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Standard detection and analysis techniques for transient gravitational waves make the assumption that
detector data contains, at most, one signal at any time. As detectors improve in sensitivity, this assumption
will no longer be valid. In this paper we examine how current search techniques for transient gravitational
waves will behave under the presence of more than one signal. We perform searches on simulated data sets
containing time-overlapping compact binary coalescences. This includes a modeled matched filter search
(PyCBC) and an unmodeled coherent search, coherent WaveBurst (cWB). Both of these searches are used by
the LIGO-Virgo-KAGRA collaboration [1]. We find that both searches are capable of identifying both
signals correctly when the signals are dissimilar in merger time, jΔtcj ≥ 1 s, with PyCBC missing only 1%
of the overlapping binary black hole mergers it was provided. Both pipelines can find signal pairings within
the region jΔtcj < 1 s. However, clustering routines in the pipelines will cause only one of the two signals
to be recovered, as such, the efficiency is reduced. Within this region, we find that cWB can identify both
signals. We also find that matched filter searches can be modified to provide estimates of the correct
parameters for each signal.

DOI: 10.1103/PhysRevD.106.104045

I. INTRODUCTION

In 2015 the Advanced Laser Interferometer Gravitational-
Wave Observatory (aLIGO) interferometers observed the
merger of two black holes [2]. Since then, there have been
over 90 transient gravitationalwaves observed [1,3]. The rate
of these mergers is given by the rate of gravitational wave
from astrophysical sources and the observing range of the
detector. As the current network of detectors are improved
[4–8], and future detectors such as theEinsteinTelescope [9]
andCosmic Explorer [10] begin observations, this observing
range will significantly increase. This will lead to multiple
transient signals being present in the detector concurrently,
most likely before the end of the decade [11], with most
transient signals overlapping another in the next generation
of observatories.

Previous investigations into the case of time-overlapping
compact binary coalescences (CBCs) have focused on how
parameter estimation techniques will perform. Their find-
ings indicate that the parameters of modeled signals should
be recoverable, unless the two signals overlap strongly with
a small relative merger time [11–15]. This is stronger if the
signals have similar signal-to-noise ratios (SNRs) [11], or
chirp masses, mostly due to similar frequencies in the
signals [13]. In the case where overlapping astrophysical
signals are misidentified as a single signal, the data will be
passed on to these parameter estimation methods. As these
methods aim to minimize their residuals, it is possible that
the overlap would not be noticed. Any resulting oddities
would likely be attributed to other causes such as glitches,
precession, or eccentricity [16–18].
Current methods of gravitational wave detection rely

upon the assumption that only a single signal is present
in the detector and, in most algorithms, that this signal
can be matched to modeled signal waveforms. As this
assumption will break for time-overlapping transients, we
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have investigated how current search pipelines will behave
in their presence.
Our investigation was performed by injecting pairs of

overlapping CBCs into the colored-Gaussian noise of a
three detector, LIGO-Virgo, network [6,19]. We then
performed an off-line search of these data sets using a
modeled search, PyCBC [20–25], and an unmodeled search,
cWB [26,27]. We investigated how the parameters of the
signal pairings affected whether the signals were detected
and how accurate the recovered parameters of those
signals were.
Section II outlines how the data were generated and how

each search works. Section III covers the findings of how
signal pairings were detected and the effect of the overlap
on recovered parameters. Section IV shows how these
search methods could lead to successful overlap identi-
fication and separation. Section V contains a summary of
our findings, followed by an Appendix.

II. METHOD

A. Overview

For this study we consider two types of CBCs, binary
black hole mergers (BBH) and binary neutron star mergers
(BNS). Our main interest in including these two forms
of signal was to see how current search methods behave
under the presence of overlapping CBCs of different visible
durations and frequency profiles.We did not include neutron
star-black hole merger signals, which should have similar
observable durations [28] to low mass BBH signals, as these
events are rare and less relevant to this study. Their presence
in overlaps should be considered in future studies. We also
did not include tidal deformability in the BNS signals, as it
should have little effect on the length and frequency of the
signal [29]. Three separate investigationswere performed for
this study, each examining one of three combinations ofCBC
overlap: BBHþ BBH, BNSþ BNS, and BNSþ BBH.

B. Data generation

Each investigation in this study included generating ten
days of colored-Gaussian noise for a three detector net-
work. This length of time was chosen to give a reasonable
estimate of false alarm rate of significant signals and to
allow a reasonable number of events to be studied. The
detectors were added as two advanced LIGO detectors at
design specification in the locations of LIGO-Hanford and
LIGO-Livingston [19,30] and a third detector with an
Advanced Virgo sensitivity in the position of Virgo [6].
For each of the three studies mentioned in Sec. II A

we made three injection sets. The first two only included
individual nonoverlapping signals from the pairings,
labeled as SINGLESA and SINGLESB. This provides
comparison data to see whether each signal is detectable
alone. The final injection set, labeled as PAIRS, contained
both Signal A and Signal B as time-overlapping pairs.

Signals were injected into the data internally in each
search pipeline. BBH signals were generated using the
SEOBNRv4PHM approximant [31] to allow for the inclu-
sion of spin precession and higher modes. BNS signals
were generated with the SEOBNRv4 [32] approximant;
this only allows for aligned spin and does not include
neutron star tidal deformability.
With the exception of merger time, the extrinsic param-

eters of both Signal A and B were drawn from uniform
distributions in sky locations, phase, polarization, and
binary inclination. Each signal was generated from 9 Hz,
just below the noise cutoff of 10 Hz, to avoid disconti-
nuities in the data. Further details of intrinsic parameters,
merger times, and luminosity distances are given in the
subsections below.
This distribution is designed to be as close to a true

astrophysical distribution but to also allow reasonable study
of possible overlapping CBC cases. As such, our study is
aimed at the methodology of the pipelines and not at
providing an astrophysical study of such events.

1. Masses and spins

The masses of the two objects in a binary were drawn in
pairs. BBH mass pairings were drawn from the most recent
binary mass distribution estimation by the LIGO-Virgo
collaboration. The chosen mass distribution was the
PowerLawþ Peak distribution covering primary masses
in the range ½5; 100� M⊙ and mass ratios in the range
[0.1, 1] [33]. As the detectors have some bias as to the
events they will detect, we included a biasing factor on the
mass distribution. Using the power spectral density (PSD)
of the advanced LIGO detectors [30], and the inspiral-
range PYTHON package [34,35], we estimated viewing
ranges for each binary pairing in the mass distribution grid.
These distance estimates were used to generate volume
estimates and were then multiplied by the per volume
merger rate to estimate a true merger rate of each signal.
This was then normalized to produce a weighted distribu-
tion to bias the astrophysical merger rates, by mass, to the
observable merger rate. This produces binaries with more
even mass ratios and higher masses, as is expected in these
detectors.
The neutron star (NS) binary mass range is still an area

of active research [33,36], with observed and predicted
maximum NS masses differing [37,38]. As such, for BNS
mergers we defined a mass range of ½1.14; 3� M⊙ and drew
uniformly across this. This is broadly consistent with both
gravitational wave and electromagnetic observations. No
mass distribution biasing was performed due to the smaller
luminosity distances drawn for these binaries.
BBH spins were drawn from the spin distributions

estimated by the PowerLawþ Peak mass model from the
most recent estimates by the LIGO-Virgo collaboration
[33]. This includes both aligned and in-plane spins
with azimuthal orientations between ½−π

2
; π
2
�, polar angles
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between ½0; 2π�, and magnitudes ranging between [0, 0.99]
in dimensionless magnitude. Parameter estimation on time-
overlapping signals has shown that highly overlapping
pairs can mimic precession effects in the waveform [11], so
it is interesting to consider how well searches will observe
such events. Spins were drawn independently of binary
masses. BNS signals were given aligned only spins with
magnitude range ½−0.05; 0.05�, based on observations of
BNS systems [16,39,40].

2. Distances and times

The distance of events was drawn from a second-order
power law between [200, 1300] Mpc for BBH systems and
[5, 200] Mpc for BNS systems. These values were set to
ensure a reasonable number of visible events in the
injection sets, without too many events being too quiet
to observe, SNR < 5, or overwhelmingly loud, SNR > 50.
These ranges are broadly consistent with observations in
current detectors [1]. While redshift does have an effect at
these distances, it will not change any conclusions drawn
from this study and therefore was not included in these
injections. For consistency, all detector frame masses are
identical to the source frame masses.
The merger times of Signal A events were drawn

uniformly across the ten days of simulated data. To avoid
overlaps of Nsignals > 2, these times were spaced out within
this data set such that no mergers were within 60 seconds
of the start of when the next pairing reached 10 Hz. The
merger times of Signal B events were then selected by
generating a waveform for each Signal A, calculating the
time of first visibility at 10 Hz and that of the merger, and
drawing a time uniformly between these values. To ensure
observations of close relative merger times, some pairings
in the BNSþ BNS and BNSþ BBH runs, the times were
drawn within two seconds of the merger. The BNS studies
with narrower merger time separations were performed as
a separate ten day segment, which does not affect the
estimated false alarm rates in those runs.
As lower mass signals, such as BNS inspirals, are in-

band in the detector for much longer than lower mass BBH
signals, this leads to many fewer signals in the BNS study.
However, we did not increase the length of the BNS studies
beyond ten days as this would have drastically increased
the computational expense.

C. Searches

1. PyCBC search

PyCBC is a matched-filter search pipeline for the detection
of CBC signals in a wide parameter space [3,20–25]. The
triggers are generated in coincidence with the network of
detectors by correlating the data with templates. The bank
of templates used in this study is exactly the same as the
one used for PyCBC-broad in GWTC-3 [1]. In this work we
have employed a slightly modified version of PyCBC-broad,

which was used for the GWTC-3 catalog [1]. These
modifications were made in order to accommodate the
complexity induced in the signal space due to time overlap.
In particular, for this work the “clustering window” of the
PyCBC search is modified. This is discussed in more detail
in Sec. II D.
Background estimates are generated by time shifting the

data of the three detectors by more than the time of flight
between the detectors, and a background trigger list is
obtained. This process is repeated until enough events are
acquired to measure a false alarm rate (FAR) of 1 per year
(1 yr−1). The injections are then processed and ranked
according to the background. This process is same for both
the pipelines used in this study, however, the detection
statistics between the two pipelines are very different.

PyCBC uses detection statistics based on the matched-
filter SNR, with information about the event rate and the
background rate incorporated as described in [3,41].

2. cWB search

cWB is an unmodeled analysis pipeline which detects
and reconstructs gravitational wave (GW) signals without
assuming any waveform model [26,27,42]. cWB decom-
poses each interferometer data into a time-frequency (TF)
representation using Wilson-Daubechies-Meyer wavelets
[43]. Each wavelet amplitude is normalized by the corre-
sponding detector amplitude spectral density; cWB then
selects those wavelets having energy above a fixed thresh-
old. Finally, clusters from different detectors are combined
coherently into a likelihood function, which is maximized
with respect to the sky location.
From the likelihood we define the statistical quantities

to distinguish between a possible GW signal and glitches
coming from the noise. The first being the coherent energy
Ec, which represents the coherent contribution of the
likelihood by cross-correlating data from different detec-
tors. Another key statistic is the null, or residual, noise
energy En, which is given by subtracting the likelihood
from the whitened data energy.
From coherent and null energy we can define two further

quantities. The first is the penalty χ2, defined as the null
energy divided by the number of independent wavelet
amplitudes used for describing the detected event. The
second is the correlation coefficient cc:

cc ¼
jEcj

jEcj þ En
: ð1Þ

This estimates the coherence of the data among different
detectors: when cc ≃ 1 (jEcj ≫ En) there is a high coher-
ence, and it is likely that there is an astrophysical signal,
while when cc ≃ 0 (En ≫ jEcj) the data is incoherent and
so is less likely to contain an astrophysical signal.
The correlation coefficient and the penalty are used in

postproduction analysis for recognizing non-Gaussian
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noise transients, commonly referred to as “glitches,” which
could trigger the pipeline, even if they are not GW events.
In this work we applied the same cuts used for O3 analysis,
these are cc > 0.7 and log10ðχ2Þ < 0.2 [1].

D. Finding signals

Once the searches were performed, trigger sets were
recovered for each of the three injection sets in each run.
Injections were marked as found if there was a trigger found
in the trigger sets within a defined time separation at merger.
These separations differed between the two pipelines.
As a matched filter search, PyCBC returns a time for each

trigger that corresponds to the visible end of the signal in
the data. This was directly matched to the injected signals
merger time. If the injected signal had a PyCBC trigger with
an end time in the range �0.1 seconds, then the injection
was counted as found by the pipeline.
A slight problem arises for signal pairings in which the

mergers are within �0.1 seconds. PyCBC often finds that
several templates match the same signal, particularly for
significant triggers. To avoid this a clustering window is
specified for the run. This window, set to�1 second for our
study, will reject all but the most significant trigger within
the window. If signals overlap in this region, then only one
trigger will be returned for the pairing. This situation is
covered in more detail in Sec. III B.

cWB’s approach of searching for regions of excess power
requires a different approach. The standard returned time is
the mean time, weighted with energy, but for this study it
is more suitable to use the end time of the reconstructed
waveform as estimated by cWB. This allows for the
reconstructed waveforms to be counted correctly. Initial
applications of the PyCBC time constraints led to a large
number of triggered injections being rejected. A window
for signal finding of injected/reconstructed signal end time
was set to �2.5 seconds. This time allows for the best
recovery rate of cWB triggers, without missing separate
signal pairings.

III. RESULTS

A. Bias regions for overlapping signals

Previous studies of time-overlapping CBCs have focused
on their effect on the parameter estimation of the under-
lying signals [11–15]. By considering the findings of these
studies, we define three regions in which the presence of
a second signal affects the recovered parameters of the
primary signal:
Strong bias.—This is the region in which the two signals

most strongly affect each other; recovered parameters will
be significantly biased away from their true values. Largely
this is bound by the separation of merger times between
the signals. This boundary is not consistent between all
studies; to be conservative, we define this as a merger time
separation of jΔtcj ≤ 0.5 s for BBHþ BBH overlaps.

However, some studies [13,15] indicate that the similar
region for BNSþ BNS overlaps is closer at jΔtcj ≤ 0.01 s.
The literature has not defined any such value for BNSþ
BBH overlaps; for this study we have applied boundaries to
be the same as BNSþ BNS overlaps. This region is
smaller, likely due to the number of clean cycles in the
later merging BNS, due to their high merger frequency,
unlike BBH mergers which merge at lower frequency.
Weak bias.—In this region signals are often recovered

with slightly biased, but broadly correct, parameters.
Considering the literature we define this region as
0.5 < jΔtcj ≤ 2 s, with the lower limit varying for overlaps
containing a BNS merger.
Negligible bias.—In this region the signals are dissimilar

enough to not cause any noticeable bias in the recovered
parameters. Pairings in this region should both be recov-
ered. The bias in one signal, caused by the presence of the
other, should be small enough to not negatively impact
the results. We define this region to be for merger time
separations of jΔtcj > 2 s.
Parameter estimation studies also indicate that the bias

will be negligible if the ratio of the SNRs of the signals is
particularly uneven, one signal being at least greater than
three times louder than the other [11]. Pairings in this
category are likely to fall into the negligible bias region,
regardless of merger time proximity. Some indication of
relative chirp mass, and therefore waveform frequency
range, is likely to also have an effect [13]. If signals differ
significantly in chirp massM, then the bias may be smaller
as the signals are dissimilar in frequency at merger. While
we include signal overlaps of differing chirp mass in the
study, we do not examine how this effect is present in
trigger selection.
Table I shows estimated numbers of events falling within

each of the bias regions, defined above, over a year’s
observation of the Einstein Telescope (ET) [9]. These
numbers were estimated by calculating the visible volume
for a variety of different mass CBCs as described in [11],
using the inspiral-range PYTHON package [34,35],

TABLE I. Estimated number of signals occurring for different
CBC overlap configurations in a year’s observations of the
Einstein Telescope. The first column, Nevents, is an estimate of
the total number of single signal events, of that kind, that the
Einstein Telescope would expect to see in the year’s observation.
For the BNSþ BBH row this is the expected number of BBHs
rather than the number of BNSs. The other columns represent the
predicted number of overlaps of this kind in each bias region.

NOverlaps by region

Overlap configuration Strong Weak Negligible

BBHþ BBH 5.6þ9.1
−3.3 17.0þ27.0

−9.8 13000.0þ8300.0
−4900.0

BNSþ BNS 0.13þ0.71
−0.12 26.0þ140.0

−25.0 14000.0þ22000.0
−11000.0

BNSþ BBH 0.11þ0.18
−0.07 22.0þ36.0

−13.0 13000.0þ8300.0
−4800.0
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and a PSD for the ET [44]. The viewing time for each
signal, in the negligible bias region, was estimated from
1 Hz to the time of merger. Signals in the strong and weak
bias regions were fixed to the durations described above,
merger time separations of 0.1 s and 2 s, respectively, for
BBH signals. For a more detailed explanation of this
method see Sec. II-B of [11].
From the numbers in Table I it is clear that, despite the

strong and weak regions being the most cause for concern,
only a very small fraction of events will fall in this region.
By far the dominant case is the negligible bias region, into
which all signals in these detectors should fall.

B. Injection studies

1. BBH +BBH overlaps

Table II contains values of the number of injected and
recovered signals in each injection set in both PyCBC and
cWB. As can be seen, in PyCBC, the vast majority, close to
80%, of injected nonoverlapping signals were recovered by
any trigger. The other 20% were largely missed due to the
signals having low network SNRs, ≲12, or being in less
sensitive sky locations for the network. However, another
15% are removed once a FAR threshold of <1 yr−1 is
applied; these could be true astrophysical signals but are

rejected due to poor significance. This is an artefact of the
injected distribution to provide a reasonable number of
detectable events.
As expected [33], cWB is less sensitive, with respect to

modeled searches, for this range of masses. The missed
signals here are largely low mass CBCs, M≲ 15 M⊙, in
which the majority of the SNR comes from the inspiral,
which is difficult for cWB to recover. As expected, if the
injections are present in the template bank of the matched
filter search, then the unmodeled method will always be
less optimal than the matched filter searches. This is the
case here since our injections have source parameters,
which are well described by the template bank.
Figure 1 shows bar charts for the percentage of injections

that were found by a trigger in each pipeline in the PAIRS
injection set. As expected the pipelines perform reasonably
well in the negligible bias region, with the majority of
signals found in PyCBC. For both pipelines, in this region,
the number of injections found matches the findings in the
SINGLES injections. There is some decrease in the fraction
successfully caught when moving to the weak and strong
bias regions.
Inside the strong bias region for PyCBC, and some of the

weak region for cWB, some of the injections are both found
in the same trigger. This means that they are counted twice.

TABLE II. Injected and recovered individual overlapping signals in different injection sets and search pipelines.
Here the two signals in a pairing are both BBH mergers. The SINGLES column here is the union of the results from
both SINGLESA and SINGLESB data sets. The FAR threshold of <1 yr−1 means that, in a years observation, fewer
than one event of this kind will occur due to statistical fluctuations in the noise. This is a fairly typical cut for
assuring an event is astrophysical. The total column is for all events, without the threshold.

PyCBC cWB

BBHþ BBH Injected SINGLES PAIRS SINGLES PAIRS

Total Counts 13172 10454 9818 6885 5634
Percentage � � � 79.37% 74.54% 52.27% 42.77%

FAR < 1 yr−1 Counts 13172 8436 7947 6883 5310
Percentage � � � 64.04% 60.33% 52.25% 40.31%

FIG. 1. Bar charts for the found injections in both pipelines in the different overlap bias regions. Each region has four bars, split into
two for each pipeline. These show the percentage injections in which the pipeline found a trigger. The “unique” column shows the
percentage of unique triggers, i.e. if both signals are found by the same trigger, then they are only counted once. The shaded segments
show injections recovered at a FAR threshold of < 1 yr−1. The data here is for the BBHþ BBH injection sets.
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To show this we have added extra bars for each search, in
which we have removed duplicated triggers here. This is an
effect of the criteria we have applied to decide if an
injection is found. See Sec. II D for more details.
The strong bias region here shows a functional problem

with the pipelines for signals in this region. These numbers
are slightly lower than they theoretically should be, due to
the clustering of triggers in the pipeline. In PyCBC, as
templates are matched to the data, numerous triggers are
recorded for each signal as multiple templates may match
the signal to differing levels of significance. To avoid all of
these triggers being returned for a single signal, a clustering
window is set. This window, set to �1 s in our study,
clusters these triggers and returns a single trigger of highest
significance.
In the case of overlapping signals within this �1 s

merger time separation window, only the most significant
signal is returned. As such, in the strong bias region and
some of the weak bias region, many of the signals are
missed due to only the most significant being returned. In
our study the triggered signal is usually Signal A. Due to
our method of drawing of the merger time, Signal B always
merges before Signal A. Therefore, in a matched-filter
search, Signal A is favored as it is still providing power in
the data at this time. This is not necessarily the case with
unmodeled searches, such as cWB, see Sec. IVA for further
details. An example of this can be seen in Fig. 2.
Both found triggers are only in the region outside

the clustering window of PyCBC, jΔtcj ≤ 1 s.1 In the region
jΔtcj ≤ 1 s, Signal A is clearly favored, as it is the later
merging signal. Pairings in this region that are found with
Signal B are largely either very close in merger time or have
SNRB > SNRA. This is shown in Fig. 3, where the
distribution of the ratio of SNRs between signals in found
pairings is shown. In the region <1 s, here Signal A is
louder, and therefore favored, and in the region>1 s Signal
B is louder and more likely to be found. Missed pairings
here generally have equal SNRs due to them both having
poor SNRs. These regions are artifacts of the pipeline
settings and as such remain the same for the longer signals
in the BNSþ BNS and BNSþ BBH runs outlined in
Secs. III B 2 and III B 3.
For Figs. 2 and 3, we have only included PyCBC results.

This is due to the large time window criteria we applied to
count found cWB injections. In this region, most cWB

pairings will be single signal found. However, most signals
with such close mergers will only be found as a single
trigger in cWB. cWB internally applies time windows on
regions of excess power, under the assumption that it would
only ever be a single signal. In wider regions, such as the

negligible bias region, the search returns separate triggers
for each component signal in the pairing. This is akin to the
clustering window of PyCBC, however, when PyCBC finds
both injections by a single trigger it will return a template
for a single signal under the assumption that it is a single
signal; cWB returns the coherent power of one, or poten-
tially both signals, see Sec. IV.

FIG. 2. A stack plot showing the distribution of how injected
signals were found by relative merger time in the PyCBC
BBHþ BBH PAIRS injection set. Blue and red show the pairings
in which only one signal was found, Signal A or Signal B,
respectively. Green shows the pairings in which both signals were
found, grey for entirely missed pairs. This plot covers both the
strong andweak bias regions. The time convention is TB − TA; this
is always less than 0 due to the convention of drawing Signal B’s
mergerwithin the observable duration of SignalA.The percentages
in the caption refer to the fraction of pairings in this region,
jΔtcj ≤ 2 s, that fall in each category.

FIG. 3. A stack plot showing the distribution of how pairings
were found as a function of the ratio of the two signals SNRs. The
ratio is defined to be SNRB=SNRA. Colors are consistent with
those in Fig. 2. Similarly, the data comes from pairings in the
strong and weak bias regions of the PyCBC BBHþ BBH PAIRS
injection set. The percentages in the caption refer to the fraction
of pairings in this region, jΔtcj ≤ 2 s, that fall in each category.

1Three pairings have both signals found inside the clustering
window. These pairings have merger time separations of approx-
imately −0.999 s and, in some detectors, have separations of
jΔtcj > 1 s.
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There are some signals in the negligible bias region that
are found in the single signal injection sets, but missed in
the overlapping runs. Generally, these signals have relative
merger times just beyond the two second negligible bias
region and have fairly uneven SNRs. This follows the
findings of previous parameter estimation studies. In those
studies, if one signal is much louder than the other, then
samples are recovered matching the parameters of the
louder signal. In the case of match filter searches, the
template bank search will recover templates closer to
the louder signal; the remaining power from the weaker
signal will be rejected as either noise or excess power in the
inspiral of the louder signal.
The drop in efficiency due to the presence of time-

overlapping signals can be estimated by comparing the
efficiency of the overlapping and nonoverlapping signals.
For PyCBC this drop off is approximately 4% across the
entire run. In cWB this drop in efficiency is approximately
12%. The differences in pipeline efficiency means that a
direct comparison is not a simple matter; we also report the
relative efficiency drops as 6% and 23% for PyCBC and cWB,
respectively.
The errors on all efficiencies are less than 0.01% and as

such were not included. All quoted efficiencies are for
events found with a FAR threshold of <1 per year.

Outside the clustering window of PyCBC, this fall in
efficiency is approximately 1%, while inside the clustering
window the fall in efficiency is 26% due to the majority of
paired signals being found by a single trigger, or not at all.
These regions are not directly comparable for cWB; in these
cases it will find both signals and return them as one trigger,
however, similar numbers would be 9% and 32% for
outside and inside the jΔtcj ¼ 1 s boundary.

2. BNS+BNS overlaps

Table III shows the results for the BNSþ BNS overlap
injection set. There are fewer signals in these injection sets as
a higher number of signals would have caused Nsignals > 2

overlaps, which we do not consider in this study. As
expected, cWB finds a lower percentage of the injections,
as it is not designed to find longer inspiral dominated signals,
such as binary neutron stars. This can be seen in Fig. 4, where
cWB recovers only about 20% of injections with unique
triggers. PyCBC has a slightly higher efficiency here than
in the BBHþ BBH run, however, this is most likely a
consequence of the injected luminosity distances of the
signals rather than the design of the search pipeline.
Due to these long durations and the uniform drawing of

merger time separation, the signals were drawn such that

FIG. 4. Bar charts for the found injections in both pipelines in the different overlap bias regions. Each region has four bars, split into
two for each pipeline. These show the percentage injections in which the pipeline found a trigger. The unique column shows the
percentage of unique triggers, i.e. if both signals are found by the same trigger, then they are only counted once. The shaded segments
show injections recovered at a FAR threshold of <1 yr−1. The data here is for the BNSþ BNS injection sets.

TABLE III. Injected and recovered individual overlapping signals in different injection sets and search pipelines.
The SINGLES column here is the union of the results from both SINGLESA and SINGLESB data sets. Here the two
signals in a pairing are both BNSs. It should be noted that these values are not directly comparable to those in
Table II, as the luminosity distances were arbitrarily set for BBH and BNS injections such that most were visible
in the detector. As such we have a slightly higher proportion of BNS signals recovered in PyCBC than we did for
BBH signals.

PyCBC cWB

BNSþ BNS Injected SINGLES PAIRS SINGLES PAIRS

Total Counts 2212 2042 1677 554 467
Percentage � � � 92.31% 75.81% 25.05% 21.11%

FAR < 1 yr−1 Counts 2212 1854 1544 550 461
Percentage � � � 83.82% 69.80% 24.86% 20.84%
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approximately half fell into the negligible bias region with a
further quarter falling in each of the weak and strong bias
regions. As the strong bias region of BNSþ BNS events is,
as predicted by parameter estimation studies, jΔtcj ≤ 0.01 s,
a very high percentage of injected pairs falls inside the PyCBC
clusteringwindowso are both foundby the same trigger. This
is apparent in the “strong” region of Fig. 4, where the unique
bar is half that of the nonunique found.
The efficiency drop between overlapping and nonover-

lapping BNS signals is 14% for PyCBC and 4% for cWB. The
cWB values drop is small, compared to PyCBC, as the
majority of BNS signals found by cWB are very significant
regardless of overlap. The relative drops in these efficien-
cies are 17% and 16%, respectively.

3. BNS+BBH overlaps

As described in Sec. III B 2 cWB is not tuned to low mass
inspiral dominated signals like BNSs. As such it does
not perform well for the BNS portion of the SINGLES
injection sets. The efficiencies of the pipeline for these
injection sets highlights this. For cWB, the SINGLESA run
recovered 25% of injections, while the SINGLESB run
recovered 52%, with 86% and 82% being the comparable
numbers for PyCBC.
Table III B 3 shows a significant falloff between the

SINGLES and PAIRS injection sets, compared to the
BBHþ BBH run. This, as in Sec. III B 2, is in large part
due to a large percentage of strong bias pairs falling inside
the clustering windows and being found by the same
trigger. This can be seen in Fig. 5 where, as in Fig. 4
the strong bias region sees a significant falloff from any to
unique found injections.
Here PyCBC performs better for BNSþ BBH overlaps

than for BNSþ BNS overlaps. The same cannot be said for
cWB, which would appear to perform more consistently in
the BNSþ BNS run. Although this may be difficult to
conclude due to the low efficiency of that run.
The efficiency drop between overlapping and nonover-

lapping BNS signals is 11% for PyCBC and 10% for cWB.

Care should be taken here in comparisons between the
pipelines, as PyCBC has similar sensitivities to BBH and
BNS signals, whereas cWB will favor higher mass signals
and is therefore more sensitive to one half of the non-
overlapping signals. The relative drops in efficiency are
15% and 26%, respectively.

C. Accuracy of recovered triggers

Figure 6 contains histograms of the fractional chirp mass
difference between the triggers recovered by PyCBC in the
PAIRS injection set and the true injected values. It also
includes a similar distribution for the SINGLES injection
set, shown in grey.
In most cases the recovered trigger in the PAIRS

injections match what is found in the single signal
injections to a reasonable level, jΔMj < 1 M⊙. This can
be seen by comparing the distribution of negligible bias

FIG. 5. Bar charts for the found injections in both pipelines in the different overlap bias regions. Each region has four bars, split into
two for each pipeline. These show the percentage injections in which the pipeline found a trigger. The unique column shows the
percentage of unique triggers, i.e. if both signals are found by the same trigger, then they are only counted once. The shaded segments
show injections recovered at a FAR threshold of <1 yr−1. The data here is for the BNSþ BBH injection sets.

FIG. 6. Distribution, across the overlap regions, of the frac-
tional difference between the recovered and injected chirp masses
for PyCBC triggers in the PAIRS injection set. Also shown, in grey,
is the same distribution for recovered and injected in the
SINGLES injection set. A perfect pipeline, with an infinitely
finely gridded template bank, would find injections with a delta
spike on zero in this plot. For direct comparison across the
overlap regions, we have included this plot as a function of
regional density in the Appendix.
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region injections to the SINGLES distribution. The “weak”
and “negligible” regions match this distribution fairly well,
with few outliers. However, the strong region skews
towards a high fractional difference, up to ∼6 times the
value found in SINGLES. Therefore, we can say that signal
pairings in the strong bias region are affected in a similar
way in matched filter searches to matched filter based
parameter estimation.
The skew of this distribution shows that incorrectly

found signals tend to be found with higher chirp mass
templates than the injected signal. As this is also true for the
inaccurately found single signals, this is a feature of how
we calculate the fractional difference. The recovered chirp
mass can never be less than -1, as for a trigger to be
recovered it must have a positive chirp mass. Triggers with
much larger values of fractional chirp mass are likely
extreme due to the lower density of templates at the high
mass tail of the template bank.

IV. OVERLAP IDENTIFICATION
AND SEPARATION

Figure 7 shows a comparison of the whitened strain of an
injected BBH single signal in simulated Hanford detector
strain. This is accompanied by a whitened version of the
template found in the PyCBC search and the reconstructed
waveform produced by cWB. Here, outside the merger, the
template found by PyCBC does not match the signal as well
as the cWB reconstruction. This is most noticeable at lower
frequency, although the mergers are broadly similar. This is
due to the coarseness of the gridding in the PyCBC template
bank and the lack of bank sensitivity to parameters, such as
spin and phase.
Figure 8 shows an equivalent plot involving the Signal A

represented in Fig. 7 overlapping with a Signal B. It can be

seen that Signal B, merging first, is found in cWB but not in
PyCBC. Both signals are significant, with network SNRs of
26 and 27. Despite this, due to the close mergers of the
signals and clustering, the template for Signal A is returned
in the PyCBC PAIRS run due to its later merger time. The
Signal B from this pairing was found by both PyCBC

and cWB, as an individual signal, in the SINGLESB
injection set.
The phase of the cWB reconstruction for Signal A in

Fig. 8 is different compared to that showing in Fig. 7 as the
algorithm is trying to fit both signals to the same coherent
sky location. Indeed, as shown in Figs. 9 and 10, in that
case the likelihood maximization is considerably affected
by Signal B, and so Signal A’s reconstruction is not
optimal. This is discussed in detail in Sec. IVA.

A. Separation through unmodeled algorithms

The cWB framework, as described in Sec. II C 2, is
designed to analyze a single signal. The pipeline finds
regions of excess power and then maximizes the likelihood
with respect to one source location, regardless of the
number of present astrophysical signals. In the standard
case of a single signal trigger, the pipeline maximizes the
likelihood with respect to that signal, and so almost all its
energy is placed in the likelihood, while the null is almost
entirely noise, as shown in Fig. 9.
For the case of two overlapping signals, the likelihood

is then maximized considering both signals, generally
with one favored over the other, considering this signal as
the “primary” and the other as the “secondary.” In this
case, the likelihood is largely maximized with respect to
the primary signal, though often with some contamina-
tion from the secondary signal, depending on its energy.
This means that the primary signal energy is almost

FIG. 8. A plot of whitened strain, in the LIGO-Hanford
detector, for a BBHþ BBH injection. The blue line shows the
matched templates found by PyCBC in the PAIRS injection set.
The red line is the cWB reconstructed waveform from the PAIRS
injection set. The green dashed vertical lines indicates the injected
merger times.

FIG. 7. A plot of whitened strain, in the LIGO-Hanford
detector, for a single BBH injection. The blue lines show the
matched template found by PyCBC in the SINGLESA injection set.
The red line is the cWB reconstructed waveform from the same
injection set. The green dashed vertical line indicates the injected
merger time.
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entirely found in the likelihood. The energy of the
secondary signal is divided between likelihood and null,
depending on its source location. If this is considerably
different with respect to that of the primary signal, then a
considerable amount of the energy of the secondary
signal will remain in the null. This is similar to the
situation in Figs. 7 and 8.
Figure 9 shows the time-frequency representation of the

likelihood and null energies of Signal A, in which like-
lihood has been properly maximized. The signal is almost
entirely caught in the likelihood. The remaining energy in
the null is likely excess noise. Figure 10 represents the
same signal in an overlapping pairing, as in Fig. 8. In this
case, the likelihood is maximized mainly with respect to
Signal B, here the primary signal. The null contains the
secondary, here Signal A, and is increased with respect to

the single detection. The likelihood has been maximized,
with respect to a different sky location, and both the null
and likelihood contain a non-negligible contribution from
each signal.
This contribution of the signal to the residual noise

energy increases the penalty, lowering the correlation
coefficient. For this reason, triggers with overlapping
signals are penalized when applying postproduction cuts,
as it can be seen in detection efficiencies reported in
Tables II, III, and IV and in Figs. 1, 4, and 5.
These results suggest that, to produce an optimal

analysis of overlapping signals, a future development
of cWB should allow for the estimation of multiple
likelihoods. If a TF map suggests the presence of two
overlapping signals, then the information about the way
to analyze it can be obtained firstly analysing the data

FIG. 9. A spectrogram of likelihood and null energy for a single signal event. The likelihood contains almost entirely signal energy,
while the null almost entirely noise. The data is the same as for the Single A signal in Fig. 7.

FIG. 10. A spectrogram of likelihood and null energy for two overlapping signals. The likelihood has been maximized with respect to
the primary signal, so a relevant fraction of the energy associated with the secondary one remains in the null. The data is the same as for
the signals in Fig. 8.
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with a likelihood following the primary signal. If the null
then contains an indication for another signal, then it
could be used to select the pixels related to this signal and
try to maximize the likelihood with respect to them only.
It is important to remark that the TF representation is able
to disentangle, by itself, the two overlapping signals only
if these cover different TF pixels. In this case, the separate
maximization of two different likelihoods, via two differ-
ent sets of pixels, would give the signal reconstruction as
optimally as it is currently for single signal triggers. It
should be noted that in the unlikely case in which the two
signals come from almost the same source location the
two likelihoods would be almost the same.
If a pixel has contributions from both signals, then the

TF separation this is not possible. In that case there is
still the possibility to exploit the likelihood-null energy
distribution for the involved overlapping pixels, if the
signals come from different sky locations. When the two
signals cover the same pixel the likelihood-null disen-
tangling would be nonoptimal as some fraction of the
secondary signal will fall into the likelihood of the
primary, as shown in Fig. 10. This implies that we
may not be able to fully recover the secondary signal
from the null. If the signals come from almost the same
source location, then there is no way to disentangle them
in an unmodeled way, at least in those TF pixels covered
by both signals: the likelihood-null approach fails as well
because in that case also the null is almost the same for
both signals. All these considerations should be examined
in future studies.

B. Separation through matched filter algorithms

When searching for signals in data, matched filter
searches, such as PyCBC, will match a template waveform
to the data at time intervals in order to create an SNR time
series of the data. This time series is a map of the SNR of
that template with the data. When one of these templates
closely matches a signal, the time series will peak.
In a situation in which there are two signals in the data,

this time series should peak twice, once for each signal in

the data. Figure 11 shows this for two perfect templates
against data with two signals injected. The blue line, for
Signal A’s template, shows a small peak around the merger
of Signal B, where the match is not perfect. It then peaks
again, cleanly and more significantly, around the merger of
Signal A. The reverse is shown for a perfect Signal B
template in red.
The signals and templates used in Fig. 11 have very

similar chirp masses and as such match reasonably well
with each other’s templates. Conversely, if the signals have
very different chirp masses, then this plot will only show a
single peak for each signal. Although, there will likely be
some non-Gaussianity in the region of the nonideal signals
merger time.

PyCBC’s clustering routines, as described in Sec. II D,
will ignore these features and only return the maximum

TABLE IV. Injected and recovered individual overlapping signals in different injection sets and search pipelines.
The SINGLES column here is the union of the results from both SINGLESA and SINGLESB data sets. Here the two
signals in a pairing are a BNS and a BBH. It should be noted that the comparison between PyCBC and cWB for the
SINGLES runs is challenging as cWB will perform significantly differently for the BNS SINGLES run. See Table III
for a more precise comparison of single signal runs for these events.

PyCBC cWB

BNSþ BBH Injected SINGLES PAIRS SINGLES PAIRS

Total Counts 2400 2086 1713 928 706
Percentage � � � 86.92% 71.38% 38.67% 29.42%

FAR < 1 yr−1 Counts 2400 1782 1519 922 673
Percentage � � � 74.25% 63.29% 38.42% 28.04%

FIG. 11. A plot of SNR time series for two perfect templates
against simulated data containing both signals in the LIGO-
Hanford detector. The blue line shows the SNR of the Signal A
template against the data; the red line shows the equivalent for the
Signal B template. The blue and red dashed vertical lines show
the injected merger times of Signal A and B, respectively. The
signals are the same as those shown in Fig. 8. The peak SNRs
here are smaller than those given in Sec. IV as they are single
detector SNRs, not network SNRs.
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likelihood signal, in this case Signal A. It should be
possible to modify the clustering routines to check for
multiple peaks in a single template, or for single peaks in
multiple templates. These results can then be used to
identify reasonable parameter ranges for each signal in
the overlap. This would allow for a reliable starting point
for multisignal parameter estimation [14].

V. DISCUSSION

We showed here that both modeled and unmodeled
searches can detect overlapping CBC signals in the
negligible bias region of jΔtcj > 2 s. Within the weak bias
region, so long as the signals are separated by more than the
matched filter clustering window, here jΔtcj > 1 s, the
matched filter search should recover both signals, provided
one is not much louder than the other. We also show that in
the narrower weak and strong bias regions both pipelines
can successfully recover one or both signals in the overlap
most of the time.
Inside the clustering window, matched filter pipelines do

struggle to successfully recover both signals due to internal
methods designed to reduce the number of false triggers
returned. However, we believe that these searches can be
modified to find templates that best match each signal in the
pairing. This could provide reasonable best guesses for
multisignal parameter estimation.
We showed that unmodeled searches can successfully

recover both signals in the pairing, both as a single trigger
when the mergers are close, and as separate triggers when
far apart. cWB, when recovering signals via coherent sky
location, is able to disentangle overlapping signals, so
long as they cover different frequencies in the TF map. In
the case in which the signals are in the same TF pixels, the
secondary signal should be at least partially separable via
the null energy map, if coming from a different sky
location than the first. This should be another indicator
of the presence of a secondary signal. It is possible that
the second signal’s sky location may be recoverable
leading to further first guess parameters for multisignal
parameter estimation.
We believe that, with modifications, the combination of

these two forms of CBC search pipelines should provide a
reliable method for the detection, identification, and initial
separation of time-overlapping CBCs.
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APPENDIX: SUPPLEMENTARY FIGURE

The plot shown in Fig. 12 is similar to that in Fig. 6,
however, the y axis has been adjusted to show the
normalized distributions, rather than the number of triggers.
This allows more direct comparison between the four
distributions.

FIG. 12. Distribution, across the overlap regions, of the
fractional difference between the recovered and injected chirp
masses for PyCBC triggers in the PAIRS injection set. Also
shown, in grey, is the same distribution for recovered and
injected in the SINGLES injection set. A perfect pipeline, with
an infinitely finely gridded template bank, would find injec-
tions with a delta spike on zero in this plot. Here the distribution
is shown as a function of the density of signals, rather than the
signal numbers.
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