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Abstract

The Poisson process is the most commonly used point process in modelling counting
phenomena [20]. Even if the counting process has non-stationary increments, it can be
shown to converge to the Poisson process if observed sufficiently long after a transient
period as long as it constitutes a renewal process [43]. As such, it is important to review
the key characteristics of the Poisson process as it serves as the main building block of
more complex models.

In the first part of this thesis, we propose two fractional risk models, where the classical
risk process is time-changed by the mixture of tempered stable inverse subordinators.
We characterise the risk processes by deriving the marginal distributions and establish
the corresponding moments and covariance structure.

In the second part of this thesis, we study the main characteristics of these models
such as ruin probability and time of ruin, and illustrate the results with Monte Carlo
simulations. The data suggests that the time of ruin can be approximated by the inverse
gaussian distribution and its generalisations.
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Chapter 1

Introduction

The homogenous Poisson process is used to model random occurrence of events. The
modelling of events can be done in relation to time and space. However, the Poisson
process can be applied only if events satisfy particular conditions, such as they are
independent of each, there are no two events occurring at exactly the same time or
located at exactly the same space and the probability of the event should increase with
the increase in the interval of the time or space in which the event is expected. The
rate of intensity of events is represented by a constant term which also represents the
mean density of the events modelled in time or space. The homogeneous Poisson process
assumes that the rate of occurrence is stationary [20].

Proposition 3.1.1 shows that the distribution of arrivals depends only on the length
of the interval and is independent of the location of the interval. In other words, the
intensity of arrivals does not change over time. However, modelling real-life phenomena
including risk probabilities often requires the rate of occurrence to vary with time as
stationarity can only be assumed for a short period of time. A natural generalisation
of the homogeneous Poisson process that would account for non-stationarity involves
treating the rate λ as a function of t rather than a constant. As λ varies over time, it can
be interpreted as instantaneous intensity of the arrival flow at time t [44]. A constant
intensity corresponds to the homogeneous Poisson process described in Section 3.1.1.

Generally, a subordinated process is understood as a superposition of two independent
stochastic processes [23]. The main process is referred to as the parent process, or
the outer process. The time of the process is replaced by an independent stochastic
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process called the outer process, or the subordinator. This allows for altering certain
characteristics of the parent process while still keeping some of its properties. Well-
known subordinators covered in the present review include Poisson process, one-sided
stable process with stability index α ∈ (0, 1) (α-stable subordinator), and tempered
stable subordinators [23]. Subordinators arise naturally in risk theory. In a general
perturbed risk process, the cumulative claim process has to be increasing. Assuming
stationary independent increments, this implies that the cumulative claim process should
be modelled using subordinators [18].

Studying subordinators involves describing the first-passage time of the process. The
inverse subordinator is the process obtained by considering the first-passage time of a
subordinator [51]. It is possible for a Lévy subordinator to be itself a first passage time
of some other Lévy process. The use of inverse subordinators that is the most relevant to
the present paper is achieving a process with sub-diffusion. Sub-diffusion, or anomalous
diffusion, refers to a property of the process variance growing at a rate which varies
non-linearly with time [51]. While the moments of a subordinator may be infinite, the
moments of the inverses of specific types of subordinators are finite.

As described in Section 2.1, subordinators have infinite moments, but the first-hitting
time process of the subordinator may have finite moments. For α-stable subordinators,
all moments of order α or less are infinite while the first moment of its inverse grows as tα

[51]. In general, stable distributions possess heavy tails and are infinitely divisible which
provides a rich class of Lévy processes [23]. The key limitation of α-stable processes is
that generally they have non-finite second-order moments, which will be addressed by
considering tempered stable subordinators in Section 2.3.

The inverse α-stable subordinator is defined using the Mittag-Leffler family of functions
and fractional derivatives. The link between fractional calculus and probability is reflected
in the interpretation of equations describing diffusion processes [38]. Specifically, in a
Brownian motion, the probability of a jump exceeding a certain length x falls off as a
power law x−α for some α ∈ (0, 2). Then the random walk limit is an α-stable Lévy
process with particle traces being fractals of dimension α [1]. The particle density is
described by a diffusion equation which includes a fractional derivative of order α.

The link between subordinators and risk models is in the use of inverse subordinators
instead of time in Poisson processes [30]. As will be shown in Section 3.2 , the fractional
Poisson process defined as a renewal process with Mittag-Leffler waiting times can be
also obtained by time-changing via an inverse α-stable subordinator [37].
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The Mittag-Leffler function can be regarded as an extension of the complex exponential
function. Section 2.2.2 introduces a one-parameter generalisation as an infinite series.
This parametrisation corresponds to the commonly used two-parameter definition with
β = 1. The Mittag-Leffler distribution is a heavy-tailed distribution. As such, when used
to define waiting times for a Poisson-type renewal process it implies fewer arrivals on
average for sufficiently large t compared to the classical Poisson process described in
Section 3.1 [9].

As noted in Section 2.2, α-stable processes do not have finite second-order moments
unless they correspond to the Gaussian case [26]. This issue is addressed by the process
of tempering which in essence makes the tail probabilities decay faster. The present
study follows established literature on risk models and considers exponential tempering
of α-stable distributions [16]. This ensures that the resulting distributions are infinitely
divisible, have finite moments of all orders, and have exponentially decaying tail proba-
bilities [23]. Exponential tempering generates a class of continuous time Lévy processes
that are no longer self-similar. In line with Section 2.1, inverse tempered α-stable sub-
ordinators are defined as first-hitting times of a tempered α-stable subordinator [26].
Tempering allows the inverse subordinator to model power law waiting times while still
having finite moments [1].

Mixtures of tempered α-stable subordinators generalise both tempered stable subor-
dinators and α-stable subordinators [16]. As such, they can also be used instead of the
process time in subordinated Poisson processes to allow for more flexibility in modelling
deviations from Poisson processes [20].

Sections 2.1–2.4 have introduced the notions of inverse subordinators and some of
the major classes of these processes. These developments tie in with risk modelling by
unifying fractional and time-fractal processes. In particular, the fractional Poisson process
is defined as a renewal process with waiting times that are distributed according to the
Mittag-Leffler distribution. Such a process can be shown to be equivalent to an ordinary
Poisson process subordinated so that the process time is replaced by an inverse α-stable
subordinator [37]. One of the key differences between an ordinary Poisson process and a
fractional Poisson process is that the latter does not have stationary and independent
increments [43]. It follows that fractional Poisson processes are not Lévy processes or
Markov processes. However, this is not necessarily a shortcoming as the light-tailed
distributed waiting times of Lévy processes fail to accurately describe phenomena with
long memory [20].
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The key advantage of fractional processes is that they allow for modelling anomalous
diffusion described by space-time fractional diffusion equations for processes whose
variances vary in time according to a power law [2]. More generally, the fractional
Poisson process can also be viewed as the thinning limit of counting processes associated
with renewal processes with inter-arrival times that are power-law distributed [43]. The
power law describing how variance changes with time is reflected in the notion of long
range dependence [34] which was proved for fractional Poisson processes by Biard and
Saussereau [2]. Fractional Poisson processes are particularly well-suited for risk modelling
as they allow for capturing heavy-tailed distributed interarrival times [10].

Section 3.2 considers fractional extensions for both homogeneous and non-homogeneous
Poisson processes. Defining a fractional non-homogeneous Poisson process as a classical
renewal process is not possible since it is an additive process with an intensity function
that is deterministic and time-dependent [30]. This illustrates the usefulness of the
subordinator construction developed in Sections 2.1–2.4 as a general renewal process
can be considered instead. This is described in Section 3.4 which defines the fractional
non-homogeneous Poisson process as an ordinary non-homogeneous Poisson process
time-changed by the inverse α-stable subordinator.

Section 2.4 described mixtures of tempered α-stable subordinators while Section 3.2
introduced fractional Poisson processes. Section 3.3 illustrates further applications of
notions developed in Section 2.4 to the Poisson process. This yields a generalisation of
both homogeneous and non-homogeneous fractional Poisson processes by time-changing
via a mixture of tempered stable subordinators [16]. The resulting process is more
flexible compared to a Poisson process subordinated by a single inner process while still
retaining the advantages of fractional processes and tempered subordinators that allow
its application to real-life risk models.

The classical risk model describes the number of claims on a time interval as a Poisson
process [40]. The total claims on the interval can therefore be retrieved as a sum of claim
sizes, assumed to be non-negative and i.i.d., over the Poisson-modelled number of claims.
The risk, or surplus, process is then understood as the sum of the initial surplus and
premiums less total claims at a specific time. This characterisation, while being relatively
simplistic, allows for explicitly calculating the time of ruin, the infinite-horizon survival
probabilities, and the infinite-horizon ruin probabilities as a function of the initial surplus.
The finite-horizon ruin probability and finite-horizon survival probability can be retrieved
as a function of time and the initial surplus. Both finite- and infinite-horizon survival
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probabilities are non-decreasing functions of the initial surplus and a non-increasing
function of time, but in general can be non-differentiable or even discontinuous [40].
The classical risk model is extended by considering a fractional Poisson process as the
underlying process for the number of claims on a time interval.

The safety loading ρ is required to be strictly positive for the net profit condition to
hold [24]. Non-positive values of the safety loading parameter correspond to companies
that will necessarily go bankrupt. The time scale of the counting process Nα(t) and the
payment process Yα(t) should be coordinated as otherwise, the model would overestimate
the number of claims or premiums and the model would violate the profit condition.
Compared to a model based on the ordinary Poisson process, the fractional model implies
a covariance structure that captures accumulation effects [24]. In particular, the premium
associated with the simple compound Poisson process described in Definition 3.4.1 is
strictly lower than the premium associated with the fractional compound Poisson process
described in Definition 3.4.3.

Comparing the expressions for covariance between R1(t) and R2(t) shows that the
main difference is in the safety loading factor ρ entering the expression for the covariance
of R2(t). As such, the risk process of the first type exhibiting the long range dependence
property implies that the risk process of the second type also exhibits the long range
dependence property [19].

For fractional Poisson processes, simulation of trajectories is enabled by relating
subordinators to α-stable distributions [24]. This illustrates why the description of
fractional Poisson processes as a process time-changed by an inverse stable subordinator
is particularly useful for applications and modelling. The present study relies on the
acceptance-rejection method to generate increments from mixtures of subordinators.
This is a general method for drawing from a random distribution for which the density
is bounded by a density of another distribution scaled by some constant. The study
fixes model parameters such as intensity rate for the homogeneous Poisson process,
functional form of the intensity rate for the non-homogeneous Poisson process, tempering
parameters, and subordinator mixture weights. This allows for focusing on the differences
between process types given identical parameters which should help illustrate how more
advanced models may be more suitable for describing real-life scenarios. The impact and
choice of risk model parameters on ruin probabilities is discussed in later chapters of the
study.





Chapter 2

Subordinator and Inverse
subordinator

This chapter is based on the ‘Risk process with mixture of tempered stable inverse
subordinators: analysis and synthesis’ coauthor with Tetyana Kadankova accepted on
28th October, 2021 by ‘Random Operators and Stochastic Equations’ and has been
reproduced here with the permission of the copyright holder.

2.1 Subordinator and Inverse subordinator

Definition 2.1.1 (Homogeneous Lévy process). The process L := {L(t)}t≥0 is said to
be a homogeneous Lévy process if all the following conditions hold:

• The process has independent and stationary increments,

• L(0) = 0 almost surely (a.s.),

• L is stochastically continuous, i.e. for any ε > 0 and t > 0,

lim
h→0

P (|L(t+ h) − L(t)| > ε) = 0,

• L is cadlag a.s., also called right continuous with left limits (RCLL),

• For 0 ≤ s ≤ t, L(t) − L(s) d= L(t− s).
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Definition 2.1.2 (Nonhomogeneous Lévy process). The process L := {L(t)}t≥0 is said
to be a nonhomogeneous Lévy process if all the following conditions hold:

• The process has independent increments,

• L(0) = 0 a.s.,

• L is stochastically continuous,

• L is cadlag a.s.

Examples of homogeneous Lévy processes include HPP and homogeneous Wiener
process; and NPP is an example of nonhomogeneous Lévy process.

Definition 2.1.3 (Subordinators). A Lévy process L := {L(t)}t≥0 is said to be a
subordinator if it is non-decreasing a.s. [27].

Definition 2.1.4 (Inverse subordinators). An inverse subordinator is the first-hitting time
process of the given subordinator, i.e. for a subordinator L(t), the inverse subordinator
is defined by [25]

Y (t) = inf {s ≥ 0 : L(s) > t} . (2.1)

Definition 2.1.5 (Renewal function). The renewal function of a process Y (t) is defined
by

U(t) = E [Y (t)] . (2.2)

Properties

Definition 2.1.6 (Laplace exponent). For the following Laplace transform,

E
[
e−sL(t)

]
= e−tϕ(s), s, t ≥ 0, (2.3)

the function ϕ is unique, and it is said to be the Laplace exponent.

From [50], we have Equations 2.4 and 2.5.

Let L(t), t ≥ 0 be a Lévy subordinator with Laplace exponent

ϕ(s) = µs+
∫

(0,∞)
(1 − e−sx)Π(dx), s ≥ 0, (2.4)
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where µ ≥ 0 is the drift and the Lévy measure Π on R+ ∪ {0} satisfies∫ ∞

0
(1 ∧ x)Π(dx) < ∞. (2.5)

The Lévy measure in Equation 2.4 is a measure on the σ-algebra of Borel sets of (0,∞),
which satisfies the condition of Equation 2.5. However, as this is the only condition
needs to be met for a Lévy measure, it is not necessarily to be finite, for example, the
Lévy measure of an α-stable subordinator is not finite, as the integral of such a measure
diverges at zero (see Equation 2.14).

The process Y (t), t ≥ 0, is non-decreasing and its sample paths are a.s. continuous if
L is strictly increasing. Also Y (t) is, in general, non-Markovian with non-stationary and
non-independent increments.

We have
{L(ui) < ti, i = 1, . . . , n} = {Y (ti) > ui, i = 1, . . . , n} . (2.6)

Let
Hu(t) = P {Y (u) < t} . (2.7)

From Equation 2.4 we have ∫ ∞

0
e−stdHu(t) = e−tϕ(s), (2.8)

and
Ũ(s) =

∫ ∞

0
U(t)e−stdt = 1

sϕ(s) , (2.9)

where Ũ(s) denotes the Laplace transform of U(s); thus, Ũ characterizes the process
Y (t) (since ϕ characterizes L) [50].

And we have the covariance function (see [50, Equation (17)])

Cov(Y (t1), Y (t2)) =
∫ t1∧t2

0
(U(t1 − τ) + U(t2 − τ))dU(τ) − U(t1)U(t2). (2.10)
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2.2 α-stable subordinator and inverse α-stable sub-
ordinator

In this section we present some results from [24].

2.2.1 α-stable subordinator

Let Lα(t), t ≥ 0, be an α-stable subordinator with ϕ(s) = sα, 0 < α < 1 (cadlag,
continuous in probability, with independent and stationary increments), with α to be the
stability index, whose density g(t, x) is such that Lα(1) has probability density function

gα(x) = g(1, x)

= 1
π

∞∑
k=1

(−1)k+1 Γ(αk + 1)
k!

1
xαk+1 sin(πkα)

= 1
x
W−α,0(−x−α), x > 0, (2.11)

and with Laplace transform

E
[
e−sLα(t)

]
= exp (−tsα) , s ≥ 0. (2.12)

Here we use the Wright’s generalised Bessel function (see, e.g., [17])

Wγ,β(z) =
∞∑

k=0

zk

Γ(1 + k)Γ(β + γk) , z ∈ C,

where γ > −1, and β ∈ C [47], and for β = 0, γ = −α ∈ (−1, 0)

W−α,0(z) =
∞∑

k=1

sin(πkα)
π

zkΓ(1 + αk)
k! (2.13)

by reciprocity relation for the Γ−function. Also

gα(x) ∼

(
α
x

) 2−α
2(1−α)√

2πα(1 − α)
exp

{
−(1 − α)

(
x

α

)− α
1−α

}
, x → 0, (2.14)
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and
gα(x) ∼ α

Γ(1 − α)x1+α
, x → ∞. (2.15)

Remark.

1. The α-stable subordinator has no finite moments.

2. The sample path of an α-stable subordinator is not continuous as it contains jumps
at the points of events.

2.2.2 Inverse α-stable subordinator

Then we have the inverse α-stable subordinator

Yα(t) = inf{u ≥ 0 : Lα(u) > t}, (2.16)

which has density function of

fα(t, x) = t

α
x−1− 1

α gα(tx− 1
α ), x ≥ 0, t > 0. (2.17)

Definition 2.2.1 (Fractional Caputo-Djrbashian derivative). The fractional Caputo-
Djrbashian derivative CDα

t is given by (see [5])

CDα
t = 1

Γ(1 − α)

∫ ∞

0

df(τ)
dτ

dτ

(t− τ)α
, α ∈ (0, 1). (2.18)

Let
Eα(z) =

∞∑
k=0

zk

Γ(αk + 1) , α > 0, z ∈ C

be the Mittag-Leffler function [13],[17].

Remark. It reduces to Eα(−z) = e−z if α = 1.
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Asymptotic behaviour

From [35], we have the following asymptotic behaviours for Eα(−tα):

Eα(−tα) ∼ exp
(

− tα

Γ (1 + α)

)
, t → 0, (2.19)

Eα(−tα) ∼ t−α

Γ (1 − α) , t → ∞. (2.20)

Recall the following:

(i) The Laplace transform of the Mittag-Leffler function is of the form

∫ ∞

0
e−stEα(−tα)dt = sα−1

1 + sα
, 0 < α < 1, s ≥ 0, t ≥ 0.

(ii) The Mittag-Leffler function is a solution of the fractional equation with fractional
Caputo-Djrbashian derivative CDα

t

CDα
t Eα(atα) = aEα(atα).

Proposition.

(i)

E
[
e−sYα(t)

]
=

∞∑
n=0

(−stα)n

Γ(αn+ 1) = Eα(−stα), s ≥ 0,

(ii) both processes Lα(t), t ≥ 0 and Yα(t) are self-similar

Lα(at)
a1/α

d= Lα(t), Yα(at)
aα

d= Yα(t), a > 0,

(iii)

∂E(Yα(t1) · · ·Yα(tk))
∂t1 · · · ∂tk

= 1
Γk(α)

1
[t1(t2 − t1) · · · (tk − tk−1)]1−α , 0 < t1 < · · · < tk.

In particular,

(a) we have the first moment of Yα(t),

E [Yα(t)] = tα

Γ(1 + α) ;
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(b) and we have the covariance function as

Cov (Yα(s), Yα(t))

= 1
Γ(1 + α)Γ(α)

∫ min(s,t)

0
((s− τ)α + (t− τ)α) τα−1dτ − (st)α

Γ2(1 + α) .
(2.21)

Comments.

1. Notice that this last property can be interpreted as long-range dependence.

2. There is a (complicated) form of all finite-dimensional distributions of Yα(t), t ≥ 0,
in the form of Laplace transforms, see [3].

Remark.

1. The inverse α-stable subordinator has finite moments.

2. Unlike α-stable subordinator, the sample path of an inverse α-stable subordinator
is continuous.

Alternate form of α-stable and inverse α-stable subordinator

The density function of the α-stable subordinator, gα(x, t), has the following integral
form [22]

gα(x, t) = 1
π

∫ ∞

0
e−ux−tuα cos απ sin (tuα sinαπ) du, x > 0. (2.22)

The density function of the inverse α-stable subordinator, fα(x, t), has the following
integral form (see [22]):

fα(x, t) = 1
π

∫ ∞

0
uα−1e−tu−xuα cos(απ) sin(απ − xuα sinαπ) du, x > 0. (2.23)

The density function of the α-stable subordinator at t = 1, shorten as gα(x), could
also be expressed as followed (see [39]):

gα(x) = α

1 − α

1
πx

∫ π

0
ue−u dφ, 0 < α < 1, (2.24)

where

u = u(φ) = sin(1 − α)φ
sinφ

(
sinαφ
x sinφ

) α
1−α

.
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The density function of the inverse α-stable subordinator at t = 1, fα(x), could also be
expressed as followed (see [45]):

fα(x) = 1
α
x−(1+ 1

α)gα

(
x− 1

α

)
, x > 0. (2.25)

Asymptotic behaviour

From [45], we have the following asymptotic behaviours for fα(x):

fα(x) → sin(απ)
απ

Γ(1 + α), x → 0+, (2.26)

fα(x) ∼ K

α
x

2α−1
2(1−α) exp

(
−Ax

1
1−α

)
, x → ∞, (2.27)

where

A = (1 − α)α
α

1−α ,

K = α
1

2(1−α)√
2π(1 − α)

.

From [39], we have the following asymptotic behaviors for gα(x):

gα(x) → Kx− 2−α
2(1−α) exp

(
−Ax− α

1−α

)
, x → 0+, (2.28)

gα(x) ∼ sinαπ
π

Γ(1 + α)x−(1+α), x → ∞. (2.29)

Thus,
fα(x, t) → 1

tα
sin(απ)
απ

Γ(1 + α), x → 0+, (2.30)

and

fα(x, t) ∼ Kt−
α

2(1−α)

α
x

2α−1
2(1−α) exp

−Ax
1

1−α

t
α

1−α

 , x → ∞ (2.31)

for any fixed t.
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2.3 Tempered α-stable subordinator and inverse tem-
pered α-stable subordinator

2.3.1 Tempered α-stable subordinator

Definition 2.3.1 (Tempered α-stable subordinator). The tempered α-stable subordinator
Sα,λ(t), with tempering parameter λ > 0 and stability index α ∈ (0, 1), is a Lévy process
which has density function

gα,λ(x, t) = e−λx+λαtgα(x, t), (2.32)

where gα(x, t) is the density function of the α-stable subordinator; and with Laplace
transform

E
(
e−sSα,λ(t)

)
= e−t[(s+t)α−λα], s > 0. (2.33)

The first two moments and covariance of Sα,λ(t) are given by

E (Sα,λ(t)) = αλα−1t

E
(
S2

α,λ(t)
)

= α(1 − α)λα−2t+ (αλα−1t)2

Cov (Sα,λ(s), Sα,λ(t)) = α(1 − α)λα−2 min(s, t), s, t ≥ 0 (2.34)

as shown in [16].

2.3.2 Inverse tempered α-stable subordinator

Definition 2.3.2. We have the inverse tempered α-stable subordinator Yα,λ(t), defined
by

Yα,λ(t) = inf{u ≥ 0 : Sα,λ(u) > t}, t ≥ 0. (2.35)

Let fα,λ(x, t) denotes the density function of Yα,λ(t). Then fα,λ(x, t) has the Laplace
transform given by

L (fα,λ(x, t)) = 1
s

[(s+ λ)α − λα] e−x[(s+λ)α−λα]; (2.36)
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and

fα,λ(x, t) = 1
π
eλαx−λt

∫ ∞

0

e−ty−xyβ cos(βπ)

y + λ

[
λβ sin

(
xyβ sin (βπ)

)
+ yβ sin

(
βπ − xyβ sin (βπ)

)]
dy, x > 0, λ > 0, β ∈ (0, 1).

(2.37)

2.4 Mixture of tempered α-stable subordinators and
inverse mixture of tempered α-stable subordina-
tors

In this section we present some results from [16].

2.4.1 Mixture of tempered α-stable subordinators

We define a mixture of tempered stable subordinators (MTSS) as Lévy stochastic process
{Sm(t); t ≥ 0} with the following Laplace exponent

E[exp{−sSm(t)}] = e−tϕ(s), s > 0, (2.38)

where
ϕ(s) = c1 ((s+ λ1)α1 − λα1

1 ) + c2 ((s+ λ2)α2 − λα2
2 ) , s > 0, (2.39)

and αi ∈ (0, 1), λi ≥ 0, ci ≥ 0, i = 1, 2, c1 + c2 = 1.

Note that for α1 = α, c1 = 1, c2 = 0, λ1 = 0 the process Sm(t) reduces to the α-stable
subordinator Sα(t) defined in Equation 2.11.

An alternative definition of the MTSS can be given as a sum of the independent
tempered stable Lévy processes Si(t), i = 1, 2 with Laplace exponents ϕi(s) = (s+λi)αi −
λαi

i , i = 1, 2 with time scaling and the conditions c1 + c2 = 1 such that

Sm(t) = Sα1,λ1,α2,λ2(t) = S1(c1t) + S2(c2t), t ≥ 0. (2.40)

The advantage of tempered stable subordinators over α−stable subordinators is that
they have finite moments of all orders and their density is also infinitely divisible. The
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first moment and covariance structure of the MTSS are given by

E[Sm(t)] = t
(
c1α1λ

α1−1
1 + c2α2λ

α2−1
2

)
(2.41)

and

Cov(Sm(s), Sm(t)) = min(t, s)
[
c1α1(1 − α1)λα1−2

1 + c2α2(1 − α2)λα2−2
2

]
. (2.42)

The pdf gm(x, t) = d
dx
P[Sm(t) ≤ x] has the following representation for λ1 ̸= λ2 :

gm(x, t) = 1
π

∫ ∞

0
exp (−xλ2) exp(−wx) exp [t (c1λ

α1
1 + c2λ

α2
2 )]

× exp
[
−t
(
c1(λ1 − λ2)α1

∞∑
k=0

(
α1

k

)
wk

(λ1 − λ2)k
cosπk + c2w

α2 cosπα2

)]

× sin
(
c1t(λ1 − λ2)α1

∞∑
k=0

(
α1

k

)
wk

(λ1 − λ2)k
sin (πk) + c2tw

α2 sin (πα2)
)
dw

+ 1
π

∫ λ2−λ1

0
exp (−xλ1) exp(−wx) exp [t (c1λ

α1
1 + c2λ

α2
2 )]

× exp
[
−t
(
c1w

α1 cos(πα1) + c2(λ1 − λ2)α2
∞∑

k=0

(
α2

k

)
wk

(λ1 − λ2)k
cos (πk)

)]

× sin
(
c1tw

α1 sin (πα1) + c1t(λ1 − λ2)α2
∞∑

k=0

(
α2

k

)
wk

(λ1 − λ2)k
sin (πk)

)
dw. (2.43)

If λ1, λ2 = λ and
(

α
k

)
= α(α−1)···(α−k+1)

k! , then

gm(x, t) = 1
π

∫ ∞

0
exp (−xλ) exp(−wx) exp [t (c1λ

α1 + c2λ
α2)]

× exp [−t (c1w
α1 cos (πα1) + c2w

α2 cos (πα2))]
× sin (t(c1w

α1 sin (πα1) + c2w
α2 sin (πα2)))dw, (2.44)

where c1 + c2 = 1 and c1, c2 ≥ 0.

For the special case α1 = α2 = α and λ1 = λ2 = 0 with the condition c1 + c2 = 1 the
formulae (2.43) and (2.44) reduce to the known formulae for the α−stable subordinator:

gm(x, t) = 1
αtx1+α

Mα

(
t

xα

)
,
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where the M-Wright function Mα(z) is defined by

Mα(z) =
∞∑

k=0

(−z)k

k!Γ(−αk + (1 − α)) , z ∈ C. (2.45)

2.4.2 Inverse mixture of tempered α-stable subordinators

Next, we define the inverse MTSS (IMTSS) as the right continuous stochastic process

Ym(t) = inf{u > 0 : Sα1,λ1,α2,λ2(u) > t} = inf{u > 0 : Sm(u) > t}, t ≥ 0. (2.46)

Note that for α1 = α, c1 = 1, c2 = 0, and λ1 = 0 the process Ym(t) reduces to the
inverse α-stable subordinator Yα(t) defined in Equation 2.16.

The renewal function for the IMTSS is given by

Um(t) = E[Ym(t)] (2.47)

and its Laplace transform by
Ũ(s) = 1

ϕ(s) , (2.48)

where ϕ(s) is given by (2.39). The asymptotic behavior of this renewal function is as
follows:

U(t)∼



tα1+α2−min(α1,α2)

Γ(1 + min(α1, α2)) (c1tα2−min(α1,α2) + c2tα1−min(α1,α2)) , as t → 0,

t(
c1α1λ1

α1−1 + c2α2λ2
α2−1

) , λ1, λ2 > 0, as t → ∞,

tα1+α2−min(α1,α2)

Γ(1 + min(α1, α2)) (c1tα2−min(α1,α2) + c2tα1−min(α1,α2)) , λ1 = λ2 = 0, as t → ∞.

The cdf of IMTSS is given by

P[Ym(t) ≤ x] =
∞∫
t

gm(x, u)du, (2.49)
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and the pdf by

hm(x, t) = d

dx
P[Ym(t) ≤ x] = d

dx

1 −
∞∫
t

gm(x, u)du
 . (2.50)

The covariance structure is

Cov(Ym(s), Ym(t)) =
s∧t∫
0

[U(t− τ) − U(s− τ)]dτ − U(s)U(t), s, t ≥ 0, (2.51)

where U(t) is defined in (2.47).





Chapter 3

Count and risk processes

This chapter is based on the ‘Risk process with mixture of tempered stable inverse
subordinators: analysis and synthesis’ coauthor with Tetyana Kadankova accepted on
28th October, 2021 by ‘Random Operators and Stochastic Equations’ and has been
reproduced here with the permission of the copyright holder.

3.1 Poisson processes

3.1.1 Homogeneous Poisson process

Definition 3.1.1 (Homogeneous Poisson process (HPP) (first definition)). The process
Nµ = {Nµ(t), t ∈ [0,∞)} is said to be a HPP having rate µ, µ > 0, if the following
conditions are met.

• Nµ(0) = 0.

• The process has independent and stationary increments.

• The number of arrivals Pm in any interval of length τ > 0 is Poisson distributed
with mean (µτ).
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Thus, we have

Pm(t) = P{Nµ(t+ u) −Nµ(u) = m}

= e−[µ(t+u)−µu] [µ(t+ u) − µu]m

m! , m = 0, 1, 2, . . . (3.1)

HPP could also be defined as follow.

Definition 3.1.2 (HPP (second definition)). The process Nµ = {Nµ(t), t ∈ [0,∞)} is
said to be a HPP having rate µ, µ > 0, if the following conditions are met.

• Nµ(0) = 0.

• The process has independent and stationary increments.

• For any t ∈ [0,∞), as h → 0,

P(Nµ(t+ h) = m | Nµ(t) = m) = P{Nµ(t+ h) −Nµ(t) = 0}
= 1 − µth+ o(h);

P(Nµ(t+ h) = m+ 1 | Nµ(t) = m) = P{Nµ(t+ h) −Nµ(t) = 1}
= µth+ o(h);

P(Nµ(t+ h) = m+ k | Nµ(t) = m) = P{Nµ(t+ h) −Nµ(t) = k}
= o(h), k ≥ 2.

Proposition 3.1.1. Let Nµ(t) be a HPP with rate µ. Let Tn be the time of nth

arrival, and Yn be the inter-arrival time between the (n − 1)th and the nth arrival, i.e.
Yn = Tn − Tn−1. Then,

P(Y1 > t) = P (no arrival in (0, t])
= e−µt;

P(Y2 > t | Y1 = t1) = P (no arrival in (t1, t1 + t] | Y1 = t1)
= P (no arrival in (t1, t1 + t]) (independent increments)
= e−µt.
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P(Yn+1 > t | Y1 = t1, . . . , Yn = tn) = P (no arrival in (tn, tn + t] | Y1 = t1, . . . , Yn = tn)
= P (no arrival in (tn, tn + t])
= e−µt.

Then we have

FHPP
Yn

(t) =

1 − e−µt, if t ≥ 0
0, otherwise

, n ∈ Z+.

Thus, we have Yn ∼ Exp (µ).

Definition 3.1.3 (Erlang distribution). Let Y1, Y2, . . . , Yn denotes n i.i.d. random
variables, each of them has an exponential distribution with parameter µ. Then we
have ∑n

i=1 Yi = Tn, where Tn has a Erlang distribution with parameters n and µ, i.e.
Tn ∼ Erlang (n, µ).

An Erlang distribution has the following probability density function:

fTn(t) = λntn−1e−λt

(n− 1)! , t ≥ 0, λ ≥ 0, n ∈ Z+, (3.2)

and the cumulative distribution function:

FTn(t) = 1 − e−λt
n−1∑
k=0

1
k! (λt)

k. (3.3)

Remark. The Erlang distribution reduces to an exponential distribution when n = 1.

Proposition 3.1.2 (Arrival time). Recall that Tn = Y1 + . . .+ Yn, since Y1, . . . , Yn are
i.i.d. exponential random variable, thus, we have Tn ∼ Erlang (n, µ).

Following the results from above, the Poisson process could also be defined as follow:

Definition 3.1.4 (HPP (third definition) (renewal representation)).

Nµ(t) := max {n ≥ 0 : Y1 + · · · + Yn ≤ t} , (3.4)

where Y1, . . . , Yn are n i.i.d exponential random variables, and we have Nµ(t)t≥0 is a
HPP with independent and stationary increments.
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Covariance function

Let X(t), t ≥ 0 be a HPP with rate µ > 0, we have the covariance function:

Cov (X(s), X(t)) = µ (min (s, t)) , s ≥ 0, t ≥ 0. (3.5)

3.1.2 Nonhomogeneous Poisson process

Definition 3.1.5 (Nonhomogeneous Poisson process). Let λ(t) : [0,∞) → [0,∞) be
a pre-specified integrable function. The process NNΛ(t) = {NNΛ(t)(t), t ∈ [0,∞)} is
said to be a nonhomogeneous Poisson process (NPP) having rate λ(t), λ(t) ≥ 0, if the
following conditions are met.

• NNΛ(t)(0) = 0.

• The process has independent increments.

• For any t ∈ [0,∞), as h → 0,

P(NNΛ(t)(t+ h) = m | NNΛ(t)(t) = m) = P{NNΛ(t)(t+ h) −NNΛ(t)(t) = 0}
= 1 − λ(t)h+ o(h);

P(NNΛ(t)(t+ h) = m+ 1 | NNΛ(t)(t) = m) = P{NNΛ(t)(t+ h) −NNΛ(t)(t) = 1}
= λ(t)h+ o(h);

P(NNΛ(t)(t+ h) = m+ k | NNΛ(t)(t) = m) = P{NNΛ(t)(t+ h) −NNΛ(t)(t) = k}
= o(h), k ≥ 2.

Let
Λ(t) =

∫ t

0
λ(u)du.

Then we have

Pm(t) = P{NNΛ(t)(t+ u) −NNΛ(t)(u) = m}

= e−[Λ(t+u)−Λ(u)] [Λ(t+ u) − Λ(u)]m

m! , m = 0, 1, 2, . . . , (3.6)

and
F (t) = P (Y1 ≤ t) = 1 − exp (−Λ(t)) , t ≥ 0. (3.7)
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Remark. If λ(t) is a positive constant at all t, then

Λ(t) = λt,Λ(t+ u) − Λ(u) = λ(t+ u) − λu = λt.

i.e. it reduces to a HPP with rate λ.

Arrival time

Tn has the following distribution functions [31]:

FNPP
Tn

(t) = 1 − e−Λ(t)
n−1∑
k=0

[Λ(t)]k

t! , (3.8)

and
fNPP

Tn
(t) = e−Λ(t)λ(t) [Λ(t)]n−1

(n− 1)! . (3.9)

Covariance function

Let XΛ(t)(t), t ≥ 0 be a NPP with rate λ(t), λ(t) ≥ 0, we have the covariance function:

Cov
(
XΛ(t)(s), XΛ(t)(t)

)
= Λ (min (s, t)) , s ≥ 0, t ≥ 0. (3.10)

Similar to Definition 3.1.4, NPP could also be constructed as follow: [30]

Definition 3.1.6 (NPP (second definition) (renewal representation)). Let Y1, Y2, . . . be
a sequence of i.i.d. non-negative random variables with distribution function

F (t) = P (Yn ≤ t) = 1 − e−Λ(t), t ≥ 0,

with
Λ(t) → ∞, t → ∞.

Define

ζ ′
n := max {Y1, . . . , Yn} , n = 1, 2, . . . ,

χn := inf
{
k ∈ N : ζ ′

k > ζ ′
n−1

}
, n = 2, 3, . . .
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with χ1 = 1, let
ζn := ζ ′

χn
,

and
NNΛ(t)(t) := sup {k ∈ N : ζk ≤ t} =

∞∑
n=0

n1{ζn≤t≤ζn+1}, t ≥ 0

where ζ0 = 0, and we have NNΛ(t)(t)t≥0 is a NPP with independent increments.

3.2 Fractional Poisson processes

3.2.1 Fractional homogeneous Poisson process

Definition 3.2.1 (Fractional homogeneous Poisson process (first definition)). The
Fractional homogeneous Poisson process (FHPP) Nα(t), is defined by

Nα(t) = N1(Yα(t)), t ≥ 0, α ∈ (0, 1), (3.11)

where N1(t) denotes a HPP as defined in subsection 3.1.1 with parameter µ = 1, inde-
pendent of Yα(t), which is the inverse stable subordinator as defined in subsection 2.2.2.

Remark. It reduces to a HPP with rate µ if α = 1 as shown in [28].

Definition 3.2.2 (FHPP (second definition) (renewal representation)). FHPP could
also be defined with Mittag-Leffler distribution:

Nα(t) = max(n : Y1 + · · · + Yn ≤ t)

=
∞∑

j=1
1{Y1+···+Yj≤t}

=
∞∑

j=1
1Uj≤Gα(t), t ≥ 0, (3.12)

where {Yj} , j = 1, 2, . . . , denote the interarrival times of FHPP, which are i.i.d. random
variables with strictly monotone Mittag-Leffler distribution, with probability function
(see [24]):

Fα(t) = P(Yj ≤ t) = 1 − Eα(−µtα), t ≥ 0, α ∈ (0, 1), j = 1, 2, . . . , (3.13)
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Gα(t) = P (Y1 + · · · + Yk ≤ t) =
∫ t

0
h(k)(x) dx,

where

h(k)(x) = αµk xkα−1

(k − 1)!E
(k)
α (−µxα)

= µkxαk−1Ek
α,αk+1(−µxα), α ∈ (0, 1), x > 0

Remark.

1. Mittag-Leffler distribution has no finite moments for α ∈ (0, 1). Also, it reduces to
an exponential distribution if α = 1 as shown in subsection 2.2.2.

2. The interarrival time of the HPP Y HP P
j

i.i.d.∼ Exp (µ), whereas the interarrival time
of the FHPP are i.i.d. Mittag-Leffler distributed.

Note that, FHPP has the following probability mass function [24], [28]:

Pα(t, k) = P(Nα(t) = k)

= (µtα)k

k!

∞∑
j=1

(j + k)!
j!

(−µtα)j

Γ (α (j + k) + 1)

= (µtα)k

k! E(k)
α (−µtα),

= (µtα)kEk+1
α,αk+1(−µtα), k = 0, 1, 2, . . . , t ≥ 0, α ∈ (0, 1) (3.14)

where Eα(z) is the Mittag-Leffler function, E(k)
α (z) is the k-th derivative of Eα(z), and

Eγ
α,β(z) is the three-parametric generalised Mittag-Leffler function defined by

Eγ
α,β(z) =

∞∑
j=0

γ(j) zj

j! Γ(αj + β) , α > 0, β > 0, γ > 0, z ∈ C, (3.15)

where γ(j) is the rising factorial, defined by

γ(j) :=


1, if j = 0

Γ(γ + j)
Γ(γ) , if j = 1, 2, . . .
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The probability function, Pα(t, k), follows the following fractional Kolmogorov equation:

CDα
t P (Nα(t) = k) = µ(Pα(t, k − 1) − Pα(t, k)), 0 < α < 1, (3.16)

with initial condition

Pα(0, k) =

0, if k ̸= 0,
1, if k = 0,

α ∈ (0, 1),

and we defined that Pα(k,−1) ≡ 0.

Moments and covariance

We have

E (Nα(t)) = µtα

Γ(1 + α) (3.17)

Var (Nα(t)) = µ2t2α

Γ2(1 + α)

[
αΓ(α)
Γ(2α) − 1

]
+ µtα

Γ(1 + α) , t ≥ 0, (3.18)

Cov (Nα(s), Nα(t)) = µ(min(s, t))α

Γ(1 + α) + µ2 Cov (Yα(s), Yα(t)) , (3.19)

where Cov (Yα(s), Yα(t)) is given in Equation 2.21 (see [24]).

Arrival time

The arrival time Tn of FHPP has the following distribution function [31]:

FFHPP
Tn

(t) =
∫ ∞

0
fα(t, u)FHPP

Tn
(u) du

= 1 −
n−1∑
k=0

(µtα)k

k! Eα(−µtα), (3.20)

where fα is given in Equation 2.17, and Eα(z) is the one parameter Mittag-Leffler
function.
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3.2.2 Fractional nonhomogeneous Poisson process

Definition 3.2.3 (Fractional nonhomogeneous Poisson process (first definition)). The
fractional nonhomogeneous Poisson process (FNPP) NNα(t), is defined by [24]:

NNα(t) := N1 (Λ (Yα(t))) , t ≥ 0, α ∈ (0, 1), (3.21)

Λ(t) :=
∫ t

0
λ(s) ds, t ≥ 0,

with
Λ(t) → ∞, t → ∞,

where N1 = {N1(t), t ≥ 0} denotes a HPP with µ = 1, and Yα(t) denotes an inverse
α-stable subordinator, which is independent of N1.

Following Definition 3.1.6, FNPP could also be constructed as follow: [30]

Definition 3.2.4 (FNPP (second definition) (renewal representation)).

NNα(t) =
∞∑

n=0
n1{ζn≤Yα(t)≤ζn+1}

a.s.=
∞∑

n=0
n1{Lα(ζn)≤t≤Lα(ζn+1)},

where ζn is defined in Definition 3.1.6, and where Lα(Yα(t)) = t iff t is not a jump time
of Lα.

Remark. The renewal representations of HPP and FHPP are based on the interarrival
time Yj, whereas the renewal representations of the nonhomogeneous counterpart are
based on ζj = ζ ′

χj
= max

(
Y1, . . . , Yχj

)
, i.e. the maximum value of the interarrival time.

The probability mass function is given by [24]

P (NNα(t)) =
∫ ∞

0
e−Λ(u) Λ(u)k

k! fα(t, u) du, k = 0, 1, 2, . . . , (3.22)

where fα(t, u) is given by Equation 2.17.
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Arrival time

The arrival time Tn has the following distribution function [31]:

FFNPP
Tn

(t) =
∫ ∞

0
fα(t, u)FNPP

Tn
(u) du. (3.23)

3.3 Mixed tempered fractional Poisson processes

3.3.1 Mixed tempered fractional homogeneous Poisson process

Definition 3.3.1 (Mixed tempered fractional homogeneous Poisson process). We intro-
duce the mixed tempered fractional homogeneous Poisson process (MTFHPP) as the
counting process

{Zm(t) = N1(Ym(t)); t ≥ 0}, (3.24)

where N1 = {N1(t); t ≥ 0} is a homogeneous Poisson process with intensity µ = 1,
independent of IMTSS Ym(t) defined by Equation 2.46.

The marginal distribution is as follows:

fm(x) = P[Zh
m(t) = x] = 1

x!

∞∫
0

eµu[µu]xhm(t, u)du, x ∈ N0, (3.25)

where hm(t, u) is defined by Equation 2.50. It satisfies the governing equations with the
same fractional operators (see ([16]) Proposition 9).

Employing the results of Leonenko at al. (2014) [29] Proposition 9, one can show that

Cov(Zm(s), Zm(t)) = µ(min(t, s))α

Γ(1 − α) + µ2Cov(Ym(s), Ym(t)), 0 ≤ s ≤ t, (3.26)

where Cov(Ym(s), Ym(t)) is given by Equation 2.51.
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3.3.2 Mixed tempered fractional nonhomogeneous Poisson pro-
cess

Definition 3.3.2 (Mixed tempered fractional non-homogeneous Poisson process). We
introduce the mixed tempered fractional nonhomogeneous Poisson process (MTFNPP)
as the counting process

{NZm(t) = N1(Λ(Ym(t))); t ≥ 0}, (3.27)

where N1 = {N1(t); t ≥ 0} is a homogeneous Poisson process with intensity µ = 1,
independent of IMTSS Ym(t), and Λ : [0,∞) → [0,∞) is a right continuous, non-
decreasing function such that

Λ(0) = 0, Λ(t) − Λ(t−) ≤ 1, Λ(∞) = ∞, t > 0

Λ(t) =
t∫

0

λ(u)du < ∞,

where λ(u), u ≥ 0 is an intensity function.

The marginal distribution are as follows:

fm(x) = P[NZm(t) = x] = 1
x!

∞∫
0

eΛ(u)[Λ(u)]xhm(t, u)du, x ∈ N0, (3.28)

where hm(t, u) is defined by Equation 2.50. Equations 3.25 and 3.28 satisfy the governing
equations with the same fractional operators (see ([16]) Proposition 9). This fact justifies
our terminology.

Again, by employing the results of Leonenko at al. (2014) [29] Proposition 9, we can
show that

Cov(Zm(s), Zm(t)) = Λ((min(t, s))α)
Γ(1 − α) + µ2Cov(Ym(s), Ym(t)), 0 ≤ s ≤ t, (3.29)

where Cov(Ym(s), Ym(t)) is given by Equation 2.51.
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Following Leonenko et al. (2019) [30] one can approximate the distributions of the
stochastic process Zh

m(t) as follows:
[
Zh

m(t) − µYm(t)
]

√
µ

J1→ B(Ym(t)), (3.30)

where {B(t); t ≥ 0} is a standard Brownian Motion independent of Ym(t) and convergence
holds in J1 Skorokhod topology. For other approximations see again [30].

3.4 Fractional risk processes

3.4.1 Classical risk models

Definition 3.4.1 (Compound Poisson process). Suppose that Nµ(t) is a HPP, and
X1, X2, . . . = X are i.i.d. random variables which independent of Nµ(t). Then the sum
of X1, X2, . . . , XNµ(t), is said to be a compound Poisson process, i.e.

S(t) =
Nµ(t)∑
k=1

Xk (3.31)

is said to be a compound Poisson process (see [11], [12], [49]).

We have

E (S(t)) = µtE (X) (3.32)
Var (S(t)) = µtE

(
X2
)

(3.33)

Cov (S(s), S(t)) = µmin(s, t)E
(
X2
)

(3.34)

Definition 3.4.2 (Classical risk process). In classical Cramer-Lundberg risk process
(also known as classical compound Poisson risk model), the risk process R(t), t ≥ 0, is
defined by:

R(t) := u+ ct−
Nµ(t)∑
k=1

Xk, t ≥ 0, (3.35)
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where u is the initial surplus, c is the gross risk premium rate, Xk : k ≥ 1 are i.i.d.
random variables denoting the claim sizes, with Xk > 0 : k ≥ 1, and Nµ(t) denotes the
number of claims during the interval (0, t] [48].

We consider a generalisation of the classical risk model, by replacing Nµ(t) with
desired processes.

Definition 3.4.3 (Fractional compound Poisson process). Suppose that Nα(t) is a FHPP,
and X1, X2, . . . = X are i.i.d. random variables which independent of Nα(t). Then the
sum of X1, X2, . . . , XNα(t), is said to be a fractional compound Poisson process, i.e.

Sα(t) =
Nα(t)∑
k=1

Xk (3.36)

is said to be a fractional compound Poisson process, other processes could also be
computed similarly by replacing Nα(t).

Definition 3.4.4 (Fractional homogeneous risk process). The classical risk process was
extended by Kumar, et al. (see [24]), consider

R(t) := u+mµ(1 + ρ)Yα(t) −
Nα(t)∑
k=1

Xk, t ≥ 0, (3.37)

where u is the initial surplus, Xk : k ≥ 1 are i.i.d. random variables denoting the claim
sizes, with Xk > 0 : k ≥ 1 with mean m > 0, ρ is the safety loading, Yα(t) is an inverse
α-stable subordinator, and Nα(t) is a FHPP.

For nonhomogeneous version, the process is defined by

Definition 3.4.5 (Fractional nonhomogeneous risk process).

R(t) := u+m(1 + ρ)Λ(Yα(t)) −
NNα(t)∑

k=1
Xk, t ≥ 0, (3.38)

where u is the initial surplus, Xk : k ≥ 1 are i.i.d. random variables denoting the
claim sizes, with Xk > 0 : k ≥ 1, ρ is the safety loading, Yα(t) is an inverse α-stable
subordinator, and NNα(t) is a FNPP.
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3.4.2 Mixed risk model

To extend the usage of classical Cramer-Lundberg risk model for mixed risk model, we
consider a generalisation of it, namely we consider the risk process of the first type as

R1(t) = u+ ct−
NZm(t)∑

i=1
Xi, (3.39)

where u is the initial capital of the insurance company, c is the constant premium rate,
and {Xi}i≥1 are positive i.i.d. random variables independent of the fractional counting
process Zm(t) defined by (Equation 3.24). We interpret {Xi}i≥1 as the claim sizes of
the counting process NZm(t) with inter-arrival times {Wi}i≥1. The net profit condition
cE[Wi] > E[Xi] is imposed to ensure that ruin does not happen with certainty. We also
assume that random variables Xi have two moments and employ the following notation:
m = E[Xi].
Note that for λ1 = λ2 = λ the process (Equation 3.39) was introduced and studied in
Kataria and Khandakar (2021) [21]. Observe that for the homogeneous Poisson process
(i.e. Λ(t) = µt) we get

E[R1(t)] = u+mρµU(t),

Cov(R1(s), R1(t)) = E[X2
1 ]E[NZm(s)] + µ2(E[X1])2Cov(NZm(s), NZm(t)), 0 < s ≤ t,

where U(t) is given by (Equation 3.26).

Following Kumar et. al (2019) [24], we also introduce the risk process of the second
type

R2(t) = u+m(1 + ρ)Λ(Ym(t)) −
NZm(t)∑

i=1
Xi, (3.40)

where ρ is the safety loading factor defined by

ρ = cE[W1] − E[X1]
E[X1]

. (3.41)

Note that

E[R2(t)] = u+mρµU(t),
Cov(R2(s), R2(t)) = E[X2

1 ]E[NZm(s)] +m2µ2ρ2Cov(NZm(s), NZm(t)),

where Cov(NZm(s), NZm(t)) is given by (Equation 3.26).
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Observe that the homogeneous versions of models (Equation 3.39), (Equation 3.40) are
obtained by setting the intensity function λ(t) = µt. This yields

R3(t) = u+ ct−
Zm(t)∑
i=1

Xi, (3.42)

and

R4(t) = u+m(1 + ρ)Ym(t) −
Zm(t)∑
i=1

Xi. (3.43)

For all risk processes Ri(t), i = 1, 2, 3, 4 we introduce the ruin probabilities with finite
horizon (finite-time ruin probabilities) [49]

ψi(u, T ) = P [ inf
0≤t≤T

Ri(t) < 0 |Ri(0) = u] i = 1, 2, T > 0 (3.44)

and the time of ruin

Ti = inf{t > 0 : Ri(t) < 0}, i = 1, 2. (3.45)

These characteristics will be investigated numerically in Section 4.2. It is worth noting that
the ruin probability and numerical approximations of the first passage were intensively
investigated in various generalizations of classical risk models (see [9], [36], [50]).





Chapter 4

Simulations

This chapter is based on the ‘Risk process with mixture of tempered stable inverse
subordinators: analysis and synthesis’ coauthor with Tetyana Kadankova accepted on
28th October, 2021 by ‘Random Operators and Stochastic Equations’ and has been
reproduced here with the permission of the copyright holder.

4.1 Simulations methodologies

The python code for simulations could be found on https://github.com/VinventN/
Processes.

4.1.1 Simulation of processes

In this section we provide simulations of the sample paths of the two traditional types of
Poisson processes: homogeneous Poisson process N(t) (HPP) defined in Section 3.1.1,
and non-homogeneous Poisson process NN(t) (NPP) defined in Section 3.1.2; along with
four types of fractional Poisson processes: fractional homogeneous Poisson process Nα(t)
(FHPP) defined by Section 3.2.1, and its non-homogeneous version NNα(t) (FNPP)
defined by Section 3.2.2, the mixed tempered stable fractional homogeneous Poisson
process Zm(t) (MTFHPP) defined by Definition 3.3.1, and its non-homogeneous version
NZm(t) (MTFNPP) defined by Definition 3.3.2. These processes serve as counting

https://github.com/VinventN/Processes
https://github.com/VinventN/Processes
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processes of the claims in the models defined in Equations (3.39), (3.40), (3.42) and (3.43).
We use the following base parameterisation:

• the homogeneous Poisson process Nµ(t) has the intensity µ = 4;

• the intensity function of the non-homogeneous Poisson process is

λ(t) = γ

β

(
t

β

)γ−1

, γ = 0.9, β = 0.2;

• the parameters of the mixture tempered stable inverse process are set as follows:

α1 = 0.9, α2 = 0.5, λ1 = 0.3, λ2 = 0.7, c1 = 0.75, c2 = 0.25.

and the results of the simulations could be found in Figure 4.1.

Homogeneous Poisson process

From Proposition 3.1.1, it was shown that the waiting time of HPP follows an exponential
distribution with parameter λ, and a HPP could be simulated using Algorithm 1. The
results of the simulation could be found in Figure 4.1a.

Nonhomogeneous Poisson process

Since NPP has a time dependent rate λ(t), Algorithm 1 is not suitable for such simulation.
However, the thinning algorithm could be used for NPP simulation (see [8], [32], [41]),
a proof of that could be found in [8, Theorem 4.2]. An NPP could be simulated using
Algorithm 2, and the results could be found in Figure 4.1b.

α-stable subordinator

α-stable subordinator Sα(t) could be simulated by using Sα(t) using Sα(t+ dt) −Sα(t) d=
Sα(dt) d= (dt)1/α [16], where

Sα(1) d= sin (απU1) [sin (1 − α)πU1]1/α−1

[sin (πU1)]1/α |lnU2|1/α−1 .
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It could also be simulated by using the α-stable distribution (see [24]), where

Lα(t) ∼ S(α, β, σ, µ),

which has the characteristics function

E
[
eitX

]
=

exp
[
−σα|t|α

(
1 − iβ sgn (t) tan

(
πα
2

))
+ itµ

]
, α ̸= 1

exp
[
−σ|t|

(
1 + iβ 2

π
sgn (t) log |t|

)
+ itµ

]
, α = 1,

(4.1)

with
β = 1, σ =

(
t cos πα2

) 1
α

, µ = 0.

Inverse α-stable subordinator

An inverse α-stable subordinator could be simulated by swapping the axes of an α-stable
subordinator due to the nature of an inverse function.

Fractional homogeneous Poisson process

Simulating of the paths of the fractional homogeneous Poisson process (FHPP) is based
on the following fact: the inter-arrival times {Ti; i ≥ 1} of FHPP have the Mittag-Leffler
distribution. We employ the approach proposed in [4], where Cahoy, Uchaikin and
Woyczynski used the following representation for {Ti; i ≥ 1} :

Ti
d= T = | lnU1|

1
α

λ
1
α

Lα(1), (4.2)

where U1
i.i.d.∼ U (0, 1), and Lα(1) is an α-stable subordinator evaluated at t = 1. The

following result from [6] provides an algorithm for simulation of the inter-arrival times of
FHPP:

Lα(1) d= sin (απU2) [sin((1 − α)πU2)]
1
α

−1

[sin(πU2)] | lnU3|
1
α

−1
, (4.3)

where U2, U3
i.i.d.∼ U (0, 1).
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Fractional nonhomogeneous Poisson process

The simulation of FNPP could be done by using the same thinning algorithm to a FHPP,
as shown in Algorithm 4, the results is shown in Figure 4.1d.

Mixed tempered fractional Poisson process

The simulations of the mixed tempered processes (MTFHPP and MTFNPP) could be
done with the ‘acceptance-rejection method’ as shown in [16], and the algorithms could
be found in Algorithms 5 and 6.
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Fig. 4.1 Simulations of the processes
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4.1.2 Simulation of ruin probability

Definition 4.1.1 (Inverse Gaussian distribution). The probability density function of
an inverse Gaussian (IG) distribution is given by (see [46])

f(x;µ, λ) =
√

λ

2πx3 exp
[
− λ

2µ2
(x− µ2)

x

]
, x > 0, µ > 0, λ > 0, (4.4)

with cumulative distribution function:

F (x;µ, λ) = Φ
√λ

x

(
x

µ
− 1

)+ exp
(

2λ
µ

)
Φ
(

−λ

x

(
x

µ
+ 1

))
. (4.5)

The Laplace transform of an inverse Gaussian distribution is given by (see [46])

E
[
e−sX

]
= exp

λµ
1 −

(
1 + 2µ2s

λ

) 1
2
 . (4.6)

The first two moments of an inverse Gaussian distribution is given by

E [X] = µ

E
[
X2
]

= µ2(λ+ µ)
λ

Definition 4.1.2 (Generalised Inverse Gaussian distribution). The probability density
function of a generalised inverse Gaussian (GIG) distribution is given by (see [14])

f(x; a, b, p) = (a/b)p/2

2Kp(
√
ab)

xp−1e− ax+b/x
2 , x > 0, a > 0, b > 0, p ∈ R, (4.7)

where Kp is the modified Bessel function of the second kind, which is given by (see [52])

Kp(x) =
∫ ∞

0
e−x cosh u cosh(pu)du, ,ℜ(x) > 0.

with cumulative distribution function:

F (x; a, b, p) = (a/b)p/2

2Kp(
√
ab)

(2
a

)p

γ

(
p,
ax

2 ,
ab

4

)
(4.8)
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where γ(α, x, b) is the generalised lower incomplete gamma function, given by (see [7])

γ(α, x, b) =
∫ x

0
tα−1e−t− b

t dt.

The first two moments of a generalised inverse Gaussian distribution is given by

E [X] =
√
bKp+1(

√
ab)

√
aKp(

√
ab)

E
[
X2
]

= bKp+2(
√
ab)

aKp(
√
ab)

.

Definition 4.1.3 (Exponentially modified Gaussian distribution). The probability
density function of a exponentially modified Gaussian distribution (exGaussian) (EMG)
distribution is given by (see [15])

f(x;µ, σ, λ) = λ

2 exp
(
2µ+ λσ2 − 2x

)
erfc

(
µ+ λσ2 − x√

2σ

)
,

x ∈ R, µ ∈ R, σ > 0, λ > 0,
(4.9)

where erf(x) is the error function defined by erf(x) = 2√
π

∫ x
0 e

−t2
dt, and erfc(x) is the

complementary error function defined by erfc(x) = 1−erf(x); with cumulative distribution
function:

F (x;µ, σ, λ) = Φ(u, 0, v) − exp
(

− u+ v2

2 + log(Φ(u, v2, v))

)
(4.10)

where u = λ(x− µ), v = λσ.

The first two moments of a exponentially modified Gaussian distribution is given by

E [X] = µ+ 1
λ

E
[
X2
]

= σ2 + µ2 + 2(1 + λµ)
λ2 .
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Fig. 4.2 Simulations of risk processes
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4.2 Numerical investigation of the ruin probabilities
and ruin times for the mixed risk model

4.2.1 Setups

In this section we adhere to the following assumptions (unless specified otherwise):

• the initial capital of the insurance company is set to u = 500;

• claim sizes {Xi}i≥0 are i.i.d. exponentially distributed, with expected claim size
equal to 10;

• the gross risk premium rate is set to c = 20, the safety loading factor is ρ = 0.1;

• the claims arrive according to the homogeneous Poisson process with intensity
µ = 4;

• for the non-homogeneous Poisson process we assume that the intensity function is

λ(t) = γ

β

(
t

β

)γ−1

γ = 0.9, β = 0.2;

• the parameters of the mixture tempered stable inverse process are set as

α1 = 0.9, α2 = 0.5, λ1 = 0.3, λ2 = 0.7, c1 = 0.75, c2 = 0.25.

For the sake of simplicity we adhere to the following notation: the risk models (3.39)
- (3.43) will be denoted by Model 1, Model 2, Model 3 and by Model 4 respectively. We
first simulated 200 000 realisations of sample paths of each risk process Ri(t), i = 1, . . . 4.
Based on these simulations we created samples of ruin times and then we fitted different
distributions to these samples. All available distributions in scipy package from python
were used for distribution fitting using scipy.stats.rv_continuous.fit. The best fit
is produced by (i) IG; (ii) GIG and (iii) the EMG with the following parameterisations:

(i) for the IG:

f(x; δ, η) =
√

η

2πx3 exp
[
− η

2δ2
(x− δ2)

x

]
, x > 0, δ > 0, η > 0; (4.11)
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(ii) GIG has the density:

f(x; a, b, p) = (a/b)p/2

2Kp(
√
ab)

xp−1e− ax+b/x
2 , x > 0, a > 0, b > 0, p ∈ R, (4.12)

(iii) and for the EMG:

f(x;κ, σ, q0) = q0

2 exp
(
2κ+ q0σ

2 − 2x
)

erfc
(
κ+ q0σ

2 − x√
2σ

)
,

x ∈ R, κ ∈ R, σ > 0, q0 > 0,
(4.13)

where erf(x) is the error function defined by erf(x) = 2√
π

∫ x
0 e

−t2
dt, and erfc(x) is

the complementary error function defined by erfc(x) = 1 − erf(x).

Table 4.1 contains the maximum likelihood estimators of the fitted distributions. Table 4.2
presents the errors and the goodness of fit measures such as the sum of squared error
(SSE), Akaike information criterion (AIC), Bayesian information criterion (BIC), and
the log-likelihood (LLH). As shown in Table 4.2, the GIG and IG have the lowest value
of SSE, and therefore they will be used for further analyses in this paper.
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Fig. 4.3 Distributions of the time of ruin for HPP, NPP, FHPP, and FNPP

Further, we compared the behaviour of the finite-time ruin probabilities ψ(u, t) as
a function of some model parameters. To do this, we simulated the finite-time ruin
probabilities obtained from Models 1-4.

Table 4.3 shows that under Model 2 and Model 4 the ruin probabilities are remarkably
higher than those under Model 1 and Model 3. Simulations suggest that the ruin
probabilities drop more rapidly as the initial capital u increases for Model 1 and Model
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Table 4.1 Parameters of the fitted distributions using
scipy.stats.rv_continuous.fit

Distribution Parameters
Model 1

IG δ = 94.752, η = 164.627
GIG a = 151.685, b = 0.020, p = −0.294

EMG κ = 22.543, σ = 7.268, q0 = 0.003
Model 2

IG δ = 26.391, η = 38.051
GIG a = 99.070, b = 2.960 × 10−8, p = −3.179

EMG κ = 10.171, σ = 0.004, q0 = 0.073
Model 3

IG δ = 93.504, η = 158.924
GIG a = 135.072, b = 0.022, p = −0.108

EMG κ = 23.644, σ = 8.051, q0 = 0.014
Model 4

IG δ = 26.216, η = 38.680
GIG a = 99.493, b = 3.888 × 10−5, p = −3.183

EMG κ = 7.587, σ = 1.192, q0 = 0.054

Table 4.2 Statistics for fitted distributions of the time of ruin

Distribution SSE AIC BIC
Model 1

IG 3.592 × 10−6 1888.216 −103635.007
GIG 3.086 × 10−6∗ 1867.221∗ −104374.570∗

EMG 4.972 × 10−6 1942.557 −102033.463
Model 2

IG 3.80 × 10−5∗ 5600.448 −8.987 × 105∗

GIG 3.75 × 10−4 2890.382∗ −7.995 × 105

EMG 5.10 × 10−5 10403.993 −8.852 × 105

Model 3
IG 2.033 × 10−6 1833.934∗ −105738.071

GIG 1.980 × 10−6∗ 1840.089 −105859.845∗

EMG 6.098 × 10−6 1870.819 −100360.953
Model 4

IG 3.60 × 10−5∗ 5546.795 −8.904 × 105∗

GIG 3.40 × 10−4 2887.251∗ −7.953 × 105

EMG 4.70 × 10−5 10502.987 −8.800 × 105
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Fig. 4.5 Fitted distributions of simulations of time of ruin

3. By comparing ψ(u, 2000) and ψ(u, 100), we established that Model 1 and Model 3
have lower proportions of ruins occurred before time t = 100, which indicates that their
distributions have heavier tails compared to those of Model 2 and Model 4.

Figures 4.3 and 4.4 show the time of ruin and probabilities of ruin of HPP, NPP,
FHPP, FNPP. Figure 4.5 shows the probability density functions of the ruin probability
with their fitted distributions. Figures 4.6–4.9 contain the ruin probabilities of Model 1
(MTFNPP) and Model 3 (MTFHPP) with different initial capitals u. Figures 4.10–4.13
show the ruin probabilities of MTFHPP and MTFNPP with different values of α1 and u

under Models 1 - 4.

From Figures 4.10b, 4.11b, 4.12b and 4.13b, we observe the following behavior as u
increases:



4.2 Numerical investigation of the ruin probabilities and ruin times for the mixed risk
model 49

0 100 200 300 400 500
0.000

0.002

0.004

0.006

0.008

0.010
Inverse Gaussian
Generalised inverse Gaussian
Exponentially modified Gaussian

(a) u = 500
0 100 200 300 400 500

0.000

0.002

0.004

0.006

0.008
Inverse Gaussian
Generalised inverse Gaussian
Exponentially modified Gaussian

(b) u = 750
0 100 200 300 400 500

0.000

0.002

0.004

0.006

0.008 Inverse Gaussian
Generalised inverse Gaussian
Exponentially modified Gaussian

(c) u = 1000

Fig. 4.6 Fitted distributions of simulations of time of ruin for Model 1 with different
initial capital values
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Fig. 4.7 Fitted distributions of simulations of time of ruin for Model 2 with different
initial capital values

• the probabilities of ruin reduce;

• the distributions of time of ruin are less left skewed;

• the distributions of time of ruin have heavier tails.

Complete numerical results can be found in Appendix B.

Table 4.3 Finite-time ruin probabilities ψ(u, t)

Model 1 Model 2 Model 3 Model 4
ψ(500, 2000) 0.024635 0.0448 0.02448 0.044195
ψ(500, 100) 0.016425 0.04362 0.01626 0.04301
ψ(750, 2000) 0.00422 0.02429 0.00411 0.02441
ψ(750, 100) 0.00166 0.023135 0.001585 0.0232

ψ(1000, 2000) 0.00072 0.01591 0.00066 0.01649
ψ(1000, 100) 0.000165 0.01472 0.00013 0.015245
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Fig. 4.8 Fitted distributions of simulations of time of ruin for Model 3 for different initial
capital values
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Fig. 4.9 Fitted distributions of simulations of time of ruin for Model 4 for different initial
capital values
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Fig. 4.10 Probability of ruin of Model 1 under different parameterisations
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Fig. 4.11 Probability of ruin of Model 2 under different parameterisations
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Fig. 4.12 Probability of ruin of model 3 under different parameterisations
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Fig. 4.13 Probability of ruin of Model 4 under different parameterisations





Chapter 5

Conclusions

In this thesis, we introduce the mixed tempered fractional Poisson process, which would
be more flexible in real-life modelling due to the extra parameters.

This thesis had the aim of exploring the relationship between ruin probabilities and
the newly introduced mixed tempered fractional risk models.

5.1 Summaries

The results in Section 4.2 suggest that the inverse Gaussian distribution fits well for the
risk models under mixed tempered fractional Poisson process, especially model 1 and 3,
but also the other processes as they are special cases within MTFPP.

Furthermore, there are noteworthy drops in ruin probabilities of model 1 and 3 as
the initial capital increase in comparison to the other models.

Although the exact formula of the risk process remains a complex open problem, we
propose a simple but practical method for time of ruin and finite-time ruin probability
approximation in Chapter 4, with the use of the inverse Gaussian and generalised inverse
Gaussian distribution, it is far less complex and time consuming than full Monte Carlo
simulation.
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5.2 Limitations

Insurance companies are often not received the premium payments continuously and
uniformly throughout the year in real life, e.g. travel insurance tends to have higher
number of claims and more policies are bought during summer, i.e. more claims and
higher premium rate. Also, the use of exponential distribution for claim sizes Xi in
Section 4.1.2 might not be suitable for some insurance providers.

However, for simplicity, and also to reduce the need of computational power, the
Monte Carlo simulations in Section 4.2 are done in the assumption that the premium
payments are received continuously and uniformly with exponentially distributed claim
sizes.

5.3 Future work

We believe that there are still many open problems for further research. We suggest that
further research may be carried out in the following areas:

1. For insurance providers which have higher proportion of seasonal policies, we could
extend the model that was discussed in Equation (3.39),

R(t) = u+ c(t) −
NZm(t)∑

i=1
Xi, (5.1)

where c(t) is the premium rate function over time. Also, a periodic function could
be useful for λ(t) as the distribution of claim sizes and the number of claims over
each calender year are usually very similar every year.

2. For insurance companies which have high proportion of lower claim sizes, lighter-
tailed distributions would be more suitable, e.g. generalised rectified Gaussian
distribution [42].

3. The obtained results in this paper do not include the effects of reinsurance or
copayment which are common in some types of policies.

4. Further research may be carried out in the relationship between the collective risk
model used in this paper, and the individual risk model [53].
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5. Mixture of more than 2 TSSs could be introduced in further studies.

6. The theory for ruin probability and time of ruin for the risk models with some
particular non-local Poisson processes.

7. Translated gamma approximation discussed in [12] could also be further studied
for non-local processes.
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Appendix A

Simulations’ algorithms

Algorithm 1: Simulation of Homogeneous Poisson process with rate µ, on [0, T ]
[8]

Input: µ, T
Step 1: generate increments of Yn ∼ Exp(µ) (see Propositions 3.1.1 and 3.1.2);
Step 2: sum up the increments to give Nµ(t);
Output: Nµ(t)

Algorithm 2: Simulation of Nonhomogeneous Poisson process with time de-
pendent rate λ(t), on [0, T ] [8]

Input: λ(t), T
Step 1: generate increments of Yn ∼ Exp(µ);
Step 2: generate NNµ(t) using the following ‘thinning algorithm’:
(i) generate Yn;
(ii) generate U i.i.d.∼ U (0, 1);
(iii) if U ≤ λ(t)

sup0≤t≤T λ(t) , accept Yn;
(iv) goto (i);
Step 3: sum up the increments to give NNµ(t);
Output: NNµ(t)
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Algorithm 3: Simulation of Fractional Homogeneous Poisson process with rate
λ, and stability index α, on [0, T ] [4], [33]

Input: µ, T, α
Step 1: generate U1, U2, U3,

i.i.d.∼ U (0, 1);
Step 2: generate increments of Yn, where

Yn = | lnU1|
1
α

λ
1
α

sin(απU2) [sin((1 − α)πU2)]
1
α

−1

[sin(πU2)] | lnU3|
1
α

−1
;

Step 3: sum up the increments to give Nα(t);
Output: Nα(t)

Algorithm 4: Simulation of Fractional Nonhomogeneous Poisson process with
time dependent rate λ(t), and stability index α, on [0, T ]

Input: λ(t), T, α
Step 1: generate U1, U2, U3,

i.i.d.∼ U (0, 1);
Step 2: generate increments of Yn, where

Yn = | lnU1|
1
α

λ
1
α

sin(απU2) [sin((1 − α)πU2)]
1
α

−1

[sin(πU2)] | lnU3|
1
α

−1
;

Step 3: apply the thinning algorithm (see Algorithm 2);
Step 4: sum up the increments to give Nα(t);
Output: Nα(t)
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Algorithm 5: Simulation of mixture tempered fractional Poisson processes
with rate µ or Λ(t), and fractional indices α1, α2, tempered indices λ1, λ2, and
mixture indices c1, c2, on [0, T ] [16]

Input: µ, T, α1, α2, λ1, λ2, c1, c2

Step 1: generate U1, U2
i.i.d.∼ U (0, 1);

Step 2: generate increments of the α-stable subordinator Sα(t) using
Sα(t+ dt) − Sα(t) d= Sα(dt) d= (dt)1/α, where

Sα(1) d= sin (απU1) [sin (1 − α) πU1]1/α−1

[sin (πU1)]1/α |lnU2|1/α−1 ;

Step 3: generate S1(c1t) and S2(c2t) using the following ‘accept-reject algorithm’:
(i) generate Sα(dt);
(ii) generate U3

i.i.d.∼ U (0, 1), if U3 ≤ e−λSα(dt), accept Sα(dt); otherwise, go back
to (i);

(iii) sum up the increments to get S1(c1t) and repeat to get S2(c2t);
Step 4: generate MTSS Sm(t) by summing up S1(c1t) and S2(c2t) (see
Equation 2.40);

Step 5: generate IMTSS Ym(t) by inverting the axes;
Step 6: generate MTFHPP NZm(t) using Equation 3.24;
Output: Zm(t)
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Algorithm 6: Simulation of mixture tempered fractional Poisson processes
with rate µ or Λ(t), and fractional indices α1, α2, tempered indices λ1, λ2, and
mixture indices c1, c2, on [0, T ] [16]

Input: λ(t), T, α1, α2, λ1, λ2, c1, c2

Step 1: generate U1, U2
i.i.d.∼ U (0, 1);

Step 2: generate increments of the α-stable subordinator Sα(t) using
Sα(t+ dt) − Sα(t) d= Sα(dt) d= (dt)1/α, where

Sα(1) d= sin (απU1) [sin (1 − α) πU1]1/α−1

[sin (πU1)]1/α |lnU2|1/α−1 ;

Step 3: apply the thinning algorithm (see Algorithm 2);
Step 4: generate S1(c1t) and S2(c2t) using the following ‘accept-reject algorithm’:
(i) generate Sα(dt);
(ii) generate U3

i.i.d.∼ U (0, 1), if U3 ≤ e−λSα(dt), accept Sα(dt); otherwise, go back
to (i);

(iii) sum up the increments to get S1(c1t) and repeat to get S2(c2t);
Step 5: generate MTSS Sm(t) by summing up S1(c1t) and S2(c2t) (see
Equation 2.40);

Step 6: generate IMTSS Ym(t) by inverting the axes;
Step 7: generate MTFNPP NZm(t) using Equation 3.27;
Output: NZm(t)
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Full numerical results

Table B.1 Ruin probabilities with substituted α1 and α2

α1 α2
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

model 1
ψ(500, 2000) 1 1 1 1 0.024635 0.024515 0.02424 0.024635 0.025235 0.02528
ψ(500, 100) 1 1 0.999245 0.62831 0.016425 0.016135 0.015885 0.016425 0.016585 0.016975
ψ(750, 2000) 1 1 1 0.99999 0.00422 0.00423 0.004125 0.00422 0.00408 0.004265
ψ(750, 100) 1 1 0.997115 0.38287 0.00166 0.00175 0.001595 0.00166 0.001545 0.0016

ψ(1000, 2000) 1 1 1 0.99999 0.00072 0.000875 0.00072 0.00072 0.000645 0.00077
ψ(1000, 100) 1 1 0.991185 0.189275 0.000165 0.00013 0.000125 0.000165 0.0001 0.00013

model 2
ψ(500, 2000) 0.9979 0.95665 0.60129 0.15593 0.0448 0.044855 0.044575 0.0448 0.04438 0.044
ψ(500, 100) 0.9969 0.953405 0.594195 0.152305 0.04362 0.0435 0.04339 0.04362 0.043075 0.04281
ψ(750, 2000) 0.997685 0.93539 0.429315 0.083135 0.02429 0.02464 0.024705 0.02429 0.02444 0.024175
ψ(750, 100) 0.996535 0.930115 0.41913 0.079155 0.023135 0.02331 0.02349 0.023135 0.0231 0.02291

ψ(1000, 2000) 0.997485 0.91031 0.30683 0.055145 0.01591 0.016625 0.016445 0.01591 0.01667 0.016335
ψ(1000, 100) 0.99621 0.902835 0.294325 0.05099 0.01472 0.015285 0.01522 0.01472 0.01531 0.015055

model 3
ψ(500, 2000) 1 1 1 1 0.02448 0.02521 0.02502 0.02448 0.02522 0.024315
ψ(500, 100) 1 1 0.99925 0.628715 0.01626 0.01672 0.016395 0.01626 0.01651 0.01593
ψ(750, 2000) 1 1 1 1 0.00411 0.00429 0.004245 0.00411 0.004105 0.00394
ψ(750, 100) 1 1 0.99733 0.38232 0.001585 0.00173 0.00174 0.001585 0.001585 0.001545

ψ(1000, 2000) 1 1 1 1 0.00066 0.000685 0.000845 0.00066 0.00068 0.00064
ψ(1000, 100) 1 1 0.991465 0.18908 0.00013 0.000125 0.00016 0.00013 0.000145 0.00009

model 4
ψ(500, 2000) 0.997895 0.95672 0.59985 0.156675 0.044195 0.04464 0.044095 0.044195 0.043765 0.044225
ψ(500, 100) 0.996875 0.953735 0.59346 0.153315 0.04301 0.04343 0.04294 0.04301 0.0425 0.043015
ψ(750, 2000) 0.99763 0.93537 0.42681 0.08326 0.02441 0.02466 0.02465 0.02441 0.02403 0.024275
ψ(750, 100) 0.99649 0.93065 0.417205 0.07968 0.0232 0.023405 0.02346 0.0232 0.02275 0.02302

ψ(1000, 2000) 0.99744 0.910655 0.306885 0.05536 0.01649 0.016655 0.016605 0.01649 0.016035 0.01594
ψ(1000, 100) 0.996145 0.90372 0.295105 0.051675 0.015245 0.01539 0.015385 0.015245 0.01473 0.014625



68 Full numerical results

Table B.2 Ruin probabilities with substituted λ1 and λ2

α1 α2
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

model 1
ψ(500, 2000) 0.00187 0.024635 0.218995 0.90633 0.99998 0.003025 0.00672 0.01302 0.024635 0.04448
ψ(500, 100) 0.001755 0.016425 0.074645 0.21114 0.42669 0.002695 0.00545 0.00987 0.016425 0.025825
ψ(750, 2000) 0.00009 0.00422 0.10491 0.848245 0.99995 0.000185 0.000555 0.00158 0.00422 0.00968
ψ(750, 100) 0.00007 0.00166 0.01323 0.06067 0.17547 0.00014 0.000305 0.000765 0.00166 0.003035

ψ(1000, 2000) 0.00001 0.00072 0.049985 0.7837 0.99986 0.000005 0.000035 0.000215 0.00072 0.002115
ψ(1000, 100) 0.000005 0.000165 0.001725 0.011755 0.052075 0 0.000005 0.000045 0.000165 0.000255

model 2
ψ(500, 2000) 0.05172 0.0448 0.04338 0.045505 0.04938 0.04145 0.040745 0.04289 0.0448 0.04666
ψ(500, 100) 0.04914 0.04362 0.042545 0.04477 0.048795 0.04014 0.03965 0.04176 0.04362 0.045475
ψ(750, 2000) 0.031885 0.02429 0.02247 0.02245 0.02301 0.022725 0.022355 0.023845 0.02429 0.02575
ψ(750, 100) 0.02923 0.023135 0.02163 0.02171 0.02235 0.0214 0.02127 0.022695 0.023135 0.024535

ψ(1000, 2000) 0.022705 0.01591 0.0145 0.01403 0.01428 0.01539 0.01477 0.015815 0.01591 0.01734
ψ(1000, 100) 0.020015 0.01472 0.01366 0.013285 0.01361 0.014025 0.013585 0.014565 0.01472 0.016075

model 3
ψ(500, 2000) 0.00203 0.02448 0.219865 0.905655 0.99994 0.002905 0.00709 0.013225 0.02448 0.04468
ψ(500, 100) 0.001885 0.01626 0.07502 0.21098 0.426665 0.00267 0.00583 0.00995 0.01626 0.02597
ψ(750, 2000) 0.00011 0.00411 0.104535 0.849115 0.999885 0.000165 0.000585 0.00163 0.00411 0.00992
ψ(750, 100) 0.000075 0.001585 0.013425 0.060395 0.176805 0.000135 0.000385 0.000765 0.001585 0.003105

ψ(1000, 2000) 0.00001 0.00066 0.04992 0.784365 0.999815 0.000005 0.0004 0.0002 0.00066 0.00225
ψ(1000, 100) 0.000005 0.00013 0.001625 0.012005 0.0516 0 0.000015 0.000035 0.00013 0.00026

model 4
ψ(500, 2000) 0.053195 0.044195 0.04431 0.04629 0.049345 0.040565 0.04081 0.04348 0.044195 0.046595
ψ(500, 100) 0.05054 0.04301 0.043355 0.04556 0.048705 0.03937 0.039655 0.042325 0.04301 0.04545
ψ(750, 2000) 0.032735 0.02441 0.022945 0.02244 0.02319 0.02214 0.022745 0.02417 0.02441 0.025885
ψ(750, 100) 0.03007 0.0232 0.021975 0.02169 0.02254 0.020945 0.02156 0.02298 0.0232 0.024695

ψ(1000, 2000) 0.023515 0.01649 0.014675 0.014005 0.01427 0.01503 0.01517 0.01584 0.01649 0.017565
ψ(1000, 100) 0.02072 0.015245 0.013725 0.01325 0.0136 0.0138 0.013875 0.01467 0.015245 0.01637
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Table B.3 Ruin probabilities with substituted c1 and c2

c1=0.25 c1=0.5 c1=0.75
model 1

ψ(500, 2000) 0.373705 0.095175 0.024635
ψ(500, 100) 0.103525 0.044965 0.016425
ψ(750, 2000) 0.22971 0.03029 0.00422
ψ(750, 100) 0.021495 0.00635 0.00166

ψ(1000, 2000) 0.139765 0.009415 0.00072
ψ(1000, 100) 0.00311 0.000675 0.000165

model 2
ψ(500, 2000) 0.042295 0.02448 0.0448
ψ(500, 100) 0.041625 0.02397 0.04362
ψ(750, 2000) 0.02097 0.013115 0.02429
ψ(750, 100) 0.020265 0.01258 0.023135

ψ(1000, 2000) 0.013345 0.00876 0.01591
ψ(1000, 100) 0.01261 0.008215 0.01472

model 3
ψ(500, 2000) 0.373185 0.095175 0.02448
ψ(500, 100) 0.10449 0.04349 0.01626
ψ(750, 2000) 0.22966 0.03084 0.00411
ψ(750, 100) 0.02149 0.006105 0.001585

ψ(1000, 2000) 0.14103 0.01006 0.00066
ψ(1000, 100) 0.003365 0.00066 0.00013

model 4
ψ(500, 2000) 0.04241 0.02421 0.044195
ψ(500, 100) 0.041645 0.023715 0.04301
ψ(750, 2000) 0.02069 0.01325 0.02441
ψ(750, 100) 0.019905 0.01277 0.0232

ψ(1000, 2000) 0.013355 0.00852 0.01649
ψ(1000, 100) 0.01252 0.00805 0.015245
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Table B.4 Parameters of fitted distributions with default parameters (model 1)

Parameters for fitted
Inverse Gaussian distribution
δ η

u = 500
α1=0.1 1.729972 0.163872
α1=0.3 6.948907 12.860763
α1=0.5 20.908181 56.789506
α1=0.7 107.757513 119.490737
α1=0.9 94.751570 164.626525
α2=0.1 96.186092 165.567190
α2=0.3 94.831148 159.865012
α2=0.5 94.751570 164.626525
α2=0.7 95.839577 157.859758
α2=0.9 93.979272 159.765785
λ1=0.1 50.867421 177.220949
λ1=0.3 94.751570 164.626525
λ1=0.5 238.836382 178.097994
λ1=0.7 401.791533 207.650535
λ1=0.9 164.386916 183.951069
λ2=0.1 56.438122 152.149749
λ2=0.3 68.948354 147.452805
λ2=0.5 79.918747 162.167089
λ2=0.7 94.751570 164.626525
λ2=0.9 113.424835 165.079768
c1=0.25 325.011451 188.617942
c1=0.5 151.226695 170.527887
c1=0.75 94.751570 164.626525
u = 750
α1=0.1 2.555041 0.626731
α1=0.3 10.234961 28.882778
α1=0.5 30.934851 124.515495
α1=0.7 159.780635 263.694484
α1=0.9 141.474429 360.521813

Continued on next page
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Table B.4 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

α2=0.1 141.098453 359.667019
α2=0.3 138.528194 335.361465
α2=0.5 141.474429 360.521813
α2=0.7 139.645979 364.252405
α2=0.9 141.006311 341.317003
λ1=0.1 73.460819 383.213809
λ1=0.3 141.474429 360.521813
λ1=0.5 351.620543 399.055337
λ1=0.7 563.954678 487.120537
λ1=0.9 243.765766 409.853490
λ2=0.1 85.764071 419.487770
λ2=0.3 104.737569 386.064342
λ2=0.5 120.719256 376.950985
λ2=0.7 141.474429 360.521813
λ2=0.9 167.716522 361.646135
c1=0.25 467.946740 430.665416
c1=0.5 225.595726 376.663208
c1=0.75 141.474429 360.521813
u = 1000
α1=0.1 3.366629 1.378773
α1=0.3 13.466059 50.584546
α1=0.5 40.814873 216.095932
α1=0.7 211.638625 460.340812
α1=0.9 180.856516 600.071880
α2=0.1 179.325641 650.471084
α2=0.3 189.367231 631.319072
α2=0.5 180.856516 600.071880
α2=0.7 189.052168 658.643196
α2=0.9 193.197130 594.478922
λ1=0.1 87.580711 3433.771089
λ1=0.3 180.856516 600.071880

Continued on next page
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Table B.4 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

λ1=0.5 460.306563 712.559314
λ1=0.7 710.746326 924.525727
λ1=0.9 322.437436 722.582631
λ2=0.1 unknown unknown
λ2=0.3 143.349094 1904.818292
λ2=0.5 153.228757 835.820697
λ2=0.7 180.856516 600.071880
λ2=0.9 225.601339 605.589345
c1=0.25 597.427959 798.859329
c1=0.5 297.381151 647.705621
c1=0.75 180.856516 600.071880

Table B.5 Parameters of fitted distributions with default parameters (model 2)

Parameters for fitted
Inverse Gaussian distribution
δ η

u = 500
α1=0.1 1.978713 0.145692
α1=0.3 6.155867 6.869668
α1=0.5 13.901867 15.415544
α1=0.7 21.761345 24.802214
α1=0.9 26.390501 38.051303
α2=0.1 27.677103 35.185516
α2=0.3 26.425973 38.546059
α2=0.5 26.390501 38.051303
α2=0.7 26.838277 37.254953
α2=0.9 26.315400 38.194973
λ1=0.1 36.105480 39.119173
λ1=0.3 26.390501 38.051303
λ1=0.5 22.030985 38.554697

Continued on next page
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Table B.5 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

λ1=0.7 20.230347 36.222607
λ1=0.9 18.416626 35.598887
λ2=0.1 28.552110 40.264927
λ2=0.3 26.528826 41.710645
λ2=0.5 26.468013 39.962175
λ2=0.7 26.390501 38.051303
λ2=0.9 26.104646 36.623078
c1=0.25 21.184601 37.175090
c1=0.5 23.076361 38.783114
c1=0.75 26.390501 38.051303
u = 750
α1=0.1 2.765155 0.563039
α1=0.3 9.443699 12.538340
α1=0.5 22.688377 24.977842
α1=0.7 35.393897 41.164240
α1=0.9 38.984329 62.818654
α2=0.1 41.886873 57.418830
α2=0.3 39.313055 62.882382
α2=0.5 38.984329 62.818654
α2=0.7 40.316835 61.512244
α2=0.9 39.496764 63.473851
λ1=0.1 51.955311 65.473105
λ1=0.3 38.984329 62.818654
λ1=0.5 33.495066 64.645329
λ1=0.7 31.481985 59.652981
λ1=0.9 29.439696 55.865323
λ2=0.1 42.790942 66.681207
λ2=0.3 39.328498 69.104184
λ2=0.5 39.266339 66.539661
λ2=0.7 38.984329 62.818654
λ2=0.9 39.505285 59.313581

Continued on next page
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Table B.5 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

c1=0.25 32.973702 60.764216
c1=0.5 34.741395 65.117889
c1=0.75 38.984329 62.818654
u = 1000
α1=0.1 3.505921 1.228717
α1=0.3 12.764805 18.618484
α1=0.5 32.791577 34.315365
α1=0.7 47.985459 57.920695
α1=0.9 51.342390 87.608275
α2=0.1 54.698405 77.982701
α2=0.3 51.369249 85.674501
α2=0.5 51.342390 87.608275
α2=0.7 52.533037 85.193807
α2=0.9 51.024759 88.726060
λ1=0.1 66.537056 89.540016
λ1=0.3 51.342390 87.608275
λ1=0.5 43.687266 90.030634
λ1=0.7 41.959928 81.237019
λ1=0.9 39.751174 76.091345
λ2=0.1 56.054164 92.048740
λ2=0.3 51.704456 94.146151
λ2=0.5 51.593545 90.694492
λ2=0.7 51.342390 87.608275
λ2=0.9 51.322267 81.175297
c1=0.25 44.087969 82.388442
c1=0.5 45.467919 91.174670
c1=0.75 51.342390 87.608275
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Table B.6 Parameters of fitted distributions with default parameters (model 3)

Parameters for fitted
Inverse Gaussian distribution
δ η

u = 500
α1=0.1 1.736544 0.161875
α1=0.3 6.931490 12.907127
α1=0.5 20.863197 56.630527
α1=0.7 108.422033 119.023242
α1=0.9 93.504016 158.924275
α2=0.1 93.743205 160.274760
α2=0.3 95.504299 163.632697
α2=0.5 93.504016 158.924275
α2=0.7 94.601584 168.793540
α2=0.9 94.984285 156.547996
λ1=0.1 49.585078 141.541559
λ1=0.3 93.504016 158.924275
λ1=0.5 241.039832 176.352383
λ1=0.7 401.690447 208.811837
λ1=0.9 164.058703 184.016630
λ2=0.1 55.934370 170.507499
λ2=0.3 67.717129 152.813741
λ2=0.5 79.435996 162.824444
λ2=0.7 93.504016 158.924275
λ2=0.9 111.593350 167.446835
c1=0.25 322.703787 189.122655
c1=0.5 154.198241 171.124131
c1=0.75 93.504016 158.924275
u = 750
α1=0.1 2.570388 0.624654
α1=0.3 10.224518 28.897045
α1=0.5 30.852025 124.012570
α1=0.7 160.407647 262.474519
α1=0.9 139.559746 371.002633

Continued on next page
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Table B.6 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

α2=0.1 137.459643 358.439063
α2=0.3 137.008760 327.395095
α2=0.5 139.559746 371.002633
α2=0.7 138.697805 347.513061
α2=0.9 139.231662 386.475193
λ1=0.1 87.289769 473.240187
λ1=0.3 139.559746 371.002633
λ1=0.5 353.492403 395.139156
λ1=0.7 564.995102 489.344836
λ1=0.9 243.063599 409.232935
λ2=0.1 76.616405 359.947592
λ2=0.3 97.898509 364.438426
λ2=0.5 120.447093 362.036079
λ2=0.7 139.559746 371.002633
λ2=0.9 164.149611 366.846586
c1=0.25 466.120151 435.295913
c1=0.5 228.767093 382.226798
c1=0.75 139.559746 371.002633
u = 1000
α1=0.1 3.376175 1.378184
α1=0.3 13.467178 50.379486
α1=0.5 40.767683 216.125647
α1=0.7 212.245295 458.294992
α1=0.9 169.613602 560.698531
α2=0.1 189.397460 560.073063
α2=0.3 177.511707 603.975238
α2=0.5 169.613602 560.698531
α2=0.7 178.709830 586.213447
α2=0.9 188.181705 806.270969
λ1=0.1 103.545402 806.642560
λ1=0.3 169.613602 560.698531

Continued on next page
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Table B.6 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

λ1=0.5 468.260981 722.099034
λ1=0.7 709.528981 925.983689
λ1=0.9 322.052542 724.029683
λ2=0.1 unknown unknown
λ2=0.3 134.181191 613.916658
λ2=0.5 166.415997 918.439923
λ2=0.7 169.613602 560.698531
λ2=0.9 215.795323 691.987799
c1=0.25 597.753722 798.033270
c1=0.5 302.456751 666.933403
c1=0.75 169.613602 560.698531

Table B.7 Parameters of fitted distributions with default parameters (model 4)

Parameters for fitted
Inverse Gaussian distribution
δ η

u = 500
α1=0.1 1.944541 0.146251
α1=0.3 6.133941 6.918411
α1=0.5 13.740798 15.685142
α1=0.7 20.856469 25.904670
α1=0.9 26.215863 38.679535
α2=0.1 26.111083 39.258574
α2=0.3 26.352391 37.955265
α2=0.5 26.215863 38.679535
α2=0.7 28.287866 35.505485
α2=0.9 26.916467 36.809816
λ1=0.1 35.309804 39.931642
λ1=0.3 26.215863 38.679535
λ1=0.5 23.632937 35.058761

Continued on next page



78 Full numerical results

Table B.7 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

λ1=0.7 20.542332 35.101576
λ1=0.9 18.006967 37.356901
λ2=0.1 28.459905 39.901391
λ2=0.3 27.771790 39.490623
λ2=0.5 26.232487 40.310410
λ2=0.7 26.215863 38.679535
λ2=0.9 25.222393 38.945344
c1=0.25 21.422327 36.541342
c1=0.5 22.949237 39.657906
c1=0.75 26.215863 38.679535
u = 750
α1=0.1 2.721104 0.561131
α1=0.3 9.351144 12.734376
α1=0.5 22.528616 25.196908
α1=0.7 33.453887 43.636532
α1=0.9 39.336248 63.806251
α2=0.1 38.726392 65.461947
α2=0.3 39.322319 61.442361
α2=0.5 39.336248 63.806251
α2=0.7 42.828310 57.437312
α2=0.9 40.539829 59.525870
λ1=0.1 50.050510 67.815398
λ1=0.3 39.336248 63.806251
λ1=0.5 36.319014 56.589791
λ1=0.7 32.056950 55.632292
λ1=0.9 27.857572 60.514024
λ2=0.1 42.499186 66.146091
λ2=0.3 41.214940 64.978841
λ2=0.5 38.938678 67.359193
λ2=0.7 39.336248 63.806251
λ2=0.9 37.363169 64.452708

Continued on next page
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Table B.7 – continued from previous page
Parameters for fitted

Inverse Gaussian distribution
δ η

c1=0.25 33.537896 57.131860
c1=0.5 33.760255 66.421843
c1=0.75 39.336248 63.806251
u = 1000
α1=0.1 3.467921 1.245402
α1=0.3 12.739262 18.612081
α1=0.5 32.172029 34.896776
α1=0.7 45.065155 61.314441
α1=0.9 51.010255 88.889889
α2=0.1 50.120573 91.626150
α2=0.3 51.538577 84.753615
α2=0.5 51.010255 88.889889
α2=0.7 56.274942 77.453973
α2=0.9 53.073602 80.582050
λ1=0.1 63.822064 94.957389
λ1=0.3 51.010255 88.889889
λ1=0.5 48.441919 75.612427
λ1=0.7 42.904147 75.474593
λ1=0.9 37.171731 82.916679
λ2=0.1 55.077654 90.996280
λ2=0.3 54.552877 87.805984
λ2=0.5 50.445184 94.294598
λ2=0.7 51.010255 88.889889
λ2=0.9 48.315660 88.532556
c1=0.25 45.023931 77.565666
c1=0.5 44.091545 90.966499
c1=0.75 51.010255 88.889889
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