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A strong variable gravitational field of the very early Universe inevitably generates relic gravitational
waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the
concepts of relic gravitational waves and inflationary ‘‘tensor modes’’. We explain and summarize the
properties of relic gravitational waves that are needed to derive their effects on cosmic microwave
background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four
invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre
type and solve it analytically and numerically. We formulate the correlation functions CXX

0

‘ for X, X0 � T,
E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are
supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using
accurate approximations. We show that the TE correlation at lower ‘’s must be negative (i.e. an
anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations.
This difference in TE correlation may be a signature more valuable observationally than the lack or
presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB
signal. We discuss the detection by WMAP of the TE anticorrelation at ‘ � 30 and show that such an
anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within
the framework of all other common assumptions). We propose models containing considerable amounts of
relic gravitational waves that are consistent with the measured TT, TE and EE correlations.

DOI: 10.1103/PhysRevD.74.083008 PACS numbers: 98.70.Vc, 04.30.�w, 98.80.Cq

I. INTRODUCTION

The detection of primordial gravitational waves is
rightly considered a highest priority task for the upcoming
observational missions [1]. Relic gravitational waves are
inevitably generated by strong variable gravitational field
of the very early Universe. The generating mechanism is
the superadiabatic (parametric) amplification of the waves’
zero-point quantum oscillations [2]. In contrast to other
known massless particles, the coupling of gravitational
waves to the ‘‘external’’ gravitational field is such that
they could be amplified or generated in a homogeneous
isotropic FLRW (Friedmann-Lemaitre-Robertson-Walker)
universe. This conclusion, at the time of its formulation,
was on a collision course with the dominating theoretical
doctrine. At that time, it was believed that the gravitational
waves could not be generated in a FLRW universe, and the
possibility of their generation required the early Universe
to be strongly anisotropic (see, for example, [3]).

The generating mechanism itself relies only on the
validity of general relativity and quantum mechanics. But
the amount and spectral content of relic gravitational
waves depend on a specific evolution of the cosmological
scale factor (classical ‘‘pumping’’ gravitational field) a���.

The theory was applied to a variety of a���, including
those that are now called inflationary models (for a sample
of possible spectra of relic gravitational waves, see Fig. 4
in Ref. [4]). If a unique a��� were known in advance from
some fundamental ‘‘theory of everything’’, we would have
derived the properties of the today’s signal with no ambi-
guity. In the absence of such a theory, we have to use the
available partial information in order to reduce the number
of options. This allows us to evaluate the level of the
expected signals in various frequency intervals. The prize
is very high—the actual detection of a particular back-
ground of relic gravitational waves will provide us with the
unique clue to the ‘‘birth’’ of the Universe and its very
early dynamical behavior.

A crucial assumption that we make in this and previous
studies is that the observed large-scale cosmic microwave
background (CMB) anisotropies are caused by cosmologi-
cal perturbations of quantum-mechanical origin. If this is
true, then general relativity and quantum mechanics tell us
that relic gravitational waves should be a significant, if not
a dominant, contributor to the observed large-scale anisot-
ropies. From the existing data on the amplitude and spec-
trum of the CMB fluctuations we infer the amplitude and
spectral slope of the very long relic gravitational waves.
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We then derive detailed predictions for indirect and direct
observations of relic gravitational waves in various fre-
quency bands.

At this point, it is important to clarify the difference
between the concepts of relic gravitational waves and what
is now called inflationary gravitational waves. The state-
ments about inflationary gravitational waves (‘‘tensor
modes’’) are based on the inflation theory. This theory
assumes that the evolution of the very early Universe was
driven by a scalar field, coupled to gravity in a special
manner. The theory does not deny the correctness of the
previously performed calculations for relic gravitational
waves. However, the inflationary theory proposes its own
way of calculating the generation of density perturbations
(‘‘scalar modes’’). The inflationary theory appeals exactly
to the same mechanism of superadiabatic (parametric)
amplification of quantum vacuum fluctuations, that is re-
sponsible for the generation of relic gravitational waves,
but enforces very peculiar initial conditions in the scalar
modes calculations.

According to the inflationary initial conditions, the am-
plitudes of the ‘gauge-invariant’ metric perturbations �
associated with the scalar modes (or, in other words, the
amplitudes of the curvature perturbations called � or R)
can be arbitrarily large from the very beginning of their
evolution. Moreover, the theory demands that these ampli-
tudes must be infinitely large in the limit of the deSitter
expansion law a��� / j�j�1 which is responsible for the
generation of a flat (Harrison-Zeldovich-Peebles, ‘scale-
invariant’) primordial spectrum, with the spectral index
n � 1. At the same time, the amplitudes of the generated
gravitational waves are finite and small for all spectral
indices, including n � 1. Since both, gravitational waves
and density perturbations, produce CMB anisotropies and
we see them small today, the inflationary theory substitutes
(for ‘‘consistency’’) its prediction of infinitely large ampli-
tudes of density perturbations, in the limit n � 1, by the
claim that it is the amount of primordial gravitational
waves, expressed in terms of the ‘tensor/scalar ratio r0,
that should be zero, r � 0. For a detailed critical analysis
of the inflationary conclusions, see [5]; for arguments
aimed at defending those conclusions, see [6].

The science motivations and CMB data analysis pipe-
lines, designed to evaluate the gravitational-wave contri-
bution, are usually based on inflationary formulas [7–10].
In particular, according to the inflation theory, the primor-
dial power spectrum of density perturbations has the form
(it follows, for example, from Eqs. (2.12a) and (2.12b) in
Ref. [10] or from Eqs. (18) and (19) (or A12 and A13) in
Ref. [7]):

 PS�k� �
1

4�3M2
Pl

1

r
H2j�k�aH�:

Despite the fact that this spectrum diverges at r � 0 (ns �
1, nt � 0), the CMB data analysts persistently claim that

the inflation theory is in spectacular agreement with ob-
servations and the CMB data are perfectly well consistent
with r � 0 (the published confidence level contours always
include r � 0 and are typically centered at that point).

Our analysis in this paper, based on general relativity
and quantum mechanics, is aimed at showing that there is
evidence of signatures of relic gravitational waves in the
already available CMB data. We also make predictions for
some future experiments and observations.

The plan of the paper is as follows. In Sec. II we
summarize the properties of a random background of relic
gravitational waves that are needed for CMB calculations.
The emphasis is on the gravitational wave (g.w.) mode
functions, power spectra, and statistical relations. In
Sec. III we discuss the general equations of radiative trans-
fer and explain the existence of four invariants I, V, E, B
that fully characterize the radiation field. We formulate the
linearized equations in the presence of a single Fourier
mode of gravitational waves. We prove that there exists a
choice of variables that reduces the problem of temperature
and polarization anisotropies to only two functions of time
���� and ����.

Section IV is devoted to further analysis of the radiative
transfer equations. The main result of this section is the
reduction of coupled integro-differential equations to a
single integral equation of Voltairre type. Essentially, the
entire problem of the CMB polarization is reduced to a
single integral equation. This allows us to use simple
analytical approximations and give transparent physical
interpretation. In Sec. V we generalize the analysis to a
superposition of random Fourier modes with arbitrary
wave vectors. We derive (and partially rederive the previ-
ously known) expressions for multipole coefficients aX‘m of
the radiation field. We show that the statistical properties of
the multipole coefficients are fully determined by the
statistical properties of the underlying gravitational pertur-
bations. This section contains the expressions for general
correlation and cross-correlation functions CXX

0

‘ for invar-
iants of the radiation field.

We work out astrophysical applications in Secs. VI and
VII where we discuss the effects of recombination and
reionization era, respectively. Although all our main con-
clusions are supported by exact numerical calculations, we
show the origin of these conclusions and essentially derive
them by developing and using semianalytical approxima-
tions. The expected amplitudes, shapes, oscillatory fea-
tures, etc. of all correlation functions as functions of ‘
are under analytical control. The central point of this
analysis is the TE correlation function. We show that, at
lower multipoles ‘, the TE correlation function must be
negative (anticorrelation), if it is induced by gravitational
waves, and positive, if it is induced by density perturba-
tions. We argue that this difference in sign of TE correla-
tions can be a signature more valuable observationally than
the presence or absence of the BB correlations. This is
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because the TE signal is about 2 orders of magnitude larger
than the expected BB signal and is much easier to measure.
We summarize the competing effects of density perturba-
tions in Appendix D.

Theoretical findings are compared with observations in
Sec. VIII. In the context of relic gravitational waves it is
especially important that the WMAP team [9] stresses
(even if for a different reason) the actual detection of the
TE anticorrelation near ‘ � 30. We show that this is
possible only in the presence of a significant amount of
relic gravitational waves (within the framework of all other
common assumptions). We analyze the CMB data and
suggest models with significant amounts of gravitational
waves that are consistent with the measured TT, TE and
EE correlation functions. Our final conclusion is that there
is evidence of the presence of relic gravitational waves in
the already available CMB data, and further study of the
TE correlation at lower ‘’s has the potential of a firm
positive answer.

II. GENERAL PROPERTIES OF RELIC
GRAVITATIONAL WAVES

Here we summarize some properties of cosmological
perturbations of quantum-mechanical origin. We will need
formulas from this summary for our further calculations.

A. Basic definitions

As usual (for more details, see, for example, [11]), we
write the perturbed gravitational field of a flat FLRW
universe in the form

 ds2 � �c2dt2 � a2�t���ij � hij�dx
idxj

� a2�����d�2 � ��ij � hij�dx
idxj�: (1)

We denote the present moment of time by � � �R and
define it by the observed quantities, for example, by to-
day’s value of the Hubble parameter H0 � H��R�. In
addition, we take the present-day value of the scale factor
to be a��R� � 2lH, where lH � c=H0.

The functions hij��;x� are expanded over spatial
Fourier harmonics e	in
x, where n is a dimensionless
time independent wave vector. The wave number n is n �
��ijninj�1=2. The wavelength �, measured in units of labo-
ratory standards, is related to n by � � 2�a=n. The waves
whose wavelengths today are equal to today’s Hubble
radius carry the wave number nH � 4�. Shorter waves
have larger n’s and longer waves have smaller n’s.

The often used dimensional wave number k, defined by
k � 2�=���R� in terms of today’s wavelength ���R�, is
related to n by a simple formula

 k �
n

2lH
� n�1:66� 10�4h� Mpc�1:

The expansion of the field hij��;x� over Fourier com-
ponents n requires a specification of polarization tensors

p
s
ij�n� �s � 1; 2�. They have different forms depending on

whether the functions hij��;x� represent gravitational
waves, rotational perturbations, or density perturbations.

In the case of gravitational waves, two independent
linear polarization states can be described by two real
polarization tensors

 p
1
ij�n� � lilj �mimj; p

2
ij�n� � limj �milj; (2)

where spatial vectors �l;m;n=n� are unit and mutually
orthogonal vectors. The polarization tensors (2) satisfy
the conditions

 p
s
ij�ij � 0; p

s
ijni � 0; p

s0

ijp
s ij
� 2�s0s: (3)

The eigenvectors of p
1
ij are li and mi, whereas the eigen-

vectors of p
2
ij are li �mi and li �mi. In both cases, the

first eigenvector has the eigenvalue �1, whereas the sec-
ond eigenvector has the eigenvalue �1.

In terms of spherical coordinates �, 	, we choose for
�l;m;n=n� the right-handed triplet:
 

l � �cos� cos	; cos� sin	;� sin��;

m � �� sin	; cos	; 0�;

n=n � �sin� cos	; sin� sin	; cos��:

(4)

The vector l points along a meridian in the direction of
increasing �, while the vector m points along a parallel in
the direction of increasing 	. With this specification, po-
larization tensors (2) will be called the ‘�’ and ‘�’ polar-
izations. The eigenvectors of ‘�’ polarization correspond
to north-south and east-west directions, whereas the ‘�’
polarization describes the directions rotated by 45�.

With a fixed n, the choice of vectors l, m given by
Eq. (4) is not unique. The vectors can be subject to con-
tinuous and discrete transformations. The continuous
transformation is performed by a rotation of the pair l, m
in the plane orthogonal to n:

 l 0 � l cos �m sin ; m0 � �l sin �m cos ;

(5)

where  is an arbitrary angle. The discrete transformation
is described by the flips of the l, m vectors:

 l 0 � �l; m0 � m or l0 � l; m0 � �m:

(6)

When (5) is applied, polarization tensors (2) transform as
 

p
1 0

ij�n� � l0il
0
j �m

0
im
0
j � p

1
ij�n� cos2 � p

2
ij�n� sin2 ;

p
2 0

ij�n� � l0im
0
j �m

0
il
0
j � �p

1
ij�n� sin2 � p

2
ij�n� cos2 ;

(7)

and when (6) is applied they transform as
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 p
1 0
ij�n� � p

1
ij�n�; p

2 0

ij�n� � �p
2
ij�n�: (8)

Later in this section and in Appendix A, we are discus-
sing the conditions under which the averaged observational
properties of a random field hij�n; �� are symmetric with
respect to rotations around the axis n=n and with respect to
mirror reflections of the axes. Formally, this is expressed as
the requirement of symmetry of the g.w. field correlation
functions with respect to transformations (5) and (6).

In this paper we will also be dealing with density per-
turbations. In this case, the polarization tensors are

 p
1
ij �

���
2

3

s
�ij; p

2
ij � �

���
3
p ninj

n2 �
1���
3
p �ij: (9)

These polarization tensors satisfy the last of the conditions
(3).

In the rigorous quantum-mechanical version of the the-
ory, the functions hij are quantum-mechanical operators.
We write them in the form:
 

hij��;x� �
C

�2��3=2

Z �1
�1

d3n
1������
2n
p

�
X
s�1;2

�p
s
ij�n�h

s

n���e
in
xc

s
n

� p
s
ij

�n�h

s

n


���e�in
xc

sy
n�; (10)

where the annihilation and creation operators, c
s

n and c
sy

n,
satisfy the relationships

 �c
s0

n; c
sy

n0 � � �s0s��3��n� n0�; c
s

nj0i � 0: (11)

The initial vacuum state j0i of perturbations is defined at
some moment of time �0 in the remote past, long before
the onset of the process of superadiabatic amplification.
This quantum state is maintained (in the Heisenberg pic-
ture) until now. For gravitational waves, the normalization
constant is C �

���������
16�
p

lPl.
The relationships (11) determine the expectation values

and correlation functions of cosmological perturbations
themselves, and also of the CMB’s temperature and polar-
ization anisotropies caused by these cosmological pertur-
bations. In particular, the variance of metric perturbations
is given by

 h0jhij��;x�hij��;x�j0i �
C2

2�2

Z 1
0
n2

X
s�1;2

jh
s

n���j
2 dn
n
:

(12)

The quantity

 h2�n; �� �
C2

2�2 n
2
X
s�1;2

jh
s

n���j
2 �

1

2

X
s�1;2

jh
s
�n; ��j2; (13)

is called the metric power spectrum. Note that we have
introduced

 h
s
�n; �� �

C

�
nh
s

n���: (14)

The quantity (13) gives the mean-square value of the
gravitational-field perturbations in a logarithmic interval
of n. The spectrum of the root-mean-square (rms) ampli-
tude h�n; �� is determined by the square root of Eq. (13).

Having evolved the classical mode functions h
s

n��� up to
some arbitrary instant of time � (for instance, today � �
�R) one can find the power spectrum h�n; �� at that instant
of time. For the today’s spectrum in terms of frequency 

measured in Hz, 
 � nH0=4�, we use the notation hrms�
�.

In our further applications we will also need the power
spectrum of the first time-derivative of metric perturba-
tions:

 

�
0

��������@hij��;x�@�
@hij��;x�

@�

��������0
�

�
1

2

Z 1
0

X
s�1;2

��������dh
s
�n; ��
d�

��������2dn
n
: (15)

To simplify calculations, in the rest of the paper we will
be using a ‘‘classical’’ version of the theory, whereby the

quantum-mechanical operators c
s

n and c
sy

n are treated as

classical random complex numbers c
s

n and c
s

n. It is as-
sumed that they satisfy the relationships analogous to (11):
 

hc
s

ni � hc
s0

n0 i � 0;

hc
s

n c
s0

n0 i � hc
s

nc
s0

n0 i � �ss0��3��n� n0�;

hc
s

nc
s0

n0 i � hc
s

n c
s0

n0 i � 0;

(16)

where the averaging is performed over the ensemble of all
possible realizations of the random field (10).

The relationships (16) are the only statistical assump-
tions that we make. They fully determine all the expecta-
tions values and correlation functions that we will
calculate, both for cosmological perturbations and for the
induced CMB fluctuations. For example, the metric power
spectrum (13) follows now from the calculation:

 

1

2
hhij��;x�hij��;x�i �

C2

2�2

Z 1
0
n2

X
s�1;2

jh
s

n���j
2 dn
n
:

(17)

The quantities jh
s

n���j2 are responsible for the magni-
tude of the mean-square fluctuations of the field in the
corresponding polarization states s. In general, the assump-
tion of statistical independence of two linear polarization
components in one polarization basis is not equivalent to
this assumption in another polarization basis. As we show
in Appendix A, statistical properties are independent of the
basis (i.e. independent of  , Eq. (7)), if the condition
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 jh
�

n���j2 � jh
�

n���j2 (18)

is satisfied. As for the discrete transformations (8), they
leave the g.w. field correlation functions unchanged.

In our further discussion of the CMB polarization it will
be convenient to use also the expansion of hij over circular,
rather than linear, polarization states. In terms of defini-
tions (2), the left (s � L) and right (s � R) circular polar-
ization states are described by the complex polarization
tensors

 p
L
ij �

1���
2
p �p

1
ij � ip

2
ij�; p

R
ij �

1���
2
p �p

1
ij � ip

2
ij�;

p
L
ij

� p

R
ij; p

R
ij

� p

L
ij;

(19)

satisfying the conditions (for s � L, R)

 p
s
ij�ij � 0; p

s
ijni � 0; p

s0

ijp
s ij
� 2�s0s: (20)

A continuous transformation (5) brings the tensors (19)
to the form

 p
L 0

ij � p
L
ije
�i2 ; p

R 0
ij � p

R
ije

i2 : (21)

Functions transforming according to the rule (21) are
called the spin-weighted functions of spin �2 and spin
�2, respectively [12–14]. A discrete transformation (6)
applied to (19) interchanges the left and right polarization
states:

 p
L 0

ij � p
R
ij; p

R 0
ij � p

L
ij: (22)

The assumption of statistical independence of two linear
polarization states is, in general, not equivalent to the
assumption of statistical independence of two circular
polarization states. Moreover, it is shown in Appendix A
that symmetry between left and right is violated, unless

 jh
L

n���j
2 � jh

R

n���j
2: (23)

However, if conditions (18) and (23) are satisfied, statisti-
cal properties of the random g.w. field remain unchanged
under transformations from one basis to another, including
the transitions between linear and circular polarizations.
The summation over s in the power spectra such as (17) can
be replaced by the multiplicative factor 2. Moreover, the

mode functions h
s

n��� for two independent polarization
states will be equal up to a constant complex factor ei�.
This factor can be incorporated in the redefinition of
random coefficients c

s
n without violating the statistical

assumptions (16). After this, the index s over the mode
functions can be dropped:

 h
s
n��� � hn���: (24)

There is no special reason for the quantum-mechanical
generating mechanism to prefer one polarization state over
another. It is natural to assume that the conditions (18) and
(23) hold true for relic gravitational waves, but in general
they could be violated. In calculations below we often use
these equalities, but we do not enforce them without
warning.

B. Mode functions and power spectra

The perturbed Einstein equations give rise to the g.w.

equation for the mode functions h
s

n���. This equation can
be transformed to the equation for a parametrically dis-
turbed oscillator [2]:

 �
s00
n ��

s
n

�
n2 �

a00

a

�
� 0; (25)

where �
s
n��� � a���h

s

n��� and 0 � d=d� � �a=c�d=dt.
(In this paper, we ignore anisotropic stresses. For the
most recent account of this subject, which includes earlier
references, see [15].) Clearly, the behavior of the mode
functions depend on the gravitational ‘‘pumping’’ field
a���, regardless of the physical nature of the matter
sources driving the cosmological scale factor a���.
Observational data about relic gravitational waves allow
us to make direct inferences aboutH��� and a��� [16], and
it is only through extra assumptions that we can make
inferences about such things as, say, the scalar field poten-
tial (if it is relevant at all).

Previous analytical calculations (see, for example,
[11,17] and references there) were based on models where
a��� consists of pieces of power-law evolution

 a��� � loj�j1��; (26)

where lo and � are constants. The functions a���, a0���,

h
s

n���, hn
s 0
��� were continuously joined at the transition

points between various power-law eras.
It is often claimed in the literature that this method of

joining the solutions is unreliable, unless the wavelength is
‘‘much longer than the time taken for the transition to take
place’’. Specifically, it is claimed that the joining proce-
dure leads to huge errors in the g.w. power spectrum for
short waves. It is important to show that these claims are
incorrect. As an example, we will consider the transition
between the radiation-dominated and matter-dominated
eras.

The exact scale factor, which accounts for the simulta-
neous presence of matter, �m / a����3, and radiation,
� / a����4, has the form

 a��� � 2lH

�
1� zeq

2� zeq

�
�
�
��

2
���������������
2� zeq

p
1� zeq

�
; (27)

where zeq is the redshift of the era of equality of energy
densities in matter and radiation �m�zeq� � ��zeq�,
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 1� zeq �
a��R�
a��eq�

�
�m

�
:

For this model, the values of parameter � at equality and
today are given by the expressions
 

�eq � �
���
2
p
� 1�

���������������
2� zeq

p
1� zeq

;

�R � 1�

���������������
2� zeq

p
1� zeq

�
1

1� zeq
:

The current observations favor the value zeq � 3� 103

[18].
The piecewise approximation to the scale factor (27) has

the form

 a��� �
4lH���������������

1� zeq

p �; � � �eq;

a��� � 2lH��� �eq�
2; � � �eq;

(28)

where �eq and �R for this joined a��� are given by �eq �

1=2
���������������
1� zeq

p
and �R � 1� 1=2

���������������
1� zeq

p
. It can be seen

from (27) and (28) that the relative difference between the
two scale factors is very small in the deep radiation-
dominated era, �� 1= ������zeq

p , and in the deep matter-
dominated era, �� 1= ������zeq

p . But the difference reaches
about 25% at times near equality.

The initial conditions for the g.w. Equation (25) are the
same in the models (27) and (28) and they are determined
by quantum-mechanical assumptions at the stage (which
we call the i-stage) preceding the radiation epoch. The
i-stage has finished, and the radiation-dominated stage
has started, at some �i with a redshift zi. The numerical
value of zi should be somewhere near 1029 (see below).

The initial conditions at the radiation-dominated stage
can be specified at that early time �i or, in practice, for
numerical calculations, at much latter time, as long as the
appropriate g.w. solution is taken as [11]

 �
s
n��� � �2iB sinn�; �

s0

n��� � �2inB cosn�;

(29)

where

 B � F���
�
n

���������������
1� zeq

p
1� zi

�
�
;

and F��� is a slowly varying function of the constant
parameter �, jF��2�j � 2. Parameter � describes the
power-law evolution at the i-stage and determines the
primordial spectral index n, n � 2�� 5. In particular,
� � �2 corresponds to the flat (scale-invariant) primor-
dial spectrum n � 1.

For numerical calculations we use the constant B in the
form:

 B � 2
�
4�

���������������
1� zeq

p
1� zi

�
�
�
n
nH

�
�
: (30)

The wave-Eq. (25) with the scale factor (27) can not be
solved in elementary functions. However, it can be solved
numerically using the initial data (29). Concretely, we have
imposed the initial data (29) at �r � 10�6, which corre-
sponds to the redshift z � 3� 107, and have chosen zeq �
6� 103 for illustration. Numerical solutions for
hn���=hn��r� characterized by different wave numbers n
are shown by solid lines in Fig. 1. We should compare these
solutions with the joined solutions found on the joined
evolution (28) for the same wave numbers.

The piecewise scale factor (28) allows one to write
down the piecewise analytical solutions to the g.w.
Equation (25):

 �n��� �

8<:�2iB sinn�; � � �eq������������������������
n��� �eq�

q
�AnJ3=2�n��� �eq�� � iBnJ�3=2�n��� �eq���; � � �eq;

(31)

where J3=2, J�3=2 are Bessel functions. The coefficients An and Bn are calculated from the condition of continuous joining
of �n and �0n at �eq [11]:

10
−4

10
−3

10
−2

10
−1

10
0

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 time η

 g
.w

. m
o

d
e 

fu
n

ct
io

n
s 

 h
n
(η

)/
h

n
(η

r)

 n = 10 n = 102
 n = 103

 n = 104

 equality
 decoupling

FIG. 1 (color online). The g.w. mode functions hn���=hn��r�
in a matter-radiation universe. The solid curves are numerically
calculated solutions on the scale factor (27), while the dotted
curves are analytical solutions on the scale factor (28).

D. BASKARAN, L. P. GRISHCHUK, AND A. G. POLNAREV PHYSICAL REVIEW D 74, 083008 (2006)

083008-6



 An � �i
����
�
2

r
B

4y2
2

��8y2
2 � 1� siny2 � 4y2 cosy2 � sin3y2�;

Bn � �
����
�
2

r
B

4y2
2

��8y2
2 � 1� cosy2 � 4y2 siny2 � cos3y2�;

where y2 � n�eq. In Fig. 1 we show the joined solutions
(31) by dotted curves.

It is clear from Fig. 1 that the g.w. solutions as functions
of � are pretty much similar in the two models. The solid
and dotted curves are slightly different near equality
(where the relative difference between the scale factors is
noticeably large) and only for modes that entered the
Hubble radius around or before equality. Moreover, the
g.w. amplitudes of the modes that entered the Hubble
radius before equality gradually equalize in course of later
evolution. There is nothing like a huge underestimation or
overestimation of the high-frequency g.w. power that was
alleged to happen in the joined model.

It is easy to understand these features. Let us start from
waves that entered the Hubble radius well after equality,
i.e. waves with wave numbers n=nH �

���������������
1� zeq

p
. As long

as these waves are outside the Hubble radius, their ampli-
tudes remain constant and equal in the two models, despite
the fact that the scale factors are somewhat different near
equality. The waves start oscillating in the regime where
the relative difference between (27) and (28) is small, and
therefore the mode functions, as functions of �, coincide.

The waves with wave numbers n=nH �
���������������
1� zeq

p
enter

the Hubble radius well before the equality. They oscillate
in the WKB regime according to the law hn��� /
e�in�=a���, having started with equal amplitudes in the
two models. Near equality, the mode functions are different
in the two models, as much as the scale factors are differ-
ent. But the relative difference between (27) and (28)
decreases with time, and therefore the mode functions in
the two models gradually equalize. The amplitudes of these
mode functions, as well as the scale factors (27) and (28),
are exactly equal today. The only difference between these
high-frequency mode functions is in phase, that is, in
different numbers of cycles that they experienced by today.
This is because the moment of time defined as ‘‘today’’ in
the two models is given, in terms of the common parameter
�, by slightly different values of �R.

Finally, for intermediate wave numbers n=nH ����������������
1� zeq

p
, the modes enter the Hubble radius when the

scale factors differ the most. Therefore, they start oscillat-
ing with somewhat different amplitudes. The difference
between these mode functions is noticeable by the redshift
of decoupling zdec (characterized by somewhat different
values of �dec), as shown in Fig. 1. The difference survives
until today, making the graph for the g.w. power spectrum
(13) a little smoother (in comparison with that derived
from the joined model) in the region of frequencies
10�16 Hz that correspond to the era of equality.

Having demonstrated that the use of joined analytical
solutions is well justified, and the previously plotted graphs
for hrms�
� and �gw�
� are essentially correct, we shall
now exhibit the more accurate graphs based on numerical
calculations with the initial conditions (29) and (30). We
adopt zeq � 3� 103 and H0 � 75 km

s =Mpc [18]. We ad-
just the remaining free constant zi in such a way that the
temperature correlation function ‘�‘� 1�C‘=2� at ‘ � 2
is equal to 211 �K2 [19]. This requires us to take zi �
1:0� 1029 for � � �2 and zi � 2:4� 1030 for � �
�1:9.

The graphs for today’s spectra, normalized as stated
above, are shown in Fig. 2. In order to keep the figure
uncluttered, the oscillations of hrms�
� are shown only at
low frequencies, while the oscillations of �gw�
� are not
shown at all. We have also indicated possible detection
techniques in various frequency bands.

The function �gw�
� is the spectral value of the cosmo-
logical parameter �gw [17,20]:

 �gw�
1; 
2� �
�gw�
1; 
2�

�c
�

1

�c

Z 
2


1

�gw�
�
d




�
Z 
2


1

�gw�
�
d



;

that is,

 �gw�
� �
1

�c
�gw�
�:

Using the high-frequency definition of �gw�
� (valid only
for waves which are significantly shorter than lH) we
derive [17]:
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FIG. 2 (color online). The present-day spectra for hrms�
� and
�gw�
�. The solid lines correspond to the primordial spectral
index � � �1:9, i.e. n � 1:2, while the dashed lines are for � �
�2, i.e. n � 1.
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 �gw�
� �
�2

3
h2

rms�
�
�



H

�
2
: (32)

It is this definition of �gw�
� that is used for drawing the
curves in Fig. 2.

We have to warn the reader that a great deal of literature
on stochastic g.w. backgrounds uses the incorrect defini-
tion

 �gw�
� �
1

�c

d�gw�
�

d ln

;

which suggests that the �gw�
� parameter is zero if the
g.w. spectral energy density �gw�
� is frequency-
independent, regardless of the numerical value of �gw�
�.
Then, from this incorrect definition, a formula similar to
Eq. (32) is often being derived by making further compen-
sating errors.

The higher-frequency part of hrms�
� is relevant for
direct searches for relic gravitational waves, while the
lower-frequency part is relevant to the CMB calculations
that we turn to in the next section. The direct and indirect
methods of detecting relic gravitational waves are consid-
ered in a large number of papers (see, for example, [5,20–
28] even though we disagree with some of them).

It is important to keep in mind that according to the
inflationary theory the dashed lines for �gw�
� and hrms�
�
in Fig. 2 should be at a zero level, because they describe the
g.w. background with a flat primordial spectrum � � �2,
n � 1. The ‘‘consistency relation’’ of the inflationary the-
ory demands r � 0, i.e. vanishingly small g.w. back-
ground, in the limit n � 1.

III. EQUATIONS OF RADIATIVE TRANSFER

A. Characterization of a radiation field

The radiation field is usually characterized by the four
Stokes parameters �I; Q;U; V�, [29,30]. The parameter I is
the total intensity of radiation, Q and U describe the
magnitude and direction of linear polarization, and V is
the circular polarization. The Stokes parameters can be
viewed as functions of photons’ coordinates and momenta
�x�; p��. Since photons propagate with the speed of light c,
the momenta satisfy the condition p�p� � 0. Thus, the
Stokes parameters are functions of �t; xi; 
; ei�, where 
 is
the photon’s frequency, and ei is a unit vector in the
direction of observation (opposite to the photon’s
propagation).

In a given space-time point �t; xi�, the Stokes parameters
are functions of 
, �, 	, where �, 	 are coordinates on a
unit sphere:

 d�2 � gabdxadxb � d�2 � sin2�d	2: (33)

The radial direction is the direction of observation.
The Stokes parameters are components of the polariza-

tion tensor Pab [30] which can be written as

 Pab��;	� �
1

2
I �Q ��U� iV� sin�

��U� iV� sin� �I �Q�sin2�

� �
:

(34)

(We do not indicate the dependence of Stokes parameters
on 
.)

The symmetry of Pab with respect to rotations around
the direction of observation requires the vanishing of linear
polarization Q � 0, U � 0, but the circular polarization V
can be present. The symmetry of Pab with respect to
coordinate reflections in the observation plane requires
V � 0, but the linear polarization can be present. The first
symmetry means that the readings of a linear polarimeter
are the same when it is rotated in the observation plane.
The second symmetry means that the readings of the left-
handed and right-handed circular polarimeters are the
same. (Compare with the discussion on gravitational waves
in Sec. II A.)

Under arbitrary transformations of �,	, the components
of Pab��;	� transform as components of a tensor, but some
quantities remain invariant. We want to build linear invar-
iants from Pab and its derivatives, using the metric tensor
gab��;	� and a completely antisymmetric pseudotensor
�ab��;	�,

 �ab �
0 �sin�1�

sin�1� 0

� �
:

The first two invariants are easy to build:
 

I��;	� � gab��;	�Pab��;	�;

V��;	� � i�ab��;	�Pab��;	�:
(35)

Then, it is convenient to single out the trace and antisym-
metric parts of Pab, and introduce the symmetric trace-free
(STF) part PSTF

ab :
 

Pab��;	� �
1

2
Igab �

i
2
V�ab � P

STF
ab ;

PSTF
ab �

1

2

Q �U sin�

�U sin� �Qsin2�

 !
:

Clearly, the construction of other linear invariants re-
quires the use of covariant derivatives of the tensor PSTF

ab .
There is no invariants that can be built from the first
derivatives PSTF

ab;c, so we need to go to the second deriva-
tives. One can check that there are only two linearly
independent invariants that can be built from the second
derivatives:

 E��;	� � �2�PSTF
ab �

;a;b; B��;	� � �2�PSTF
ab �

;b;d�ad;

(36)

The quantities I and E are scalars, while V and B are
pseudoscalars. V and B change sign under flips of direc-
tions (coordinate transformations with negative determi-
nants). This is also seen from the fact that their
construction involves the pseudotensor �ab.
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The invariant quantities �I; V; E; B�, as functions of �,	,
can be expanded over ordinary spherical harmonics
Y‘m��;	�, Y‘m � ��1�mY‘;�m:
 

I��;	� �
X1
‘�0

X‘
m��‘

aT‘mY‘m��;	�; (37a)

V��;	� �
X1
‘�0

X‘
m��‘

aV‘mY‘m��;	�; (37b)

E��;	� �
X1
‘�2

X‘
m��‘

�
�‘� 2�!

�‘� 2�!

�
1=2
aE‘mY‘m��;	�; (37c)

B��;	� �
X1
‘�2

X‘
m��‘

�
�‘� 2�!

�‘� 2�!

�
1=2
aB‘mY‘m��;	�: (37d)

The set of multipole coefficients �aT‘m; a
V
‘m; a

E
‘m; a

B
‘m� com-

pletely characterizes the radiation field. We will use these
quantities in our further discussion.

To make contact with previous work, we note that the
multipole coefficients aE‘m, aB‘m can also be expressed in
terms of the tensor Pab itself, rather than its derivatives.
This is possible because one can interchange the order of
differentiation under the integrals that define aE‘m, aB‘m in
terms of the right-hand side (r.h.s.) of Eq. (36). This leads
to the appearance of the spin-weighted spherical harmonics
or tensor spherical harmonics [12–14,31,32]. For example,
the tensor Pab can be written as
 

Pab �
1

2

X1
‘�0

X‘
m��‘

�gaba
T
‘m � i�aba

V
‘m�Y‘m��;	�

�
1���
2
p

X1
‘�2

Xl
m��l

��aE‘mY
G
�‘m�ab��;	�

� aB‘mY
C
�‘m�ab��;	��;

where YG
�‘m�ab��;	� and YC

�‘m�ab��;	� are the ‘‘gradient’’
and ‘‘curl’’ tensor spherical harmonics forming a set of
orthonormal functions for STF tensors [32]. The invariants
E and B can also be written in terms of the spin raising and
lowering operators ð and �ð [31]:
 

E � �
1

2
��ð2�Q� iU� � ð2�Q� iU��;

B �
i
2
��ð2�Q� iU� � ð2�Q� iU��:

The quantities E and B are called the E (or gradient) and
B (or curl) modes of polarization. The ‘-dependent nu-
merical coefficients in (37c) and (37d) were introduced in
order to make the definitions of this paper fully consistent
with the previous literature [31,32].

B. Radiative transfer in a perturbed universe

We need to work out the radiative transfer equation in a
slightly perturbed universe described by Eq. (1). The

Thompson scattering of initially unpolarized light cannot
generate circular polarization, so we shall not consider the
V Stokes parameter. Following [29,33,34], we shall write
the radiative transfer equation in terms of a 3-component
quantity (symbolic vector) n̂�x�; p��. The components
�n̂1; n̂2; n̂3� are related to the Stokes parameters by

 n̂ �
n̂1

n̂2

n̂3

0@ 1A � 1

2

c2

h
3

I �Q
I �Q
�2U

0@ 1A; (38)

where h is the Planck constant. The quantities n̂1, n̂2, �n̂1 �
n̂2 � n̂3�=2 are the numbers of photons of frequency 

coming from the direction z and passing through a slit
oriented, respectively, in the directions x, y, and the bisect-
ing direction between x and y.

The equation of radiative transfer can be treated as a
Boltzmann equation in a phase space. The general form of
this equation is as follows [35]

 

Dn̂
ds
� Ĉ�n̂�; (39)

where s is a parameter along the worldline of a photon, Dds is
a total derivative along this worldline, and Ĉ is a collision
term. We shall explain each term of this equation
separately.

The total derivative in Eq. (39) reads:

 

Dn̂
ds
�

�
dx�

ds
@
@x�
�
dp�

ds
@
@p�

�
n̂; (40)

where dx�=ds and dp�=ds are determined by the lightlike
geodesic worldline,

 

dx�

ds
� p�;

dp�

ds
� ����p

�p; g��p�p� � 0:

(41)

Strictly speaking, the square bracket in Eq. (40) should also
include the additive matrix term R̂. This term is respon-
sible for the rotation of polarization axes that may take
place in course of parallel transport along the photon’s
geodesic line [36]. In the perturbation theory that we are
working with, this matrix does not enter the equations in
the zeroth and first-order approximations [33], and there-
fore we neglect R̂.

In our problem, the collision term Ĉ describes the
Thompson scattering of light on free (not combined in
atoms) electrons [29]. We assume that the electrons are
at rest with respect to one of synchronous coordinate
systems (1). We work with this coordinate system, so that
it is not only synchronous but also ‘‘comoving’’ with the
electrons. (This choice is always possible when the func-
tions hij in (1) are gravitational waves. Certain complica-
tions in the case of density perturbations will be considered
later, Appendix D.) Thus, the collision term Ĉ is given by
the expression
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 Ĉ�n̂� � ��TNe�x���
cdt
ds
�

�
n̂�t; xi; 
; �; 	� �

1

4�

�
Z
d�0P̂��;	; �0; 	0�n̂�t; xi; 
; �0; 	0�

�
; (42)

where �T � 6:65 
 10�24 cm2 is the Thompson cross sec-
tion, Ne is the density of free electrons, and P̂��;	; �0; 	0�
is the Chandrasekhar scattering matrix. (The explicit form
of the scattering matrix is discussed in Appendix C.) The
factor cdt=ds arises because of our use of the element ds,
instead of cdt, in the left-hand side (l.h.s.) of Eq. (39). In
accord with the meaning of the scattering term, the quan-
tity �TNe�x���cdt=ds� is the averaged number of electrons
that could participate in the scattering process when the
photon traversed the element ds along its path.

Let us now write down the equations of radiative transfer
in the presence of the gravitational field (1). First, we write
down the equations for the lightlike geodesic line x��s� �
���s�; xi�s��:

 p0 �
d�
ds
�



ca
; pi �

dxi

ds
�



ca
ei;

d

ds
� �


�
1

a
da
d�
�

1

2
eiej

@hij
@�

�
d�
ds
;

��ij � hij�eiej � 1:

(43)

We do not need the expression for dei=ds, because it is a
first-order (in terms of metric perturbations) quantity, and
this quantity enters the equations of radiative transfer only
in products with other first-order terms. We neglect such
second-order corrections.

Second, we write for the ‘‘vector’’ n̂:

 n̂ � n̂�0� � n̂�1�; (44)

where n̂�0� is the zeroth order solution, and n̂�1� is the first-
order correction arising because of the presence of metric
perturbations. We shall now formulate the equation for
n̂�1�, taking into account the zero-order solution to Eq. (39).

In the zero-order approximation we assume that hij � 0
and that the radiation field is fully homogeneous, isotropic,
and unpolarized. Therefore,

 n̂ �0� � n�0���; 
�û; (45)

where

 û �
1
1
0

0@ 1A:
Since the scattering matrix P̂ does not couple to the
radiation field if it has no quadrupole anisotropy, the
collision term (42) vanishes, Ĉ�n̂�0�� � 0, and the equation
for n�0���; 
� reads

 

@n�0�

@�
�


a
da
d�

@n�0�

@

� 0:

The general solution to this equation is n�0� � n0�
a����,
which makes it convenient to use a new variable

 ~
 � 
a���:

In the zero-order approximation, 
 � const=a��� and
therefore ~
 is a constant along the light ray.

We are now in a position to write down the first-order
approximation to the Boltzmann Eq. (39). We take
��; xi; ~
; ei� as independent variables, i.e. n�0� � n0�~
�,
n̂�1� � n̂�1���; xi; ~
; ei�, and use the identity

 

dp�

ds

@
@p�

�
d~

ds

@
@~

�
dei

ds
@
@ei

in the first-order approximation to (40). Taking also into
account the geodesic Eq. (43) we arrive at the equation

 

�
@n̂�1�

@�
� ei

@n̂�1�

@xi
�

1

2
~
eiej

@hij
@�

@n̂�0�

@~


�
d�
ds
� Ĉ�n̂�1��:

Introducing new notations q��� � �Ta���Ne��� and
f�~
� � @ lnn0=@ ln~
 [33] (the astrophysical meaning and
numerical values of the functions q��� and f�~
� are dis-
cussed in Appendix B) we write down the final form of the
transfer equation:

 

�
@
@�
� q��� � ei

@
@xi

�
n̂�1���; xi; ~
; ei�

�
f�~
�n0�~
�

2
eiej

@hij
@�

û� q���
1

4�

�
Z
d�0P̂�ei; e0j�n̂�1���; xi; ~
; e0j�: (46)

It is seen from Eq. (46) that the ‘‘source’’ for the
generation of n̂�1� consists of two terms on the r.h.s. of
this equation. First, it is the gravitational-field perturbation
hij, participating in the combination eiej@hij=@�. It di-
rectly generates a structure proportional to û, i.e. a varia-
tion in the I Stokes parameter and a temperature
anisotropy. In this process, a quadrupole component of
the temperature anisotropy necessarily arises due to the
presence of the term ei@=@xi, even if the above-mentioned
combination itself does not have angular dependence. The
second term on the r.h.s. of Eq. (46) generates polarization,
i.e. a structure different from û. This happens because of
the mixing of different components of n̂�1�, including those
proportional to û, in the product term P̂n̂�1�. In other words,
polarization is generated by the scattering of anisotropic
radiation field. Clearly, polarization is generated only in
the intervals of time when q��� � 0, i.e. when free elec-
trons are available for the Thompson scattering (see, for
example, [37]).
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C. The radiative transfer equations for a single gravitational wave

We work with a random gravitational field hij expanded over spatial Fourier components (10). It is convenient to make
similar expansion for the quantities n̂�1���; xi; ~
; ei�. Since Eq. (46) is linear, the Fourier components of n̂�1� inherit the
same random coefficients c

s
n that enter Eq. (10):

 n̂ �1���; xi; ~
; ei� �
C

�2��3=2

Z �1
�1

d3n������
2n
p

X
s�1;2

�n̂�1�n;s��; ~
; ei�ein
xc
s

n � n̂�1�n;s ��; ~
; ei�e�in
xc
s

n�: (47)

Equation (46) for a particular Fourier component takes the form:

 

�
@
@�
� q��� � ieini

�
n̂�1�n;s��; ~
; ei� �

f�~
�n0�~
�
2

eiejp
s
ij�n�

dh
s

n���
d�

û�
q���
4�

Z
d�0P̂�ei; e0j�n̂�1�n;s��; ~
; e0j�: (48)

To simplify technical details, we start with a single
gravitational wave propagating exactly in the direction of
z in terms of definitions (2), (4), and (19). The coordinate
system, associated with the wave, is specified by � � 0,
	 � 0. This simplifies the polarization tensors (19) and
makes them constant matrices. At the same time, the
observation direction is arbitrary and is defined by ei �
�sin� cos	; sin� sin	; cos��. We consider circularly polar-
ized states with s � 1 � L, s � 2 � R. Then, we find

 eiejp
s
ij�n� � �1��2�e	2i	; (49)

where � � cos� and the 	 signs correspond to s � L, R,
respectively. This simplification of the angular dependence
is possible only for one Fourier component, but not for all
of them together. We shall still need the results for a wave
propagating in an arbitrary direction. The necessary gen-
eralization will be done in Sec. V B.

The 	2	 angular dependence of the source term in
Eq. (48) generates the 	2	 angular dependence in the
solution [33,34]. We show in Appendix C that the terms in
n̂�1�n;s��; ~
;�;	� with any other 	-dependence satisfy ho-
mogeneous differential equations, and therefore they van-
ish if they were not present initially (which we always
assume). Similarly, the ~
 dependence of the solution can be
factored out. Finally, we show in Appendix C that one
linear combination of the three components of n̂�1�n always
satisfies a homogeneous equation and therefore vanishes at
zero initial data. Thus, the problem of solving Eq. (48)
reduces to the problem of finding two functions of the
arguments �, �.

Explicitly, we can now write

 n̂ �1�n;s��; ~
;�;	� �
f�~
�n0�~
�

2

2
64�n;s��;���1��2�

1
1
0

0
@

1
A

� �n;s��;��
�1��2�

��1��2�

�4i�

0
B@

1
CA
3
75e	2i	:

(50)

Clearly, function � is responsible for temperature anisot-
ropy (I Stokes parameter), while function � is responsible
for polarization (Q and U Stokes parameters).

Temporarily dropping out the labels n, s and introducing
the auxiliary function ���;�� � ���;�� � ���;��, we
get from Eqs. (48) and (50) a pair of coupled equations
[34]:

 

@���;��
@�

� �q��� � in�����;�� �
3

16
q���I���;

(51)

 

@���;��
@�

� �q��� � in�����;�� �
dh���
d�

; (52)

where
 

I��� �
Z 1

�1
d�0

�
�1��02�2���;�0�

�
1

2
�1��02�2���;�0�

�
: (53)

IV. RADIATIVE TRANSFER EQUATIONS AS A
SINGLE INTEGRAL EQUATION

In some previous studies [31,38,39], Eqs. (51) and (52)
are being solved by first expanding the �-dependence in
terms of Legendre polynomials. This generates an infinite
series of coupled ordinary differential equations. Then, the
series is being truncated at some order.

We go by a different road. We demonstrate that the
problem can be reduced to a single mathematically con-
sistent integral equation. There are technical and interpre-
tational advantages in this approach. The integral equation
enables us to derive physically transparent analytical solu-
tions and make reliable estimates of the generated polar-
ization. The numerical implementation of the integral
equation considerably saves computing time and allows
simple control of accuracy.
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A. Derivation of the integral equation

In order to show that the solutions of Eqs. (51) and (52)
for ���;�� and ���;�� are completely determined by a
single integral equation, we first introduce new quantities
[40]

 ���� �
3

16
g���I���; (54)

 H��� � e�����
dh���
d�

: (55)

Solutions to Eqs. (51) and (52) can be written as

 ���;�� � e�����in��
Z �

0
d�0���0�ein��

0
; (56)

 ���;�� � e�����in��
Z �

0
d�0H��0�ein��

0
; (57)

Expression (56) is a formal solution to Eq. (51) in the sense
that ���;�� is expressed in terms of ���� which itself
depends on ���;�� (see (53) and (54)).

We now put (56) and (57) into Eq. (53) to get a new
formulation for I���:
 

I��� � e����
Z 1

�1

Z �

0
d�d�0

�
�1��2�2���0�

�
1

2
�1��2�2H��0�

�
ein���

0���: (58)

Using the kernels K	��� �0�,

 K	��� �
0� �

Z 1

�1
d��1	�2�2ein�����

0�; (59)

Equation (58) can be rewritten as
 

I��� � e����
Z �

0
d�0

�
K���� �

0����0�

�
1

2
K���� �0�H��0�

�
: (60)

Multiplying both sides of this equality by
�3=16�q���e����� and recalling the definition (54) we ar-
rive at a closed form equation for ����:

 ���� �
3

16
q���

Z �

0
d�0���0�K���� �0� � F���;

(61)

where F��� is the known gravitational-field term given by
the metric perturbations,

 F��� � �
3

32
q���

Z �

0
d�0H��0�K���� �

0�; (62)

The derived Eq. (61) for ���� is the integral equation of
Voltairre type. As soon as ���� is found from this equa-
tion, we can find ���;�� from Eq. (56). Then, Eqs. (56)

and (57) completely determine all the components of n̂�1�

according to Eq. (50).
Clearly, we are mainly interested in temperature and

polarization anisotropies seen at the present time � �
�R. Introducing � � n��R � �� and restoring the indices
n and s, we obtain the present-day values of � and �:

 

�n;s��� � �n;s��R;�� �
Z �R

0
d��Hn;s�����n;s����e�i�� ;

(63a)

�n;s��� ��n;s��R;�� �
Z �R

0
d��n;s���e�i�� : (63b)

The integrals can safely be taken from � � 0 as the optical
depth � quickly becomes very large in the early Universe,
and the source functions Hn;s��� and �n;s��� quickly
vanish there. We will work with expressions (63) in our
further calculations.

B. Analytical solution to the integral equation

The integral Eq. (61) can be solved analytically in the
form of a series expansion. Although our graphs and
physical conclusions in this paper are based on the exact
numerical solution to Eq. (61), it is important to have a
simple analytical approximation to the exact numerical
solution. We will show below why the infinite series can
be accurately approximated by its first term and how this
simplification helps in physical understanding of the de-
rived numerical results.

We start with the transformation of kernels (59) of
the integral Eq. (61). Using the identity �keix� �
�d=idx�keix�, the kernels can be written as

 K	��� �0� �
Z �1

�1
d��1	�2�2ein�����

0�

� 2
�
1�

d2

dx2

�
2 sinx
x
;

where x � n��� �0�. Now, taking into account the expan-
sion

 

sinx
x
�

X1
m�0

��1�m

�2m� 1�!
x2m;

the r.h.s. of Eq. (61) can be presented in the form of a
series:

 

���� �
3

2
q���

X1
m�0

n2m
Z �

0
d�0��� �0�2m

� ����m����
0� � ���m�H��

0��; (64)

where
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 ���m� �
��1�m

�2m� 1�!

�
1� 4

�m� 2�

�2m� 3��2m� 5�

�
;

���m� �
��1�m

�2m� 1�!�2m� 3��2m� 5�
:

Since the r.h.s. of Eq. (64) is a series in even powers of
the wave number n, the l.h.s. of the same equation can also

be expanded in powers of n2m:

 ���� �
X1
m�0

��m����n2m: (65)

Using expansion (65) in both sides of Eq. (64) we trans-
form this equation to

 X1
m�0

��m����n2m �
3

2
q���

"X1
m�0

X1
j�0

���m�n2�m�j�
Z �

0
d�0��j���0���� �0�2m �

X1
m�0

���m�n2m
Z �

0
d�0H��0���� �0�2m

#
:

(66)

The left side and the second term in the right side of Eq. (66) are series in n2m, but the first sum on the r.h.s. of Eq. (66) is
still a mixture of different powers. This sum can be rearranged to be manifestly a series in n2m:

 

X1
m�0

X1
j�0

���m�n2�m�j�
Z �

0
d�0��j���0���� �0�2m �

X1
m�0

n2m

"Xm
k�0

���k�
Z �

0
d�0��m�k���0���� �0�2k

#
: (67)

According to Eq. (66) we have to make equal the co-
efficients of terms with the same power n2m in both sides of
the equation. This produces a set of integral equations

 ��m���� � q���S�m���� �
7

10
q���

Z �

0
d�0��m���0�;

(68)

where functions S�m���� depend only on the known func-
tion H��� and functions ��m�k���� presumed to be found
from equations of previous orders:

 

S�m���� � �
3

2
���m�

Z �

0
d�0H��0���� �0�2m

�
3

2

Xm
k�1

���k�
Z �

0
d�0��m�k���0���� �0�2k:

(69)

The important advantage of the performed expansion in
powers of n2m is that Eq. (68) of any order m is now a self-
contained analytically solvable integral equation.

Exact solution to the integral Eq. (68) is given by the
formula

 ��m���� � q���
Z �

0
d�0

dS�m���0�
d�0

e�7=10����;�0�: (70)

We can further simplify this formula. Taking an
�-derivative of expression (69) we find

 

dS�m����
d�

� �
1

10
H����0m �!��m�

�
Z �

0
d�0H��0���� �0�2m�1

�
Xm
k�1

!��k�
Z �

0
d�0��m�k���0���� �0�2k�1;

where !	�m� � 3m�	�k�. Substituting this expression
into Eq. (70), we arrive at the final result
 

��m���� � q���e��7=10�����
Z �

0
d�0e�7=10����0�

�

�
�H��0�

�
1

10
�0m �!��m���m���;�0�

�

�
Xm
k�1

!��k���m�k���0���k���;�0�
�
; (71)

where

 ��k���;�0� �
Z �

�0
d�00e��7=10����00;�0���00 � �0�2k�1: (72)

Functions ��k���;�0� depend only on the ionization
history of the background cosmological model described
by q���. These functions can be computed in advance.
Complete determination of the function ����, Eq. (65),
requires only one integration by � at each level m in
Eq. (71), starting from m � 0. The zero-order term
��0���� does not depend on functions ��k� and is deter-
mined exclusively by H���, Eq. (55). The zero-order term
can be presented as
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 ��0�n ��� � �
1

10
g���

Z �

0
d�0

dhn��0�
d�

e��3=10����;�0�: (73)

It is crucial to remember that the function ����,
Eq. (54), always contains the narrow visibility function
g��� (see Appendix B). In particular, function ��0���� is
nonzero only for � within the width of g���, and is
proportional to this width. In the era of decoupling, we
denote the characteristic width of g��� by ��dec. With
��dec we associate the characteristic wave number n:

 n �
2�

��dec
:

Numerically, ��dec � 3� 10�3 and n � 2� 103. In
what follows, we will be interested in CMB multipoles ‘ &

103. They are mostly generated by perturbations with wave
numbers n & 103. Therefore, for wave numbers of interest,
we regard n=n as a small parameter.

We shall now show that ��0���� is the dominant term of
the series (65). The next term, ��1����n2, is at least a factor
�n=n�2 smaller than ��0����, and so on. The explicit
expression for ��1� is as follows

 ��1���� � �g���
Z �

0
d�0

�
!��1�

dh��0�
d�0

�!��1�e���
0���0���0�

�
e��3=10����;�0���1���;�0�:

Effectively, function ��1����, in comparison with ��0����,
contains an extra factor ��1���;�

0�. Taking into account
the fact that the functions g��� and e��7=10����00;�0� are
localized in the interval of arguments not larger than
��dec, this factor evaluates to a number not larger than
���dec�

2. Therefore, them � 1 term in Eq. (65) is at least a
factor �n=n�2 smaller than the m � 0 term.

These analytical evaluations are confirmed by numerical
analysis as shown in Fig. 3. The solid line shows the exact
numerical solution found from Eq. (61) for hn��� and q���
described in Sec. II B and Appendix B respectively. The
dashed line is plotted according to formula (73), with the
same hn��� and q���. It is seen from Fig. 3 that the zero-
order term ��0���� is a good approximation. The deviations
are significant, they reach (20–25)%, only for the largest
wave numbers n in the domain of our interest.

V. MULTIPOLE EXPANSION AND POWER
SPECTRA OF THE RADIATION FIELD

A. Multipole coefficients

Having found �n;s��� for a single gravitational wave
specified by Eq. (49) one can find � and � functions
according to Eqs. (63a) and (63b). Then, using
Eqs. (34)–(36), (38), and (50), one can find the multipole
coefficients aX‘m �X � I; E; B� participating in the decom-
positions (37). Although this route has been traversed
before [31], we have made independent calculations in a
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FIG. 3 (color online). Function �n��� for different values of n. The solid line is exact numerical solution to Eq. (61). The dashed line
is the zero-order approximation (73). The dotted line shows the approximation (91) (see below). The g.w. mode functions are
normalized such that hn��r� � 1.
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more general arrangement. Formulas derived in this subsection are effectively a confirmation of the correctness of
calculations in Ref. [31].

First, we integrate over photon frequencies (for the definition of  see Eq. (B3)) and arrive at the following expressions

 

In;s��;	� � ��1��2��n;s���e	2i	�; (74a)

En;s��;	� � �
�
�1��2�

�
�1��2�

d2

d�2 � 8�
d
d�
� 12

�
�n;s���e

	2i	
�
; (74b)

Bn;s��;	� � �
�

2�1��2�

�
i�

d2

d�2 � 4i
d
d�

�
�n;s���e	2i	

�
; (74c)

where, as before, the upper and lower signs correspond to
s � 1 � L and s � 2 � R, respectively. The 	2	 depen-
dence in Eqs. (74) implies that only the m � 	2 multi-
poles are nonzero.

Then, we integrate Eqs. (74) over angular variables in
order to find aX‘m according to Eq. (37). Using the notations
T‘���, E‘���, B‘��� for the functions arising in course of
calculations (and called multipole projection functions)
 

T‘��� �

�����������������
�‘� 2�!

�‘� 2�!

s
j‘���

�2 ; (75a)

E‘��� �
��

2�
l�l� 1�

�2

�
j‘��� �

2

�
j‘�1���

�
; (75b)

B‘��� � 2
�
�
�‘� 1�

�
j‘��� � j‘�1���

�
; (75c)

and replacing ���� and ���� by their expressions (63), we
finally arrive at
 

aT‘m�n; s� � ��i�
‘�2��2;m�1;s � ��2;m�2;s�aT‘ �n; s�; (76a)

aE‘m�n; s� � ��i�
‘�2��2;m�1;s � ��2;m�2;s�aE‘ �n; s�; (76b)

aB‘m�n; s� � ��i�
‘�2��2;m�1;s � ��2;m�2;s�a

B
‘ �n; s�; (76c)

where
 

aT‘ �n;s� � 
�����������������������
4��2‘� 1�

p Z �R

0
d��Hn;s�����n;s����T‘���;

(77a)

aE‘ �n;s� � 
�����������������������
4��2‘� 1�

p Z �R

0
d��n;s���E‘���; (77b)

aB‘ �n;s� � 
�����������������������
4��2‘� 1�

p Z �R

0
d��n;s���B‘���: (77c)

B. Superposition of gravitational waves with arbitrary
wave vectors

It is important to remember that the result (76) is valid
only for a special wave, with the wave vector n oriented
exactly along the coordinate axis z. Since the perturbed
gravitational field is a random collection of waves with all
possible wave vectors n, and we are interested in their
summarized effect as seen in some fixed observational

direction �, 	, we have to find the generalization of
Eq. (76) to an arbitrary wave, and then to sum them up.

To find the effect of an arbitrary wave, there is no need to
do new calculations. It is convenient to treat calculations in
Sec. VA as done in a (primed) coordinate system specially
adjusted to a given wave in such a manner that the wave
propagates along z0, n0 � �0; 0; n�. The observational di-
rection ei is characterized by �0, 	0. The quantities X � I,
E, B calculated in Sec. VA are functions of �0, 	0 ex-
panded over Y‘m��0; 	0�,

 Xn0;s��;	0� �
X1
‘�0

X‘
m��‘

aX‘m�n; s�Y‘m��
0; 	0�; (78)

where aX‘m is a set of coefficients (compare with Eq. (37)):
aT‘m, ��‘� 2�!=�‘� 2�!�1=2aE‘m, ��‘� 2�!=�‘� 2�!�1=2aB‘m.

Now, imagine that this special (primed) coordinate sys-
tem is rotated with respect to the observer’s (unprimed)
coordinate system by some Euler angles

 � � 	n; � � �n;  � 0

(see, for example [41]). The same observational direction
ei is now characterized by �, 	, and the same wave vector
n0 is now characterized by the unit vector

 

~n � n=n � �sin�n cos	n; sin�n sin	n; cos�n�:

Obviously, the already calculated numerical values of the
invariants X��0; 	0� do not depend on the rotation of the
coordinate system. Being expressed in terms of �, 	, the
invariants describe the effect produced by a wave with a
given (arbitrary) unit wave vector ~n, as seen in the direc-
tion �, 	.

The transformation between coordinate systems ��0; 	0�
and ��;	� is accompanied by the transformation of spheri-
cal harmonics,

 Y‘m��0; 	0� �
X‘

m0��‘

D‘
m0;m�~n�Y‘m0 ��;	�;

where

 D‘
m0;m�~n� � D‘

m0;m�	n; �n; 0�

are the Wigner symbols [42]. Later, we will need their
orthogonality relationship
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Z
d�D‘

m;p�~n�D‘0
m0;p�~n� �

4�
2‘� 1

�‘‘0�mm0 ; (79)

where d� � sin�nd�nd	n.
We can now rewrite Eq. (78) in terms of �, 	, and thus

find the contribution of a single arbitrary Fourier compo-
nent,

 Xn;s��;	� �
X1
‘�0

X‘
m��‘

 X‘
m0��‘

aX‘m0 �n; s�D
‘
mm0 �~n�

!
Y‘m��;	�:

(80)

The superposition of all Fourier components of the per-
turbed gravitational field gives, at the observer’s position
x � 0 and at � � �R (see (47)), the final result:
 

X��;	� �
C

�2��3=2

Z �1
�1

d3n������
2n
p

�
X
s�1;2

�Xn;s��;	�c
s

n � Xn;s��;	�c
s

n�: (81)

From this expression, combined with Eq. (80), one can
read off the random multipole coefficients aX‘m that partici-
pate in the expansions (37):
 

aX‘m �
C

�2��3=2

Z �1
�1

d3n������
2n
p

X
s�1;2

X‘
m0��‘

�aX‘m0 �n; s�D
‘
m;m0 �~n�c

s
n

� ��1�maX‘�m0 �n; s�D
‘
m;�m0 �~n�c

s

n�: (82)

Since X is a real field, the multipole coefficients aX‘m obey
the reality conditions

 aX‘m � ��1�maX‘;�m; (83)

as is seen directly from (82). The gravitational-wave nature

of metric perturbations is encoded in concrete values of the
coefficients (37) and (77). But in all other aspects the
argumentation presented here is general.

C. Angular power spectra for temperature
and polarization anisotropies

It follows from Eq. (82) that the statistical properties of
the multipole coefficients aX‘m are fully determined by the
statistical properties of the gravitational-field perturbations
represented by the random coefficients c

s
n. A particular

realization of c
s

n is responsible for the particular realization
of aX‘m actually observed in the sky. Having derived the
distribution function for c

s
n from some fundamental con-

siderations (for example, from the assumption of the initial
quantum-mechanical vacuum state of perturbations) we
could estimate the probability of the observed set aX‘m
within the ensemble of all possible sets. We could also
evaluate the inevitable uncertainty in the observational
determination of the parameters of the underlying random
process. This uncertainty is associated with the inherent
absence of ergodicity of any random process on a 2-sphere
(i.e. sky) [43]. In this paper, however, we adopt a minimal-
istic approach; we postulate only the relationships (16) and
calculate only the quadratic correlation functions for aX‘m.

Clearly, the mean values of the multipole coefficients are
zeros,

 haX‘mi � ha
X
‘m
i � 0:

To calculate the variances and cross-correlation functions,
we have to form the products aX‘ma

X0
‘0m0 and then take their

statistical averages. First, we find

 haX‘ma
X0
‘0m0 i �

C2

�2��3
Z n2dnd�

2n

X
s�1;2

X‘
m1��‘

X‘
m01��‘

�aX‘m1
�n; s�aX

0

‘0m01
�n; s�D‘

mm1
�~n�D‘0

m0m01
�~n�

� aX‘m1
�n; s�aX

0
‘0m01
�n; s�D‘

�m;m1
�~n�D‘0

�m0;m01
�~n��: (84)

We now take into account the fact (compare with
Eq. (76)) that

 aX‘m1
�n; s�aX

0

‘0m01
�n; s� / �m1m01

:

This property allows us to get rid of summation over m01 in
Eq. (84). Then, we perform integration over d� and use
the orthogonality relationships (79). We finally arrive at

 haX‘ma
X0
‘0m0 i � CXX

0

‘ �‘‘0�mm0 ; (85)

where

 

CXX
0

‘ �
C2

4�2�2‘� 1�

Z
ndn

X
s�1;2

X‘
m��‘

�aX‘m�n; s�a
X0
‘m �n; s�

� aX‘m�n; s�a
X0
‘m�n; s��: (86)

Other quadratic averages, such as haX‘ma
X0
‘0m0 i, ha

X
‘ma

X0
‘0m0 i,

follow from (85) and the reality condition (83).
The angular correlation and cross-correlation functions

of the fields I, E, B are directly expressible in terms of
Eq. (86). For example,

 hI��1; 	1�I��2; 	2�i � ���� �
X1
‘�0

2‘� 1

4�
CTT‘ P‘�cos��;
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where � is the angular separation between the directions
��1; 	1� and ��2; 	2� on the sky. If the actually measured
values of aX‘m represent a particular realization of a
Gaussian random process, quantities CXX

0

‘ , constructed
from the measured aX‘m according to the r.h.s. of Eq. (86),
are the best unbiased estimates [43].

One can note that the final result (85) and (86) is the
integral of individual contributions (76) from single gravi-
tational waves given in a special frame discussed in
Sec. VA. However, one cannot jump directly from (76)
to (86) (which is often done in the literature). In general,
Eq. (86) does not follow from Eq. (76). By calculations
given in this subsection we have rigorously shown that
Eq. (86) is justified only if special statistical assumptions
(16) are adopted.

One can also note that the correlation functions contain-
ing the label B once, i.e. CTB‘ and CEB‘ , vanish if the extra
assumptions (18) and (23) are made. Indeed, under these
assumptions one can use one and the same mode function
for both polarization states s, Eq. (24). Then, the coeffi-
cients aB‘m�n; s�, Eq. (76c), differ essentially only in sign
for two different s, i.e. aB‘2�n; L� � �a

B
‘;�2�n; R�. There-

fore, their contributions will cancel out in expressions (86)
for CTB‘ and CEB‘ . This statement is in agreement with
Ref. [44].

Without having access to a theory of everything which
could predict one unique distribution of the CMB radiation
field over the sky, we have to rely on the calculated
statistical averages (86). We can also hope that our uni-
verse is a ‘‘typical’’ one, so that the observed values of the
correlation functions should not deviate too much from the
statistical mean values.

VI. EFFECTS OF RECOMBINATION ERA

All our final graphs and physical conclusions in this
paper are based on exact formulas and numerical calcula-
tions, starting from numerical representation of the key
functionsH��� and ����, Eqs. (55) and (61). However, we
derive and explain all our results by developing manage-
able and accurate analytical approximations. At every level

of calculations we compare exact numerical results with
analytical ones.

A. Temperature anisotropy angular power spectrum

The temperature anisotropy power spectrum CTT‘ is de-
termined by the multipole coefficients aT‘ �n; s�, Eqs. (86),
(76a), and (77a). The typical graphs for the functions
Hn;s��� and �n;s��� are shown in Fig. 4.

Since the visibility function g��� is a narrow function, a
convenient analytical approximation is the limit of an
instantaneous recombination. The function e�� is replaced
by a step function changing from 0 to 1 at � � �dec, e�� �
h��� �dec�, and the function g��� is replaced by a delta-
function, g��� � ���� �dec�. In this limit, the contribu-
tion to aT‘ �n; s� from the scattering term ��0�n;s��� is propor-
tional to ��dec. It can be neglected in comparison with the
contribution from the gravitational term Hn;s���. The ratio
of these contributions is of the order of n��rec, and it tends
to zero in the limit of instantaneous recombination,
��dec ! 0.

Neglecting the scattering term, we write

 aT‘ �n; s� � 
������������������������
4��2‘� 1�

p Z �R

�dec

d�
dh
s

n

d�
T‘���: (87)

This integral can be taken by parts,

 aT‘ �n; s� � 
������������������������
4��2‘� 1�

p �
�h

s

n��dec�T‘��dec�

�
Z �R

�dec

d�nh
s

n���
dT‘���
d�

�
:

The remaining integral contains oscillating functions and
its value is smaller, for sufficiently large n’s, than the value
of the integrated term. This is illustrated in Fig. 5.
Therefore, we have

 aT‘ �n; s� � �
������������������������
4��2‘� 1�

p
h
s

n��dec�T‘��dec�: (88)

Finally, we put Eq. (88) into Eq. (86) and take into
account the definition of the metric power spectrum (13).
Then, we get
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FIG. 4 (color online). The source functions Hn;s��� and �n;s��� (n � 100) of temperature and polarization anisotropies (the
normalization is chosen such that hn��r� � 1).
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 CTT‘ � 4�2
Z dn

n
h2�n; �dec�T

2
‘��dec�: (89)

The projection factor T2
‘��dec� is given by Eq. (75a).

Since the spherical Bessel functions reach maximum
when the argument and the index are approximately equal,
�dec � ‘, a particular wave number n is predominantly
projected onto the multipole ‘ � n:

 ‘ � �dec � n��R � �dec� � n: (90)

This can also be seen in Fig. 5. Thus, the oscillatory
features of the metric power spectrum h2�n; �dec� in the
n-space are fully responsible for the oscillatory features of
the angular power spectrum ‘�‘� 1�CTT‘ in the ‘-space
[11]. (We use this opportunity to correct a misprint in Fig. 2
of Ref. [11]: the plotted lines are functions Cl, not l�l�
1�Cl. For the early graphs of C‘ see Ref. [45].)

The g.w. metric power spectrum h2�n; �dec� for the case
� � �2, and the function ‘�‘� 1�CTT‘ caused by this
spectrum, are shown in Fig. 7(b) and 7(a). The normaliza-
tion of the metric power spectrum is such that the function
‘�‘� 1�CTT‘ at ‘ � 2 is equal to 1326 �K2 [19]. The
interval ‘ & 90 is generated by waves with n & 90.
These waves did not enter the Hubble radius by the time
�dec. Their amplitudes are approximately equal for all n’s
in this interval (compare with Fig. 1). The gradual decrease
of the angular power spectrum at larger ‘’s is the reflection
of the gradual decrease of power in shorter gravitational
waves whose amplitudes have been adiabatically decreas-

ing since the earlier times when the waves entered the
Hubble radius.

B. Polarization anisotropy angular power spectrum

The decisive function for polarization calculations is
�n;s���. We have approximated this function by ��0�n;s,
Eq. (73), and compared it with exact result in Fig. 3. For
qualitative derivations it is useful to make further
simplifications.

Since g��� is a narrow function, the integral in Eq. (73)
is effective only within a narrow interval ��dec. Assuming

that the function dh
s

n���=d� does not vary significantly
within this interval, we can take this function from under
the integral,

 ��0�n;s��� � �
1

10

dh
s

n���
d�

�
g���

Z �

0
d�0e��3=10����;�0�

�
:

(91)

Clearly, the assumption that the function dh
s

n���=d� is
almost constant within the window ��dec gets violated
for sufficiently short waves. With (91), we expect degra-
dation of accuracy for wave numbers n approaching n.
This is illustrated by a dotted line in Fig. 3. Nevertheless,
the approximation (91) is robust for n & n, and it reveals
the importance of first derivatives of metric perturbations
for evaluation of the CMB polarization.

We now introduce the symbol P to denote either E or B
components of polarization. In terms of multipoles
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FIG. 5 (color online). The contributions to the power spectrum ‘�‘� 1�CTT‘ from an individual mode n. The solid line shows the
exact result calculated according to (87), while the dashed line shows the approximation (88). The normalization has been chosen such
that hn��r� � 1.

D. BASKARAN, L. P. GRISHCHUK, AND A. G. POLNAREV PHYSICAL REVIEW D 74, 083008 (2006)

083008-18



aP‘ �n; s�, the angular power spectrum is given by Eq. (86).
Putting (91) into Eqs. (77b) and (77c) and denoting by
P‘��� the respective projection functions, we get
 

aP‘ �n; s� � 
������������������������
4��2‘� 1�

p Z �R

0
d�

�
�

1

10

dshn���
d�

P‘���
�

�

�
g���

Z �

0
d�0e��3=10����;�0�

�
: (92)

Again referring to the peaked character of g��� and assum-

ing that the combination �dh
s

n���=d��P‘��� does not
change significantly within the window ��dec, we take
this combination from under the integral,
 

aP‘ �n; s� � 
������������������������
4��2‘� 1�

p
D�n�

�

�
�

1

10

dh
s

n���
d�

P‘���
������������rec

�: (93)

The two new factors in this expression,D�n� and �, require
clarification.

The factor D�n� compensates for gradual worsening of
our approximation when the wave number n approaches
n. For large n’s, the functions under the integrals change
sign within the window ��dec, instead of being constant
there. This leads to the decrease of the true value of the
integral in comparison with the approximated one. The
evaluation of this worsening suggests that it can be de-
scribed by the damping factor

 D�n� �
�

1�
�
n��dec

2

�
2
�
�1
:

We inserted this factor by hand in Eq. (93) Additional
arguments on this damping are given in Ref. [46] (see
also [47]).

The factor � is the result of the remaining integration
over � in Eq. (92) [33],

 � �
Z �R

0
d�g���

�Z �

0
d�0e��3=10����;�0�

�

�
10

7

Z �R

0
d��e��3=10����� � e������:

Since e�� rapidly changes from 0 to 1 around recombina-
tion, the integrand �e��3=10����� � e������ is nonzero only
there, and � is expected to be of the order of ��dec. To give
a concrete example, we approximate g��� by a Gaussian
function

 g��� �
1�������

2�
p

���dec=2�
exp

�
�
��� �dec�

2

2���dec=2�2

�
:

Then, the quantity � can be found exactly,

 

� �
5

7
��dec

Z �1
�1

dx
��

1

2
�

1

2
erf
�
x���
2
p

��
3=10

�

�
1

2
�

1

2
erf
�
x���
2
p

���
� 0:96��dec:

Clearly, factor � in Eq. (93) demonstrates the fact that the
CMB polarization is generated only during a short interval
of time around recombination.

Finally, substituting (93) into (86) and recalling (14), we
obtain the polarization angular power spectrum:

 

CPP‘ � 2�2 1

100
�2

Z dn
n
D2�n�

�
X
s�1;2

��������dh
s
�n; ��
d�

�����������rec

��������2
P2
‘��rec�: (94)

Similarly to the case of temperature anisotropies, the
projection factors P‘��dec� predominantly translate n into ‘
according to Eq. (90). The oscillatory features of the power
spectrum of the first time-derivative of metric perturbations
get translated into the oscillatory features of the power
spectra for E and B components of polarization. This is
illustrated in Fig. 7(c) and 7(d). The waves with n�dec �
� did not enter the Hubble radius by � � �dec. They have
no power in the spectrum of dh�n; ��=d� at n� 90, and
therefore there is no power in polarization at ‘� 90. On
the other hand, the first gravitational peak at n � 90 gets
reflected in the first polarization peak at ‘ � 90.
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FIG. 6 (color online). Relative contributions of an individual Fourier mode n � 100 to various multipoles ‘ in the power spectra
‘�‘� 1�C‘ for temperature and polarization. The normalization has been chosen arbitrarily but same in both the graphs.

IMPRINTS OF RELIC GRAVITATIONAL WAVES IN . . . PHYSICAL REVIEW D 74, 083008 (2006)

083008-19



There is certain difference, however, between the pro-
jection functions E‘��dec� and B‘��dec�. This is shown in
Fig. 6. The B-mode projections are more ‘‘smeared’’ and
their maxima are shifted to somewhat lower ‘’s. This
explains the visible difference between CEE‘ and CBB‘ in
Fig. 7 (see also [46]). The polarization angular power
spectra, plotted in Fig. 7, were found from exact numerical
calculations.

C. Temperature-polarization cross correlation

A very special role belongs to the TE cross-correlation
spectrum. We will show below that the TE correlation at
lower ‘’s must be negative for gravitational waves and
positive for density perturbations. This distinctive signa-
ture can turn out to be more valuable for identification of
relic gravitational waves than the presence of the B polar-
ization in the case of gravitational waves and its absence in
the case of density perturbations. The expected TE signal
from gravitational waves is about 2 orders of magnitude
stronger than the BB signal, and it is much easier to
measure. At lower ‘’s, the contributions to TE from gravi-
tational waves and density perturbations are comparable in
absolute value, so the g.w. contribution is not a small effect.
The total TE cross-correlation has already been measured
at some level [9,48].

To find the TE power spectrum we have to use the
product of aT‘m�n; s� and aE‘m�n; s� in Eq. (86). For qualita-

tive analysis we will operate with the approximate expres-
sions (88) and (93). Then, the TE correlation reads

 CTE‘ � �2

�
�

10

�Z dn
n
D�n�

X
s�1;2

�
sh�n; ��

dsh�n; ��
d�

� sh�n; ��
dsh�n; ��

d�

������������dec

�T‘��dec�E‘��dec��:

(95)

For a given ‘, the projection factor �T‘��dec�E‘��dec�� peaks
at n � ‘ and is positive there. Therefore, the sign of CTE‘ is
determined by the sign of the term:
 

1

2

X
s�1;2

�
h
s 
�n; ��

dh
s
�n; ��
d�

� h
s
�n; ��

dh
s 
�n; ��
d�

������������dec

�

�
dh2�n; ��
d�

������������dec

(96)

The adiabatic decrease of the g.w. amplitude upon enter-
ing the Hubble radius is preceded by the monotonic de-

crease of the g.w. mode function h
s

n��� as a function of �.
This behavior is illustrated in Fig. 1. It is clear from the
graph that for n & 100 the quantity (96) is negative, be-

cause the first derivative of h
s

n��� is negative. Therefore,
for ‘ & 90 the correlation CTE‘ must be negative. For larger
‘’s the TE correlation goes through zero, changes sign and
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FIG. 7 (color online). The left panel shows (a) the power spectrum of temperature anisotropies ‘�‘� 1�CTT‘ (in �K2) generated by
(b) the power spectrum of g.w. metric perturbations (13), � � �2. The right panel shows (c) the power spectra of polarization
anisotropies ‘�‘� 1�CBB‘ (solid line) and ‘�‘� 1�CEE‘ (dashed line), panel (d) shows the power spectrum of the first time derivative of
the same g.w. field, Eq. (15).
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oscillates reflecting the oscillations of the function (96) in
the n-space. An exact numerical graph for TE correlation
caused by gravitational waves is depicted in Fig. 8. The
graph clearly shows how the sign and features of the
spectrum (96) get translated into the sign and features of
the TE correlation.

It is shown in Appendix D that in the case of density
perturbations the TE correlation must be positive at lower
‘’s. This is because the relevant metric perturbations asso-
ciated with density perturbations are growing in time and
therefore the first time-derivative of metric perturbations is
positive. Because of other contributions, the TE correlation
is expected to change sign at ‘ � 70 [18,48]. The region of
intermediate multipoles 15 � ‘ � 90 should be of a par-
ticular interest. On one hand, the multipoles ‘ > 15 are not
affected by the reionization era and its uncertain details,
except the overall suppression by e�2�reion . On the other
hand, at ‘ < 90 the g.w. contribution to TE is not much
smaller numerically than the contribution from density
perturbations. The lower multipoles ‘ & 15 are affected
by reionization, and we shall study reionization in the next
Section.

VII. EFFECTS OF REIONIZATION ERA

The reionization of the intergalactic medium by first
sources of light has occurred relatively late, at z� 30�
7 (see, for example, [9,49]). In contrast to the recombina-
tion part of the visibility function g���, which is narrow
and high, the reionization part of g��� is broad and much
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FIG. 8 (color online). The bottom panel shows the spectrum
(96) of gravitational waves, whereas the top panel shows the
angular power spectrum ‘�‘� 1�CTE‘ caused by these waves.
The negative values of these functions are depicted by broken
lines.
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FIG. 9 (color online). The source function �n��� in reionization era for different wave numbers.
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lower (see Fig. 15). For a crude qualitative analysis, one
can still apply analytical formulas derived for recombina-
tion. One has to replace �dec with �reion and ��dec with
��reion. The waves that start entering the Hubble radius at
�reion, i.e. waves with wave numbers n�reion � �, provide
the most of power to the spectrum of first time derivative of
metric perturbations. Therefore, these waves, with n� 12,
produce a ‘‘bump’’ in polarization spectra at the projected
‘� 6. However, these wave numbers are comparable with
the wave number n, n��reion � 2�, that characterizes

the width of the visibility function at reionization. The
assumption n� n is not well satisfied, the analytical
approximation becomes crude, and one has to rely mostly
on numerics for more accurate answers.

The numerical solution to the integral Eq. (61) in the
reionization era is shown in Fig. 9. One can see that the
damping effect is expected to commence from n * 20, as
the polarization source function �n��� begins to show an
oscillatory behavior. The projection relationships are also
far away from the almost one-to-one correspondence ‘ �
n that was typical for recombination era. In Fig. 10 we
show the contributions of a given n to various ‘’s in the
polarization power spectra ‘�‘� 1�C‘. One can see that a
considerable portion of power from a given n is distributed
over many lower-order ‘’s.

The total effect of the reionization era is shown in
Fig. 11. This numerical result was based on our simplified
model of homogeneous reionization, as described in
Appendix B. The reionization bumps at lower multipoles
forE andB components of polarization are similar in shape
and numerical value.

VIII. COMPARISON WITH AVAILABLE
OBSERVATIONS; SIGNATURES OF RELIC

GRAVITATIONAL WAVES

The theory that we are using here is applicable to any
primordial spectral index n. The initial conditions for
gravitational waves, Eqs. (29) and (30), as well as analo-
gous initial conditions for density perturbations, hold �,
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and hence n, as a free constant parameter. The spectral
index n can be larger, equal, or smaller than 1. However,
from the theoretical point of view, the ‘‘red’’ primordial
spectra n< 1 (�<�2) seem to be unacceptable, or at
least questionable. If �<�2, the mean-square fluctua-
tions of gravitational field, Eq. (12), are power-law diver-
gent in the limit of very small wave numbers n. One could
argue that the extrapolation of the primordial spectrum to
the ‘‘infrared’’ region of very small n’s is uncertain, and for
some reason the shape of the spectrum bends in the infra-
red region making the integral (12) convergent at the lower
limit. We prefer not to hide behind this possibility. If the
shape of the primordial spectrum is allowed to be varied,
then practically anything in the CMB data can be explained
by the properly adjusted primordial spectrum. Therefore,
our theoretical preference (unless the data will enforce us
to change this preference) is a constant primordial spectral
index n> 1 (�>�2). Obviously, such primordial spectra
entail no difficulty in the ‘‘ultraviolet’’ region of very large
n’s, because such short-wavelength fluctuations (today’s
wavelength �3 cm.) did not satisfy the requirements of
superadiabatic amplification and simply have not been
generated.

We now return to the TE correlation. In Fig. 12 we show
the contributions to the TE correlation function from relic
gravitational waves (gw) and primordial density perturba-
tions (dp). (In order to enhance lowest ‘’s we use the
combination �‘� 1�C‘ rather than ‘�‘� 1�C‘.) For this
illustration, we choose a flat primordial spectrum n � 1
(� � �2) and assume equal contributions from (gw) and
(dp) to the temperature quadrupole: R � 1, where

 R � CTT‘�2�gw�=C
TT
‘�2�dp�:

We include the effects of reionization according to the
model with �reion � 0:09. The (gw) contribution is numeri-
cally calculated from the solution to the integral Eq. (61),
whereas the (dp) contribution is plotted according to the
CMBfast code [18,31]. One can see from the graph that the
negative TE correlation function at lower ‘’s is only pos-
sible if there is a significant amount of primordial gravita-
tional waves. One can also see from the graph that a
misinterpretation of the total TE effect as being caused
by density perturbations alone, could lead to a serious
misestimation of �reion.

The TE correlation at lower ‘’s measured by the WMAP
mission [9,48] shows clusters of data points, including the
negative ones, that lie systematically below the theoretical
curve based on density perturbations alone. It is true that
the data points in the interval 10 & ‘ & 70 are concen-
trated near a zero level, the error bars are still large, and the
measured TE correlation can be appreciably different from
the theoretical statistically averaged TE correlation.
However, the recent paper [9], page 26, explicitly empha-
sizes the detection of the TE anticorrelation by WMAP:
‘‘The detection of the TE anticorrelation near ‘ � 30 is a
fundamental measurement of the physics of the formation
of cosmological perturbations. . .’’. As we have already
stated several times, the TE anticorrelation at lower ‘’s,
such as ‘ � 30, can only take place (within the framework
of all other common assumptions) when a significant
amount of relic gravitational waves is present.

Our theoretical position, as explained in this and pre-
vious papers, is such that we are asking not if relic gravi-
tational waves exist, but where they are hiding in the
presently available data. We shall now discuss some mod-
els that fit the CMB data and contain significant amounts of
relic gravitational waves. More accurate observations with
WMAP, and especially Planck, should firmly settle on the
issue of the sign and value of the TE correlation at lower
multipoles. Hopefully, these observations will establish the
presence of relic gravitational waves beyond reasonable
doubts.

To sharpen the discussion of allowed parameters, we
take the model with n � 1:2, �reion � 0:09 and R � 1. We
take the values �mh2 � 0:03, �bh2 � 0:12, h � 0:75, and
we normalize the g.w. contribution to ‘�‘�1�

2� CTT‘ �
440 �K2 at ‘ � 2. In Fig. 13(a) we show our calculation
of the TT correlation function in comparison with WMAP
data and the best fit �CDM model [8], [18]. (If it comes to
the necessity of explaining ‘‘dark energy’’, natural mod-
ifications of general relativity will be superior to unnatural
modifications of the matter sector [50].) One can see from
the graph that even this model (which lies, arguably, on a
somewhat extreme end) is consistent with the TT data at all
‘’s and significantly alleviates the much discussed tension
between theory and experiment at ‘ � 2. In Fig. 13(b) we
show the TE correlation for exactly the same model. One
can see that the inclusion of relic gravitational waves
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FIG. 12 (color online). The dotted line shows the contribution
of density perturbations alone, and the dashed line shows the
contribution of gravitational waves alone. The solid line is the
sum of these contributions. It is seen from the graph that the
inclusion of g.w. makes the total curve to be always below the
d.p. curve.
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makes more plausible the negative data points at lower ‘’s.
Since the relative contribution of gravitational waves be-
comes small at ‘ * 90, the higher ‘ portion of the graph is
governed by density perturbations alone. Obviously, mod-
els with a little smaller n or R reach the same goals.

Finally, in Fig. 14 we combine together all correlation
functions induced by relic gravitational waves. The graphs
are based on the discussed model with n � 1:2, R � 1. The
future detection of the BB correlation will probably be the
cleanest proof of presence of relic gravitational waves. For
the discussed model, the predicted level of the BB signal is
‘�‘�1�

2� CBB‘ j‘�90 � 0:1 �K2 in the region near the first peak
at ‘� 90. This level of B-mode polarization should be
detectable by the experiments currently in preparation,
such as CLOVER [51], BICEP [52] and others (see also
[53]). Obviously, in this paper, we ignore many complica-
tions, including astrophysical foregrounds. More informa-
tion can be found in Refs. [54–57].

IX. CONCLUSIONS

In this paper, we summarized the properties of relic
gravitational waves that are directly relevant to CMB
calculations. We explained the reasons why we are work-
ing with g.w. backgrounds possessing specific statistical
properties, amplitudes, spectral indices, etc. Then, we
worked out, essentially from first principles, a theory of
CMB anisotropies induced by relic gravitational waves.
Some parts of this theory are rederivations and confirma-
tions of previous studies, some parts are new. The impor-
tant advantage of our approach, as we see it, is a
transparent physical picture. We believe we have demon-
strated in the paper that every detail of the derived corre-
lation functions is under full analytical control. Clear
understanding of the participating physical processes has
led us to the conclusion that the TE correlation in CMB can
be a valuable probe of relic gravitational waves. We com-
pared our theoretical findings with the WMAP data. We
believe that the TE anticorrelation detected by WMAP at
‘ � 30 is certain evidence for relic gravitational waves in
the already available data. We propose more accurate ob-
servations of the TE correlation at lower ‘’s and believe
that these observations have the potential of providing a
firm positive result.

APPENDIX A: POLARIZATION STATES AND
RANDOMNESS OF GRAVITATIONAL WAVES

As stated above, the quantities jh
s

n���j
2 describe the

magnitude of the mean-square fluctuations of the g.w. field
in the corresponding polarization states s. We consider a
particular mode n of the field:

 hij�n; �;x� �
X
s�1;2

p
s
ij�n��h

s

n���ein
xc
s

n

� h
s

n


���e�in
xc

s

n�: (A1)

The lowest-order independent g.w. correlation functions
amount to
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FIG. 14 (color online). The summary of CMB temperature and
polarization anisotropies due to relic gravitational waves with
n � 1:2 and R � 1.
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FIG. 13 (color online). The dashed line shows the best fit �CDM model without gravitational waves. The solid line shows a model
with spectral index n � 1:2 and gravitational waves R � 1.
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 hhij�n; �;x�p
s ij
�n�hkl�n0; �;x0�p

s0 kl
�n0�i

� 8jh
s

n���j2�ss0��3��n� n0�: (A2)

The action of the random g.w. field (A1) on free particles
leads to their relative oscillatory motion. We refer this
motion to a local inertial frame. Let a ring of free particles
to lie in the �l;m�-plane; the ring encircles the axis n.
Then, the mean-square amplitude of oscillations in the ’�’

polarization state is determined by jh
1

nj
2, whereas the

mean-square amplitude of oscillations in the ’�’ polariza-

tion state is determined by jh
2

nj
2. In general, the random

gravitational-wave field can be such that the oscillation

amplitudes jh
1

nj
2 and jh

2

nj
2 are different. But if jh

1

nj
2 �

jh
2

nj
2, then the (averaged) observed picture of oscillations

is not symmetric with respect to rotations around n.
Formally, the correlation functions of the field with

jh
1

nj
2 � jh

2

nj
2 do not have symmetry with respect to the

change of polarization basis. Indeed, the transition to the
primed basis according to Eq. (7) brings the gravitational-
wave mode (A1) to the form

 hij�n; �;x� �
X
s�1;2

p
s 0
ij�n��b

s

n���e
in
x � b

s 

n���e
�in
x�;

where
 

b
1

n��� � cos2 h
1

n���c
1

n � sin2 h
2

n���c
2

n;

b
2

n��� � � sin2 h
1

n���c
1

n � cos2 hn
2

n���c
2

n:

Taking into account the relationships (16), we can now
derive the correlation functions for the new polarization
components:
 

hb
1

nb
1 

n0 i � �jh
1

nj
2cos22 � jh

2

nj
2sin22 ���3��n� n0�;

hb
2

nb
2 

n0 i � �jh
1

nj
2sin22 � jh

2

nj
2cos22 ���3��n� n0�;

hb
1

nb
2

n0 i � ��jh
1

nj
2 � jh

2

nj
2� sin2 cos2 ��3��n� n0�:

(A3)

It is seen from (A3) that, in general, the  -dependence
survives, and the assumption of statistical independence of
polarization components in one basis is not equivalent to
this assumption in another basis. However, one recovers
the original correlation functions (A2) from (A3) if the
conditions (18) are fulfilled.

Similar properties hold true for circular polarizations. A
g.w. mode hij�n; �;x� expanded over circular polarization
states is given by

 hij�n; �;x� � �hij�n; �;x� � �hij�n; �;x�;

where

 

�h ij�n; �;x� �
X
s�L;R

p
s
ij�n�h

s

n���e
in
xc

s
n: (A4)

We assume that the complex random coefficients c
s

n �s �
L;R�, satisfy the statistical conditions (16).

The relevant independent correlation functions are cal-
culated to be
 

h �hij�n; �;x�p
s ij
�n� �hkl�n

0; �;x0�p
s0 kl
�n0�i

� 4jh
s

n���j2�ss0��3��n� n0�; �s � L;R�: (A5)

If the observer views the motion of test particles from the
�n direction, i.e. against the direction of the incoming

gravitational wave, the function jh
R

n���j2 is responsible for
the mean-square amplitude of the right-handed (clockwise)

rotations of individual particles. The function jh
L

n���j2 is
responsible for the left-handed (counter-clockwise) rota-
tions. (For more details about the motion of free particles in
the field of gravitational waves, see [41].)

Expansion (A4) preserves its form under transforma-

tions (21), if one makes the replacements: h
L0

n � L
h

nei2 ,

h
R0

n � h
R

ne�i2 . Therefore, the correlation functions (A5) do

not change, regardless the value of the amplitudes jh
s

n���j2

�s � L;R�. On the other hand, discrete transformations

(22) generate the replacements: h
L0

n � h
R

n, h
R0

n � h
L

n.
Therefore, the sense of correlation functions (A5) changes
from L to R and vice versa. The symmetry between left and
right is violated, unless the conditions (23) are fulfilled.

APPENDIX B: ASTROPHYSICAL PREREQUISITES

1. Ionization history

The ionization history of the Universe enters our equa-
tions through the density of free electrons Ne���, i.e.
electrons available for Thompson scattering. Specifically,
we operate with the quantity q���:

 q��� � �Ta���Ne���: (B1)

The optical depth � between some instant of time �0 and a
later instant � is defined by the integral

 ���;�0� �
Z �

�0
d�00q��00�:

The optical depth from some � to the present time �R is
denoted ���� and is given by

 ���� � ���R; �� �
Z �R

�
d�0q��0�:

It follows from the above definitions that ���;�0� �
���0� � ����.
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A key role in our discussion is played by the quantity
g��� called the visibility function:

 g��� � q���e����� �
d
d�

e�����;
Z �R

0
g���d� � 1

The state of ionization is determined by microphysical
processes during all the evolution of the Universe [58,59].
For our purposes it is sufficient to focus on two eras: early
recombination and late reionization. The recombination of
primordial plasma into atomic hydrogen and helium is
accompanied by decoupling of CMB radiation from the
rest of matter. (For simplicity, we do not distinguish here
the notions of recombination and decoupling.) This rela-
tively quick process has happened at redshifts around
zdec � 1100. Much later, at redshifts around zreion � 10
[9] the intergalactic medium has become ionized again,
presumably, by ionizing radiation of first condensed
objects.

The density of free electrons is modeled [60] by the
expression

 Ne��� �
�

1�
Yp
2

�
Xe����b�c

mp

�
a��R�
a���

�
3
;

where Yp � 0:23 is the primordial helium mass fraction,
Xe��� is the fraction of ionized electrons, �b is the baryon
content, and mp is the mass of a proton. In the framework
of linear perturbation theory it is sufficient to regard the
electron density as homogeneous, i.e. depending only on
�. For Xe��� we use the fitting formula [61]:

 

Xe��� �
�

1�
Yp
2

�
�1
�
c2

1000

�� mp

2�TlH�c

�
�c1�1
b

�
z

1000

�
c2�1

�

�
a0

a

�
�1� z��1; (B2)

where c1 � 0:43, c2 � 16� 1:8 ln�B, and z is a redshift.
As for the reionization, we assume that it was practically

instantaneous and happened at a redshift zreion � 16. The
function Xe is determined by Eq. (B2) for z > zreion and
Xe � 1 for z � zreion.

To plot the graphs for q���, ���� and g��� in Fig. 15, we
use the above-mentioned parameters and �b � 0:046
[8,18]. It is seen from Fig. 15 that the visibility function
g��� is sharply peaked at the era of recombination. The
peak can be characterized by the position of its maximum
�dec, and the characteristic width ��dec. A similar, but less
pronounced, peak is present also at the era of reionization.

2. Frequency dependence of the stokes parameters

As is seen from Eq. (46), the frequency dependence of
both, temperature and polarization, anisotropies is gov-
erned by the function f�~
� [33]. We assume that the
unperturbed radiation field has a black-body spectrum,

 n0�~
� �
1

exp�h~
=k~T� � 1
;

where ~T � Ta��� and the present-day value of T is
T��R� � 2:73 K.

It follows from these formulas that f�~
� is approxi-
mately 1 in the Reyleigh-Jeans part of the spectrum, and
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FIG. 15 (color online). The graphs (a), (b), (c) show the quantities q���, ����, g���. The graph (d) is a zooming of g��� in the region
of recombination. The dashed line shows a model without reionization. The solid line takes reionization into account, with �reion � 0:1.
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f�~
� varies as h~
=k~T in the Wein part. In practice, we are
usually interested in the total intensity, i.e. Stokes parame-
ters integrated over all photon frequencies. This integration
produces the factor :

  �
Z
d~

h~
3

c2 n0�~
�f�~
� � �4I0; (B3)

where I0 �
R
d~
 h~
3

c2 n0�~
� is the total intensity of the un-
perturbed radiation field. The factor  often appears in the
main text of the paper.

APPENDIX C: TWO ESSENTIAL VARIABLES FOR
TEMPERATURE AND POLARIZATION

It is seen from Eq. (48) that the frequency dependence of
n̂�1� is determined by the factor f�~
�n0�~
�. Therefore, we
can single out this factor and write

 n̂ �1���; ~
;�;	� �
1

2
f�~
�n0�~
�n̂�1���;�;	�:

The equation that follows from (48) and (49) reads

 

�
@
@�
� q��� � in�

�
n̂�1���;�;	� � �1��2�e	2i	 dhn

d�
û�

q���
4�

Z �1

�1

Z 2�

0
d�0d	0P̂��;	;�0; 	0�n̂�1���;�0; 	0�:

(C1)

The quantity n̂�1���;�;	� as a function of 	 can be expanded in a series

 n̂ �1���;�;	� �
X�1

m��1

n̂�1�m ��;��eim	: (C2)

The explicit structure of the Chandrasekhar matrix P̂��;	;�0; 	0� is given by the expression [29] (equation (220) on
p. 42):

 P̂��;	;�0; 	0� � Q�P�0� � �1��2�1=2�1��02�1=2P�1� � P�2��;

where matrices Q, P�0���;�0�, P�1���;	;�0; 	0�, P�2���;	;�0; 	0� read
 

Q �

1 0 0

0 1 0

0 0 2

0BB@
1CCA;

P�0� �
3

4

2�1��2��1��02� ��2�02 �2 0

�02 1 0

0 0 0

0
BB@

1
CCA;

P�1� �
3

4

4��0 cos�	0 �	� 0 �2� sin�	0 �	�

0 0 0

2�0 sin�	0 �	� 0 cos�	0 �	�

0
BB@

1
CCA;

P�2� �
3

4

�2�02 cos2�	0 �	� ��2 cos2�	0 �	� ��2�0 sin2�	0 �	�

��02 cos2�	0 �	� cos2�	0 �	� �0 sin2�	0 �	�

��02 sin2�	0 �	� �� sin2�	0 �	� ��0 cos2�	0 �	�

0BB@
1CCA:

The structure of the Chandrasekhar matrix
P̂��;	;�0; 	0� is such that it does not mix the
m	-dependence, that is,

 

1

4�

Z �1

�1

Z 2�

0
d�0d	0P̂��;	;�0; 	0�n̂�1�m ��;�0�eim	

0

� eim	:

Moreover, this integral vanishes for all jmj> 2. This
means that Eq. (C1) is a homogeneous differential equation

for all n̂�1�m with m � 	2. Assuming zero initial conditions
at some initial �, we obtain n̂�1�m � 0 for all m � 	2.
Hence, we are left with three functions of ��;��:

 n̂ �1���;�;	� � n̂�1���;��e	2i	: (C3)

We are now able to show that only two out of the three
functions n̂�1���;�� are independent. Indeed, using (C3) in
Eq. (C1) we arrive at a system of three linear equations for
the components of n̂�1���;��:
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�
@
@�
� q��� � in�

� n̂1��;��
n̂2��;��
n̂3��;��

0@ 1A

� �1��2�
dhn
d�

1
1
0

0@ 1A� 3

8
q���

�2

�1
	2i�

0B@
1CAI���; (C4)

where I��� is the remaining integral that was left over
from the last term in Eq. (C1):

 I ��� �
1

2

Z �1

�1
d�0��02n̂1��;�

0� � n̂2��;�
0�

	 i�0n̂3��;�
0��: (C5)

Despite the complicated appearance, only two of the
three Eqs. (C4) are really coupled. Indeed, making linear
combinations of Eqs. (C4) it is easy to show that the
combination 2i��n̂1 � n̂2� � �1��

2�n̂3 satisfies a homo-
geneous differential equation. Assuming zero initial con-
ditions, we derive

 2i��n̂1 � n̂2� � �1��
2�n̂3 � 0:

As two independent and essential variables we choose

 ���;�� �
n̂1��;�� � n̂2��;��

�1��2�
;

���;�� �
n̂1��;�� � n̂2��;��

�1��2�
� 	

n̂3��;��
2i�

:

In terms of � and � equations of radiative transfer reduce
to Eq. (51) and (52), and the definition (C5) for I��� takes
the form of Eq. (53).

Although we have considered a gravitational-wave per-
turbation, the existence of only two essential variables is a
general statement and it applies to density and rotational
perturbations as well. In general, the perturbed radiative
transfer equation contains an arbitrary function f��;�;	�
in front of û, rather than a specific combination
�1��2�e	2i	dhn=d� quoted in Eq. (C1). Function
f��;�;	� can be expanded in a series similar to Eq. (C2):

 f��;�;	� �
X�1

m��1

fm��;��eim	:

Since the scattering integral (second term in the r.h.s of
Eq. (C1)) vanishes for all jmj> 2, the functions n̂�1�m ��;��
are fully determined by fm��;�� (jmj> 2) and describe
the temperature variations only. To discuss polarization, we
have to consider three remaining cases m � 0, 	1, 	2.

The explicit identification of the two essential variables
���;�� and ���;�� for the case m � 	2 has been given

above. Specifically for gravitational waves, f2 �

�1��2�dh
L

n���=d�, f�2 � �1��2�dh
R

n���=d�.
The identification of the two essential variables for the

case m � 0 proceeds in a similar manner. Having calcu-

lated the scattering integral for m � 0 one can show that
the equation, analogous to Eq. (C4), will now read

 

�
@
@�
� q��� � in�

� n̂1��;��
n̂2��;��
n̂3��;��

0@ 1A

� �f0��;�� � q���I
�1�
0 ����

1
1
0

0@ 1A� 3

8
q���

�
3�2 � 2

1
0

0B@
1CAJ ���;

where

 

I�1�0 ��� �
1

4

Z �1

�1
d�0�n̂1��;�0� � n̂2��;�0��;

J ��� �
1

3

Z �1

�1
d�0��3�02 � 2�n̂1��;�

0� � n̂2��;�
0��:

Obviously, n̂3 satisfies a homogeneous equation and can be
put to zero. Specifically for density perturbations (see
Appendix D), function f0��;�� consists of terms repre-
senting gravitational-field perturbations and the Doppler
term arising due to the baryon velocity:

 f0��;�� �
1

2

�
dh
d�
��2 dhl

d�
� iq����vb���

�
:

We have checked that in the case m � 	1 the problem
also reduces to only two essential variables. The combina-
tion n̂1 � n̂2 � i�n̂3 vanishes at the zero initial data.

APPENDIX D: TEMPERATURE AND
POLARIZATION ANISOTROPIES CAUSED BY

DENSITY PERTURBATIONS

To discover relic gravitational waves in the CMB data
we have to distinguish their effects from the effects of
density perturbations. The theory of temperature and po-
larization anisotropies caused by primordial density per-
turbations is very much similar to the theory of relic
gravitational waves. We start from the metric Fourier
expansion (10) with the polarization tensors (9). Having
derived and solved integral equations of radiative transfer
in the presence of density perturbations, we arrive at our
final goal of distinguishing the TE cross-correlations.

1. Radiative transfer equations

The equations of radiative transfer in the presence of a
single mode n of density perturbations are similar to
Eq. (48) and read
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; ei�
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�n0�~
�
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�
eiejp

s
ij�n�

dh
s
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� q���eivi

�
û

�
q���
4�

Z
d�0P̂�ei; e0j�n̂�1�n ��; ~
; e0j�; (D1)

where the extra term eivi takes care of the movement of
scattering electrons with respect to the chosen synchronous
coordinate system [62–64].

For technical reasons, it is convenient to work with the
‘‘scalar’’ h��� and ‘‘longitudinal’’ hl��� polarization mode

functions, instead of the original h
s

n��� [65]. The relation-
ship between them is

 h
1
n��� �

���
3

2

s
�h��� � hl����; h

2

n��� �

���
1

3

s
hl���;

where the wave number index n on h��� and hl��� is

implicit. Both polarization components of metric perturba-
tions participate in Eq. (D1). In the frame associated with
the density wave, i.e. for n=n � �0; 0; 1�, the structures
eiejp

s
ij (see Eq. (9)) and eivi � �i�vb depend on � �

cos�, but not on the azimuthal angle 	.
By argumentation similar to that in Appendix C, one can

show that a solution (not vanishing on zero initial data) to
Eq. (D1) must have the form

 

n̂�1�n ��; ~
;�� �
f�~
�n0�~
�

2

264�n��;��
1

1

0

0BB@
1CCA

� �n��;��

1

�1

0

0
BB@

1
CCA
375: (D2)

Substituting Eq. (D2) into Eq. (D1) we arrive at a system of
coupled equations for � and �

 �
@
@�
� q��� � in�

�
�n��;�� �

1

2

�
dh
d�
��2 dhl

d�

�
� q���

�
I1 � i�vb �

1

2
P2���I2

�
; (D3a)�

@
@�
� q��� � in�

�
�n��;�� �

1

2
q����1� P2����I2; (D3b)

where

 

I1��� �
1

2

Z �1

�1
d��n��;��; (D4a)

I2��� �
1

2

Z �1

�1
d���1� P2�����n��;�� � P2����n��;��� (D4b)

The quantity I1 is the monopole component of the perturbed radiation field, whereas I2 is the quadrupole (‘ � 2)
component, responsible for the generation of polarization.

To make contact with previous work we note that the variables � and � are closely related to the variables �T and �P
from Ref. [31]. Assuming a black body unperturbed radiation field, we have �T � ��, �P � ��. We also note that the
mode functions h and hl are related to the mode functions h and � used in [31,64] by h � �2�, hl � ��h� 6��. Keeping
in mind the difference in notations, one can verify that Eqs. (D3a) and (D3b) are equivalent to equations (11) in Ref. [31].

2. Integral equations and their solutions

A formal solution to Eqs. (D3a) and (D3b) can be written as

 

�n��;�� �
Z �

0
d�0e����;�

0��in�����0�
�

1

2

�
dh
d�
��2 dhl

d�

�
� q

�
I1 � i�vb �

1

2
P2���I2

��
; (D5a)

�n��;�� �
1

2
�1� P2����

Z �

0
d�0e����;�

0��in�����0�I2: (D5b)

Proceeding in a manner similar to that in Sec. IV, we substitute (D4a) and (D5b) into (D4a) and (D4b). After certain
rearrangements we arrive at two coupled integral equations for I1 and I2:
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I1��� �
Z �

0
d�0q��0�e����;�

0�

�
I1��0�j0�x� �

1

2
I2��0�j2�x�

�

�
Z �

0
d�0e����;�

0�

�
1

2

�
dh
d�0

j0�x� �
dhl
d�0

d2j0

dx2

�
� q��0�vb��

0�j1�x�
�
; (D6a)

I2��� �
Z �

0
d�0q��0�e����;�

0�

�
I1��

0�j2�x� � I2��
0�

��
18

x2 �
1

2

�
j2�x� �

3

2x
j1�x�

��

�
Z �

0
d�0e����;�

0�

�
1

2

�
dh
d�0

j2�x� �
dhl
d�0

�
j2�x� � 3

d2j0

dx2

��
� q��0�vb��0�

dj2

dx

�
; (D6b)

where the argument of spherical Bessel functions j‘�x� is
x � n��� �0�.

Eqs. (D6a) and (D6b) together with the continuity equa-
tions for matter perturbations and Einstein equations for
metric perturbations (see for example [64,65]), form a
closed system of coupled integro-differential equations.
In previous treatments [31,63,64], the radiative transfer
equations were presented as an infinite series of coupled
ordinary differential equations.

Similarly to what was done in Sec. IV B, we can analyze
Eqs. (D6a) and (D6b) in terms of expansions in powers of
n,

 I 1 �
X1
k�0

I �k�1 n
2k; I2 �

X1
k�0

I �k�2 n
2k: (D7)

The kernels of Eqs. (D6a) and (D6b) are expanded in
powers of x. In the long-wavelength approximation, i.e.
for x� 1, we can limit ourselves by first nonvanishing
terms. The zero-order approximation brings us to the equa-
tions

 I �0�1 ��� �
Z �

0
d�0q��0�e����;�

0�I �0�1 ��
0�

�
Z �

0
d�0e����;�

0�

�
1

2

�
dh
d�0
�

1

3

dhl
d�0

�

�
1

3
q��0�vb��

0�x
�
;

I �0�2 ��� �
7

10

Z �

0
d�0q��0�e����;�

0�I �0�2 ��
0� �

1

15

�
Z �

0
d�0e����;�

0�

�
�
dhl
d�0
� 2q��0�vb��

0�x
�
:

The solution to these equations is given by
 

I �0�1 ��� �
Z �

0
d�0

�
1

2

�
dh
d�0
�

1

3

dhl
d�0

�

�
1

3
n
Z �0

0
d�00q��00�e����

0;�00�vb��
00�

�
; (D8a)

I �0�2 ��� �
1

15

Z �

0
d�0e��3=10����;�0�

�

�
�
dhl
d�0
� 2n

Z �0

0
d�00q��00�e����

0;�00�vb��00�
�
:

(D8b)

3. Multipole coefficients

We are mostly interested in the present-day values of �
and � and, hence, we put � � �R in (D5a) and (D5b).
Irrespective of approximation in which the functions
I1���, I2��� are known, the multipole coefficients for
the radiation field can be found in a way similar to that
in Sec. V:

 aT‘m�n� � ��i�
‘

������������������������
4��2‘� 1�

p
�m0aT‘ �n�;

aE‘m�n� � ��i�
‘

������������������������
4��2‘� 1�

p
�m0aE‘ �n�; aB‘m�n� � 0;

where aT‘ �n�, a
E
‘ �n� are given by

 

aT‘ �n� �
Z �R

0
d�

�
e��

�
1

2

dh
d�
�

1

2

dhl
d�

d2

d�2

�

� g���
�
I1 � vb

d
d�
�

3

4
I2

�
1�

d2

d�2

���
j‘���;

(D9a)

aE‘ �n� �
3

4

�
�‘� 2�!

�‘� 2�!

�
1=2 Z �R

0
d�g���I2

j‘���

�2 ; (D9b)

and � � n��R � ��. As expected, in the case of density
perturbations all a‘m � 0 for m � 0 and aB‘m�n� � 0,
[31,32,66,67]. The formal reason for this is that all quan-
tities in (D2) do not depend on 	 (A more detailed ex-
position can be found in [31,32]).

Let us start from the temperature multipoles. For illus-
tration, we consider an instantaneous recombination. We
replace e�� with the step function, g��� with the
�-function, and we neglect the I2 term. Then, we get

 

aT‘ �n� �
��

I1 � vb
d
d�

�
j‘���

������������dec

�
1

2

Z �R

�dec

d�
�
dh
d�
�
dhl
d�

d2

d�2

�
j‘���:

This expression can be further simplified by taking the
remaining integral by parts. After some rearrangements
we arrive at the final expression
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aT‘ �n� �
�

1

2n2

d2hl
d�2 �‘0 �

1

6n
dhl
d�

�‘1

������������R

�

��
�

1

2n2

d2hl
d�2 � I1 �

�
�

1

2n
dhl
d�
� vb

�
d
d�

�

� j‘���
������������dec

�
1

2

Z �R

�dec

d�
�
dh
d�
�

1

n2

d3hl
d�3

�
j‘���: (D10)

For the growing mode of density perturbations in the
matter-dominated era, the integrand of the remaining in-
tegral vanishes. If, in addition, the intrinsic temperature
perturbation I1 and the plasma velocity vb are zero at � �
�dec, we recover from Eq. (D10) the four terms of the full
Sachs-Wolfe formula (43) in Ref. [68]. We would like to
note in passing that the origin of the often used, including
this paper, combination ‘�‘� 1�C‘ is in fact a historical
accident, when a wrong motivation leads to a convenient
notation. This combination arises in the essentially incor-
rect formula ‘�‘� 1�C‘ � const that can be derived after
the unjustified neglect of three out of four terms in the
original Sachs-Wolfe formula (43) in Ref. [68]. This clari-
fication is important not only by itself, but also for correct
physical interpretation of reasons for the rise toward the
‘‘first peak’’ at ‘ � 220 of the actually observed function
‘�‘� 1�C‘. For more details, see [69].

We now turn to polarization anisotropies. We use the
zero-order approximation (D8b) in (D9b),

 aE‘ �
1

20

�
�‘� 2�!

�‘� 2�!

�
1=2 Z �R

0
d�qe��7=10�� j‘���

�2

�
Z �

0
d�0e��3=10����0�

�
�
dhl
d�0

� 2n
Z �0

0
d�00q��00�e����

0;�00�vb��00�
�
:

As g��� is a narrow function, the integrand is localized
near � � �dec. By the same argumentation that was used
in Sec. VI B, the above expression can be reduced to
quantities evaluated at � � �dec,

 

aE‘ �n��
1

20

�
�‘�2�!

�‘�2�!

�
1=2
�
j‘���
�2

�
�
dhl
d�

��2nvb ~�
�������������dec

;

(D11)

where the factors � and ~� are of the order of the width of
g��� in the recombination era. Explicitly, they are given by

 � �
Z �R

0
d�g���

Z �

0
d�0e��3=10����;�0�;

~� �
Z �R

0
d�g���

�
Z �

0
d�0e��3=10����;�0�

Z �0

0
d�00q��00�e����

0;�00�:

The angular power spectra in the case of density pertur-
bations are described by formulas analogous to (86). By the
steps similar to those in Sec. V C it can be shown that the
power spectra are given by

 CXX
0

‘ �
C2

�

Z
ndnaX‘ �n�a

X0
‘ �n�; (D12)

where C for density perturbations is C �
���������
24�
p

lPl.

4. Temperature-polarization correlations

We focus on the TE correlation at the relatively small
multipoles, ‘ & 70. The dominant contribution to these
multipoles comes from density perturbations that did not
enter the Hubble radius at recombination, n & 70. It is
sufficient to consider the early time evolution of these
perturbations in the matter-dominated era.

Restricting our analysis to the growing mode, we write
for the metric and matter perturbations (see, for example,
[65]):

 h��� � Bn � const; hl��� � Bn�n��
2;

I �0�1 �
�T
T
� �

2

3
Bn�n��

2; vb � �
2

9
Bn�n��

3:

Substituting this solution into (D10) and (D11) and taking
into account only the lowest-order terms in n (the long-
wavelength approximation) we arrive at
 

aT‘ � �Bnj‘���j���dec
; (D13a)

aE‘ � �
1

10
n2Bn�dec�

�
�‘� 2�!

�‘� 2�!

�
1=2
�
j‘���

�2

������������rec

:

(D13b)

Finally, from Eq. (D12) we obtain for the TE correlation:

 CTE‘ �
C2

�
�dec�

10

�
�‘� 2�!

�‘� 2�!

�
1=2 Z

dnn3B2
n

�
j‘���
�

�
2
�����������dec

:

(D14)

All terms in the above expression are strictly positive.
Therefore, the TE correlation caused by density perturba-
tions, in contrast to the case of gravitational waves, must be
positive at lower multipoles ‘ & 50 where our approxima-
tions are still valid. As mentioned before, this difference
between gravitational waves and density perturbations
boils down to the difference in the sign of first time-
derivative of the associated metric perturbations.
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