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Abstract: This study proposes a new fuzzy logic control (FLC) design-based I controller plus a
Fuzzy Cascade FOPI-FOPD (I + F C FOPI-FOPD) for load frequency control (LFC) in power systems.
The structure of this design offers a satisfactory level of reliability as well as excellent robustness
performance. The proposed fuzzy design is employed in a hybrid dual area power system based
on a photovoltaic renewable energy plant in area one and a thermal generation unit in area two.
In order to achieve the best possible dynamic performance of the proposed structure, the teaching
learning-based optimization (TLBO) algorithm is suggested to optimally tune the scaling factor
gains of the proposed fuzzy configuration. The superiority of the suggested fuzzy control design
is investigated by conducting a comparative study between this design and a previously applied
PI-based firefly algorithm. Simulation results revealed that the fuzzy logic controller introduced in
this study is reliable and superior, and appropriately handled the problem of frequency variation.

Keywords: fuzzy logic control (FLC); load frequency control (LFC); dual area power system; teaching
learning-based optimization (TLBO)

1. Introduction

Modern power systems are becoming more reliant on renewable energy resources
(RERs). The dependence on RERs is mainly due to the continuous increments in the
prices of fossil fuels in addition to avoiding the emission of greenhouses gases and its
obvious link to the global warming dilemma. Moreover, the fact of the increasing power
demand in today’s world means there is a requirement for a huge number of different
generating units to interconnect through existing transmission lines called tie-lines to meet
the increasing power consumption; this also leads to the adoption of hybrid power systems
where electrical networks rely on RERs along with the traditional power resources. The
RERs used in interconnected power systems may be photovoltaic (PV), wind turbine (WT),
energy storage system, fuel cell (FC) with electrolyser and battery. Solar and wind energy
resources have been considered the most commonly used in power systems among the
various RERs. However, many modern power systems remain reliant on thermal generation
to meet the demands of end users. This gives an obvious idea of the vital role that thermal
units play in power systems in addition to the continued increase in RERs reliance [1].

From a control engineering point of view, ensuring the stable and reliable operation
of modern power systems is one of the most challenging processes. This is due to the
continuous increase in their size, which in turn leads to more complexity in addition to
having to consider the external/internal disturbances that power systems unpredictably
experience.

Furthermore, load demand in most power systems is continually changing and this
change leads to consequences of a deviation in frequency and tie-line power flow and, in

Eng. Proc. 2022, 19, 1. https://doi.org/10.3390/ECP2022-12684 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/ECP2022-12684
https://doi.org/10.3390/ECP2022-12684
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-9904-434X
https://ecp2022.sciforum.net
https://doi.org/10.3390/ECP2022-12684
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ECP2022-12684?type=check_update&version=1


Eng. Proc. 2022, 19, 1 2 of 7

turn, requires a similar change in the generation side. Accordingly, the mismatch between
the demanded power and the generated power is the reason for the frequency and tie-line
power deviations throughout the whole power system. Importantly, in stable, secure and
reliable power systems, the frequency and tie-line power flow are maintained in their pre-
specified limits in normal operating conditions as well as in case of a sudden disturbance
occurrence, which is achieved by balancing the active power output of the generated power
and the requested demand plus the possible losses. This control mechanism is called load
frequency control (LFC). As a result of installing this loop-LFC in power systems, frequency
and tie-line power deviations are guaranteed to be always zero or within acceptable limits.
Based on this, an improper LFC system design may undermine the overall behaviour of
the controlled system causing undesired fluctuations in frequency and tie-line flow, which
in turn may lead to system instability [2].

Due to the above-mentioned issues, incorporating LFC in power systems based on
different generating sources has become the most significant research area to focus on. To
overcome this issue, many researchers presented different approaches to simulate LFC
integrated into different power systems. Traditional control techniques, robust control
methods, sliding mode control and artificial controllers have been applied in this field.
In [3], a PI controller-based firefly optimization algorithm was designed and implemented
for LFC in a dual area interconnected power system incorporating a PV system. A PI
controller tuned by the Harris Hawks optimizer-based LFC in two different power systems
with RERs was successfully implemented to regulate the frequency in the case of sudden
load disturbance [4]. A movable damped wave algorithm tuned Fractional Order (FO)
PID was equipped as an LFC system in two and four area interconnected power systems
with PV and WT plants, and the FOPID-based proposed algorithm outperformed the same
controller tuned by other optimization techniques [5]. Another application of a FOPID in
LFC for power systems with RERs was suggested in [6]; in this study, a modified hunger
games search optimizer was proposed to find the optimal values of the FOPID’s gains.
An adaptive PI-based LFC system installed in two different dual area power systems was
proposed in [7]; the suggested controller evidenced its superiority over the traditional PI.
LFC-based sliding mode control (SMC) was proposed in [8] for a hybrid power system
incorporating WT and energy storage systems. A new SMC based on the disturbance
observer was suggested in [9] for LFC in a hybrid power system considering the presence
of WT, system parametric uncertainty and non-linear restraints. A linear matrix inequality-
based particle swarm (PSO) optimization algorithm was proposed in [10] to stabilize the
frequency in a power system with different energy resources. A model predictive control
approach was also proposed for frequency stabilization in a hybrid power system consisting
of different plants including WT [11].

Notably, in recent years, LFC-based fuzzy logic control has received considerable
attention. This is due to the wide range of merits offered by this controller. Furthermore,
soft computing techniques have been exploited to achieve the best possible dynamic
performance of FLC. Fuzzy PID with a filtered derivative action optimized by the Bees
algorithm has been successfully implemented as an LFC system in a simplified form of the
Great Britain power system [12]. Different fuzzy structures were proposed in [13] to damp
the frequency/tie-line power variations in a two-area power system. In this study, the
proposed fuzzy PI plus Fuzzy PD illustrated a slight supremacy over the other investigated
configurations. A fuzzy cascade FOPI-FOPD-based PSO for LFC purposes in a multi-
area electrical system was studied in [14]. Another application of FLC-based frequency
regulation was investigated in [15]; in this study the proposed controller was installed in
a two-area multi-source power system with a PV unit, WT and redox flow battery, and
successfully damped the frequency deviation under various operating conditions. In [16],
an adaptive fuzzy FOPID was implemented for LFC in the renewable penetrated electrical
power network.

Notwithstanding the fact that the above-mentioned techniques have different merits
and successfully solved the problem of frequency deviation to a great extent, it is note-
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worthy to mention the limitation of installing these techniques in power systems. For
example, the traditional controllers are known not to provide the required response when
the controlled system undergoes possible operating conditions of non-linearities or high
sensitivity. However, the low cost is the main advantage of classical controllers. In terms
of other controllers such as adaptive control and SMC, although they offer an effective
performance as LFC systems, the complexity in their design and high computational time
and burden are known as the most common limitations. Furthermore, some useful studies
have proposed and applied different structures of fuzzy control for frequency regulation;
however, most of these techniques lack the consideration of reliability in the design.

Therefore, the authors of this paper propose a novel FLC configuration that guaran-
tees a high level of reliability for LFC in a dual area power system incorporating a PV
unit. The suggested technique is an I controller plus Fuzzy Cascade FOPI-FOPD (I + F C
FOPI-FOPD). Moreover, to obtain the best performance from the suggested controller, a
well-known/powerful optimization tool called the teaching learning-based optimization
algorithm is used in this work to optimally set the parameters of the proposed I + F C FOPI-
FOPD. Furthermore, the strong performance of this controller is evidenced by comparing
the results with those based on the PI optimized by the firefly algorithm studied in [3].

2. Power System under Study

In this study, a two-area interconnected power system is considered to demonstrate
the effectiveness of the proposed fuzzy controller for LFC purposes.

As shown in Figure 1, this system consists of a PV plant equipped in area one and a thermal
unit installed in area two. This system has extensively been used in the literature [3,7]. The
values of the parameters of the investigated system are as follows

C1 = −18, C2= 900, C3= 100, C4= 50
Tg= 0.08, Tt= 0.18, Kr= 3.3, Tr= 10, Kp= 120, Tp= 20 and T = 0.545.
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3. The Proposed LFC System

As above-mentioned, this study develops and implements a new fuzzy configuration
in order to achieve the required level of reliability.
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3.1. I Controller Plus Cascade Fuzzy FOPI-FOPD

Figure 2 demonstrates the structural diagram of the proposed controller. This con-
troller comprises two parts; a fuzzy cascade FOPI-FOPID enhanced with a classical I
controller. As is obvious, the fuzzy part has two inputs: “the Area Control Error (ACE)
and change of ACE” in addition to one output. The output signal of the fuzzy controller
is connected with the input of the FOPI. However, the input signal of the latter controller
“FOPD” is the output signal of the FOPI in addition to the ACE signal. Finally, the output
signal of FOPD is added to the output of the classical I, which in total represent the control
signal of the proposed controller. The rule bases of the fuzzy controller are given in Table 1,
while the membership function of the inputs and the output are illustrated in Figure 3.
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3.2. The Optimisation Tool-TLBO and the Objective Function

In order to enhance the performance of the proposed LFC system, the values of its
parameters are found by employing the TLBO by minimizing the Integral Time Absolut
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Error (ITAE) of the frequency deviation in both areas and the tie-line power fluctuation (see
Equation (1)). The mechanism and the variants of the suggested TLBO are given in [17].

Objective Function = ITAE =
∫ t

0
(|∆F1|+ |∆F2|+ |∆Ptie|).t. dt (1)

4. Results and Discussion

The proposed controller is equipped in the system, with a controller in each area; then
a load disturbance of 0.1 pu is applied in area two. The optimal values of the controller
obtained by TLBO are given in Table 2. The frequency deviation in areas one and two and
the tie-line power fluctuation are given in Figures 4–6, respectively, in addition to Table 3.
Additionally, these figures provide a comparison between the results obtained via the
proposed fuzzy controller and the results from the PI tuned by FA. Figures 4–6 and Table 3
reveal the effectiveness and superiority of the proposed fuzzy controller. This controller
successfully met the requirements of LFC systems and provided excellent responses in
all aspects.
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Table 2. The optimum values of the I plus fuzzy C FOPI-FOPD.

Controller Parameters

Area one
controller

K1 K2 K3 KP11 KI1 λ1 KP12 KD1 µ1
0.284 0.7304 −1.9193 0.5200 0.4816 0.6971 −1.6179 0.7885 0.1499

Area two
controller

K4 K5 K6 KP21 KI2 λ2 KP22 KD2 µ2
−1.28 −0.1798 −2 −2 0.0409 0.1631 −1.6188 0.0142 0.2625

Table 3. The dynamic response of the system with the proposed controller.

Controller
Frequency in Area One Frequency in Area Two Tie-line Power Deviation

ITAE
Ushin pu Oshin pu Ts in s Ushin pu Oshin pu Ts in s Ushin pu Oshin pu Ts in s

I + F C
FOPI-FOPD −0.0835 0 5.697 −0.0751 0 5.9810 −0.0015 0.0052 3.3810 0.267

PI—FA −0.281 0.106 12.283 −0.210 0.0908 13.1132 −0.0382 0.0427 9.9657 4.192

5. Conclusions

Concisely, this paper developed and implemented a virgin fuzzy control structure
named I plus fuzzy cascade FOPI-FOPD employed as an LFC system in a dual area power
system incorporating a PV unit in area one. This controller significantly damped the
frequency deviation in both areas and also outperformed the previously proposed PI
controller-based FA.
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