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Deviations from the blackbody spectral energy distribution of the Cosmic Microwave Background
(CMB) are a precise probe of physical processes active both in the early Universe (such as those
connected to particle decays and inflation) and at later times (e.g. reionization and astrophysical
emissions). Limited progress has been made in the characterization of these spectral distortions after
the pioneering measurements of the FIRAS instrument on the COBE satellite in the early 1990s,
which mainly targeted the measurement of their average amplitude across the sky. Since at present
no follow-up mission is scheduled to update the FIRAS measurement, in this work we reanalyze the
FIRAS data and produce a map of µ-type spectral distortion across the sky. We provide an updated
constraint on the µ distortion monopole |⟨µ⟩| < 47 × 10−6 at 95% confidence level that sharpens
the previous FIRAS estimate by a factor of ∼ 2. We also constrain primordial non-Gaussianities
of curvature perturbations on scales 10 ≲ k ≲ 5× 104 through the cross-correlation of µ distortion
anisotropies with CMB temperature and, for the first time, the full set of polarization anisotropies
from the Planck satellite. We obtain upper limits on fNL ≲ 3.6× 106 and on its running nNL ≲ 1.4
that are limited by the FIRAS sensitivity but robust against galactic and extragalactic foreground
contaminations. We revisit previous similar analyses based on data of the Planck satellite and show
that, despite their significantly lower noise, they yield similar or worse results to ours once all the
instrumental and astrophysical uncertainties are properly accounted for. Our work is the first to
self-consistently analyze data from a spectrometer and demonstrate the power of such instrument
to carry out this kind of science case with reduced systematic uncertainties.

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) arguably represent the cornerstone of modern
cosmology. Over the last three decades, accurate mea-
surements of the CMB temperature and polarization
anisotropies have provided us with a snapshot of the
Universe at the time of recombination and have yielded
stringent constraints on the constituents, dynamics, and
geometry of the Universe [3, 10, 13, 45]. This pic-
ture is complemented by measurements of the intensity
spectrum of the CMB which directly probe the ther-
mal history of the Universe, providing access to addi-
tional cosmological information not encoded in the spa-
tial anisotropies [49, 76, 98]. In particular, departures
from a pure blackbody spectral energy distribution, the
so-called ”spectral distortions” (SD), open a special win-
dow on the physical processes active before recombina-
tion as well as at more recent times [e.g., 40].

SD naturally arise when thermalization is inefficient in
keeping matter and radiation in thermodynamical equi-
librium. Examples of mechanisms that can drive the pho-
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tobaryonic fluid out of equilibrium are dissipation of pri-
mordial acoustic waves and energy injections in the form
of photons or other electromagnetically-interacting par-
ticles (see e.g. [51, 71] and references therein for a recent
review). Based on their spectral shape, we can broadly
break down CMB SD into two classes: the µ- and y-type
distortions. At redshifts greater than zµ ≳ 2 × 106, the
creation and redistribution of photons by Compton scat-
tering, double Compton scattering, and bremsshtrahlung
restore thermal equilibrium and erase any SD. Between
5 × 104 ≲ z ≲ 2 × 106, when double Compton scat-
tering and bremsshtrahlung become inefficient, energy
injections result in a Bose-Einstein distribution with a
Universe effective chemical potential µ, giving rise to µ-
type distortions [e.g., 27, 94]. Around zµy ≲ 5 × 104

Compton scattering becomes inefficient too and photons
fall out of kinetic equilibrium with electrons, sourcing
the y-type distortions. In reality, the transition from the
µ- to the y-era is not abrupt and as a result, residual
distortions at intermediate times which cannot be fully
described by the sum of µ- and y-types (the so-called r-
type distortions) form. Their magnitude within ΛCDM
is however expected to be smaller than the sensitivity
of proposed future missions like PIXIE [e.g., 39]. The
SD sensitivity to different cosmic epochs not only allows
us to probe standard and exotic physics, but also the
power spectrum of primordial fluctuations over a broad
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range of scales, 1 ≲ k ≲ 104 Mpc−1. While y-type dis-
tortions are generated both in the early Universe and
during the reionization and structure formation epochs
[e.g., 60, 77, 88], µ-type distortions are only produced
in the Universe era, making them a clean and powerful
probe of the early Universe physics. For this reason, we
shall focus on the latter type of distortions in this paper.

Observational bounds on the monopole component of
these distortions have been set by COBE/FIRAS and are
at the level of |⟨µ⟩| < 90 × 10−6 and |⟨y⟩| < 15 × 10−6

(95% CL) [48, 76]. At lower frequencies than those cov-
ered by FIRAS, ARCADE [49] and TRIS [98] have more
recently carried out absolute measurements of the CMB
spectrum and derived similar constraints. Several follow-
up experiments like PIXIE, PRISM, BISOU, COSMO
[20, 66, 72, 75] have been proposed to improve absolute
measurements of the CMB spectrum.

Apart from the Sunyaev-Zel’dovich (SZ) distortion
sourced by galaxy clusters on arcminute scales [e.g.,
33, 77, 99], CMB SD are predicted to be isotropic sig-
nals in the simplest cosmological scenarios. There is,
however, an intriguing possibility. If the spectrum of
primordial perturbations is non-Gaussian, then a spatial
modulation of the SD will be induced, leading to a poten-
tially observable anisotropic pattern of the distortions, as
first discussed in Pajer & Zaldarriaga [84]. In particular,
the local-type non-Gaussianities which peak in the so-
called squeezed configuration1 correlate the small-scale
primordial power spectrum, traced by the SD, with the
long-wavelength modes probed, e.g., by primary CMB,
inducing a Universe cross-correlation between µ and T ,
E-, and B-modes [e.g., 22, 32, 46, 52, 82–84, 87]. As
such, a measurement of the spatial correlation between
the µ-type distortion and primary CMB anisotropies can
constrain the amplitude of primordial non-Gaussianity
(encoded by the dimensionless parameter fNL) at very
small scales with wavenumbers of about k ≃ 102 − 104

Mpc−1.
This information would greatly complement the view

on primordial local non-Gaussianities from Planck ’s mea-
surement of T and E anisotropies bispectrum at much
larger scales (σ(fNL) ≃ 5 at k ≲ 0.15 Mpc−1 [14]), pro-
viding key insights on the scale-dependence of the pri-
mordial non-Gaussian signal and hence on the inflation-
ary mechanism.

In this paper, we use archival data from the
COBE/FIRAS experiment to reconstruct a sky map of
the µ-type distortion fluctuations. We then correlate this
map with the primary CMB temperature and, for the
first time, the full set of polarization anisotropies ob-
served by the Planck satellite. The extracted SD-CMB
cross-power spectra are then translated into constraints
on the amplitude of primordial non-Gaussianity of the

1 Defined as the bispectrum configuration where two wavenumbers
are much larger than the third one, k1 ≪ k2 ≃ k3.

local-type, f loc
NL (we will drop the superscript hereafter

for simplicity), which are the main one .
We point out that reconstructing the µ-type distor-

tion anisotropies does not necessarily require an absolute
measurement of the sky. The work of Khatri & Sunyaev
[64] was, to our knowledge, the first one that attempted a
reconstruction of the fluctuating part of the µ distortions
using a component separation method applied to imaging
data, namely those from the high-frequency instrument
on board the Planck satellite. However, this approach
can be more affected by contaminations from residual
primary CMB and other astrophysical foregrounds [e.g.,
89, 90]. In addition, we stress that knowledge of the
µ monopole is needed to break the degeneracy between
the average level of µ distortions, ⟨µ⟩, and fNL (see
[52, 64, 79, 89, 90] for discussions on measuring µ fluc-
tuations with a relatively calibrated experiment). This
possibility is only allowed by instruments such as spec-
trometers that are sensitive to the absolute sky temper-
ature.

The paper is organized as follows. In Sec. II we
briefly introduce the main ingredients of this analysis,
the COBE/FIRAS and Planck datasets, while the anal-
ysis methodology, from the sky modeling to the cosmo-
logical inference, is reviewed in Sec. III. Maps of the
anisotropic µ-type distortion, its cross-correlation with
primary CMB anisotropies, and systematic checks are
presented in Sec. IV. We discuss constraints on primor-
dial non-Gaussianities in Sec. V and compare to previous
measurements in Sec. VI. Finally, we draw our conclu-
sions in Sec. VII.

II. DATASETS

A. COBE/FIRAS

The Far Infrared Absolute Spectrophotometer (FI-
RAS) instrument was a cryogenically cooled Martin-
Puplett interferometer on-board the Cosmic Background
Explorer (COBE) satellite. Designed to cover the fre-
quency range between 30 GHz to 2910 GHz in two spec-
tral bands, FIRAS was able to provide accurate measure-
ments of the CMB spectral energy distribution, thermal
emission from interstellar dust, and various infrared cool-
ing lines of the interstellar gas [76]. To accomplish this,
FIRAS used a differential optical system with two inputs,
one collecting radiation from the sky and one from an
internal reference calibrator, and two outputs feeding ra-
diation to composite bolometer detectors. The required
absolute calibration was achieved through an external
blackbody calibrator. The FIRAS horn antenna accepted
incoming sky radiation from a 7◦ circle, resulting in an
approximately top-hat beam function.

In this work we use the calibrated FIRAS skymaps of
spectra that have had postcalibration offsets removed, a
process known as “destriping”. Specifically, we focus on
the final delivery of the FIRAS low frequency low spectral
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resolution destriped sky spectra, which cover the spec-
tral range from 60 up to 630 GHz in frequency bins with
a width of about ∆ν ≈ 13 GHz. The twofold reasons
for doing so are that the CMB emission becomes almost
entirely negligible at higher frequencies while the noise
levels significantly increase. The relevant data products
are provided as maps in HEALPix pixelization2 at a res-
olution of Nnside = 16, corresponding to an approximate
pixel size of δθ ∼ 3.5◦3, for each observed frequency.
For a detailed discussion on the instrument, the calibra-
tion process, and the released data products, we refer the
reader to the FIRAS explanatory supplement 4.

B. Planck CMB maps

The Planck satellite was the third generation of space-
based missions, after COBE and WMAP, to study CMB
physics and was dedicated to image the temperature and
polarization CMB anisotropies at high angular resolu-
tion. Launched in 2009, about 20 years after COBE,
Planck carried out a full-sky survey of the microwave
sky in nine bands across the 30 GHz to 857 GHz range,
down to ∼ 5′ angular resolution [11]. The broad spec-
tral coverage of Planck enabled an accurate characteri-
zation and separation of the diffuse foregrounds. Unlike
FIRAS, Planck is not sensitive to the absolute brightness
temperature of the sky. Its calibration thus assumes the
knowledge of the CMB temperature, as measured by FI-
RAS, and relies on the modulation of the CMB dipole
anisotropy induced by the motion of the spacecraft with
respect to the CMB reference frame [12, 15]. The Planck
maps from the 2018 release are calibrated with a preci-
sion approaching ∼ 10−4 at frequencies below 500 GHz
and more recent analyses extended this calibration pro-
cedure at the highest frequency channels [16]. This accu-
rate measurement in multiple frequency channels allowed
to separate the CMB from other astrophysical emissions
using different approaches.

In this analysis, we use four foreground-cleaned CMB
temperature and polarization anisotropies maps pub-
licly released by the Planck Collaboration and derived
with different component separation algorithm in both
real and harmonic domain: Commander, Needlet In-
ternal Linear Combination (NILC), Spectral Estimation
Via Expectation Maximization (SEVEM), and Spectral
Matching Independent Component Analysis (SMICA)
[17]. These maps are also provided in the HEALPix
format at Nnside = 2048. We first convolve the Planck
component-separated maps with the FIRAS scanning
beam (which includes the instantaneous optical response

2 http://healpix.sourceforge.net
3 https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_

all_get.cfm
4 https://lambda.gsfc.nasa.gov/product/cobe/firas_

exsupv4.cfm

FIRAS and Planck masks

FIG. 1. Sky masks used in this analysis. The black region
corresponds to the area masked out by the FIRAS destriper
mask while progressively paler colors show the Planck masks
that retain the 90%, 80%, 60%, and 40% of the sky.

and its variation due to the satellite motion as described
in Sec. III E) and then downgrade them to a resolution
of Nnside = 16 to produce maps at the native FIRAS
resolution.

C. Sky masks

We use different masks to remove pixels close to the
Galactic plane where the contamination from foreground
emission is high. We adopt the so-called destriper mask
of the FIRAS data release (hereafter FDS) that removes
the sky pixels not observed by FIRAS as well as those not
included in the destriping operation, which are confined
to the Galactic center. In addition to this mask, we use
the public binary Planck Galactic masks that retain 40%,
60% and 80% and 90% of the sky and that are derived
from thresholding the 353 GHz map after CMB subtrac-
tion. Hereafter we will refer to these masks, which are
shown in Fig. 1, as P40, P60, P80 and P90 respectively
and will adopt P60 as our baseline mask.

III. METHODS

In this section, we describe the different steps that
compose the analysis methodology. We start from the
modeling of the FIRAS data cube and foreground emis-
sions; we then discuss the sky-component fitting and
power spectrum estimation, and finally conclude with
a description of the cosmological parameter inference
framework.

A. Data model

The calibrated FIRAS low frequency sky spectra are
a function of frequency ν and position n̂. Effectively, we

http://healpix.sourceforge.net
https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_all_get.cfm
https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_all_get.cfm
https://lambda.gsfc.nasa.gov/product/cobe/firas_exsupv4.cfm
https://lambda.gsfc.nasa.gov/product/cobe/firas_exsupv4.cfm
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can think of the data as a set of pixelized maps at differ-
ent frequencies, where the value in each pixel corresponds
to the absolute sky emission in MJy/sr. We model the
sky emission Iν(n̂) as a superposition of several compo-
nents:

1. A blackbody at T = T0 describing the CMB
monopole, Bν(T );

2. A CMB dipole with spectral radiance given by the
derivative of the Planck function Bν with respect
to the temperature (assuming it is the result of a
Doppler shift of the monopole induced by our pe-
culiar motion);

3. Selected foreground emission components, IFGν (n̂);

4. Additional spectral distortions, of µ- or y-type,
ISDν (n̂) (in our notation hereafter SD ∈ [µ, y]).

Altogether, and similarly to [48, hereafter F96], the sky
model in the direction n̂ reads

Iν(n̂) = Bν(T0) + ∆T (n̂)
∂Bν

∂T

∣∣∣∣
T=T0

+ IFGν (n̂) + ISDν (n̂), (1)

where IFGν (n̂) describes the galactic and extragalactic
foreground emissions and ISDν (n̂) the spectral distortion
spectral energy distribution (SED).

In the case of µ-type distortions, we can drop the
ISDν (n̂) term and incorporate it into the generalized
Planck’s law for blackbody radiation Bν(T, µ)

Bν(T0, µ(n̂)) =
2hν3

c2
1

ex+µ(n̂) − 1
, (2)

with x = hν
kBT0

, µ(n̂) being the chemical potential (at a

given sky location), and T0 the reference CMB monopole
temperature. Throughout this work we assume the best
fit value of T0 = 2.7255 [47] but we tested that our re-
sults are robust with respect to this choice. As a matter
of fact, any change in the local temperature of the CMB
in a direction n̂ results in a shift in the amplitude of the
∆T parameter. The sum of the first two terms of Eq. (1)
represents in fact a Planck blackbody spectrum of tem-
perature T0 + ∆T . Since we do not make any assump-
tion on its amplitude nor its spatial dependence, the ∆T
parameter effectively captures changes in the CMB tem-
perature at linear order and essentially removes residual
CMB contaminations in our resulting SD estimate, allow-
ing us to marginalize over this effect in the estimate of
µ. We note that including the µ distortion as a nonlinear
parameter in the fit, contrary to F96, allows us to min-
imize degeneracies between CMB and µ (see Fig. 3). In
fact, considering µ as a linear deviation around a Planck
blackbody spectrum we would have

Iµν (n̂) = µ(n̂)
−T0

x

∂Bν

∂T
. (3)

Given that in Eq. (1) and Eq. (3) both the free param-
eters δT and µ multiply a ∂Bν/∂T term, they become
almost degenerate and display a very strong correlation
(over 95% according to F96).

A similar approach can be followed to separate y dis-
tortion map, where the emission law is

ISD,y
ν = yT0

(
x
ex + 1

ex − 1
− 4

)
∂Bν

∂T

∣∣∣∣
T=T0

. (4)

The y-type distortion has a shape that is similar to that
of the µ-type, but features a zero-crossing at ν ≃ 218
GHz instead of ν ≃ 125 GHz.

Since the focus of our work is the µ-type distor-
tion and its potentiality to constrain primordial non-
Gaussianities, in our baseline analysis we only consider
µ as additional spectral distortion components, but in
Sec. IV C we explore how including the y-type distortion
in the fit affects our results.

B. Foreground modeling

We discuss here the different choices regarding the
parametrization of the foreground emission IFGν in total
intensity.

Galactic dust. Dust grains in the interstellar medium
absorb UV light from hot stars and reradiate in the
submillimeter and infrared bands, dominating the fore-
ground emission at frequencies ν ≳ 100 GHz. We model
thermal emission from Galactic dust as a modified black-
body described by a dust temperature Td = 19.6 K and
a spectral slope of β = 1.6, which is scaled at a reference
frequency of 353 GHz following [9]:

Idustν (n̂) = Ad(n̂)
( ν

353

)βd(n̂) Bν (Td)

B353GHz (Td)
. (5)

We infer the dust brightness in each pixel, Ad(n̂)
(expressed in MJy/sr). In the following we will consider
two scenarios: one where we keep the dust spectral
index fixed to its fiducial value of 1.6, and one where we
allow for spatial variations of βd ≡ βd(n̂), i.e. we fit for
Ad and βd separately in each pixel.

Galactic synchrotron. Relativistic cosmic-ray elec-
trons accelerated by magnetic fields in our galaxy pro-
duce synchrotron radiation. The specific spectral en-
ergy distribution depends on the strength of the magnetic
fields as well as the energy and flux of the electrons, and
typically results in a power law spectrum. Synchrotron
radiation represents the dominant foreground contribu-
tion for observations of the CMB at low frequencies. We
include a synchrotron component modeled as a power law
with βs = −3.1 and νref = 23 GHz, i.e.

Isyncν (n̂) = As(n̂)
( ν

23GHz

)βs

(6)
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following [4]. When including synchrotron as a fore-
ground component, we fit for As(n̂) in each individual
pixel.

Free-free. Thermal bremsstrahlung (free-free) emis-
sion of free electrons in star-forming regions within our
Galaxy is an important foreground to CMB observations
at low and intermediate frequencies. To remove this emis-
sion, which is mainly concentrated in the Galactic plane,
we use the Planck Commander free-free template maps
for the emission measure EM(n̂) and electronic tempera-
ture Te(n̂) [4], and we follow the recipe of the same paper
to rescale the intensity of the emission across frequencies
so that

I ff
ν (n̂) = 106 Te(n̂)

(
1 − e−τff (n̂,ν)

)
, (7)

where the free-free optical depth is given by

τff(n̂, ν) = 0.05468Te(n̂)−3/2
( ν

1 GHz

)−2

EM(n̂) gff(n̂, ν) ,

(8)

and the Gaunt correction factor is [44]

gff(n̂, ν) = 1 + log

(
1 + e

4.960+
√

3
π log

[
( ν

1GHz )
−1

(Te(n̂)

104 K
)
3/2

])
.

(9)

For each sky pixel we then fit an amplitude of the
emission template Aff(n̂).

FIRAS Galactic residual. To complement the
physically motivated foreground emission models in-
troduced above, we also consider the Galactic residual
template from F96. This Galactic spectrum is empir-
ically derived under the assumption that it correlates
spatially with the average intensity from the high
frequency channels at each pixel.

All foreground components, except for the Galactic
thermal dust, are described by one free parameter only,
namely the amplitude of the foreground template in each
pixel. In our baseline analysis (hereafter referred to as
Ad + βd model) we only include emission from Galac-
tic thermal dust where both the amplitude and spec-
tral index are allowed to spatially vary (for a total of
four free parameters per pixel) but consider alternative
scenarios: Galactic dust with a spectral index fixed to
βd = 1.6 (Ad model), Galactic dust with βd = 1.6 plus
synchrotron emission (Ad+As model), Galactic dust with
βd = 1.6 plus free-free emission (Ad+Aff model), and the
FIRAS model. Finally, we note that in all the scenar-
ios we considered in this work we neglect the molecular
lines emission as well as the cosmic infrared background
(CIB) emission produced by unresolved dusty star form-
ing galaxies. As far as the CIB is concerned, our baseline
model could in principle not only capture the complex-
ity of the dust emission across the sky but also to (at

least) partially account for the CIB emission itself. In
fact, the CIB itself can be described by a modified black-
body SED with a different Td compared to the one of the
Galactic dust. Given that Td and βd are usually highly-
correlated parameters, our data model can in principle
effectively capture the emission of two superposing mod-
ified blackbody emission (i.e. Galactic dust and CIB) in
a given sky pixel. More complex models should be able
to capture this effect more accurately [38]. Moreover,
in our analysis we do not include frequencies above 600
GHz where the CIB becomes more important outside of
the Galactic plane. For molecular lines, the frequency
range we consider covers the CO lines from the (J=1-0)
transition at 115.57 GHz to the (J=5-4) transition at 576
GHz as well as the C-I transitions can become important.
Since these line emissions are mainly concentrated in the
Galactic plane, we do not include them in the analysis.
We note that since line emission and βd are degenerate
[see e.g. the discussion in Sec 4.4. of 58], our fitting could
also help partially removing them. Being the signature
of µ distortions relatively more important at lower fre-
quencies, the channels potentially contaminated by these
line emission have a lower weight in the final component
separation fit due to their higher noise, and thus we do
not expect them to become important.

We test the sensitivity of our results with respect to
the assumed foreground model in Sec. IV C.

C. FIRAS covariance

A key ingredient to carry out cosmological parameter
inference from FIRAS data is the sky spectra covariance
matrix which describes the correlation structure of ob-
servations between different frequencies and sky pixels.
As discussed extensively in the FIRAS explanatory sup-
plement [25],5 there are six main sources of uncertain-
ties: detector noise (C vectors, using the FIRAS naming),
bolometer parameter gain uncertainties (JCJ), emissiv-
ity gain uncertainties (PEP), internal calibrator temper-
ature errors (PUP), absolute temperature errors (PTP),
and destriper errors β (which include map offsets uncer-
tainties). Note that some of these quantities only vary
across pixels, such as β, while others only differ between
frequencies (PEP, JCJ, PUP and PTP).

Denoting an element of the FIRAS data cube Îν(n̂) ≡
Îνp, we assemble the FIRAS covariance matrix as

Cνpν′p′ = Cov(ÎFIRAS
νp , ÎFIRAS

ν′p′ )

= Cνν′
(
δpp

′
/Np + βp

kβp′k + 0.042
)

(10)

+ SpνSp′ν′
(
JνJν′

+ GνGνδνν
′
)

(11)

+ P νP ν′
(
U2δpp

′
/Np + T 2

)
. (12)

5 Available in electronic form at https://lambda.gsfc.nasa.gov/
product/cobe/firas_exsupv4.html

https://lambda.gsfc.nasa.gov/product/cobe/firas_exsupv4.html
https://lambda.gsfc.nasa.gov/product/cobe/firas_exsupv4.html
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FIG. 2. Noise budget of the FIRAS low frequency low spectral
resolution destriped sky spectra. The dotted black line shows
the CMB blackbody emission rescaled by a factor 0.001 for
visualization purposes. For the JCJ and PEP errors described
in Eq. (11) which depend on the sky pixel, we display their
average value computed across all the observed pixels.

In the equation above, Np is the map pixel weight, βp
k

is the β matrix described in Sec. 7.2.2 of the FIRAS
explanatory supplement and we sum βp

kβpk′ over all k-
th orthogonalized stripes used in the data destriping.
The Spν vectors represent the absolute sky brightness
not including the CMB monopole and Jν is the JCJ
gain term described in Sec. 7.3.2 of the FIRAS explana-
tory supplement while the Gν terms describe the PEP
gain errors. We use the FIRAS data measurement them-
selves Îνp from which we subtract the CMB monopole
adopting a temperature of T0 = 2.7255. We assume
P ν = ∂Bν(2.728K)/∂T and U , i.e. the internal calibra-
tor temperature uncertainty, is 180 µK as suggested in
Sec. 7.4.5 of the FIRAS explanatory supplement. As for
the PEP and JCJ terms, we take the PTP terms from
the publicly available calibration uncertainty file avail-
able on LAMBDA so that T = 0.002 K. In Fig. 2, we
show a breakdown of the different uncertainty terms as
function of frequency ν, noting that the main sources of
error over the range of frequencies considered here are
the absolute temperature errors and detector noise.

D. Map inference

With a data model and an estimate of the measure-
ment uncertainties at hand, we can now reconstruct the
spatial fluctuations of the effective chemical potential
µ(n̂) as well as the other parameters θ that describe the
data model.

In the following we will assume that the FIRAS noise
covariance is approximately uncorrelated between pixels

while still retaining the full frequency-frequency struc-
ture. We investigate the validity of this assumption
and its impact on the angular power spectrum estima-
tion level in Sec. III E. Assuming pixels are uncorrelated
greatly simplifies the analysis since it allows us to perform
the parameter inference at the individual pixel level. To
this end, we use Bayes theorem and write the posterior
distribution for the model parameters in each pixel as
∝ lnL(Îν |θ)p(θ), where the likelihood function is given
by6

− 2 lnL(Îν |θ) =
∑
νν′

∆T
ν (θ)C−1

νν′∆ν′(θ), (13)

with ∆ν(θ) denoting the residuals between the observed

FIRAS spectra and the model spectrum ∆ν(θ) = Îν −
Iν(θ), and C−1

νν′ being the inverse of the covariance ma-
trix defined in Eq. (12) for p = p′. We use emcee,
an affine-invariant Markov Chain Monte Carlo (MCMC)
sampler [50], to explore the posterior distribution and
use N = 100 walkers for 1000 steps to reach the con-
vergence of the chains (assessed by checking their auto-
correlation time). This approach allows us to estimate
the full non-Gaussian posterior, the level of degeneracy
between different parameters, and to directly marginalize
over the impact of foregrounds. In our analysis we do not
impose priors on the sampled parameters except for the
spectral slope of the Galactic thermal dust, for which we
set a uniform prior over βd ∈ [0, 3]. Performing the fit at
the individual pixel level also allows to better capture the
spatial variations of the foreground emission compared to
approaches operating directly on the monopole of single
frequency bands, that are often harder to model [1].

In Fig. 3, we show a representative set of credibility
contours in the {∆T,Ad, βd, µ} parameter space from
our baseline data model (Galactic dust with free spec-
tral index) for three different pixels. We can note an
anticorrelation between the amplitude and spectral in-
dex of the Galactic dust and a positive correlation be-
tween µ and the CMB temperature. The extent of the
two-dimensional contours reflects the level of noise in a
given pixel. The one-dimensional µ posteriors marginal-
ized over the remaining parameters generally follow a
Gaussian distribution.

The result of this process is a set of µ values for each
pixel in an HEALPix map at Nside = 16, along with an
estimate of their uncertainty calculated as the standard
deviation of the µ posterior.

E. Power spectrum and uncertainties estimation

After reconstructing the µ distortion anisotropy map
from the FIRAS data cube, the next step consists in ex-
tracting its angular cross power spectra with maps of
primary CMB anisotropies from Planck.

6 Omitting the pixel dependence and up to a normalizing constant.
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FIG. 3. Constraints on the baseline data model parameters
from FIRAS sky spectra. Different colors show results for
three different pixels. The darker and lighter shaded regions
represent the 1σ and 2σ contours respectively. Typically, our
fitting also reduces the correlation between µ and ∆T from
the 95% level observed in previous analyses.

A great deal of the information encoded in the SD-
CMB cross spectra resides in the lowest multipoles
[52, 84], therefore it is crucial to build an analysis pipeline
that optimally recovers the information on the largest
angular scales. For this reason, and given the fact that
we work with a dataset a at coarse HEALPix resolu-
tion, we use a pixel-based quadratic maximum likelihood
(QML) power spectrum estimator xQML [96], an exten-
sion of the original method introduced in Tegmark [95]
to cross power spectra. Such methods are computation-
ally more expensive compared to traditional pseudo-Cℓ

methods but we find that they produce measurement of
the cross-correlation power spectra with roughly twice
smaller error bars for the multipoles most relevant for
our analysis. The application of a QML power spectrum
estimator requires the knowledge of the covariance of the
maps as well as the details of the optical response of
the instrument. Below we detail the analysis choices we
made.

1. FIRAS beam transfer function and deconvolution

We compute the FIRAS beam response by perform-
ing an Hankel transform of the publicly available FIRAS
instantaneous beam radial profile. In addition to this
smoothing, it is important to take into account the in-
strument scan motion during the integration of a FIRAS

interferogram. The telescope motion causes the maps to
be additionally smoothed in the ecliptic scan direction.
We account for this effect by deconvolving an effective
transfer function estimated from simulations as described
in [19, 81]. In this approach, high resolution realizations
of CMB maps are first smoothed with the instantaneous
FIRAS beam and then smoothed in real space applying a
2.4◦ boxcar average in the ecliptic direction. The trans-
fer function is then computed by comparing the power
spectrum of these maps with the one of the theoretical
model used to generate the input CMB maps. We multi-
ply the pixel window function of the HEALPix maps by
this transfer function to obtain the total transfer function
of the maps that we apply to both the CMB and µ har-
monic coefficients when computing auto and cross-power
spectra with xQML.

2. Covariance matrix of CMB maps

The noise of the Planck component-separated CMB
maps can be modeled in its full complexity using the
publicly available FFP10 simulations which include not
only the detector noise in the time-ordered data (TOD),
including its correlated 1/f part, but also realistic sim-
ulations of instrumental effects for all Planck frequency
channels. These simulated TOD are then processed with
the same algorithms as for the flight data, including
component separation. We use the data available at
NERSC supercomputing center that include 300 realiza-
tions of noise and residuals systematic effects for all the
component-separated CMB maps and for different data
splits (full- and half-mission). After accounting for the
Planck beam smoothing, we apply the same harmonic
domain transfer function that we apply to the data to
all 300 realizations for all splits, and downgrade each
realization to Nside = 16 HEALPix resolution. Given
that only 300 noise realizations are available, estimat-
ing a full dense pixel-pixel noise covariance matrix for
the full-mission dataset is nontrivial. The reason is that
the number of matrix elements to be estimated is much
larger than 300, making the estimate of the inverse of
the covariance matrix poorly conditioned. We there-
fore consider only a diagonal covariance matrix where
the diagonal is given by the variance of the 300 noise
realizations for all the T,Q and U Stokes parameters.
While an optimal analysis of the low multipole CMB sig-
nal would require an estimate of the off-diagonal terms,
for cross-correlations between independent datasets we
expect these correlations to be of marginal importance.
We also verify that the diagonal term of the QU block
of the noise covariance is negligible and we therefore dis-
card it in our analysis. We perform the same operation on
the half-mission splits in order to produce a noise model
to be employed for null tests analysis and consistency
checks. The signal covariance is instead computed on
the fly while estimating the power spectrum. To this
end, we adopt the fiducial lensed CMB power spectrum
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of the cosmology from the FFP10 simulations. This as-
sumes a Planck 2018 cosmology with a tensor-to-scalar
ratio r = 0 with the CMB dipole and monopole removed.
We stress that an accurate analysis, in particular of CMB
polarization, requires the use of the realistic FFP10 sim-
ulations since naive estimates of the noise levels relying
on the assumption of a Gaussian noise drawn from the
noise covariance matrix of the frequency maps largely un-
derestimate the uncertainties on the scales considered in
this work.

3. Covariance matrix of µ map

When estimating the µ map, we assume that all pix-
els are uncorrelated between each other and, under this
assumption, for each pixel we obtain an estimate of the
error on the inferred µ value in the p-th pixel, σµ

p , from
the standard deviation of the MCMC posterior. However,
the covariance definition in Eq. (10) shows a nondiagonal
structure in pixel space, thus the estimate of the µ signal
in each pixel should show a degree of correlation between
pixels similar to the one of the FIRAS data themselves.
Therefore, we assumed the µ map is composed by noise
only and we adopted two methods to compute its noise
covariance matrix:

• We assume the µ map covariance to retain a di-
agonal structure Cµ

pp′ = σµ
p δpp′ . We refer to this

approximation as diagonal covariance in the follow-
ing.

• We assume the dominant off-diagonal component
of the FIRAS pixel-pixel correlation matrix to be
inherited by the µ map. Defining the matrix P
from Eq. (10) as

Ppp′ ≡ δpp
′
/Np + βp

kβp′k + 0.042, (14)

we normalize P to obtain a correlation matrix P̃
that we show in Fig. 4 for reference. We then con-
vert P̃ into a dense pixel-pixel covariance matrix
for the µ map Cµ

pp′ using the error estimate from
the MCMC as

Cµ
pp′ =

Ppp′√
diag(P)pdiag(P)p′

·
√

σµ
pσ

µ
p′ . (15)

For each different µ map derived with a different compo-
nent separation method, we compute the corresponding
covariance matrix and use that in the power spectrum
estimation step. These two methods describe the noise
properties of the maps with different accuracy in differ-
ent regimes. For FIRAS, no data split that can be used
to validate the noise covariance matrix through, e.g., a
jackknife approach or a null map is available. As such, we
validate the noise model by debiasing the autospectrum
of the µ maps and checking its consistency with the null
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FIG. 4. FIRAS pixel-pixel correlation matrix. The pixels
are ordered in the ring scheme of Healpix pixelization, i.e.
pixel 0 correspond approximately to the north Galactic pole
and the last one to the South Galactic pole. The median
correlation coefficient across all measured pixel is about 10%
but increase to 20% for pixels far from the Galactic plane.

hypothesis. For this purpose, we generate random real-
izations of the µ map starting from each different covari-
ance model and multiplying the Cholesky decomposition
of Cµ by a stream of Gaussian pseudorandom numbers
with zero mean and unit variance. We then compute the
noise bias as the mean of the simulations and the error
bar as the standard deviation of the same set. The re-
sults of this test for different galactic masks are shown in
Fig. 5. As we can see, the diagonal µ covariance does not
describe the data at large angular scales where we observe
a large excess of power that is however greatly reduced
if the full covariance model is adopted. The opposite ap-
plies when considering angular scales ℓ ≳ 10, where the
full covariance model does not deliver an angular power
spectrum consistent with zero. In both cases, the χ2 test
yields a low value of the PTEs and a single covariance
model is not capable to describe the data on all angular
scales. As such, in the following we decide to adopt a
hybrid approach for the power spectrum estimation and
computed cross spectra using the full covariance matrix
for µ for multipoles ℓ < 10, while the diagonal covariance
is adopted for ℓ ≥ 10. The cut at ℓ = 10 was defined as
it is the lowest multipole for which the χ2 test for con-
sistency with the null hypothesis for Cµµ

ℓ leads to a PTE
higher than 5% for the diagonal covariance model. At
large angular scales, the same χ2 test always leads to a
PTE lower than 5%. However, the χ2 value for the full
covariance model is ten times lower than the one obtained
for the diagonal-covariance approximation and is driven
by the high value of ℓ ≤ 4, pointing to a more accurate de-
scription of the data. We will see that this approximation
and hybrid approach to power-spectrum estimation of the
data is accurate enough to describe the cross-correlation
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power spectra between µ and the CMB. Finally, we note
that an excess of power at large scales might be due to
foreground residuals. We test this hypothesis by checking
the stability of our estimate as a function of sky fraction
used for Cµµ

ℓ estimation. As we can see in Fig. 5, using
a mask covering progressively smaller sky fractions gives
to an increased power, which is inconsistent with the ex-
pectation of the excess of power being due to foreground
contamination as we would expect it to decrease with
decreasing sky fraction. As such we conclude that inac-
curate noise bias effects dominate the estimate of Cµµ

ℓ .
This conclusion is supported also by the fact that if we
take the cross spectra between µ maps obtained with dif-
ferent component separation methods, the noise is only
partially correlated between the two maps as the data
model that is fitted to the data is different. As such,
it is partially free from residual noise bias. In the bot-
tom panel of Fig. 5 we show the bandpowers obtained by
cross-correlating the µ maps obtained with the baseline
and the Ad +Aff model adopting our hybrid power spec-
trum estimation approach, and compare them with the
debiased autospectra. As we will discuss further below,
Aff does not detect any significant foreground power and
as such, the reduced amplitude of the power in the first
few multipoles is caused by a lower residual noise bias
rather than by an improved foreground subtraction.

F. CµT
ℓ , CµE

ℓ , CµB
ℓ estimation

When correlating the µ map with CMB temperature
and polarization maps, we adopt the hybrid approach
to evaluate the largest scales outlined in the previous
section. In doing so, we also marginalize over spurious
monopole and dipole coupling induced by the galactic
masking by summing a component proportional to the
ℓ = 1 Legendre polynomial (i.e. P1 ∝ cos(θij), where
θij is the scalar product between the direction of the i-th
and j-th pixels of the map) and having an amplitude of
1 K2. We estimate the error bars on the band powers
through Monte Carlo (MC) realizations of the CMB and
µ distortion signal. For the CMB signal, we draw ran-
dom realizations of the T,Q,U Stokes parameters from
the theoretical power spectrum of the FFP10 simulations
and add the FFP10 official noise realization released by
the Planck Collaboration. We correlate each of these
CMB maps with random realizations of the µ map drawn
from either the full or diagonal µ covariance and take the
multipoles where each of these approximations to the µ
covariance becomes accurate. We use these sets of sim-
ulations to verify that the value of the measured CµT

ℓ ,

CµE
ℓ , and CµB

ℓ are consistent with the distribution of
the multipoles obtained in the MC simulations.
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FIG. 5. Top: Noise-debiased auto-spectrum of our µ base-
line map on large angular scales for different Galactic masks
and different approximation to the pixel-pixel covariance of
the µ map. The diagonal covariance does not describe the
data accurately enough while the full covariance model pro-
vides a more accurate description of the data. Middle: Same
as above for angular scales ℓ > 10. In this regime the full
covariance model for the µ map is inaccurate and only the
diagonal approximation leads to a noise-debiased Cµµ

ℓ consis-
tent with the null hypothesis. Bottom: Same as top panel for
µ maps obtained with different component separation meth-
ods. Different µ maps have different noise properties and
their cross-correlation reduces the residual noise bias in the
autospectrum. We show an example of this in solid blue.
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G. Cosmological inference fNL

The final step of the analysis pipeline is the cosmolog-
ical inference. Specifically, we are interested in convert-
ing the reconstructed SD-CMB cross-power spectra into
constraints on the amplitude of the local-type primordial
non-Gaussianities, fNL. Assuming that the cross spectra
band powers are Gaussianly distributed, we can write

−2 lnL(fNL|ĈµX
ℓ ) =∑

ℓℓ′

[
ĈµX

ℓ − fNLC
µX
ℓ

]
Σ−1

ℓℓ′

[
ĈµX

ℓ′ − fNLC
µX
ℓ′

]
,

(16)

where ĈµX
ℓ can either be the measured µT , µE, or

µB spectra, CµX
ℓ are the corresponding theoretical tem-

plates calculated for fNL = 1, and Σ−1
ℓℓ′ is the inverse

of the band power-band power covariance matrix that
we estimated from simulations and includes the effect of
correlations between multipoles and correlation between
the probes. We verified that the Gaussianity assump-
tion, usually inaccurate for CMB analysis [85], holds for
the low, noise-dominated multipoles considered in our
work computing the distribution of each of the estimated
bandpowers from our simulated dataset and checking
their consistency with a Gaussian distribution through
a Kolmogorov-Smirnov test. For all the multipoles we
indeed obtain p-values above 5%. We account for the
finite number of simulations used to estimate the band-
power covariance matrix by debiasing Σ−1

ℓℓ′ following the
prescription from Hartlap et al. [57]. The calculation of
the theoretical template spectra is detailed in Sec. V.

From Eq. (16), we can either obtain the maximum-
likelihood estimate of fNL and its associated 1σ uncer-
tainty as

f̂NL =
ĈµX

ℓ Σ−1
ℓℓ′C

µX
ℓ

CµX
ℓ Σ−1

ℓℓ′C
µX
ℓ′

σ(f̂NL) =
1

CµX
ℓ Σ−1

ℓℓ′C
µX
ℓ′

, (17)

where we recall that the templates are calculated for
fNL = 1, or directly sample the posterior assuming an
unbound uniform prior on fNL. In this work, we present
results based on both approaches. Furthermore, we can
jointly analyze the µT and µE power spectra by con-
catenating both the templates and extracted spectra into

two vectors, Cℓ =
[
CµT

ℓ (fNL = 1), CµE
ℓ (fNL = 1)

]T
and

Ĉℓ =
[
ĈµT

ℓ , ĈµE
ℓ

]T
.

IV. MEASUREMENTS

A. Spectral anisotropies, CMB and foreground
maps

We start by showing in Fig. 6 the full-sky maps of our
baseline data model parameters inferred from the FIRAS
data.

In the top left panel we plot the CMB anisotropy map,
∆T , associated with the component in the data cube that
emits as Iν ∝ ∂Bν/∂T . The map has units of thermo-
dynamic temperature KCMB and is dominated by spa-
tial variations due to the distinct kinematic dipole as
expected. The top right panel shows instead the recov-
ered map of the µ-type distortion fluctuations, which is
one of the main results of this paper. As can be seen, the
map exhibits large-scale fluctuations due to the spatially-
varying noise properties, while the distribution of the
pixel values is centered around zero (see the lower right
panel of Fig. 7). Finally, the two bottom panels show
the maps that describe our baseline foreground model,
the amplitude and spectral index of the Galactic ther-
mal dust evaluated at a reference frequency of 353 GHz.
The amplitude map Ad, in units of MJy/sr, is recovered
at a high S/N and faithfully traces the emission from
the Galaxy. The spectral index map is instead noisier,
also showing the large-scale noise fluctuations as in the
µ map case. The color scale of the βd map is chosen
in a way to show deviations from the reference value of
βd = 1.6 [6]. We recall that in this work we only use the
low frequency data from FIRAS since we are mainly in-
terested in marginalizing over foreground contamination
rather than providing their full characterization. For this
specific task, the high frequency data would provide ad-
ditional information. The corresponding uncertainties on
the recovered maps are shown in Appendix A.

In Fig. 7, we show a scatter plot of the pixel values
for each of the six different map pairs that can be con-
structed from the parameters in our baseline data model.
For this check we apply our nominal fiducial P60 mask
before creating the scatter plot. The inferred pixel val-
ues are largely uncorrelated between different maps, as
quantified by the Spearman’s rank-correlation coefficient.

The products of our analysis allow us to provide new
estimates of the µ distortion monopole, of the CMB tem-
perature monopole T0, and of the monopole of the dust
emission together with its spectral index. We perform
an inverse-covariance weighted average of the map pix-
els and show the results of these estimates in Table I for
different Galactic masks. Our improved foreground mod-
eling allows us to use a larger sky fraction compared to
the original FIRAS analysis7 and sharpen the upper limit
on the monopole provided by the original FIRAS analysis
⟨µ⟩ = (−10± 40)× 10−6 [48] by roughly a factor of 2 for
our fiducial analysis mask |⟨µ⟩| ≲ 47×10−6. Constraints
on models predicting energy injections from particle de-
cays or other sources in the µ distortion era should be
revised accordingly [e.g. 23, 86]. We obtain stable re-
sults using more aggressive Galactic masks. Adopting
the same foreground model of the FIRAS analysis and
removing a similar sky fraction, we recover an upper limit
consistent with their original estimate of ⟨µ⟩ ≲ 90×10−6.

7 97% of the FDS mask compared to the fiducial one of F96 that
retained 90% of the sky removing pixels at |b| < 5◦
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FIG. 6. Maps of the CMB dipole (top left), anisotropic µ-type distortion (top right), amplitude and spectral index (at 353 GHz)
of the Galactic dust (bottom left and right respectively) inferred from FIRAS low frequency low spectral resolution destriped
sky spectra. Pixels grayed out are removed by the FIRAS destriper mask.

[×10−6] FDS PL90 PL80 PL60 PL40

|⟨µ⟩| < 95% C.L. < 45 < 47 < 51 < 47 < 53
⟨µ⟩ −16.2 −18.2 -21.7 −15.5 −15.6
σ⟨µ⟩ 14.2 14.3 14.5 15.9 18.6

TABLE I. Statistics of the µ distortion monopole (95% confi-
dence level upper limits, mean and error on the mean) in units
of 10−6. We report the values obtained for different choices
of Galactic masks.

The ∆T template provides information on anisotropic
variations of the CMB temperature. The dominating
anisotropy is the dipole induced by the motion of the
Solar system and the FIRAS satellite with respect to the
CMB reference frame. We fit a dipolar emission to the
map using the healpy dedicated routines on the same
fiducial mask of F96and find an amplitude of the dipole
Adipole = 3326µK along a direction in Galactic coordi-

nates (l, b) = (264.13◦, 49.21◦). These values are con-
sistent within ∼ 1.5σ with the original estimate of the
FIRAS team of (l, b)FIRAS = (264.14◦ ± 0.15◦, 48.26◦ ±
0.15◦) and AFIRAS

dipole = 3369 ± 40µK in F96 except for
the b coordinate of the dipole. The discrepancy is due
to the residual correlation between µ and ∆T parame-
ter. We can restore a complete agreement in the direc-
tion of the dipole using more aggressive Galactic masks
(l, b)FIRAS or if we do not fit for the µ distortion on the
same mask. In this case we obtain Adipole = 3332µK,
(l, b) = (264.30◦, 48.08◦). The average of the ∆T tem-
plate can be added to the pivot value of T0 = 2.725 we
used in our data model to estimate the value T̂0 of T0 on
the sky. By doing so, we obtain T̂0 = 2.723 for our fidu-
cial component separation method. The value is stable
with respect to the mask choice and consistent with the
≈ 5 mK temperature reduction compared to the FIRAS
original estimates in e.g. F96 T0 = 2.728 ± 0.004 includ-
ing statistical and systematics uncertainties as well as the
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|⟨µ⟩| < 95% C.L. [×10−6] PL90 PL80 PL60 PL40 σsyst

Ad + βd < 47 < 51 < 47 < 53 2.5
Ad, fixed βd < 74 < 50 < 105 < 179 48
Ad +As < 252 < 200 < 162 < 102 54
Ad +Aff < 174 < 120 < 96 < 118 47

FIRAS residual < 72 < 57 < 89 < 147 34

TABLE II. µ distortion monopole upper limits for different
choices of foreground separation methods and Galactic masks.
We outline in bold values for which the monopole is detected
at more than 2σ significance. Since it only happens Galactic
masks that include a good fraction of the Galactic plane, this
hints for a clear foreground contamination. The last column
reports the standard deviation of the values of the upper lim-
its obtained for different masks which we considered as an
estimate of systematic uncertainty on the constraint.

estimates of F96 T0 = 2.717 ± 0.007 fitting the data to
the CMB dipole SED. The shift in our value is expected
due to the calibration systematics correction applied to
the FIRAS reprocessed data in HEALPix pixelization.8

We also compare the monopole of our dust map with the
one obtained by rescaling the Commander dust inten-
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FIG. 7. Scatter plot matrix of the map pixel values after
applying the Planck fsky = 0.6 Galactic mask. Plots on the
diagonal show a Gaussian kernel density estimate of the pixel
value distributions in each map. The numbers in the boxes
show the Spearman’s rank correlation coefficient between the
two variables under consideration.

8 https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_

info.html

sity from the reference 545 GHz to our pivot frequency
of 353 GHz using the map of the spectral index and Td

fitted for the low resolution Commander maps and the
emission law of Eq. (5). We find a consistent value of
0.29 MJy/sr for both those maps if the Planck P90 mask
is applied before averaging the pixels. Since our pivot
frequency is different than the one chosen by Comman-
der, a direct comparison of the mean spectral index is
not straightforward. We obtain a mean dust spectral
index across the map ⟨βd⟩ = 1.22 ± 0.02. To further
validate our component separated products, we compute
the cross-correlation coefficient between them and fore-
ground templates released by Planck . Specifically, we
make use of the dust A545

d and βd templates derived us-
ing the Commander and GNILC algorithms for the 2015
release of Planck data. We also correlate the Commander
templates for free-free and synchrotron emission against
our As and Aff maps. For the sake of simplicity, we use a
pseudo-Cℓ power spectrum estimator as implemented in
the public code NaMASTER9 [18, 59] to compute the spec-
tra required to evaluate the cross-correlation coefficient

between two X and Y fields, ρℓ = CXY
ℓ /

√
CXX

ℓ CY Y
ℓ .

The results for our baseline Ad + βd foreground model
are shown in Fig. 8, where we use a FDS mask and
adopt the analytical Gaussian error bars on the cross-
correlation coefficient [70]. Our dust amplitude products
show a remarkable degree of correlation (≳ 90%) with
the Planck dust products. The differences observed for
βd are mainly confined to the largest multipoles and are
driven by differences in separation in the Galactic plane.
The cross-correlation coefficient increases to ∼ 90% at
large scales if we exclude the Galactic plane by applying
a P90 mask in addition to the FDS mask when comput-
ing the cross-correlation coefficient. The CIB does not
seem to contaminate our dust templates. The low fre-
quency foregrounds such as free-free and synchrotron are
conversely not well constrained by our component separa-
tion since the FIRAS data lack a low frequency lever arm
to effectively anchor those emissions, with 60 GHz being
the lowest available frequency. The cross-correlation co-
efficient is therefore consistent with the null line for both
of these components. This validates our baseline choice
to not include those in the reference cleaning method.

B. Power spectra

In Fig. 9 we show the second main result of this
analysis, the extracted angular cross-power spectra be-
tween the FIRAS µ anisotropy map from FIRAS and
the SMICA component-separated CMB temperature and
E/B-mode polarization maps from Planck (red points).
These spectra have been extracted for our baseline fore-
ground model (Galactic thermal dust with free amplitude

9 https://github.com/LSSTDESC/NaMaster

https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_info.html
https://lambda.gsfc.nasa.gov/product/cobe/firas_tpp_info.html
https://github.com/LSSTDESC/NaMaster
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FIG. 8. Cross-correlation coefficient between foreground
maps extracted by our baseline component separation analysis
and different Planck foreground templates. Our foreground
maps for the dust intensity and spectral index are highly-
correlated with the Planck data products across all angular
scales considered in this work. Discrepancies at the largest
scales in βd are alleviated when excluding the brightest re-
gions of the Galactic plane (removed with a P90 mask). The
low frequency foreground components (shown in the bottom
panel) are conversely mainly unconstrained and their cross-
correlation coefficient is consistent with 0. Points of different
templates have been shifted in ℓ for visualization purposes.

and spectral index) over about 60% of the sky using a
QML approach, see Sec. III E for a detailed discussion
of the method. The dark and light blue shaded regions
in Fig. 9 show the (14th, 86th) and (5th, 95th) percentiles
of the distributions of the SD-CMB cross-spectra mea-
sured in the FFP10 simulations, respectively. The µT
and µE cross-power spectra recovered from FIRAS and
Planck data are both consistent with zero. Under the
null hypothesis that the µ and CMB maps are uncor-

related, we can evaluate χ2
null =

∑
ℓℓ′ C

µX
ℓ Σ−1

ℓℓ′C
µX
ℓ′ and

calculate the probability to exceed (PTE) by counting
the number of simulations that have a χ2

null larger than
that of the data. We find PTE values of 30% and 67% for
µT and µE, respectively: therefore we cannot rule out
the no correlation hypothesis. The distribution of χ2

null
for both cases are shown in the inset plots of Fig. 9.

Correlation between µ distortions and B-mode of CMB

polarization are potentially a unique probe of tensor non-
Gaussianities on scales inaccessible by CMB bispectra.
However, any tensor or mixed scalar-tensor bispectra of
primordial perturbations that are isotropic are expected
to leave either vanishing or strongly suppressed signa-
tures in the observed diagonal ⟨µℓ1Bℓ1⟩ correlation that

are constrained by CµB
ℓ [82]. Nonetheless we report the

amplitude of CµB
ℓ from FIRAS and Planck data in Fig. 9

A similar calculation to the one done for CµT
ℓ and CµE

ℓ
yields a PTE of about 6%, consistent with a nondetec-
tion assumption. Such null test can be used to constrain
parity-violating mechanisms and statistical anisotropies.
However, such constraints can be set more naturally in
terms of amplitude of the bipolar spherical harmonics co-

efficients CµB
ℓ1ℓ2

[24] that capture off-diagonal elements of
the µB correlation. A detailed analysis of such correla-
tions together as their implications for non-Gaussian pri-
mordial scalar and tensor bispectra is left for future work.
In general we note that the use of independent datasets
such as FIRAS and Planck to constrain µB and µE cor-
relations has the advantage to reduce the impact of large-
scale systematics that affect the Planck data [16, 43].

To further validate the analysis, in the three lower pan-
els in Fig. 9 we show the corresponding null spectra con-
structed by correlating the FIRAS µ map with the half-
mission T,E,B jackknife maps from Planck . In this case
too, the spectra are statistically consistent with the null
line, yielding PTEs of 56%,42%, and 7% for µT , µE, and
µB, respectively. This test also validates the noise model
since the error bars of the null spectra do not contain any
CMB cosmic variance.

C. Robustness tests

In this section we perform different systematic tests to
validate and assess the robustness of our cross-correlation
measurements.

1. Stability against foreground models

We check the stability of our cross-power spectra mea-
surements with respect to different component separa-
tion methods both in the CMB and the µ-distortion
side. We show the summary of our results in Fig. 10.
On the CMB side, we compare the changes in the

CµT
ℓ , CµE

ℓ , CµB
ℓ power spectra obtained using different

component separated maps provided by the Planck Col-
laboration (see Sec. II B) relative to the statistical un-
certainty determined in our baseline analysis with the

SMICA map. Shifts in the CµT
ℓ values are minor and

well below 0.3σ. The cross-power spectra involving po-
larization show larger variations that remain below 2σ
for most of the multipoles. We check that these shifts are
expected given the noise level of the Planck maps. For
this purpose, we generate a set of MC simulations where,
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FIG. 9. Top: Cross-power spectrum between the anisotropic µ-distortion map from FIRAS and the component-separated CMB
temperature (left panel) and E-mode (right panel) maps from Planck. This plot shows the baseline results based on the SMICA
Planck maps, a Galactic mask with fsky = 0.6, and the Galactic dust with free amplitude and spectral index as foreground
model. In each panel, the red points indicate the data while the darker and lighter shaded regions represent the 1 and 2σ
scatter in simulations that do not include any anisotropic µ. The insets compare instead the χ2 statistic from simulations (blue
histogram) to the value found in data (red vertical line), showing that the extracted spectra are consistent with the null line.
Bottom: Same as above for the cross-correlation between µ map and the half-mission jackknife map. Data points are shown in
black.

for a specific component separation method, we add a
CMB realization (common to all the component sepa-
ration methods) to each noise realization of the FFP10
suite for that specific method. We then cross-correlate
them with a realization of the µ map generated from its
pixel-pixel covariance, both using the full and diagonal
approximations. This allows us to have a consistent es-
timate of the power spectrum using the hybrid approach
used to analyze the real data. From this set of simula-
tions, we compute the covariance of the differences of the
bandpowers between CMB component separation meth-
ods that we then use to compute the χ2 statistics for
each of the MC realizations. We then compare the χ2

value obtained from the shifts in band powers measured
on data with the χ2 distribution obtained from simu-
lations and find that the observed fluctuations between
data using different CMB component separation meth-
ods are consistent with shifts induced by the noise (PTE

> 5%).

We repeat a similar analysis to test whether the SD-
CMB spectra obtained using different foreground clean-
ing assumptions in the construction of the µ map lead to
statistically consistent results when correlated with the
SMICA map. For this purpose we generate a MC sim-
ulation set sharing the same CMB for each foreground
cleaning model of Sec. III B and independent realizations
of the µ map, since we consider the noise to be mostly un-
correlated between different component separation meth-
ods as discussed in Sec. III E 3. We find that for the
Ad + Aff model, which displays deviations up to 3σ for

CµE
ℓ and CµB

ℓ when compared to our baseline analysis,
the PTE for the spectra are consistent at the level of 75%
and 73% respectively. This test shows that all the meth-
ods clean with good consistency the major foreground at
this frequency and angular scales, i.e. the Galactic dust,
and that residuals of the cleaning do not matter much
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for the cross-correlation. Different methods however do
show differences in the final constraints on fNL and in the
overall monopole since the residual noise and signal are
different. The baseline model Ad + βd delivers the most
stable results against changes in the sky mask or CMB
map used in the analysis as shown in Tables II and III,
which is why we use this as our baseline analysis.

2. Analysis choices

We check the stability of our analysis choice with re-
spect to several assumptions made in the analysis and in
the construction of our reference data model of Eq. (1).
In particular we change the value T = T0 where we evalu-
ate the gradient of the blackbody spectrum to the original
value used by FIRAS T0 = 2.728; in addition we also try
to simultaneously fit for the y and µ distortion. Chang-
ing the value of T0 mainly influences the value of the
fitted CMB anisotropy map ∆T but does not lead to any
appreciable change in the value of the cross-correlation
power spectra nor in the monopole. Averaging the new
∆T maps and summing it to the new value gives consis-
tent results with the estimate we provide in Sec. IV.

Another plausible concern is the fact that we neglect
the possible interplay of y and µ distortions as we fit
for µ only. A cross-correlation between µ and y distor-
tions could itself be used to constrain non-Gaussianities
on different scales and configurations [37]. We do not ex-
pect y-type distortions, whose leading term comes from
astrophysical objects, to heavily contaminate the mea-
surements at large angular scales in the cross-correlation
power spectra. Its anisotropies are in fact mainly sourced
by the emission of single massive objects and thus their
power spectrum grows at higher multipoles [67]. As a
sanity check, we rerun our analysis pipeline when both
µ and y distortions are allowed to be present. We find
the two parameters to be significantly anticorrelated (by
more than 80% on average), suggesting the lack of con-
straining power of the dataset on both the distortion
types simultaneously. We correlate the resulting µ map
with the T anisotropy of Planck , which is the one po-
tentially contaminated by the tSZ emission, and find no

shift in the CµT
ℓ bandpowers compared to our baseline

setup. Finally, we check the stability of our results with
respect to the analysis mask. Our monopole constraint

are robust to the choice of the mask. We find the CµT
ℓ and

CµE
ℓ power spectra are still consistent with zero with a re-

duced statistical uncertainty, however our final cosmolog-
ical constraint are consistent with the result we present
in Sec. V due to a slight shift in the central value that
might hint for the presence of mismodeled noise or minor
foreground residuals.

3. Foreground deprojection

We test for the presence of residual foreground emis-
sion in the µ map by deprojecting external templates
of Galactic and extragalactic foregrounds. If we assume
that the µ map is contaminated by different foreground
emissions described by a set of templates f i of amplitude
αi
fg, we can write

µ = µ +
∑
i

αi
fgf

i. (18)

Assuming the templates are uncorrelated, we can esti-
mate the amplitude of the single template as αi

fg =

Cµf(i)

ℓ /Cfifi

ℓ and derive the foreground-free power spec-
trum of the µ map from the measured power spectrum
Ĉµµ

ℓ as

Cµµ
ℓ = Ĉµµ

ℓ

(
1 −

∑
i

(
ρµf

i

ℓ

)2)
, (19)

where ρµf
(i)

ℓ is the cross-correlation coefficient between

the foreground template and the µ map and Ĉf(i)f(i)

ℓ the
measured power spectrum of the template. We can ex-
tend the formalism to cross spectra with a CMB map X
where we assume we have contaminations described by
the same template with a different amplitude βi

fg such
that

X = X +
∑
i

βi
fgf

i X ∈ [T,Q,U ], (20)

so that the foreground deprojected cross-correlation
power spectrum reads

CµX
ℓ = ĈµX

ℓ −
∑
i

Ĉµfi

ℓ ĈXfi

ℓ

Ĉfifi

ℓ

X ∈ [T,E,B]. (21)

We perform this template deprojection for different types
of foreground using Planck -based templates that were
degraded to the FIRAS resolution and smoothed with
the FIRAS effective beam. As for the data pipeline, we
compute the cross spectra using the xQML power spec-
trum estimation pipeline. For the Galactic foregrounds
we use the Commander 2015 dust, synchrotron, free-free
and CO(2-1) line templates while for the extragalactic
emissions we use both Compton-y maps provided by the
Planck Collaboration, that are based on different compo-
nent separation methods, and the GNILC CIB emission
templates at 353 GHz. In all cases we do not find signifi-
cant shifts in the bandpowers, which fluctuate well within
the statistical error bars after foreground deprojection.

V. fNL CONSTRAINTS

In this section we translate the extracted SD-CMB
cross-power spectra presented in Sec. IV into constraints
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FIG. 10. Top: Changes in the cross-correlation power spectrum between µ distortions and CMB anisotropies of the Planck
SMICA maps for different component separation methods relative to the statistical uncertainty of our baseline analysis. For the
majority of the multipoles the fluctuations are within 1σ. Bottom: Changes in the cross-correlation power spectra used in this
work when the reference SMICA maps are swapped with different Planck CMB maps obtained adopting different component
separation algorithms. Fluctuations in CµT

ℓ are marginal but some multipoles display fluctuations above 3σ compared to our

baseline case for CµE
ℓ , CµB

ℓ . However, these are consistent with noise-induced fluctuations.

on the amplitude of the local-type primordial non-
Gaussianities at small scales.

Let us first review the theoretical modeling of the
cross-correlation signal between µ fluctuations and pri-
mary CMB temperature and polarization anisotropies.
To highlight the connection of the SD-CMB cross spec-
tra to primordial non-Gaussianities, we closely follow the
earlier works of [52, 83, 84, 87] and define the so-called
local-form bispectrum as

B(k1, k2, k3) = −6

5
f loc
NL [Pζ(k1)Pζ(k2) + 2 perm.] , (22)

where Pζ(k) is the primordial spectrum of curvature per-
turbation, Pζ(k) ∝ kns−4. This bispectrum peaks in
the so-called squeezed triangle configuration (kL ≡ k1 ≪
k2 ≈ k3 ≡ ks)

10 and is interesting to study for a twofold
reason. First, because measuring a statistically signifi-
cant deviation of fNL from zero would disfavour single-
field inflation models [e.g., 2, 74] and second, because this

10 For which we obtain B(k1, k2, k3) → B(ks, ks, kL) ≈
− 12

5
fNLPζ(ks)Pζ(kL).

shape of bispectrum is less prone to contaminations from
late-time effects, such as the lensing-integrated Sachs-
Wolfe effect bispectrum, which effectively makes it a ro-
bust probe of the early Universe [e.g., 53].

The spherical harmonic coefficients of the primary
CMB and µ-type distortion fluctuations are linked to the
primordial curvature perturbation ζ(k) through

aXℓm = 4πiℓ
∫

d3k

(2π)3
T X
ℓ (k)Y m∗

ℓ (k̂)ζ(k) (23)

aµℓm = 4π(−i)ℓ
∫

d3k1

(2π)3
d3k2

(2π)3
d3k3δ

(3) (k1 + k2 + k3)

× Y m∗
ℓ

(
k̂3

)
jℓ (k3rls) f

µ (k1, k2, k3) ζ (k1) ζ (k2) ,

(24)

where X = {T,E} denotes either temperature or E-
mode polarization, T X

ℓ and fµ are the radiation and µ-
mode transfer functions respectively, jℓ(x) is the spher-
ical Bessel function, and rls ≈ 14 Gpc is the comov-
ing distance to the last-scattering surface. We calculate
the radiation transfer function using CAMB [69] and re-
mind the reader that the µ window function picks up
signal from the primordial scalar power spectrum in the
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50 ≲ k ≲ 12000 Mpc−1 range [following e.g., 37].
Then, it is straightforward to calculate the SD-CMB

cross-spectrum (in the squeezed limit) as

CµX
ℓ ≈ −4π

12

5

∫
k2 dk

2π2
T X
ℓ (k)jℓ′ (krls)Pζ(k)

×
∫

q21 dq1
2π2

fµ (q1, q1, k)Pζ (q1) .

(25)

Note that the second integral in the equation above is ap-
proximately equivalent to the definition of the monopole
of the µ distortion, which we set to its ΛCDM expec-
tation, ⟨µ⟩ = 2.3 × 10−8 [31, 36]. From Eq. (25), we
can see that the SD-CMB cross-power spectra linearly
depend on the product of the fNL parameter and ⟨µ⟩,
i.e. ⟨aµℓmaXℓm⟩ ∝ fNL⟨µ⟩. Therefore, a larger value of ⟨µ⟩
would translate to a tighter constraint on fNL.

We now have all the tools needed to carry out the
cosmological inference. First, we set the amplitude of
the primordial scalar perturbation power spectrum to
As = 2 × 10−9 and its spectral index to ns = 0.965,
and calculate the µT and µE template spectra using
the theoretical framework outlined above. We then com-
pare the SD-CMB cross spectra measured in our baseline
setup over the whole ℓ-range (2 ≤ ℓ ≤ 47) to the theo-
retical curves following the analysis scheme discussed in
Sec. III G. The results are presented in Fig. 11.

In the top panel, we show the one-dimensional fNL

posteriors obtained by sampling the Gaussian likelihood
in Eq. (16) assuming an unbounded uniform prior on
fNL. The temperature-only analysis (blue curve) yields
a 95% upper limit on the absolute value of |fNL| of
5.7×106, the E-mode polarization spectra (yellow curve)
reveals |fNL| < 5.8 × 106, and their joint analysis sug-
gests |fNL| < 3.6 × 106. The constraints on fNL from
SD-CMB cross spectra are robust against changes in the
component-separation algorithm used to clean the Planck
CMB temperature and polarization maps. In Table III,
we summarize the results based on the alternative clean-
ing methods which are at the level of few ×106, similar
to those from SMICA algorithm. If we instead want to
be agnostic about the value of the µ monopole, and thus
set model-independent constraints, we can directly infer
upper limits on the fNL⟨µ⟩ product. The corresponding
2σ constraints from µT , µE, and their joint analysis yield
fNL⟨µ⟩ < 0.13, < 0.15, and < 0.08 respectively. We re-
mind that for high values of fNL, the expressions we used

for CµT
ℓ , CµE

ℓ become inaccurate as they are based on
perturbative expansions in primordial fluctuations. Im-
proving the theoretical modeling of these signals is be-
yond the scope of thus work but we justify their use given
the high-noise regime of our measurements and the con-
sistency with 0 of all the measured spectra. To comple-
ment the analysis, in the lower panel of Fig. 11 we com-
pare the maximum-likelihood values of fML

NL found for the
data (vertical lines) to those obtained from the FFP10
simulation cross spectra (histograms). Two things are
worth noting. First, the maximum-likelihood values are
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FIG. 11. Top: Posteriors on fNL from µT (blue), µE (yellow),
and their joint analysis (red). The gray lines show the con-
straints on fNL from our reprocessing of the Khatri & Sunyaev
[64] data. In particular, the solid one only reflects the effects
of the proper band power uncertainties estimation, while the
dashed line also accounts for the statistical and systematic
uncertainties related to the CIB offset residuals. The num-
bers in the legend show the corresponding 2σ upper limits on
the absolute value of fNL (the number in parenthesis corre-
sponds to the pessimistic constraint from the KS15 reanaly-
sis). Bottom: Maximum-likelihood fNL values recovered from
the data (vertical lines) and from Planck FFP10 simulations
(histograms). The color coding is the same as the top panel.
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in agreement with the central values from the Bayesian
analysis reported in the top panel. Second, for each of the
µT , µE, and µT +µE cases separately, the best-fit value
from the data is consistent with the distribution of fNL

from the simulations that do not contain any primordial
local-type non-Gaussian signal.

Finally, in Fig. 12 we show the 2σ upper limits on |fNL|
for our baseline case as function of the minimum and
maximum multipole included in the likelihood analysis
(left and right panel respectively). As we can see, most
of the constraining power comes from the first ℓ ≲ 20
multipoles, as the upper limit curves flatten out for larger
multipoles. For example, reducing the minimum multi-
pole from ℓmin = 2 to 10 degrades the 2σ upper limit
on |fNL| by about a factor 6 for both µT and µE, and
roughly 3.6 for their combined analysis.

The upper limits on fNL found in this section are sig-
nificantly weaker than those derived from the analysis
of the CMB bispectra measured by Planck , |fNL| ≲ 5
[14], or those obtained from galaxy surveys using cluster-
ing power spectrum or 3D bispectrum, |fNL| ≲ 20 [e.g.,
30, 42, 78]. However, we emphasize that SD-CMB cor-
relations are sensitive to fNL at wavenumbers kµ ≈ 740
Mpc−1 which are much smaller than those usually probed
by CMB temperature and polarization bispectra or large-
scale structure. This allows us to place constraints on
the scale dependence of non-Gaussianities that can arise
in many models of the early Universe such as single-
field models having varying sound speed self-interactions,
as well as models requiring extra dimensions such as
DBI inflation [e.g., 28, 29, 35, 65, 93]. These classes
of models could evade the CMB constraints but have
potentially observable features in the large-scale struc-
tures [22, 91]. Considering a simple phenomenological
model of the running of primordial non-Gaussianities,
fNL(k) ≃ fNL(k0) (k/k0)

nNL with k0 ≈ 0.05 Mpc−1 and
fNL(k0) ≈ 5, our limit on |fNL(kµ)| ≲ 3 × 106 translates
to nNL ≲ 1.4.

VI. COMPARISON WITH PREVIOUS
RESULTS

FIRAS is still a unique dataset to constrain the µ dis-
tortion monopole. Being effectively insensitive to the
absolute signal level, modern imagers like Planck often
rely on the knowledge of the CMB monopole measured
by FIRAS and on the annual modulation of the CMB
dipole anisotropy (solar dipole) induced by the motion of
the spacecraft (orbital dipole), which is known very well,
to achieve an accurate intercalibration of the frequency
channels [5, 8]. At present, the precision of this technique
approaches 10−4 [16], not far from the precision of the
T0 measurement [47]. Recent works suggested that much
better precision needs to be achieved to reach the detec-
tion limit of expected cosmological signal of the µ distor-
tion [80]. Nonetheless, some attempts have been made
to extract maps of the µ distortion anisotropies from the

SMICA COMMANDER NILC SEVEM

Ad + βd

µT < 5.66 < 5.06 < 6.53 < 5.19
µE < 5.78 < 8.35 < 6.95 < 7.09

µT + µE < 3.57 < 3.61 < 4.18 < 3.84

Ad

µT < 5.82 < 9.58 < 9.57 < 8.38
µE < 5.37 < 6.85 < 5.08 < 5.50

µT + µE < 3.46 < 5.21 < 7.15 < 5.26

FIRAS

µT < 11.49 < 10.55 < 7.72 < 8.27
µE < 7.67 < 6.96 < 5.63 < 5.54

µT + µE < 7.66 < 5.45 < 5.09 < 4.53

Ad +As

µT < 6.56 < 6.01 < 7.84 < 8.61
µE < 11.39 < 8.98 < 12.57 < 9.36

µT + µE < 5.86 < 4.17 < 5.61 < 7.05

Ad +Aff

µT < 8.19 < 7.36 < 9.51 < 11.63
µE < 9.88 < 10.04 < 10.03 < 8.71

µT + µE < 6.53 < 7.10 < 7.77 < 7.62

TABLE III. 95% upper limits on |fNL| × 106 from the cross-
power spectra between anisotropic µ and CMB temperature
and E-mode polarization anisotropies. Results are shown for
different foreground models and component separation algo-
rithms. The baseline results are highlighted in bold.

Planck data [64, hereafter KS15 ] with dedicated para-
metric component separation algorithm called LIL [63].
The data of the KS15 analysis are publicly available11

and have been used to constrain fNL ≲ 3.3 × 105 and
τNL < 2.5 × 1011 at 95% confidence level.12 In order
to perform an accurate comparison with our results, we
reanalyzed the KS15 data using their fiducial power spec-
trum estimation pipeline retaining fsky = 0.62, compa-
rable to our baseline setup. We discovered several issues
with their original results, that we summarize below, and
derive new fNL constraints from the same dataset.

A. Power-spectrum and error-bar estimation

In order to avoid noise correlation leading to a noise
bias in the cross-correlation, KS15 created two sets of
µ maps from the half-ring splits and used the publicly

available code PolSPICE [34, 41] to compute CµT
ℓ and

11 https://theory.tifr.res.in/~khatri/muresults/
12 We note that these limits differ from those quoted in the abstract

of KS15 because we inserted the exact measured values of the
CµT

ℓ and Cµµ
ℓ reported in their Eqs. (4.5) and (4.3) in their

final formulas of Eqs. (5.32) and (5.33).

https://theory.tifr.res.in/~khatri/muresults/
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FIG. 12. 2σ upper limits on |fNL| as function of the minimum multipole ℓmin when fixing ℓmax = 46 (left panel) and as function
of the maximum multipole when setting ℓmin = 2. These curves are reported for our baseline analysis. In each panel, the blue,
yellow, and red lines show the constraints from µT , µE, and their joint analysis respectively.

Cµµ
ℓ where the CMB leg is given by the official Planck

CMB SMICA map of the 2015 release. Given their fidu-
cial analysis mask and maps, we are able to recover their
quoted µT cross-correlation amplitude if we correlate the
KS15 µ map obtained with the second half-ring split µ(2)

with the Planck DR2 SMICA map from the first half-ring
split T SMICA,(1). We report our findings in Table IV. The
half-ring maps cross spectra method ensure the absence
of any noise bias in the resulting power spectra as the
datasets are fully independent. Since all the band pow-
ers at scales ℓ > 26 largely deviate from zero, the authors
discarded them and used only the first bin in multipoles
which includes angular scales ℓ ∈ [2, 26] to get cosmologi-
cal constraints. We note that a full analysis of the dataset
should use the cross-spectrum computed with the half-
ring split 1 for the µ map and the half-ring split 2 for the
T map. This is however slightly inconsistent with zero at
about 2σ level and would degrade the upper limit of fNL

by pushing the measured band power high. The fiducial
analysis in KS15 adopted the analytical error bar out-
put of the PolSPICE code, which assumes uncorrelated
Gaussian noise and includes the Gaussian sample vari-
ance accounting analytically for the effect of the mask.
However, it is unclear whether those approximations are
valid for the covariance of component-separated data, in
particular for their largest angular scales where the im-
pact of non-Gaussian correlated 1/f noise in the data is
larger and, in general because the expected distribution
of the Cℓ deviates from the Gaussian approximation for
the power spectrum estimation methods they employed
[26, 55]. We therefore adopt an alternative jackknifing
approach to compute the error bars on the measurement.
We first identify NJK = 192 patches, corresponding to

the pixel area of an HEALPix map of Nside = 4 res-
olution, and then remove one of them before comput-

ing the CµT
ℓ or Cµµ

ℓ power spectra from the remaining
NJK−1 patches. We repeat the process until every patch
has been discarded once from the measurement and then
compute the covariance of the measurement from all the
measured Cℓ-s [73]. We find that the covariance com-
puted for all the combination of the splits exceed signif-
icantly the analytical error bars, by as much as 30% for

first power spectrum bin in CµT
ℓ and on average by a fac-

tor 50% across the whole range of multiples considered in
KS15. Conversely, the error bars for the Cµµ

ℓ power spec-
trum, computed in KS15 as the cross-correlation of the
µ(1) and µ(2) maps is consistent with the analytical esti-
mate in the first multipole bin but should be inflated by
roughly by factor of 5 on average for the smallest angular
scales.

B. Foreground contamination

We test for residual foreground contaminations in the
maps using the deprojection techniques introduced in
Sec. IV C 3 and adopting the same set of Galactic and ex-
tragalactic foreground templates. We first compute the
cross-correlation coefficient of both the Planck SMICA
DR2 map used in the KS15 analysis and their µ map
with all the templates. We show that the main fore-
ground residuals in the map are represented by Galactic
dust, tSZ and, less importantly but non-negligibly, CIB,
for which we detect a 60%, 40% and 30% correlation re-
spectively. The magnitude of the correlation is stable
with respect to the choice of different dust (e.g. COM-
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[×10−12K] SMICA DR2 SMICA DR3noSZ

µT full 4.1± 3.3 4.6± 3.5

µT (1,2) 5.4± 3.6 5.9± 3.6

µT (2,1) 2.7± 3.5 3.0± 3.5
µT combined 4.0 ±2.6 4.4± 2.5

TABLE IV. Values of DµT
ℓ = ℓ(ℓ+ 1)CµT

ℓ /2π obtained rean-
alyzing the KS15 µ distortion maps using their same fiducial
mask and power spectrum pipeline. The superscript denotes
which data split has been used for each µ and CMB field
respectively. The error bars are based on the jackknife es-
timate described in Sec. VIA and exceed by ∼ 30% those
of KS15. We report the value obtained by cross-correlating
different data splits and different component-separated CMB
maps. We use the same units of KS15 to facilitate a direct
comparison.

MANDER or GNILC based) or tSZ templates (NILC or
MILCA). For the SMICA DR2 map, the correlation coef-
ficient we observe with the same set of templates is well
below the 5% on all relevant scales. As such, the de-

projection applied to the CµT
ℓ power spectrum does not

bring any statistically significant shift in the first band-
power in particular, and it does not bring the measured
power spectra to be consistent with 0. The sharp oscil-
latory features suggest that the maps are dominated by
primary CMB leakage and the tSZ deprojection seems
to enhance those features at small angular scale, point-
ing to a non-negligible residual in the µ map. This is
somehow expected since the data model of KS15 does
not include y. As such the resulting µ map is ∼ 30%
correlated with the y templates in the first bin, while the
SMICA map is anticorrelated with y at the 5% level on all
angular scales. When correlating the KS15 µ map with
the tSZ-deprojected SMICA map of the Planck DR3 re-
lease, which is designed to be tSZ-free, we find consistent
results with the analysis discussed above (see Table IV),
supporting the hypothesis of the spectra being dominated
by CMB leakage.

C. Map offsets and CIB monopole uncertainties

The sky monopole is not constrained by Planck data.
The correlated noise component in the raw time ordered
data is in fact modeled by a sequence of baseline offsets
of a specific length in time tuned to optimize the noise
removal and minimize the computational cost of the map-
making step [12, 15, 62]. Therefore, the monopole can-
not be distinguished from a global noise offset and the
final map monopoles can assume arbitrary amplitudes.
For the Planck LFI instrument, these are estimated dur-
ing the calibration step and removed from the final map,
while for the HFI channels used in KS15, these are fixed
to reproduce the value of the dust and CIB monopole.
While the first set of offset values is estimated from the
data through correlation with maps of the HI column

density [7], the latter are inserted according to the ex-
pected CIB monopole model of [21]. The uncertainties
on the offsets depend on the specific astrophysical dataset
used to constrain them and can be large [see 81, hereafter
O19, and references therein]. The recent analysis of the
FIRAS team in O19 provided new estimates of the CIB
monopole at the Planck HFI frequencies (100, 143, 217,
353, 545, 857 GHz). These are the first data-driven val-
ues for frequencies below 200 GHz and are sometimes in
tension with the model used by Planck for the 217 GHz
and 353 GHz channels (we report all relevant values in
Table V). Despite the component separation algorithm
of KS15 should remove the nominal monopole injected
in the maps, we try to quantify how these uncertainties
can affect their final result and its uncertainty. For this,
we consider a single-pixel toy model where we fit for a
µ distortion in a sky model that includes a CMB tem-
perature anisotropy of 200µK and Galactic dust using
only the 100 GHz, 143 GHz, 217 GHz and 353 GHz as in
KS15. In the MC simulations, at each frequency we add a
random realization of the average Planck noise adopting
the numbers in Table 12 from [12] before performing the
fit. In this case we recover an unbiased estimate of µ. We
then proceed to perform a similar test where we add to
all simulated frequencies not only the instrumental noise
but also a systematic error that represents the uncer-
tainty in the map offset after CIB monopole subtraction.
For each frequency, we draw this error from a Gaussian
distribution with standard deviation equal to the error of
the measurements of O19 and a mean either equal to 0 or
equal to the difference between the CIB monopole values
adopted by Planck and those of O19. These cases cover
two different hypotheses; the first accounts only from a
data-driven estimate of the statistical uncertainty in the
estimate of the CIB offsets residuals, while the second
considers also a systematic mean residual in the maps.

In both cases, the overall error on the recovered µ (es-
timated as the standard deviation of the samples) in-
creases compared to the case with no systematic errors.
When we introduce a nonzero mean residual offset, the
recovered distribution of the µ pixels becomes inconsis-
tent with zero at ∼ 1.5σ. The recovered CMB also ap-
pear slightly biased at a similar statistical significance.
We repeat the analysis by injecting the systematic errors
one frequency at a time and find that the major source
of the bias and uncertainty are the monopole errors at
143 GHz and 353 GHz. This shows that the limited fre-
quency coverage used in KS15 makes their analysis very
sensitive to the CIB monopole uncertainties and their sta-
tistical error bars underestimate the overall uncertainty
in the measurement. The ratio between the error bars
on µ obtained including the CIB monopole uncertain-
ties (that we conservatively take as the 68% upper limit
of the recovered µ distribution) and the error bars de-
rived including only the instrumental noise gives us an
estimate of the factor that the measured error bars on
CµT

ℓ should be inflated by to account for these effects
in the final fNL estimate. This is equal to ∼ 3 but can
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ν [GHz] O19 [MJy/sr] Planck [MJy/sr]

100 0.007± 0.014 0.003± 0.003
143 0.010± 0.019 0.0079± 0.0079
217 0.060± 0.023 0.033± 0.013
353 0.149± 0.017 0.13± 0.026

TABLE V. Estimates of the CIB monopoles based on [21]
used to set the zero-level maps of the Planck HFI channels
and their new data-driven estimates of [81].

get to ∼ 5 for the case where we consider a systematic
mean CIB monopole residual in all frequency bands. We
also note that the high sensitivity to the CIB monopoles
and related potential biases induced by their misestima-
tion appears only when we fit for the µ distortion in the
frequency range we are considering. In fact, we do not
observe any significant bias in the recovered CMB even
when systematic errors are injected if we do not include
µ in the data model. Alternative component separation
methods working in harmonic domain might be less sen-
sitive to these issues although they might still have an
impact through coupling with the analysis mask.

D. Final fNL constraints

With the new band power estimates provided in
Sec. VI A we perform a full likelihood analysis of the
single power spectrum bin using the pipeline of Sec. V.
This includes the full information on the band powers

and accounts for the scale dependent shape of CµT
ℓ and

power spectrum binning effects that were neglected in
the original KS15 analysis. Including only the statistical
uncertainties, we find comparable constraints to what we
obtain with FIRAS at the level of |fNL| < 3 × 106 (see
the solid gray line in Fig. 11), showing that the original
results were underestimated by about an order of mag-
nitude. However, if the uncertainties connected with the
removal of the Planck HFI maps offsets are accounted
for, the constraints significantly degrade and are not com-
petitive with our measurement. Specifically, if we only
consider the statistical uncertainty in the estimate of the

CIB offset residuals and inflate the error bar on CµT
ℓ

by a factor ∼ 3, the inferred constraint on fNL becomes
|fNL| < 5.5 × 106. If we instead also include the sys-
tematic mean CIB residual in all frequency bands, and

inflate ∆CµT
ℓ by about 5×, the 2σ upper limit loosens to

|fNL| < 8.6 × 106 (dashed gray line in Fig. 11).

VII. CONCLUSIONS

In this paper, we performed the first attempt to
self-consistently measure both the monopole and the
anisotropic part of the µ-type spectral distortion of the
CMB. These provide invaluable information on the ther-

mal history of the Universe, on physics beyond the stan-
dard model, and on highly-squeezed primordial non-
Gaussianities on scales k ≫ 0.05 Mpc−1 that are not
constrained by CMB observations both for scalar, ten-
sor, and mixed bispectra of primordial perturbations.

For this purpose, we used the FIRAS spectrometer
legacy data to reconstruct an all-sky map of the µ distor-
tion. Being FIRAS sensitive to the absolute sky bright-
ness, we managed to reduce the previous constraint on
the monopole of µ distortion by a factor of 2 thanks to
a more robust foreground cleaning. We correlated the µ
map with CMB temperature and, for the first time, E
and B-mode polarization anisotropies measured by the
Planck satellite on large angular scales 2 ≤ ℓ ≤ 46.

The measured unbinned CµT
ℓ and CµE

ℓ cross spectra
have been translated to constraints on the amplitude
of local-type primordial non-Gaussianity fNL at scales
102 ≲ k ≲ 104 Mpc−1 and to an upper limit on its nNL.
Our baseline analysis suggests |fNL| < 3.6 × 106 from

the combined analysis of CµT
ℓ and CµE

ℓ , and nNL ≲ 1.4
if we assume that ⟨µ⟩ is only sourced by the dissipation

of acoustic waves in the primordial plasma. CµB
ℓ , for

which we provide the first constraint, was found to be
consistent with zero, implying no strong violation of the
statistical isotropy of tensor perturbation. We postpone
a full analysis and cosmological interpretation of the µB
cross-correlation to future work.

We have run an extensive suite of systematic checks to
assess the robustness of our results against foreground
contaminations and analysis choices. We found that all
our results are stable and all the induced shifts are within
fluctuations expected from statistical errors. Thanks
to their extended spectral coverage and sensitivity to
the absolute sky brightness, we show that spectrometers
data are very robust against systematic effects. In fact,

we reanalyzed previous measurements of CµT
ℓ based on

data from Planck and found that they are dominated by
effects due to an imperfect component separation due
to a reduced frequency coverage and by astrophysical
uncertainties. Once all these effects are all taken into
account those measurements deliver a constraint com-
parable to ours or worse. Going forward, spectrometers
that will be able to measure the µ distortion monopole
accurately are the only way to break the degeneracy

with fNL for the interpretation of CµT
ℓ and CµE

ℓ in a
model independent way. To this end, extending the
frequency coverage of spectrometers to ν ≤ 60 will be
crucial as the signatures of µ distortions are stronger.

We make our maps and results publicly available to
the community to explore additional theoretical models.

As this paper was finalized, we became aware of similar
work in [92] using the full set of Planck channels between
30 GHz and 857 GHz. Their fNL constraint consistently
benefits from an improved component separation that
reduces foreground contaminations at small scales and
allows them to use multipoles ℓ ≲ 1000 compared to the
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previous Planck analysis by Khatri & Sunyaev [64]. In

addition to providing the first measurements of CµB
ℓ and

an improved µ distortion monopole constraint, our work
is complementary to [92] as it extends the measurements
to larger angular scales. We note that the fNL constraints
they obtained when considering only angular scales that
overlap with this work (which still contribute to ≈ 30%
of their sensitivity) are likely optimistic due to a simplis-
tic treatment of the correlation and non-Gaussianity of
the noise after component separation, as well as multi-
pole bin-bin correlations in the likelihood. A comparison
between the theoretical curves adopted in their analysis
and the ones used in this work would also be informa-
tive. We expect these effects to push the Planck based
constraint from large scale closer to ours.
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Appendix A: Uncertainties on the reconstructed
maps

In Fig. 13 we show the estimated uncertainties on the
reconstructed maps in our baseline analysis: ∆T , µ, Ad,
and βd. These uncertainties are calculated as the stan-
dard deviation of the posterior, obtained through MCMC
sampling, in each pixel.
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FIG. 13. Uncertainties on the reconstructed maps calculated as the standard deviation of the posterior in each pixel. The
top left plot shows the CMB dipole, the top right refers to the anisotropic µ-type distortion and the bottom ones show the
amplitude and spectral index (at 353 GHz) of the Galactic dust. Pixels grayed out are removed by the FIRAS destriper mask.
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M. 2018, Phys. Rev. D, 98, doi: 10.1103/physrevd.98.
103526

[97] Virtanen, P., et al. 2020, Nature Meth., 17, 261, doi: 10.
1038/s41592-019-0686-2

[98] Zannoni, M., Tartari, A., Gervasi, M., et al. 2008, As-
trophys. J., 688, 12, doi: 10.1086/592133

[99] Zeldovich, Y. B., & Sunyaev, R. A. 1969, Astrophys.
Space Sci., 4, 301, doi: 10.1007/BF00661821

[100] Zonca, A., Singer, L., Lenz, D., et al. 2019, Journal
of Open Source Software, 4, 1298, doi: 10.21105/joss.
01298

https://arxiv.org/abs/2205.15971
https://arxiv.org/abs/2205.15971
http://doi.org/10.1088/1475-7516/2009/12/022
http://doi.org/10.1088/1475-7516/2009/12/022
http://doi.org/10.1103/physrevd.55.5895
http://doi.org/10.1103/physrevd.98.103526
http://doi.org/10.1103/physrevd.98.103526
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1086/592133
http://doi.org/10.1007/BF00661821
http://doi.org/10.21105/joss.01298
http://doi.org/10.21105/joss.01298

	CMB spectral distortions revisited: a new take on  distortions and primordial non-Gaussianities from FIRAS data
	Abstract
	Introduction
	datasets
	COBE/FIRAS
	Planck CMB maps
	Sky masks

	Methods
	Data model
	 Foreground modeling
	FIRAS covariance
	 Map inference
	Power spectrum and uncertainties estimation
	FIRAS beam transfer function and deconvolution
	Covariance matrix of CMB maps
	Covariance matrix of  map

	CT, CE, CB estimation
	Cosmological inference fNL

	Measurements
	Spectral anisotropies, CMB and foreground maps
	Power spectra
	Robustness tests
	Stability against foreground models
	Analysis choices
	Foreground deprojection


	 fNL constraints
	 Comparison with previous results
	Power-spectrum and error-bar estimation
	Foreground contamination
	Map offsets and CIB monopole uncertainties
	Final fNL constraints

	Conclusions
	Acknowledgments
	Uncertainties on the reconstructed maps
	References


