and calculation methods. These results with different weights 

and methods are discussed further in Sections 5.1 and 5.2. 
Table 10 Values of DRC of all PCs 

Index PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Cj 0.0906 0.0751 0.0848 0.1083 0.1078 0.0997 0.1070 0.1040 0.1142 0.1087 
Uj 0.0966 0.0931 0.0947 0.0929 0.0983 0.0827 0.0837 0.0974 0.1371 0.1135 
FIj 0.0216 0.0384 0.0235 0.0652 0.1296 0.0972 0.1301 0.087 0.2211 0.1862 

DRCj 0.4528 0.4851 0.4526 0.5720 0.6808 0.6131 0.6683 0.6122 0.8239 0.7648 
Ranking 9 8 10 7 3 5 4 6 1 2 

4.4 Identification of target risky components 

After obtaining the DRC of all PCs, according to project information and resource limitations, 

the DT, EC, and maximum TR were selected as 100 h, $3000, and 40%, respectively. Thus, the 

threshold t=(100, 3000, 40%). The optimization model of the target risky component is 

represented as follows: 



26 

 

⎩
⎪
⎨

⎪
⎧ MRV= Max ∑ DRCj

10
j=1 ∙ xj

s.t. �

Max10(DTj ∙ xj) ≤ 100
∑ ECj

10
j=1 ∙ xj ≤ 3000

∑ TRj
10
j=1 ∙ xj ≤ 40%

                        (31) 

By searching for the optimal solutions considering different weights of C, U, and FI, the 

ranking of target risky components for the redesign were identified from alternative PCs, as 

presented in Table 11. From Table 11, PC9 was selected under three situations with different 

weights of C, U, and FI. Similarly, in the ranking under C, FI, and DRC, PC9 has the highest 

failure risk among all PCs. 
Table 11 Identification ranking of target risky components 

Ranking W = (0.4, 0.4, 0.2) W = (0.25, 0.25, 0.5) W = (0.1, 0.1, 0.8) 
1 PC9 PC9 PC9 
2 PC10 PC10 PC10 
3 PC5 PC5 PC5 
4 PC7 PC7 PC7 

5 Discussions 

To verify the shortcomings of the traditional method, a comparison study and sensitivity 

analysis were conducted to demonstrate the superiority of the proposed approach. An in-depth 

discussion of the proposed approach is carried out. 

5.1 Comparison study 

5.1.1 Comparison between C, U, failure index, and design risky component 

The ranking result of PCs with C, U, FI, and DRC is presented in Figure 10. Some observations 

on the ranking results are summarized as follows: 

 
Figure 10 Comparisons of ranking results with four design indices 
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(1) PC9 has the highest ranking among all PCs based on four design indices DRC, FI, U, 

and C. The rankings with respect to DRC, FI, U, and C are PC9 > PC10 > PC5 > PC7 > PC6 > 

PC8 > PC4 > PC2 > PC1 > PC3; PC9 > PC10 > PC7 > PC5 > PC6 > PC8 > PC4 > PC2 > PC3 > 

PC1; PC9 > PC10 > PC5 > PC8 > PC1 > PC3 > PC2 > PC4 > PC7 > PC6; and PC9 > PC10 > 

PC4 > PC5 > PC7 > PC8 > PC6 > PC1 > PC3 > PC2, respectively. Based on four design indices, 

except for PC9 and PC10, the rankings of the other PCs are different. The main reason for this 

is that different methods have different computational emphases with evaluation preferences 

in terms of extremum data and weights of attributes. For example, based on U, for PC4, the 

smallest of the global factor Gj changes the results of U among the 31 risk attributes of 10 

components. 

(2) The variation tendency of the ranking results of four design indices is clear: the 

fluctuations of the design indices U and C among PCs are not obvious; therefore, it is difficult 

for decision-makers to prioritize the risky components. In contrast, the indices DRC and FI can 

satisfactorily depict the priorities of PCs. design indices 

5.1.2 Comparison between failure index, design risky component, and traditional risk priority 

number 

The comparison results of FI, DRC, and traditional RPN (Ma et al. 2019) are presented in Table 

12. Based on traditional RPN, PC10 is the main risky component, which is completely different 

from the result based on FI and DRC. The main reason for this is that traditional RPN only 

considers the FMs of PCs without the FCRs of FMs and preferences from designers and 

customers. 
Table 12 Comparison results of RPN, FI, and DRC 

Index PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
RPN 0.0482 0.0468 0.0322 0.0611 0.0862 0.0997 0.1720 0.1133 0.1648 0.1757 

Ranking 8 9 10 7 6 5 2 4 3 1 
FI 0.0216 0.0384 0.0235 0.0652 0.1296 0.0972 0.1301 0.087 0.2211 0.1862 

Ranking 10 8 9 7 4 5 3 6 1 2 
DRC 0.4528 0.4851 0.4526 0.5720 0.6808 0.6131 0.6683 0.6122 0.8239 0.7648 

Ranking 9 8 10 7 3 5 4 6 1 2 

5.1.3 Comparison between different methods 

The traditional QFD method (Chen 2016) was employed to identify risky components for the 

comparative study. The comparison results of QFD (subjective assessment), C•U (Equation 1), 
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and DRC (Equation 1) are listed in Table 13. 
Table 13 Comparison results between QFD, C•U, and DRC 

Index PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
QFD 0.0906 0.0751 0.0848 0.1083 0.1078 0.0997 0.1070 0.1040 0.1142 0.1087 

Ranking 8 10 9 3 4 7 5 6 1 2 
C•U 0.4585 0.5063 0.4615 0.5723 0.6791 0.6210 0.6731 0.6122 0.7937 0.7645 

Ranking 10 8 9 7 3 5 4 6 1 2 
DRC 0.4528 0.4851 0.4526 0.5720 0.6808 0.6131 0.6683 0.6122 0.8239 0.7648 

Ranking 9 8 10 7 3 5 4 6 1 2 

Some differences exist between the results achieved based on QFD, C•U, and DRC: (1) 

the rank of PC4 dropped from the third for QFD to the seventh for DRC and C•U; (2) the rank 

of PC5 jumped from the fourth for QFD to the third for DRC and C•U; (3) the rank of PC7 

jumped from the fifth for QFD to the fourth for DRC and C•U; (4) the rank of PC6 jumped 

from the seventh for QFD to the fifth for DRC and C•U; (5) the rank of PC1 dropped from the 

eighth for QFD to the ninth for DRC and the tenth for C•U; (6) the rank of PC3 dropped from 

the ninth for QFD and C•U to the tenth for DRC; (7) the rank of PC2 jumped from the tenth 

for QFD to the eighth for DRC and C•U. 

There are two reasons for the above ranking differences. (1) The QFD considers the 

preferences of designers and customers without the FCRs of FMs of PCs. (2) Only the 

subjective semantic term is given by designers, without the objective quality test data. It is 

noteworthy that the proposed approach can degenerate into one of the above methods or more 

general indices when the data are insufficient or unavailable. For instance, if the quality test 

data are unavailable, the FCRs among FMs and DRC of PCs are insufficient. 

5.2 Sensitivity analysis 

5.2.1 Sensitivity analysis for Wc, Wu, and Wf 

In determining the DRC of PCs, the weights of C, U, and FI are predetermined by the designer 

based on experience and preference. Different designers may have different preferences for the 

weights of C, U, and FI, which may affect the final redesign of PCs. 

To verify the robustness of the proposed approach, a sensitivity analysis was performed 

by changing the values of Wc, Wu, and Wf, where Wc + Wu + Wf = 1 and Wc = Wu. The influence 

of Wc, Wu, and Wf on the DRC is depicted in Figure 11. With the changes in Wf, the DRC of 

PCs fluctuates stably. When Wf = 0.5, the ranking of PCs is the same as that of the DRC in 



29 

Figure 10. When Wf = 0, the ranking of the DRC is indistinguishable. Overall, the influence of 

the weights on the ranking is insignificant. However, the DRC for all PCs gradually increases 

with changes in Wf (compared to Wf = 0.5). Furthermore, a larger Wf means that the designers 

pay more attention to the DRC to improve the PR. 

 

Figure 11 DRC of PCs with different weights of Wf 

5.2.2 Sensitivity analysis for the threshold value t 

Depending on the engineering practice, different companies may give different t values (Zhang 

et al. 2019), which may affect the final redesign of the target risky components. To verify the 

effectiveness of the proposed optimization model of target risky components, sensitivity 

analysis is carried out by changing the threshold value t. However, because changes in weights 

(Wc, Wu, and Wf) can also result in different DRC, changes in the target risky components with 

different t under different weights were also made, as displayed in Table 14. From Table 14, 

the following conclusions can be drawn: 
Table 14 Target risky components with changes in t under different W 

Threshold Ranking W = (0.4, 0.4, 0.2) W = (0.25, 0.25, 0.5) W = (0.1, 0.1, 0.8) 

t = (90, 2500, 35%) 
1 PC9 PC9 PC9 
2 PC10 PC10 PC10 
3 PC5 PC5 PC5 

t = (100, 3000, 40%) 

1 PC9 PC9 PC9 
2 PC10 PC10 PC10 
3 PC5 PC5 PC5 
4 PC7 PC7 PC7 

t = (120, 3500, 45%) 
1 PC9 PC9 PC9 
2 PC10 PC10 PC10 
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3 PC5 PC5 PC5 
4 PC7 PC7 PC7 
5 PC6 PC6 PC6 
6 PC8 PC8 PC8 

(1) When t increases from (90, 2500, 35%) to (120, 3500, 45%) under fixed Wc, Wu, and 

Wf, the number of target risky components increases. For example, when W = (0.25, 0.25, 0.5), 

the number of target risky components decreases from six to three as t decreases from (120, 

3500, 45%) to (90, 2500, 35%). This means that more target risky components will be identified 

for final redesign when resources are more plentiful. 

(2) When W changes from (0.4, 0.4, 0.2) to (0.1, 0.1, 0.8) under a fixed t, the identification 

results of target risky components are stable. For example, when t = (90, 2500, 35%), the target 

risky components are PC9, PC10, and PC5 as W changes from (0.4, 0.4, 0.2) to (0.25, 0.25, 0.5) 

or (0.1, 0.1, 0.8). This means that the target risky components for the final redesign are stable 

even when the values of Wc, Wu, and Wf vary. 

Furthermore, the identification results of the target risky components differ under different 

thresholds t; thus, the target risky components can be varied by setting different t. Moreover, 

the updated feedback from the failure knowledge repository can be obtained to improve the 

yield and reliability of product redesign. And in turn, meet the needs of customers and 

companies. 

6 Conclusions 

Traditional methods, such as QFD and FMEA, identify risky components based merely on CRs 

or failure information. However, the quality test data during the manufacturing process and 

FCRs among FMs must be considered as inputs to decide on the final redesign of PCs. 

Therefore, the CRs information, failure risk knowledge, and quality test data were integrated 

into this study to identify the target risky components based on an improved FQFD, fuzzy 

DFMEA, index of DRC, and optimization models. The contributions of this study are as 

follows: 

(1) A systematic approach for identifying target risky components is proposed by 

integrating FQFD, DFMEA, DRC, and optimization models considering the subjective and 

objective data. Based on TrFN, a two-stage FQFD for converting the CRs to DRs and PCs is 
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applied to reduce the ambiguity and uncertainty of assessment. Using LGNM that can combine 

with the measure C of PCs to eliminate the subjectivity of the importance index, the objective 

user attention U of PCs is determined based on quality test data. 

(2) A nonlinear optimization model is constructed to derive the weight of RFs of FMs to 

calculate the weighted RPN based on the failure knowledge repository. By considering the 

FCRs of FMs within and between PCs, a directed network model is constructed to obtain the 

FI, which is divided into IFE and EFE. The values of IFE and EFE are obtained by 

PROMETHEE Ⅱ with the net flow. And a 0-1 optimization model considering MRV and 

resource constraints of PCs is constructed to decide on the final redesign of target risky 

components. 

From the case study of identifying the target risky components for the redesign of LCM, 

the proposed approach demonstrated its validity and feasibility in dealing with the redesign of 

display products. Several research directions need to be explored in the future: (1) CRs can be 

integrated into the DFMEA by constructing an identification model. The model can enable the 

DFMEA to classify FMs and RFs according to customer preferences (Lin et al. 2021). (2) The 

proposed approach can be further improved by considering more data based on new 

technologies (Zhang et al. 2021), for example, the multiple-view algorithm can be used to 

combine multiple information (such as manufacturing data, product maintenance data, function 

degradation data, and designer preferences) (Hou and Jiao 2020) from RFs and FMs of products 

for implementing the final redesign PCs. 

Appendix 

Related Tables are presented as follows: 

Table 2 Description of severity (S) 
Rating Description 

VH: Does not meet 
safety requirements 

Potential failure consequences affect the safety or do not comply with 
government regulations, and failure occurs without warning. 
Potential failure consequences affect the safety or do not comply with 
government regulations, and failure occurs at the time of warning. 

H: Loss or reduction 
of basic functions 

Loss of basic function after failure (product cannot operate but does not affect 
safety). 
Basic function degradation (product is functional, but the function level is 
reduced). 
Loss of secondary functions. 



32 

M: Loss or reduction 
of secondary 
functions 

Weakening of secondary functions. 

L: Other 
dysfunctions 

Appearance, noise, etc. do not meet requirements and are perceived by majority 
of customers (> 75%). 
Appearance, noise, etc., do not meet the requirements and are perceived by many 
customers (50%). 
Appearance, noise, etc. do not meet the requirements and are perceived by 
discerning customers (< 25%). 

VL: Without effects There is no discernible effect. 
 

Table 3 Description of occurrence (O) 
Rating The frequency of occurrence of causes within the reliability and life of the product. 

VH: Very high New technology/design with no history (≧1/10). 

H: High 

Failure is inevitable for new designs, new applications or changes in service 
life/operating conditions (≥1/20). 
Failure is possible for new designs, new applications or changes during service 
life/operating conditions (≥1/50). 
Failure is uncertain for new designs, new applications or changes in service 
life/operating conditions (≥1/100). 

M: Medium 

Similar designs (with reference objects), or frequent failures in design simulations 
and tests (≥1/200). 
Similar designs (with reference objects), or occasional failures in design simulations 
and tests (≥1/500). 
Similar designs (with reference objects), or individual failures in design simulations 
and tests (≥1/1000). 

L: Low 

Nearly identical designs or only isolated failures during design simulations and tests 
(≧1/2000). 
Almost identical designs or no failures were observed during design simulations and 
tests (≤1/10000). 

VL: Very low Failures can be eliminated through preventive control (≦1/100000). 
 

Table 4 Description of detection (D) 
Rating Evaluation criteria: the possibility of discovery by design control. 

VH: No chance of 
detection or easy detection 
at any stage 

No existing design controls cannot be detected or analyzed. 
Design analysis has weak detection ability, virtual analysis (e.g., 
computer-aided engineering) is not associated with desired actual 
operating conditions. 

H: After the design is 
finalized before it goes into 
production 

After the design is finalized and before production, verify the product using 
pass/fail tests (test the product against acceptance criteria). 
After the design is finalized and before production, the product is validated 
by trial-to-failure testing (testing the product until failure occurs). 
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After the design is finalized before putting into production, the product is 
verified by an ageing test and reliability test. 

M: Before the design is 
finalized 

Validation of products using passed/failed tests (reliability tests, 
development/validation tests) before design finalization. 
Verify product through the trial-to-failure test before final design (e.g., 
continue to test until leakage, bending, cracking, etc.). 
Before the design is finalized, the product is verified and confirmed by 
instrument measurement and ageing test. 

L: Virtual analysis 
The detection capability of design analysis/detection control is very strong, 
and virtual analysis (e.g., computer-aided engineering, optical simulation.) 
is highly relevant to the desired actual operating conditions. 

VL: Can be prevented 
without detection 

Failure causes or failure modes will not occur through adequate prevention 
by design solutions, such as proven design standards, best practices, or 
common materials. 

 
Table 6 User attention index Uj of PCj 

PCs Risk attributes 
Local preference Global preference Index 

nij pij Lij Nj Pj Gj Uj 

PC1 
Sealant sag 0.0240 0.0240 0.0676     

Sealant for cracking 0.0015 0.0024 0.0056 0.0557 0.0394 0.2404 0.0966 
Glue overflow 0.0302 0.0130 0.0610     

PC2 
Glass cracks 0.0069 0.0122 0.0273     
Lens mura 0.0199 0.0020 0.0313 0.0327 0.0252 0.0051 0.0931 

Chamfering fragment 0.0059 0.0110 0.0242     

PC3 
Extrusion light leakage 0.0022 0.0037 0.0085     
Sealant light leakage 0.0180 0.0120 0.0426 0.0402 0.0520 0.2332 0.0947 
Leakage flow on line 0.0200 0.0363 0.0790     

PC4 
Waving 0.0093 0.0097 0.0272 

0.0189 0.0193 0.0001 0.0929 
Bad opening 0.0096 0.0096 0.0274 

PC5 
Cell foreign body 0.0180 0.0252 0.0610     
Incoming burst 0.0030 0.0048 0.0112 0.0296 0.0446 0.1669 0.0983 

Foreign film 0.0086 0.0146 0.0331     

PC6 
IC high temperature 0.0100 0.0030 0.0186 

0.0304 0.0234 0.2023 0.0827 
IC poor, broken 0.0204 0.0204 0.0577 

PC7 
FPC poor, broken 0.0232 0.0232 0.0654 

0.0312 0.0312 0.1787 0.0837 
FPC foreign matter 0.0080 0.0080 0.0229 

PC8 
BLU foreign matter 0.0040 0.0071 0.0159     

NG of BLU 0.0240 0.0124 0.0516 0.0617 0.0549 0.1832 0.0974 
Joint NG 0.0337 0.0354 0.0964     

PC9 

TP function NG 0.0014 0.0023 0.0053     
Scrap collection 0.0050 0.0054 0.0149     

Round hole not round, 0.0025 0.0035 0.0086 0.0260 0.0386 0.4453 0.1371 
fragments 0.0021 0.0036 0.0082     

TP raw material NG 0.0150 0.0238 0.0549     



34 

PC10 

Bright spot 0.0200 0.0340 0.0759     
Nuclear white ball 0.0131 0.0233 0.0516     
Appearance of HL 0.0052 0.0097 0.0213 0.0898 0.1225 0.0533 0.1135 

Joint offset 0.0360 0.0270 0.0881     
Vertical line 0.0155 0.0285 0.0621     

Note: IC Integrated circuit; BLU backlight unit; NG not good; TP touch panel; HL horizontal line 
 

Table 7 Description of RFs of FMs 
PCs FMs FMjv S O D 
PC1 Pasting bubbles FM11 VH VL H 
PC2 Broken screen FM21 VH M M 
PC3 Color tolerance FM31 M L H 

PC4 
Notch cracks FM41 M H L 

Color differences FM42 H M L 

PC5 
White screen deviation FM51 L VL H 

Gamma offset FM52 H H L 
Residual shadow FM53 H L H 

PC6 
ESD damage FM61 VH L VL 

Flicker FM62 H L L 
Power consumption problem FM63 H L L 

PC7 

FPC line break FM71 VH M H 
FPC fracture FM72 VH VL L 

FPC assembly deviation FM73 VH VL L 
IC pin off FM74 VH M H 

PC8 

BLU size deviation FM81 H VL L 
Film warping FM82 H L H 

Edge bright line FM83 H VL L 
Unsuitable LED selection  FM84 H VL H 

PC9 

Offset light leakage FM91 M L H 
LED off light FM92 H M L 
Improper tray FM93 H L VL 

Fragments FM94 H M H 
Reversed FPC connection  FM95 H VL VL 
Foreign bodies in the drum FM96 H L M 

PC10 

Bad point line FM101 VH H VL 
Picture flicker FM102 H L VL 

Extrusion light leakage FM103 M H H 
Power consumption problem FM104 H L M 

Dark line FM105 VH H VL 
Serrated display FM106 H VL L 
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