
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering 
https://doi.org/10.1007/s11831-022-09836-2

REVIEW ARTICLE

A Review of Image‑Based Simulation Applications in High‑Value 
Manufacturing

Llion Marc Evans1,2  · Emrah Sözümert1  · Bethany E. Keenan3  · Charles E. Wood4  · Anton du Plessis5,6 

Received: 8 April 2022 / Accepted: 15 October 2022 
© The Author(s) 2023

Abstract
Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image 
data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) 
based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive test-
ing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in 
recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the ‘as designed’ and 
‘as manufactured’ state of parts. It has also been used for characterisation of geometries too complex to accurately draw with 
CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual 
testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby 
HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual 
cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, 
foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; 
Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design 
and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, 
and observations made on future trends based on the current state of the literature.

Abbreviations
AM  Additive manufacturing
AR  Augmented reality
CAD  Computer aided design
CAM  Computer aided manufacturing
CBCT  Cone-beam computed tomography
CDAM  Cyber design and additive manufacturing
CDM  Continuum damage models

CFD  Computational fluid dynamics
CFRP  Carbon fibre reinforced plastics
CMD  Custom-made device
CPU  Central processing unit
CT  Computed tomography
DIC  Digital image correlation
EBM  Electron beam melting
FEA  Finite element analysis
FIB  Focussed ion beam
FVM  Finite volume method
GDL  Gas diffusion layers
GPU  Graphical processing unit
GTN  Gurson–Tvergaard–Needleman
HVM  High-value manufacturing
IBSim  Image-based simulation
LBM  Lattice Boltzmann methods
L-PBF  Laser powder bed fusion
MDCG  Medical device coordination group
MDPS  Medical device production systems
ML  Machine learning
MMPS  Modified-moving particle semi-implicit
MPL  Microporous layer
MRI  Magnetic resonance imaging
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NDE  Non-destructive evaluation
NDT  Non-destructive testing
OSSM  Optical serial sectioning microscopy
PEM  Polymer electrolyte membrane
PMD  Personalised medical device
R&D  Research and development
RAM  Random access memory
RANS  Reynolds-averaged Navier–Stokes
RVE  Representative volume element
SaMD  Software as a medical device
SEM  Scanning electron microscopy
SLS  Selective laser sintering
TEM  Transmission electron microscopy
TRL  Technology readiness level
XCT  X-ray computed tomography
XFEM  Extended finite-element method
μCT  Micro computed tomography
STL  Standard tessellation language

1 Introduction

Image-Based Simulation (IBSim) or modelling can have dif-
fering meanings depending on the context. In the case of this 
review, we define IBSim as “engineering simulations based on 
3D geometry captured by some form of imaging technique”.

This review focuses on applications of IBSim within high-
value manufacturing (HVM), where the simulation techniques 
typically used are Finite Element Analysis (FEA)1 or Compu-
tational Fluid Dynamics (CFD), but IBSim can include use of 
any geometrically based numerical method. That is, improv-
ing the accuracy of engineering simulations with the use of 
ultra-high resolution non-idealised model geometries which 
estimate the performance of components ‘as manufactured’ 
rather than ‘as designed’. In this context, IBSim does not mean 
1D modelling (or systems modelling) based on measurements 
obtained by imaging as input parameters, e.g., performing 
image analysis of a video monitoring the flow of raw material 
stock to provide measurement data for use in an algorithm 
which estimates product yield during processing. IBSim is 
considered an aspect of ‘digital twin’ technology being devel-
oped for the smart manufacturing methods of Industry 4.0.

The IBSim workflow can be broadly divided into four 
main stages as shown in Fig. 1:

1. Digitisation of parts through a volumetric or surface 
imaging technique.

2. Conversion of the image into virtual geometry.

3. Preparation of the geometry into a simulation ready for-
mat.

4. Image-Based Simulation, visualisation, and post-pro-
cessing.

Due to these different stages, it is a highly multidiscipli-
nary process involving the fields of microscopic imaging, 
image analysis, high performance computing and data sci-
ence, engineering simulations, material science and increas-
ingly machine learning. The combination of such a broad 
field of disciplines can in itself be a challenge and barrier 
to adopting IBSim. The initial stage, i.e., 3D scanning tech-
niques for producing a volumetric or surface image, can 
range from a topological scan using methods such as:

– Laser scanning
– Structured light scanning
– Ultrasound
– Photogrammetry
– CMM

To full 3D mapping with techniques like:

– Computed Tomography (CT)
– Magnetic Resonance Imaging (MRI)
– Confocal Microscopy
– Optical Serial Sectioning Microscopy (OSSM)
– Focussed Ion Beam-Scanning Electron Microscopy (FIB-

SEM)
– Serial Block-Face Scanning Electron Microscopy (SBF-

SEM)
– Transmission Electron Microscopy (TEM)

Each technique has its own strengths and limitations and 
usually the size and material of the item being imaged, and 
the context will dictate which method is most appropriate. 
The resolution of the IBSim geometry will inevitably depend 
upon the resolvability of features within the image on which 
it is based. It is, therefore, essential to select the most appro-
priate technique and acquire the best resolution feasible for 
the given circumstances. Although some corrections may 
be applied with image-processing methods, there are no 
replacements for following best practices for the imag-
ing technique of choice. The most widely used acquisition 
method is CT, due to its non-destructive nature, combined 
with high resolution capabilities matching well the typical 
requirements for IBSim investigations.

Once the 3D data has been acquired it must be converted 
into a virtual representation of the geometry to allow simula-
tions to be run. Topological scans, e.g., from laser scanning, 
are the simplest forms of imaging data to create IBSim mod-
els. Since they only capture the external geometry with no 
internal features (e.g., micro-pores or inclusions), they are 

1 The term FEA is often used interchangeably with Finite Element 
Method (FEM) although they differ slightly in meaning. For consist-
ency FEA will be used throughout.
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relatively small datasets, but still significantly larger than 
Computer Aided Design (CAD)-based geometries.

These will often be formed of point clouds, which are 
a collection of cartesian coordinates representing the sam-
ple surface. Techniques like photogrammetry can provide 
additional information such as colour, which facilitates 
distinguishing between materials in multi-phase samples. 
Post-processing methods are used to interpolate between the 
points and define surfaces. Smoothing algorithms are often 
used to ‘clean’ data and remove spurious points or fill in 
voids in the data.

Full 3D volumetric images are data-rich and, depending on 
the imaging method, can include features of interest that are less 
than 1/1000th the size of the parent sample. The images typi-
cally consist of a discretised voxel domain, with each voxel (3D 
pixel) providing some information about that location in space. 
For example, in conventional X-ray CT (XCT), a voxel provides 
information about signal attenuation at that location that can be 
used to infer material density [1]. When the data is rendered as 
an image, rather than a three-dimensional matrix, the attenuation 
is visualised by being assigned a given colour or grey scale. This 
can be visualised with volume rendering or with 2D images as 
cross-sectional slices through the part, as shown in Fig. 2.

A segmented volumetric image will still consist of a vox-
elised domain, but with each voxel having a phase number 

rather than greyscale value. Fig. 3 shows examples for an 
image of a lemon fruit, segmented to increasing level of 
detail. In addition to the examples shown in Fig. 3b−d it 
may be possible to segment many more phases up to what is 
resolvable with the available image resolution (e.g., separat-
ing the albedo and flavedo).

Many segmentation approaches and software solutions 
exist, from fully manual voxel ‘painting’ on a slice-by-slice 
basis to semi and fully automated methods assisted by image 
processing algorithms [2, 3]. In practice, more complex 
images (i.e., sample geometry, number of phases, level of 
noise, and artefacts) tend to require more manual interaction.

Once a voxel geometry has been defined, it is possible 
to perform simulation analysis directly on this data. This is 
often the approach of ‘first pass’ or ‘rapid turnaround’ mesh-
based methods by using the voxels as hexahedral elements, 
for example with the Finite Difference Method. For more 
in-depth analysis with mesh-based methods, such as FEA 
and CFD, it is usually desirable to perform some preparatory 
steps such as smoothing, mesh validity and quality checks, 
and mesh refinement and/or partitioning.

If the preparation of the IBSim mesh has been carried 
out effectively, the running of the actual FEA/CFD analysis 
should not differ significantly from a CAD-based simulation. 
There are still some considerations worth noting. The main 

Fig. 1  Schematic showing the broad stages for an IBSim workflow 
which, in this instance, converts X-ray Computed Tomography data 
into an FEA simulation. This example is a metallic component from 

a heat exchanger, where the geometry and quality of bonding at the 
interfaces are integral to the part’s thermal performance
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additional consideration should be how to work with data 
volumes which are orders of magnitude greater than conven-
tional CAD-based models. This includes use of computing 
hardware of sufficiently high enough specifications (CPU 
cores, RAM, GPU) and software workflows (usually paral-
lelised) that make efficient use of this hardware for simula-
tion, data analysis and visualisation.

As previously stated, the focus of this review is IBSim 
applications within HVM, and at this juncture it is worth 
providing a disambiguation for the commonly misused 
term ‘HVM’. A report by the Institute for Manufacturing, 
Cambridge [4] states that a simple definition of HVM is 
not possible and, rather, sets out a framework by which to 
contextualise it. Their framework broadly defines four types 
of manufacturing which can be considered ‘high-value’: ser-
vice led producers; product manufacturers; service manu-
facturers; and system integrators. They explicitly make a 
distinction between manufacturing and production “A key 
point in defining HVM is that manufacturing is not produc-
tion and vice versa.”. That is, if used for its true meaning, 
HVM also includes stages from research and development 
(R&D) to ongoing post-production services (in both the 
physical and digital realms).

For that reason, HVM is predominantly used in this 
review to mean the value provided by a manufactured part 

(or conversely the potential cost should the part fail) rather 
than the actual cost of manufacturing the part itself. For 
example, a critical part in a satellite, whose mission value 
is estimated at hundreds of millions of dollars, might only 
cost a few hundreds of dollars to manufacture, but the impact 
of failure could lead to a catastrophic loss. In such circum-
stances, it is prudent to spend substantial effort in performing 
non-destructive testing and evaluation (NDT/NDE) to build 
confidence that the particular part in question will perform 
as expected. The cost of this effort might be greater than the 
cost of manufacture. No manufactured parts are ever defect 
free, if investigated at sufficiently small scales defects are 
always found to be present. The important outcome of NDE, 
therefore, is to quantify the ‘effect of the defect’ to build a 
better understanding of what limits a given part should be 
operated under. IBSim models are data rich, giving unprec-
edented insight into localised fluctuation in behaviour due to 
micro-features as well as their global impact. High resolution 
visualisation allows researchers to investigate these in detail.

It is worth noting that IBSim’s roots lie in the biomedi-
cal field, which can primarily be attributed to the fact that 
this is also the field that has been a substantial driver for the 
development of volumetric imaging, such as XCT and MRI. 
It is difficult to identify the first instances of IBSim, however, 
early work used external measurements of patients to amend 

Fig. 2  Visualisations of a carbon fibre-carbon matrix composite: a photograph, b X-ray radiograph, c volume rendering of XCT data, d 3 ortho-
slices in the xy, xz and yz planes from XCT data
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CAD-based models and thus make them patient-specific [5]. 
This progressed to using internal measurements from volu-
metric images [6] as XCT and MRI became more prevalent, 
it subsequently led to full conversions of volumetric images 
directly into simulation geometries [7]. As could be expected, 
the use of IBSim within the industrial sector coincided with 
the increased usage of imaging methods, such as micro com-
puted tomography (μCT), which has seen a growth of greater 
than 10% year-on-year over the past decade [8]. IBSim is also 
used in other fields of research, such as geology (largely in 
relation to the oil & gas industries) [9], archaeology [10], and 
palaeontology [11]. This review will restrict itself to applica-
tions within HVM other than select examples from biome-
chanics, where a manufactured part is used in the medical 
field. However, the review should also be useful to readers 
interested in the other aforementioned fields because there is 
much in common between the methodologies. This review 
is the first of its kind for HVM and aims to give a thorough 
overview of the literature to date rather than an update on 
recent publications alone.

2  Review of HVM Applications of IBSim

IBSim is already being used within research and develop-
ment (R&D) cycles to accelerate development by provid-
ing additional insight at various stages [12–14]. The pro-
gress along the R&D cycle of producing a new concept is 
described by its ‘technology readiness level’ (TRL), which 
is a method of categorising its maturity stage. These levels 
range from the conceptual stage (TRL 1) to full production 
with a proven in-service track record (TRL 9).

To increase efficiency in R&D cycles it is desirable to 
accelerate progress through the TRLs. Within manufactur-
ing, identifying optimal products (their design, material 
selection, usage parameters etc.) is achieved by iteratively 
down-selecting candidates through testing. Much of this 
development process is constrained by available resources. 
That is, the number of candidates which may be consid-
ered are limited by costs and time. Virtual testing through 
computational simulation techniques have increasingly been 
facilitating the R&D process [15]. With simulations it is 

Fig. 3  Schematic demonstrating various levels of detail possible when segmenting a complex object. a Photograph of a lemon cut in half and 
b–d image segmented into increasing number of phases: b background, fruit; c background, peel, interior; d background, peel, flesh, seed



 Ll. M. Evans et al.

1 3

possible to iterate through many more designs quickly and 
cheaply without needing to prototype concepts.

However, there exists a gap between observations dur-
ing simulation and experiments [16]. As such, simulations 
are used as first stage guidance but there is still a heavy 
reliance on experimental testing during R&D. Improved 
accuracy in simulations could lead to more rapid R&D 
development. IBSim is one approach that can close the 
gap between simulation and experiment [16]. By digitising 
a real prototype, microscale accurate simulations can be 
carried out on the part ‘as manufactured’ rather than ‘as 
designed’. This means its geometry is no longer idealised 
and simulations account for impact on performance due to 
manufacturing processes by inherently including features 
such as deviations from tolerance and micro-porosity. A 
flowchart is shown in Figure 4.

Within R&D, IBSim allows one manufactured prototype 
to be tested to destruction multiple times by using a virtual 
representation of the manufactured part which is faithful on 
the microscale [17]. In addition to replicating laboratory 
testing through simulation, it is possible to extrapolate to 
scenarios more representative of real-world conditions e.g., 
increased number of cycles, real loading rates and values, 
complex loading with multiple mechanisms. This is because 

IBSim testing is not constrained by the limitations of the 
laboratory. That means much more valuable data can be 
obtained from a single prototype, significantly reducing costs.

Through being able to directly compare results from 
experimental and simulation results, IBSim benefits from 
verified results with increased confidence values compared 
with simulations using idealised geometries. This is invalu-
able within the industrial sector when simulating conditions 
outside what can be tested in the lab. IBSim is also used in 
materials development to perform virtual characterisation 
to reduce the number of physical tests and thus the volume 
of material required.

The process of manufacturing novel materials can often 
be a rapid process which only requires the variation of some 
parameters during fabrication. This can create different 
microstructures which leads to different material properties. 
However, the process for characterising the new properties of 
the material can involve a significant effort and thus cost. If 
it is desired to measure a range of properties, this can require 
fabrication of many samples for a series of experimental tests.

By using IBSim, it is possible to perform virtual testing 
with a suite of simulations that emulate laboratory material 
characterisation from one manufactured block of material 
that is digitally ‘cut’ to the required dimensions. This way, 

Fig. 4  Flowchart demonstrating the relationship between ‘as designed’ simulations and physical testing conventionally used with more novel ‘as 
manufactured’ virtual testing with IBSim
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new materials can be rapidly characterised to identify the 
strongest candidates. Furthermore, for method and model 
validation, actual test samples can be replicated digitally 
for a direct comparison of physical and virtual test results 
leading to an improved level of confidence.

Because of the digitisation process from a real material, 
IBSim can be used for simulations of extremely complex 
geometries such as fibre composites or foams with no need 
for idealisation. Additionally, it is possible to digitally alter 
the structure to see what impact this has on the properties. 
For example, the volume of pores or the thickness of foam 
ligaments could be increased/decreased to investigate the 
benefits of imposing additional control on the material 
processing.

To reflect those categories of IBSim usage within HVM, 
this review has been structured accordingly. Firstly, IBSim’s 
use for material characterisation is presented followed by 
how IBSim has been applied to optimise manufacturing 
processes. Next, case studies using IBSim to investigate 
how deviations from idealised design on both the micro 
and macro scales impact product design and finalised part 
performance. Also included are two final sections on how 
IBSim is used in a broader sense to improve the customi-
sation and personalisation of products and how it is con-
tributing to the field of biomimicry in manufacturing. The 
review is concluded by looking at growing trends in IBSim 
for HVM that are showing significant promise.

2.1  Material Characterisation

Image-based models and their simulations have been dem-
onstrated to be highly useful in determining morphological 
features of materials and, consequently, effective material 
properties at various length scales ranging through mac-
roscale (> 10 mm), mesoscale (0.1–10 mm), microscale 
(0.1–100 µm), and nanoscale (< 100 nm). The application 
of IBSim for material characterisation is used in three main 
areas: macroscale topology; homogenisation; and the impact 
of microscale features. Macroscale investigations provide 
researchers with bulk material properties (e.g., stress–strain 
relationships, effective Young’s modulus, Poisson’s ratio, 
plastic strength). In cellular materials, such as foams, the 
cell morphology (e.g., cell size & shape) and topology (e.g., 
type of cell such as open/closed wall cells or cell connectiv-
ity) can be characterised at the mesoscale [18]. Image-based 
numerical models of heterogenous materials (cellular mate-
rials, multiphase rocks, asphalt, fibre reinforced composites 
etc.) at the mesoscale can be utilised for homogenisation of 
material properties by using unit cells or representative vol-
ume elements (RVE). The resultant material properties are 
subsequently used as input for macroscale numerical simu-
lations of larger parts or components. Through analysis of 
μCT images of porous media, such as rocks, it is possible to 

measure microstructural features (e.g., pore-size distribu-
tions, network connectivity, micro-cracking).

One image-based approach is to gather this type of sta-
tistical data about a material’s microstructure which is then 
used in an analytical method to predict its macroscopic 
response. For this to be a robust approach, it requires col-
lecting a statistically significant amount of data and thus 
provides the response which can be expected on average. 
The direct conversion of microscale images into simula-
tions makes predictions with improved accuracy about the 
specific part which has been imaged [19]. The limitation in 
the direct conversion approach is that, due to results being 
part-specific, a new model is required for each part.

2.1.1  Deformation, Damage, and Fracture Performance 
of Materials

2.1.1.1 Heterogenous Composite Materials IBSim can be 
used for material characterisation of heterogeneous materi-
als such as asphalt mixtures [20] or concrete [21]. For exam-
ple, Fig. 5a illustrates a methodology presenting the stages 
in order to compute shear modulus using image-based 2D 
and 3D micromechanical FEA models of asphalt mixtures at 
high operating temperatures. Where the models were com-
pared with experimental results the 3D models were found 
to be more accurate than their 2D counterparts. Fig.  5b 
demonstrates a 2D section of the material, where different 
material phases (aggregate, mastic, and air void) were dif-
ferentiated by an image-processing method. In Fig. 5c the 
undeformed and deformed micromechanical model of the 
asphalt mixture, which was subjected to a horizontal surface 
shear load, is displayed in 3D. Another example of heterog-
enous materials is concrete composed of aggregate, cement 
mortar and pores. A micromechanical FEA model based on 
CT images of concrete using MATLAB® was presented to 
account for micro-damage mechanisms [21] and, the same 
model was used to improve on the limitations of approaches 
using statistical random aggregate models. Due to the high 
computational cost associated with a full IBSim model at 
the smaller scales, a multiscale approach was followed. In 
another study, the model included a discrete image-based 
mesoscale region, where the main concentrations of stress 
were found, and a homogenised macroscopic lattice region 
for prediction of mesoscopic crack growth in three-point 
bending of concrete [22]. In another, a different image-based 
approach was used via a two scale homogenisation method 
aimed to predict effective elastic properties of high-perfor-
mance fibre reinforced concrete, where the elastic moduli of 
each of the constituents was measured by physical micro-
indentation tests [23]. The microscopic level homogenisa-
tion focussed on the mortar of sand, cement paste and small 
pores in a range of 10–600  µm, whereas the mesoscopic 
level homogenisation focussed on a RVE (a 20 mm cube) 
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of fibres and pores in a range larger than 600 µm. In a fur-
ther IBSim application example in this field [24], mesoscale 
damage and fracture behaviour of concrete based on in-situ 
CT images was simulated in tension and compression with 
continuum damage plasticity, which elucidated crack initia-
tion and propagation in a complex microstructure of aggre-
gate, mortar and initial voids and cracks. Readers interested 
in further examples of IBSim applications with cement and 
concrete are directed towards research by Wang et al. [25] 
and a review on the subject [26].

2.1.1.2 Orthotropic Materials In addition to directly convert-
ing volumetric images into simulation geometries the infor-
mation about the morphology of materials produced by 2D 
or 3D image-processing can be used as input data to feed 
stochastic models. For orthotropic materials, such as fibre 
reinforced composites or wovens, examples of statistical and 
mean morphological characteristics are: orientation distribu-
tion of fibres; density of compound materials; pore size and its 
density in foams [27]. Three dimensional images of ceramic 
matrix textile composites were obtained by synchrotron X-ray 
µCT to perform statistical analysis of geometrical and spatial 
features of fibre tows in 3D woven architectures [28].

Realistic-virtual textile composite specimens with 3D 
tows were generated by using the experimental statistical 
data with deviations [29] and a Monte Carlo based algorithm 
[30], where textile reinforcements are represented as 1D loci 
in 3D space. Fig. 6a shows a schematic for generating virtual 
C/SiC woven composite specimens using statistical descrip-
tion reported in the same source (stage-1) and virtual speci-
men generator (stage-2). The method on how to compute 1D 
tow loci based on Markov Chain Algorithm [30] is briefly 
as follows. First, the extracted 1D tow loci were shown par-
tially embedded in a CT volume in Fig. 6b, then the com-
posites were swept along the tow loci paths to generate the 
3D virtual specimens (Fig. 6c). Such realisations based on 
statistical data of actual samples enable to create as many 
different FEA models, which fulfil the statistical description, 
as possible. As noted in Fig. 6c, the computational model 
demonstrates a homogenised microstructure at fibre scale; 
however, the fibre tows are represented in a realistic way.

Deformation and damage responses of materials can 
be simulated at macroscale or mesoscale with Continuum 
Damage Models (CDM). For instance, Badel et al. ana-
lysed woven textile reinforced composites at the mesoscale, 
where bundles of fibres in yarns were homogenised with 
an assumption that yarns are transversely isotropic in the 

Fig. 5  a A methodology for the 
development of micromechani-
cal model of asphalt mixtures 
and simulations (redrawn from 
[20]); b 2D image of asphalt 
mixture before FE-meshing 
[20]; c FEA simulation of 
image-based heterogenous 
asphalt mixture under shear 
load [20]
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direction perpendicular to their fibres [31]. Similarly, fibre 
reinforced polymer composites were modelled by generating 
a mesoscale model from XCT data which was coupled to a 
macroscale model [32].

Constituent fibres can be detected in composite materials 
by fibre-segmentation algorithms [33], where fibres can be 
tracked in 3D using a Kalman-filter estimator, for further 
numerical investigations. Fig. 7a shows the reconstructed 
volume of a fibre composite and Fig. 7b shows its CAD 
rendition with orientation distributions generated from the 
image data. More recently, deep-learning procedures have 
been used to automate segmentation of 3D CT images from 
fibre reinforced ceramic composites composed of fibres and 

matrix in the same material (SiC) [30]. This same study 
managed to segment matrix cracks in in-situ tensile loading 
tests with influence of nonuniform spatial fibre distribution.

Ali et al. proposed a methodology to create IBSim FEA 
models from µCT images of two 2D woven carbon–carbon 
composites for nuclear applications [34]. These composites 
consist of multiple phases of the same material. The material 
properties of the separate phases are required as input data 
for FEA simulations, in this case the mechanical properties 
were determined experimentally by physical nano-indenta-
tion material characterisation tests. Kishimoto et al. used 
IBSim to study inhomogeneous local deformation of rubber 
matrices, where uniformly and non-uniformly distributed 

Fig. 6  a A schematic for generating virtual specimens based on statistical data of real samples (redrawn from [29]) and b μCT image of a C/SiC 
woven composite and the centres-of-mass of tow sections [30]; c a 3D rendered virtual specimen [29]

Fig. 7   a Volumetric rendering 
from CT data of fibre compos-
ites and b CAD rendition of 
their fibres [33]
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silica particles were embedded [35]. By using IBSim mod-
els, more accurate results were obtained showing that the 
inhomogeneous local stress fields strengthened the mechani-
cal properties, such as the ultimate strength, of the material.

2.1.1.3 Additive Manufacturing Additive manufactur-
ing (AM) is one area that may particularly benefit from 
IBSim due to the significance of variation between the ‘as 
designed’ and ‘as manufactured’ states. AM allows highly 
complex parts to be manufactured, which is one of its main 
benefits compared to traditional manufacturing approaches, 
allowing such designs as biomimetic brackets or cellular 
structures for light weighting advantages. This complex 
design makes prediction of properties challenging for tradi-
tional FEM, especially when manufacturing deviations and 
flaws can occur.

One of the most important features is porosity within the 
manufactured material, whether intentional or not, and gain-
ing an understanding of the influence of such pores on the 
mechanical properties of the material. As an example of a 
study using IBSim in this context, the tensile deformation 
mechanisms of porous sintered 316 L steel were investi-
gated with three image-processing approaches [36]. The first 
two approaches were based on artificially-underestimating 
the material properties of the material [37] and altering the 
porosity of IBSim models by changing the greyscale thresh-
olds of shapes to meet experimental stress measurements 
[38], and the third was a novel approach compensating the 
effect of CT inaccuracy in porous materials on numerical 
analysis by modifying μCT images and separating shapes 
of fissures and small pores. The third approach yielded the 
most realistic porous microstructures and consequently val-
ues in stress distributions when compared with experiments. 
With this increased level of detail, it was also possible to 
estimate the critical stress locations where fracture on mac-
roscopic scale was most likely to occur. This method was 
found to be computationally expensive as well as having 
issues with convergence. Effective material properties (e.g., 
Young’s modulus, yield strength, shear modulus and Pois-
son’s ratio) at the macroscopic scale and local stress & strain 
distributions were found to be strongly influenced by the 
image-processing approach applied, with the third approach 
providing the most accurate results.

Porosity-induced stress concentration on fatigue scatter 
due to remnant porosity within components manufactured 
by laser powder bed fusion (L-PBF), an AM method, was 
analysed with IBSim [39]. The CT scans of the AM compo-
nents, with a range of pore sizes, were post-processed in a 
workflow which included VG Studio Max by Volume Graph-
ics®, Simpleware®, and a + CAD® subroutine to generate 
image-based meshes. Then Abaqus® was used for FEA to 
compute stress concentration factors using an elasto-plastic 
material model. The analyses around the pores showed that 

small pores near to the surface were more detrimental to 
the material than the pores deeper within the components. 
In a further example, deformation and damage behaviour 
of tin (Sn) solder alloys were simulated with image-based 
FEA models reflecting the exact geometry of pores in solder 
joints, and the ductile damage mechanisms (crack nucleation 
and propagation) were described with a damage model to 
a degree of accuracy not previously possible [40]. The use 
of ‘stitching tomography’ enabled Amani et al. to increase 
their detector’s field of view and thus image greater volumes 
whilst retaining resolution [41]. When coupled with IBSim, 
this allowed them to analyse the compressive response of 
AM 3D lattice structures on both the macroscale, i.e., global 
lattice structure, and microscale, in which micropores and 
imperfections in struts were captured. Damage and fracture 
behaviours of the ductile struts were homogenised by imple-
menting Gurson-Tvergaard-Needleman (GTN) damage-cou-
pled plasticity, informing the accumulative porosity com-
puted from high-resolution CT. This presents a very accurate 
solution to this highly nonlinear multiscale problem and the 
predicted fracture locations were in a good agreement with 
experimental investigations. In a similar study, the same 
two-scale modelling approach and microstructure-informed 
GTN plasticity model was also practised for open-cell alu-
minium foams subjected to tensile loading [42].

For full size components the length scale of interest is 
usually the macroscale: it has been demonstrated that effec-
tive material properties such as time-dependent or independ-
ent elastoplastic parameters (stress–strain relations), plas-
tic strength (collapse stress) on this scale can be obtained 
through IBSim. For instance, damage evolution of L-PBF 
-Printed AlSi10Mg alloys was simulated with CAD-based 
(as-designed) and image-based (as-manufactured) FEA 
models of tensile specimens, directly extracted from µCT 
images by using Avizo®, in order to assess the role of imper-
fections on mechanical properties [43]. The as-manufactured 
FEA model met the expectations better in comparison to as-
designed model by predicting the higher failure strain due to 
the geometrical defects present in the parts.

A strong growth area in AM, especially in L-PBF, is the 
use of in situ monitoring. This refers to imaging of the melt 
pool and/or the entire build area with optical and infrared 
(IR) cameras. The presence of defects is highlighted in this 
way directly when they occur in the layer-by-layer process. 
It is possible to generate full 3D model data from this in-situ 
generated imaging data, that could be used in the same way 
as XCT data for further simulation [44, 45].

2.1.1.4 Foams μCT-based FEA models of zirconia foams 
were developed to correlate its macroscopic mechanical 
response to microscopic features such as thickness of cell 
struts (i.e., walls), strut waviness and material properties 
of struts [46]. To do this, the local elastoplastic properties 
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were obtained at strut level with physical micro-indentation 
tests and plastic deformation was implemented with an iso-
tropic plastic model (Von Mises yield criteria). With a simi-
lar motivation, physical nano-indentation tests were carried 
out on stainless steel walls of cellular materials to obtain 
material properties as inputs to IBSim models [47]. How 
to collect material property data appropriate to the scale 
in question is a major outstanding question in the field of 
IBSim. This is because of the transition from a homogenised 
continuum approach at the macroscale to a more granular 
one on the meso to nano scales to a fully discretised one at 
the atomistic scale.

Cho et al. conducted a multiscale FEA analyses on tita-
nium (Ti) foams with periodic architecture, the details of 
which were obtained with µCT images [48] (see Fig. 8a). 
Virtual uniaxial compression tests on foam specimens 
(macroscale investigation) were simulated with FEA and 
the computed local deformation gradients were imposed on 
the boundaries of periodic unit cells of Ti foam (microscale 
investigation), illustrated in Fig. 8b. The computational 
expense of this complex mechanical problem decreased 
significantly by using this multiscale approach, despite that 
the microstructural inhomogeneities were included in the 
FEA model which made improved its accuracy over CAD-
based models.

X-ray-based FEA models of closed-cell metallic foams 
were compressed under large deformation with nonlinear 
elastoplastic material behaviour of foam walls, where a 
watershed method and geodesic reconstruction were used 
for isolation of cells and identification of missing walls 
[49]. The steps of this investigation are presented in Fig. 9, 
where the microstructural deformation and damage patterns 
of IBSim models were compared to CT images collected 
in-situ during physical experiments. The collapsing cell-
zones in the IBSim models accurately matched that of the 
physical experiments. The numerical model reproduced the 
experimental plastic band well in addition to capturing the 
buckling, bending and fracture behaviour of the cell walls. 
Comparable research reported the simulation of deformation 

and plastic collapse mechanisms in closed-cell aluminium 
foams with contact interaction [50]. Whereas, damage and 
fracture behaviour of Cordierite-mullite-alumina ceramic 
foams were simulated with CT-based FEA models and used 
to compute Young’s modulus and plastic collapse stress [51]. 
Once more, it was found that the accuracy of the IBSim FEA 
modelling approach is related to the resolution of the X-ray 
images used.

Veyhl et al. computed the effective mechanical properties 
(elasticity moduli and yield strength) of an open-cell porous 
sponge with porosity of 91–93% and closed-cell foam with 
porosity of 80–86% by using µCT-based FEA models in the 
commercial software MSC Marc® (MSC Software Corpo-
ration USA) [52]. The elastoplastic behaviour of wall mate-
rial of cells was modelled by von Mises yield criterion, the 
anisotropic material behaviour in orthogonal directions was 
captured by simulations of uniaxial compression tests. Effec-
tive strains and stresses were computed from total forces and 
geometric stretches over the loading planes, which is known 
as RVE-based homogenisation of material properties.

2.1.1.5 Random Fibre Networks One of the well-known 
heterogeneous porous materials, to which IBSim is well 
suited, is nonwovens. They are composed of randomly 
distributed fibres, where fibres form contacts between 
each other. Understanding of their mechanical behaviours 
and predicting their effective properties are cumbersome 
because of their complex microstructures and randomness. 
Therefore, non-destructive characterisation techniques are 
used to determine their microstructural features such as ori-
entation and length distributions of constituent fibres from 
2D or 3D images. For instance, 2D orientation distribution 
of the fibres was computed from Scanning Electron Micros-
copy (SEM) or CT images through Hough-transform based 
algorithms, where fibre edges are detected [53] and this data 
was later used in another study [54] to simulate tensile and 
damage behaviour of planar random fibre networks. Some 
researchers directly processed μCT images of these materi-
als for generation of their computational models [55, 56], 

Fig. 8   a 3D CT reconstruction of Ti foam with a unit cell and b its homogenised FEA model under compression applied to the unit cell [48]
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one of which is shown in Fig. 10a, and some used such mod-
els in their inverse parameter identification studies to find 
bond strength of fibres [57]. What is more, fibre length and 
diameter distributions of short fibres were computed from 
μCT images of wood fibre networks and 3D discrete FEA 
models were generated by implementing these obtained dis-
tributions [58] and similarly this is demonstrated with a 3D 
stochastic model [59] (see Fig. 10b).

2.1.2  Flow and Thermal Performance of Materials

In addition to characterisation of mechanical properties, 
IBSim is also used to characterise other physical mecha-
nisms. The other main use observed in literature is to study 
the impact of imaged features on flow and thermal per-
formance. In addition to direct conversion of images into 
meshes, there are simpler examples in this field which use 

Fig. 9  A schematic of CT-based 
experimental and numerical 
investigation of closed-cell 
metallic foams [49]

Fig. 10  a CT-based FEA model of nonwoven solid under compression [55]  and b a statistical realisation (FEA) model of fibre-glass pack [59]



A Review of Image-Based Simulation Applications in High-Value Manufacturing  

1 3

measurements from volumetric images as input to models 
which are computationally less expensive. For example, 
investigating permeability with the resultant pore network 
extracted from an image can allow the consideration of a 
larger domain than feasible with full-scale IBSim models if 
limited by computational expense.

Blunt et al. analysed three different porous materials 
(sand pack, sandstone, and carbonate—Portland limestone) 
by using X-ray images to extract their pore-scale models 
and solved those with the Stoke equations governing flow 
behaviour [60]. An example of (a) pore-space and (b) pore 
network models of one of the porous materials from that 
study is shown in Fig. 11. A pore-scale network model was 
used in order to determine macroscopic transport proper-
ties and porosity–permeability evolution during reactive 
transport processes in a sample reservoir [61]. Bultreys 
et al. discussed well-known methods to extract pore-scale 
networks and numerical methods (e.g., traditional CFD, Lat-
tice Boltzmann Methods (LBM), Smoothed Particle Hydro-
dynamics) to solve Navier-Stoke’s equations [19]. A review 
of pore network modelling for porous media [62] explored 
pore network construction approaches and their applications 
(e.g., adsorption, dissolution and precipitation). Single and 
two-phase flow behaviour of rock samples were simulated 
with their pore-network and unstructured meshed models 
for prediction of permeability under different wetting condi-
tions [63].

These void statistics also help to improve the accuracy 
of micro-mechanics-based constitutive models predicting 
deformation, damage, and fracture behaviour of materials. 
For instance, Lu and Chan quantified the three dimensional 
micro-voids in warm-forging of biocompatible alloys (stain-
less steel 316 L (SS316L) and a titanium alloy Ti6Al4V) 
by analysing reconstructed volumes from µCT images [64]. 

The spatial distribution and number of micro-voids, porosity 
was obtained through an advanced segmentation algorithm 
in a commercial software VGStudio MAX 2.2®. AM inter-
penetrating phase composites were characterised by μCT 
to detect pores in constituent materials (see Fig. 12a) and 
their interfacial porosity (Fig. 12b) for the prediction of 
thermal conductivity [65]. Periodic homogenisation theory 
was implemented to compute the effects of porosity and unit 
cell structure on the effective thermal conductivity with the 
COMSOL® Multiphysics software package.

Geometry and connectivity of pores are a dominant fea-
ture of what controls transport properties of porous medi-
ums. Due to this, pore and throat size distributions of Fon-
tainebleau sandstones were measured using synchrotron 
XCT images in an earlier work by Lindquist and Venkataran-
gan [66]. Silin and Patzek introduced an algorithm to ana-
lyse the geometry and connectivity of the pore space mor-
phology of sedimentary rock, where pore space and throats 
are distinguished by describing them as inscribed spheres 
[67]. This work was extended by Dong and Blunt to extract 
pore-network connectivity out of voxel-based models, con-
structed from 3D X-ray images, for predicting permeability 
of porous medium that depends on pore geometries and wet-
tability [68]. In similar investigations for significantly dif-
ferent materials and applications, pore characteristics were 
computed from the X-ray-based computational models of: 
bone substitute materials [69], because bone formation over 
a scaffold strongly depends on pore configurations; proton 
exchange membrane fuel cells [70] to understand and model 
two phase flows in a gas diffusion layer; microporous soils, 
sand-bentonite mixtures, and precision glass beads for test-
ing different segmentation methods [71]; various soil sam-
ples for quantification of pore size distribution [72]; soils in 

Fig. 11  a Pore-space image of Mount Gambier; b its pore-network model extracted/computed from CT images [60]
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the Antaibao Opencast Coal-mine for distribution character-
istics of the reconstructed soil [73].

Houston et al. reviewed existing methods in literature 
estimating pore size distribution and analysed artificial 3D 
images and actual CT images of various selections of soils 
in order to make a comparison of their performance [72]. 
In general, according to Xiong et al., the methods aiming 
to extract pores and their connecting throats in the recon-
structed geometries were listed as (i) statistical reconstruc-
tions; (ii) grain-based models; (iii) direct mapping models; 
(iv) regular network models; (v) two-scale pore network 
models [62]. Elsewhere, the IBSim approach made it pos-
sible to assess pore characteristics (e.g., porosity, pore size 
distribution, throat size distribution) before/after deforma-
tion and damage, and the effect of microstructural changes in 
porous medium on flow characteristics such as pressure-drop 
and permeability [74].

As flow permeability, which depends on porous micro-
structure, is of great interest in industrial applications, 
morphological statistics of porosity, tortuosity and pore 
diameters of fibrous media were obtained from high-reso-
lution XCT for use with LBM simulations [75]. These were 
conducted over various sizes of RVE’s to compute macro-
scopic transport properties. It is known that the combination 
of LBM and XCT have previously been used for simulat-
ing water flow and chemical transport of porous materials 
at the pore-scale  [76]. Fig. 13a demonstrates the effect of 
RVE size (or window size) on permeability. Likewise, Kok 
solved mass transfer equations at low Reynolds numbers for 
image-based flow models of various fibrous media with a 
variety of anisotropic fibre distributions (namely, carbon 
felts and two different electrospun carbon networks used 
in flow electrodes) by using LBM [77]. Some researchers 
directly processed SEM images to obtain their 3D compu-
tational models, where the filtration performance of polyu-
rethane nanofibre filters was investigated (see Fig. 13b for 
an example SEM image and inferred 3D layered model) 

[78]. Saturated fluid flow in packed particle beds [79] was 
simulated by implementation of LBM in order to calculate 
permeability from μCT images. Porous gas diffusion layers 
(GDLs) are key parts of hydrogen fuel cells and, in order to 
mimic water flow behaviour of the GDLs a pressure drop 
was applied to one surface of a µCT-based LBM model to 
simulate the formation of water droplets in the porous micro-
structure to represent water–gas surface tension [80]. In an 
alternative example, Navier–Stokes and convection–diffu-
sion equations were solved with the Modified-moving parti-
cle semi-implicit (MMPS) method for unsteady and steady-
state flow in a disordered porous media [81]. More recently, 
the effectivity of face masks to filter airborne viruses such 
as COVID-19 has been of great interest and has also been 
investigated with IBSim [82, 83].

Water distribution in the hydrophobic microporous layer 
(MPL) of polymer electrolyte membrane (PEM) fuel cells 
was computed from image-based pore geometries and oxy-
gen transport mechanisms was simulated through pore-scale 
modelling, where the simulated oxygen concentration and 
flux values were averaged to the effective diffusion coef-
ficients of RVEs [84]. Convective drying process, a form of 
moisture removal mechanism in porous materials, of porous 
asphalt was investigated by CFD simulations of 3D IBSim 
models with different airflow speeds and Steady Reynolds-
Averaged Navier–Stokes (RANS) k-ε model accounting for 
turbulent flow behaviour [85]. Flow behaviour in highly 
porous monolithic alumina columns [13] was simulated by 
direct CFD models whose porous structure was obtained 
from 3D CT and the governing flow equations were solved 
with an open-source CFD tool (OpenFoam) in order to 
enhance monolith performance.

Cooper et al. performed heat transfer analysis with IBSim 
of LiFePO4 electrodes using the finite-volume method in 
Star CCM + ® [86]. After reconstructing the 3D volume 
from CT data, they converted the heterogenous microstruc-
ture into surfaces (Standard Tessellation Language (STL) 

Fig. 12   a AM A356/316L composite in low resolution and its unit cell in high resolution with microporosities (316L in dark and A356 in bright 
contrast) and b the unit cell with interfacial porosity in high resolution [65]
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format). The file was imported into a CFD pre-processing 
module in order to volume-mesh the electrode material (first 
re-meshing the surface and then volume meshing). The 
workflow is shown pictorially in Fig. 14a, b and d, e with 
Fig. 14c, f showing the temperature distribution in relatively 
large and small domain models.

Anisotropic thermal conductivity of a sintered metallic fibre 
structure with varying porosity was investigated using µCT-
based FEA models [87]. It was shown that the thermal conduc-
tivity is a function of porosity and fibre orientations. Carbon 
fibre networks are effective insulators for applications, where 
the materials are exposed to high temperatures [88]. The geo-
metrically accurate flow models of these networks, digitised 
from μCT images, were used to calculate temperature-depend-
ent permeabilities. Similarly, room temperature conductivity of 
carbon fibre networks was computed with voxel-based IBSim 
models, where oxidation behaviour and surface reactions were 
incorporated into microscale simulations [89].

Effective anisotropic thermal conductivity of a glasswool 
insulation material composed of randomly distributed fibres, 
the main source of anisotropy, was characterised by FEA 
simulations generated from X-ray images by solving 3D 
heat equations and applying different temperature distribu-
tions over surface boundaries in order to create and measure 
temperature drops [90]. The thermal conductivity of highly 
porous metal foams was analysed with IBSim FEA models 
and it was numerically proven that the RVE and FEA ele-
ment size are two parameters which have a non-negligible 

impact on the virtually measured thermal conductivity, thus 
highlighting the importance of performing sensitivity analy-
ses as part of the methodology [91].

Electrochemical performance of carbon felt electrodes of 
redox flow batteries is influenced by the microstructure of 
carbon felt. CFD simulations were used to investigate com-
pression of the felts and thus predict the increase in pressure 
drop due to microstructural changes [92]. High-resolution 
µCT CFD simulations of open-cell aluminium foams with 
different pore densities, i.e., number of pores per unit vol-
ume, were conducted to predict permeability and effective 
thermal conductivity under incompressible flow and steady 
state flow conditions [93].

Evans et  al. carried out a thermal analysis of a heat 
exchanger component (Fusion Energy Monoblock) by using 
a hybrid FEA model containing: a graphite foam interlayer 
with microscale accuracy directly derived from CT images; 
a CAD-based armour and coolant pipe [94] (see Fig. 15). 
The graphite foam ring layer was digitally ‘cut’ from a larger 
block of imaged material, thus being able to rapidly assess 
the design without the need for physical manufacturing. In 
another study, the thermal response of a carbon fibre com-
posite-copper monoblock was simulated with IBSim FEA 
[16]. The model included a debonding region at the carbon 
fibre composite-copper interface. By capturing the debond-
ing at this interface, this ‘as-manufactured’ simulation 
predicted the loss in thermal conductivity at the interface, 
which would not have been included in an ‘as-designed’ 

Fig. 13  a Effect of RVE size on flow permeability for three different porosity levels (E) [75]; b SEM image of nanofibre network and its 3D 
model [78]
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model. This led to a rise of over 20% in the peak tempera-
tures which consequently would have increased the ther-
mally induced stresses.

2.1.3  Multiphysics Performance of Materials

A review of analytical models to predict electrical con-
ductivity in porous media was published by Cai et al. [95]. 
These analytical modelling approaches such as pore network 

Fig. 14   a initial surface; b surface after Boolean subtraction operation; d re-meshed surface with triangular elements; e polyhedral volume mesh 
of porous structure of electrodes; c, f heat transfer analyses over different domain volume size of LiFePO4 electrodes [86]

Fig. 15  Virtual manufactur-
ing workflow from graphite 
foam interlayer to CAD pipe 
and CAD armour with thermal 
boundary conditions [94]
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and percolation modelling rely strongly on the processing of 
detailed microstructural images.

Commercial use of solid oxide fuel cells is limited by 
technical issues such as thermal gradients across the cell 
developed during operation leading to deteriorating the bat-
tery performance [96]. Electrode polarisation losses of solid 
oxide fuel cells, associated with the composition of constitu-
ent materials and their microstructure, reduces performance. 
The underlying electrochemical processes (e.g., oxygen dif-
fusion in gas phase and charge transfer at the interface elec-
trolyte–electrode material) were investigated for a porous 
mixed ionic-electronic conducting cathode by using 3D FEA 
models based on reconstruction of focused-ion beam (FIB) 
serial sectioning and SEM imaging to produce tomographic 
images (i.e., FIB-SEM) [97]. Furthermore, effective electri-
cal conductivity of composite asphalts with randomly dis-
tributed steels in an epoxy was numerically analysed [98]. 
Also, multiphysics simulations of solid oxide fuel cells 
based on 3D micro/nano reconstructions were performed 
by taking conformal boundaries between different phases 
into account [99].

Zhao et al. performed a comprehensive review on model-
ling approaches for the coupled chemo-mechanical behav-
iour of Lithium-ion batteries at particle, electrode and cell 
levels [100]. In this, the capacity loss in these batteries dur-
ing charging/discharging cycles were associated with some 
phenomena such as nonlinear elasticity, plasticity, aniso-
tropic mechanical behaviour and phase separation. Hein’s 
electrochemical simulations of Lithium-ion batteries relied 
on CT-based parametrised stochastic models and non-par-
ametric realisations extracted from reconstructions of CT 
volumes [101]. Numerical methods such as LBM have been 
used to compute electrical and species transport properties 
of lithium-ion batteries in order to develop new products or 
optimise their performance  [102]. Since lithium-ion batter-
ies experience electrode failures due to diffusion-induced 
stresses occurring in charge and discharge, these processes 
were simulated by Lim et al. with micro and nano CT-based 
FEA models of active particles for different discharge rates 
(C rates) and, the non-uniform/complex shape of the parti-
cles increased in induced von Mises and Tresca stresses lead-
ing to failure [103]. Fig. 16a shows a microstructural model 
of lithium-ion battery anode with boundary conditions and 
Fig. 16b, the 3D distribution of electrical current through-
out pore space [104]. The workflow starting from a com-
mercial lithium-ion cells (batteries) down to single particles 
extracted from reconstructed CT volumes are presented in 
Fig. 16c. A similar methodology was implemented to predict 
the transient stress-fields over the cathode particles of com-
mercial lithium-ion batteries by coupling electrochemical 

processes with mechanical ones [105]. The swelling in 
LiCoO2 cathodes was studied with coupled electrochem-
ical-mechanical simulations to unfold the mechanisms of 
stress generation and the effect of process parameters along 
with microstructure on these stresses [106]. Galvanostatic 
discharge processes of LiCoO2 cathodes at various C rates 
were simulated with 3D IBSim models by Yan et al. [107]. A 
comparison between macro and microscale IBSim models of 
lithium-ion porous battery electrodes was made in terms of 
their electrical conductivity and diffusion [108]. Elsewhere, 
mesoscale multiphysics simulations bringing electrochemis-
try, mechanical deformation and transport processes together 
in lithium-ion batteries incorporating conductive binder par-
ticles were presented [109–111]. An X-ray-based realistic 
3D microstructure numerical model enabled the authors to 
obtain the stress accumulation in nickel-manganese-cobalt 
(NMC) half-cell, resulting from the phase transitions and 
lithium intercalation [112]. Multiscale investigations on 
Lithium-ion batteries revealed porosity from X-ray micros-
copy and effective diffusivity as well as tortuosity from com-
puter simulations in GeoDict® [113].

Fluid and electrical flows through reservoir rock samples 
accommodating highly complex pores were simulated with 
the COMSOL® multiphysics simulation tool [114]. In this 
work they conducted a downsampling study, where the sizes 
of volume elements were controlled. This indicated that, as 
some pores disappear, and the remaining ones alters geom-
etry, fluid and electrical flow patterns were affected signifi-
cantly. Together with this, IBSim had been used to model 
water and oil distribution formations in the microstructure 
of a porous rock and to investigate the effect of rock wet-
tability on electrical properties [115]. An IBSim approach 
enabled the authors to examine the effect of calcite precipi-
tation on the permeability of a porous media with a Stokes 
solver (an inhouse solver implemented in Avizo® under 
XLabHydro®), where the precipitated particles and porous 
media microstructure were captured by µCT and the pore 
network was converted into a flow model [116]. Another 
open-source software package for porous materials is PuMA 
(Porous Microstructure Analysis), computing effective mate-
rial properties such as thermal and electrical conductivities 
by using finite difference Laplace solvers [117]. An effective 
thermal conductivity of a composite material with aniso-
tropic constitutive phases was predicted with PuMA [118]. 
The software package can be used for virtually generating a 
computational domain of arbitrary porous structures and the 
tortuosity of these artificial models or their 3D IBSim mod-
els can be computed with a random walk algorithm [119]. 
The package was integrated into an image analysis software 
Dragonfly® (Object Research Systems, Canada).
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2.2  Characterisation of Manufacturing Processes

2.2.1  Defects and Manufacturing Process Errors

Different manufacturing processes have different unique 
defect types inherent to the process which may occur, and 
which require attention to minimise their extent in manufac-
tured products—i.e., optimisation of the processes is often 
needed. For example, metal casting processes are prone 
to shrinkage porosity and gas porosity (shown in Fig. 17) 
which are formed due to the entrapped gas during the casting 
process (gas porosity) and due to inadequate filling of the 
casting mould, with subsequent cooling and shrinkage of the 

molten material (shrinkage porosity) [120, 145]. These can 
be minimised by varying the casting infill velocity, ingate 
geometry and location(s) and cooling of the mould. Forma-
tion of microporosity in the solidification process of Sn-Bi 
alloys in a copper mould was investigated with X-ray and 
FE modelling and the porosity strongly depends on alloy 
composition [121]. Similar porosity formation occurs in 
plastic injection moulding processes. These defect types 
are conventionally detected by NDT methods such as X-ray 
radiography (2D) or CT (3D), and may be used to improve 
the manufacturing process or may be used for pass/fail deci-
sions for individual parts [27, 122, 123].

Fig. 16  a  A computational model of anode microstructure with 
boundary conditions [104]; b  3D current stream line distribution 
(red and blue colours are ionic and electronic currents, respectively) 

[104]; c  individual complex particles extracted from reconstructed 
volume of commercial lithium-ion batteries for stress analysis [105]
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In AM, different types of pores are formed with 
very small size in comparison to castings and injection 
mouldings, but with a wider distribution in the part (see 
Fig. 18) [120]. This is due to the track-by-track and layer-
by-layer manufacturing process which creates possibilities 
for pore formation in smaller regions but more widespread 
in all regions of the part. A recent review explains defects 
and anomalies in metal PBF in detail [124]. Another paper 
focuses on characteristics and variability of defects occur-
ring in metal laser PBF [125].

The above-mentioned examples are illustrative of the 
types of porosities of different sizes, morphologies and 
distributions that may occur in various manufacturing pro-
cesses, and which can be improved by optimising the manu-
facturing process. Further examples are found in different 
studies showing the presence of pores in different materials 
and due to different parameters [126–129]. The intentional 
variation of manufacturing process parameters shows clearly 

the influence of each parameter on pore formation [130], and 
in a recent round robin test, different porosity distributions 
were found in samples produced in different laboratories 
[131].

Other defect types that occur in manufacturing in gen-
eral, besides porosity, are inclusions, cracks, geometrical 
inaccuracy, surface roughness, residual stress, and micro-
structural anisotropy or inhomogeneities. All of these defect 
types are known to influence mechanical performance, either 
by reduction of yield strength, reduction in ductility, or in 
lower fatigue strength [132, 133]. They are discussed below 
briefly in the context of IBSim and the possibility for process 
optimisation.

Surface roughness, indentations, scratches or surface 
damage of any kind can influence the mechanical proper-
ties especially acting as fatigue crack initiation sites [134]. In 
this work, FEA simulations of the ideal geometry were used 
in combination with local surface depression depth, to create 

Fig. 17  Examples of casting porosity including (left) shrinkage porosity and (right) gas porosity, image from [120]. The samples are a commer-
cial sand-cast aluminium alloy automotive part (left) and investment cast titanium alloy machined to a tensile dogbone geometry [145]
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a modified stress intensity factor which correlated well with 
fatigue crack initiation site, despite differences in residual 
stress and microstructure between samples (due to different 
build orientations). Similar work was reported for lattice 
structures manufactured by AM [135, 136]. Further work is 
needed to make direct simulations utilising the actual sur-
face morphology, as there may be shielding effects where 
adjacent depressions or pores create stress shielding or may 
enhance the local stress in some places. This was prelimi-
narily investigated already in 2D [137]. Because achievable 
CT resolution is limited to sample size, the incorporation of 
relatively small features in images and subsequent models 
is challenging. A good example is the surface roughness for 
a macroscale component—by scanning the whole part the 
surface roughness details are not included. Small coupon 
samples may be used in addition to the full-scale part, to 
provide some inputs, despite its limits (possible variations 
from larger part and no direct correlation).

Residual stress is another strong influencer of mechani-
cal performance and is difficult to characterise and incor-
porate into simulation models, because of the challenges in 
its measurement [138, 139]. Since the characterisation of 
residual stress is either destructive (by hole drilling or simi-
lar methods), or in laboratory instruments only providing 
limited depth information, no work so far has incorporated 
the influence of residual stress into simulation models, to 
the knowledge of the authors. What is often done, however, 
is to compare predictions of stress based on manufacturing 
process simulations with stress maps obtained from X-ray 
diffraction imaging at synchrotron sources [140]. In AM, 
much effort is made in process optimisation by thermal 
simulations to predict residual stress and minimise this by 
simulation and variation of scan strategies [141].

Microstructure of metals (grain sizes, orientations, granu-
lar structure, etc.) is similarly challenging to characterise 
non-destructively and hence difficult to incorporate in IBSim 

Fig. 18  Examples of porosity in metal AM including (left) lack of 
fusion porosity and (right) keyhole porosity, image from [120]. The 
samples are small cubes of titanium alloy, manufactured using dif-

ferent process parameters—such cubes are often used to optimise the 
process allowing up to 99.99% dense parts under optimal conditions 
[125]
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models. Technically this is possible using destructive imag-
ing and correlating microstructural mechanical properties in 
averaged volumetric regions, or non-destructively using dif-
fraction contrast imaging. However, to the authors’ knowl-
edge, there are no examples where direct incorporation of 
these approaches with IBSim has been reported yet.

2.2.2  Effects of Defects

The influence of porosity on fatigue performance has been 
reviewed comprehensively [133, 142, 143] and more spe-
cifically for metal AM by Sanaei et al. [144]. Irregular-
shaped pores (as in Fig. 17a or 18a) are more detrimental to 
mechanical performance, as are larger pores and those closer 
to the surface of the part. Cracks (e.g., from manufacturing 
induced stresses) are similarly detrimental and more so when 
they are closer to the surface or larger in size (or both).

The effects of pores on mechanical performance may 
be investigated by IBSim. When compared directly with a 
physical test (i.e., performing a simulation of the test on the 
digital representation of the sample), the physical results 
may be used to verify the IBSim model which can then be 
interrogated in greater detail than the results from the physi-
cal counterpart, allowing localised measurements through 
the sample’s full 3D volume with microscale accuracy. For 
example, the stress distribution around casting pores were 
evaluated as shown in Fig. 19, before and after tensile testing 
[145–148]. Similar work was reported for brackets fabricated 
by AM with pores [149], and for pores in high pressure die 
castings in recent work [14], and for prediction of mechani-
cal properties in aluminium castings [150, 151], and for 
mechanical characterisation of AM nickel–chromium alloy 
samples [152]. A Bayesian-based statistical analysis was 
conducted for uncertainty quantification of pore distributions 

in AM components [153], which was later used for devel-
oping a probabilistic constitutive damage model. A recent 
study made use of AM to artificially create defects in tensile 
samples, and made use of XCT and IBSim to investigate 
the effects of the defects on tensile behaviour [128]. Similar 
investigations were reported using artificially induced pores 
and XCT [154, 155], though these do not include simula-
tion. The influence of pores on fatigue performance is also 
widely acknowledged, as the pores act as stress concentra-
tion locations for crack initiation. This was studied using 
in-situ synchrotron imaging in castings with pores, finding 
the exact crack initiation location at pore boundaries and 
applying IBSim to complement the study [147].

The effect of defects in metal AM was reviewed recently 
in the context of XCT imaging insights [132], where it is 
evident that most of the small porosity in these materials 
influence the ductility of the parts but not the strength, 
unless present in excessive amounts (> 1%). It has also been 
found that lack of fusion pores with irregular shapes are 
especially detrimental to fatigue properties, as are all large 
pores near the surface [144]. As one can expect, these influ-
ences become difficult to predict when the part geometry is 
complex, and/or when loading scenarios are not simple (e.g., 
multiaxial loading).

In cases where the geometry or loading scenario is com-
plex, simulation is highly valuable for the performance and 
property prediction. Examples of highly complex geometries 
are cellular porous “lattice structures” manufactured by AM 
[156–158]. IBSim models have been used to compare dif-
ferent ideal geometries of such lattices of different designs, 
showing differences in permeability and stiffness, factors 
important for medical implant applications [159]. This 
allows an improved design choice to be made. Engineering 
simulation is widely used already to check performance of 
designs prior to manufacturing, this is even more important 
with complex geometries becoming possible through AM 
[160, 161]. It is also possible to incorporate expected defects 
into such ideal models to predict the effect of manufactur-
ing defects and predict a critical size of such defects, as was 
done for a pore in the middle of a single strut of a lattice 
structure [162].

Despite the capabilities of simulations of idealised 
“design” models, all manufactured parts inevitably have 
some geometrical inaccuracies, defects, and deviation 
from ideal design geometry. Here IBSim of realistic mod-
els from μCT or other 3D image data is particularly use-
ful, as the simulation of the actual geometry including its 
defects and inaccuracies provides insight into the influence 
of these defects on the performance. One example is shown 
in Fig. 20 where a load simulation was applied to a gyroid 
lattice structure manufactured by L-PBF [163], similar to 
that reported by Plessis et al. [164]. This highlights the loca-
tions of highest stress in relation to the local rough surface. 

Fig. 19  IBSim model before (left) and after (right) tensile testing to 
failure [145]
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AM single lattice struts with process-induced geometrical 
imperfections were analysed with IBSim and multiscale 
modelling [165]. The use of IBSim in order to incorporate 
the influences of porosity and surface roughness into the 
predicted performance was previously suggested [166], and 
was used to correlate stress concentrations to failure loca-
tions in compression tests [167]. Amani et al. used a similar 
approach for lattice structures incorporating defects, surface 
roughness and using a GTN model to include void nuclea-
tion and growth into the simulation model [41]. A simpli-
fied approach was also used for modelling irregularity in 
strut diameter to model the realistic manufacturing quality 
of struts [168] and nodes [169] on mechanical properties of 
lattice structures. Numerical studies of cellular structures 
incorporating defects have also been reported [170–172]. 
Foams and stochastic porous materials have also been the 
subject of IBSim studies in the past [173].

2.3  Impact of Deviations from Idealised Design 
Geometry on Product Design and Performance

The simulation of full-scale components in the HVM sector 
is not new. As already noted, real parts often deviate from 
idealised design, adding uncertainty to the results obtained 
from conventional simulations. Consequently, large safety 
margins are often imposed upon in-service components. 
Here, IBSim comes to the fore, incorporating various object-
specific deviations and unique aspects into the simulation, 
for better prediction and characterisation. This increases 
confidence in performance prediction (or reducing uncer-
tainty) and thus allows smaller safety margins to be imposed. 
When considering issues relating to full-scale components, 

this refers to deviations in actual part size, warping, surface 
roughness, micro-cracking, or bonding interfaces. Especially 
for complex shaped parts, the influence of such defects or 
deviations might be unpredictable, and hence the need for 
further quantification by IBSim.

At the macroscopic level a material or group of materi-
als might be chosen for a task based upon idealised mac-
roscopic properties. Important macroscopic metrics may 
include overall volume and weight, with further consid-
erations of geometric tolerances, dimensions, and surface 
areas. One can also look at the microscopic aspects of mate-
rials, particularly their structural arrangement, and subse-
quently attempt to design an idealised microstructure, with 
key metrics such as the arrangement of pores and struts, or 
the size, shape, and orientation of grains and fibres. For an 
engineering product, as already discussed, these microscopic 
metrics play an important role in determining macroscopic 
behaviour.

Assessing the impact of deviations from idealised design 
geometry is a multiscale problem, and the methods by 
which geometries are digitally acquired (e.g., surface, or 
volumetric scanning) and transferred to the computational 
domain must, therefore, accurately capture deviations across 
multiple length scales for IBSim to be representative. This 
is a complex task as no single method covers all scales of 
interest.

One conceptual approach is to use the materials clas-
sification shown in Fig. 21 (reproduced from [174]). This 
allows HVM to be viewed not only in terms of macroscopic 
material type: non-porous solid or porous solid, but also in 
terms of microscopic (microstructural) type. This simplifica-
tion enables a unifying link between the macroscopic and the 
microscopic, making it easier to perceive common design 
elements across the various materials used within different 
HVM sectors. Since this is a geometry-based approach for 
the assessment of deviations from idealised design, it links 
well with IBSim.

Today, NDT of parts is widely used for evaluating poros-
ity, deviations from design, cracks, or other flaw types. 
The pass/fail decision is made, however, based upon pre-
determined design rules depending on the material type, the 
intended application, and the industry concerned. Although 
this approach can provide a qualitative ‘rule of thumb’, it 
does not take into consideration the full multi-physics com-
bination of the detected features, e.g., the combination of 
a small pore that passes the design rule near an allowable 
deviation from tolerance, which may lead to a combined 
impact on performance that is greater than would otherwise 
be allowable. Furthermore, the use of pass/fail testing poten-
tially leads to many parts being scrapped which could still 
be serviceable if used under slightly different loading condi-
tions (e.g., in a different location within the assembly or in 
an assembly not expected to undergo the same extremes). 

Fig. 20  IBSim model of loading applied to a gyroid lattice structure 
of titanium alloy produced by L-PBF. The small section viewed here 
is cropped from the larger structure showing the location of high 
stresses, and the rough surface exacerbates this [163]. Compressive 
loading is applied in the vertical direction in the image
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The use of part-specific simulation to provide a more quan-
titative evaluation is the next generation for this type of test-
ing. It is important to realise that despite the inclusion of 
macroscale deviations (porosity, etc.) into the simulation 
model, which is a significant improvement over the simula-
tion of idealised design geometries, some flaw types may 
still go undetected. For instance, residual stress is not visible 
to XCT, and some microcracks may go unnoticed below the 
scan resolution. This section presents published applications 
of IBSim in HVM according to the industrial sector to which 
they’re most relevant.

2.3.1  Examples in the Energy Sector

Electrochemical energy devices are complex multi-phase, 
multiscale systems, consisting overall of solids (both porous 
and non-porous), liquids, and gases. Whilst the gases are 
not ‘designed’, the solid structures that contain them are. 
Liquid electrolytes are designed, but since IBSim is not used 
explicitly for this process, they will not be discussed further. 
Interested readers are directed to further reading [175, 176].

Electrodes found in lithium-ion batteries are porous sol-
ids, typically consisting of electrochemically active mate-
rial and conductive additives, held together with a binder 
(often polymeric) [177, 178]. The pore network within 
these agglomerated structures contains mostly electrolyte, 
but depending upon the battery chemistry, gases evolve at 
the electrodes during operation that may also inhabit the 
pore space. Electrodes can also swell during operation as 
ions are intercalated. Thus, the battery is a pressure vessel 
that requires careful thermomechanical management. From 
a macroscopic perspective, then, deviations from idealised 

designs of certain safety features could be catastrophic, and 
IBSim has been performed alongside physical testing to vali-
date safety models and to update standards [179]. From a 
microscopic perspective, no two electrodes are manufactured 
identical, but their microstructural metrics can be made sim-
ilar with existing products conforming to a predefined range 
to guarantee performance. This range is the culmination of 
extensive previous research, and efforts continue to optimise 
existing solutions and search for alternatives. Thus, when we 
think of the deviations from the ideal, and how this impacts 
products and their performance, we need to investigate how 
IBSim is used for characterising microstructural metrics for 
electrochemical energy devices.

A limiting factor of note within battery electrodes is mass 
transport restriction, where constrictions within the three-
dimensional pore network can cause flow paths to be highly 
tortuous [86]. In one study the 3D microstructure of a sin-
gle  LiFePO4 electrode was acquired using XCT [110]. The 
effects of tortuosity within the pore network were examined 
using IBSim to assess the impact on ionic diffusion, a key 
performance parameter, showing the specific role of each 
microstructural phase (see Fig. 22, reproduced from [110]).

In work by Trembacki et al., an XCT dataset from [180] 
was used to simulate binder-phase morphology in nickel-
manganese-cobalt cathodes [110]. The amount of binder 
can be varied within an electrode to alter electronic con-
duction. The calendering pressure can also affect porosity 
and contact between particles within the active material. 
These manufacturing parameters may be chosen to enhance 
energy or power density. Thus, deviations from these will 
impact intended performance. Interestingly, this study com-
pares the finite volume method (FVM) and FEA on the same 

Fig. 21  Reproduced from [174] where heterogeneous solids are grouped and further subdivided by microstructure classes
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mesh, uncovering discrepancies when simulating electronic 
conductions at material interfaces where singularities can 
arise. This points to the possible use of adaptive meshes 
to improve simulation fidelity. Further examples of IBSim 
applied to research of batteries have also been published 
[181–185].

An area of interest within the energy sector, for mac-
roscale simulation, is that of turbine blades. In a study of 
composite turbine blades, containing imperfections, wires 
and sensors, IBSim models from μCT data were performed 
with and without the inclusion of these features provid-
ing information on the effective properties and influence 
of these features on the performance [186]. At the micro-
scale, IBSim has been used to assess cast materials, such 
as ductile cast iron (a non-porous crystalline solid), where 
it is normally assumed that the crack initiation stage has a 
negligible effect upon fatigue life, since early fatigue cracks 
are often observed in these materials. However, gas bub-
bles can be trapped inside casts, and shrinkage can lead 
to the formation of cavities, both of which serve to act as 
fatigue crack initiation sites. These defects are precursors 
to pre-existing cracks, acting like localised porous materi-
als within the global non-porous solid. Simulating this pore 
space, its tortuosity and evolution, is therefore important 
for predicting fatigue life scatter. In one study a compari-
son between experimental fractography data and simulated 
fatigue life scatter was made [187]. X-ray μCT was used to 
obtain defect distributions within a range of specimens taken 
from rejected wind turbine hub castings, allowing a random 
defect analysis to be performed to predict fatigue life scatter.

The nuclear industry, another highly regulated sector, 
has stringent requirements on the quality and qualification 
of manufactured parts. In this context, IBSim models have 
been demonstrated to be useful to predict the performance 
of AM parts for nuclear applications [188]. IBSim was used 
to characterise a component manufactured with a bonding 
procedure for dissimilar materials used in water-cooled heat 

exchange components, identifying a defective joining pro-
cess within ‘digital twins’ that would otherwise have com-
prised the component and surrounding substructure [189]. 
IBSim was used with a digital twin approach for detecting 
in-situ flaw formation in stainless steel (316L) impeller-
shaped parts manufactured by L-PBF [190]. The digital 
twin approach was shown to be effective for detection of the 
three types of flaw formation causes studied in this research. 
Whilst in work by Evans et al. it was employed for high-heat 
flux components used within experimental nuclear fusion 
plants, where the debonding regions within carbon fibre 
composite-copper interfaces can be detected and quantified 
in silico from image data captured via high-resolution XCT 
[16]. At the microscale it has been used to assess the effect 
of microstructure and crystalline structure upon the thermal 
conductivity of graphite foams [94].

To round-off the breadth of applications of IBSim for the 
energy sector, we consider its application to semi-crystalline 
polymers. IBSim has been used to improve the performance 
of insulative porous polymeric coatings for offshore pipe-
lines [191]. A common problem when simulating such mul-
tiscale systems is the computational complexity involved; 
molecular weight and distribution, size of crystallites, and 
microstructure all affect mechanical behaviour under vari-
ous loading scenarios, and temporal effects such as work 
hardening can present themselves. The homogenisation of 
multiscale systems is an obvious approach to reducing simu-
lation complexity, but continuum-level materials properties 
are not always representative at lower length scales. This 
is an outstanding challenge with the IBSim approach and 
common across application spaces.

2.3.2  Examples in the Aerospace Sector

A primary functional requirement for engineering prod-
ucts used in aerospace is for them to be lightweight. Thus, 
composite materials such as carbon fibre reinforced plastics 

Fig. 22  Showing the specific role of each microstructural phase (reproduced from [110])
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(CFRP) have found widespread use. At the microscale, the 
fibre network of which they are composed is a key element in 
their performance, with factors such as directionality affect-
ing damage evolution [192] and permeability [193]. X-ray 
μCT is invaluable for characterising these networks, but one 
particular challenge is to have a robust method to quantify 
microstructural features during postprocessing of images to 
obtain topologically accurate volumetric representations for 
IBSim models [194]. For example, loss of fibre edge defi-
nition can occur when imaging fibres made of low-atomic 
numbers, where X-ray phase contrast effects can cause them 
to appear thinner than their true diameter. Another area of 
significant industrial interest at this scale is the quality of 
welded regions within parts, with the potential for large 
pore spaces in these weld seams to create possible failure 
locations. An example of a welded light aircraft engine 
bracket shows the presence of a pore with diameter more 
than 1 mm in size [195]. Incorporating this into a simula-
tion with ‘in-service’ loading conditions would identify the 
criticality of this pore for the intended application. In a study 
of welded seams using XCT and tensile tests, the authors 
compared simulations of the weld with tensile tests of the 
same samples, incorporating pores and surface irregularities 
into the simulation [14]. The stress–strain curves obtained 
from numerical simulations were in good agreement with 
experimental ones within the linear elastic regime; however, 
they deviated from each other when non-linear behaviour 
was observed experimentally since plastic behaviour was 
not implemented in the numerical models. The amount of 
pore content (high or low) and type of surface appearance 
(irregular or regular surface) was demonstrated to change 
the quantity of plastically-deformed areas and load-bearing 
capacity.

An example of IBSim applied to the macroscale involved 
a study to evaluate the performance of parts which contained 
intentionally controlled defects [196]. The authors applied 
a simplified FEA method with a linear elastic assumption to 
μCT scans of AM aerospace brackets with varying sizes and 
locations of defects. The incorporation of these defects, in 
addition to the surface imperfections, into the simulations 
led to accurate predictions of failure locations using a stress-
hotspot evaluation approach. The utility of XCT continues, 
as it also allows for the comparison of actual geometry to 
designed geometry, giving insight into deviations. The color-
map, shown in Fig. 23, clearly identifies the largest devia-
tions, which is especially important in critical locations of 
components, such as load-bearing sections with thin walls. 
The geometry shown is obtained by simulation-based design 
(also called topology optimisation or generative design) and 
the component is manufactured by metal AM. The arms are 
warped towards one another, affecting the alignment of the 
two holes, which is critical for its practical application. The 
decision, based on this analysis, was that this component 

required additional machining, and the ‘as manufactured’ 
bent arms might induce higher stresses when subjected to 
planned loads, which would not have been anticipated dur-
ing design.

The ability to optimise the design of complex parts for 
specific loading regimes or functionality is particularly use-
ful for targets such as reducing mass. This approach usually 
requires multiple rounds of simulation during the design 
process. Besides the use of simulation in the design process, 
the application of simulations to the final design for a quality 
control step is also important for highlighting possible limi-
tations of the design and to check minimum safety factors 
[162, 197]. Given that the aerospace industry is yet another 
tightly regulated sector, it is key to the acceptance of novel 
techniques like AM that uncertainty in performance is lim-
ited. The advantages of AM for engineering structures with 
increasingly complex geometries are clear. For example, a 
range of designs for shape-changing thin-walled cylindri-
cal composite structures were subjected to non-linear static 
FEA simulations using quadratic hexahedral elements [198]. 
FEA simulations were combined with experimental test 
results using digital image correlation (DIC), which allowed 
strain maps to be correlated with physical structures that 
had been fabricated by AM. Being able to predict failure in 
AM engineering products is also vital. Immersed-boundary 
finite elements can be used to predict the tensile strength 
of designs, simulating stress distributions from local stress 
concentrations and the location of crack initiation sites. This 
method does not require a conforming simulation mesh 
and is therefore suitable for complex porous solids where 
meshing may introduce singularities. This approach was 
taken by Fieres et al. using aeronautic parts consisting of 
AM AlSi10Mg aluminium alloy, with physical specimens 
destructively tested in tension [149]. They found there was 
good agreement between IBSim models and experiments for 

Fig. 23  CAD variance analysis of an actual AM bracket (with colour 
coding showing deviation) compared to its CAD design (shown in 
yellow mesh). This example is from round robin tests [196] whereby 
AM parts were analysed by fixed XCT workflows, one of which is 
to evaluate differences between actual geometry and design geometry
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predicted and measured tensile strengths. Furthermore, they 
concluded that crack initiation location and onset could be 
forecast accurately.

Further examples of the application of IBSim within this 
sector include design improvements for composite Hart-II 
blades [186], biomimetic insect-sized micro wings [199], 
and nanoscale hexagonal plated wings for next-generation 
microflyers [200]. IBSim models of these structures require 
complex simulations coupling high-speed fluid flow, 
fluid–structure interaction, thermal flow, and mechanical 
vibration analysis. There exists a range of readily available 
software packages to explore different simulation options, 
but it will be important for anyone attempting to perform 
high-fidelity simulations on these IBSim models to balance 
meshing intricacy, component geometry complexity, and run 
time analysis.

2.3.3  Examples in the Medical Sector

Biomedical IBSim applications in general are based on 
patient medical imaging (e.g., CT/MRI) and are outside the 
scope of this review, and will, therefore, only be referred to 
for the purposes of context; the primary focus being manu-
factured parts used in the medical sector. IBSim has great 
potential for reducing material waste due to part rejection. 
A review was made of CT-based measurement techniques 
used for assessment of quality of bioengineering compo-
nents [201]. Due to the critical nature of medical applica-
tions, FEA is often used [202, 203], especially in the design 
phase for new device development [204]. Originally FEA 
was widely used in orthopaedic studies for improved under-
standing of bone stress distributions, including bone-pros-
thesis structures and similar devices [205]. FEA has found 
particular use in dentistry and orthodontics [206–208] and 
spine research has also benefitted from FEA for improved 
understanding of the spine and spinal implants [209], whilst 
simulations involving the human skull have supported the 
understanding of head injuries even assisting forensic inves-
tigations [210, 211].

Due to the wide scope of applications of FEA in biomedi-
cal and biomechanical applications, some guidelines have 
been suggested almost a decade ago [212–217]. The medi-
cal sector is understandably highly regulated, and as such, 
use of novel methodology usually requires certification from 
a regulatory body (depending on the nation) before use is 
permitted with patients. Despite this, and due to the com-
plexity in geometries and variability between cases in bio-
medical applications, IBSim has already found widespread 
use, including in the study of scaffolds for bone and tissue 
regeneration [218–222], implants [223–227], intracorpor-
eal structures [228–230], biomechanics [231], and medical 
device design verification [232].

In a patient-based IBSim study of a medical implant, high 
stress locations were identified that led to eventual failure 
of the implant in the patient [12]. In this work, a medical 
CT scan of a patient was used to design a suitable mandibu-
lar implant geometry (patient-specific and porous) which 
unfortunately later fractured in the patient. An IBSim study 
was therefore conducted to correlate the actual failure loca-
tion (from subsequent CT scans) with the location of high 
stresses by using IBSim models of the designed implant. 
This study highlights the potential of macroscale geometri-
cal simulation of complex objects, informing the design, 
irrespective of manufacturing defects and imperfections. In 
this case, the manufacturing process was not checked, rather 
the design was flawed, though manufacturing flaws or imper-
fections can contribute to such failures. Similarly, fracture 
behaviour of human and sheep mandibular diastema fixated 
with titanium miniplates and screws under physiological 
muscular loads and variety of clenching modes (intercuspal, 
incisal, and unilateral) were simulated using IBSim mod-
els [233]. IBSim models of mandibular constructs made of 
Titanium scaffolds were simulated by using 3D FEA and 
multiscale modelling to pre-clinically determine the opti-
mal mandibular geometry for a specific patient, where the 
influence of strut diameter and inter-strut distance in porous 
architecture on stress and strain distributions was quantified 
[234].

A particular challenge with IBSim, in comparison to 
conventional engineering simulations, is the computational 
expense involved. Reducing complexity of IBSim models 
is one solution and can be required if access to high-perfor-
mance computing resources is a limitation. As with mate-
rial characterisation, a popular method when considering 
microstructure in biomedical engineering, is to use RVEs 
with periodic boundary conditions to reduce computational 
expense. For example, one work used RVEs to homogenise 
the mechanical properties of Ti6Al4V structures for bio-
medical applications [223]. The IBSim models were subse-
quently solved using a four-node tetrahedral mesh via com-
mercially available software. To validate their approach, 
models were manufactured by AM with electron beam 
melting (EBM), then subjected to mechanical tests. Whilst 
reported results appear limited, it does show that homog-
enisation of key design elements through RVEs can be a 
useful method for design improvements with reduced com-
putational complexity. Another example of reducing compu-
tational complexity includes methods such as the extended 
finite element method (XFEM) [224], where the initiation 
and propagation of fracture paths in specimen-specific bone 
can be predicted. The benefit of XFEM is that it does not 
require a priori information about the crack path, and thus 
model re-meshing is not needed. For those interested, a 
review of FEA models and their validation for tibiofemoral 
joints is available [231].
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2.4  Customisation and Personalisation of Products

Nowadays, customers expect products tailored to their per-
sonal preferences, tastes, needs and lifestyle. The paradigm 
of mass production has therefore shifted in favour of cus-
tomised production, which caters to the needs of individual 
clients or patients [235, 236]. The notion of personalisation 
is not unequivocally defined, although the common features 
of this approach indicated in the literature are customer 
preferences, customer participation in the product design 
process, customisation and information flow between cus-
tomer and manufacturer [237, 238]. The level of customer 
involvement in the production cycle is thought to play a criti-
cal role in determining the degree of customisation, whereby 
the earlier the initial involvement of the client, the greater 
the customisation.

The term ‘mass customisation’ refers to products which 
are mass produced but where the consumer is offered options 
to customise the product. Mintzberg views customisation 
as taking one of three forms: pure, tailored, or standard-
ised [236]. Pure customisation includes the consumer in 
the entire cycle, from design through fabrication, assembly 
and delivery and it provides a highly customised product 
(Fig. 24). Altering a basic design to meet the specific needs 
of a particular client is known as tailored customisation, and 
in standardised customisation a final product is assembled 
from a predetermined set of standard components [239].

To avoid confusion, and to ensure a clear distinc-
tion between customisation and personalisation, the term 
‘pure customisation’ will no longer be used throughout 
this section. Instead, the term ‘personalisation’ will refer 
to bespoke/individualised products which are fulfilled at 
the personal level (i.e., a market of one). The automotive 

industry is a well-documented example of low and high 
degree of customisation [240]. Here, the customer can opt 
to customise the car from a plethora of options (e.g., colour, 
model, trim level etc.). The Porsche automotive company 
have recently ventured into custom car seating to allow the 
customer to choose between three firmness levels (hard, 
medium, soft). The 3D printed bucket seat is set to become 
a personalised product in the future, based on the customer’s 
specific body measurements.

To move from mass production to mass customisation, 
a company needs to invest in the right technological capa-
bilities. Traditional manufacturing methods are restricted in 
their ability to create customised products as new moulds 
are typically required for each product. This subsequently 
leads to increased change-over costs associated with tooling 
and fixtures and extended timelines. AM has been widely 
acknowledged as the most appropriate manufacturing 
method of production of customised products, due to the 
lack of associated tooling required and the ability to pro-
duce highly complex geometries. AM covers a broad range 
of production technologies that fabricate products layer-by-
layer, enabling 3D objects to be ‘printed’ on demand in a 
variety of materials. AM technologies such as stereolithog-
raphy (SLA), 3D printing, L-PBF, selective laser sintering 
(SLS) and EBM lend themselves to manufacturing complex 
anatomic parts without any barriers of design constraints. 
Examples of customised and personalised products include 
implants [241], bone and tissue scaffolds [242] and prosthet-
ics [243] within the medical sector, which appears to be the 
one currently most active in this field. Then closely related 
to the medical sector are customised personal protective 
equipment [244] and protective sportswear [245].

Fig. 24  Customer involvement 
and modularity in the produc-
tion cycle of mass customisa-
tion [239]
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The most accurate analysis of processes and mate-
rial behaviours comes from in-situ imaging and diffrac-
tion techniques. Combining imaging technologies such as 
XCT, FIB-SEM and MRI with the design freedom of AM 
has opened up new and exciting opportunities to customise 
and personalise products to many applications [246–250]. 
This has been particularly advantageous for industry such 
as healthcare to improve the effectiveness of diagnosis, plan-
ning, surgery, and clinical outcomes perfectly adapted to the 
patient’s specific anatomy or needs. However, a critical stage 
of this process is simulation modelling, e.g., using FEA. 
The ability to analyse and test how a product will react to 
certain environments (e.g., heat, force, microclimate etc.) 
and to predict structural strength and prevent failures is cru-
cial where safety is paramount, e.g., both in patient-specific 
devices or custom wire baskets in aerospace.

Understanding the environment is important to all appli-
cations, but it is particularly complex in the case of medical 
applications where devices are intended to be used inside 
the human body. As organs and soft tissues already exist 
in the patient, it is imperative that the bone and tissue scaf-
folds integrate fully and do not cause infection or become 
‘rejected’ by the body. Customised or patient-specific scaf-
fold geometry can be gained by applying CAD software 
along with known individual patient anatomy parameters 
related to the defect site to create a 3D model. Computer 
modelling and FEA before 3D printing of a composite bone 
or tissue scaffold allows accurate identification of patient-
specific anatomy and any variation in defect shape and size; 
subsequently ensuring the quality of the final medical model 
and product is not impaired [251].

The continuous demand for efficient and adaptive cus-
tomised and personalised products relies heavily on IBSim 
techniques. In this sub-section we have therefore presented 
a variety of applications which have implemented IBSim in 
the development of customised and personalised products 
below. These include: Healthcare, Personalised Medicine, 
Prosthetics and Orthotics, Sport and Lifestyle, and Automo-
tive sectors. Note, that this is not intended to be an exhaus-
tive list, but instead an overview of the key applications 
observed as currently being of interest.

2.4.1  Healthcare

Arguably, healthcare is one of the most complex and chal-
lenging industries to produce customised and personalised 
products. Due to the differences that exist between humans, 
it is essential that all aspects of design and manufacturing 
are considered to ensure the device not only functions as 
required, but that it does not cause damage and/or harm to 
the body. The complex anatomy, sensitivity of the surround-
ing bones and soft tissues, and uniqueness of the defect or 
malfunction means IBSim can play a critical role.

Obtaining patient- or object- specific surface or volumet-
ric geometry is important to assess the size, location, and 
overall fit of the device/product in relation to the individual. 
Static or dynamic simulations can then be run to investigate 
short- or long- term outcomes. The ability to run simulations 
that mimic the likely response of the device against patient-
specific geometry is crucial for predicting the success of the 
proposed product and determining any potential flaws in the 
design which could be optimized. Simulations are also use-
ful in understanding the behaviour of a material, particularly 
in time dependency models where wear and tear can occur 
over a given time period.

Applications of XCT with AM in a medical context are 
extensive, particularly in dentistry, where there is great 
demand for personalised products [207, 252–255]. Primary 
applications of XCT with AM in medicine include: the pro-
duction of anatomical models, surgical guides, endoprosthet-
ics and orthotics, stand-alone implants and scaffold implants 
[256]. These applications rely on the principles of reverse 
engineering, using patient XCT data to inform the design 
process. These advantages make AM invaluable in tissue 
engineering applications, where the production of micro-
scale lattice structures is an intrinsic requirement.

It is also very common to see other imaging modalities 
such as MRI used in medicine as access to pre-operative data 
is readily available. In the same way as XCT, MRI data can 
be used to reconstruct patient-specific 3D geometry. Whilst 
the main focus of this review is XCT due to HVM applica-
tions, it is worth acknowledging that MRI has several ben-
efits over XCT whereby it does not exposure the patient to 
ionizing radiation. It is also extremely useful in examining 
soft biological tissues, whereas XCT is particularly useful 
for examining materials with a high atomic number [27]. 
Acquisition methods such as cone beam computed tomogra-
phy (CBCT) have considerably reduced the radiation dosage 
to the patient, but there are increased concerns regarding the 
collective radiation dose given for medical purposes [257]. 
XCT and CBCT have proven particularly useful for complex 
dental cases involving surgical planning, detection and treat-
ment of tumours and reconstructive surgery of the mandi-
ble; where personalised geometry is acquired for point cloud 
data processing and analysis using FEA [247, 258]. Publicly 
available tools such as the MATLAB ‘Torsion Tool’ and the 
‘Bone deformation Tool’ allow personalised geometry to be 
generated quickly in an OpenSim musculoskeletal model 
[259]. Such tools can estimate personalised measurements 
within seconds but are often limited to a single model.

Yu et al., integrated CBCT, reverse engineering, CAD, 
FEA and rapid prototyping to fabricate an accurate custom-
ised surgical template for orthodontic mini screws [260]. 
IBSim was of particular importance to this study as the 
use of CBCT was able to measure the interradicular spaces 
with greater accuracy and reproducibility than other imaging 
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modalities (such as multidetector CT), whilst the FE models 
allowed biomechanical evaluation of the customised surgical 
template with increased clinical stability. Whilst full IBSim 
was utilised in this study, further simulations could have 
been implemented to assess the biomechanics of the surgi-
cal template post-surgery in order to reflect the effect of 
soft tissue inflammation and screw loosening. The authors 
did acknowledge, however, that there were large gap sizes 
between the surgical template and teeth/mucosa due to fitting 
errors with the soft tissue image reconstruction [260]. This 
could also potentially be rectified by further FE analysis.

Another example is presented in a recent paper by Dot 
et al., whereby CBCT, intra-oral scans and subject-specific 
FEA were used to track the 3D orthodontic tooth movement 
in a patient undergoing canine retraction over a seven-month 
period [261]. An iterative closest point (ICP) algorithm was 
used in Geomagic Studio software to align and register the 
scans and segmented canines at different stages (i.e., initial, 
and intermediate). Open-source software ITK-SNAP, 3D 
Slicer and Mimics were then used to create 3D models and 
calculate rigid body displacements of the canines. The 3D 
models enabled preliminary FE models to be developed and 
validated [261].

There is a breadth of literature that focuses on the design 
of implants, particularly for craniomaxillofacial surgery 
where gunshot wounds or tumours have required mandibu-
lar or cranial reconstruction. Parthasarathy reviews a number 
of articles related to 3D modelling and custom/personal-
ised implants in craniofacial surgery, specifically in relation 
to application of CAD and computer-aided manufacturing 
(CAM) technologies with different materials [241]. The con-
version of CAD models to STL format for manufacturing is 
common. The use of CAD/CAM in dentistry has allowed 
various morphologies from different devices with high accu-
racy, thereby increasing treatment opportunities in some 
clinical situations. This technology combined with a L-PBF 
machine can provide porous titanium structures with com-
plex geometries that control the internal architecture [262]. 
In addition to L-PBF, SLS and EBM have also been used to 
facilitate the direct production of titanium, chrome cobalt 
and polyetheretherketone (PEEK) implants with engineered 
properties that match properties of the tissues at the region 
of implantation [250, 263, 264].

Wu et al., used a combined methodologic approach to 
assess the biomechanical performance of a conventional and 
custom angled dental abutment without the need for wax and 
cast [265]. Numerical models were acquired through optical 
scanning of the dental cast, with the optical gaging prod-
ucts video measuring system used to obtain detailed shape 
parameters. A virtual prosthesis was then preliminarily 
positioned and probed for interference using the “Collision 
Detection” function based on the “Least Square method” to 
fix the prosthesis in the required position. Geometry of the 

patient’s bone was taken via medical CT images and an FE 
model generated in ANSYS Workbench 11.0. The results of 
the von-mises stress distribution simulation can be seen in 
Fig. 25 where no distinct difference in the stress distribu-
tion was found using the custom or the conventional angled 
abutment [265].

XCT-based FEA has evolved into a standard tool for 
the biomechanical evaluation and optimisation of porous 
bone tissue scaffolds. Systems such as the Skyscan 1272, 
Bruker-MicroCT are commonly used to obtain high resolu-
tion 3D scan data of the scaffold. The reconstructed images 
and morphometric and structural analysis can then be per-
formed using Bruker proprietary software NRecon® and 
CT-Analyser CTAn® [266]. The primary advantage of XCT 
for bone tissue scaffolds is that it is a non-destructive imag-
ing technique which is capable of providing a comprehen-
sive set of data. However, the accuracy of the analysis, is 
highly dependent upon several parameters such as specimen 
preparation, parameter settings during the acquisition, and 
reconstruction of the images [267].

The majority of literature surveyed in this paper utilised a 
combination of imaging techniques e.g., XCT and scanning 
electron microscopy (SEM) in order to examine the char-
acteristics of the scaffold. 3D CAD designs and theoretical 
equations/simulations were also common for designing the 
porosity of the scaffold but there have been reports that cer-
tain CAD simulations over-predict scaffold performance due 
to limitations in simulating micro-topologies [268]. FEM 
proved useful in investigating and optimising the mechani-
cal behaviour of the scaffolds [269, 270]. The use of FEM 
was also able to measure the sensitivity of scaffold proper-
ties (e.g., to the filament diameter, the variations of porosity 
and surface area). The review paper by Podshivalov et al. 
describes the state of the art in multiscale computational 
methods used in analysing bone tissue for personalised med-
icine is summarised by [271]. Challenges on optimization 
of 3D-printed customised bone scaffolds is presented in a 
recent review paper by Bahraminasab [251].

2.4.2  Personalised Medicine

Personalised medicine (often referred to as “precision medi-
cine”) is an emerging field which will significantly benefit 
from the implementation of IBSim. In the US, the Food and 
Drug Administration reported 38% to 75% of patients for 
whom medication was ineffective for a number of conditions 
from depression to cancer [272]. Therefore, the ability to tai-
lor a drug dosage specific to an individual where ingredients 
can be adjusted based on the patient’s age, gender, weight, 
genetic factors and previous responses to different dosage 
levels, rather than using the conventional dosage forms may 
diminish all potential adverse effects [273–275].
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For example, IBSim techniques are invaluable for radio-
therapy treatment planning as they can be used to; predict 
tumour response to radiation, reduce uncertainty in the pre-
scribed dose distribution and spare organs at risk [276–280]. 
However, accurately calculating the perturbation effects of 
the interfaces between materials of vastly differing ana-
tomic number (e.g., lung, bone and/or air) is complex, and 
as such, has often been solved using the Monte Carlo method 
[281]. A recent study by Roncali et al. looked at personal-
ised dosimetry for liver cancer Y-90 radioembolization for a 
single patient [282]. CBCT was used to segment the hepatic 
arterial tree to predict microsphere transport using multi-
scale CFD modelling and Monte Carlo simulation. Bespoke 
manufacturing is also used within personalised radiotherapy 
treatment, mainly shielding blocks to protect regions of the 
body not intended to receive a dose [283]; and boluses to 
alter dosing received from the beam [284]. There are exam-
ples where the performance of custom boluses have been 
modelled with IBSim [285] (Fig. 26). Firstly, the head geom-
etry of a phantom was captured via CT scanning, the bolus 
was designed to fit the topography of the ear and manufac-
tured with AM. Once placed on the phantom, the head was 
re-scanned, and the data used in a simulation of a CT scan 
to evaluate the dosimetric properties of the custom bolus. It 
was found that the custom boluses better fitted the irregular 

surfaces, and this enhanced the dose that would have been 
received by the patient.

IBSim has not only played a pivotal role in the develop-
ment of personalised medicine but also in the storage sta-
bility of pharmaceutical products. One example of this is a 
study by Zhang et al., which characterized a lyophilized drug 
product (a freeze-drying process that removes water from 
a drug product via sublimation) [220]. The study involved 
the use of high-resolution X-Ray microscopy to collect 3D 
volume data from lyophilized drug samples and quantita-
tively characterise the microstructures of the lyophilized 
drug [286].

Examples of digital twin applications and the ethical 
issues that arise when digital twins are applied to model 
humans for personalised medicine are presented in a recent 
review paper by Kamel Boulos and Zhang [287]. Of note, is 
the study by Cho et al., who assessed the facial profiles of 
Korean adult females using facial scans and CBCT imag-
ing (Fig. 27). Digital twins were reconstructed to evaluate 
and compare the sagittal relationship between the maxillary 
central incisors and the forehead before and after orthodontic 
treatment [288]. This technology is somewhat in its infancy 
with regard to personalised medicine, but it is interesting 
to see this implemented with full IBSim. The concept of 
the digital twin for mass customisation enables new options 
for product manufacturers as seen in the aerospace industry 

Fig. 25  Von-Mises stress distribution of implant, custom abutment, conventional abutment and screw under loading along the abutment long 
axis (row 1) and along the implant long axis (row 2) [265]
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[289]. Over the next decade, we are likely to see more 
research involving digital twins to personalise medicine, but 
this will require solving a wide range of technical, medical, 
ethical, and theoretical challenges.

2.4.3  Prosthetics and Orthotics

Researchers have been interested in computer-aided pros-
thetic socket design since the early 1960s, however, FEA 
was not introduced to prosthetic socket and orthosis design 
until the late 1980s [290]. Prefabricated prosthetic and 
orthotic products are readily available and less expensive 
than custom products; however, customised, or personalised 
products that take individual characteristics into considera-
tion are considerably more comfortable and functional for 
the wearer.

Examples of mass customisation of orthoses to date have 
largely consisted of foot and/or ankle–foot orthoses (AFOs) 
[291]. All studies from 1990 to 2015/16 have been summa-
rised in the review papers by Jin et al. [292] and Chen et al. 
[293]. Each of which have discussed the progress of AM 

of custom prosthetics and orthotics and the benefits over 
traditional plaster moulding techniques. More recently, Mali 
and Vasistha presented an efficient solution for the manu-
facture of an AFO using reverse engineering software to 
obtain a refined model via data repair [294]. A Steinbichler 
Comet3D™ structured blue light scanner was used to obtain 
the geometry of the diseased foot and the generation and 
post processing of the cloud data points were conducted 
using the proprietary software Cometplus™ and Autodesk® 
Meshmixer. FEA of the AFO was performed in Autodesk® 
Fusion360™ for three different materials. Optimization 
of the orthosis resulted in increase in safety factor, higher 
strength and lesser displacement when compared to a non-
optimized AFO [294]. Agudelo-Ardila et al., proposed a 
similar solution for an upper limb orthosis whereby a sub-
ject’s hand and forearm were scanned using a structured 
light 3D scanning system [295].

The STL model was processed in Canfit and Meshmixer 
software. FEA was utilised to perform structural simula-
tions to determine when the material will deform or collapse 
(Fig. 28). Biomimetics were implemented from Voronoi 
structure (as an alternative for modelling cellular structures) 
and met the objective of material reduction, consequently 
leading to a lighter orthosis (Fig. 28). Both these studies 
demonstrated the effectiveness of IBSim not only as a useful 
tool for evaluating structural feasibility but also in making 
design decisions, reducing problems associated with plaster 
moulds and thus achieving a custom-made orthotic that is 
optimised for the patient [294, 295].

In addition to AFOs, there has been the development of 
custom prosthesis for the management of entero-atmospheric 
fistulas whereby an Einscan pro + , 3D shining scanner cou-
pled with CAD software was used to capture the geometry 
of the fistula and create a polycaprolactone personalised 
ring-shaped device [243]. The device was then placed on 
the image of the wound to verify the customisation and 

Fig. 26  Isodose lines calculated by means of IBSim CT simulations of a phantom head a with no bolus, b with a commercial bolus and c a 
bespoke AM bolus [285]

Fig. 27  A digital twin reconstructed by the fusion of facial scan and 
CBCT images. a Coronal view of the face. b Sagittal view of the face 
[288]
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placement (Fig. 29C–E). Virtual simulations allowed the 
tolerance margin to be calculated which was important in 
ensuring the prosthesis did not press on the fistulous tissue.

Ideally, any product that is designed for the treatment of 
an individual patient with specific illness, disease or injury 
needs to be fully personalised. The emergence of AM tech-
nologies allows the fabrication of custom-made orthoses in 
a cost-effective way [296]. Interestingly, in a 2020 review on 
the use of AM to produce lower limb orthoses, only three 
of the seven AM technologies available have been explored 
(vat photo-polymerisation, material extrusion and powder 
bed fusion). Material extrusion was found to be the most 
affordable AM technology but limited to the use of polymers 
[296]. SLA was considered an unsuitable method for manu-
facturing AFOs due to limited bending and fatigue strength. 

Instead, FDM was selected for customising AFOs. One of 
the interesting points mentioned in the review paper was 
the ability of Cyber Design and AM (CDAM) to assist the 
design phase of orthoses [296]. Fig. 30 shows an overview 
of the CDAM system developed by Shih et al., which aims to 
improve the fit and comfort of custom orthoses and prosthe-
ses, and enable users to solve complex design and analysis 
problems (e.g., FEA, optimization, visualisation) [297].

Sharma et  al., recently proposed a methodology for 
designing highly customised 3D printed facial protection 
orthosis for rehabilitative management in patients with 
sports-related maxillofacial injuries [298]. A postoperative 
CBCT scan was imported into Materialise Interactive Medi-
cal Image Control System (MIMICS) medical software in 
order to segment the region of interest and generate a 3D 
volumetric reconstruction (Fig. 31). A 3D optical scan was 

Fig. 28  FEA analysis showing the stress and temperature analysis of the lower and upper part of the orthosis (top and middle row respectively), 
and the application of Voronoi patterns to reduce the material in the resulting 3D printed custom orthosis (bottom row) [295]
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also taken to corroborate the soft tissue components and 
create digitised surface geometry of the face with a trian-
gular mesh. An ICP algorithm, surface registration protocol 
(n-point and global registration) was accomplished between 
the CBCT scan and optical face model [298]. Conventional 

methods for fabricating a mask were eliminated using 
IBSim, thus eliminating a very time-consuming process. The 
imaging and AM workflow demonstrated in this study could 
be applied to numerous applications, but computational 
simulations are not presented. The maxillofacial orthotic 
was based on an adult male whose face shape is unlikely 
to change (as the bones are fully fused). For a child or ado-
lescent who has not reached skeletal maturity, simulations 
could help predict the optimum design of the orthotic and 
also identify when the orthotic is no longer effective. Digital 
workflows similar to the abovementioned study have been 
found for cervical collars [299].

2.4.4  Sport and Lifestyle

With the growing concern surrounding head injuries in 
sport, there has been increased research into personal protec-
tive equipment [245, 300]. 3D surface scans, medical imag-
ing and/or 3D anthropometric data, can be used to acquire 
the head geometry and proposed protective headwear. The 
detail of this geometry depends on the type of methodology 
implored and the material properties assigned to the head 
and proposed helmet design. Corrales et al., addressed these 
limitations by developing a numerical model of a modern 
football helmet by integrating two headforms and assessing 
a range of impact conditions [301].

Virtual impact test simulations can assess which design is 
most effective at protecting the head (in terms of structural 
and kinematic response to impact) and can be evaluated by 
experimental impact testing. Fig. 32 shows an example of 
a custom-fit bicycle helmet model proposed by Ellena et al. 
whereby 3D anthropometry, reverse engineering techniques 

Fig. 29  A Process of taking pictures with the bioscanner. B Images 
obtained with the bioscanner. C Measurement of the exposed intes-
tinal surface dimensions for device design. D Verification of the 
suitability of the prosthesis by extrusion of the fistulous surface. E 
Placement of the device on the image of the bioscanned wound to 
determine the correct adaptation to the patient. F 3D printing of the 
bioprosthesis [244]

Fig. 30   a Overview of the Cyber Design and Additive Manufacturing (CDAM) system for custom Ankle Foot Orthoses (AFO). b Illustration of 
the interaction between the hardware and software systems with the cloud storage system [297]
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and computational analysis methods were used to assess 
accuracy of fit [302]. This study demonstrated that the fit 
accuracy of the custom-helmet models was significantly 
increased compared to three commercially available helmets, 
and their method complied with the relevant drop impact 
test standards. However, the authors acknowledge that the 
mechanical properties of the available materials used in their 
custom design differ significantly from well-known foam 
material, and that a combination of AM with moulding tech-
niques would be a likely outcome in future studies.

Safety standards and certification have most likely con-
tributed to the lack of mass customisation systems of hel-
mets to date. Industry customised helmets, by brands such 
as Bell Sports® (Rantoul, Illinois, USA) currently meet the 
US Standard, but the information in how the Standard was 
achieved is not disclosed. In addition to helmet designs, 
there has been a growing trend among shoe manufactur-
ers (e.g., Nike, Adidas) to introduce customised shoes to 
improve fit, comfort and performance [303]. Custom-fit 
mouthguard designs, have also been studied extensively to 

Fig. 31  Top: An overview of the schematic representation of the 
digital workflow with Postoperative CBCT 3D volumetric reconstruc-
tions. Bottom: A 3D computer-aided design and planning B FDM 

printed carbon-reinforced PLA face mask C A professional soccer 
player with a customized face mask during his sport’s practice session 
[298]

Fig. 32  Impact locations of the customized helmet: side, front and top (left) and deviation analysis of a participant’s customised helmet (right) 
[302]
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evaluate the tooth stresses and strains, shock absorption, and 
displacement during impact [304, 305]

2.4.5  Automotive

The automotive industry is a highly competitive market 
where there is a constant and ever-increasing demand for 
personalised products. The CES 2020 Survey by CITE 
Research Dassault Systèmes found that 83% of 3000 con-
sumers in the US, China and France expect products or ser-
vices to adapt in a matter of moments or hours [306]. Only 
21% will wait four or more days for a personalised product 
or service to be delivered, but they are willing to pay more 
(an average 25.3%) for personalisation [306].

Consumers’ increasing demand for personalisation 
capabilities, coupled with their refusal to incur any extra 
wait time for delivery, sets up a major design challenge for 
engineers. Some luxury carmakers have embraced this chal-
lenge and launched customisation schemes to deliver tai-
lored designs to meet customer requirements. MINI Yours in 
2018 enabled customisation of small parts such as steering 
wheels, decals, and colour combinations [307].

FEA of vehicle crash analysis and crash test dummy 
simulation uses software such as LS Dyna to run explicit 
analysis. To predict and assess the response of occupants in 
a vehicle crash, specific models can be generated to include 
a number of individual characteristics (e.g., gender, age, 
height, weight, etc.). Automatic seat belt draping, pre-ten-
sioning and body interaction with the seat will influence the 
sophistication of these simulations. The M50 seated finite 
element male is intended for use in simulations of vehicle 
crash and was developed in LS-DYNA Rev. 4.2.1 [308]. 
Multi-modality imaging comprising MRI, CT, and a 3D dig-
itiser (FARO Technologies Inc., Lake Mary, FL) was used 
to capture subject-specific anatomy (Fig. 33). Non-linear 
dynamic FEA simulations have also been used to predict the 
magnitude of impact forces, G loading, deformation, stresses 

as a function of race car velocity and the angle of impact of 
a novel airbag technology [309]. Custom clutch designs to 
determine the suitability of a specific material to be used in 
real production have also been analysed [310].

2.5  Image‑Based Simulations in Biomimicry

When the imaging techniques already discussed are used 
to image biomaterials, the detailed multiscale images pro-
duced provide invaluable information, which may be used 
to better understand nature and consequently used to solve 
engineering problems. Biomaterials are the result of hun-
dreds of millions of years of evolution in nature, a natural 
iterative optimisation method. They are known to be multi-
functional, for example, having the functions of impact or 
fracture resistance [311, 312], armour and protection [313, 
314], strength and durability [315], light weight for flight 
[316]. Meyers et al. [317] stated that there are two levels for 
the development and implementation of concepts extracted 
from nature (i) design and concepts which are inspired by 
nature but applied with different materials and conventional 
processing techniques such as self-cleaning surfaces inspired 
from lotus leaf for hydrophobicity [318], (ii) bioinspired 
structures which are mimicked in molecular level by means 
of self-assembly and molecular engineering such as high-
performance ceramic–metal composites designed from ice-
templating process [319]. Plessis and Broeckhoven reviewed 
the ability of AM in biomimicry and the contribution of 
biomimetic structures to new engineered products and appli-
cations [320]. In this section we present papers which have 
used IBSim as part of their biomimicry research collated 
into three main approaches.

Previous to this review, a few other invaluable works 
have concentrated mainly on a specific part of the IBSim 
technique. For example, Cooper et al. reviewed IBSim FEA 
models of tibiofemoral joint with respect to specific titles 
such as generic knee models, mechanical models [331]. Ha 

Fig. 33  Overview of data collected for the M50 seated FEA male. Left—conventional MRI thigh cross section and lateral view of neck; mid-
dle—quasi-seated CT scan and external body laser scan in seated posture; right—full human body model (bone and muscle) [308]
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and Lu looked at recent research on bioinspired structures 
and materials in terms of their energy absorption capabili-
ties, this collated examples from bamboo inspired structures 
to a bone-mimetic crash box [321]. Vasarhelyi et al. investi-
gated the use of μCT and 3D analysis in characterisation of 
advanced materials in application-wise (bioinspired mate-
rials, structural materials, energy and environment) with a 
relatively sparse amount of literature [322]. This section, on 
the other hand, attempts to collate the broader literature of 
biomimicry applications of IBSim under the titles of three 
main IBSim approaches used in biomimicry of materials 
in order to design new materials or upgrade and/or repair 
existing damaged materials.

2.5.1  Imitation of Biomaterial Architectures in CAD‑Based 
Product Design Using 3D Image Data

The first approach relies on the imitation of biomaterial 
architectures in product design, where imaging data is 
analysed carefully, and image-based numerical models are 
established based on this data for elucidating the mechanics 
of material architecture under operating conditions. In this 
case researchers establish their numerical models inspired 
from natural materials using direct measurements of micro-
structural features, for instance, from CT images rather than 
converting 3D segmented image data directly into image-
based meshes. This IBSim approach has been applied in 
investigations of wood [323], marine animals [313], balsa 
trunk and branches [324, 325], hedgehog quill [326] and 
spine [327]. New structures can be designed based on the 
architecture of these materials. For instance, a study took 
into account cancellous bone structure of human tibia as a 
bionic object when structurally designing a novel crash box 
with improved crashworthiness and energy absorption per-
formance [228]. Similarly, thin-walled structures with supe-
rior crashworthiness features were designed using the bio-
logical structure of bamboo with energy absorption ability 
and the deformation behaviour of the new designs was simu-
lated under longitudinal and lateral compression [328]. In 
the first approach, the ultimate design does not have to be in 
the same length scale as the inspired material. A comprehen-
sive review has been conducted into bioinspired structures 
and materials [321]. These structures are often at a different 
length scale to that of the original biomaterial, therefore, the 
reviewers decided to organise the literature in terms of their 
energy absorption performance. To exemplify such applica-
tions, the wood structure of a Manchurian walnut tree was 
scanned by μCT to be converted into FEA models of the 
microstructure and, then, the anisotropic micro-structure 
was imitated on the macroscale by manufacturing with an 
AM process [323]. In another example, armours of Chitons, 

which are a family of marine animals, inspired artificial 
armours with increased flexibility and protective structures 
compared with conventional man-made armours which are 
highly rigid structures with flexibility and manoeuvrability 
trade-off [313]. The methodology of the research consists of 
three critical stages (i) imaging (ii) computational modelling 
and (iii) manufacturing of designs. Dimensions and geom-
etry of basic components of chiton’s armour were quanti-
fied from SEM and X-ray images (Fig. 34a, b). In this type 
of modelling approach, computational structures for FEA 
simulations are generated from parametric CAD models, 
shown in Fig. 34c, originated from the imaging data and not 
direct discretisation of 3D segmented volume data. Fig. 34d 
illustrates the comparison between the CT data-based CAD 
design and the segmented 3D volume of the actual chiton 
armour components. An advantage of having a parametric 
computational model is the capability to test, virtually, many 
design scenarios in various loads and boundary conditions, 
such as compression (i.e., buckling) in Fig. 34e. This led to 
identifying an optimum design, performing all the necessary 
tasks (bending, buckling, stretching) properly without any 
functional loss. A prototype for a design of chiton-inspired 
armour (Fig. 34f) was fabricated with multi-material 3D 
printing AM technology and qualitatively tested.

Furthermore, balsa trunk and branches hosting vertical 
hexagonal columns (cellular material) can be implemented 
for engineering applications because of their ability to hold 
high stiffness under tension and shear [325], and strength 
under compression [326]. The cylindrical structure of hedge-
hog quills were the inspiration for stiffeners due to their 
bending, ovalisation and buckling resistances [326].

Other previous research has worked in the same length 
scale where the information used to build the computa-
tional structures was extracted from the CT images or an 
alternative imaging method. For example, X-ray images of 
hedgehog spine samples were acquired and rendered in 3D 
to obtain the detailed microstructural measurements to be 
used to generate discrete micro-accurate FEA models [327]. 
Differing to continuous models, where homogenisation pro-
cesses are applied over the volume of interest, discrete mod-
els aim to capture physics of mechanical problems by imitat-
ing true architecture of materials to as high a resolution as 
experimental measurements have allowed. In the case of the 
hedgehog, longitudinal stringers and transverse central sup-
port plates were identified from X-ray images and this infor-
mation was introduced into FEA models of spines [327]. 
Additionally, the imaging datasets of various biomaterials 
obtained from CT or μCT are available in online repositories 
such as Digimorph, Morphosource, Gigascience for the use 
of researchers [329] that can use the potential of biomimicry 
to develop their bioinspired products.
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2.5.2  Virtual Qualification of Bioinspired Design Using 
IBSim on Manufactured Parts

The second approach of IBSim in biomimicry makes use 
of the imagining data with high resolution simulations to 
virtually qualify the constructed biomaterial architectures 
[330–332]. The alternative architectures, which are ana-
logues to the real biomaterials in terms of statistical data, 
can be manufactured as a replacement to the original mate-
rial. Because IBSim can be performed non-destructively, 
it provides an opportunity to replicate virtual mechanical 
behaviour of biomaterials under numerous loading condi-
tions on the same sample, an advantage when compared 
to destructive in-situ physical investigations such as time-
resolved μCT [333, 334]. IBSim is used for developing body 

implants and improving their mechanical properties. One 
aim in designing such implants is to reduce weight by uti-
lising their porous architecture while preserving function-
ality [222]. Fig. 35 shows two different cases of artificial 
porous scaffolds designed for a certain area in trabecular 
bone (CAD-based geometry) [335] and a mandible (hybrid 
CAD/image-based geometry) [336]. Porous micro or macro-
structure is a major parameter influencing the mechanical 
properties, such as ultimate strength of implants. A research 
paper reported that customised porous titanium plates were 
manufactured to cover two human skulls having undergone 
trauma or disease [223]. Rigid cell foams are one type of 
porous scaffolds, which are frequently used in bioengineer-
ing applications such as metal bone replacement in ortho-
paedic applications [337], polymeric bones in real vertebra 

Fig. 34   a SEM image of chi-
ton’s armour and b segmented 
X-ray volume; c sketches of 
parametric CAD model; d 
comparison between the CT 
data-based CAD design and the 
segmented 3D volume of the 
actual chiton armour compo-
nents; e virtually buckled FEA 
model of man-made armour; f 
a prototype of chiton-inspired 
armour (reproduced from [313])
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[338], glass–ceramics foam in orbital implants [330], zir-
conia scaffolds in bone tissue engineering [46]. They are 
designed to provide highly similar microstructural environ-
ments for clinical experiments. IBSim, therefore, can help 
to predict the mechanical response of artificial tissues or 
structures in order to prevent potential risks that can occur 
during and post medical operations.

In some biomedical applications, load-bearing tissues, 
such as trabecular bone, are replaced by artificial tissues or 
tissue constructs. μCT-based FEA models were generated 
and the mechanical behaviour was simulated to optimise 
the microstructural design of scaffolds by Jaecques et al. 
[339]. Geometrical parameters of open-porous titanium 
scaffolds with cubic, diagonal and pyramidal designs were 
numerically optimised to reach the elastic properties of 
human cortical bone, where minimum pore size was taken 
into account [220]. A set of scaffolds with high strength, 
stretch-dominated topologies (tetrahedron and octet trusses) 
for bone replacements were fabricated with L-PBF and 
tested to understand the influence of cell topology, pore-
size, volumetric porosity on mechanical strength and bone 
in-growth [337]. The morphological deviations related to 
L-PBF technology was analysed via μCT. Triply periodic 
surface microstructures of Ti6Al4V were manufactured by 
a laser melting process and their mechanical properties were 
investigated with CAD-based and μCT-based FEA mod-
els [340]. These structures are lattices with high porosity, 
promising sufficient load bearing capacity for bone implants. 
Similarly, the mechanical properties of zirconia foams for 

bone tissue engineering was investigated with μCT-based 
FEA models, where noise in μCT images was removed and 
smooth boundaries were applied before construction of 3D 
zirconia foams [46]. The smoothing process retained the 
fabrication-induced pores, though artefact-based voids were 
eliminated. Importantly, it was found that the strength of 
image filtering has a non-negligible effect on the geometry, 
e.g., porous structures, and hence material properties like 
stiffness (Young’s moduli).

Porous scaffolds with different geometrical parameters 
can be produced by various manufacturing methods such 
as AM. Their simulation geometries, obtained from direct 
processing of X-ray images, can be used to search for the 
optimum architecture for cell growth and better mechanical 
performance. Scaffolds can be designed with various exter-
nal geometries and various tortuous internal architectures 
in an idealised CAD environment; however, fabrication pro-
cesses result in discrepancies, such as surface roughness and 
micropores, between the manufactured scaffolds and their 
CAD design [341].

Virtual topological optimisation of scaffolds might use 
IBSim and AM technologies, where voxel-based CAD 
geometries are constructed from 3D image data which are 
processed into STL surface geometries [218]. At this point, 
a topological optimisation algorithm, which considers a 
variety of loads and material parameters such as elasticity 
and plasticity in the design of scaffolds, can be applied to 
discretised CAD-based FEA simulations. The most efficient 
design is then selected to be fabricated with one of the AM 

Fig. 35  Design steps to generate a 3D porous scaffold: a selecting the 
implantable volume zone (or volume of interest), b 3D homogene-
ous model geometry, c inserting porous trabecular bone like scaffold 

[335]; d FEA model of a mandible, scaffold and tissue-engineered 
bone graft implants [222]
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technologies. In order to realise CAD geometries of ultimate 
designs into real-world parts, the CAD models are math-
ematically sliced into set of thin layers.

In order to provide adequate mechanical properties 
to porous scaffolds for biomimetic applications, they can 
be designed and simulated mechanically with CAD, then 
optimised by using AM for experimental characterisation 
to quantify performance parameters such as stiffness and 
permeability [219]. In the same paper, IBSim was used 
for virtual qualification of the manufactured part and com-
pared with the expected values based on the initial CAD-
based design. The focus was on Poly-e-caprolactone-4% 
hydroxyapatite porous scaffolds with various solid volume 
fractions which were numerically generated into voxel-based 
FEA models of scaffolds. Consequently, the FEA models 
were split into dataset of ‘TIFF’ images with higher resolu-
tion that are segmented to create STL scaffolds. STL files 
were then prepared for rapid prototyping of the scaffolds 
with L-PBF. However, the nature of rapid prototyping results 
in differences between the ‘as designed’ and ‘as manufac-
tured’ scaffold geometries [337]. In light of their compari-
sons, architectures of scaffolds were optimised. Steps from 
the design to manufacturing of an optimised porous scaffold 
are explained in Fig. 36, with further details available in the 
original research article [219].

2.5.3  Direct Implementation of IBSim on Source 
Biomaterials

Borah et al. investigated: the roles of μCT and image analy-
sis for a quantitative analysis of trabecular bone architec-
ture; FEA for mechanical behaviour of bone at micro and 
macro-levels; physical replicas from rapid prototyping for 
enhanced visualisation [342]. This allows the researcher to 
understand the effect of bone microstructure on osteoporotic 
fractures [343]. μCT-based IBSim can be directly used for 
quantifying stress and strain analysis in actual bone tissues 
and scaffolds [46]. Performance of scaffolds relies on design 
and characterisation of their microstructure and, therefore, 

μCT is one of the key instruments in the microstructural 
characterisation [344].

To demonstrate the use of IBSim with foam materials, a 
commercial synthetic foam (open-cell) was considered as 
a replacement to human cadaveric bone Synthetic to simu-
late various in-vitro cases for bone infiltration (see Fig. 37) 
[332]. The procedure to be followed is listed as i) μCT 
scanning of the sample materials and saving the images in 
DICOM file format, ii) importing the images in Simpleware 
Software (Synopsys Inc.) and applying a list of postprocess-
ing operations—in particular, noise reduction, smoothing, 
automated segmentation, iii) construction of foam volume, 
iv) Boolean operation to obtain complex flow volume, v) 
meshing the flow volume with tetrahedral elements, vi) 
applying prescribed boundary conditions, inlet flow veloc-
ity, outlet pressure and slip/nonslip boundaries. In another 
similar application of the direct use of IBSim, the peel from 
the Pomelo fruit, which has a foam-like hierarchical micro-
structure, was investigated by analysing image data from in-
situ compression tests [334]. This research was carried out 
to inspire development of novel materials due to their high 
energy absorption efficiency. For inspiration of advanced 
biomimetic hydraulic systems, the flow mechanisms of a 
hydraulic joint in a spider leg was studied with CFD simula-
tions through a commercial software ANSYS Fluent® where 
the flow models were extracted from direct processing of 
3D μCT images and supported with appropriate boundary 
conditions of high-pressure areas such as inlet, joint and 
closed leg ends [345].

A review paper from Jones and Wilcox examined various 
strategies used to develop IBSim FEA models of human spines 
(in particular, vertebra, intervertebral disc and short spinal seg-
ments) [346]. Each model had three major steps: i) verifica-
tion, ii) sensitivity analysis, iii) validation. These models were 
based on direct processing of images. In order to validate the 
IBSim results against the experimental tests requires accurate 
localised material properties rather than the global effective (or 
homogenised) properties which are usually obtained.

Fig. 36  Steps from the design to manufacturing: a  initial and b optimised FEA meshes, c stack of TIFF images, d STL images of the scaffold, 
and e manufactured scaffolds (redrawn from [219])
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Multiple data sets for the same scaffolds at different 
length scales can be achieved with the IBSim approach. 
For instance, the exterior geometry of the scaffold can be 
generated with macro-details, and the interior geometry 
can be represented with microscale architecture [341]. For 
instance, polymeric beads were placed into the solid rods 
of ceramic scaffolds to characterise the effects of these 
defects on their fracture behaviour under uniaxial compres-
sion [347]. The scaffold macrostructure was scanned at 
low-resolution, whereas the rods including artificial defects 
were the region of interest and analysed with CT at a higher 
resolution. With this method, FEA models of segmented CT 
images with sufficiently fine meshes can give an account for 
deformation and fracture behaviour at two scales (micro and 
macroscales).

Permeability of AM scaffolds designed for healing bone 
tissues with defects was investigated through flow IBSim 
models [348]. Air or liquid permeability in accordance 
with flow behaviour relies on major geometrical micro-
structure parameters, for example, total porosity, pore 

shape and sizes, their interconnectivity and abundance 
[349, 350]. Permeability of porous scaffolds depends on 
nano and macrostructures and plays a key role in the bio-
logical performance of the material [350]. Accurate statis-
tical analyses of these microstructure parameters can be 
carried out with IBSim. The permeability coefficients of 
porous scaffolds can be computed with virtual tests using 
CFD simulations of IBSim models in place of their physi-
cal counterparts. Results can be compared with experi-
mental measurements for verification or simple models 
can be verified with analytical or empirical solutions from 
literature. Such investigations on CAD designs and actual 
scaffold geometries manufactured with AM were carried 
out to for skeletal tissue engineering [348]. The pressure 
and velocity fields of the scaffolds were computed using a 
commercial finite-volume based CFD code (Fluent 6.3®) 
for both the CAD and image-based models. The computed 
permeability of IBSim models were found to have a higher 
degree of accuracy than the CAD-based models when com-
pared with the experimental measurements.

Fig. 37  Flow behaviour over porous scaffold geometry directly 
obtained from CT images can be achieved with a list of steps: a stack 
of μCT images, b binarisation and smoothing of the selected volume 
of interest, c 3D reconstruction and segmentation of the structure, d 

Boolean operation over the structural geometry to produce the flow 
domain (i.e., CFD domain), e meshing process of IBSim CFD model, 
f assigning various boundary conditions (inlet velocity, outlet pres-
sure and wall boundary conditions) [332]
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3  Summary, Discussion and Conclusions

This review has set out to report on applications of IBSim 
within HVM. In doing so, discussion of the literature has 
been grouped into application spaces within HVM (and 
subdivided further within those subsections). That is, char-
acterisation of materials and manufacturing techniques, 
quantifying the impact of ‘real’ geometries compared with 
idealised ones, customisation of products, and biomimicry. 
As a ‘first of a kind’ review in this field there was a signifi-
cant volume of literature to consider. As such, the papers 
presented in this work is not an exhaustive list but presents 
important milestones in the adoption of IBSim within HVM.

For the research using IBSim for material characterisa-
tion, these works investigated materials such as composite 
materials (both fibrous and aggregate), AM materials, and 
foams. The feature in common between these material types 
were that they all exhibited non-negligible variations from 
one instance to another, either by design or as a by-product 
of manufacturing processes. They were mostly well-suited 
for XCT imaging, due to a beneficial attenuation contrast to 
facilitate identifying geometric features. Where this does not 
hold true is for fibre composites, where the fibres and matrix 
use either the same or similar material, or AM materials with 
low pore volume fractions. There is ongoing research within 
the imaging field to use methods such as phase contrast CT 
to improve such data [351]. The literature demonstrated 
that the majority of effort is in characterising mechanical 
behaviour or the permeability of materials. The other main 
areas of interest were thermal and electrical conductance. A 
substantial proportion of the work focussed on using RVEs 
or unit cells from a region of interest within the imaged 
material to reduce computational expense.

Understandably there was a significant overlap with areas 
of interest for characterisation of materials. The main dis-
tinction was that efforts using IBSim in this field focussed 
on particular features (e.g., a class of defect) to better under-
stand the cause of their formation. The majority of the fea-
tures of interest (e.g., pores) are inherent by-products of 
the manufacturing methods, whilst others were caused by 
unexpected issues during manufacturing. IBSim is being 
used to better understand what level of these features can be 
tolerated, and in some cases used to improve performance 
(such as surface roughness to increase heat transfer) or to 
improve manufacturing efficiency. Examples were observed 
where artificially induced defects were included to investi-
gate the impact of defects on behaviour in greater detail. 
Of the research observed, many made recommendations 
based on IBSim investigations as to how processes may be 
improved, however, none were found that closed this loop 
by implementing the improvements suggested within their 
own studies.

When considering the applications of IBSim to inves-
tigate the impact of deviations from the ideal on perfor-
mance and on a sector-by-sector basis, literature broadly 
fell into three sectors: medical, energy, and aerospace. It 
was observed that, until recently, IBSim has generally been 
used to investigate material coupons or regions of interest 
within larger components rather than performing IBSim 
analysis of whole components. There is a wealth of litera-
ture using IBSim in the medical sector to investigate aspects 
of the human body (e.g., mechanical behaviour of bone or 
flow through the cardiovascular network). The scope of 
this review was restricted to examples from the medical 
sector, which also included HVM, e.g., the design or use 
of an implant. From the volume of available literature to 
date, it can be observed that this is currently the main sector 
where IBSim is used routinely, and a significant portion of 
this is for patient specific applications (see below). For the 
energy sector, the main area where IBSim has been used 
is in the characterisation of materials in batteries and the 
development of novel materials. There are some examples 
where IBSim is used for NDT/NDE on the component scale, 
however, this approach has not yet reached maturity. For 
the aerospace sector a similar distribution of research was 
observed, i.e., that IBSim is predominantly used for materi-
als or process development, with some examples in compo-
nent scale NDT/NDE.

As noted, where IBSim is used in HVM for biomedi-
cal purposes, a significant proportion of this is patient spe-
cific applications. These applications include healthcare, 
personalised medicine, prosthetics, and orthotics. Avail-
able literature shows how IBSim has been used to design 
implants, plan procedures, and monitor deployment of per-
sonalised products over time. Compared to applications of 
IBSim for HVM in other sectors presented in this review, 
these examples are comparatively mature. There is, how-
ever, still significant potential for further uses, and further 
work is required to achieve acceptance of highly personal-
ised approaches with regulatory bodies. Examples were also 
observed where IBSim was used to personalise or customise 
sport, lifestyle, and automotive products outside biomedi-
cal applications. For example, to improve the efficiency of 
protective sport equipment for an individual or to improve 
the accuracy of digital vehicle crash testing using virtual 
humans from image data.

Stemming from the fact that IBSim has its origins in bio-
medical engineering, it was observed that there was a sig-
nificant volume of research using IBSim for HVM in relation 
to biomimicry and bio-inspired engineering design. These 
works were not only inspired by aspects of the human body, 
but also the natural world. Hundreds of millions of years of 
evolution have generated structures that are highly efficient 
at their given functions. The observed literature demon-
strates that IBSim is enabling researchers to investigate how 
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these organically generated structures perform in a detail not 
previously possible. The work surveyed using IBSim with 
biomaterials broadly fell into three categories:

– Use of 3D image data from biomaterials to inspire engi-
neering designs, which in turn are tested with conven-
tional simulation analysis methods.

– Virtually testing bioinspired parts ‘as manufactured’ to 
gain insight at the microscale.

– Direct implementation of IBSim on source biomaterials 
for a better understanding of their behaviour.

Despite the broad range of application spaces where 
IBSim has been observed to be used within HVM, there 
are a number of commonalities which are noteworthy. 
Firstly, the imaging and simulation methods observed in 
the research were predominantly XCT and FEA or CFD. 
This can be attributed to the fact that this review focuses 
IBSim applications in HVM, i.e., a sector where the use 
of CAD-based FEA/CFD is already commonplace for com-
ponent design, and there is significant year-on-year growth 
of XCT for metrological characterisation. That is, where 
IBSim was observed to be used, the imaging and simulation 
techniques were already being employed and IBSim was a 
method to extract additional value from data that was already 
routinely generated. By combining these commonly used 
methodologies, it is observed that IBSim has been providing 

researchers with improved levels of accuracy with predictive 
simulations that were previously unobtainable.

This observation is broadly supported by the recent 
growth in publications on these topics, see Fig. 38. This data 
was collected from the Scopus database of literature, with 
the searches being restricted to the ‘Engineering’ and ‘Mate-
rials Science’ subject areas and the ‘Article’ document type. 
To account for the general year-on-year growth in published 
research articles, in Fig. 38 (area) the changes are displayed 
as a percentage of the total number of papers published in 
the subject areas in question. The ‘IBSim’ curve in Fig. 38 
(line) is given as the absolute number of articles published. 
Data for 2021–2028 are extrapolated using a  3rd order poly-
nomial. The search terms used were:

• Numerical Simulation = “numerical simulation” OR 
“computational engineering”.

• Tomography = “tomography”.
• Both = (“numerical simulation” OR “computational engi-

neering”) AND “tomography”.
• Others = The remaining articles published in the ‘Engi-

neering’ and ‘Materials Science’ subject areas.
• IBSim = ‘Both’ search terms OR “image-based simula-

tion” OR “image-based modelling”.

By combining these commonly used methodologies, it 
is observed that IBSim has been providing researchers with 

Fig. 38  Change in publications by year: (area) as a percentage of the 
total publications considered; (line) absolute number. The area data 
was found using the search terms (“numerical simulation” OR “com-
putational engineering”); (“tomography”); ‘Both’ denotes, the cross-
over of these two search terms. The line data was found using the 
search term ‘(tomography AND “computational engineering”) OR 

(tomography AND “numerical simulation”) OR (“image-based simu-
lation” OR “image-based modelling”)’. Data collected from Scopus 
whilst restricting the search to the ‘Engineering’ and ‘Materials Sci-
ence’ subject areas and the ‘Article’ document type. Data for 2021-
2028 are extrapolated using a  3rd order polynomial
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improved levels of accuracy with predictive simulations that 
were previously unobtainable.

There were also some caveats, limitations and chal-
lenges that were common to many studies. The availability 
of simulation geometries at newly achievable resolutions in 
particular brought a set of challenges for consideration. A 
major one of these is which material properties should be 
used and how to collect these. This is because simulations, 
such as FEA, conventionally treat materials as homogeneous 
and thus use experimental data that is typically collected on 
macroscale samples, whereas those material properties do 
not necessarily hold true on the microscale. Additionally, 
simulations performed on the same size of component, but 
at a significantly higher resolution (i.e., including micro-
features within macro-models), increases the computational 
demands both in terms of solving the equations and visu-
alising the results. For a typical FEA analyst, CAD-based 
simulations are mostly carried out using desktop PCs which 
have higher power hardware that those used for conventional 
office work. However, these are only moderately powered 
relative to high-end workstations available on the market 
and significantly less powerful than supercomputing facili-
ties. On these types of machines, the lack of available RAM 
and computing power can make it unfeasibly slow or, at 
worst, impossible to perform IBSim research [352]. Another 
recurring theme was that simulation results were highly sen-
sitive to image quality and the associated post-processing 
of images. A significant factor in this is variability between 
imaging systems (even of the same type) and the subjectiv-
ity of operators.

Based on the observed literature, the reported benefits in 
applying IBSim within HVM for virtual testing can broadly 
be categorised as follows:

– Can use to accurately replicate laboratory experiments 
for a direct comparison of results. This is beneficial to 
facilitate validation of numerical models or to gain addi-
tional insight to experimental results. That is, experimen-
tal results tend to give the overall global response (or 
sparse local data), whereas it is possible to investigate 
local response through the full volume with IBSim.

– Can perform virtual tests not possible experimentally. 
This can be of benefit to perform a simplified experiment 
which more rapidly measures the feature of interest (e.g., 
applying a thermal gradient across a volume to measure 
effective thermal conductivity) or to apply conditions 
that would be too difficult to apply in a laboratory (e.g., 
extreme loads). Similarly, laboratory tests are often set 
up to approximate in-service conditions, whereas these 
can be applied directly to the real geometry with IBSim 
without the constraints of a lab.

– Can perform a series of virtual destructive tests on the 
exact same sample to remove variability of geometry 

(and the consequential variability on results). Similarly, 
if sufficient computing power is available, many virtual 
tests can be run in parallel to accelerate the generation 
of data without the requirement to buy duplicate testing 
hardware.

The majority of research published in peer review jour-
nals using IBSim applies the technique to coupon scale 
samples or RVEs. Alternatively, the research uses a hybrid 
CAD+IBSim approach where IBSim is used to investigate 
a region of interest, or a component is designed by CAD 
to conform to an image-based geometry of the object with 
which it is to interact. Comparatively, there is very little 
literature on component scale modelling done purely with 
IBSim. Although it is difficult to directly demonstrate cau-
sality, it is the authors’ opinion this can be attributed to a 
few different factors. For example, a highly detailed IBSim 
model can be many orders of magnitude more computa-
tionally expensive than a CAD-based equivalent, leading 
to requiring national-level high-performance computing 
facilities to which not all researchers readily have available 
access. Smaller scale ROI or RVE models can be used to 
mitigate this issue. Imaging full scale components, then, has 
two associated challenges. Firstly, as the size of the com-
ponent increases, the level of achievable resolution often 
reduces. This could mean that the micro-scale features of 
interest which have a non-negligible impact on the compo-
nent performance might not be resolvable in a volumetric 
image of the whole component. Secondly, for techniques 
like XCT, larger components lead to higher signal attenu-
ation. If the component is sufficiently large it could mean 
that volumetric imaging is no longer possible with the same 
equipment. Despite this, it is known to the authors that there 
is an appreciable amount of R&D activity occurring within 
the industrial sector which utilises IBSim for component 
scale modelling. Unfortunately, this work is considered valu-
able intellectual property and therefore not published in peer 
review journals.

Another point noted concerning the current state of IBSim 
literature is that none reported implementing the improve-
ments suggested by their own studies. Due to the detrimen-
tal influences of different defect types within HVM, there 
is a strong need for defects to be minimised or mitigated 
by quality control (e.g., ensuring clean material feedstock 
to limit inclusions, ensuring a stable manufacturing process, 
etc.) or by process optimisation (adjusting process parameters 
e.g., power or scan speed, etc.). The extent to which this pro-
cess optimisation is required depends on the strength of the 
influence, i.e., what is the effect of the defect exactly on the 
mechanical performance, and what is the expected mechani-
cal performance of the part? This is where IBSim can be 
useful in combination with experimental work, to reveal for 
a specific material, geometry, and combination of defects, 
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what the influence is on the mechanical properties and evalu-
ate whether this is acceptable or not. This is further possible 
not only for improving manufacturing processes, but also for 
evaluating post-processing and wear or degradation after use. 
Post processing of metal parts often include heat treatment, 
machining, and sometimes more advanced processes such as 
hot isostatic pressing, which improves the microstructure and 
closes porosity, resulting in improved mechanical properties 
[353, 354]. IBSim may be used to evaluate the size of pores 
or other defects after processing or due to degradation of the 
material and evaluate the effect of the defect on the expected 
performance of the part. For IBSim to demonstrate its true 
value it is important that future work is published reporting 
measured benefits gained rather than only potential ones.

Finally, it is worth noting that a significant proportion of 
the research in the literature using IBSim does so within the 
highly regulated medical and aerospace sectors (see following 
sub-section for more details). These sectors are, understand-
ably, known as being risk averse, however, they are also known 
for being pioneers of new technology. For IBSim, having a 
growing body of work from within these sectors should lead to 
increased confidence as the technique matures, which will sup-
port wider adoption in other regulated sectors such as energy.

3.1  Future Trends

In this section, the authors present developments in associ-
ated fields of research and discuss how these could have 
a direct impact on the future use of IBSim. These are 
divided into developments which might bring about evo-
lutionary and revolutionary changes presented in their own 
sub-sub-sections.

3.1.1  Evolutionary Changes

The easily predictable evolutionary advancements are those 
associated with improvements in hardware (both imag-
ing and computational) and software, which are continu-
ally being gradually improved and are included in publicly 
available manufacturer development roadmaps. For exam-
ple, manufacturers of imaging apparatus regularly release 
new versions that produce data with a higher resolution or 
improved image quality (e.g., reduced noise). This is obvi-
ously beneficial for producing more detailed volumetric 
images, or images at the same resolution, but producing 
results with a greater level of confidence. A by-product of 
these improvements is the ability to perform faster imag-
ing for a higher throughput, something of great value to 
researchers using time-resolved imaging. For XCT in par-
ticular, a development of value for HVM is the availability 
of X-ray sources capable of higher energies. This is allow-
ing researchers to image larger components or those made 
from materials that are high attenuators of X-rays. Similarly, 

computing hardware is constantly improving, allowing 
processing at faster rates and for larger datasets, both for 
imaging and simulation algorithms. Furthermore, there is 
ongoing research into improving algorithms for more effi-
ciently utilising computational hardware (e.g., better paral-
lelism including use of GPUs). Furthermore, algorithms are 
being developed to bring additional benefits, e.g., reduced 
artefacts during image reconstruction or higher simulation 
accuracies with adaptive meshing. There is also research 
into a method to convert 2D image projections directly into 
FEA meshes [355], which would remove the need for many 
of the interim workflow stages. The limitations caused by 
computational expense was mentioned in a significant pro-
portion of papers as a factor leading to the choice to investi-
gate ROIs. As already noted, this review has identified that 
IBSim is currently only being used in a limited way on the 
component-scale. The authors of this review believe there 
will be a significant shift towards more activity on the com-
ponent scale through wider availability of higher power XCT 
devices and further improvements in computing power.

Other potential evolutional developments of IBSim are 
related to the way in which the techniques that are part of 
the workflow are being implemented within the HVM sec-
tor. For example, FEA is now a common tool in HVM, and, 
therefore, a set of ‘best practices’ have developed within the 
community that uses them, which are often formalised as 
international standards, e.g., in aerospace [356]. Since the 
use of advanced imaging techniques such as XCT in HVM 
is a relatively recent addition, the standards surrounding the 
methodologies are still in their infancy. As these mature this 
will facilitate repeatability in results, both in the individual 
method and for IBSim that combines them. It is important for 
the acceptance of IBSim within HVM that there is industry-
level confidence in each of the workflow components.

It is also important to consider the apparent conflict in 
requirements between regulation and personalisation. For 
example, in personalised medicine, when the Federal Food, 
Drug, and Cosmetic Act (FDA) was passed in 1938, the 
term “Personalised Medicine” had not yet been coined. The 
standards for FDA approval for regulating medical devices 
(including laboratory tests) were established for traditional 
products in 1976, but the complexities associated with 
obtaining approvals for personalised medical products 
have since proved challenging. This echoes the challenges 
also seen in other highly regulated sectors, e.g., aerospace, 
whereby ‘designs codes’ and standards exist with the aim 
of ensuring a predictable performance through prescribed 
approaches (i.e., constraints) in design and manufacturing. 
This is in stark contrast to the approach of IBSim, which 
is to yield the same level of performance prediction whilst 
allowing design freedom.

At the core of precision medicine lies diagnostic tests and 
devices, but the regulatory classification of such products 
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varies globally [357, 358]. Each regulatory agency has a 
clearly defined definition of what constitutes a custom-made 
device (CMD) or personalised medical device (PMD). For 
example, in the UK, any mass-produced device adapted 
to specific patient requirements post-production does not 
fall under the UK Medical Device Regulation definition 
for CMDs (e.g., optical glasses, patient-fitted wheelchairs, 
hearing aids and orthotic braces). Furthermore, it excludes 
mass-produced devices manufactured via industrial pro-
cesses, even if produced according to written prescriptions 
[359]. The European Medical Device Coordination Group 
(MDCG) have also ensured that the manufacturers are solely 
accountable for patient-matched devices in terms of design, 
safety, performance and regulatory compliance [360].

The primary issues of these regulatory agencies involved 
concerns as to whether patients should be able to purchase 
and use unapproved or unregulated tests; and whether man-
ufacturers can be trusted to market tests that conform to 
standards for safety and efficacy if the process of regulating 
these tests is too slow and expensive. Navigating these con-
voluted regulatory pathways can be challenging, and whilst 
the guidance for CMDs has improved these past few years, 
the regulation regarding a completely personalised part is 
currently impeded by incoherence between policymakers 
and regulators [361]. New regulatory reforms, however, spe-
cific to CMD’s (e.g., Software as a Medical Device (SaMD), 
PMDs and Medical Device Production Systems (MDPS)) 
are beginning to form, which highlights that these changes 
are occurring, albeit slowly [357]. A similar response is 
being observed in other sectors.

The final way in which IBSim is evolving is the applica-
tion space in which it is being used, that is, the products 
being manufactured that are driving a demand for advanced 
characterisation methods with increased accuracy. A con-
tinual desire to produce more efficient products is bring-
ing about the use of increasingly advanced materials with 
complex behaviours using novel manufacturing methods. In 
addition to this there is an increasing demand for personali-
sation of products. The combination of these factors presents 
an increasing stream of new opportunities where there exists 
a significant variation from part to part, or for those which 
are unique.

This review has shown that IBSim is ideally suited to 
this, and it has been found to play a critical part in obtaining 
patient- or subject- specific 3D geometry, where the ability 
to run multiple simulations that closely mimic the in-vivo 
response of the human body, or of a real-life scenario, are 
invaluable. The continued advancement and availability 
of imaging techniques, coupled with open access software 
and AM, will further enhance research and, subsequently, 
products in these areas. The personalisation fulfilment is, 
therefore, slowly leading to machine learning-driven intel-
ligent configuration, and Industry 4.0-driven on-demand 

production, sometimes using manufacturing-as-a-service 
or 3D printing.

3.1.2  Revolutionary Changes

The prediction of revolutionary advancements in any tech-
nology is inherently more challenging; however, machine 
learning (ML) is one such disruptive technique that has been 
noticeably transforming most scientific fields over the past 
decade. There is much recent research with relevance to 
IBSim. In imaging, for example, optimising imaging setup 
[362] and the reconstruction of volumetric images [363] 
to improve scanning speed and image quality by orders of 
magnitude. Machine learning is proving to be well-suited to 
automate tasks. For example, automation of image segmen-
tation not only speeds up this section of the workflow by 
orders of magnitude, but, for the first time, generates repro-
ducible results [364, 365]. For simulations, IBSim offers the 
potential of actual ‘digital twins’, whereby each manufac-
tured part has a digital equivalent capable of providing real 
time feedback for an in-service product. This is challenging 
for conventional CAD-based simulations and even more so 
for IBSim using FEA models. However, ML is being used 
to produce FEA surrogate models capable of making predic-
tions in a fraction of the time of a full simulation [366]. A 
recent paper by Ezhov et al. proposed an AI system based on 
deep learning methods for dental diagnosis with CBCT. The 
AI system was found to significantly improve the diagnostic 
capabilities of dentists and has the potential to augment the 
dentists’ routine clinical practice [367]. The full realisation 
of these applications of ML will transform the potential of 
IBSim from being a technique requiring significant resource 
to use, preserved for the most well-equipped laboratories, 
to one that could be commonplace in a smart factory of the 
future.

A technological advancement that offers a significant 
opportunity for IBSim is augmented reality (AR). In the 
modern, highly competitive manufacturing environment, the 
application of AR consists of an innovative and effective 
solution to simulate, assist, and improve the manufacturing 
and maintenance processes. Today, a growing number of 
applications based on AR solutions are being developed for 
industrial purpose. A systematic review by Baroroh et al. 
reported on recent AR applications in smart manufactur-
ing from a human–machine interaction perspective [368]. 
In another review, Bottani et al. reviewed the literature from 
2006 to 2017 to identify the main areas and sectors where 
AR is currently deployed, describe the technological solu-
tions adopted, as well as the main benefits achievable with 
this kind of technology [369]. In particular examples, 3D 
scanning is being used in conjunction with AR, for example, 
to simulate virtual ‘try-on’ technology, where fit and size 
issues of mass customised men’s jackets have been explored 
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using 3D body scanning and 3D virtual simulation tech-
nology [370]. AR-based design customization of footwear 
for children is also widely documented [371]. Presently, the 
combining of this with detailed IBSim is likely to be too 
computationally challenging, however, using this technol-
ogy alongside ML surrogate IBSim models could allow 
real-time feedback to the user (which could be human, or 
an AI-driven robot) that predicts the outcome of a rapidly 
developing situation, e.g., during layup of fibre laminates in 
composite manufacturing.

Another field that may bring transformative change is the 
introduction of novel imaging techniques able to generate 
rich image data which includes additional information about 
the material within the sample, analogous to imaging with 
backscattered electrons, energy dispersive spectroscopy, and 
secondary electrons in SEM. Not only do these methods 
promise to yield information sufficient to generate volu-
metric maps of material types, but provide additional infor-
mation such as the material’s phase, their stress state, and 
porosity of sizes lower than the image resolution [372–376], 
all of which can be used to greatly enhance the predictive 
capability of IBSim.

The use of IBSim within HVM emerged in the early 
2000s but exhibited a low rate of growth during that first 
decade. During the 2010s, there was wider use within aca-
demia across a broad range of research fields, coinciding 
with wider availability of volumetric imaging hardware. The 
authors of this review confidently believe that IBSim will 
enjoy widespread growth within the industrial sector during 
the 2020s and become an invaluable NDT/NDE method as 
part of the prevalence of Industry 4.0.
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