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Abstract: The UK plans to bring all greenhouse gas emissions to net-zero by 2050. Carbon capture and
storage (CCS), an important strategy to reduce global CO2 emissions, is one of the critical objectives
of this UK net-zero plan. Among the possible storage site options, saline aquifers are one of the most
promising candidates for long-term CO2 sequestrations. Despite its promising potential, few studies
have been conducted on the CO2 storage process in the Bunter Closure 36 model located off the
eastern shore of the UK. Located amid a number of oil fields, Bunter is one of the primary candidates
for CO2 storage in the UK, with plans to store more than 280 Mt of CO2 from injections starting in
2027. As saline aquifers are usually sparsely drilled with minimal dynamic data, any model is subject
to a level of uncertainty. This is the first study on the impact of the model and fluid uncertainties on
the CO2 storage process in Bunter. This study attempted to fully accommodate the uncertainty space
on Bunter by performing twenty thousand forward simulations using a vertical equilibrium-based
simulator. The joint impact of five uncertain parameters using data-driven models was analysed. The
results of this work will improve our understanding of the carbon storage process in the Bunter model
before the injection phase is initiated. Due to the complexity of the model, it is not recommended
to make a general statement about the influence of a single variable on CO2 plume migration in
the Bunter model. The reservoir temperature was shown to have the most impact on the plume
dynamics (overall importance of 41%), followed by pressure (21%), permeability (17%), elevation
(13%), and porosity (8%), respectively. The results also showed that a lower temperature and higher
pressure in the Bunter reservoir condition would result in a higher density and, consequently, a
higher structural capacity.

Keywords: Bunter Closure 36; CO2 storage; data-driven models; variable importance

1. Introduction

Over the past couple of decades, global temperatures have risen as a now-acknowledged
consequence of the accumulated impact of human activities such as burning fossil fuels.
The excessive release of CO2 into the atmosphere decreases the amount of infrared radiation
energy leaving the planet. Therefore, the greenhouse effect—essential to ensure a habitable
planet—is accelerating, resulting in a continual increase in global surface and ocean tem-
peratures. Global warming will lead to dramatic changes in the climate, including more
frequent and chaotic weather events such as intense heatwaves, droughts, and floods [1–3].

Global warming is now linked to severe weather conditions affecting the lives of
millions. Recent examples are flooding in Germany, Belgium, and China; wildfires in
Greece, Turkey, Australia, and Italy; heatwaves in the US, Pacific Northwest, and Canada;
and the massive ice melt in the Arctic, equivalent to the size of Florida, between June and
mid-July 2021. Global warming affects all countries, including the UK. Erosion caused by
waves in Happisburgh as well as the scorching of Saddleworth Moor and Ramslye Wood
in the UK caused by heatwaves and floods and storms in York, Dawlish Warren in Devon,
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Somerset, and Leeds are a few of the recent examples of the local disasters linked to climate
change in the UK [4].

The Paris Agreement has focussed urgent attention on limiting the global temperature
increase to 1.5 ◦C through the formulation of its Article 2.1a, which states the aim of
“Holding the increase in global average temperature to well below 2 ◦C above pre-industrial
levels and pursuing efforts to limit the temperature increase to 1.5 ◦C above pre-industrial
levels.” [5]. The lower temperature goal means that CO2 must be rapidly reduced to zero
in the next 20 years and beyond zero after that [6]. Although an average temperature rise
of 1.1 ◦C has resulted in the most recent climate catastrophes, according to the latest IPCC
Climate Report there is more than a 50% chance that the 1.5 ◦C target will be reached or
crossed in the early 2030s [7].

Although carbon emissions from fuel combustion have decreased in the UK, a few
energy-intensive foundation industries such as cement, metal, and paper still produce
considerable CO2 [8]. Carbon capture and storage (CCS) could provide a key contribution to
tackling the emissions from these sectors. The UK has one of the most suitable environments
for commercial CCS, ranking fourth in the CCS Readiness Index (RI) (after the US, Canada,
and Norway). Apart from the UK, most nations with a top RI rank already have large-
scale storage projects in operation. Moreover, the UK dropped in ranking between 2015
and 2016 (from first to fourth) following the UK Government‘s cancellation of its CCS
Commercialization Programme [9]. However, there has recently been a volte-face, with the
UK planning to become a “world leader” in the field of CCS, aiming to remove 10 MT of
CO2 by 2030. According to the Ten Point Plan, UK Prime Minister Boris Johnson announced
on 18 November 2020 a GBP 12 bn investment to push the UK towards net-zero emissions.
CCS is one of the critical objectives of the Ten Point Plan (Point #8), for which the UK
Government has allocated GBP 1 bn, supporting 50,000 jobs by 2030 [10].

The ideal and safe long-term storage sites for captured CO2 are primarily geological
formations such as saline aquifers or where the gas is used as an enhanced oil recovery
(EOR) agent in hydrocarbon reservoirs [11]. Of these two options, CO2 storage in saline
aquifers appears far more beneficial for the environment, given that the enhanced pro-
duction of hydrocarbons in the EOR process maintains the use of fossil fuels, thereby
contributing to global warming. Currently, there are only three operational CO2 storage
projects on a commercial scale; namely, Sleipner and SnØhvit in Norway, and Quest in
Canada. Based on the UK Storage Appraisal Project (UKSAP) estimation, the UK has a
total theoretical storage capacity of 78 GT with a 50% confidence (P50) [12]. According
to the CO2Stored database, over 68.6 Gt of potential theoretical storage is located within
saline aquifer systems in the UK and its waters, representing over 85% of the total inven-
tory [13]. Five storage sites (Bunter Closure 36, Hamilton, Forties 5 Site 1, Captain Site X,
and Viking A) have been studied in detail. They have been proven to store CO2 securely at
commercially significant volumes [13].

One of the main tasks in storing carbon dioxide in geological formations is continu-
ously monitoring its dynamic condition and plume migration [14–16]. However, knowledge
of the fluid and formation properties is usually incomplete due to inaccurate rock and fluid
datasets as well as the complexity and heterogeneity of the storage site. One of the primary
sources of uncertainty reported in the literature is an inaccurate containment of rock and
fluid spatial properties in the aquifer, resulting from a lack of direct measurements of the
properties and noise in the well logs and geophysical data [17].

Moreover, Bunter Closure 36 (BC36) is subjected to significant uncertainty in a similar
fashion to most aquifers, which are sparsely drilled with minimal dynamic data. Therefore,
a new 3D survey and appraisal wells are essential to reduce this uncertainty in the model
data by collecting reservoir, caprock, and fluid samples to support detailed development
planning. In this current study, we attempted to provide a better understanding of the
fluid flow in the Bunter Closure 36 aquifer. Despite the site’s promising potential, there are
few studies on the CO2 storage process in Bunter Closure 36. This is the first study on the
impact of the model and fluid uncertainties on CO2 storage in Bunter.
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2. Methods and Materials

In the current study, we aimed to quantify the importance of uncertain input param-
eters on the overall plume migration and trapping in the Bunter Closure 36 model. We
employed the Dice coefficient (SDC) method to quantify the similarity of the plume shape
resulting from a base case and simulation models [18,19]. The Dice coefficient, which has
been widely used in previous CO2 storage studies [20–22], is a statistic used to calculate
the similarity of two samples.

Dice coefficient =
2|X ∩ Y|
|X|+ |Y| (1)

where X and Y represent the plume outline from the simulation and base case at the same
time, respectively. A Dice coefficient equivalent to 1 corresponds with identical samples.

A reliable data-driven model that shows the linear/non-linear trend in data is needed
to find the relationship between the target values (output) and uncertain variables (inputs).
A data-driven model helps to quantify the importance of each uncertain variable (inputs)
based on their contribution to the predicted target values (outputs). In our model, the
inputs were pressure, caprock elevation, temperature, porosity, and permeability. The
outputs were the SDC values in 2032, 2037, 2047, 2057, and 2067 (5, 10, 20, 30, and 40 years
after the start of the injection).

In order to test the model, 25% of the dataset was selected. A baseline linear regression
(LR) model was fitted and the predicted target values were compared with the observed
data. The LR model led to a poor R-squared value of 0.42. We employed the same training
and test dataset as in the LR model and used the models below to improve the baseline
model prediction: K-nearest neighbours (KNN), a neighbours-based regression model
based on the proximity to make classifications or predictions about the grouping of an
individual data point [1]; decision trees (DTree), a tree-based model that sets up decision
rules inferred from observed data [23]; and random forests (RF), an ensemble method used
for classification and regression problems by linking the predictions of several decision
trees [24]. Table 1 illustrates the performance of the different data-driven models employed
in this study.

Table 1. Performance of employed data-driven models.

Model R-Squared

LR 0.421144

KNN 0.801134

RF 0.999466

DTree 0.999723

As shown in Table 1, RF and DTree outperformed the LR and KNN models. Therefore,
RF and DTree were employed to determine the underlying relationship between the input
and output parameters. Finding the relevant data-driven model is always challenging;
therefore, these methods were chosen to evaluate the variable importance due to their
promising performance in similar studies [20,25].

Simple models are based on simple rules and are easily interpretable in variable
importance problems. However, complex statistical models such as the one in this study
are difficult to explain. Therefore, using an interpretable approximation of the original
statistical model is expected. To provide a more straightforward interpretation of the
variable importance, we employed a unified structure to interpret the predictions called the
SHAP (Shapley Additive Explanations) method [26]. SHAP is a game-theoretic approach
that aims to explain the prediction of an instance by calculating the contribution of each
uncertain parameter in the prediction. Although solving SHAP values is computationally



Sustainability 2023, 15, 2004 4 of 11

expensive, they can be approximated by combining different additive feature attribution
methods. Please refer to [26] for more information regarding SHAP.

Previous studies on saline aquifers such as Sleipner and Snohvit employed the one-
factor-at-a-time (OFAT) approach [21]. Using OFAT, it is possible to investigate the reservoir
model’s response to one parameter whilst keeping the rest at their initial values. In the
current study, we aimed to fully span the uncertainty space by using the cross-correlation
of five parameters to show their impact on the overall CO2 migration and trapping process.
Several sources of uncertainty were considered, including the reservoir pressure, porosity,
permeability, reservoir temperature, and caprock morphology. Data-driven models were
used to comprehensively analyse the impact of the uncertainties in the model and the
fluid on the injected CO2 plume migration and trapping. We generated twenty thousand
samples for five uncertain parameters within the reported range for the Bunter Closure
36 model and ran forward simulations for each input set. The vertical equilibrium model
implemented in MRST-co2lab [27,28] was used to maintain a feasible computational cost.
A forward simulation performed on the Bunter Closure 36 took around 8 and 14 h using
the ECLIPSE Blackoil and ECLIPSE Compositional simulators, respectively; using MRST-
co2lab reduced the simulation to less than 2 min. MRST-co2lab has een shown to have
promising performance compared with commercial simulators [29,30]. Please refer to [30]
for further information regarding vertical equilibrium modelling.

As this study was computationally expensive, a cluster system was employed to run 50
parallel simulations simultaneously. The RF and DTree [23,24] models available in Python
(Scikit-learn library) were used to quantify the importance of the uncertain parameters in
the CO2 plume outline. The input was a matrix of twenty thousand by five (temperature,
pressure, porosity, permeability, and caprock elevation) and the output was a matrix of
twenty thousand by five (the SDC for five time steps).

2.1. Geological Model

The Bunter Closure 36 site (BC36), a saline aquifer in the Southern North Sea Basin, is
a potential site for commercial CO2 storage in the UK. Located 150 km off the Yorkshire
coast (Figure 1), BC36 is close to the Thames and Humber estuaries, two important CO2-
generating clusters in the UK.
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Figure 1. Bunter Closure 26 location map [31] (the information contains copyright information
licensed under this ETI Open Licence).

The Bunter Sandstone is situated between 1200 m and 1800 m below sea level, with an
average thickness of around 210 m. The Bunter model has suitable 3D seismic coverage
and the well database results are from the six wells that have been drilled in the model
since 1968. The aquifer has an average porosity and permeability of 22% and 210 mD,
respectively, resulting in a smooth fluid flow in the model. Dissolution trapping was
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considered in the current work. The parameters used in this study were taken from the
Bunter Storage Development Plan [31] and are listed in Table 2.

Table 2. Model parameters.

Parameter Value

Average porosity 0.22

Average horizontal permeability (mD) 210

Number of cells (NX × NY × NZ) 124 × 134 × 41

Initial temperature (◦C) 45

Initial pressure (bar) 119 (@ 1170 m TVDSS)

Injection rate (MT/y) 7

Injection time 40 years (2027–2067)

Salinity (ppm) 200,000

CO2 density at 45 ◦C and 119 bar (Kg/m3) 653

Water density at 45 ◦C and 119 bar (Kg/m3) 996

Geothermal gradient (◦C/100 m) 3

Seafloor depth (m) 73

There are multiple caprocks above the Bunter Sandstone that would permanently
seal the injected CO2. The sealing system would be a combination of laterally continuous
mudstone from the Haisborough Group, with an average thickness of 300 m and a 60 m-
thick Rot Halite formation. Thick mudstone layers at the bottom of the storage site would
provide an effective impermeable floor. Figure 2 illustrates a schematic of the Bunter
Closure 36 storage site.
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According to the Energy Technology Institute [31], the development plan in BC36
will begin in 2024, leading to the first injection in 2027. The model is expected to store a
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CO2 supply of 7 MT/year from the Humberside area over an operational life of 40 years,
equivalent to a coal fire power plant of 1.2 GW. The site’s development plan and geological
and fluid models are publicly available, and were employed in the current study [31].

Similar to the original plan, in the current study, CO2 was injected into the model
continuously through the four wells that deviate from the platform into the northwest flank
of the dome. The coordinates of the injection wells are listed in Table 3. The employed
coordinate system was UTM, ED50 Common Offshore, Zone 31N (0◦ East to 6◦ East). The
injected CO2 was in a liquid phase throughout the injection and storage phases.

Table 3. Coordinates of the injection wells.

Well UTM North (m) UTM East (m)

Injection #1 5,991,224 444,000

Injection #2 5,988,108 441,357

Injection #3 5,990,901 442,178

Injection #4 5,989,675 442,662

2.2. Model Uncertainty
2.2.1. Pressure and Temperature

Subsurface analyses of the local and regional Bunter Sandstone hydrology and aquifer
strength are essential due to their impact on the long-term dynamic performance of the
site. Moreover, a comprehensive analysis of the production and pressure information
from nearby Triassic gas fields would help us better understand the hydraulic connection
between these structures and the Bunter Sandstone aquifer. In this study, the reservoir
pressure was considered to be hydrostatic, leading to a pressure of about 120 bar on top
of the model (depth of around 1200 m). The uncertainty in pressure was applied with the
term DP. Twenty thousand random values of DP between −10 and 10 bars were considered
to modify the model pressure.

Temperature variations can significantly change density and viscosity, consequently
affecting the occupied volume and mobility. A recent study [32] compared different
modelling options, including isothermal, full thermal and thermal gradient, to assess
temperature effects in the BC36 model. The temperature was shown to considerably affect
the overall plume migration. Moreover, the seabed water temperature at the Bunter Closure
36 location (Block 44) fluctuates from 6 ◦C to 16 ◦C over a year [31]. The aquifer temperature
in the current study was modified using the term DT to implement its uncertainty. Twenty
thousand random values of DT within the range of ± 6 ◦C were considered to modify the
temperature.

2.2.2. Porosity, Permeability, and Caprock Morphology

Heterogeneities can significantly change the fate of injected CO2 in saline aquifers [33].
Pore spaces are not uniformly distributed, resulting in a heterogeneity in porosity, per-
meability, and capillary pressure. Therefore, it is essential to precisely incorporate the
heterogeneities into simulation models. However, occasionally in CO2 storage studies, the
models are simplified and averaged values are considered for the rock properties. Tradi-
tionally, geophysical methods have been employed for the static modelling of pre-injection
aquifer conditions, often proving inaccurate due to uncertainty in the data. A recent
study [2] investigated the impact of heterogeneities on CO2 plume migration and trapping
in the Bunter model. The results showed that sedimentological heterogeneities controlled
the flow direction and migration rate of the injected CO2. As the model heterogeneities
were usually poorly constructed using the well and production history data, the authors
suggested the inclusion of these heterogeneities in more detail for the future modelling of
CO2 migration in the Bunter model [2].



Sustainability 2023, 15, 2004 7 of 11

The reported ranges for porosity and permeability in the Bunter model are around
18% to 24% and 62 mD to 271 mD, respectively. The current study generated twenty
thousand porosity realisations within the range reported in the Bunter Storage Development
Plan [31]. The permeability realisations were generated from porosity data using Equation
(2), available in the Bunter Storage Development Plan [31]:

k = Φ3
(

1.527
0.0314× (1−Φ)

)2
(2)

where k and Φ denote permeability (mD) and porosity, respectively. Equation (2) was
derived for the Bunter model using onsite core data. It is a simple and effective method to
generate permeability data for the model.

The seismic vertical resolution is typically around 10 m. Therefore, the topographical
variations below this limit (i.e., rugosity) were not observed in the geological modelling
process. To analyse the impact of the topography variations on the CO2 storage and
trapping process, twenty thousand realisations of the top surface elevation within a range
of ± 8 were considered in this study.

2.3. Simulation Approach

The numerical simulations in this study were performed using the co2lab module in
MRST. This module is formulated based on vertical equilibrium assumptions; i.e., brine
and CO2 are in a hydrostatic equilibrium throughout the simulation and the vertical fluid
migration compared with the lateral migration is negligible. Due to the significantly
different fluid densities in the BC36 model, CO2 and brine were expected to form separate
layers after an instant segregation. The vertical equilibrium method has been shown to have
a promising performance in CO2 storage problems [34–37]. VE modelling can reduce the
problem dimension to two, leading to a significantly lower computational cost. Therefore,
a modeller could consider a higher lateral grid resolution beyond the practical limits in full
3D simulations.

The CO2 was injected at a constant annual rate of 7 Mt for 40 years, starting from 2027.
Figure 3 illustrates the top and view of the saturation profile after 1, 20, and 40 years of
injections for the original model.
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3. Results and Discussion

Figures 4 and 5 illustrate the variable importance plots for the DTree and RF models
approximated by SHAP. Multiple starting points were considered when estimating the
SHAP values to ensure the reliability and reproductivity of the data. The results from the
RF and DTree models were similar, with temperature and permeability being the most and
least essential variables in controlling the plume outline, respectively. Pressure, porosity,
and elevation had a similar variable importance value of around 10% to 20%. Figures 4
and 5 also show the percentage of the variable importance for the variables at each time
step (see the number in the boxes). A parameter with a higher percentage should have
had more control over the match between the simulated and observed plume outlines. For
example, in 2032, the model prediction was mainly affected by the uncertainty in pressure.
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Similar to this study, temperature was shown to have a critical role in controlling
plume migration in the Sleipner model [20,21,25]. Temperature and pressure would have
an impact on density and viscosity. According to Coolprops data [38], the model at its initial
condition (i.e., T = 45 ◦C and P = 119 bar) would have an average density of 653 kg/m3.
Density has a crucial impact on the overall CO2 migration in a saline aquifer. Changing
the temperature within a range of −6 to 6 whilst keeping the pressure constant resulted in
densities of 727 kg/m3 and 562 kg/m3, respectively. The corresponding density for cases
with DP of −10 and 10 bar under isothermal conditions rose to 596 kg/m3 and 690 kg/m3,
respectively. Therefore, the density was more sensitive to the temperature in the Bunter
model than the pressure within the uncertainty ranges used in the current study.

The impact of the caprock elevation on the plume migration in Bunter seemed to be
less significant than in Sleipner [20,21,25]. The reason could be that Sleipner has a small-
scale caprock morphology. Therefore, small topography changes would alter the migration
path. However, in the Bunter model, the plume migration path is mainly controlled by a
dome-shaped topography with large amplitudes. Therefore, changing the elevation within
a small range would not have as much impact as the Sleipner model. Uncertainties in
porosity had a minimum impact on the plume dynamics. Whilst the level of perturbations
and reservoir characteristics might have affected the outcome, similar results were observed
in the Sleipner model [20,21,25].

The static capacity in terms of CO2 mass could be estimated from the following
equation [21]:

Static capacity (kg) =
∫
Ω

ρVφ(1− Srw) (3)

where ρ is the CO2 plume density at the aquifer condition (kg/m3), V is the trap volume
(m3), φ is the porosity, and Srw is the residual water saturation.

A higher CO2 density would lead to an increase in the structural traps. As mentioned
before, in the Bunter aquifer condition, the CO2 density would increase by a drop in
temperature and a rise in pressure. This condition would consequently lead to a higher
static capacity. Moreover, a larger (and positive) elevation in the aquifer caprock and higher
porosity would also increase the structural trapping.

4. Conclusions

This work analysed the joint effect of uncertain parameters on the CO2 plume migra-
tion in the Bunter Closure 36 model. In this regard, twenty thousand simulations were
performed to investigate the importance of the model temperature and pressure as well
as the porosity and permeability heterogeneities and caprock elevation. To minimise the
computational costs, the simulations were performed using VE models. The joint effect of
the parameters was analysed using data-driven models.

Bunter Closure 36 is one of the primary candidates for CO2 storage in the UK. This is
the first study on the impact of the model and fluid uncertainties on the CO2 storage process
in the model. This work raises our understanding of the Bunter model’s storage process
well before initiating the injection phase. The temperature was shown to have the most
impact on the plume dynamic (overall importance of 41%), followed by the pressure (21%),
permeability (17%), elevation (13%), and porosity (8%). It is crucial for storage safety to
improve our understanding of the migration process and develop confidence in long-term
carbon storage performance. The results showed that a slight error in the temperature data
of the model could lead to a significant error in evaluating the CO2 plume migration path.
The results also indicated the complexity of one parameter’s impact on another, making it
inaccurate to generalise the impact of a variable on the plume migration.

A similar study could be conducted on any geological model such as CO2 storage
or petroleum or gas reservoirs to find the importance of the uncertain parameters on the
overall simulation process before performing any history matching. This way, we could
efficiently minimise the mismatch between the results from our simulation and observed
data by improving the accuracy of the geological, operational, and fluid information.
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