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Differential sensing with arrays of de novo
designed peptide assemblies

William M. Dawson 1,11 , Kathryn L. Shelley 1,2,11, Jordan M. Fletcher1,3,
D. Arne Scott1,2,3, Lucia Lombardi 1,4,5, Guto G. Rhys 1,6,7,
Tania J. LaGambina 3, Ulrike Obst3, Antony J. Burton1,8, Jessica A. Cross 1,2,
George Davies1, Freddie J. O. Martin1, Francis J. Wiseman1, R. Leo Brady 2,
David Tew 9, Christopher W. Wood1,2,10 & Derek N. Woolfson 1,2,4

Differential sensing attempts to mimic the mammalian senses of smell and
taste to identify analytes and complex mixtures. In place of hundreds of
complex, membrane-bound G-protein coupled receptors, differential sensors
employ arrays of small molecules. Here we show that arrays of computation-
ally designed de novo peptides provide alternative synthetic receptors for
differential sensing. We use self-assembling α-helical barrels (αHBs) with
central channels that can be altered predictably to vary their sizes, shapes and
chemistries. The channels accommodate environment-sensitive dyes that
fluoresce upon binding. Challenging arrays of dye-loaded barrels with analytes
causes differential fluorophore displacement. The resulting fluorimetric fin-
gerprints are used to trainmachine-learningmodels that relate the patterns to
the analytes. We show that this system discriminates between a range of bio-
molecules, drink, and diagnostically relevant biological samples. As αHBs are
robust and chemically diverse, the systemhas potential to sensemany analytes
in various settings.

Mammalian olfaction—the sense of smell—discriminates between
many odorant molecules1. It achieves this using 300–2000 G-protein
coupled receptors (GPCRs)2,3. Rather than making specific receptor-
odorant interactions, each receptor responds to a variety of
molecules4. The composite response is interpreted by the brain as a
smell. Differential sensing attempts to mimic this5,6. GPCRs are
membrane-spanning proteins, making them difficult to manipulate.
Indeed, attempts to use them in sensing have met with limited
success7,8. Therefore, differential sensors employ various organic
molecules and other moieties that interact with analytes in non-
specific ways.

For example, current differential sensors use synthetic reporters
or receptors, including: chemo-responsive pigments, metal nano-
particles and quantum dots, carbon nanotubes, metal oxides, and
supramolecular or peptide-based systems5,6. In each case, arrays of the
synthetic molecules are challenged with analytes, and electrical or
optical readouts are analyzed chemometrically. In this way, systems
that differentiate terpenes9, fatty acids10, amino acids11 and sugars12,
amongst other biomolecules have been developed. A strength of dif-
ferential sensing over traditional biosensors that target a single
defined analyte or biomarker is the potential to process and dis-
criminate between complex mixtures of analytes. Accordingly,
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differential sensing has been used successfully in food-and-drink13,
pollutant-monitoring14, biomedical15, and national-security
applications16.

Although some natural proteins—including fluorescent proteins17,18

and serum albumins9,10—have been used as the receptor components,
proteins have yet to be fully exploited in differential sensing. De novo
designed peptides and proteins are exciting prospects here, as their
structures and chemistries can be tailored for specific purposes19–21.
Although engineered and de novo proteins are being applied to sense
targeted analytes22–26, there are no reported uses of de novo proteins in
differential sensing. We speculated that recently developed α-helical
barrels (αHBs) would be promising candidates for this27,28.

αHBs are oligomers of 5 or more α-helical peptides that assemble
into coiled-coil structures with central solvent-accessible channels.
Typically, the component peptides are ≈30 amino acids longwith ≈8of
these lining the lumens. Therefore, the chemical space available to
αHBs is large. Robust rational and computational methods have been
developed to design αHBs27,29,30. These allow oligomer-state specifi-
cation and, thus, the size and shape of the internal cavities to be
controlled. Furthermore, the channel-facing side chains can be altered,
which has allowed αHBs to be functionalized to make tubular
biomaterials31, catalysts32, small-molecule binders28, and membrane-
spanning ion channels33. In these ways, αHBs are analogous to other
natural and synthetic receptors: they are highly mutable helical bun-
dles with the ability to bind a variety of substrates. However, αHBs are
water soluble, thermally stable, and can be made at scale. Moreover,
there are established sequence-to-structure relationships, or design
rules, that allow αHBs to be constructed and engineered with
confidence.

Here we demonstrate the utility of αHBs as components of a dif-
ferential sensing platform (Fig. 1). This has an array of 46 αHBs span-
ning chemical and structural space. The αHBs are loaded with an
environment sensitive dye (in this case, 1,6-diphenyl-1,3,5-hexatriene,
DPH) that bindswithin the channels and fluoresces. The size and shape
of the channel for each αHB dictates how strongly the dye binds to
each assembly, and the affinity of analyte molecules that could
potentially displace the dye. Accordingly, challenging the array with

analytes leads to differential displacement of the dye across the array
to give a fluorescent fingerprint. These signals are interrogated by
machine learning (ML) to relate thefingerprints to the analytes.We use
various ML models to classify fingerprints and use them predictively
for 15 different analytes from 3 types of biomolecules, and for complex
mixtures including serological samples of non-alcoholic fatty liver
disease (NAFLD). NAFLD is currently under diagnosed, demonstrating
the potential of our system in medical in vitro diagnostics. Finally, the
features that contribute to successful ML models reveal how the αHB
array is analogous to other differential sensing technologies, and how
the platform can be tailored to specific applications.

Results and discussion
Rational design delivers an array of α-helical barrels
To access a broad-spectrum of small-molecule binding and hence
analyte sensing, we sought to construct an array of de novo designed
αHBs with predictably varying sizes, shapes and chemistries of the
internal channels. We reasoned that this should be possible because
αHBs are hyperthermostable, tolerate mutations, and have well-
established design rules27,29. We targeted two properties of αHBs: oli-
gomeric state, which directly affects the internal diameter of the
channel; and the identities of channel-facing residues, which fine tune
this dimension and introduce different chemistries.

αHBs are coiled-coil assemblies of polypeptides encoded by
heptad sequence repeats, abcdefg, with predominantly hydrophobic
residues at a, d, g and e (Supplementary Fig. 1)27,29. Four such repeats
give stable assemblies with channels ≈4 nm in length. The a and d sites
define the channel and contribute to the helix-helix interfaces. Open
αHBs require combinations of predominantly a = Leu/Ile/Met/Val and
d = Ile/Val27,29. The g and e sites also contribute to the helical interfaces,
but substitutions at g have the greater impact on oligomer state30.
Therefore, we kept e =Ala in most designs and made g =Ala, Asn, Gln,
Glu, Ile or Ser to sample oligomer states of 5–8 and internal diameters
of ≈5–10 Å27,34. Side chains at b and c were made complementary pairs
of Glu and Lys or Arg to introduce favorable and solubilizing inter-
helical charge-charge interactions. The f positions are largely redun-
dant in defining coiled-coil structure, and were made combinations of

Fig. 1 | Concept for the de novo designed α-helical-barrel differential sensor.
aTop:α-Helical barrels (αHBs) are loadedwith an environment-sensitive dye giving
a fluorescent signal. Bottom: The dye is displaced by an analyte causing a loss of
fluorescence that can be measured. b Left: Different αHBs are combined with the
environment sensitive dye in multi-well plates. Middle: The resulting array is chal-
lengedwith different analytes, which canbepurecompoundsor complexmixtures.

Depending on the relative binding strengths of the dye and the analytes for each
αHB, dye is displaced differentially across the array to give a ‘fingerprint’ for each
analyte. Right: Statistical and machine-learning methods are used to classify the
different fingerprints and relate them to the analytes. The resulting models can be
used as predictive classifiers for naïve samples. See Supplementary Note and
Supplementary Figs. 10–12 for more detail on the data analysis and ML pipelines.
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helix-favoring, water-soluble Lys and Gln, with a single Trp introduced
as a chromophore to allow for accurate concentrationmeasurements.

Next, we focused on the channel chemistry to allow the binding of
a wide variety of small molecules. Despite the requirements for ali-
phatic residues at a and d, up to 40% of these can be changed to other
side chains without compromising barrel integrity32. We introduced
mutations at one or two of these sites to generate four groups of αHB

(Fig. 2 and Supplementary Data File 1): Group I had entirely hydro-
phobic interiors, but with different sizes and shapes of channel;
Groups II and III had polar uncharged or polar charged residues,
respectively, at specific points along the channel; and Group IV had
aromatic residues installed in their channels.
Of these 46 αHBs, 13 have been characterized previously27–29,34. The
remaining 33 were synthesized by solid-phase peptide synthesis,
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purified by HPLC, and confirmed by MALDI-TOF mass spectrometry
(Supplementary Figs. 2 and 3 and Supplementary Data File 1). All 33
peptides were highly helical and thermally stable (Supplementary
Figs. 4 and 5). By sedimentation-velocity experiments using analytical
ultracentrifugation, all formed single discrete species with molecular
weights ranging from pentamer to heptamer (Supplementary Fig. 6,
Supplementary Table 1 and Supplementary Data File 1). Finally, one
third of the designs were crystallized and yielded 12 X-ray crystal
structures, all of which were open αHBs with fully accessible channels
(Fig. 2; Supplementary Fig. 7, Supplementary Table 2, and Supple-
mentary Data File 2). Where experimental structures were not
obtained, the sequences were modelled and optimized as αHBs with
the experimentally determined oligomer state (Fig. 2) using compu-
tational design35.

For the final sensing array, we added two controls—a no-peptide
blank, and a collapsed hexameric bundle that does not bind DPH29—to
give a 48-component array (Fig. 2).

αHB arrays classify small-molecule metabolites and biomarkers
Initially, we tested theαHB sensor array (αSA) using three categories of
biological small molecules: amino acids (AAs), carbohydrates (CHOs),
and fatty acids (FAs). In each case, five molecules were chosen to
maximize chemical variation and biological relevance (Supplementary
Fig. 8)36–38. For the AAs, we chose Ser, as a small and polar side chain;
Val (small hydrophobic); Arg (large, charged, and basic); Glu (large,
charged, and acidic); and Trp (large aromatic). For the CHOs, four
monosaccharides involved inmetabolism—glucose, fructose,mannose
and glucosamine—plus the disaccharide maltose were selected. The
FAs spanned a range of carbon-chain lengths with and without double
bonds: butyric acid (4:0, 4 carbons:0 double bonds); decanoic (capric)
acid (10:0); palmitic acid (16:0); oleic acid (18:1); and nervonic
acid (24:1).

The full αSA was challenged separately with each of the 15 mole-
cules with 10 repeats for each. Pre-processing of the data (Supple-
mentary Note and Supplementary Figs. 9–11) removed outliers from
liquid-handling errors to give≥45data points for each typeofmolecule
(Fig. 3 andSupplementaryFigs. 12–14).Given that the channelsofαHBs
are predominantly hydrophobic, we anticipated that FAs would dis-
place more of the reporter dye and give higher signals than the AAs or
CHOs. Indeed, with the FAs, every αHB had signal above the control
baseline for at least one FA; and almost all αHBs showed full dis-
placement of the reporter dye when challenged with C16:0, C18:1 and
C24:1 FAs (Supplementary Fig. 13). Themore-polar AAs and CHOs gave
markedly different responses (Fig. 3 and Supplementary Figs. 12, 14).
For the five AAs, signal was substantially lower across the αSA com-
paredwith FAs. However, the large, hydrophobic Trp gave consistently
greater signals as expected (Fig. 3a). The low signal was even starker
when the αSA was challenged with CHOs, with most αHBs responding
similarly. This highlights a known challenge of binding and sensing
CHOs in aqueous media39.

Analysis of theαSA responses for all three types of smallmolecule,
showed that 44 of the 46 αHBs gave consistent readings. Two αHBs
(peptide ID 15 and 30) showed greater variance in signal for all ana-
lytes, which we attribute to low “loaded” fluorescence intensities,
resulting in a smaller signal-to-noise ratio upon challenge with

analytes. Spearman’s rank correlation coefficients (ρ) were calculated
for all αHBs for the three types of small molecule (Supplementary
Figs. 15–17). As might be expected from the weaker signals for the AAs
and CHOs, we observed less correlation between individual αHBs in
these challenges due to the low signal-to-noise ratiomasking weak dye
displacement. By contrast, there were much higher correlations
between αHBs in the FA challenges (ρ >0.6 between all αHBs). None-
theless, these analyses indicated that the αSA could be reduced in size
for each application: the lower correlation for polar analytes implies
that αHBs not providing signal above noise could be removed; and,
conversely, the high correlation with FAs implies that multiple αHBs
are providing similar information.

To assess the classification potential of the αSA, ML models were
used to differentiate each molecule within its own class (Supplemen-
tary Note and Supplementary Figs. 10 and 11). Briefly, six algorithms
were tested—Gaussian naïve Bayes, k-nearest neighbors40, linear dis-
criminant analysis (LDA), an AdaBoost41 classifier, and two support-
vector classifiers with a linear kernel (linear SVC) or with a radial basis
function kernel (SVC)42—with the aim of selecting the simplest model
with the best performance. Training used nested stratified cross-
validation and the average accuracy across all folds was calculated.
Two dummy classifiers were also applied that assign random class
labels to every sample, mimicking random guessing. To optimize the
αSA for each challenge, feature analysis was used to identify αHBs that
contributed above others to each algorithm. Two methods were used
for this: KBest analysis and permutation analysis. The ML algorithms
were then run using the identified features to give the final perfor-
mance metric of the models. Finally, αSA performance (of the full
array) was compared to the dummy classifier using a 5 × 2 CV F-test
(Supplementary Fig. 11)43. The reduced and full αSAs were also com-
pared (with the 5 × 2 CV F-test) to monitor any change in performance
from reducing the size of the array.

From principal component analysis (Fig. 3b, Supplementary
Fig. 13 and 14), the variance between the FA classes was significantly
greater than for theAAs,whichwas greater than for theCHOs.Thiswas
reflected in the classification results (Table 1 and Supplementary
Tables 3–5): the FAs were predicted/classified with 100% accuracy
from two features/αHBs (with three differentMLmodels); theAAswith
69 ± 16% accuracy from 10 features (Gaussian Naïve Bayes, average ±
standard deviation); and the CHOs with 61 ± 23% accuracy from four
features (SVC). Clearly, the system performs less well at discriminating
within the sets of small, polar analytes. However, these accuracy levels
are still significantly above both the dummy classifiers as determined
by 5 × 2 CV F-test (Supplementary Tables 3–5). Interestingly, whilst the
AAs and FAs showed no significant difference between the full and
reduced-feature αSA (p-value = 0.60 and 0.38, respectively), the four-
featureαSA significantlyoutperformed the fullαSA in the classification
of CHOs (p-value = 0.029), suggesting the other 42 αHBs are simply
contributing noise to the αSA signal.

αSAs differentiate complex mixtures with high accuracy
To test the possibilities of using αSAs to distinguish complex
mixtures5, we sought to identify different types of tea as a well-
characterized mixture used previously in differential sensing44–46.
For this, we used a smaller αSA of 14 barrels from Classes I – III

Fig. 2 | Computationally and rationally designedαHBs as arrayed in the sensor.
The four groups of αHB used in the αHB sensor arrays are shaded by group: Group
I, hydrophobic (yellow); Group II, polar-uncharged (green);Group III, polar-charged
(blue); andGroup IV, aromatic (red). Coloredmodels andPDBentrycodes are given
for those αHBwhere X-ray crystal structures were obtained; otherwise, the models
shown (gray) were built and optimized using CCBuilder2.035. In detail (see Sup-
plementary Table 1), the sixteen Group I peptides included: previous designs for a
pentamer, 3 hexamers, 2 heptamers and an octamer all verified by X-ray
crystallography;27,29 single and/or doublemutations toAla andGly at centrala andd

sites to generate larger channels; a single-Pro mutant at the final d site to kink and
open the C-terminal end of the channel; and a variant with all a sites made Met to
vary the hydrophobic chemistry used. The eleven Group II peptides comprised:
single mutants to Cys, His, Asn, Ser or Thr at d sites; and double mutations to His,
Asn, Ser or Thr at consecutive a and d sites. The twelve Group III peptides had
positively and negatively charged side chains, Lys and Glu, incorporated either
singly or paired at a and d sites; and a single peptide with Asp at d. Finally, seven
Group IV designs incorporated single Tyr at a or d sites, or Trp residues at a sites.
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(Figs. 2 and 3, Supplementary Data File 1), which consisted of
peptides that had been characterized previously27–29. We tested
three classes of tea— black tea, Earl Grey, and green tea—and
chose 10 brands for each (Supplementary Table 6). We collected
6 replicates for each brand, resulting in 178 tea fingerprints after
outlier removal to train the ML algorithms.

Visual inspection of the fluorescence data and principal
components of the fingerprints revealed structure in the data,
with green tea forming a distinct group and black tea and Earl
Grey tea overlapping (Fig. 3f, g). Earl Grey is a black tea with an
essential oil from the rind of the bergamot orange added. So, it is
reasonable that the fingerprints are similar (Fig. 3h, i,

Supplementary Fig. 18). Correlation coefficients (Fig. 3j) were
relatively high between all 14 αHBs, and feature analysis reduced
the αSA further to four peptides (Fig. 3i).

The six classifiers introduced above were trained to identify
samples as black, Earl Grey, or green tea using nested stratified
cross-validation, and the average accuracy across all folds calcu-
lated (Table 1 and Supplementary Table 7). All models except
AdaBoost showed similar performance ranging ≈75 – 85% pre-
dictive accuracy, significantly above the dummy classifiers (p-
value = 2 × 10−6, Supplementary Table 7). The confusion matrix
from these tests confirmed the trend observed in the principal
component analysis plot: the classifiers were highly accurate for
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green tea (97%) but performed less well with the more-similar
black and Earl Grey tea fingerprints (87% and 84% respectively,
Fig. 3k). 10/10 of the green tea brands were correctly predicted,
compared with 9/10 Earl Grey brands and 8/10 black tea brands
(Supplementary Table 8).

Sera can be analyzed and classified using the αSA
Next, we turned tomedical samples thatmight bedistinguished due to
the αHBs binding lipids. Fatty acids and lipids are a significant pro-
portion of the small molecules in blood, and the plasma lipidome is
affected bymany disease states38,47. For instance, in non-alcoholic fatty
liver disease (NAFLD) fatty acid and lipid metabolism is altered in
patients48,49. NAFLD has multiple stages—steatosis, non-alcoholic
steatohepatitis (NASH), fibrosis, and cirrhosis—and is reversible if
diagnosed early50. Current diagnosis requires an ultrasound or biopsy,
creating a need for simple in vitro diagnostics50. We asked if the αSA
would be suitable for this.

Serum samples from 14 patients diagnosed with NASH were
comparedwith sera from28 donorswithoutNASH. All patients had co-
morbidities (Supplementary Table 9), including coronary artery dis-
ease (CAD) in all 14 NASH patients. Therefore, 14 CAD patients were
also analyzed to discriminate between indirect changes in the serum
lipidome. The subjects were all female, and they were matched in age
and BMI as closely as possible. Each of the 42 sera samples (14 NASH
samples, 14 CAD samples, and 14 control samples) weremeasured four
times, each with four technical replicates, using the αSA with 46 αHBs.
A median value was calculated for the 16 repeats of each sample. The
data were preprocessed and analyzed as above (Supplementary Note).

Principal component analysis of the NASH and non-NASH data
showed separation, albeit with some overlap (Fig. 4b). Again, correla-
tion coefficients of the αSA were relatively high for similar αHBs

(Fig. 4e, f, Supplementary Fig. 21); namely, the larger hydrophobic
αHBs (IDs 1–10), the double polar residue mutants (IDs 20–23), the
charged αHBs (IDs 31–36), and the aromatic αHBs (IDs 40–45). Next,
applying our αSA ML pipeline, all 6 algorithms performed well with
LDA and linear SVC giving the highest performance with 90 ± 6%
average F1 scores in both cases using five features (Table 1, Supple-
mentary Table 10). When all three classes were considered—NASH,
CAD, and the control group—themodel performancedecreased to 74%
± 14% (LDA, 4 features; Supplementary Fig. 22, Supplementary
Table 11), but was still significantly better than the dummy classifiers
(p-value = 0.004). However, when incorrect, the model predicted
NASH and CAD samples as controls rather than the other disease
category (Supplementary Fig. 22). This implies that CAD and NASH are
responsible for the predominant signal from the αSA, with the signal
from the control group overlapping these. To probe this further, PCA
was performed on the non-obese sera samples (i.e., BMI < 30; Sup-
plementary Figure 23). The resulting 2D plot indicates that the groups
remain separable, demonstrating the αSA is picking up NASH- and
CAD-specific signals. This demonstrates that the αSA is able to differ-
entiate samples from donors with different disease presentations,
rather than a disease state in general. Thus, in a 2-class problem with
CAD combined with the other non-NASH samples, the more-subtle
specific NASH signals can be learnt by the ML algorithms.

We note that FAs will be associated with albumin in blood, and
that thismaywell affect the available free FAs for detection by the αSA.

De novo αHBs for designer sensors
Differential sensors depend on the combined response of many low-
specificity receptors when challenged with different molecules. Our
study indicates thatαSAs act similarly, and that αHBs are analogous to
olfactory GPCRs and other synthetic receptor-based systems in this

Fig. 3 | Differentiating amino-acid biomarkers anda complexmixture using the
αSA. a Min-max scaled fluorescent signals from the αSA with tryptophan. Values
are normalized relative to: 1, for the αHB and the reporter dye with no analyte; and
0, for the dye alone. Data shown corresponds to n = 9 independent samples. Boxes
show the interquartile range with the median presented as a line. Whiskers show
1.5× interquartile range, or the range if a smaller value. Outliers are shown as dia-
monds. b Principal component analysis of the 5 amino acids: glutamate, blue cir-
cles; arginine, green triangles; serine, red squares; valine, cyan diamonds; and
tryptophan, purple stars. c Representative dye-displacement data for each analyte
in the AA group. αHB ID is shown above each fingerprint. In these cases, min-max
scaled dye displacement is colored from dark red (less displacement) to dark blue
(more displacement) according to the respective heat maps (right-hand side of
eachpanel). Eachfingerprint corresponds to themedian signal across all repeats for
each AA. d The 10 features selected to take forward to classification. Color scheme
as in c,αHBs not selected are colored gray. e, Confusionmatrix generated from the
classification of AA samples using the Gaussian Naïve Bayes algorithm with nested
stratified cross-validation. Here the coloring scheme is from dark red (all predic-
tion) to dark blue (no predictions) according to the heat map (right-hand side).

fMin–max scaled fluorescent signals from the αSAs challenged with different teas.
Values are normalized as in (a). Black tea, blackbars; green tea, greenbars; Earl Grey
tea, gray bars. Data shows corresponds to 178 independent samples (n = 59 black,
n = 59 green and n = 60 Earl Grey). Box and whiskers are presented as in a.
g Principal component analysis of the 178 brewed tea samples: black teas, black
circles; green teas, green triangles; Earl Grey teas, gray squares. h Representative
dye-displacement data for select tea samples (full range shown in Supplementary
Figure 18). αHB ID is shown above each fingerprint. Color scheme as in (c). In this
case, each fingerprint corresponds to the median signal of the 6 independent tea
samples for each brand of tea. i The 4 features selected to take into classification.
Color scheme as in (c), αHBs not selected are colored gray. For visualization pur-
poses, the fingerprints in h and i are the median fingerprints from the 6 indepen-
dent repeats for each tea brand rather than the 178 individual fingerprints.
j Spearman coefficients of the αHBs in the αSA for the tea fingerprints. Color
scheme is from strong correlation (dark red) to no correlation (dark blue)
according to the heat map (right-hand side). k Confusion matrix generated from
predictions of tea samples using the SVC algorithm with nested stratified cross-
validation. Color scheme as in (e). Source data are provided as a Source Data file.

Table 1 | Performance summary of the αSA for different analytes and complex mixtures

Analyte/Mixture Algorithma Data set sizeb Number of Features Accuracyc (%) Precisionc (%) F1 Scorec (%)

Amino acids Gaussian Naive Bayes 45 10 69 ± 16 73 ± 20 69 ± 17

Carbohydrates SVC 48 4 61 ± 23 61 ± 29 58 ± 25

Fatty acidsd Gaussian Naive Bayes 45 2 100 ±0 100 ±0 100±0

Tea SVC 178 4 84 ± 10 87 ± 9 84 ± 10

NASH (2-way) SVC (linear) 41 5 90 ± 5 93 ± 4 90 ± 6

NASH (3-way) LDA 42 4 74 ± 15 80 ± 11 74 ± 14
aLDA – linear discriminant analysis. SVC – support vector classification.
bAfter the required pre-processing as detailed in the Supplementary Methods.
cMean value from all k-folds ± standard deviation.
dK-Nearest neighbors and SVC also gave 100% accuracy.
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respect. Importantly, by applying feature importance analysis meth-
ods in the αSA ML pipeline, the most-discriminative αHBs for a given
challenge can be identified. For the datasets we have collected and
described here, the signal can be captured by just 2–10 barrels.

To investigate this further, for the four challenges that employed
the whole 46-barrel array—i.e., excluding the analysis of the teas—each
αHB was ranked for importance by three feature-selection methods:

KBest analysis, an ExtraTrees classifier, and permutation analysis
(Fig. 5a, Supplementary Fig. 24). With some differences (Supplemen-
tary Note), for each challenge, the top-five most-important αHBs were
generally consistent between the three methods. Interestingly, how-
ever, in each challenge a different αHB was identified as the most
important by at least 2/3 of the feature-selectionmethods: barrel ID 16
for AAs; ID 17, FAs; ID 41, CHOs; and ID 39, NASH/non-NASH. To

Fig. 4 | Challenging the αSA with diagnostically relevant samples. a Min–max
scaled fluorescent signals from the αSAs challenged with different NASH sera
samples: NASH, blue; Non-NASH, orange. Values are normalized relative to: 1, for
αHB and the reporter dye with no analyte; and 0, for dye alone. Values shown are
between 1.5 and −0.5 for clear visualization, full data range is shown in Supple-
mentary Fig. 19. Data corresponds to 41 independent samples (n = 14 NASH, n = 27
Non-NASH) that were each measured 4 times (technical repeats) to give a median
measurement for each sample. Boxes show the interquartile rangewith themedian
presented as a line. Whiskers show 1.5× interquartile range, or the range if a smaller
value. Outliers are shown as diamonds. b Principal component analysis of the
41 sera samples: NASH, blue squares; Non-NASH, orange circles. c Median dye-
displacement data for select NASH sera samples. αHB ID is shown above each
fingerprint. In these cases, min-max scaled dye displacement is colored from dark

red (less displacement) to dark blue (more displacement) according to the
respective heat maps (right-hand side of each panel). Data values are limited to
between 1.5 and−0.4 for clear visualizationpurposes. Eachfingerprint is themedian
value from 16 repeats of each serum sample (4 independent repeats, each con-
sisting of 4 technical replicates). d The 5 features selected for classification. Color
scheme as in (c), αHBs not selected are colored gray. Spearman’s rank coefficients
of class I (e) and class III (f)αHBs in theαSA for theNASHfingerprints. Color scheme
is from strong correlation (dark red) to no correlation (dark blue) according to the
heat map (right-hand side). g Confusion matrix generated from predictions of
NASH sera samples using the linear SVC algorithm with nested stratified cross-
validation. Here the coloring scheme is from dark red (all prediction) to dark blue
(no predictions) according to the heat map (right-hand side). Source data are
provided as a Source Data file.
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explore this more deeply, the most-important features of the whole
αSA were compared across the four challenge classifications. To do
this, ranks from the three feature-selection methods were summed to
give an overall αHB ranking across all feature-selection methods for
each problem.

The top 10 αHBs were compared. Intriguingly, this revealed that
each classification problem required a different subset of αHBs in the
αSA (Fig. 5b–e). However, the features that contributed the highest
signal to each αSA response are not necessarily the αHBs that interact
most strongly with the analyte/mixture (Figs. 3a and 4a; Supplemen-
tary Figs. 12–14). For example, feature selection with the NASH/non-
NASH data revealed αHBs with relatively little dye displacement, and,
thus, smaller signal losses (typically between 0.5 and 1.0, Fig. 4a);
whereas, other αHBs showed greater dye displacement (e.g. ID 18, 24,
27 and 44). Thus, it is the difference between the sample classes that is
more important than the overall binding affinity of the challenge in
dictating the αSA performance. This is consistent with requirements
for differential sensing where numerous low-affinity interactions con-
tribute to the sensor.

Focusing on the small molecules (Fig. 5b–d), the αSA signal from
the more-polar AAs and CHOs is dominated by the polar and charged
Group II and III αHBs (Fig. 2). Conversely, the FAs generate signal
through interactions with the more-hydrophobic and aromatic-
containing channels (Group I and IV, Fig. 2). This correlates with our
design rationale and understanding of these de novo designed peptide
assemblies28,32. Moreover, there was little overlap between the optimal
αSA required for theAA,CHO, FA, andNASH/non-NASHclassifications.
This indicates that the αHBs underpinning αSA can be designed
towards a specific application. Thus, we envisage that amaster array of
rationally designed αHBs in combination with anML pipeline could be
used to identify subsets of αHBs as bespoke mini-arrays for different
applications.

In summary, we have presented a robust and adaptable differ-
ential sensor, the αSA, using de novo designed peptide assemblies as
its receptor components. The designed peptides form α−helical bar-
rels (αHBs) that are mutable and bind a range of small molecules in
their channels. In these respects, they are analogous to the GPCRs of
mammalian olfactory systems and to other synthetic receptor-based
differential sensors. Moreover, given their synthetic accessibility,

water solubility, hyperthermostability, and our ability to tune channel
size and chemistry, we contend that αHBs are ideal components for
differential sensors. The αSA that we have made from these de novo
peptides differentiates amino-acid, carbohydrate, and fatty acid bio-
molecules above baseline and without prior optimization. Further-
more, complex mixtures and clinically relevant samples can be
classified and predicted, highlighting the potential function of the αSA
platform in diagnostics. The αSA utilizes a machine-learning pipeline
that allowsusers to spot check awide rangeof algorithms todetermine
the underlying performance. Through this, feature selection can
identify subsets of αHBs to make bespoke sensor arrays. We envisage
the platform being developed into sensors for biotechnological,
environmental, and medical diagnostics applications.

Methods
Ethical statement
Serum samples from donors with NASH, CAD and corresponding
healthy controls were purchased from the commercial biobank Pro-
teogenex Inc. The protocols for obtaining samples were approved by
the Ethics committee of the host organization (PG-ONC 2003/1, 9/1/
2020), with all donors signing informed consent documentation.

General
Peptide sequences and ID number can be found in Supplementary
Data File 1. Relevant characterization data for previously published
peptides are available27–29,34. Fmoc-amino acids were purchased from
BiosynthCarbosynth orCambridge Reagents. All other chemicals were
purchased from Merck or VWR. Peptide biophysical characterization
was performed in phosphate buffered saline, 8.2mM sodium phos-
phate, 1.8mMpotassium phosphate, 137mM sodium chloride, 2.7mM
potassium chloride at pH 7.4 unless otherwise stated.

Peptide synthesis, purification and characterization
Peptides were synthesized using standard Fmoc solid-phase peptide
synthesis methods, on a microwave assisted Liberty Blue (CEM) pep-
tide synthesizer. Peptides were purified by reverse phase HPLC (Luna
C-18(2) column) and confirmed as the target sequence by analytical
HPLC and MALDI-TOF spectrometry. CD spectra were measured with
10 μM peptide at 20 °C between 200 and 260nm in PBS on a Jasco

Fig. 5 | Features/αHBs that contribute most to the αSA signal for different
classifications. a Feature importance of the 46 αHBs in the αSA in the differ-
entiationofNASHandnon-NASH sera samples. The top5 features asdeterminedby
KBest analysis, ExtraTrees (ET) and permutation (perm) analysis are highlighted
(red, blue and gold, respectively). The highest ranked αHB from each feature

selection method is highlighted (*). The 10 αHBs that contribute most to signal in
challenges with AAs (b), FAs (c), CHOs (d), and 2-way NASH sera classification (e).
αHB rankings are taken from the combined rank of all three feature selection
methods. Color scheme for b–e: Hydrophobic αHBs, yellow; polar mutations,
green; charged mutations, blue; aromatic mutations, red.
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J-810 or J-815 spectropolarimeter in a 5mmcuvette, and data collected
using Spectra Manager. Thermal denaturation measurements were
performedbetween 5 and 95 °C at 222 nmwith 10μMpeptide in PBS in
5mm cuvettes. AUC SV measurements were performed on a Beck-
mann XL-A with 150 μM peptide at 20 °C in PBS at 50000 rpm. Data
was collected with Proteome Lab XL-A, and analyzed with SEDFIT.

X-ray crystal structure determination
Lyophilized peptides were dissolved in deionized water to concentra-
tions of ≈10mg/mL. Vapor diffusion trials were performed at 20 °C
using commercial screens: JCSG-PlusTM, Morpheus®, PACT PremierTM,
ProPlexTM and Structure Screen 1 + 2. Prior to freezing, crystals were
soaked in cryoprotectant consisting of their respective crystal screen
with 25% v/v glycerol. Final crystallization conditions for all peptides
are given in Supplementary Table 2. Data was collected at Diamond
Light Source on beamlines I02, I04 and I04-1. Data were processed
using automated methods: Xia2 pipelines51, which ports data through
DIALS52 or MOSFLM53 to POINTLESS and AIMLESS54 as implemented in
the CCP4 suite55, or XDS to XSCALE56. Structures were solved using
molecular replacement frompoly-alaninemodels asdeterminedby the
relevant Matthew’s Coefficient, using PHASER57. Final models were
obtained after subsequent refinement rounds using PHENIXRefine58 or
Refmac559 and model building in COOT60. Solvent-exposed atoms
lackingmap density were modelled at zero occupancy. Data collection
and refinement statistics are provided in Supplementary Data File 2.

α-Helical barrel sensor array assay
For the full-peptide array, peptides (20 μM final concentration) were
premixed in 2× HEPES buffered saline (50mM HEPES, 200mM NaCl,
pH7) and 1,6-diphenyl-1,3,5-hexatriene (DPH; 2μM, 10%v/vDMSOfinal
concentration) and dispensed to 384-well microplates using a Tecan
Freedom EVO® liquid handling station. From the 47 different peptide
solutions and the dye control, 10 μL was added to each well, respec-
tively, to create eight 48-array patterns across the plate. Once plates
were produced, they were stored at −80 °C until usage. Analytes were
dispensed in 10 μL aliquots using a TECAN Freedom EVO® liquid
handling station or a Multidrop Combi liquid handler giving a 1:1
peptide/dye to analyte ratio in each well with a final concentration of
10 μM peptide, 1 μM DPH, 5% v/v DMSO and 1× HBS (25mM HEPES,
100mM NaCl, pH 7). Microwell plates were analyzed using a CLAR-
IOstar plate reader (λex = 350± 15 nm, λem = 450 ± 20nm).

For the analysis of the smallmolecules, all analytes were dissolved
in deionized water (20mL) at the desired concentration: amino acids
(AA) and carbohydrates (CHO) at 20mM, fatty acids (FA) at 20 μM.
Fatty acids required 5% v/v DMSO in the stock solutions for solubility.
Independent samples were prepared for each repeat (n = 10). Small
molecule samples were dispensed onto preprepared 384-microwell
plates (10mL) using a Tecan Freedom EVO® liquid handling station.
This gave a final concentration of 10mM for the AAs and CHOs in each
well, and 10 μM for the FAs (with a final concentration of 7.5% v/v
DMSO for the FAs).

For the analysis of the tea samples, a total of thirty brands of
teabags (comprising 10 black, 10 Earl Grey, and 10 green tea varieties,
see Supplementary Table 6) were purchased. For the preparation of
brewed tea samples, where applicable, strings and labels were
removed from tea bags.A single tea bagwas placed inboileddeionized
water (250mL), and the tea allowed to brew for 5min with stirring.
After this time, 1mL of the tea solution was removed, and diluted 1:10
with deionized water before snap freezing in liquid nitrogen and
stored at −80 °C. Fresh tea samples (from the same batch/box of tea-
bags) were prepared for each experimental replicate (n = 6). Tea
samples were dispensed onto preprepared 384-microwell plates (15
μL) using a Multidrop Combi liquid handler.

For the smaller array of 15 peptides (used to analyze the tea
samples), 384-well microplates were prepared using a Tecan Freedom

EVO® liquid handling station. Deionized water (6 μL), 10× HBS
(250mMHEPES, 1M NaCl, pH 7, 3 μL), DPH (10mM, 50% v/v DMSO, 3
μL) and peptide (100μM,3μL)were added to eachmicrowell giving 24
16-array patterns of 15 μL aliquots (2× HBS, 20 μMpeptide, 2 μMDPH,
10% DMSO) across the plate. Once plates were produced, they were
stored at −80 °C until usage. Samples were dispensed in 15 μL aliquots
using a Multidrop Combi liquid handler giving a 1:1 peptide/dye to
analyte ratio in eachwell with a final concentration of 10 μMpeptide, 1
μMDPH, 5% v/v DMSOand 1×HBS (25mMHEPES, 100mMNaCl, pH 7).
Microwell plates were analyzed using a CLARIOstar plate reader
(λex = 350± 15 nm, λem= 450 ± 20 nm).

For the analysis of NASH, CAD and control sera, 42 1mL samples
purchased fromProteogenex (Supplementary Table 9) were thawed at
rt for 30minutes, aliquoted into 50–100 μL fractions, and re-frozen at
−80 °C, where they were stored until required. On the day of analysis,
one aliquot of the required serum sample was thawed at rt for 30min.
40 μL serum sample was added to 8mL deionized water, resulting in a
final serumconcentration of0.5% v/v. Followingdilution, the serawere
analyzed immediately by dispensing into prepared 384-well micro-
plates (10 μL 0.5% v/v serum sample was dispensed into each well
containing 10 μL αHB-DPH mix, resulting in a final serum concentra-
tion in eachwell of 0.25% v/v) using aMultidrop Combi liquid handler.
Each sample was analyzed on four separate microwell plates (n = 4),
each time using a fresh aliquot of the same sample. Therefore, upon
analysis, each serum sample had undergone two freeze-thaw cycles.

Data processing and machine learning analysis
Feature selection andmachine learning algorithms were implemented
using the open-source Python package, scikit-learn61. Two-sided 5×2
CV F-tests were implemented with MLxtend62.

The raw fluorescent data from the α-sensor array (αSA) assay is
min–max scaled using Eq. 1:

Normalized data =
X �MinA+ F

Max�MinF
ð1Þ

where X is the fluorescent output of each α-helical barrel (αHB) with
analyte and DPH; MinA+F is the signal of the analyte with DPH (to
correct for autofluorescence); Max is the value of αHB and DPH; and
MinF the value of DPH alone. Data were converted to dataframe format
and technical repeats across the same plate, and different plates if
necessary, were averaged by calculating the median. Data outputs are
generated for visual inspection to highlight potential anomalous
plates. Outlierswere identified by a generalized ESD test63,64 to give the
machine learning (ML) dataset. Data outputs are generated again for
visual inspection once outliers have been removed.

Six ML algorithms—Gaussian Naïve Bayes, K-nearest neighbors40,65,
linear discriminant analysis, support vector classification (linear and
radial basis function kernel)42 and an AdaBoost classifier41—were trained
using nested stratified k-folds cross-validation and compared to two
dummyclassifiers (whichmimic randomguessing). Feature importance
analysis (KBest analysis, an ExtraTrees classifier and permutation ana-
lysis) was performed for all datasets. Models trained using the readings
measured for all peptides were compared to models trained using the
readings froma reducednumberof peptides selectedby eitherKBest or
permutation analysis. A two-sided 5 × 2 CV F-test43,66 was used to com-
pare the performance of the reduced αSAs to the full αSA of 46 pep-
tides, and to compare the performance of the full aSA to the dummy
classifiers.

Statistics and reproducibility
No statistical methods were used to predetermine sample size. The
details for number of repeats and excluded data for each specific
dataset are listed below.
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Fatty acids. Ten independent solutions were made for each of the five
analytes. Each solution was freshly made, with a final concentration of
10 μM. Four technical replicates of each solutionweremeasured using
the sensor array, and were averaged by taking the median. This
resulted in a dataset of 50 median fingerprints, which after removal of
outliers via a generalised ESD test was reduced to 45. Outlier exclusion
threshold (i.e., p value) = 0.05; drop threshold (i.e., minimum number
of outlier readings required to exclude a fingerprint) = 2. The class
distribution was: 10 butanoic acid; 10 decanoic acid; 8 palmitic acid; 9
oleic acid; 8 nervonic acid.

Amino acids. The same as for the FAs, except that the final con-
centration of each solution was 10mM. The class distribution was: 8
glutamate; 9 arginine; 9 serine; 10 valine; 9 tryptophan.

Carbohydrates. The same as for the FAs, except that the final con-
centration of each solution was 10mM, and the dataset size after the
removal of outliers via a generalized ESD test was 48 fingerprints. The
class distribution was: 10 fructose; 10 glucose; 9 glucosamine; 9 mal-
tose; 10 mannose.

Tea. Six fresh cups of tea (using different teabags from the same box)
were made for each of the 30 brands of tea. Twenty technical repli-
cates were measured using the αSA and were averaged by taking the
median. This resulted in a dataset of 180 median fingerprints, which
after removal of outliers via a generalized ESD test was reduced to
178. Outlier exclusion threshold (i.e., p value) = 0.05; drop threshold
(i.e., minimum number of outlier readings required to exclude a
fingerprint) = 2. The class distribution was: 59 black; 59 green; 60
Earl grey.

NASH sera. Forty-two serum samples from patients with and without
NASH were obtained from a commercial biobank. Four aliquots were
taken from each sample, and four technical replicates of each aliquot
were measured using our sensor array. Accordingly, 16 fingerprints
were measured for each sample. We calculated the median of these 16
replicates to obtain a dataset of 42 fingerprints, which after removal of
outliers via a generalized ESD test was reduced to 41 fingerprints (two-
way analysis)/no outliers were identified, hence the dataset retained all
42 fingerprints (three-way analysis). Outlier exclusion threshold (i.e., p
value) = 0.02; drop threshold (i.e., minimum number of outlier read-
ings required to exclude a fingerprint) = 2. The class distribution for
the two-way analysis was: 14 NASH; 27 No-NASH. The class distribution
for the three-way analysis was: 14 NASH; 14 CAD; 14 control. Two
methods of class balancing—resampling of the smaller class and
SMOTE—were tested as part of the nested CV loop for the two-way
NASH analysis, and neither was found to lead to a noticeable
improvement in model performance. Consequently, the results pre-
sented are from a model trained without class balancing. No other
covariates were analyzed, and no sex or gender analysis was carried
out as the conclusions of this study relate to the performance of the
peptide assemblies in the differential sensing technology and their
ability to distinguish known samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The αSA data (amino acids, fatty acids, sugars, tea and sera samples),
mass spectrometry, circular dichroism and analytical centrifugation
data generated in this study are provided as Source Data. The coor-
dinate and structure factor files for peptide ID 4, 7, 9, 15, 17, 21, 25, 26,
29, 32, 41 and 46 have been deposited in the Protein Data Bank with
accession codes “7NFF”, “7NFG”, “7NFH”, “7NFI”, “7NFJ”, “7NFK”,

“7NFL”, “7NFM”, “7NFN”, “7NFO”, “7NFP” and “8A09”. Source data are
provided with this paper.

Code availability
All data and scripts for data processing, model training and model
validation, including annotated Jupyter notebooks are available here:
https://github.com/woolfson-group/array_sensing (https://doi.org/10.
5281/zenodo.7431140)67.
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