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Thesis Summary 
 

Low-carbon energy production is potentially a major method of reducing 

greenhouse gas emissions and anthropogenic climate change.  In the UK, tall 

perennial grass crops show potential as “biomass crops”, providing renewable 

energy sources with a low net carbon cost.  However, conversion of large areas of 

farmland to biomass production would constitute a major land-use change with 

possible negative effects on native biodiversity, particularly as some biomass crop 

types are not native to the UK.  The aim of this thesis was to assess biological 

diversity within mature (>3 years old) crops of non-native Miscanthus x giganteus 

and native Phalaris arundinacea.  

 

Biomass crop structural characteristics and management regimes were recorded, 

and their biodiversity was surveyed with particular reference to birds and small 

mammals in comparison with adjacent land uses.  Food resources in terms of non-

crop vegetation and invertebrates were also recorded.  Live-trapping revealed eight 

species of small mammal in the study crops, including a conservation priority 

species, the harvest mouse Micromys minutus, which was most abundant in 

Phalaris crops.  Phalaris also contained the highest small mammal diversity, but the 

field headlands held the greatest small mammal abundance.  Trapping and direct 

observations revealed a higher abundance and diversity of birds in the Miscanthus 

crops in comparison with Phalaris.  Most of the bird species found in biomass crops 

were associated with woodland or reedbed rather than farmland habitat. 

 

Phalaris crops had a higher percentage of ground cover of the crop itself and non-

crop vegetation, whereas Miscanthus fields had greater cover of crop litter.  

Miscanthus crops contained fewer invertebrates than Phalaris or the field 

headlands.  Management specific to biomass grass crops involves harvest in spring, 

thus providing winter habitat of importance to birds and small mammals.  The crop 

fields also provide a refuge for invertebrates and non-crop vegetation and overall, 

supported high levels of biodiversity. 
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Species list 
Common name Scientific name 
Plants  
Monocotyledons  
Amur silvergrass Miscanthus sacchariflorus  
Annual meadowgrass Poa annua  
Barley Hordeum vulgare 
Bent grass  Agrostis spp.  
Blackgrass Alopecurus myosuroides 
Cocksfoot  Dactylis glomerata  
Common reed Phragmites australis  
Couch grass Elymus repens 
Crested dogstail  Cynosurus cristatus  
False oatgrass  Arrhenatherum elatius  
Giant miscanthus Miscanthus x giganteus 
Giant reed  Arundo donax  
Guinea grass Panicum maximum 
Maize Zea mays 
Perennial ryegrass  Lolium perenne  
Reed canary grass Phalaris arundinacea 
Rough meadowgrass   Poa trivialis 
Sedge species Carex spp. 
Smooth meadowgrass  Poa pratensis  
Soft rush  Juncus effusus  
Sterile brome grass Anisantha sterilis 
Sweet sorghum Sorghum bicolor 
Sweet vernal grass  Anthoxanthum odoratum  
Switchgrass  Panicum virgatum  
Timothy grass Phleum pratense 
Wheat species Triticum spp. 
Wild oats Avena fatua 
Woodrush Luzula campestris  
Yorkshire fog  Holcus lanatus  
  
Dicotyledons  
Ash  Fraxinus excelsior  
Birdsfoot trefoil  Lotus corniculatus  
Black knapweed  Centaurea nigra  
Blackcurrant Ribes nigrum  
Blackthorn  Prunus spinosa  
Bracken  Pteridium aquilinum  
Bramble  Rubus fructicosus  
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Broadleaved dock Rumex obtusifolius  
Broadleaved plantain  Plantago major  
Broadleaved willowherb  Epilobium montanum  
Common knotgrass Polygonum aviculare 
Common orache  Atriplex patula  
Common poppy Papaver rhoeas 
Corn mint Mentha arvensis 
Creeping buttercup  Ranunculus repens  
Creeping thistle  Cirsium arvense  
Curled dock   Rumex crispus 
Cut-leaved cranesbill  Geranium dissectum  
Dandelion  Taraxacum spp.  
Dog rose  Rosa canina  
Dove's-foot cranesbill  Geranium molle  
Fat hen Chenopodium album 
Field speedwell  Veronica persica  
Forgetmenot  Myosotis spp.  
Goosefoot species Chenopodium spp. 
Goosegrass  Galium aparine  
Great willowherb   Epilobium hirsutum 
Ground ivy  Glechoma hederacea  
Hairy bittercress  Cardamine hirsuta  
Hairy fogfruit Phyla canescens 
Hawthorn Crataegeus monogyna 
Hedge woundwort  Stachys sylvatica  
Herb Robert  Geranium robertianum  
Hogweed   Heracleum sphondylium 
Ivy   Hedera helix 
Ivyleaved speedwell Veronica hederifolia 
Kenaf Hibiscus cannabinus  
Knotgrass  Polygonum aviculare  
Knotgrass species Polygonum spp.  
Lesser burdock  Arctium minus  
Lettuce Lactuca sativa 
Mayweed species Matricaria spp. 
Meadow thistle  Cirsium dissectum  
Mouse ear  Cerastium fontanum  
Nettle  Urtica dioica  
Oak species Quercus spp. 
Olive Olea europaea  
Oxeye daisy Leucanthemum vulgare  
Poplar species Populus spp. 
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Prickly lettuce  Lactuca serriola  
Ragwort Senecio jacobaea  
Raspberry  Rubus idaeus  
Red clover  Trifolium pratense  
Redshank  Persicaria maculosa  
Ribwort plantain  Plantago lanceolata  
Rosebay willowherb  Chamaenerion angustifolium  
Scarlet pimpernel  Anagallis arvensis  
Self heal Prunella vulgaris  
Sorrel  Rumex acetosa 
Sow thistle  Sonchus oleraceus  
Spear thistle  Cirsium vulgare  
Spreading hedge parsley Torilis arvensis 
Stitchwort  Stellaria media  
Sunflower Helianthus annuus 
Teasel Dipsacus fullonum  
Thistle species Cirsium spp. 
Thyme-leaved speedwell  Veronica serpyllifolia  
Upright hedge parsley  Torilis japonica 
White clover  Trifolium repens  
Wild strawberry  Fragaria vesca  
Willow species Salix spp. 
  
Invertebrates  
Armyworm Mythimna seperata 
August thorn  Ennomos quercinaria 
Buff arches  Habrosyne pyritoides 
Buff ermine  Spilosoma luteum 
Bumblebee species Bombus spp. 
Cinnabar moth Tyria jacobaeae  
Comma Polygonia c-album 
Earthworm species Lumbricus spp. 
Elephant hawkmoth  Deilephila elpenor  
Fall armyworm Spodoptera frugiperda  
Garden tiger  Arctia caja 
Green veined white Pieris napi 
Harlequin ladybird Harmonia axyridis  
Honey bee Apis mellifera  
Large white Pieris brassicae 
Meadow brown   Maniola jurtina 
Mealworm Tenebrio molitor 
Painted lady Vanessa cardui 
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Peach aphid Myzus persicae 
Red admiral  Vanessa atalanta 
Ringlet Aphantopus hyperantus 
Rustic  Hoplodrina blanda 
Shoulder-striped wainscot  Mythimna comma 
Small copper Lycaena phlaeas   
Small phoenix  Ecliptopera silaceata 
Small square-spot  Diarsia rubi 
Small tortoiseshell Aglais urticae 
Small white Pieris rapae 
Speckled wood Pararge aegeria 
Western corn rootworm  Diabrotica virgifera virgifera 
White ermine  Spilosoma lubricipeda 
  
Amphibians  
Common toad Bufo bufo 
  
Reptiles  
Adder Vipera berus 
  
Birds  
Barn owl Tyto alba 
Barn swallow Hirundo rustica 
Blackbird Turdus merula 
Blackcap Sylvia atricapilla 
Blue tit Cyanistes caeruleus 
Bullfinch Pyrrhula pyrrhula 
Carrion crow Corvus corone 
Chaffinch Fringilla coelebs 
Chiffchaff Phylloscopus collybita 
Common redpoll Carduelis flammea 
Corn bunting Emberiza calandra 
Crow species Corvus spp. 
Curlew Numenius arquata 
Dunnock  Prunella modularis 
Eastern great reed warbler Acrocephalus arundinaceus orientalis 
Fieldfare Turdus pilaris 
Goldcrest Regulus regulus 
Goldfinch  Carduelis carduelis 
Goshawk Accipiter gentalis 
Great black-backed gull Larus marinus 
Great grey shrike Lanius excubitor 
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Great tit Parus major 
Greenfinch Carduelis chloris 
Grey partridge Perdix perdix 
House sparrow Passer domesticus 
Jackdaw Corvus monedula 
Japanese reed bunting Emberiza yessoensis 
Jay Garrulus glandarius 
Kestrel Falco tinnunculus 
Lapwing Vanellus vanellus 
Lesser redpoll Carduelis cabaret 
Linnet  Carduelis cannabina 
Little owl Athene noctua 
Long-tailed tit Aegithalos caudatus 
Long-eared owl Asio otus 
Magpie Pica pica 
Mallard Anas platyrhyncos 
Meadow bunting Emberiza cioides 
Meadow pipit Anthus pratensis 
Mistle thrush Turdus viscivorus 
Moorhen Gallinula chloropus 
Pheasant   Phasianus colchicus 
Pied wagtail Motacilla alba 
Red-legged partridge Alectoris rufa 
Redstart Phoenicurus phoenicurus 
Redwing Turdus iliacus 
Reed bunting  Emberiza schoeniclus  
Reed warbler Acrocephalus scirpaceus 
Robin Erithacus rubecula  
Rook Corvus frugilegus 
Sedge warbler Acrocephalus schoenobaenus 
Short-eared owl Asio flammeus 
Skylark Alauda arvensis 
Snipe Gallinago gallinago 
Song thrush Turdus philomelos 
Sparrowhawk Accipiter nisus 
Starling Sturnus vulgaris 
Stock dove Columba oenas 
Stonechat Saxicola torquatus 
Tawny owl Strix aluco 
Tree sparrow Passer montanus 
Treecreeper Certhia familiaris 
Water rail Rallus aquaticus 
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Birds cont.  
Wheatear Oenanthe oenanthe 
Whinchat Saxicola rubetra 
Whitethroat Sylvia communis 
Willow warbler Phylloscopus trochilus 
Woodcock Scolopax rusticola 
Woodpigeon Columba palumbus 
Wren Troglodytes troglodytes 
Yellow wagtail Motacilla flava 
Yellowhammer Emberiza citrinella 
  
Mammals  
Bank vole Myodes glareolus 
Common shrew Sorex araneus 
Common vole Microtus arvalis 
Deer mouse Peromyscus maniculatus  
Domestic cat Felis catus 
Field vole Microtus agrestis 
Gray-tailed voles  Microtus canicaudus  
Harvest mouse Micromys minutus 
House mouse Mus domesticus 
Meadow vole Microtus pennsylvanicus 
Pygmy shrew Sorex minutus 
Rat species Rattus spp. 
Red fox Vulpes vulpes 
Roe deer Capreolus capreolus 
Water shrew Neomys fodiens 
Weasel Mustela nivalis 
Wood mouse Apodemus sylvaticus 
Yellow-necked mouse Apodemus flavicollis 
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Abstract 

Analysis of surface temperatures and atmospheric carbon dioxide (CO2) levels over 

recent years has led to an increasing level of certainty that global warming is linked 

to anthropogenic activity.  In response to this, governments around the world have 

committed to reducing CO2 emissions through a range of strategies.  One of these 

strategies is to reduce their dependence on fossil fuels by developing lower-carbon 

energy supplies through utilising a range of renewable power sources.  Energy from 

biomass has the potential to be a useful low-carbon option, due to the fact that the 

only carbon released on combustion is equivalent to that fixed during 

photosynthesis.  Biomass crops tend to comprise either woody material grown as 

short-rotation coppice, or tall perennial grasses.  Of the potential biomass grass 

types, two species are grown in Wales (Miscanthus x giganteus and Phalaris 

arundinacea).   

 

Concern has also been growing over possible negative effects of agricultural 

intensification on biodiversity.  The abundance of many species that have adapted 

to traditional farming practices are negatively associated with increasing levels of 

intensification, which often takes the form of increased homogenisation of the 

agricultural landscape through the cultivation of monoculture crops and loss of 

non-cropped habitat. 

 

The potential introduction of large-scale biomass grass crop plantations to the 

agricultural sector has in turn raised concerns.  Some of the grass species grown are 

not native to the UK and there is very little data available on potential impacts on 

native wildlife and biodiversity of the crops when they reach maturity and 

maximum growth.  This thesis aims to examine the effects of mature biomass grass 

plantations on the biodiversity of birds and small mammals and their food resources 

(non-crop plants and invertebrates). 
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1.1. Biomass crops as mitigation for anthropogenic climate change 

1.1.1 Atmospheric greenhouse gases 

The evidence for human-induced climate change has become compelling (IPCC 

2007a, and recent reviews e.g. http://berkeleyearth.org/analysis.php).  This climate 

change is being driven by anthropogenic increases in “greenhouse gases” (GHG), 

which trap the sun’s heat within the Earth’s atmosphere, increasing global 

temperatures through their ability to act as an atmospheric “blanket”.  Global 

anthropogenic GHG emissions have shown a massive 70% increase between 1970 

and 2004 (IPCC 2007b).  Infra-red heat radiated from the earth is absorbed by the 

gases and re-emitted back to the earth instead of escaping back to the atmosphere, 

resulting in an overall warming effect.  These temperature increases are associated 

with a suite of interrelated climatic changes (e.g. wind and rainfall patterns), 

oceanographic changes (e.g. sea level rise and potential changes in ocean 

circulation) and ecological changes (e.g. changes in ranges, phenology and 

community composition). 

 

CO2 is one of several greenhouse gases (GHG) attributed to causing global warming. 

Atmospheric carbon dioxide (CO2) levels have risen dramatically, by approximately 

40% since pre-industrial times from around 280 ppm in 1750 (Intergovernmental 

Panel on Climate Change IPCC 2007a) to the most recent measurement of 391 ppm 

for January 2011 (National Oceanic and Atmospheric Administration (NOAA) 

2011).  Sources of CO2 resulting from human activities arise from the burning of 

fossil fuels and the production of cement and other products.  Deforestation reduces 

the number of trees able to absorb atmospheric CO2 and the deforestation process 

also releases the gas during ground disturbance and burning (IPCC 2007a).  

Methane (CH4) is another major GHG, which although not produced in the 

volumes that CO2 is produced during the combustion of fossil fuels, has a warming 

potential of 3.7 times the equivalent volume of CO2 (Lashof & Ahuja 1990).  
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Human-induced CH4 production includes emissions from the agricultural sector 

(particularly where ruminants dominate), rice-growing and landfills (IPCC 2007a).   

 

1.1.2 Temperature increases 

Between 1906 and 2005, in association with the dramatic increase in GHG levels, 

the global average surface temperature has increased by around 0.74°C.  Of the 12 

warmest years on record, 11 occurred in the 12 years between 1996 and 2006 and 

the two hottest years were 1998 and 2005 (IPCC 2007a).  Consequences of global 

warming include rises in sea level, increased frequency of extreme events such as 

heat waves, droughts, floods and hurricanes as well as a reduction in snow and ice 

cover and therefore more heat absorbed by the earth’s surface due to reduced 

albedo (IPCC 2007a).  As global temperatures increase, food production will be 

affected and this is projected to have devastating effects on a growing global human 

population.  Whilst many factors influence climatic processes, the IPCC states a 

“very high confidence” in the fact that the increase in temperatures since pre-

industrial times is due to the effect of human activities (IPCC 2007a). 

 

1.1.3 Mitigation 

The signatories of the Kyoto Protocol (1997) have committed to reduce GHG 

emissions by 5% of 1990 values between 2008 and 2012, but it appears that meeting 

even this modest target would have very little impact on future climate change.  

Emissions would need to be reduced to a small fraction of their current levels 

within the next 100 years to make a significant difference to projected scenarios 

(Hasselmann et al. 2003).  Thus, if rapid and harmful climate change is to be 

avoided, large-scale cuts in GHG emissions would need to be instigated across all 

spheres of human activity.  Measures for reducing GHG emissions from the 

agricultural sector include the development of soil sinks, reduction in agricultural 

emissions and development of biofuels as a replacement for fossil fuels (Batjes 

1998). 
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1.1.4 Biomass fuel  

The term “biomass” encompasses a wide range of source material and end-products 

of organic matter origin.  Firstly, there are industrial and agricultural waste 

products, which can be either combusted for heat and power, or bio-digested for 

the production of biogas.  Secondly, multi-functional crops can produce energy in 

more than one form using different parts of the plant.  An example of this type 

might be wheat, from which the grain can be fermented into bioethanol and the 

straw can be combusted.  Thirdly are the dedicated energy crops such as willow 

Salix spp., poplar Populus spp. and perennial grasses, grown specifically for energy 

production through either combustion or the production of second-generation fuels 

such as lignocellulosic ethanol (Department for the Environment, Food and Rural 

Affairs (DEFRA) 2007).  There is some interchanging of terms related to biomass 

energy, but for the purposes of this report, liquid fuels such as bioethanol and 

biodiesel and also biogas will be referred to as biofuels and woody fuels as biomass. 

 

1.1.5 Biomass energy production as a carbon emission reduction strategy 

Energy derived from biomass is not a new concept.  Even in present times, millions 

of people around the globe depend on biomass as fuel, predominantly through the 

use of wood fuel for cooking although the simple systems used can be inefficient 

and polluting (European Commission (EC) 2000).  In 2000, biomass contributed to 

3% of Europe’s energy and the intention was to double this total by 2010, which 

would lead to half of all renewable energy being provided by burning biomass.  

Eventually it is thought that 20% of Europe’s energy could be sourced from 

biomass, which would require the use of over 20 million hectares (ha) of land to 

produce energy crops (EC 2000), representing a massive shift in land-use across 

large parts of the UK.  However, the ecological impacts of such a change in land-use 

are poorly understood and are an increasingly urgent research priority. 
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The incentives for farmers to start growing biomass crops vary regionally within 

the UK.  In England, establishment grants are made available under the Energy 

Crops Scheme to farmers who intend to grow a minimum of 3 ha of Miscanthus 

(£800/ha) or short rotation woody coppice (£1,000/ha) for a minimum of 5 years.  

These grants are dependent on having a local market for the biomass such as a 

combined heat and power (CHP) plant or on-farm use (Natural England 2007).  In 

Scotland, a one-off payment of £1,000 can be claimed by farmers changing to 

biomass crops with an end use agreement and also a €45/ha (= approximately £40, 

October 2011) subsidy for those growing oil seed rape for biofuels (Scottish 

Parliament 2006).   

 

These grants are not available in Wales and the lack of guaranteed markets for the 

biomass makes the option of growing energy grasses less attractive to some farmers 

in comparison with arable crops such as wheat, which has guaranteed markets and 

good prices available (personal discussions, Royal Welsh Agricultural Society 

Winter Fair 2007).  However, the Welsh Assembly Government (WAG) is 

committed to investigating the desirability of an establishment grant scheme as part 

of the One Wales programme and will this be undertaken as part of the Axis 2 Land 

Management Review (WAG 2008). 

 

The WAG has committed to a reduction in GHG of 3% annually from 2011 as well 

as increasing renewable energy to 20% of the total energy in use by 2020.  There 

does seem to be some reticence in Wales for embracing biomass as an arable crop 

rather than using the land for food production, but sustainable development 

objectives are likely to be met by “local biomass for local energy production” and as 

such, these schemes are likely to be increasingly prioritised over the coming years.  

The WAG also aims to aid the installation of micro-generation community projects 

that include biomass heat or power generation through providing planning 

guidelines (WAG 2008). 



   
S.J. Clapham  7   

 

1.1.6 Microalgae and cyanobacteria as biofuels 

Another potentially important biofuel source that will only be briefly mentioned 

here is algae.  At present, two approaches exist – one of which harvests algal 

biomass which is then refined to produce biodiesel, the other is to use 

cyanobacteria to directly produce ethanol as part of the photosynthetic process 

(Luo et al. 2010).  As long as high concentrations of ethanol can be produced in this 

way, energy inputs and GHG emissions are comparatively low, with the added 

advantage that fuel production in this ‘space-efficient’ way will not compete with 

land needed to grow food. 

 

1.1.7 Second generation processes for producing energy from biomass 

Although biomass crops were originally only used for combustion in order to 

produce heat and power, some second-generation technology is increasing the 

scope of processes and products for energy generation from biomass.  Lignin, 

cellulose and hemicellulose polymers can be broken down into fermentable sugars 

by chemical processes (using dilute acid or alkaline) or enzymatic processes and 

then fermented into ethanol (Foyle et al. 2007).  Additional carbon costs involved 

in processing biomass for lignocellulosic ethanol partly depend on the process used 

(Slade et al. 2009).  The use of ammonia pre-treatment has been proposed as an 

alternative to acid or alkaline hydrolysis (Huyen et al. 2010).  This achieves an 

increased porosity in the biomass material and removes lignin and hemicelluloses, 

allowing subsequent enzyme activity to be more effective. 

 

Enzyme conversion is a more efficient method for producing ethanol than dilute 

acid conversion, but more electricity is used in the manufacture of the enzymes, 

with the result that this latter process could be responsible for higher GHG 

emissions than the former (Slade et al. 2009).  Despite this, the lignocellulosic 

supply chains in the study (by Slade et al. 2009) would lead to reduced GHG in 

comparison with gasoline fuel. 
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Another technology under development is pyrolysis (fast or slow), which involves 

heating biomass in the absence of oxygen to produce the liquid product “bio-oil”.  

This can be used instead of mineral oil for generating power and has the advantage 

of being easily transported in its liquid form (Hodgson et al. 2010a).  Carbon savings 

from biomass grown for slow pyrolysis were enhanced when the by-product of 

pyrolysis, “biochar” was applied to agricultural soils (Gaunt & Lehmann 2008).  

Biochar can also increase the productivity of soils by facilitating the uptake of 

nutrients by plants, and also enhances the soil structure and biological properties. 

 

1.1.8 Perennial grass types 

Four main types of perennial grass have been identified as potentially good biomass 

sources in Europe: Miscanthus x giganteus, reed canary grass Phalaris arundinacea, 

giant reed Arundo donax and switchgrass Panicum virgatum (Lewandowski et al. 

2003).  Miscanthus and switchgrass both have C4 photosynthetic pathways and 

Phalaris and giant reed are both C3 plants although the photosynthetic rates in 

giant reed are higher and biomass production is similar to C4 plants (Cosentino et 

al. 2006).  The advantages of using rhizomatous grasses include the fact that 

nutrients are translocated to the rhizome at the end of the growing season and the 

resulting senesced stem material has a lower mineral content and produces less 

pollution when combusted (Heaton et al. 2004).   

 

Plantations of only two of these grasses (Miscanthus and Phalaris) were available in 

the required geographical area (mid and west Wales) and therefore for the purposes 

of this thesis, only these two biomass grass types are considered. 

 

1.1.9 Markets for biomass 

An essential element of growing biomass crops as a renewable energy, is that there 

is a viable market for the crop that is sufficiently local, to minimize transport-

induced CO2 emissions.  Increasingly, biomass boilers are being used for small scale 
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heat generation in domestic and agricultural settings.  On a medium scale, 

combined heat and power plants can be used in a community setting, or for 

commercial premises (as at Bluestone Holiday Park in Pembrokeshire, South 

Wales).  On a larger scale, co-fired power stations are able to burn biomass in 

combination with coal.  There are currently 15 such power stations in the UK, with 

Aberthaw in South Wales having a total capacity of 1,455 MWe (DTI 2005).  In 

2005, energy crops (Miscanthus and short rotation coppice (SRC) willow) 

accounted for only 0.3% of the total biomass feedstock co-fired with coal, but their 

transport-related emissions were the among the lowest of all biomass types used, at 

1.7 kg CO2 / tonne biomass (DEFRA 2007). 

 

1.1.10 Properties of good biomass for combustion  

Plant material that is too high in nutrients and alkali inorganic elements can cause 

damage to power plants through slag formation, fouling and corrosion (Monti et al. 

2008).  These processes occur through accumulation of deposits on heat exchangers 

which reduces their efficiency, or by chemical reactions between products of 

combustion and the metal surfaces of the power plant, causing damage.  Material 

high in ash content can also reduce the energy output and it is therefore important 

to ensure that attention is paid to ensuring the best biomass quality (Monti et al. 

2008). 

 

1.2 Miscanthus  

1.2.1 Miscanthus - description and agronomy 

Miscanthus x giganteus Greef & Deuter ex Hodkinson is a sterile allopolyploid 

hybrid produced by crossing Miscanthus sinensis with Miscanthus sacchariflorus 

(Stewart et al. 2009).  The native range of these two species is East Asia, where their 

use as grazing and thatching material is well established (Stewart et al. 2009).   M. 

sinensis has a high tolerance for heavy metals and acid soils but it is unknown 

whether this trait is also present in M. x giganteus.  If it were, or if M. sinensis were 
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to be grown as a biomass crop in its own right, there is a possibility that it could be 

grown on contaminated land (Stewart et al. 2009). 

 

M. x giganteus (hereafter referred to as Miscanthus) has a C4 photosynthetic 

pathway (Farrell et al. 2006), resulting in a higher water use efficiency than C3 

plants.  As it cannot produce viable seed, propagation has to be via rhizomes 

planted directly into the ground, or through the raising of plantlets in greenhouses 

(Lewadowski & Schmidt 2006).  In order to maximise production of the crop, it is 

crucial to establish planting at high density.  This arises from the fact that 

establishment of planted rhizomes can be poor and depends on many different 

factors, including age of the rhizomes, ground preparation and subsequent weed 

control (Atkinson 2009).  It is therefore recommended that rhizomes are planted at 

a density of 20,000 ha-1 in spring and that particular attention is paid to weed 

control in the first couple of years (DEFRA 2001).  Planting can either be achieved 

using a modified potato planter or by broadcasting the rhizomes using a muck 

spreader, although more uniform planting rates are achieved by the former (DTI 

2003). 

 

Pre-emergence herbicides and those specifically targeting broadleaved weed species 

do not damage Miscanthus plants or reduce the biomass produced, whereas 

herbicides with grass activity cause significant damage and as a consequence, a 

reduction in biomass (Anderson 2010).   Growth begins from the dormant rhizome 

when soil temperatures reach 10-12°C (Lewandowski et al. 2003) and the threshold 

for photosynthesis is 6°C, which allows a longer growing season than the other C4 

plant commonly grown in the UK: maize Zea mays.  Miscanthus may be vulnerable 

to spring frosts, with an LT50 (lethal temperature at which half the shoots are killed) 

of -6°C.  Other hybrids may have better cold tolerance, but at the expense of 

reduced biomass production at higher temperatures (Farrell et al. 2006).  Breeding 

trials are currently underway in order to select genotypes with late flowering 
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tendencies, in order to delay the onset of senescence and therefore maximise 

biomass production (Jensen 2009).   

 

Miscanthus was found to produce significantly more biomass than switchgrass in a 

varied range of growing conditions, although yield was constrained by water rather 

than nitrogen availability (Heaton et al. 2004).  Yields of 10-15 t DM ha-1 a-1 have 

been achieved in the UK, but up to 44 t DM ha-1 a-1 in Southern Europe 

(Lewandowski et al. 2003). 

 

Once established, the rhizomes grow outwards underground, from which a closely 

packed clump of stems grow (Figure 1.1).   

 

 
Figure 1.1 Stages of growth of the Miscanthus crop through the year.  Clockwise from top left: April, 
June, October and January 
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By the end of the growing season in the UK, crop height can be around 3 m and can 

be harvested annually from the first growing season after planting, although yield 

doesn’t reach maximum production until around three years after planting.  Unlike 

switchgrass, Miscanthus is still actively growing by October (Heaton et al. 2009).  

The crop is usually left standing over the winter, by which time most of the 

minerals and nutrients within the plant tissues are relocated to the rhizomes 

(Lewandowski & Schmidt 2006).   

 

The leaves also senesce and fall to the ground at the end of the growing season, 

leaving mainly dry stems/canes, which can comprise up to 92% of harvested dry 

matter (Christian et al. 2008).  Senesced leaves provide organic inputs to the soil, 

estimated from models to be 0.93 t C ha a-1 (Clifton-Brown et al. 2004).  Once 

planted, the soil is undisturbed for the life of the rhizomes, resulting in less risk of 

soil erosion and soil organic carbon loss through the annual ploughing required for 

other arable crops (Lewandowski et al. 2003). 

 

1.2.2 Fertilizers, productivity and longevity 

The lifetime of a single planting of annually-harvested Miscanthus is estimated to 

be 20 years (DEFRA 2001), and a crop in silty loam soil has been recorded as 

continuing to be productive after 14 years with no additional fertilizers (Christian 

et al. 2008).  As a result of nitrogen (N) fertilizer use, corn-based agrosystems are 

responsible for emitting substantially higher quantities of GHG (CO2, nitrous oxide 

N2O and CH4) than any alternative biofuel crop, and out of the potential crops 

investigated by Davis et al. (2010), Miscanthus was found to be the crop with the 

lowest GHG emissions. 

 

It has been suggested that part of the nitrogen (N) efficiency of Miscanthus, 

requiring little or no fertilizer input to the crop, is linked to some kind of biological 

N-fixation ability (Davis et al. 2010).  M. sinensis has been shown to have an 
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association with arbuscular mycorrhizal fungi, which are thought to aid 

assimilation of both N and phosphorus (P), and endophytic fungi may also 

contribute N to the plant (Stewart et al. 2009).  In Miscanthus, the greatest N use 

efficiency was seen when only soil N was available and no inorganic fertilizer was 

used (Lewandowski & Schmidt 2006).  In addition to this, when compared with 

triticale and Phalaris, Miscanthus was also classified as having the best energy and 

land efficiency (energy produced per unit land area) – all of which were attributed 

to its C4 photosynthetic process making the most efficient use of available nutrients 

and water (Lewandowski & Schmidt 2006).  Miller (2010) found that Miscanthus 

was second only to sugarcane Saccharum spp.in terms of land use and nitrogen 

efficiency when compared with 13 other potential biofuel crops ranging from algae 

to cereals and woody biomass. 

 

Studies on the effects of artificial fertilizers have produced some conflicting results.  

Christian et al. (2008) reported no effect of N fertilizers on yield of Miscanthus, but 

recommended a small yearly application of P in order to reduce the risk of 

depleting soil reserves.  Lewandowski & Schmidt (2006) found that N fertilization 

increased biomass yield, but that N applications of more than 114 kg N ha-1 were 

harmful to the Miscanthus plants.  However, their study did not include analysis of 

the mineral content of the biomass, which can be influenced by fertilizer use (see 

also section 1.3.2 on the effects of fertilizer on Phalaris).  Smith & Slater (2010) 

found a significant increase in biomass yield in response to organic and inorganic 

fertilizers, but only in the second year of use, suggesting that a time-lag existed 

before the nutrients were utilised by the plant to any great extent.  

 

The use of artificial fertilizers also has implications for the quality of the biomass 

for pyrolysis.  Application of nitrogen fertilizer in high quantities reduced the cell 

wall components and increased the ash content, making it a less suitable feedstock 

for pyrolysis than biomass produced at low N-fertilization rates (Hodgson et al. 
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2010a).  The low nitrogen treatment also resulted in a higher proportion of the 

desired organic volatiles, which gave a better quality of pyrolysis liquid.  A higher 

viscosity and increased heating value were also seen, attributed to the quantity of 

lignin within the biomass (Hodgson et al. 2010a). 

 

A further positive attribute of Miscanthus plantations is their ability to decrease 

nitrate load to watersheds, which is proportionally more effective than reduction in 

N fertilizer use alone (Ng et al. 2010). 

 

1.2.3 Timing of Miscanthus harvest   

Harvest usually occurs between January and March and a relatively low moisture 

content of 25-50% is achieved depending on the harvesting method used (DEFRA 

2001).  Harvesting in spring (rather than late autumn or winter) can result in a 

reduction in the quantity of biomass over the winter, resulting from degradation of 

the material by the weather conditions (Heaton et al. 2009).  This loss has been 

estimated as being from 23-51% of total biomass produced and is comprised of 

fallen leaves and stubble residues (Kahle et al. 2001). 

 

Once the harvested crop is baled, it is recommended that Miscanthus is stored 

under cover in order to keep moisture content stable and prevent degradation of 

the material (Nolan et al. 2009). 

 

Timing of harvest can also affect the quality of the biomass for combustion due to 

the movement of minerals around the plant tissue.  In general, the concentration of 

minerals within the plant tissues is highest in the late spring and early summer.  At 

the end of the growing season, minerals are remobilised to be stored in the 

Miscanthus rhizomes over the winter and are then available for new growth in 

spring (Christian et al. 2008).  The N content of standing Miscanthus biomass 

showed a significant reduction over time, although there was no further significant 
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reduction between December and February/March (Heaton et al. 2009).  With a 

nutrient content of 0.6% [N] being the accepted upper limit for combustion, for 

reasons of minimising pollution, the Miscanthus biomass was suitable as power 

station feedstock by December, when N levels fell below this threshold, even 

though N content had been higher in the summer (Heaton et al. 2009).  Jorgensen 

(1997) reported similar results, with 0.59% [N] in spring-harvested Miscanthus, 

which was lower than the concentration found in M. sinensis.  Conversely, 

potassium (K) and chlorine (Cl) levels diminished to a greater degree in M. sinensis 

during the winter, which was thought to be because the plants senesced after the 

initiation of flowering, which did not occur in M. x giganteus (Jorgensen 1997).  Cl 

and sulphur (S) are elements with the potential to cause corrosion and pollution 

during combustion.  Compared with giant reed and sweet sorghum Sorghum 

bicolor in this respect, Miscanthus and switchgrass had the best overall quality 

(Monti et al. 2008).  Later harvest may also affect this - it is thought that rain may 

leach K and Cl from the dry biomass before harvest, as this has been reported in 

straw (Christian et al. 2008; Sander 1997).  In M. sinensis, the concentration of 

silica (Si) rises towards the end of the growing season, and this may have 

implications for Miscanthus harvest time (Stewart et al. 2009). 

 

Earlier harvests in December have been shown to increase energy yields, but result 

in higher sulphur dioxide (SO2) emissions during combustion, thus increasing the 

pollution produced (Lewandowski and Heinz 2003).  Even delayed harvest in spring 

may not produce consistent quality of fuel for combustion, as early frost or other 

factors that affect the remobilisation of minerals can influence biomass quality at 

harvest (Christian et al. 2008). 

 

Balancing the effects of winter weather on loss of biomass yield against reduction in 

N content of the biomass need to be considered on a local scale, as climatic 
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conditions and soil nutrient level vary between the areas where biomass crops are 

grown (Heaton et al. 2009). 

 

Work on pyrolysis of Miscanthus does not seem to include differences incurred by 

different harvest dates.  However, a study on switchgrass found that the energy 

content of the products of pyrolysis were around 80% for later harvested biomass 

and only 68% for material harvested earlier (Mohan et al. 2006). 

 

A different harvest date might also be required for Miscanthus intended for 

lignocellulosic ethanol production.  Hodgson et al. (2010b) reported higher lignin 

and hemicellulose content from winter harvests in comparison with biomass 

harvested in autumn.  The greatest proportion of soluble compounds are found in 

the leaves, and delayed harvest led to a reduction in leaf quantity available for 

processing (Huyen et al. 2010).  The cell wall proportion of the biomass was also 

higher when late harvest took place, but compounds such as glucan did not change 

from early harvest levels.  In general, saccharification yields were reduced after late 

harvest compared with earlier harvest, thought to be influenced by the biomass cell 

wall phenolic fraction (Huyen et al. 2010). 

 

1.3 Phalaris  

1.3.1 Phalaris description and agronomy 

Phalaris arundinacea L. (Figure 1.2) is a plant native to Eurasia and North America, 

commonly found in damp areas.  Crops are sown by either broadcasting or drilling 

seed and can be harvested using machinery (such as forage harvesters) usually used 

for grass or hay (Landström et al. 1996).  As it is propagated from seed and 

germinates slowly, it is likely to suffer some weed competition initially, although 

after its first year of growth, it is highly competitive against weeds so that 

herbicides should no longer be required.  It can survive waterlogged soils and yet is 

also more resistant to drought than other grasses (Lewandowski et al. 2003). 
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Figure 1.2 The different phases of Phalaris crop growth through the year.  Clockwise from top left: 
April, July, November and February 

 

Phalaris is the indigenous grass thought to produce the best biomass yields for 

Northern Europe and has been studied widely in Scandinavia, where it has been 

cultivated for forage and hay for livestock for many years (Andersson 2000).  

Although local forms of Phalaris are abundant, they do not grow as tall as some of 

the developed cultivars (Sahramaa & Jauhiainen 2003).  At seed ripening, Phalaris 

cultivars had grown to 98% of their maximum height, a process that took 95 days in 

Finland.  The advantages of growing Phalaris in the UK are that it is adapted to 

both the local climate and growing season length, its rhizomes are able to survive 

the winters and it shows good genetic variability and hence less vulnerability to 

disease (Lewandowski et al. 2003).   

 

The use of Phalaris as a biomass energy source was first initiated in Scandinavia in 

the late 1990s, when it was co-fired with wood waste in biomass energy plants.  In 

2004, bioenergy accounted for 21% of energy used in Finland (Pahkala et al. 2008) 
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and the Finnish government is committed to supporting production of Phalaris and 

other biomass energy crops.  It is also grown in Estonia, where the climate and 

growing season are not appropriate for Miscanthus or Poplar Populus spp.coppice, 

but where Phalaris is adapted to local conditions and grows well (Heinsoo et al. 

2011).  In northern latitudes, areas of organic soil where peat extraction has ceased 

are thought to be at risk of losing high levels of soil carbon as they dry out (Shurpali 

et al. 2009).  Phalaris is often planted in these areas as the wet, humus-rich soil is 

thought to be suitable for its cultivation.  Heinsoo et al. (2011) found that biomass 

yields were higher on mineral soils than depleted organic soils, but where the aim 

was to retain soil carbon rather than maximise biomass yield, organic soils planted 

with Phalaris were a net sink of carbon (Shurpali et al.. 2009). 

 

High content of ash and alkali metals in biomass can cause problems during 

combustion, as well as creating additional pollution (Burvall 1997).  Soil type and 

quality can influence these factors and need to be taken into consideration when 

producing biomass for combustion (Paulrud et al. 2001).  Mineral soils, particularly 

those with a high clay content resulted in the Phalaris biomass producing more ash 

than was produced on organic soils (Heinsoo et al. 2011; Finell & Nielson 2005; 

Burvall 1997; Landström et al. 1996).   

 

Clay soil also increased lignin content of the biomass at the expense of glucose and 

xylose, a factor which could be of importance if the material was used for 

lignocellulosic ethanol production (Finell et al. 2010).  Breeding programmes for 

Phalaris cultivars may result in improved biofuel quality through selection for 

increased cell-wall content and improved productivity (Wrobel et al. 2009)  
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1.3.2 Fertilizers, productivity and longevity 

In Finland, it is common practice to use fertilizer on Phalaris crops in organic soils 

(Shurpali et al. 2009).  However, it has been shown that such applications do not 

increase growth of the crop, but in fact increase levels of N, P, K and S in harvested 

material, which make it less suitable for combustion (Katterer et al. 1998).  The 

Estonian study included some semi-natural Phalaris stands where no fertilizer was 

used because of conservation management plans but there was no difference in 

energy yield between these unfertilised stands and the commercially grown crops 

(Heinsoo et al. 2011).  A study using a range of organic and inorganic fertilizers also 

found no difference between treatments in growth rates of Phalaris for either field 

or pot trials, although harvested biomass contained significantly higher levels of 

nutrients (Smith & Slater 2010), reflecting the findings of Katterer et al. (1998).  In 

contrast to this, Lewandowski & Schmidt (2006) found that increasing levels of N 

fertilization continued to increase Phalaris biomass yields, but they made no 

analysis of the quality of the material produced in this way. 

 

Potential life-span of a Phalaris crop appears to vary.  Experimental areas of the 

crop in Finland are still productive after 16 years (Pahkala et al. 2008) but on more 

organic soils, typical rotations last for 10 years (Shurpali et al. 2009). 

 

1.3.3 Timing of harvest 

Burvall (1997) found that delaying harvest until spring resulted in lower 

concentrations of Cl, alkali and S in the Phalaris biomass.  This late harvest practice 

was originally introduced in Sweden to coincide with the melting of the snow that 

has covered the fields over the winter, and before new growth had begun (Finell et 

al. 2010).  Although a harvest in spring rather than the autumn results in a loss of 

biomass of up to 16 % (Heinsoo et al. 2011), the additional time allows increased 

nutrient translocation to the rhizomes (Xiong et al. 2009) and reduces the 

requirement to fertilize the crops (Finell et al. 2010).   Landström et al. (1996) also 
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reported that K and Cl leached from the dry matter during the winter and thus 

their levels were lower at spring harvest than in autumn.   

 

It was deemed to be physiologically better for the plant to be allowed to grow 

unhindered for the whole growing season.  Harvest in August resulted in no re- 

growth, despite this potentially being possible until the end of October (Landström 

et al. 1996).  Delayed harvest was also examined in terms of its effects on 

carbohydrate composition of the biomass.  Heinsoo et al. (2011) reported a higher 

calorific value for the Phalaris biomass in spring than in summer or autumn, but 

this benefit was countered by the loss of biomass.  They concluded that the 

conditions in which Phalaris crops are grown in Estonia dictate that harvest in 

autumn provides more optimal yields than in spring. 

 

1.4 Considerations for both grasses 

1.4.1 Stem content 

A high proportion of stems in the harvested biomass of both Miscanthus and 

Phalaris crops is important to its quality, as when combusted, less ash is produced 

by stems than leaves (Christian et al. 2008; Monti et al. 2008; Landström et al. 

1996).  A significant proportion of N within the Miscanthus is stored in the leaves, 

which is returned to the soil when the leaves fall.  This also contributes to a lower 

proportion of N in the harvested stems, improving the quality of the combustible 

biomass (Heaton et al. 2009).  Cellulose and lignin are found in higher proportions 

in the Miscanthus stems but hemicellulose concentrations are higher in the leaves 

(Hodgson et al. 2010a).   

 

1.4.2 Lodging 

Lodging, where stems bend, causing the crop to ‘fall over’ can become a problem 

with late harvesting and result in a smaller harvest of Phalaris (Pahkala et al. 2008).  

The weakness of stems that leads to lodging was thought to be responsible for 
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reduced productivity, particularly in irrigated crops.  This led Katterer et al. (1998) 

to conclude that unless stem stiffness could be improved through selective 

breeding, it was unlikely that Phalaris could be a contender against other biomass 

crops grown intensively at lower latitudes.  In a UK study, Riche (2006) also 

reported lodging in Phalaris, resulting in some wet biomass at harvest, but did not 

deem it a major problem. 

 

Where an increase in above-ground Miscanthus biomass occurred as a result of 

high levels of nitrogen fertilization, there was also an increased incidence of 

lodging, which was not seen at lower fertilization levels (Kaack & Schwarz 2001).  

Miscanthus stems seem more robust in rain and wind than Phalaris, bending 

severely but then springing back to their previous position.  Heavy snow on the 

other hand can cause the stems to irreversibly bend and lodge, causing difficulty in 

subsequent harvesting (Richard Collins - personal communication, also Figure 1.3).  

 

 
Figure 1.3 Miscanthus in Herefordshire, where heavy snowfall in winter 2007/8 caused lodging of 
the stems. 
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1.4.3 Carbon balance and future climate scenarios 

The effect of planting biomass crops on soil carbon stocks is dependent on soil type, 

climatic conditions, prior land management and previously cultivated vegetation 

(Hillier et al. 2009).  Miscanthus plantations have been reported as contributing 

significant quantities of organic carbon (11.7 t ha-1) to the soil in which they are 

grown (Kahle et al. 2001).   One of the ways in which this is achieved is via the 

significant losses of dry matter incurred both before and during harvest, which 

contribute significant quantities of carbon to the soil (Hansen et al. 2004).  Less 

work appears to have been done on the effects of Phalaris on soil organic carbon, 

although Shurpali et al. (2009) reported a net carbon sink in organic soils planted 

with Phalaris. 

 

Monti et al. (2009) found that replacing conventional (annual) arable rotations with 

perennial energy crops resulted in an average 50% lower impact on soil carbon 

stocks.  Dondini et al. (2009) reported that Miscanthus crops grown on land 

previously under arable cultivation led to an increase in soil organic carbon to a 

level above native pasture.   

 

Cultivation of Miscanthus on grassland led to initial soil organic carbon (SOC) 

losses, but this was soon replaced by carbon sequestered by the crop (Anderson-

Teixeira et al. 2009).  This organic matter was found to be as stable as that produced 

by C3 grassland and the longer that Miscanthus was cultivated, the time taken for 

the organic carbon to be mineralised was increased (Dondini et al. 2009; Foereid et 

al. 2004).  The impact of earthworms (suborder Lumbricina) on the decomposition 

and mineralisation of energy crop residues was investigated by Ernst et al. 2009.  

They found that litter decay was highest in maize residues and lowest in 

Miscanthus, which had C:N ratios of 35 and 134 respectively.  They concluded that 

competition for N between soil microorganisms and earthworms could lead to 

slower decomposition rates.  Miscanthus-derived SOC also contains higher 
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proportions of alkanes, alkenes, sterols and free fatty acids (Kahle et al. 2001) and 

both these factors could contribute to the apparent recalcitrant nature of the SOC 

reported by Dondini et al. (2009) and Foereid et al. (2004).  It was also reported that 

harvest of biomass slowed the accumulation of organic carbon in the soil under the 

crops (Foereid et al. 2004) demonstrating the very fine balance within the soil 

organic carbon sequestration system.  It was estimated that 26-29% of cumulated 

carbon input from Miscanthus was retained in the soil in 16 year old stands 

(Hansen et al. 2004), but Hillier et al. (2009) found that soil carbon accumulation 

eventually stopped.  A hectare of grassland replaced by Miscanthus reached 

equilibrium after about 15 t of carbon was sequestered and then no further changes 

in soil C stocks occurred after this point.  The majority of Miscanthus-derived 

carbon was found in the top 50 cm of the soil (Hansen et al. 2004). 

 

Some authors argue that the replacement of natural ecosystems with biomass crops 

could cause a net source of carbon that would not be counterbalanced by the 

biofuel benefits (Monti et al. 2009).  Hughes et al. (2010) modelled the effects of 

large-scale Miscanthus plantations on atmospheric CO2 concentrations.  They found 

that there would be an initial ‘carbon payback’ time of 30 years for the Miscanthus, 

but that by the end of the century there could be a possible reduction in CO2 

emissions of between 162 and 323 ppmv if fossil fuels were to be replaced by 

Miscanthus.  However, their initial model did not take into account natural carbon 

displacement through land use.  When this was taken into account, they predicted 

that it would take at least until 2046 before net CO2 levels were lowered as a result 

of using Miscanthus in the place of fossil fuels (Hughes et al. 2010). 

 

The current target of the UK government is to increase the area of biomass crops to 

1.1 million ha by 2020, and Haughton et al. (2009) suggest that in England alone, an 

area of 3.1 million ha suitable for planting biomass crops is available. Biomass 

sceptics argue that land used for biomass is land taken away from food production, 
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but it should be possible to grow biomass on land that is of lower quality for 

agriculture and therefore the conflict need not arise (Bauen et al. 2010; Solomon 

2010; Lovett et al. 2009). 

If the climate were to warm significantly, this may have negative impacts on the 

growing of many different kinds of crops in the UK.  If rainfall was reduced, then 

food crops such as oats, rye and potatoes may be restricted to more northerly 

agricultural areas (Bellarby et al. 2010).  These authors also modelled effects on 

Miscanthus, finding that it was only likely to be adversely affected in South East 

England, but that new biomass or bioenergy crops such as sunflower Helianthus 

annuus, kenaf Hibiscus cannabinus and olive Olea europaea could be introduced in 

its place.  Tuck et al. (2006) predict that the area suitable for growth of Miscanthus, 

Phalaris and SRC could increase by 50% as their range moves northwards, and even 

suggests that Phalaris and SRC could be grown above latitudes of 65° north. 

 

Rises in atmospheric CO2 are largely predicted to enhance photosynthesis and 

therefore the productivity of C3 plants (Leakey 2009). C4 plants such as Miscanthus 

do not benefit from raised CO2 levels, unless drought stress is present, in which 

case the higher intracellular CO2 levels and increased stomatal resistance maintain 

photosynthetic rates (Leakey 2009). 

 

1.4.4 Invasiveness  

Introductions of non-native plant species can carry a risk of escape and subsequent 

classification as an invasive pest species.  Barney & Di Tomaso (2008) used a weed 

risk-assessment tool to assess possible invasiveness of biomass grasses in the USA.  

They concluded that possible effects varied across regions, but that switchgrass had 

invasiveness potential in California due to its large production of small seeds, ability 

to grow from pieces of plant material and ability to tolerate a wide range of 

environmental conditions.  Giant reed was thought to have potential invasive risk 

in Florida, as it has already escaped and naturalised in Texas and California, where 



   
S.J. Clapham  25   

 

it is listed as a noxious weed.  Hybrid Miscanthus cultivars were not deemed to 

carry any risk of invasiveness in the USA due to their inability to set viable seed 

(Barney & Di Tomaso 2008).  M. sinensis on the other hand has escaped over a long 

period of time in the Appalachian region in the USA and is therefore not 

recommended for use as a biomass crop unless a sterile variety can be developed 

(Quinn et al. 2010). 

 

In the USA, an invasive genotype of Phalaris in wetland has caused problems for 

local biodiversity (Wrobel et al. 2009) and as such has been used as a model system 

to study botanical invasiveness (Lavergne & Molofsky 2004).   

 

1.4.5 Economics and farmer attitudes 

Many factors are involved in the growing of biomass, which is still a relatively new 

form of renewable energy that requires specific markets for its use, whether 

through combustion for heat and power or lignocellulosic ethanol production.  

Different crops are better suited to some regions than others, and this in turn will 

affect the economics involved.  Aravindhakshan et al. (2010) compared crops of 

switchgrass and Miscanthus in Oklahoma, USA.  They found that switchgrass, 

harvested once annually, outperformed Miscanthus in terms of biomass and energy 

yield.  However, in the absence of suitable economic subsidies, carbon taxes or 

mandatory targets for biomass production, it was not deemed economically 

competitive to produce electricity from biomass in that region (Aravindhakshan et 

al. 2010).  A similar conclusion was drawn by Bocqueho & Jacquet (2010), when 

they compared biomass production from the same two grasses with traditional 

arable rotations of wheat, barley and oil-seed rape in Central France.  Despite this, 

if economic incentives for biomass production were offered to farmers, the biomass 

grasses were attractive as diversification crops (Bocqueho & Jacquet 2010). 
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Farmers contracted by energy companies to grow Phalaris in Finland were 

enthusiastic about it as a crop, with 55% seeking to grow more than originally 

contracted (Pahkala et al. 2008).   The main reason for growing Phalaris was related 

to the lower workloads involved and the most common problem encountered was 

control of perennial weeds during establishment of the crop. 

 

1.4.6 Pests and diseases 

In general, Miscanthus is considered to be of low risk for pests and diseases in the 

UK due to it being a non-native species.  However, it belongs to the sorghum tribe 

(Andropogoneae) along with other crops such as maize and sugar cane and could 

therefore be susceptible to pests and diseases already adapted to these crops 

(Stewart & Cromey 2010). 

 

In the USA, there have been reports of aphid infestations in Miscanthus plantations 

(Bradshaw et al. 2010), and the fall armyworm Spodoptera frugiperda shows the 

ability to develop on Miscanthus leaves under laboratory conditions (Prasifka et al. 

2009).  Spencer & Raghu (2009) also raise concerns that Miscanthus grown in the 

same location as maize may become a reservoir for the western corn rootworm 

Diabrotica virgifera virgifera.  Both the fall armyworm and western corn rootworm 

showed lower emergence rates and adult weights on Miscanthus, suggesting that 

they would be less likely to favour it in the presence of their preferred host plant.  

However, the ability of either of these pests to cause economic damage in 

commercial crops is as yet unclear. 

 

The susceptibility of M. sinensis and Phalaris to two isolates of barley yellow dwarf 

virus (BYDV) and one isolate of cereal yellow dwarf virus (CYDV) was tested by 

Lamptey et al. (2003).  They reported that M. sinensis infection only occurred with 

one isolate of BYDV and Phalaris by one isolate each of BYDV and CYDV, but that 

infection rates slowed as plant growth increased.   
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1.5 Other uses for perennial grass crops 

1.5.1 Animal bedding 

Phalaris has been investigated as a potential bedding material, particularly in areas 

where there is very little arable production and costs of obtaining cereal-crop straw 

are high (McLean 2007).  It was found to be a viable alternative to straw, especially 

if it could be produced on-farm and had no negative impacts on the condition, 

productivity or behaviour of the livestock housed on it (Morgan 2008, McLean 

2007). 

 

1.5.2 Animal fodder 

Nutrient composition of Phalaris hay matched that of Timothy Phleum pratense, 

but was less digestible to horses, which also showed a preference for Timothy in 

terms of voluntary dry matter intake (Ordakowski-Burk et al. 2006).  ADAS (2008, 

unpublished) undertook to determine how sheep (specifically ewes) fared whilst 

grazing on Phalaris re-growth during late autumn, following an August harvest of 

the biomass.  The grazing trial lasted for one month, during which times the rams 

ran with the flock in order to commence breeding.  When compared with ewes 

grazing on permanent grass ley, the ewes grazing on Phalaris showed no significant 

differences in terms of body mass at the end of the trial, or numbers of lambs 

produced the following spring. 

 

1.5.3 Phytoremediation 

Phalaris has been shown to be of use for wastewater treatment when planted in 

artificially constructed wetlands, where its growth is equivalent to that of natural 

stands (Vymazal & Krőpfelová 2005).  Phalaris was also found to be superior to 

common reed Phragmites australis in the treatment of dredged sludge contaminated 

with heavy metals (Seidel et al. 2004). 
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1.5.4 Phytochemicals 

Increasingly, alternatives to various substances that rely on fossil-based oil for their 

manufacture are being sought.  Villaverde et al. (2010; 2009) reported on a process 

for fractionation of phenolic compounds (e.g. syringaldehyde, vanillic acid, vanillin 

and p-coumaric acid) from Miscanthus.  These monomers can reduce the quality of 

pulp for paper, but are also thought to have value if they can be refined for 

pharmaceutical use. 

 

1.6 Biodiversity and biomass crops: an introduction 

1.6.1 Biodiversity and land use change 

Loss of biodiversity is a worldwide problem, which can be attributed to a number 

of factors, including intensification of agriculture and forestry.  One of the ways of 

intensifying agricultural output is to turn to monocultures, which reduce structural 

complexity at a crop and landscape level, and as a result, can reduce the 

biodiversity present within the agricultural landscape (Tscharntke et al. 2005).  

Intensification can take place at local, landscape and even continental levels and 

can take varying forms as a result of changed land-management, as shown in Table 

1.1. 

 

Table 1.1 Changes in agricultural practices at local and landscape levels (adapted from Tscharntke et 
al. 2005) 
Local intensification Landscape intensification 

Simplification of crop rotations and 
change of sowing time 

Change from mixed farming to 
monoculture arable crops 

Increased input of fertilizers and 
pesticides 

Loss of permanent pasture, old fallows 
and edge habitats 

Monocultures of high yield varieties 
and GM crops 

Increases in field size and fragmentation 
of natural habitat 

Larger fields and deeper ploughing  
 

Agricultural intensification can also lead to loss of ecosystem services and processes 

such as biological pest control, crop pollination, grassland production and resistance 
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to plant invasion (Tscharntke et al. 2005).  However, it is recognised that if energy 

crops can be grown on degraded or abandoned land and if only minimal soil 

disturbance takes place, there may be positive impacts on biodiversity and 

ecosystem services (United Nations Environment Programme (UNEP) 2008). 

 

More detail about the effects of agricultural intensification on invertebrates, non-

crop vegetation, birds and small mammals are discussed in Chapters 2 – 5. 

 

1.6.2 Impact on wildlife of biomass grass crops 

Growing energy grass crops is a relatively new option available to farmers.  This 

presents a good opportunity for the impact of growing mature biomass crops on 

biodiversity to be studied before they become widespread as a monoculture.  Many 

attributes of the crops could create positive impacts on wildlife.  For example, they 

are perennials and apart from the harvesting process, there is very little disturbance 

to the land for the rest of the year.  Chemical inputs such as fertilizer and pesticides 

are minimal once the crop is established and could lead to the crop becoming a 

valuable refuge for invertebrates.  The crops add architectural complexity to the 

landscape and as the senesced crop is left standing over winter, shelter for birds and 

mammals could be provided at a time when most other crops or swards are at 

minimal heights.  Spring harvest of biomass crops results in bare ground being 

available at a time when ground nesting birds require it and may also support non-

crop vegetation diversity, increasing the complexity of the crop as a whole.  Finally, 

assuming the crops are grown within a conventional hedged field structure, there is 

potential for uncultivated “conservation headlands” to be retained between the 

crop and the surrounding hedges.  These headlands do not require any management 

and will provide additional food resources and shelter, likely to boost biodiversity. 

 

The annual cropping cycle involves minimal intervention and results in the crops 

being undisturbed for much of the year.  Thus, the biomass crops may provide 
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refuge for wildlife throughout the summer and winter (Price et al. 2004).  Although 

many positive effects of biomass crops on wildlife have been reported, these appear 

to be dependent on factors relating to management and age of the crops (Dauber et 

al. 2010).  For example, Semere & Slater (2005) reported some benefits for wildlife 

in newly established biomass grass crops (of up to three years old), although in 

general the field margins contained greater diversity than the crops themselves.  At 

the commencement of this project, no other work on more mature crops had been 

published.  

 

1.7 Aims of this thesis 

Aim 1.  To investigate bird and small mammal abundance and diversity within 

Miscanthus and Phalaris crops (of 3 years and older) and their headlands as well as 

adjacent comparison sites representative of local land use prior to biomass crops 

being grown using the following techniques: 

(a)  Live capture/release of small mammals using Longworth traps 

(b)  Mist net capture/release and walking transects surveys of birds 

(c)  Animals were identified to species and diversity indices calculated.    

 

Aim 2.  To investigate food resources (invertebrates and non-crop vegetation) for 

birds and small mammals within the crop: 

(a)  Invertebrate families caught in pitfalls, pan traps and by sweep netting were 

examined in relation to feeding ecology of birds and small mammals 

(b)  Vegetation surveys were conducted in order to identify percentage cover of 

non-crop vegetation. 

 

Aim 3.  To define the crop characteristics (age / height / density / canopy shading / 

size of plot) that may influence biodiversity within it: 

(a)  Percentage cover, height of the crop and canopy shading were recorded at 

increasing distances into the crop 
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(b)  Crop characteristics were related to the abundance and diversity of the birds 

and small mammals present using statistical analysis. 

 

1.8 Field sites 

1.8.1 Llysdinam, Powys (LL) 

This field site was located at the Cardiff University field centre near Newbridge-on-

Wye in the Brecknock division of Powys (Ordnance Survey grid reference: 

SO003581) at an elevation of approximately 200 m.  The field was divided between 

Miscanthus and Phalaris crops, each covering an area of around 0.25 ha which were 

planted in 2004.  Biomass was mown and baled in spring and no weed control or 

fertilizers were used for the duration of this study.  A naturally vegetated headland 

of between 2 m and 6 m separated the crops from a mature unmanaged hedge on 

one side, a wire fence on another side and mature trees forming a woodland around 

the remaining two sides (Figure 1.4).  Adjoining fields contained experimental short 

rotation coppice willow plots and also permanent pasture grazed by sheep, cattle 

and geese.  One of the adjacent livestock-grazed fields was used as a comparison 

site. 
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Figure 1.4 Maps showing the location of the field site and crops at LL.  Key: M = Miscanthus,  
P = Phalaris and CS = comparison site.  © Crown Copyright/database right 2011.  An Ordnance 
Survey/ Edina Digimap supplied service. 
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1.8.2 Narberth, Pembrokeshire (N) 

This study site was located close to the A40 near Slebech, Narberth in 

Pembrokeshire (Ordnance Survey grid reference: SN038147) at an elevation of 

approximately 75 m.  Prior to rhizomes being planted in 2005, the ground was 

sprayed with broad-spectrum herbicide, ploughed and sewage sludge was applied.  

There was approximately 1 ha planted with Phalaris and 2 ha planted with 

Miscanthus (M1) and a small corner of Arundo donax in the Miscanthus plot 

(Figure 1.2).  A further plot of Miscanthus was planted in the same field in 2006 

(M2) and this was only used in the second year of surveys.  Neither crop was 

treated with herbicide in 2008 or 2009 due to good canopy cover reducing weeds to 

an acceptable level.  Biomass from this site was harvested once annually in spring 

and was destined for combustion at the nearby Bluestone Holiday Village in order 

to heat the sports club and administration offices.  Adjoining fields either contained 

Miscanthus or were part of an arable rotation.  The comparison plot for this site in 

the first year was a small field of rough, grassland set-aside of approximately 0.5 ha.  

In the second year of the project, comparison plots comprised a field of maize Zea 

mays on the other side of the track from M2, and a field adjoining the north hedge 

of the biomass crop field in which a neighbouring farmer grew spring barley 

Hordeum vulgare, following grazing by livestock during the winter. 
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Figure 1.5 Maps showing the location of the field site and crops at N.  Key: M = Miscanthus,  
P = Phalaris and CS = comparison site.  M1 was used in the first year, M2 added for the second year.   
© Crown Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap supplied service. 
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1.8.3 Pwllpeiran, Ceredigion (PP) 

The Llwynprenteg site is part of the ADAS Pwllpeiran experimental farm in 

Ceredigion.  It was situated in the Ystwyth valley near Llanafan (OS reference Field 

1: SN687715; Field 2: SN688716) at an elevation of approximately 100 m.   The site 

consisted of two fields: Field 1 (PP1) was split between Phalaris (0.37 ha) and 

Miscanthus (0.27 ha), with a narrow strip of Arundo in between the two crops 

(Figure 1.3).  This field was planted in 2004 and all crops were mown and baled in 

spring.  An experimental trial of different slurry applications was undertaken by 

ADAS.  No herbicide was applied in 2008/2009 season.  Field 2 (PP2) had 2 ha of 

Phalaris sown in 2006 and the bottom half of it sloped steeply down to the river.  

This field was also part of the ADAS slurry trials and due to an invasion of broad 

leaved dock, the broad spectrum herbicide Glyphosate (N-(phosphonomethyl) 

glycine) was applied in spring 2008 and 2009.  As part of the European Union “Field 

to Farmer” scheme (a scheme to advance energy crop research to a commercial 

farm scale in Objective 1 areas of Wales) this crop was cut in August then dried and 

baled for livestock bedding trials.  In 2007, 2008 and 2009, the aftermath was 

grazed by sheep during tupping for one month in October/November.  Both fields 

were surrounded by mature hedges containing some trees and there was a naturally 

vegetated 4 m headland between the hedges and the crops as well as between the 

different crops in Field 1.  The comparison site was a sheep-grazed permanent 

pasture in an adjoining field. 
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Figure 1.3 Maps showing the location of the field site and crops at PP.  Key: M = Miscanthus,  
P = Phalaris and CS = comparison site.  See text for explanation of P1 and P2.  © Crown 
Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap supplied service. 
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1.8.4 Hinton Manor, Herefordshire (HM) 

This site was located between the villages of Eardisland and Shobdon in 

Herefordshire (Ordnance Survey grid reference: SO407591) at an elevation of 

approximately 100 m, near the river Arrow.  In total, there were over 36 ha of 

Miscanthus at the Manor, all of which was grown in rotations of 3 years before the 

rhizomes were harvested and sold.  Miscanthus biomass was mown and harvested 

in late winter / spring and supplied to Bluestone.  Fields in which the rhizomes had 

been harvested were left to regenerate from the pieces of rhizome not collected by 

the machinery.  For this study, the field known as Red Bank (3.88 ha), which was 

planted in 2005 was surveyed (Figure 1.4).  It was surrounded by a naturally 

vegetated headland of 2 m and managed hedgerows containing some mature trees.  

There were also three mature oak trees in the middle of the field.  Adjoining fields 

contained Miscanthus and blackcurrants, and cereals on the neighbouring farm.  

Comparison sites were a blackcurrant Ribes nigrum field and a small set-aside grass 

field.  This site was used in the first year only as the rhizomes were harvested in 

mid December 2008 without prior notice. 
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Figure 1.4 Maps showing the location of the field site and crops at HM.  Key: M = Miscanthus, BC = 
blackcurrant fields, CS = set-aside grass comparison site.  Red Bank M* = study field.  © Crown 
Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap supplied service. 
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Abstract 

It is thought that the presence of the two biomass grass crops Miscanthus x 

giganteus and Phalaris arundinacea may be deleterious to native biodiversity.   

Surveys of both non-crop vegetation and invertebrates were carried out every four 

months over the period of one year at four sites across mid and west Wales and 

Herefordshire.  The aim was to identify non-crop vegetation and invertebrates 

present within the biomass crops and to relate these to potential food resources for 

birds and small mammals as well as other ecological services they may perform. 

 

Phalaris, the comparison plots and the headlands contained a higher overall 

abundance of invertebrates than the Miscanthus.  The highest number of 

invertebrate families was found in the headlands.  Invertebrate catch across all 

habitats was dominated by individuals from the order Diptera.  Abundance of 

invertebrates was strongly influenced by the month of sampling, with the 

maximum recorded in August.  Invertebrates were evenly distributed throughout 

the crops, and within the plots, no edge effect was evident.  Within the Miscanthus 

crops, the use of sticky traps revealed a significant difference in height distribution 

of three hymenopteran families.  

 

Phalaris contained a greater abundance of non-crop plant species and a greater 

proportion of weed ground cover than Miscanthus, and the headlands contained 

the highest number of plant species.  Phalaris crops contained a greater proportion 

of crop cover than Miscanthus, for which crop litter comprised a higher percentage 

of ground cover than the crop itself.  Both crops caused significant shading at 

ground level, with maximum shading occurring in October. 

 

The diversity of non-crop vegetation found within the biomass grass crops (but 

particularly the Phalaris), has the potential to support many invertebrates that are 

important as food resources to taxa at higher trophic levels. 
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2.1 Introduction 

Within an agroecosystem, the importance of plant and invertebrate taxa within the 

food web and those responsible for a wide range of ecosystem services cannot be 

ignored.  This chapter will consider the “weeds” (i.e. the non-crop vegetation) and 

invertebrates, predominantly in relation to their trophic roles as either consumers 

or prey, although the wider benefits of their presence will also be explored. 

 

Plants play an important role in many different respects.  As primary producers, 

they provide resources that are central to the function of trophic webs, from 

sustaining phytophagous invertebrates grazing on leaves and stems, pollinating 

insects collecting nectar and pollen, to seeds and fruits being consumed by small 

mammals and birds (Marshall et al. 2003).  It would be impossible to explore all 

trophic relationships based on weeds within an agro-ecosystem, but this chapter 

will focus on the ecological role of invertebrate taxa beneficial to key taxa at higher 

trophic levels. 

 

2.1.1 Weeds and invertebrates 

Different species of agricultural weeds are vital in order for many invertebrates to 

complete their life cycles, and also create architectural heterogeneity and shelter 

within the agricultural landscape (Marshall et al. 2003).  A heterogeneous weed 

assemblage within a landscape can therefore support a diversity of different taxa, 

and this in turn ensures provision of a range of ecosystem services (Hyvönen & 

Huusela-Veistola 2008).    

 

Meek et al. (2002) reported that both the nectar-feeding and pollinating 

invertebrates tended to be found in areas of sown wild flowers rather than grasses, 

although there was also a preference for floristically diverse field margins in 

comparison with arable crops.  The presence of wild flowers is also important for 

hymenopteran parasitoids, which require pollen and nectar as a food source whilst 
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seeking out prey to parasitize (Langer 2001).  Altieri (1999) lists the weed families 

Umbelliferae, Leguminosae and Compositae as being important resources for, and 

reservoirs of beneficial arthropods.  As such, many feedback mechanisms may exist 

as a result of reduced herbivory due to the influence of invertebrate predators and 

parasitoids.  If natural enemy populations can be enhanced by prudent management 

to include floristically diverse habitats on farmland, then biological pest control is 

just one of the many benefits arising in terms of ecosystem services. 

 

The abundance of pollinating insects in agricultural crops can be negatively affected 

by the distance to natural habitat.  However, where weed patches were present 

within a sunflower crop, abundance of pollinators was double that of plots where 

no weeds were present (Carvalheiro et al. 2011).  It was thought that these islands 

of weed flower resources allowed pollinators to penetrate further into the 

agricultural landscape and were therefore of major importance.  Furthermore, the 

authors reported higher insect diversity in diverse sunflower plots and this in turn 

resulted in more movement around the crop by the honey bee Apis mellifera than 

where other pollinators did not occur.  Although the presence of pollinators is 

generally accepted to be a good thing, there has been speculation that their 

presence may also enhance the reproduction of undesirable weed populations.  A 

study in New Zealand concluded that the impact of the honey bee on invasive 

weed reproduction in environmentally sensitive areas was minimal due to the high 

proportion of the weeds concerned being wind-pollinated and that the fears 

regarding bees facilitating the pollination of invasive weeds at the expense of native 

species were unfounded (Butz Huryn & Moller 1995).  Conversely, an Australian 

study showed that the primary pollinator of an alien invasive weed species (hairy 

fogfruit Phyla canescens) was the honey bee, which was responsible for the 

potential production of up to half a million seeds per hectare (Gross et al. 2010), 

suggesting that these are variable and potentially complex, species-specific 

relationships. 
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One of the ways in which the activities of herbivorous invertebrates and 

vertebrates may strongly influence weed community composition, is through a 

reduced seed bank as a result of the consumption of weed seeds by herbivores.   

Potential predators of seeds include small mammals, birds, ants, carabid beetles and 

slugs (Baraibar et al. 2011; Ichihara et al. 2011; Navntoft et al. 2009; Holmes & 

Froud-Williams 2005; Westerman et al. 2003).  Increased diversity of carabid 

beetles was positively associated with seed predation within crop and non-crop 

habitats, even though beetle assemblages varied between the two areas (Gaines & 

Gratton 2010).   Although some species of carabid beetle are totally phytophagous, 

the polyphagous species appear to rely on weed seed resources early in the season, 

switching to prey items later as they become more abundant (Mauchline et al. 

2005).  In perennial forage crops, increasing levels of weed seed predation by both 

vertebrate and invertebrate predators were linked to increasing crop vegetation 

cover (Meiss et al. 2010), and in no-tillage systems higher densities of seed-

predating carabids were present than in conventional or organic systems (Menalled 

et al. 2007).  Earthworms (e.g. Lumbricus spp.) in addition to ingesting leaf litter, 

commonly ingest large quantities of small weed seeds, and although the nutritional 

value of the seeds to the earthworm is unclear, they are thought to benefit 

earthworm populations (Franke et al. 2009).  An abundant weed seed bank in the 

soil may therefore indirectly have a positive influence on soil structure and quality, 

mediated through earthworm activity.  Although weed seeds could provide 

additional resources, allowing polyphagous pest species such as slugs to persist, 

their availability may also reduce the frequency of attack on crop plants by the 

slugs (Franke et al. 2009). 

 

2.1.2 Weeds and vertebrates 

Hyvönen & Huusela-Veistola (2008) reported that annual weeds were of great 

importance to farmland birds, due to the abundance of small seeds produced, and 

Holland et al. (2006) agreed that arable weeds formed a significant proportion of 
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the diet of most birds.  The annual weeds providing much of this important seed 

resource rely on regular tillage and may not be as prolific in undisturbed leys or 

field margins, where grasses rapidly dominate (Robinson & Sutherland 1999).  

Grassland weed seeds form an important part of the diet of the goldfinch Carduelis 

carduelis and linnet Carduelis cannabina, despite agricultural grassland habitats 

tending to comprise simplified, homogenous grass swards (Holland et al. 2006).  

Where herbicides are in use on lowland grassland, the presence of granivorous 

birds is reduced (Buckingham et al. 2006), presumably through the resulting 

reduction in seed availability. 

 

A review by Holland et al. (2006) reported certain plant families that were 

considered to be of particular importance for farmland birds, in order of 

significance: Poaceae, Polygonaceae, Caryophyllaceae, Cruciferae, Compositae, 

Chenopodiaceae and Labiatae.  Despite some other plant species being recorded in 

high abundance, they were not present in the diet of farmland birds (common 

poppy Papaver rhoeas, cleavers Galium aparine, ivyleaved speedwell Veronica 

hederifolia, mayweeds Matricaria spp, wild oats Avena fatua, sterile brome grass 

Anisantha sterilis, couch Elymus repens and blackgrass Alopecurus myosuroides), 

suggesting that the abundance of different taxa does not necessarily equate to their 

value as food items (Holland et al. 2006).  Wilson et al. (1999) also looked at 

important genera in the diet of farmland granivorous birds, listing cereals (Triticum 

spp., Hordeum spp. and Avena spp.), Polygonum spp. (knotgrasses and persicarias), 

Stellaria spp. (chickweeds and stitchworts), Chenopodium spp. (goosefoots) and 

members of the Asteraceae (dandelions, thistles etc). 
 

Mauchline et al. (2005) reported that when mesh was used to exclude birds from 

weed-seed predation experiments in spring barley, there was a minimal effect on 

numbers of seeds removed.  However, when mesh size was reduced to also exclude 

small mammals, a significantly lower number of seeds were taken, particularly of 

fat hen Chenopodium album and common knotgrass Polygonum aviculare.  Similar 
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results were obtained by Kollmann & Bassin (2001), whereby small mammals and 

slugs were the dominant seed predators in wildflower strips, with avian and insect 

seed predators having a negligible effect on seed abundance.  In contrast, bird 

exclusion nets in willow Salix spp. short rotation coppice resulted in minimal seed 

removal compared with areas to which birds had full access (Fry & Slater 2011).  

The authors concluded that in this habitat, (where seeds were produced naturally 

by the existing weeds rather than being provided in dishes by researchers), birds 

were the dominant seed predators rather than small mammals, which were not 

excluded.  Within otherwise homogenous cereal crops, weed patches containing 

favoured seeds were visited more often by wood mice Apodemus sylvaticus than 

other areas within the crop (Tew et al. 2000). 

 

2.1.3 Invertebrates as a food resource 

Many bird species rely on invertebrates as a food resource – either as their 

dominant prey type, or as chick food for otherwise granivorous birds during the 

breeding season (Hart et al. 2006; Wilson et al. 1999).  Vegetation structure and 

management can strongly influence foraging decisions by birds, and although 

invertebrate resources may be more abundant in taller swards, these tend to be 

avoided in favour of shorter swards or bare ground, thought to be due to increased 

predation risk (Atkinson et al. 2004).  The authors also reported that bird species 

favouring soil invertebrates preferred the shorter grass swards that are typical of 

intensive management and were therefore less likely to be negatively influenced by 

modern farming techniques than species reliant on foliar invertebrates. 

 

In terms of invertebrate families comprising an important element of the diet of 26 

farmland granivorous bird species, the following are listed by Wilson et al. (1999): 

grasshoppers (Orthoptera: Acrididae), sawflies (Hymenoptera: Symphyta), spiders 

(Arachnida: Araneae), leaf-beetles and weevils (Coleoptera: Chrysomelidae and 

Curculionidae), caterpillars (Lepidoptera), aphids (Hemiptera) and crane-flies 
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(Diptera: Tipulidae).  Holland et al. (2006) studied invertebrate taxa important 

during both the breeding season and non-breeding season.  They reported that 

during the breeding season the following families were important for at least four 

bird species: Aphididae (Hemiptera), Carabidae (Coleoptera), Chrysomelidae 

(Coleoptera), Curculionidae (Coleoptera), Elateridae (Coleoptera), Formicidae 

(Hymenoptera), Scarabeidae (Coleoptera), Staphylinidae (Coleoptera), 

Tenthredinidae (Hymenoptera) and Tipulidae (Diptera), whilst Curculionidae  

(Coleoptera) and Lumbricidae (Annelida) were important in the non-breeding 

season. 

 

Small mammals also rely to varying degrees on invertebrate food.  For the common 

shrew Sorex araneus, adult Coleoptera, insect larvae, Araneae, Opiliones and 

Isopoda comprise the majority or prey items year-round, with lumbricids and adult 

Diptera being of secondary importance (Churchfield 1982).  The pygmy shrew 

Sorex minutus also takes Coleoptera, Araneae and Opiliones, but tends to prey on 

smaller, surface-active individuals, in contrast to the common shrew, which is more 

likely to pursue burrowing invertebrates (Pernetta 1976).  Both of these shrews are 

widely found in habitats such as dense grassland where there is good vegetation 

cover (Churchfield & Searle 2008).  The water shrew Neomys fodiens, although 

predominantly associated with freshwater streams, also forages away from water on 

terrestrial invertebrates.  Prey items taken by the water shrew overlap with those 

in the diet of the common shrew, but also include millipedes (Diplopoda), 

centipedes (Chilopoda), molluscs and earthworms (Churchfield & Searle 2008).  

Invertebrates also feature in the diets of the omnivorous rodents.  The wood mouse 

takes live caterpillars (Lepidoptera), centipedes, earthworms and coleopterans, as 

well as a larger range of dead or dying invertebrates (Flowerdew & Tattersall 2008).  

Although there has been little work on the diet of the harvest mouse Micromys 

minutus in the wild, they have been reported to actively pursue and consume both 

hard-bodied insects and soft-bodied Lepiodoptera in captivity (Trout & Harris 
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2008) and are also thought to consume pest prey such as aphids (Hemiptera) in 

cereal crops (Harris 1979).  Green vegetation, seeds, fruits and mosses also form part 

of the diet (Trout & Harris 2008), but the relative importance of plants and 

invertebrates in the diet of wild harvest mice is unclear. 

 

2.1.4 Management effects and agricultural intensification 

Where agricultural practices have intensified, the abundance of invertebrates is 

generally reduced (Benton et al. 2002).  In addition to agrochemical use, factors 

such as ploughing/tillage can have a significant effect on invertebrates, and 

increased soil microarthropod diversity is thought to be related more to minimum 

tillage systems than the pesticide regime in use (Cortet et al. 2002). 

 

Although application of herbicides does not directly affect invertebrates, an 

indirect effect mediated by loss of resources provided by the weeds has been 

reported, with reductions seen in both invertebrates and granivorous birds where 

herbicides have been applied (Buckingham et al. 2006; Taylor et al. 2006; Boatman 

et al. 2004; Moreby & Southway 1999).  Herbicide use was seen to change foraging 

patterns of the corn bunting Emberiza calandra, which preferred areas of low 

herbicide use (Brickle et al. 2000).  Pesticide use was reported to be directly linked 

to a reduction in available invertebrate food for yellowhammer Emberiza citrinella 

chicks, with a consequent negative effect on nestling condition (Morris et al. 2005; 

Boatman et al. 2004).  Most insecticides are non-specific in their action and also 

result in reductions in beneficial invertebrates such as predators and parasitoids, 

and thus they reduce the effectiveness of potential biological control of pest species 

(Geiger et al. 2010, Morris et al. 2005). 
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2.1.5 Agri-environment schemes 

Although the purpose of field margins and boundaries was originally for stock 

control, shelter and demarcation of boundaries, their function has expanded over 

recent years to include biodiversity conservation measures.  Marshall & Moonen 

(2002) propose potential roles that include the enhancement of natural enemy and 

pollinator populations, buffering agrochemical movement, conservation of soil and 

the promotion of diversity and ecological stability.  The buffering of agrochemicals 

is usually achieved by leaving an unsprayed strip adjacent to the field margin.  

Although a 6 m unsprayed buffer zone around cereal crops did not prevent the 

arthropods within the zone succumbing to insecticide applications, recolonisation 

of the main field by invertebrates was more extensive where buffer zones had been 

created (Holland 1999). 

 

It is recognised that having floristically diverse field margins can positively 

influence the diversity of other taxa.  To this end, many agrienvironment 

prescriptions incorporate ‘conservation headlands’ or uncultivated and untreated 

field margins in both arable and pastoral systems (Vickery et al. 2009; Sheridan et 

al. 2008; Denys & Tscharntke 2002).  In terms of the best ways to establish these 

margins, Sheridan et al. (2008) reported that reseeding with a mixed grass and 

flower mixture was the most successful.  They found that natural regeneration 

alone allowed too many unwanted, competitive weeds to dominate, while 

withholding nutrients and fertiliser resulted in too slow a rate of change to the 

flora.   Conversely, Meek et al. (2002) found that natural regeneration allowed rare 

arable weeds that did not grow in sown plots to persist.   

 

The structure of the vegetation in a sown margin may influence the types of 

invertebrates that are supported within it: Woodcock et al. (2005) reported that 

margins sown with fine grasses were associated with a smaller and less diverse 

beetle community than margins sown with tussock-forming grass mixes.  An age-
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effect was also reported by Denys & Tscharntke (2002), whereby natural enemy 

abundance and predator-prey ratios were higher in margins that had been 

established for a longer time period, and where tussocks had formed.   

 

2.1.6 Weed and arthropod diversity in biomass crops 

Miscanthus x giganteus and Phalaris arundinacea (hereafter referred to as 

Miscanthus and Phalaris) crops in the first three years after establishment were 

surveyed by Semere & Slater (2007).  They reported higher abundance and diversity 

of families of Diptera, Hymenoptera, Hemiptera and arboreal Coleoptera in the 

Miscanthus fields (and their margins), which had particularly high weed content, at 

between 40% and 96% cover.  However, the field margins tended to have a higher 

number of invertebrate families than the cropped areas, and as the two areas were 

combined in the analysis, it is less clear what the invertebrate response to the 

Miscanthus crops was.  The dominant invertebrate families found within the 

cropped areas and margins by Semere & Slater (2007) are shown in Table 2.1. 

 

Although their study was on crops that had not necessarily established well in their 

first few years, Semere & Slater (2007) concluded that the non-crop vegetation was 

of great importance in supporting invertebrate diversity, but was an effect that may 

be reduced in more mature crops with fewer weeds. 

 

Bellamy et al. (2009) compared weed and invertebrate food resources for birds 

between paired fields of winter wheat, and Miscanthus crops that had been planted 

between one and four years prior to the study.  They found that there were very 

few significant differences between the wheat and biomass crop in terms of 

invertebrate distribution in winter, even though the abundance and biomass of 

earthworms (Annelida) was greater in Miscanthus.  They suggested that this could 

have been due to variability between soil quality in the different crops and the age 

of the Miscanthus crops at the different sites.   
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Table 2.1 The dominant invertebrate families recorded in biomass grass crops and their margins, as 
reported by Semere & Slater (2007). 
Order Cropped areas Headlands 
Diptera Bibionidae Sciaridae 
 Phoridae Anthomyzidae 
 Sciaridae Chloropidae 
 Anthomyzidae Chironomidae 
 Chironomidae Bibionidae 
 Chloropidae Lonchopteridae 
Hymenoptera Pteromalidae Pteromalidae 
 Braconidae Platygastridae 
Hemiptera: Heteroptera Miridae Miridae 
 Anthocoridae Anthocoridae 
Hemiptera: Homoptera Aphididae Aphididae 
  Cercopidae 
  Cicadellidae 
Coleoptera (arboreal) Chrysomelidae Chrysomelidae 
 Cantharidae Coccinellidae 
 Coccinellidae Curculionidae 
  Phalacridae 

 

During the bird breeding season, a significantly greater abundance of invertebrates 

was recorded on non-crop vegetation within the Miscanthus than on either the 

Miscanthus plants or the wheat crop.  The only exceptions to this were the 

Coleoptera, which were more abundant in the wheat crops, but only in the sweep 

net samples, not in the pitfall traps.  In all cases, non-crop vegetation comprised 

significantly greater percentage cover in Miscanthus fields, which had a mean crop 

cover of 67% ±4% compared with 91% ±1.2% in wheat (Bellamy et al. 2009). 

 

Switchgrass Panicum virgatum is a prairie grass native to North America, of which 

certain cultivars are grown commercially for biomass.  Where switchgrass and 

natural prairie in the USA were managed non-intensively, there was a positive 

influence on the abundance of beneficial insects in comparison with annual crops 

such as maize (Gardiner et al. 2010).  However, it was thought that if these crops 

were grown intensively for biofuel production, the same positive effect may not 

exist. 
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2.1.7 Assessing abundance  

The presence of weeds (or non-crop vegetation) and the composition of the 

assemblage present in an agricultural landscape is entirely dependent on 

management practices such as herbicide use, season of sowing or grazing practices 

(Hawes et al. 2009).  However, assessment of weed diversity and abundance is a 

relatively simple task, performed by assessing ground cover of individual species 

(e.g. Bellamy et al. 2009). 

 

Conversely, assessment of an invertebrate community is a far more complex task.  

There are many well established capture methods, but no one technique is suitable 

for the whole range of aerial and epigeal invertebrates.  In tropical rainforest, Noyes 

(1989) reported varying levels of trapping success within different areas of the 

forest, despite using the same trapping techniques, thought to be due to vegetation 

structural differences.  He also found that certain techniques (such as pan trapping) 

were more effective for certain groups of invertebrates than other methods. 

 

In addition to the spatial differences in habitat use by invertebrates, seasonal and 

other temporal differences may exist.  A study on spiders in citrus orchards 

revealed significantly different results between nocturnal and diurnal samples 

which may have led to misinterpretation of a predatory spider community 

composition (Green 1999).  Therefore, all these factors need to be taken into 

account when planning survey methodology.   

 

Explanations of the commonly used invertebrate trapping techniques are outlined 

below. 

 

Pitfall trapping 

This involves sinking a plastic container or funnel into the soil, with the top of the 

container level with the soil surface.  Invertebrates fall into the container and 
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cannot escape.  A killing agent is sometimes used, otherwise the animals are left 

alive in the trap, which can increase the chance of predation within it.  Traps 

containing a killing agent of propylene glycol or ethylene glycol captured a higher 

diversity of invertebrates than were caught in traps without a killing agent, 

attributed to reduced levels of predation due to the killing agent (Weeks & 

McIntyre 1997).  Some traps are placed within a fenced area to increase the 

likelihood of taxa within that area encountering the trap, whilst others are left 

unfenced.  These different types of pitfall trap may induce bias into the types of 

taxa caught.  The use of unfenced traps in meadows and cereal fields resulted in 

greater catches of carabid (ground) beetles and fewer staphylinid (rove) beetles 

than those found in enclosed fenced traps (Mommertz et al. 1996).  In the same 

study, a relationship between arthropod body size and trap type was demonstrated, 

whereby the larger the body size of the arthropod, the more likely it was to be 

found in unfenced traps.  The converse applied to smaller species and fenced traps.  

Further factors to be considered when using pitfall traps are that rather than just 

catching invertebrates travelling over the soil surface, species normally dwelling 

within the vegetation that drop to the ground when disturbed may fall into the 

traps (Standen 2000).  In addition to ‘passively’ trapping invertebrate taxa that 

happen to encounter the trap, the presence of dead or dying trapped individuals 

may also actively attract carrion consumers to the traps (Standen 2000), which may 

skew the proportions of these types of taxa within a pitfall trap.  In comparison 

with D-vac sampling, pitfall traps were more effective in catching Lycosidae 

(Araneae; Mommertz et al. 1996) and Coleoptera (Standen 2000).  There is some 

evidence of species-specific behavioural responses to pitfall traps:  Topping (1993) 

reported a low capture rate for liniphyiid spiders, which required from 16 to 57 

encounters with the pitfall traps before becoming trapped.  Results from pitfall 

trapping for spiders may also differ from absolute density sampling.  This is thought 

to be due to different activity levels relating to mate-searching and hunting which 

are likely to vary between species and sexes (Topping & Sutherland 1992).  This is 
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in contrast to results reported by Churchill & Arthur (1999) who recorded 94% of 

spider species present using pitfall traps in comparison with 25% and 41% for 

sweep net and direct searching techniques respectively.  Both Topping & 

Sutherland (1992) and Meek et al. (2002) urge caution in how pitfall catch data are 

interpreted due to the limitations of the technique, and the possibility of trapping 

results being highly influenced by the extant vegetation structure as well as 

temporal changes in invertebrate activity. 

 

Vacuum sampling  

D-vac and Vortis sampling methods make use of strong suction to remove 

invertebrates from the soil and vegetation surface into a collecting vessel.  The 

suction head, usually a standard diameter is placed quickly onto the vegetation and 

any invertebrates captured are diverted into a specimen container.  Having a 

known diameter of sampling area allows estimates to be made of invertebrate 

abundance per unit area.  In a study in cereal fields and meadows, fewer taxa 

overall were caught by D-vac sampling than by the use of pitfall traps (Mommertz 

et al 1996).  This is thought to be due to the fact that heavier arthropods and those 

able to burrow into the soil escape the suction current.  However, vacuum sampling 

has been shown to be the most effective technique for Hemiptera, both in terms of 

species richness and abundance in understorey vegetation (Moir et al. 2005).  

Limitations to the technique include a tendency for water to be sucked from wet 

ground into the apparatus and also the large volume of plant material collected 

where there is abundant litter (Drake et al. 2007). 

 

Swish-net / sweep net 

These techniques, which use wide sweeps of a fine mesh net are designed to catch 

aerial insects and those on canopy vegetation. The Diptera are best sampled by 

these methods (Standen 2000) and sweep netting was also determined to be the 

most effective in terms of sampling effort for Orthoptera (Nagy et al. 2007).  



   
S.J. Clapham  61   

 

Limitations to sweep netting include reduced effectiveness in strong winds and on 

wet vegetation, and the possibility that large predatory insects may prey on other 

individuals in the catch (Drake et al. 2007). 

 

Pan traps 

These shallow containers of water are usually painted yellow, in order to attract 

and capture pollinating and phytophagous insects, which settle on and become 

trapped in the water.  However, what may seem to the human eye to be similar 

shades of yellow may be perceived differently by the insect eye, and could 

influence the effectiveness of the traps (Duelli et al. 1999).  As the traps are shallow, 

there is a risk of loss of liquid through evaporation in hot weather, or from flooding 

and overflowing in wet weather (Drake et al. 2007). 

 

Sticky traps 

These are commonly used in both horticulture and agriculture in order to either 

assess populations of beneficial predatory insects (Parajulee et al. 2003), or to trap 

and remove insect pests.   They are particularly effective for trapping Hymenoptera, 

Thysanoptera, Hemiptera, Diptera, Araneae and Coleoptera (Thomson et al. 2004).   

Factors influencing the types of insect caught on sticky traps include trap colour 

and orientation.  Shades of yellow have been shown to be more successful than 

other trap colours for many different taxa (Parajulee & Slosser 2003; Mensah 1996; 

Muirhead-Thomson 1991), but the best orientation angle varies between taxa 

(Muirhead-Thomson 1991).  A study on a salt marsh recorded higher numbers of 

hoverflies Syrphidae and thrips Thripidae on blue traps (Wyatt Hoback et al. 1999).  

In parasitoid wasps of the Trichogramma family, females preferred white traps, 

whereas males were found more abundantly on yellow traps (Romeis et al. 1998).  

Although yellow sticky traps have been used successfully in combination with 

other collection techniques for Hemiptera, it was found that after a period of 600 
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minutes, an asymptote of sampled species abundance was reached and no further 

species were caught (Moir et al. 2005).   

 

In a study where pitfall traps or a combination of swish-netting and D-vac were 

used, many arthropod families were found mainly by one or the other method.  

Some species were solely found by one method, indicating that a range of sampling 

techniques should be used to account for all taxa present (Standen 2000).  This also 

applied to other techniques: for Hemiptera, an optimal combination was vacuum 

sampling, sticky traps and beating of vegetation (in order to dislodge invertebrates 

from the plant, which are then caught on a sheet below the plant), (Moir et al. 

2005). 

 

Assessing the biodiversity of a habitat can be a very time and labour-intensive 

exercise, which requires specific expertise in identifying taxa.  Potential shortcuts 

allowing researchers to reach the same conclusions will always be an attractive 

option.  Biaggini et al. (2007) used order level to define invertebrate abundance on 

different agricultural habitats – a measure that was as effective as using only 

differences in carabid beetle species (rather than a broader range of taxa) to 

quantify abundance. 

 

2.1.8 Aims  

The aim of this chapter was to assess the abundance of non-crop vegetation and 

invertebrates in biomass grass crops and their headlands and to relate this to their 

role as potential food resources for birds and small mammals, the ecosystem services 

they provide and overall biodiversity.  It is hypothesised that the combination of 

crop structure and management involving minimal disturbance will increase weed 

and invertebrate abundance and diversity within the biomass crop fields. 
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2.2 Materials and methods 

2.2.1 Invertebrates 

Biomass crops of Miscanthus x giganteus and Phalaris arundinacea, their margins 

and comparison “control” plots at four sites in Wales and Herefordshire (as 

described in Chapter 1) were surveyed.  Survey transects at distances of 10 m, 20 m 

and 50 m (where plot size allowed) from the crop edge were established.  A transect 

was also established in the headlands, mid-way between the hedge / field boundary 

and the edge of the crop.  A further transect within the comparison plots at each 

site was also surveyed.  Trapping for invertebrates was carried out during the April, 

August and December survey periods in the first year of fieldwork (2008), in order 

to sample at three distinct crop stages (stubble, tall vegetative growth and senesced 

standing material). A range of trapping techniques was employed, in order to 

maximise the catch of both epigeal and aerial invertebrates. 

 

Pitfall traps 

A garden bulb planter was used to extract a core of soil, in order to form a hole 

deep enough to contain plastic vending cups of 7 cm diameter and 8 cm depth, so 

that the top of a cup placed in the hole remained flush with the soil surface.  A 

small piece of 2.0 x 2.5 cm diameter rigid plastic mesh was placed in the cup to act 

as an escape ladder for small mammals, after establishing with preliminary 

observations that large Lycosid spiders and Carabid beetles were unable to escape 

from the trap by climbing it.  40 ml of 50% ethylene glycol solution was placed in 

the cup and a 10 cm2 square of wire mesh was elevated 3-4 cm above the top of the 

trap using wooden pegs, in an attempt to protect the contents from disturbance or 

ingestion by vertebrates.  Three traps were laid 2 m apart at each transect within 

the crops, headlands and comparison sites. 

 

In preliminary trials, the pitfall traps were left in position for seven days, but the 

quantity of slugs trapped resulted in all other specimens becoming coated in slime 
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and therefore difficult to identify.  Some deterioration and disintegration of 

specimens was also seen and it was evident that seven days was too long a period 

for the trap to be left in the field.  The traps were therefore only left in position for 

24 hours, after which the contents were filtered using permeable tissue (“nappy 

liner”, Boots) which was fine enough to conserve all the smallest invertebrates 

within the catch when the liquid portion was removed.  Slugs and worms were 

removed and discarded, and the remainder of the catch was preserved in 70% 

alcohol.   

 

Vortis suction sampling.   

A Vortis Insect Suction Sampler (Burkard Manufacturing Co. Ltd. Rickmansworth, 

Hertfordshire, UK) with a sampling diameter of 16 cm was operated for 10 seconds 

each at three positions along each transect, combined to give one 30 second sample 

per transect.  One 30 second sample was taken in each crop and headland transect 

and three samples were taken from the comparison plots.  Each sampling position 

was at least 2 m away from the last and the suction nozzle was placed quickly over 

the vegetation onto the ground to minimize escape by spiders and beetles.  

Captured specimens were killed immediately using ethyl acetate in order to prevent 

predation within the sample pot, then preserved in 70% alcohol on return to the 

laboratory.   

 

Several problems were encountered when using the Vortis Sampler for sample 

collection and it was soon discontinued.  In particular, it could not be used when 

any moisture was present on the soil surface, which resulted in a succession of 

missed samples after rainy periods.  The samples that were collected were 

eventually discarded, as the quantity of vegetation debris and the deterioration of 

the specimens that occurred prior to preservation made identification and counts 

too time-consuming and unreliable to be used in the analysis.   
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Yellow pan traps 

Clear plastic oval disposable salad containers measuring 12 cm x 16 cm x 4 cm were 

painted yellow by spraying the underside with Plasti-Kote Projekt Paint Fast Dry 

Enamel in Buttercup Yellow (#113S).  A dome of 2.5 cm diameter wire mesh was 

attached over the top of the trap to prevent birds consuming the contents and this 

was suspended from a 1 m cane pushed into the ground at an angle.  This resulted 

in the trap being positioned slightly above the canopy during the very early stages 

of crop growth, but at or below canopy level as the biomass crops became taller.  

Direct contact with the ground and vegetation was avoided where possible to 

reduce invasion by slugs.  One trap was set in each transect and headland and three 

were placed in the comparison plot at each site.  Once set, 60 ml of yellow 50% 

ethylene glycol solution was placed in the trap, which was then left in position for 

7 days.   After this time, contents of the trap were filtered through a piece of nappy 

liner and preserved in 70% alcohol. 

 

Sweep netting 

During calm, dry weather, a sample comprising 10 sweeps were made through the 

top of the vegetation at approximately 50 cm intervals whilst walking slowly 

forwards.  The catch was then collected from the net using a pooter and the 

specimens were killed by inserting twist of tissue paper soaked with a drop of ethyl 

acetate into the pot.  One sample of 10 sweeps was taken at each transect and three 

samples were collected in the comparison plots.  In the later stages of Miscanthus 

crop growth, when it was well above head-height, it became more difficult to 

include the top of the canopy in the net sweeps, so the technique had to be slightly 

modified (with higher sweeps) in order to maintain an equivalent sampling effort to 

that in the Phalaris. 
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Sticky traps 

Initial trapping sessions using 9 cm x 25 cm yellow sticky traps (Oeceos Ltd) were 

conducted during October 2007 at each field site.  Traps were suspended from tall 

bamboo canes at three different heights in the Miscanthus in order to represent the 

top, middle and bottom part of the canopy, whilst avoiding contact with the ground 

and the vegetation itself.  Two heights only were used in Phalaris to reflect the 

shorter crop.  After a period of 5 days the traps were collected, placed in a freezer to 

kill the specimens and then placed under a binocular dissecting microscope for 

identification and counting.  Where possible, individuals were identified to family 

level, but the inability to move the specimens off the trap made it impossible to 

identify Diptera beyond order level.  The quality of the trapped invertebrates also 

varied – during some trapping sessions it had rained copiously and some 

decomposition of the invertebrates was evident.  It was also evident that slugs had 

invaded the traps and consumed many of the invertebrates on them, adding further 

difficulty to the accurate counting of those present.  Although some spiders were 

found on the sticky traps, it was clear that the traps were biased towards flying 

invertebrates. 

 

Despite this, it was felt that the sticky traps could give a useful indication of how 

the invertebrates within each taxon were distributed vertically, particularly in the 

Miscanthus, which was up to twice the height of Phalaris.  Traps were therefore set 

out at the three height levels in the Miscanthus at all four sites, but for just 24 hours 

in the August 2008 sampling period as a one-off sample. 

 

Butterflies 

Any butterflies (Lepidoptera) noted within the crops and headlands whilst other 

survey work was being undertaken were recorded.  These observations were used 

as anecdotal evidence of butterfly abundance and diversity in the different crops, 
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but as no timed searches were carried out, these results were not analysed 

statistically. 

 

2.2.2 Identification and counts 

Preserved invertebrate specimens were examined in water-filled petri dishes, under 

a binocular dissecting microscope.  Identification to family level was performed 

where possible, using a range of paper and on-line keys (see Section 2.5.1 for full 

details) and counts for each family were recorded.  Collembola were identified to 

morphotype only (Symphypleona or Arthropleona) and there were a few 

individuals from other orders that were not identified to family level (e.g. 

Opiliones, Mecoptera and Trichoptera).  Identification of the pitfall specimens was 

performed by the author, but the pan trap and sweep net specimen counts were 

performed by a research assistant (M. Postles).  During the counts of the pan trap 

and sweep net specimens, a record was also made of size ranges of the invertebrates 

(in the categories: <1 mm, 1-5 mm, 5-15 mm and >15 mm).  Size range was not 

recorded for the pitfall specimens, but the families found within them have 

subsequently been categorised into more general size ranges. 

 

Sticky traps were also examined under the binocular dissecting microscope.  The 

original backing paper was lightly reapplied to the side resting on the microscope 

stage in order to prevent it sticking.  Where families could be identified with 

confidence, these were recorded.  For most Dipterans however, only a distinction 

between the sub-orders Brachycera and Nematocera of different sizes was possible 

due to the inability to remove the specimens from the sticky trap. 

 

2.2.3 Data analysis 

Presence and counts 

Counts of the individual invertebrates of the different size classes trapped in pan 

traps and sweep nets were pooled in order to give a single count per family.  Counts 
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from the pitfall traps were added to these, giving a count per family per transect, 

per visit from the combined trapping methods.  These were the count data used in 

the subsequent statistical analyses. 

 

For analyses of the size class data, counts of families of the same size class in the 

sweep net and pan trap samples were added together and these multi-species size 

class counts were used for statistical analysis. 

 

When tested for normality of distribution, abundance and size data from the 

invertebrate surveys were found to have a non-Gaussian distribution.  Generalised 

linear models (GLM) and non-parametric Kruskal-Wallis tests were used to test for 

differences in invertebrate distribution and size ranges between areas sampled, 

seasons and distance into the crops.  Where significant results were shown using 

the Kruskal-Wallis test, post-hoc pairwise comparisons of mean ranks of all pairs of 

groups (adjusted for multiple comparisons as part of an overall Kruskal-Wallis test) 

were used to define where the differences lay 

 

Diversity indices were calculated using the number of invertebrate families present 

in a habitat.  No attempt was made to perform statistical analysis on the diversity 

scores: even with uniform sample sizes, the indices have unequal variances and 

measures such as ANOVA are therefore not appropriate (Rogers & Hsu 2001). 

 

2.2.4 Vegetation  

Crop height was recorded bi-monthly from April 2008 – December 2008 at five 

points along each biomass crop and headland transect.  In the early stages of growth 

(where the crops were less than 1.5 m tall) a drop-disc was used to measure height 

above ground-level.  Where the crop exceeded 1.5 m height, distance from the 

ground to the topmost ligule on five individual stems was measured and the mean 

recorded.  At the same five points, a light meter (British Gas Energy Studies 
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Measuring Instrument Mk2, Portec, Milton Keynes) was used to take an ambient 

lux reading at ground level within the crop.  A reading was also taken above 

(Phalaris) or outside the crop (Miscanthus) in order to calculate percentage shading 

by the crop (i.e. % reduction in ambient light flux between the top and bottom of 

the crop height). 

 

Surveys of non-crop vegetation were performed in the survey periods April, August 

and December 2008 at all field sites (excepting the December survey at site ‘HM’, 

due to the destruction of the crop for rhizome extraction).  A 50 cm × 50 cm 

quadrat was placed at five positions 2 m apart in each transect within the crops and 

headlands.  Ground cover of each plant species, litter, bryophytes and bare ground 

was estimated visually and recorded as a percentage.  Percentage cover of 

vegetation was not estimated in the comparison plots: the grasses in the grazed 

pastures were kept very short by livestock and therefore lacked many of the 

necessary identifying features (i.e. ligules and infloresences), and the blackcurrant 

fields had very little non-crop vegetation due to regular harrowing between rows of 

crop plants and herbicide application. 

 

2.2.5 Data analysis 

Tests for normality of distribution of the vegetation data showed a non-Gaussian 

distribution.  Non-parametric Kruskal-Wallis tests were therefore used to test for 

differences in percentage ground cover and weed species number between habitats 

and at different distances within the crops.  Effects of shading by the two crops 

were also tested for differences in this way.  Diversity indices (Shannon-Wiener H 

and Simpson’s E) were calculated for the vegetation in each habitat. 
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2.3 Results  

2.3.1 Invertebrates 

Over 12,500 individuals from 140 families/morphotypes in 18 orders were caught in 

the sweep nets, pan traps and pitfall traps across the habitats surveyed (Tables 2.2 – 

2.5 for the 20 most abundant families in each habitat).  In addition to this, 

individuals from the sub-order Lumbricina, class Gastropoda and order Lepidoptera 

formed part of the catch but were not identified to any higher taxonomic level, nor 

included in any analysis.   

 

Table 2.2 The twenty most abundant invertebrate families/morphotypes in the comparison sites. 
Order 
 

Family / morphotype 
 

Size range  
(mm) 

Mean 
abundance 

SE 
 

Percentage 
 

Diptera Anthomyiidae  1-15 16.1 11.8 12.7 
Collembola Arthropleona  <1-15 11.0 3.4 8.6 
Diptera Bibionidae  1-15 9.1 8.4 7.2 
Diptera Chironomidae  <1-15 8.9 2.8 7.0 
Diptera Muscidae  1->15 7.7 4.4 6.1 
Diptera Sciaridae 1-15 7.1 2.2 5.6 
Diptera Scathophagidae  1-15 5.1 3.1 4.1 
Diptera Calliphoridae  5-15 4.3 3.0 3.4 
Diptera Phoridae  <1-15 4.2 2.6 3.3 
Araneae Linyphiidae  <1-5 3.9 0.9 3.1 
Diptera Ceratopogonidae  1-15 3.8 1.2 3.0 
Diptera Sphaeroceridae  1-5 2.9 0.9 2.3 
Diptera Sarcophagidae  5->15 2.2 1.6 1.7 
Coleoptera Staphylinidae  1->15 2.1 0.7 1.6 
Hymenoptera Braconidae  1-15 2.0 0.9 1.6 
Hemiptera Auchenorrhyncha <1-15 1.9 0.8 1.5 
Coleoptera Unknown Larva  1-5 1.8 0.9 1.4 
Diptera Lonchopteridae  1-5 1.6 0.6 1.3 
Hemiptera Aphididae  <1-5 1.6 1.0 1.2 
Diptera Diastatidae  1-5 1.5 0.5 1.2 

 

In terms of mean abundance per transect, Phalaris contained the highest number of 

invertebrate individuals (140), followed by the headlands (130), comparison sites 

(126) and then Miscanthus (66).  A significant difference in the abundance of 

invertebrates was seen between the habitats (Kruskal-Wallis H (3, N = 81) = 8.772, 

P = 0.032.  On pairwise comparisons (adjusted for multiple comparisons),  
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Table 2.3 The twenty most abundant invertebrate families/morphotypes in the headlands. 
Order 
 

Family / morphotype 
 

Size range (mm) 
 

Mean 
abundance 

SE 
 

Percentage 
 

Diptera Chironomidae  <1-15 16.4 6.8 12.7 
Collembola Arthropleona  <1-15 15.1 5.9 11.7 
Diptera Sciaridae  1-15 9.1 2.6 7.1 
Diptera Phoridae  <1-15 7.3 1.7 5.6 
Diptera Ceratopogonidae  1-15 5.5 1.8 4.3 
Diptera Anthomyiidae  1-15 5.5 1.3 4.2 
Diptera Scathophagidae  1-15 3.5 1.2 2.7 
Thysanoptera Phlaeothripidae  <1-5 3.4 2.8 2.6 
Hymenoptera Eulophidae  <1-5 3.0 1.1 2.4 
Hymenoptera Braconidae  1-15 2.9 1.1 2.3 
Coleoptera Carabidae  1- >15 2.9 1.5 2.3 
Hymenoptera Ichneumonidae  1-15 2.7 1.1 2.1 
Diptera Calliphoridae  5-15 2.5 1.2 1.9 
Hemiptera Auchenorrhyncha  <1-15 2.4 0.8 1.9 
Araneae Linyphiidae  <1-5 2.4 1.2 1.9 
Hemiptera Aphididae  <1-5 2.1 0.8 1.6 
Coleoptera Unknown Larva  1-5 2.1 1.4 1.6 
Diptera Sepsidae 1-15 1.8 0.8 1.4 
Hemiptera Pentatomoidea  1-15 1.6 0.7 1.2 
Hymenoptera Ceraphronidae  <1-5 1.6 0.7 1.2 

 

Miscanthus was seen to have a significantly lower abundance of invertebrates than 
the headlands (P = 0.019). 
 

Table 2.4 The twenty most abundant invertebrate families/morphotypes in the Miscanthus. 
Order 
 

Family / morphotype 
 

Size range 
(mm) 

Mean 
abundance 

SE 
 

Percentage 
 

Collembola Arthropleona  <1-15 9.3 2.7 13.7 
Diptera Chironomidae  <1-15 6.5 1.3 9.6 
Diptera Sciaridae 1-15 5.4 1.2 7.9 
Diptera Ceratopogonidae  1-15 3.0 0.7 4.3 
Diptera Phoridae  <1-15 2.9 0.8 4.3 
Hymenoptera Braconidae  1-15 2.3 1.0 3.3 
Diptera Anthomyiidae  1-15 2.2 0.6 3.2 
Diptera Sphaeroceridae  1-5 2.0 1.2 2.9 
Hymenoptera Eulophidae  <1-5 1.9 0.6 2.8 
Diptera Scathophagidae  1-15 1.9 0.5 2.8 
Hymenoptera Ichneumonidae  1-15 1.7 0.6 2.6 
Diptera Diastatidae  1-5 1.5 0.7 2.2 
Hymenoptera Scelionidae  1-5 1.5 0.8 2.2 
Hymenoptera Ceraphronidae  <1-5 1.3 0.5 1.9 
Hymenoptera Figitidae  <1-5 1.2 0.5 1.7 
Diptera Muscidae  1->15 1.1 0.4 1.6 
Hemiptera Aphididae  <1-5 1.1 0.3 1.6 
Coleoptera Carabidae 1- >15 1.1 0.3 1.6 
Coleoptera Staphylinidae  1->15 1.0 0.3 1.5 
Araneae Linyphiidae  <1-5 1.0 0.3 1.4 
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Table 2.5 The twenty most abundant invertebrate families/morphotypes in the Phalaris. 

 

The Diptera were the dominant invertebrate order in all habitats surveyed, 
comprising from 53% of the catch in both the headlands and Miscanthus, 67% in 
the comparison sites and 69% in Phalaris (Table 2.6).  There was no significant 
difference between habitats in the prevalence of Diptera (Kruskal-Wallis H (3,        
N = 81) = 5.350 P = 0.148). 
 

Table 2.6 Percentages of invertebrate orders comprising ≥5% of the catch in the different habitats.  
Orders comprising <5% of total catch are grouped together as ‘Others’. 

  Comparison Headlands Miscanthus Phalaris 
Diptera 67 53 53 69 
Hymenoptera 7 12 17 10 
Collembola 10 13 15 - 
Hemiptera - 5 - 7 
Coleoptera 5 7 6 7 
Others 11 10 9 8 

 

2.3.2 Habitat differences 

The most abundant orders were tested for differences between crops/habitats using 

a Kruskal-Wallis test.  No significant differences were seen for Diptera, Collembola, 

Coleoptera, Hemiptera or Hymenoptera, but the abundance of Araneae was 

significantly different between habitats (Kruskal-Wallis H (3, N = 81) = 14.117,        

Order Family/morphotype 
Size range 
(mm) 

Mean 
abundance SE Percentage 

Diptera Sciaridae  1-15 19.4 10.7 13.9 
Diptera Calliphoridae  5-15 15.7 9.9 11.3 
Diptera Anthomyiidae  1-15 8.8 3.8 6.3 
Diptera Chironomidae  <1-15 8.2 1.9 5.9 
Diptera Scathophagidae  1-15 7.1 2.2 5.1 
Diptera Muscidae  1->15 5.8 3.8 4.2 
Collembola Arthropleona  <1-15 5.4 1.8 3.9 
Hemiptera Aphididae  <1-5 5.3 4.1 3.8 
Diptera Sarcophagidae  5->15 4.9 2.7 3.5 
Diptera Ceratopogonidae  1-15 4.9 1.6 3.5 
Coleoptera Carabidae  1- >15 4.7 1.3 3.3 
Hymenoptera Ichneumonidae  1-15 3.3 1.2 2.4 
Diptera Diastatidae  1-5 3.1 0.9 2.2 
Diptera Phoridae  <1-15 3.1 0.8 2.2 
Diptera Bibionidae  1-15 2.5 1.5 1.8 
Hymenoptera Braconidae  1-15 2.3 0.6 1.7 
Diptera Sepsidae  1-15 2.0 0.8 1.5 
Heteroptera Pentatomoidea  <1-15 2.0 0.8 1.4 
Hemiptera Auchenorrhyncha  <1-15 1.9 0.4 1.3 
Hymenoptera Ceraphronidae  <1-5 1.8 0.7 1.3 
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P = 0.003).  Pairwise comparisons (adjusted for multiple comparisons) showed 

significantly lower abundances in the Miscanthus and Phalaris than the comparison 

sites (P = 0.002 and P = 0.01 respectively, Table 2.7).  

 
Table 2.7 Mean number of spiders (Araneae) caught per transect in the different habitats. 
 Comparison sites Headlands Miscanthus Phalaris 
Araneae 6.1 ±1.3 4.5 ±1.9 2.1 ±0.5 2.3 ±0.4 

 

The Diptera were further analyzed by comparing the abundance of the different 

infraorders across habitats using a Chi-squared median test. No significant 

differences were seen in the abundance of any infraorder between habitats 

surveyed (Table 2.8). 

 

Table 2.8 Results from a Chi-square median test for differences in abundance of dipteran infraorders 
in the different habitats.  Df = 3. 
Dipteran infraorder Chi-square P- value 

Asilomorpha 2.208 0.531 

Muscomorpha 6.849 0.077 

Bibionomorpha 0.489 0.921 

Culicomorpha 3.406 0.333 

Psychodomorpha 3.363 0.339 

Tipulomorpha 0.671 0.880 

 

There were, however, significantly more Muscomorpha families in the headlands 

(mean 10.1) compared with the Miscanthus (mean 5.2, Kruskal-Wallis H (3, N = 81) 

= 13.041, P = 0.005). 

 

A similar analysis was made of the hymenopteran suborders and their constituent 

groups: Apocrita (Aculeata and Parasitica) and Symphyta.  The abundance of 

individuals from the Parasitica and Symphyta were not significantly different 

between habitats (Kruskal-Wallis H (3, N = 81) = 1.271, P = 0.736 and H = 5.973,      
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P = 0.113 respectively).  However, Aculeata abundance was significantly different 

between habitats (Kruskal-Wallis H (3, N = 81) = 15.027, P = 0.002) but multiple 

comparisons did not identify any significant pairwise differences due to high 

variability in the comparison sites.  When the data from the comparison sites were 

omitted from the analysis, a significantly higher mean number of individuals from 

the Aculeata were present in the headlands (mean 0.8 ±0.46) compared with the 

Miscanthus (mean 0.04 ±0.04), which on multiple comparisons was a significant 

difference (Kruskal-Wallis H (2, N = 70) = 12.895, P = 0.025).  The mean number of 

Aculeata families was also significantly different between the four habitats 

(Kruskal-Wallis H (3, N = 81) = 16.756, P < 0.001).  A higher abundance of families 

was seen in the headlands (0.9 ±0.3) than the Miscanthus (0.07 ±0.05) which was 

shown to be a significant difference on pairwise comparison (P = 0.033). 

 

2.3.3 Invertebrate families 

The highest number of invertebrate families (excluding the taxa which were 

identified to morphotype or order only) were found in the headlands, followed by 

Phalaris, Miscanthus and the comparison sites (Table 2.9), although these were not 

significant differences (Kruskal-Wallis H (3, N = 41) = 1.344, P = 0.72).  

 
Table 2.9 Abundance of invertebrate families in the different habitats surveyed. 
Habitat Total families Mean per visit/site SE Range 
Comparison 88 27.7 5.63 09-53 
Headlands 108 29.7 4.65 11-59 
Miscanthus 92 22.0 3.65 07-42 
Phalaris 100 28.6 6.48 06-56 

 

Within the different orders, the Diptera contained the highest number of families 

(51) recorded across the different habitats.  The highest number of Dipteran 

families recorded in any one habitat was 43 in Phalaris.  However, no significant 

differences existed between habitats for any invertebrate family in the Araneae, 

Coleoptera, Diptera, Hymenoptera, Opiliones or Thysanoptera (Table 2.10).   
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Table 2.10 A summary of the numbers of individual families identified for each invertebrate order in 
the different habitats. 

 Comparison Headlands Miscanthus Phalaris 
Acari 4 5 4 4 
Araneae 7 6 8 6 
Coleoptera 15 14 12 15 
Dermaptera - 1 - - 
Diplopoda 1 3 2 2 
Diptera 35 42 38 43 
Hemiptera 5 8 5 6 
Hymenoptera 16 22 18 19 
Isopoda 2 3 2 1 
Lithobiomorpha - 1 1 1 
Thysanoptera 2 1 - 1 
Trichoptera 1 2 2 2 

 

The only group to show a significantly different distribution was the morphotype 

“Auchenorrhyncha” (Hemiptera, Kruskal-Wallis H (3, N= 81) =15.475, P = 0.002) 

which was significantly more abundant in the Phalaris than the Miscanthus (mean 

per visit 6.2 ±2.21 and 0.64 ±0.24 respectively, Table 2.11). 

 

Table 2.11 P – values from pairwise comparisons (adjusted for multiple comparisons as part of an 
overall Kruskal-Wallis test) for the abundance of the morphotype “Auchenorrhyncha” in the 
different crop habitats.    

 Comparison Headlands Miscanthus 

Headlands >0.999   
Miscanthus 0.109 0.031  

Phalaris >0.999 >0.999 0.006 

 

Some invertebrate families were recorded in every habitat, whilst others only 

appeared in a single habitat (Table 2.12). 
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Table 2.12 Invertebrate families recorded in either all habitats, or only one.  Figures in parentheses 
denote the total number of individuals recorded.  C = comparison sites, H = headlands,                       
M = Miscanthus, P = Phalaris. 

 

Families recorded in all habitats 
 

  

Families recorded in only one habitat 

Order Family  Order Family Habitat 
Acari Tetranychidae (49)  Araneae Aegelinidae (6) C 
Araneae Araneidae (20)   Lycosidae (3) C 
 Linyphiidae (64)   Metidae (1) H 
 Thomisidae (7)  Coleoptera Anthribidae(1) H 
Coleoptera Lathridiidae (16)   Apionidae(1) P 
 Ptilidae (58)   Byrrhidae (1) C 
 Scarabaeidae (4)   Cerambycidae (1) C 
 Staphylinidae (70)   Chrysomelidae (2) P 
Diptera Anisopodidae (17)   Histeridae (1) C 
 Anthomyiidae (982)   Hydraenidae (1) H 
 Asteiidae (112)   Nitulididae (2) H 
 Bibionidae (434)   Oedemeridae (1) P 
 Calliphoridae (885)  Dermaptera Forficulidae (2) H 
 Camillidae (12)  Diptera Aulacigastridae (2) H 
 Cecidiomyiidae (90)   Chamaemyiidae (1) M 
 Ceratopogonidae (447)   Clusiidae (13) M 
 Chironomidae (994)   Lauxanidae (5) H 
 Chloropidae (46)   Odiniidae (1) H 
 Culicidae (6)   Periscelididae (1) P 
 Diastatidae (208)   Pipunculidae (1) H 
 Dolichopodidae (39)   Platystomatidae (1) H 
 Drosophilidae (37)   Psilidae (1) P 
 Empididae (55)   Ptychopteridae (1) P 
 Fanniidae (44)   Rhinophoridae (1) H 
 Lonchopteridae (131)   Simuliidae (1) H 
 Muscidae (321)   Stratiomyidae (1) P 
 Mycetophilidae (56)   Thaumaleidae (1) M 
 Opomyzidae (18)  Hemiptera Miridae (2) H 
 Phoridae (425)  Hymenoptera Andrenidae (3) H 
 Scathophagidae (562)   Cynipidae (17) M 
 Scatopsidae (24)   Eumenidae (1) H 
 Sciaridae (1115)   Formicidae (6) C 
 Sepsidae (153)   Halictidae (1) H 
 Sphaeroceridae (174)   Trichogrammatidae (32) M 
 Syrphidae (64)     
 Tipulidae (12)     
Hemiptera Aphididae (260)     
 Pentatomidae (118)     
Hymenoptera Braconidae (249)     
 Ceraphronidae (102)     
 Diapriidae (22)     
 Eulophidae (204)     
 Figitidae (81)     
 Ichneumonidae (233)     
 Mymaridae (54)     
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Families recorded in all habitats     
Order Family     
Hymentoptera Proctotrupidae (35)     
(cont.) Pteromalidae (17)     
 Scelionidae (55)     
 Tenthredinidae (50)     
Thysanoptera Aelothripidae (107)     
 Thripidae (55)     

 
 
2.3.4 Size classes  

In the pan trap and sweep net samples, the size class containing the highest 

numbers of invertebrates was 1-5 mm, and this was true of all habitats surveyed.  

Phalaris contained higher numbers of invertebrates in the size class 5-15 mm and 

Miscanthus the lowest, but these were not statistically significant differences 

(Kruskal-Wallis H (3, N = 91) = 5.140, P = 0.162), Figure 2.1. 
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Figure 2.1 Mean counts ±1SE of the different size classes of invertebrates trapped in pan traps and by 
sweep netting. 
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2.3.5 Distance into the crop 

No significant differences in the abundance of any invertebrate orders or size 

classes were found between crop transects at distances of 10 m, 20 m or 50 m from 

the crop edge (Table 2.13). 

 

Table 2.13 Results from a Kruskal-Wallis test for differences in the abundance of the most common 
orders of invertebrates in the different transects in the crops Miscanthus and Phalaris.  N = 27, df = 
2. 
Order Kruskal Wallis H P - value 
Acari 1.940 0.379 
Araneae 1.095 0.578 
Coleoptera 1.024 0.599 
Collembola 1.481 0.447 
Diplopoda 0.356 0.837 
Diptera 0.873 0.646 
Hemiptera 0.333 0.847 
Hymenoptera 0.688 0.709 
Isopoda 0.238 0.888 
Opiliones 1.661 0.436 
Thysanoptera 0.408 0.815 

 

 

2.3.6 Seasonal changes 

Significant differences existed in the abundance of invertebrates in all habitats 

between the different months in which sampling took place (Kruskal-Wallis H (2, 

N = 81) = 46.931, P < 0.0001, Figure 2.2).  GLM showed that across all habitats, 

invertebrate abundance was significantly higher in August than in April or in 

December (estimate for April = -7.363 ±1.058, z-value = -6.958, P <0.0001 and for 

December estimate = -9.093 ±1.023, z-value = -8.717, P <0.0001).   
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Figure 2.2 Comparisons between months of sampling for invertebrate abundance in the different 
habitats.  In each habitat, ‘a’ = significantly different from ‘b’, ‘ab’ = not significantly different from 
‘a’ or ‘b' (pairwise comparisons adjusted for multiple comparisons as part of an overall Kruskal-
Wallis test,    P <0.05) between months of sampling. 
 

2.3.7 Sticky traps and height in Miscanthus 

A total of 1,950 individuals from 11 orders were recorded on 30 sticky traps.  

Invertebrates from two orders were recorded in significantly different abundances 

at different heights: Hymenoptera (Kruskal-Wallis H (2, N = 30) = 12.994,               

P = 0.002) and Hemiptera (Kruskal-Wallis H (2, N= 30) = 8.163, P = 0.017).  

Significantly higher numbers of individuals of the two orders were found on the 

sticky traps nearest the ground compared with ones set in the canopy in 

Miscanthus.  Pairwise comparisons (adjusted for multiple comparisons as part of an 

overall Kruskal-Wallis test) showed these to be significant differences (P < 0.001 for 

Hymenoptera and        P = 0.023 for Hemiptera, Figure 2.3).  There was also a 

significant difference in terms of the richness of Hymenoptera families present at 

the three heights of sticky trap Kruskal-Wallis H (2, N= 30) = 7.358, P = 0.025.  

Family richness was significantly higher in the lower traps (mean 7.7 families) 

compared with the canopy traps (mean 4.8 families, pairwise comparison P = 0.02).   
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When examined in more detail, two individual Hymenopteran families showed 

significant differences between the bottom and top traps: Mymaridae (Median test, 

Chi-Square = 7.200, df = 2, P = 0.027) and Figitidae (Median test: Chi-Square = 

11.429, df = 2, P = 0.003).  Platygastridae were the only family with the highest 

abundance in the middle-height traps, and this was a significant result (Median test: 

Chi-Square = 7.500, df = 2, P = 0.024).   
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Figure 2.3 Abundance of the different Hymenopteran families at different heights within 
Miscanthus crops in August 2008 as sampled by sticky traps.  Figures are means ±1SE. 
 

2.3.8 Diversity indices 

Simpson’s ‘E’ and Shannon-Wiener ‘H’ diversity indices were calculated using the 

number of families present in each crop/habitat.  Miscanthus scored the highest 

Simpson’s Index score and the headlands had the highest Shannon-Wiener score 

and family richness (Table 2.14).  

 

Table 2.14 Measures of invertebrate diversity in the different habitats surveyed.   
 Invertebrate family richness Shannon-

Wiener H 
Simpson’s E 

Comparison sites 98  3.50 0.76 

Headlands 118  3.64 0.76 

Miscanthus 101  3.57 0.77 

Phalaris 115  3.45 0.73 
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2.3.9 Lepidoptera 

Eleven butterfly species were recorded in the crops, headlands and comparison 

sites.  Phalaris and the headlands contained the highest number of species (9 and 7 

respectively, Table 2.15). 

 
Table 2.15 Butterfly species recorded in the different habitats.  * indicates a sighting in that habitat. 

Butterfly species Comparison sites Headlands Miscanthus Phalaris 
Lycaenidae     
 Small copper 

Lycaena phlaeas   
   * 

Nymphalidae     
 Comma 

Polygonia c-album 
 *   

 Painted lady 
Vanessa cardui 

 *  * 

 Red admiral  
Vanessa atalanta 

* * *  

 Small tortoiseshell 
Aglais urticae 

*  * * 

Pieridae     
 Green veined white 

Pieris napi 
   * 

 Large white 
Pieris brassicae 

*  * * 

 Small white 
Pieris rapae 

* *  * 

Satyridae     
 Meadow brown   

Maniola jurtina 
 *  * 

 Ringlet 
Aphantopus 
hyperantus 

 *  * 

 Speckled wood 
Pararge aegeria 

 * * * 

Total species 4 7 4 9 
 

Most of the butterfly activity (excluding the Pieridae) was centred on flowers of the 

Asteraceae such as knapweed Centaurea nigra, ragwort Senecio jacobea, ox-eye 

daisy Leucanthemum vulgare and thistles Cirsium spp.  Caterpillars of the elephant 

hawkmoth Deilephila elpenor (Sphingidae) were seen on willowherbs (Onagraceae) 

within the Phalaris crops at multiple sites. 
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2.3.10 Vegetation 

At the time that maximum crop height was reached in the December 2008 surveys, 

mean percentage cover of both the crops and weeds was significantly higher in 

Phalaris than Miscanthus (Table 2.16).   All other forms of ground cover were 

higher in Miscanthus, although this difference was statistically significant only for 

litter and bare ground. 

 
Table 2.16 Mean percentage ground cover in both crops and significant differences as defined by 
Mann-Whitney U- test.  

 
 
Ground cover type 

Miscanthus Phalaris  
Z - value 

 
P- value Median Inter-quartile 

range 
Median Inter-quartile 

range 
Crop cover 20.0 52.9 37.9 47.3 -3.924 <0.0001 
Weeds 9.1 19.6 25.9 28.4 -5.474 <0.0001 
Crop litter 27.9 42.7 0 0 9.504 <0.0001 
Other litter 0 0 0 0 0.410 0.682 
Bare ground 0 6.9 0 0 2.371 0.018 
Bryophytes 0 0 0 0 0.193 0.847 

 

Areas of Miscanthus crops included in the quadrats surveyed, contained 29 

identified weed species, with the most abundant being broadleaved willowherb 

Epilobium montanum (mean 4.9% ±1.02% ground cover), creeping buttercup 

Ranunculus repens (4.3% ±0.72%) and broad leaved dock Rumex obtusifolius (3.4% 

±0.86%).  Phalaris contained 37 weed species, with creeping buttercup (7.6% 

±1.24%), broad leaved dock (6.5% ±1.03%) and annual meadow grass Poa annua 

(5.2% ±0.78%) dominating.  Headlands contained 50 plant species, dominated by 

Yorkshire fog Holcus lanatus (21.7% ±2.79%), creeping buttercup (15.2% ±1.94%), 

and cocksfoot Dactylis glomerata (7.2% ±1.77%).   Table 2.17 & 2.18 list the non-

crop vegetation species recorded and the habitats in which they were found. 
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Table 2.17 Dicotyledonous weed species found in the different habitats.  Asterisk indicates presence 
in that habitat.  H = headlands, M = Miscanthus & P = Phalaris.   

Order Family Plant name H M P 
Apiales Apiaceae (Umbellifer) Hogweed Heracleum sphondylium  *   
  Upright hedge parsley Torilis japonica *   
 Araliaceae (Ivy) Ivy Hedera helix  *   
Asterales Asteraceae(Daisy) Lesser burdock Arctium minus  *   
  Black knapweed Centaurea nigra    * 
  Creeping thistle Cirsium arvense  * * * 
  Meadow thistle Cirsium dissectum  * * * 
  Spear thistle Cirsium vulgare   * * 
  Prickly lettuce Lactuca serriola   *  
  Oxeye daisy Leucanthemum vulgare  *  * 
  Ragwort Senecio jacobaea  *   
  Sow thistle Sonchus oleraceus    * 
  Dandelion Taraxacum spp.  * * * 
Boraginales Boraginaceae (Borage) Forgetmenot Myosotis spp.    * 
Brassicales Brassicaceae (Crucifer) Hairy bittercress Cardamine hirsuta  *  * 
Caryophyllales Amaranthaceae 

(Amaranth) 
Common orache Atriplex patula   *  

 Caryophyllaceae (Pink) Mouse ear Cerastium fontanum  * * * 
  Stitchwort Stellaria media  *   
 Polygonaceae (Knotweed ) Redshank Persicaria maculosa    * 
  Knotgrass Polygonum aviculare   *  
  Sorrel Rumex acetosa *  * 
  Curled dock Rumex crispus  *   
  Broadleaved dock Rumex obtusifolius  * * * 
Ericales Myrsinaceae (Myrsine) Scarlet pimpernel Anagallis arvensis   *  
Fabales Fabaceae (Legume) Birdsfoot trefoil Lotus corniculatus  * * * 
  Red clover Trifolium pratense  *  * 
  White clover Trifolium repens  * * * 
Gentianales Rubiaceae (Bedstraw) Goosegrass Galium aparine  *   
Geraniales Geraniaceae (Geranium) Cut-leaved cranesbill Geranium dissectum  *  * 
  Dove's-foot cranesbill Geranium molle  *  * 
  Herb Robert Geranium robertianum  *   
Lamiales Lamiaceae (Mint ) Ground ivy Glechoma hederacea  *   
  Self heal Prunella vulgaris  *  * 
  Hedge woundwort Stachys sylvatica  *   
 Oleaceae Ash Fraxinus excelsior  * *  
 Plantaginaceae (Plantain) Ribwort plantain Plantago lanceolata  *  * 
  Broadleaved plantain Plantago major  *   
  Field speedwell Veronica persica    * 
  Thyme-leaved speedwell Veronica serpyllifolia  * * * 
Myrtales Onagraceae (Willowherb) Rosebay willowherb Chamaenerion angustifolium  * * * 
  Great willowherb Epilobium hirsutum   * * 
  Broadleaved willowherb Epilobium montanum  * * * 
Pteridales Dennstaedtiaceae (Fern) Bracken Pteridium aquilinum  *   
Ranunculales Ranunculaceae 

(Buttercup) 
Creeping buttercup Ranunculus repens  * * * 

Rosales Rosaceae (Rose) Wild strawberry Fragaria vesca  *   
  Blackthorn Prunus spinosa  *  * 
  Dog rose Rosa canina   *  
  Bramble Rubus fructicosus  *   
  Raspberry Rubus idaeus  *   
 Urticaceae (Nettle) Nettle Urtica dioica  * * * 
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Table 2.18 Monocotyledonous weed species found in the different habitats.  Asterix indicates 
presence in that habitat.  H = headlands, M = Miscanthus & P = Phalaris.   

Order Family Plant name H M P 
Poales Juncaceae (Rush) Soft rush Juncus effusus  * * * 
  Woodrush Luzula campestris  *   
 Poaceae (True grasses) Bent grass Agrostis spp.  * * * 
  Sweet vernal grass Anthoxanthum odoratum  *   
  False oatgrass Arrhenatherum elatius  *   
  Crested dogstail Cynosurus cristatus  * *  
  Cocksfoot Dactylis glomerata  *  * 
  Couch grass Elymus repens   * * 
  Yorkshire fog Holcus lanatus  * * * 
  Perennial ryegrass Lolium perenne  *  * 
  Annual meadowgrass Poa annua  * * * 
  Smooth meadowgrass Poa pratensis  * * * 
  Rough meadowgrass Poa trivialis  * * * 

 

The mean weed species number per quadrat was highest in the headlands (Table 

2.19) and in this respect, every habitat was significantly different from each other 

(Kruskal-Wallis H (2, 395) = 106.609, P <0.001).   

 
Table 2.19 Comparisons of mean numbers of weed species per quadrat between the different 
habitats surveyed. 
Habitat Mean no. 

of weed 
species  

SE Range N P-value (corrected for multiple 
comparisons)  
Headlands Miscanthus Phalaris 

Headlands 3.92 0.159 1-9 118  <0.00001 0.00003 
Miscanthus 1.62 0.109 0-7 140 <0.00001  <0.00001 
Phalaris 2.86 0.158 0-7 137 0.00003 <0.00001  

 

2.3.11 Crop height 

Maximum mean crop height was recorded in the December survey period.  Mean 

crop height at this time was 2.73 m ± 0.06 m in Miscanthus (range 1.93 – 3.25 m), 

and 1.19 m ± 0.03 m in Phalaris (range 0.92 – 1.56 m).  A maximum individual stem 

height of 1.81 m was recorded in Phalaris in October, but weathering of plant 

material  and the bending over of some of the stems had caused some loss of height 

by the December survey. 
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Maximum canopy shading occurred in both crops in the October survey period, 

with a mean of just 5% ±0.7% of ambient light reaching ground level in Miscanthus 

and 7% ±0.9% in Phalaris (Figure 2.4).  There were significant differences in the 

degree of shading between the two crops in April, August and October (Table 2.20 

for Mann-Whitney U test results).  After this time, the leaves started senescing and 

falling, resulting in increased ambient light reaching ground level. 

 

Table 2.20 Results from Mann-Whitney U tests for differences in the percentage of ambient light 
reaching ground level between the two biomass crops at the different survey times. 

 
Month of 
survey 

Miscanthus Phalaris  
U 

 
Z 

 
P - value Median Inter-quartile 

range 
Median Inter-quartile 

range 
Apr-08 100.0    0  100 2.0  1072.5 2.225 0.026 
Jun-08 14.5 24.9  19.4 26.0  1114.0 -0.934 0.350 
Aug-08 3.4 5.9  22.1 34.8  615.0 -4.374 <0.0001 
Oct-08 2.4 4.2  5.3 5.8  553.5 -2.867 0.004 
Dec-08 13.2 9.7  10.7 40.7  600.0 0.141 0.888 
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Figure 2.4 Percentage of ambient light reaching ground level in the two biomass crops at different 
times of year.  Survey periods annotated with different letters indicate significant differences 
between the two crops (Mann-Whitney U test, P <0.05, as in Table 2.20). 
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2.3.12 Non-crop vegetation diversity 

Vegetation species richness was highest in the headlands, but in terms of diversity 

indices (particularly the Simpson’s Index), differences between the habitats were 

minimal (Table 2.21). 

 
Table 2.21 Measures of diversity for the non-crop vegetation in the crops and headlands. 
Habitat Species richness Simpson’s E Shannon H 
Headlands 50 0.67 2.60 
Miscanthus 29 0.68 2.32 
Phalaris 37 0.67 2.40 

 

2.3.13 Distance into crops  

There were no significant differences in total weed abundance at the three different 

distances into either crop (Kruskal-Wallis H (2, N = 140) = 4.443, P = 0.108 and H 

(2, N = 137) = 1.325, P = 0.516 in Miscanthus and Phalaris respectively).  Percentage 

cover of the crops was also not significantly different at different distances 

(Kruskal-Wallis H = (2, N = 140) = 0.466, P = 0.792 and H (2, N = 137) = 0.876,         

P = 0.645 in Miscanthus and Phalaris respectively). 
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2.4 Discussion 

The sheer number of different plant species and invertebrate families identified in 

this study, together with the mammal and bird taxa described in other chapters 

makes analysis of this agro-ecosystem extremely complex.  The relationships 

between trophic levels, biodiversity value and ecosystem services cannot be 

explored in their entirety, but the key ecological components of the different 

biomass crops can be identified. 

 

2.4.1 Invertebrate composition  

Generally, Miscanthus contained a lower abundance of invertebrates than the other 

habitats, but Phalaris and the headlands were more similar in terms of abundance 

and diversity of the assemblage. 

 

In each habitat, the order Diptera was represented by a higher abundance of 

individuals than any other order.  This is similar to the finding of Semere & Slater 

(2007), but differs from the results reported by Bellamy et al. (2009) who found that 

the order Hemiptera were most numerous, particularly on non-crop plants.  

Although their methodologies were similar (including sweep nets and pitfall traps 

amongst other techniques), differences in the methods of capture, time taken to 

sample the habitats and the distinction of results from weeds within the Miscanthus 

could explain any differences between these earlier studies and the present study.  

Nevertheless, this study showed the Collembolan ‘Arthropleona’ to be the most 

abundant invertebrate morphotype in Miscanthus, which was similar to results 

reported by Bellamy et al. (2009) from pitfall traps within a Miscanthus crop. 

 

Although Semere & Slater (2007) did not report the relative proportions of different 

invertebrate orders, they did give a percentage abundance of families within each 

order.  For example, in the Diptera, biomass cropped areas were dominated by the 

Bibionidae (March flies), Phoridae (scuttle flies) and Sciaridae (fungus gnats), 
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whereas in the field margins the three most abundant families were the Sciaridae, 

Anthomyzidae and Chloropidae (grass flies).  The current study also recorded 

higher numbers of dipteran and hymenopteran families both in the crops and 

margins than Semere & Slater (2007), Table 2.22.  Some of the variation between 

their work and this study could be explained by differences in survey techniques 

and timings.  For example, Bibionidae adults are present in large numbers for only a 

few weeks in a year (Ball 2008), so may appear in disproportionately high numbers 

if the only surveys that are performed coincide with that time.  Other possible 

factors to explain these differences between studies could be landscape-level 

differences in local habitat as well as a more mature crop and denser architecture.  

If the latter were the case, the reasons for a more diverse and abundant invertebrate 

assemblage in the older crop in this study than found by Semere & Slater (2007) 

could be related to longer term lack of soil disturbance (and therefore the 

opportunity for soil-dwelling invertebrates to complete their life-cycles), greater 

input of litter from fallen leaves and an increased three-dimensional area of more 

mature crop habitat in the present study. 

 
Table 2.22 Comparisons of abundance of dipteran and hymenopteran families reported in this study 
and that of Semere & Slater (2007) (S&S). 
 Miscanthus crop Phalaris crop Field margins 
 This study S & S This study S & S This study S & S 
Diptera 38 13 43 9 42 16 
Hymenoptera 18  4 19 3 22  6 

 

The most abundant invertebrate families in each habitat all have very different 

ecology and life histories.  The Anthomyiidae (root maggot flies of the order 

Diptera) were the predominant family in the headlands.  Their larvae are 

phytophagous (as leaf miners or root maggots), saprophagous or exist as parasitoids 

of other insects (Ball 2008).  The adults can be found feeding on dung, carrion and 

decaying plant matter as well as flowers and they may have a role as pollinators.  In 

the headlands, the non-biting midges (Diptera: Chironomidae) were the most 

abundant.  Some of the larvae have a terrestrial existence, but many species are 
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aquatic or semi-aquatic, feeding on organic matter and plankton.  The adults do not 

need to feed in their short existence, but will take nectar from flowers (Ball 2008).  

The dark-winged fungus gnats (Diptera: Sciaridae) have predominantly terrestrial 

larvae, which have an important role in soil and litter, feeding mainly on fungal 

mycelium.  The adults only ingest liquids and die after reproducing, a few days after 

emerging (Ball 2008).  Finally, in Miscanthus, the Collembolan morphotype 

‘Arthropleona’ comprised the highest percentage of invertebrate individuals.  

Collembola play an important role in translocating carbon from surface litter into 

the soil (Chamberlain et al. 2006) and their increased presence in the Miscanthus 

may be linked to the large amount of crop litter on the soil surface. 

 

Although it was not a significant difference, in this study, the highest number of 

individual invertebrates was recorded in Phalaris and the lowest in Miscanthus.  

Whether this was a real difference between crop species, or merely the result of 

structural differences influencing the effectiveness of trapping methods is not clear.   

 

2.4.2 Invertebrates unique to crop habitat 

Twelve families from the Coleoptera, Diptera and Hymenoptera were only 

recorded in biomass crop habitats and not in the comparison sites or headlands.  In 

Phalaris, three coleopteran families were unique, but recorded in very low 

numbers: Apionidae (seed weevils), Chrysomelidae (leaf beetles), and Oedemeridae 

(pollen beetles or false-blister beetles).  These families are all associated with 

herbaceous plants, feeding on plant material, pollen or nectar (www.bugguide.net).   

 

The two hymenopteran families unique to Miscanthus are both parasitic.  The 

Cynipidae are gall wasps generally associated with woody plant species such as oak 

(Quercus spp.) and either directly form galls, or act as inquilines, i.e. are unable to 

induce galls themselves, but inhabit, modify and feed from those formed by other 

species (Stone et al. 2002).  Trichogrammatidae are egg parasitoids, utilising a wide 
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range of host eggs from several orders (Richards 1977).  Whilst it is more obvious 

that the hosts of Trichogrammatidae should be widely available within the 

Miscanthus crop, it is less clear what resources that are distinct from those available 

in Phalaris or the headlands are used by the cynipids in Miscanthus.  Although 

caught in small numbers, they were present in Miscanthus at three sites.  There 

were oaks in all the hedges surrounding both crops, yet the cynipids were not 

found in any of the adjacent headlands or the Phalaris.   

 

Most dipterans unique to Miscanthus were also present in very low numbers, with 

only one individual each from Chamaemyiidae and Thaumaleidae.  Clusiidae, 

which are usually associated with damp, deciduous forests (Ball 2008) were found 

in slightly higher numbers.  Singletons of the dipteran families Periscelididae, 

Psilidae, Ptychopteridae and Stratiomyidae were unique to Phalaris crops. 

 

2.4.3 Beneficial invertebrates in the crops 

It has been reported that individuals from 71 different Dipteran families are 

anthophiles, visiting around 550 species of flowers (Larson et al. 2001).  They are 

thought to play an important role in pollination, although there is a paucity of 

detailed published data available.  Some anthophiles may not directly pollinate all 

the flowers they visit, but the resources gained from each flower may sustain the 

individual, ensuring that they are capable of pollinating the plant species reliant 

upon them (Kevan 1999).  Flower resources may also sustain non-pollinating 

natural enemies, which require floral-derived food in order to complete their life 

cycles (Isaacs et al. 2009; Kevan 1999).  As such, the presence of flowering weed 

species both in the biomass crops themselves and the headlands provide vital 

resources.   This may be of particular importance in Miscanthus crops and their 

margins, in which there is potential for wild flowers and tussocky grasses to 

become well established during the 20 year life of the crop – a factor which has 
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been reported to increase natural enemy abundance in comparison with recently 

established margins (Denys & Tscharntke 2002). 

 

Dipteran parasitoids that were present in the crops and headlands included 

individuals from the families Anthomyiidae, Phoridae, Pipunculidae, 

Rhinophoridae and Sarcophagidae, which have a wide range of hosts.  Also present 

were dipteran families with predatory life stages (either as larvae or adult) 

including: Chamaemyiidae, Dolichopodidae, Drosophilidae (larvae), Empididae and 

Muscidae.  Adults of the family Scathophagidae (dung flies) are significant 

predators on other flies and soft-bodied insects and therefore have a role as 

biological control agents.  They have also been recorded as an important pollinator 

of the declining arable weed Torilis arvensis (spreading hedge parsley, Gibson et al. 

2006) and their presence was recorded across all the habitats in this study. 

 

The biomass crops were relatively low in abundance of spiders (of the family 

Araneae) in relation to the comparison plot fields.  Most of the spider catch was in 

pitfall traps, and it is possible that the taller architecture and three-dimensional 

quality of the biomass crops compared with grazed pasture resulted in fewer 

interactions with the pitfall traps (and therefore opportunities to be caught by 

them).  This was certainly suggested as a possibility by Meek et al. (2002), who 

seemed cautious about possible interpretation of pitfall trapping results due to this 

factor.  Despite this, Linyphyiid spiders were caught in higher numbers than any of 

the other Araneae.  They spin webs close to the ground and are a major predator of 

aphids, often capturing those that have fallen from taller vegetation (Schmidt & 

Tscharntke 2005).   

 

Carabid beetles are effective predators of crop pests such as slugs, aphids, Diptera 

and some Lepidoptera as well as reducing weed seed biomass.  They are negatively 

affected by deep tillage regimes and benefit from crop heterogeneity and weediness 
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(Kromp 1999).  No representatives of the Coccinellidae were found in the biomass 

crops, but they were recorded in small numbers in the headlands, and a Harlequin 

ladybird Harmonia axyridis was trapped in August 2008 at the Herefordshire 

comparison site, which was soon after the species had first spread to that area 

(http://www.harlequin-survey.org).  The Staphylinidae (rove beetles) are non-

specific predators, preying on small arthropods such as Collembola, mites, insect 

larvae and nematodes.  It has been proposed that staphylinid community structures 

could be used as an indicator of environmental quality and anthropogenic impact 

due to their ecological specialism (Bohac 1999). 

 

Most of the Hymenoptera have important ecological roles as predators, parasitoids 

or pollinators.  There were few Aculeata (predominantly pollinators) in the biomass 

crops themselves, but the headlands contained a more diverse assemblage of 

families.  Larval Symphyta are an important food source for birds (Brickle et al. 

2000) and both the headlands and Phalaris contained a similar number of these, 

although low numbers and high variability meant that there was no significant 

difference between the habitats surveyed. 

 

When the Hymenoptera within Miscanthus crops were examined more closely 

through the use of yellow sticky traps, with the exception of two Symphyta adults, 

all other 555 hymenopteran individuals were from the sub-group Parasitica.  This 

group has a range of hosts, which are parasitized at varying stages of development 

(summarised in Table 2.23).  The presence of such parasitoids is thought to be 

indicative of good habitat quality, as they are dependent on resources from a very 

well established lower trophic level (Henson et al. 2009). 

 

Two of the families (Mymaridae and Figitidae) were found in higher numbers close 

to ground level than high up in the Miscanthus canopy.   This may be due partly to  
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Table 2.23 Life histories and hosts of the parasitic Hymenoptera trapped in Miscanthus crops.  
Information collated from Noyes (2003), Richards (1977) and www.bugguide.net. 

 

Family 
 

 

Hosts & life history (where described) 
 

Braconidae Hemiptera, Coleoptera adults, Lepidoptera larvae, 
Psocoptera nymphs, Diptera.  Some are egg-larval 
parasitoids – eggs are laid in host eggs and only develop 
when the host reaches the larval stage.  Many pupate in 
silk cocoons outside the host. 

Ceraphronidae Diptera, Thysanoptera, Lepidoptera and Neuroptera.  Some 
hyperparasitize braconids in Hemiptera. 

Cynipidae Some parasitic, others gall makers or gall inquilines. 

Diapriidae Fungus gnats (Sciaridae) and other dipterans, Coleoptera. 

Eulophidae Hidden larvae e.g. leaf mining Lepidoptera & 
Hymenoptera, Thysanoptera, also a hyperparasitoid. 

Figitidae Diptera, Neuroptera and other Hymenoptera. 

Ichneumonidae Lepidoptera, Coleoptera larvae, Diptera larvae, other 
Hymenopterans. 

Megaspilidae Hemiptera, may also be hyperparasitoids. 

Mymaridae Insect eggs – often concealed e.g. in plant tissue or in soil.  
Not host specific – may parasitize several insect families.  
Most common hosts are eggs of Hemiptera, Coleoptera, 
Psocoptera, Odonata, Lepidoptera. 

Platygastridae Egg parasitoids – used as biological control for Lepidoptera 
and horse flies (Tabanus).  Also parasitize Coccidoidea 
(Hemiptera) and Diptera. 

Proctotrupidae Araneidae and Hemiptera eggs, Coleoptera larvae, 
Sciaridae (Diptera), Myriapoda and Chilopoda. 

Pteromalidae Some hyperparasitoids, some adults may feed on body 
fluids of host after oviposition.  Diptera, Coleoptera, 
Hymenoptera, Lepidoptera and Siphonaptera. 

Torymidae Coleoptera, Diptera. 

Trichogrammatidae Egg parasitoids: Lepidoptera, Hemiptera, Coleoptera, 
Thysanoptera, Hymenoptera, Diptera and Neuroptera. 

 
host-seeking activities – Mymaridae are known to parasitize insect eggs concealed 

in the soil, but may also reflect the fact that weed flowers close to the ground are 
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providing essential nectar foraging resources (Kevan 1999).  Trap height was also a 

significant factor for the abundance of Platygastridae sampled; as they were more 

abundant at the middle height.  As parasitoids of Hemiptera and other eggs, it is 

likely that mid-height in the crop is the optimum place for both locating their host 

eggs and exploiting nectar resources. 

 

2.4.4 Invertebrates as food resources 

The highest numbers of invertebrates were recorded in the August sampling period, 

and the least in December.  Amongst the pan trap and sweep net samples, the most 

abundant size of individuals was 1-5 mm, which are likely to be important in the 

diet of farmland passerine chicks (Morris et al. 2005).   Although the bird nesting 

and fledgling-provisioning season is generally accepted to be from around March to 

September, most young birds have fledged by the beginning of August.  

Nevertheless, it is possible that the abundance of invertebrates seen in August is 

indicative of invertebrate abundance earlier during the breeding period.  In order 

to confirm this, any further studies would need to sample chick food invertebrate 

resources within the crops more frequently to coincide with the breeding season. 

 

Where invertebrate composition of the diet of farmland passerines has been 

reported from faecal samples, the importance of invertebrate families can vary 

between bird species, as demonstrated in the results of studies of four farmland 

passerines (Table 2.24). 

 

Adult butterflies (Lepidoptera) were only surveyed through un-standardised 

encounters in this study, while adult moths and larval Lepidoptera (butterflies and 

moths) were not sampled directly at all.   
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Table 2.24  Percentages of important invertebrate groups in the diet of the chicks of whitethroat 
Sylvia communis, dunnock Prunella modularis, yellowhammer Emberiza citrinella (from Moreby & 
Stoate 2001) and reed bunting Emberiza schoeniclus (from Brickle & Peach 2004) as determined by 
faecal analysis. 
 Whitethroat Dunnock Yellowhammer Reed bunting 

Araneae 14%  5%  9%  29%  
Hemiptera 6%  3%  3%    
Lepidoptera larvae 29%  4%  18%  33%  
Lepidoptera adults 10%  2%  11%    
Symphyta larvae 6%  1%  2%    
Curculionidae 9%  20%  8%    
Other Coleoptera 8%  33%  21%  15%  
Diptera 12%  19%  24%  12%  

 

Pitt (2009, unpublished) used Heath light traps set in Miscanthus and Phalaris to 

capture night-flying macro moths between April and August 2009.  The study 

recorded 405 moths of 56 species and 18 different families and subfamilies, 

including nine species considered by IUCN to be ‘vulnerable’ (Table 2.25).  Many of 

the moth species caught in both crops were species usually associated with 

deciduous trees, and it was thought that they may be roosting in the crops, rather 

than using them as breeding or feeding sites.  Moth abundance was reported to be 

positively associated with crop height, and despite the light trap being very visible 

over a wide area immediately after harvest, this did not result in increased catch, as 

had been expected.   

 

In the current study, a number of micro-moths (Momphidae) were caught on the 

sticky traps and further studies into these and other lepidopterans as food resources 

in biomass grass crops is required.   
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Table 2.25 Moth species classified as ‘vulnerable’ by the IUCN trapped by Pitt (2009 unpublished) in 
Miscanthus and Phalaris. 
Moth species Where recorded 

August thorn Ennomos quercinaria Phalaris 

Buff arches Habrosyne pyritoides Miscanthus 

Buff ermine Spilosoma luteum Miscanthus 

Garden tiger Arctia caja Miscanthus 

Small phoenix Ecliptopera silaceata Miscanthus & Phalaris 

Small square-spot Diarsia rubi Miscanthus & Phalaris 

Shoulder-striped wainscot Mythimna comma Miscanthus 

Rustic Hoplodrina blanda Miscanthus & Phalaris 

White ermine Spilosoma lubricipeda Miscanthus & Phalaris 

 

Insectivorous small mammals such as the pygmy shrew take Opiliones, Araneae and 

adult Coleoptera as the most abundant prey items, while the common shrew also 

takes many earthworms (Pernetta 1976).  Both of these shrew species rely on dense 

vegetative ground cover, and the biomass crops and headlands potentially provide 

excellent foraging habitat for them. 

 

2.4.5 Weed abundance  

The differing growth habits of the two crops appeared to highly influence the weed 

understorey.  The greater crop cover and weed content (i.e. non-crop vegetation) in 

the Phalaris habitat compared with the Miscanthus habitat was attributable to a 

higher proportion of crop litter on the ground in between the Miscanthus clumps.  

Ambient light at ground level was at its lowest in both crops by October, when 

there was only a very small difference numerically (2%) in the degree of shading by 

the two crops, although this was a statistically significant difference.  Although 

there were spaces between Miscanthus rhizome clumps, the canopy itself was more 

uniform than the Phalaris canopy, resulting in a 78% decrease in ambient light 

between measurements taken at ground level in April and June.  Conversely, the 
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Phalaris stems were more evenly and densely packed together and the crop showed 

a slower increase in shading over time.  Many of the weeds within the Phalaris in 

the later phases of crop growth were tall and had probably established early in the 

growing season, matching their growth with that of the crop.  However, it seems 

less likely that any further weeds germinating under the dense Phalaris canopy 

would have had enough light to grow from seed once the Phalaris canopy closed.  

The smaller proportion of weeds in Miscanthus may have resulted from the effects 

of shading and the inability of any weeds to grow fast or tall enough to be able to 

compete for light and/or nutrients with the crop.  Some other process may also 

have been responsible: the high levels of crop litter on the ground could inhibit 

germination and early growth of weeds, or allelopathy (i.e. phytochemicals 

produced by the Miscanthus resulting in inhibited growth of other plants) may be 

present.  For example, leachate from both living and abscised foliage of Miscanthus 

floridulus in Taiwan was shown to contain phytotoxic compounds which inhibited 

the growth of lettuce Lactuca sativa (Chou & Chung 1974).  No such effects have 

been reported for M. x giganteus, but it is possible that it is a trait common to other 

species in the Miscanthus genus and may therefore be in effect in the crop fields. 

 

2.4.6 Invertebrate diversity and weed diversity 

Different measures or indices of diversity within the areas surveyed gave different 

indications of the most diverse habitat.  In terms of both invertebrate family and 

weed species richness, the headlands were the habitat with the highest biodiversity, 

followed by Phalaris.  Shannon-Wiener’s index was highest in the headlands for 

both weeds and invertebrates then Miscanthus for invertebrates and Phalaris for 

weeds.  The highest Simpson’s score was found in the Miscanthus for both groups, 

followed by the headlands and comparison sites / Phalaris for invertebrates.  

Measuring species number alone does not take evenness into account.  Both the 

Simpsons and Shannon indices do account for evenness (rather than just species 

richness), but either communities containing low numbers of species and 
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individuals or those with an abundance of the more common species are biased in 

the calculations (Hill 1973).  This factor has led to caution in utilising these 

measures of biodiversity in agroecosystems (Albrecht 2003).  Despite this, they are 

still amongst the most commonly used measures of biodiversity and are well 

understood and easily calculated.  For these reasons, they still have a role in 

quantifying the basic diversity of a system, even if they are not believed to be the 

ideal measures of biodiversity in every respect. 

 

Increased plant diversity can support higher invertebrate abundance in 

agroecosystems regardless of the type of crop grown (Westbury et al. 2011).  It 

could be tempting therefore, to attempt to quantify the relationships between plant 

and invertebrate diversity within the biomass crops and their headlands.  This has 

not been done here for several reasons: (a) the data from the invertebrate trapping 

techniques used needs to be treated cautiously for reasons discussed below, (b) 

variability within and between the diversity indices used makes them unreliable for 

this purpose and (c) any relationships quantified in this way may result from local 

or landscape-level influences such as topography, climate or soil quality that may 

not translate to other geographical areas.  Instead, known relationships between 

weeds and invertebrates are discussed below and from these, it is possible to infer 

how the weed community in the crops may influence invertebrate abundance and 

diversity. 

 

2.4.7 Weed and invertebrate associations 

A potential advantage of biomass grass crops is lack of disturbance, both through 

lack of tillage of the soil for the life of the crop, and because the senesced crops and 

their associated weed community are left standing throughout the winter, a factor 

which may enhance communities of arthropods.  Collins et al. (2003) reported that 

the highest densities of overwintering polyphagous predators were associated with 

beetle banks sown with false oat grass Arrhenatherum elatius and cocksfoot 
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Dactylis glomerata compared with naturally regenerated areas, or those sown with 

crested dogstail Cynosurus cristatus.  In this study, a small percentage of                  

D. glomerata was found within Phalaris crops, but it comprised a larger percentage 

of the headlands, where it may play an important role as a winter refuge.  As part of 

a biomass field structure, hedgerows may also hold benefit for invertebrates: Pywell 

et al. (2005) found a higher richness and abundance of both Araneae and 

Coleoptera in arable hedgerows in comparison with the field margins, and Schmidt 

et al. (2005) reported that landscape complexity and the presence of non crop 

habitats had more influence on epigeal spider species richness. 

 

The value of weeds as a resource for higher trophic levels has been discussed 

earlier.  Mauchline et al. (2005) even suggest that some of the resource-rich non-

competitive weeds should be routinely tolerated in crops as a means of enhancing 

biodiversity and natural enemies.  Information from the Database of Insects and 

their Food Plants was used to compile a list of all UK phytophagous invertebrates 

associated with the combination of non-crop plant species making up 90% of total 

ground cover in the two biomass crops and headlands (Table 2.26).   The results of 

this show several hundred possible additional invertebrate species (subject to 

regional presence) from multiple families and orders that could be supported in an 

agricultural landscape where the two crops with their headlands and associated 

weeds are grown.  These additional invertebrates are likely to contribute 

significantly as food resources for higher trophic levels. 
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Table 2.26 Potential value of the weeds within the different habitats to phytophagous invertebrates.  
Calculations are based on all invertebrate species associated with the weed species making up at least 
90% ground cover in each habitat, data from the UK Database of Insects and their Food Plants 
(DIFP, formerly the Plant Insect Database), Biological Records Centre. 
 Headlands Miscanthus Phalaris 
Order Families Species  Families Species  Families Species  
Acari 1  4   1  4   1  5   
Coleoptera 8  76   9  68   9  102   
Diptera 10  95   9  86   9  84   
Hemiptera 22  136   17  129   18  132   
Hymenoptera  4  20   3  11   3  14   
Lepidoptera  23  282   20  192   27  262   
Orthoptera 1  1             
Thysanoptera 1  5   1  6   1  7   
Total 70  619   60  496   68  606   

 

The polyphagous invertebrates associated with plants have a diverse range of 

dietary habits.  As an example, the range of herbivores associated with creeping 

buttercup, one of the three most abundant weeds in the crops and headlands, is 

given in Table 2.27. 

 

Five nuisance weed species are listed under the Weeds Act (1959), namely spear 

thistle Cirsium vulgare, creeping or field thistle Cirsium arvense, curled dock 

Rumex crispus, broad-leaved dock Rumex obtusifolius and ragwort Senecio 

jacobaea.  Although it is not illegal to have these weeds present on agricultural 

land, they must not be allowed to spread to neighbouring land or to any other areas 

used for grazing or making forage.  Despite being nuisance plants in agricultural 

terms, these weeds also have important ecological functions.  Bumblebees (Bombus 

spp.) and honeybees were recorded most frequently on Cirsium spp. in margins 

surrounding arable fields (Roy et al. 2003).   

 

Ragwort is the main food plant of the cinnabar moth Tyria jacobaeae caterpillar and 

a further 94 phytophagous invertebrates are associated with it (DIFP).  Broad-

leaved dock also supports over 90 species of invertebrate, of which there are 39 

macro-moths and 4 butterfly larvae (DIFP). 
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Table 2.27 Polyphagous and herbivorous invertebrates associated with creeping buttercup 
Ranunculus repens, as detailed in the Database of Insects and their Food Plants (DIFP). 
Key:  Orders: Aca = Acari, Col = Coleoptera, Dip = Diptera, Hem = Hemiptera Hym = Hymenoptera, 
Lep = Lepidoptera, Thys = Thysanoptera 
Life stage: Ad = adult. La = larvae (where specified) 
Mode of herbivory:  B = boring, M = mining, G = galling, R = rolling (where specified) 
Plant part attacked: L = leaves, F = flowers, S = stems, Rt = roots, (where specified). 

   Life 
stage 

Mode of 
herbivory 

Plant part 
attacked 

Order Family Species Ad La B M G R L F S Rt 
Aca Eriophyidae Epitrimerus rhyncothrix  * *         
Col Byturidae Byturus ochraceus  *       *   
Col Chrysomelidae Chrysolina staphylaea  * *     *    
Col Chrysomelidae Hydrothassa glabra  * *         
Col Chrysomelidae Hydrothassa marginella  * *     *    
Col Chrysomelidae Plateumaris sericea  *       *   
Col Curculionidae Bagous tempestivus   *       *  
Col Curculionidae Barynotus moerens  *      *    
Col Curculionidae Leiosoma deflexum   *       * * 
Col Curculionidae Leiosoma oblongulum            
Dip Agromyzidae Napomyza nigritula   * *      *  
Dip Agromyzidae Phytomyza fallaciosa   *  *   *    
Dip Agromyzidae Phytomyza notata   *  *   *    
Dip Agromyzidae Phytomyza ranunculi   *  *   *    
Dip Cecidomyiidae Dasineura ranunculi   *   * * *    
Dip Cecidomyiidae Dasineura traili   *   *   *   
Dip Syrphidae Cheilosia albitarsis   *        * 
Hem  Cicadellidae Eupteryx vittata        *    
Hem Aphididae Aulacorthum solani        * *   
Hem Aphididae Dysaphis ranunculi            
Hem  Aphididae Tubaphis ranunculina        *    
Hem  Lachnidae Protrama ranunculi           * 
Hem  Pemphigidae Thecabius affinis          *  
Hym  Tenthredinidae Monophadnus pallescens   *     *    
Hym  Tenthredinidae Pseudodineura fuscula   *  *   *    
Hym  Tenthredinidae Tenthredo mesomelas   *         
Lep  Noctuidae Agrochola lychnidis   *      *   
Lep  Noctuidae Trigonophora flammea   *         
Lep  Noctuidae Noctua orbona   *     *    
Lep Tortricidae Cnephasia asseclana   *  *   * *   
Lep  Tortricidae Cnephasia genitalana   *      *   
Lep  Tortricidae Cnephasia incertana  *  *   * *   
Lep  Tortricidae Cnephasia stephensiana   *  *   *    
Thys Thripidae Thrips discolor   *     *    

 

  The seeds of the weed, broadleaved dock are a favoured food of the bullfinch 

Pyrrhula pyrrhula (an amber-listed passerine) during the winter months (Newton 

1999) and may also be of importance in the diet of small mammals.  From an 
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ecological perspective, these weeds are therefore high-value habitat, even if they 

are undesirable in present-day agricultural management regimes. 

 

2.4.8 Weeds as food resources for vertebrates 

Many granivorous passerine birds associated with farmland are dependent on weed 

seeds, particularly during the winter.  Marshall et al. (2003) list several weed 

species that are important to birds.  Some of those found in the biomass crops 

include Cerastium fontanum, Cirsium. arvense, Persicaria maculosa, Poa annua, 

Polygonum aviculare, Rumex obtusifolius  and Sonchus oleraceus.  Holland et al. 

(2006) report a more general assemblage of plant families important to granivorous 

birds, which include in the order of importance: Poaceae, Polygonaceae, 

Caryophyllaceae, Cruciferae, Compositae, Chenopodiaceae and Labiatae.  Most of 

these families (excepting Cruciferae and Chenopodiaceae) were present within the 

biomass crops and their headlands and are therefore likely to make these habitats a 

valuable resource for granivorous birds. 

 

Weed flowers and seeds are important in the diet of the wood mouse on arable 

farmland, particularly from April to June before cereal endosperm becomes 

available (Green 1979).  Indeed, within an otherwise homogenous cereal crop, the 

wood mouse will favour weed patches containing favoured seeds (Tew et al. 2000).  

The harvest mouse also takes a high proportion of weed seeds from winter to early 

spring, after which a greater proportion of green vegetation and invertebrates are 

taken (Trout 1978).  Among the listed species of weed seed eaten by harvest mice, 

those present in the biomass crops include Poa spp., Trifolium spp., Taraxacum spp. 

and Plantago spp.  Consumption of Phalaris seeds by harvest mice has been 

recorded in the wild (Trout 1978) and a commercial crop will therefore potentially 

provide a large seed resource for this species as well as other small mammals. 
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2.4.9 Limitations of survey methodology 

The methodological factor which varies most between published invertebrate 

studies is the different trapping methodology.  Whilst there is agreement about the 

need to use multiple techniques to cover as wide a range of taxa as possible (Moir et 

al. 2005; Standen 2000; Mommertz et al. 1996), the methods used and trapping 

regimes seem to be very dependent on expertise, manpower and available funding 

levels (Qi et al. 2008).  In the present study, initial trials of pitfall traps set for seven 

days resulted in large catches of slugs (with a maximum of 147 in one trap).  The 

quantities of slime produced were large, and it coated many of the other 

invertebrates in the catch.  As a result, identification and counts were difficult and 

overly time-consuming due to the extra effort required to separate individuals in 

the sample from the slime sufficiently to show identifying features.  The decision 

was therefore made to reduce the trap time to 24 hours, despite the fact that the 

subsequent catch may be reduced.  Other authors report varied pitfall sampling 

times from 1 week (Smith et al. 2009; Thomas & Marsall 1999; Mommertz et al. 

1996), 2-3 weeks (Mattoni & Longcore 2000) and up to 4 weeks (Meek et al. 2002).  

Duelli et al. (1999) proposed that a standard two week pitfall sampling period is 

appropriate.  Although the 24 hour trapping period in this study is well below the 

recommended 2 weeks, it was replicated across the different sites, so allows direct 

comparison between them, even if a full inventory of epigeal invertebrates was not 

possible. 

 

Pitfall trapping also potentially has different levels of effectiveness associated with 

the structure of surrounding vegetation.  Although some pitfall catch may be due to 

arthropods falling off vegetation rather than being strictly epigeal, many target taxa 

such as the Araneae may not even encounter the traps if they are up above ground 

level in the vegetation (Meek et al. 2002).  Except for the Linyphiidae, the Araneae 

are generally not well represented in sweep net catches (Standen 2000).  Indeed, in 

this study, no Lycosidae were caught in sweep nets, but Araneidae, Linyphiidae and 
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Tetragnathidae were present.  Varying crop, headland and comparison site 

vegetation architecture made invertebrate sampling by sweep net difficult to 

standardise.  The most difficult habitat to sample in this way was the Miscanthus 

once it was above head-height.  Every effort was made to sweep through the 

canopy in a similar way to the Phalaris, but the length of high sweep needed in the 

Miscanthus differed from that required in the Phalaris.   

 

With nearly 15,000 invertebrates to identify from the various trapping techniques, 

many man-hours were required for the task, and it was split between two people.  

The author identified pitfall trap and sticky trap specimens, while an assistant dealt 

with the sweep net and pan trap catches.  There is always a subjective element to 

the interpretation of identification keys, particularly for the more difficult taxa, and 

it is quite possible that interpretative differences existed between the two 

personnel.  However, the fact that just one individual identified all the samples 

from each trapping method, the catches are directly comparable between habitats. 

 

The decision to classify invertebrates by size was made when the pitfall specimens 

had already been counted.  In retrospect, these pitfall specimens should also have 

been subject to classification by size, which could have given a useful indication of 

the food value of the individuals trapped, particularly the coleopterans, which had 

the widest range of sizes (1 mm - >15 mm). 

 

Vegetation surveys were a relatively simple task performed reasonably quickly and 

with the resulting data available immediately and no requirement to spend long 

hours in the laboratory sorting and identifying specimens, as for the invertebrates.  

However, not every single weed species in the crops was sampled in the quadrat 

area.  Within the Phalaris crop at site LL, corn mint Mentha arvensis was found 

growing in several patches, but did not occur within any of the quadrats surveyed.  

This is an arable weed that has shown significant decreases in distribution in 
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Europe between 1957 and 2000 (Baessler & Klotz 2006) and is a species of local 

concern (Byfield & Wilson 2005). 

 

Some of the plot sizes surveyed were relatively small (0.25 ha) in comparison with 

the potential sizes of commercial crops fields. In Miscanthus, in particular, moving 

through the crop was particularly difficult once it was taller than head height.  The 

furthest distance into the crop that was surveyed was 50 m, which in itself was 

sometimes a challenge.  It was very easy to become disorientated or lost, and even 

with a tape measure, it was not always possible to proceed exactly 50 m in a straight 

line when having to negotiate the clumps of stems and those that had fallen at an 

angle.  The sharp edges of leaves could be injurious to exposed human skin and 

eyes, and the springy nature of the stems meant that they could whip sharply back 

if anyone else was moving through the crop, thus making movement through the 

Miscanthus potentially hazardous!  For these reasons, the transect positions were 

established immediately after harvest when only stubble was present.  As the crop 

grew, a path to each transect was marked with string, and the same route through 

the crop was used at each survey.  Whilst it would have been preferable to survey 

deeper into the crops in case an edge effect of more than 50 m was present (e.g. 

Holland et al. 1999), the practicalities of doing this both in terms of the additional 

time and manpower required made this impossible. 

 

2.4.10 General conclusions 

Quantifying invertebrate communities in an agroecosystem is a time-consuming 

and difficult task due to the wide variety of microhabitats and forms of locomotion 

used by both epigeal and aerial taxa.  The tall and dense architecture of Miscanthus 

only adds to these difficulties.  However, results from the invertebrate and weed 

compositional data reported in this chapter suggest that a wide diversity of taxa 

persist within the biomass crops, even if this diversity is not quite as extensive as 

that found in the headlands.  The lack of soil disturbance caused through utilising a 



   
S.J. Clapham  106   

 

perennial biomass grass crop is likely to enhance breeding opportunities for certain 

invertebrates and for this reason, the biomass crops are likely to be beneficial in 

comparison with annual crops.  Utilising a biomass grass crop field structure that 

includes hedgerows and an uncultivated field margin as an overall habitat provides 

good resources for higher trophic levels as well as aiding the provision of ecosystem 

services through supporting pollinators and natural enemies. 
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Abstract 

The advent of perennial biomass grass crops in the agricultural landscape has 

created a very different habitat to that previously provided by traditional annual 

crops, or by grazed pasture.  As yet there is a paucity of data available in terms of 

potential effects on small mammals within the agricultural landscape. 

 

The aim of this chapter was therefore to assess the impacts of growing the biomass 

grass crops Miscanthus x giganteus and Phalaris arundinacea on small mammal 

diversity and abundance in comparison with adjacent arable crops and grassland.  

Live trapping was performed over two years in biomass grass crops, their field 

margins and adjacent comparison sites at four sites across mid and west Wales and 

Herefordshire.   

 

Eight species of small mammals were found within the biomass crops, including a 

priority species, the harvest mouse, and also the water shrew.   Wood mice were 

ubiquitous in all areas surveyed.  Within the biomass crops, Miscanthus contained 

higher small mammal abundance and the Phalaris a greater biodiversity.  Hedges 

contained the highest overall abundance of small mammals, but a less diverse 

assemblage than in the Phalaris.   Spring harvest of the Phalaris biomass was more 

beneficial to small mammals than an autumn harvest.  The standing biomass crops 

prior to harvest provided winter habitat and cover not usually found on farmland 

where annual crops or grass are grown.  In conclusion, both biomass grass crops 

were well utilised by an abundant and diverse range of small mammals. 
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3.1 Introduction 

3.1.1 Small mammal species  

The small mammals commonly found on agricultural land in mainland Britain 

belong to three main families.  Family Muridae (Order: Rodentia) comprises mice 

including the wood mouse Apodemus sylvaticus (L.), yellow-necked mouse 

Apodemus flavicollis (Melchior) and harvest mouse Micromys minutus (Pallas).  

Family Cricetidae (Order: Rodentia) contain the field vole Microtus agrestis (L.) 

and bank vole Myodes glareolus (Schreber).  The Family Soricidae (Order 

Eulipotyphla, formerly Insectivora) comprise the shrews, including the common 

shrew Sorex araneus (L.), pygmy shrew Sorex minutus (L.) and water shrew 

Neomys fodiens (Pennant). 

 

For the purposes of this study, only the small mammal species listed above (<50g) 

are discussed. 

 

3.1.2 Distribution, abundance and diet 

Muridae 

The wood mouse is an abundant, widespread, common species (Figure 3.1) which is 

highly adaptable to a range of dry habitats.  It has a varied diet, comprising animal 

matter, live and dead invertebrates, alongside plant material including buds, fruits, 

leaves and seeds, as well as fungi (Flowerdew & Tattersall 2008).  Its populations 

follow a seasonal cycle, where peak numbers occur in autumn/winter and the 

lowest numbers in spring and early summer (Kotzageorgis & Mason 1997; Harris et 

al. 1995).  Its close relative, the yellow-necked mouse, is a locally common species 

in southern Britain (Figure 3.2).  It mainly inhabits mature deciduous woodland but 

is also found in hedgerows and farmland (Harris et al. 1995).  It has a similar diet to 

the wood mouse, but appears to specialise on tree seeds rather than herbaceous 

weed seeds (Marsh & Montgomery 2008).   
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Although the harvest mouse has a limited distribution in Britain, occurring mainly 

in the Midlands, southern England and parts of coastal Wales (Figure 3.3) it can be 

abundant in the areas where it occurs.  It is thought to have declined in number in 

recent years (Flowerdew 2004) and is listed as a UK Biodiversity Action Plan 

priority species, although it is not currently protected by law (Mitchell-Jones et al. 

2008).  It is typically associated with areas of dense monocotyledons such as cereal 

fields, reedbeds and rough grassland (Harris et al. 1995).  Harvest mouse diet is 

broad and includes invertebrates, grains, seeds, fruits, leaves, moss, fungi and roots 

(Trout & Harris 2008). 

 
 

 
Figure 3.1 10km distribution of the wood mouse Apodemus sylvaticus in Great Britain.  Shaded 
boxes represent presence in 10km squares.  Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
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Figure 3.2 10km distribution of the yellow-necked mouse Apodemus flavicollis  in Great Britain.  
Shaded boxes represent presence in 10km squares.  Data source: National Biodiversity Network 
Gateway http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey 
[100017955].   
 

 
Figure 3.3 10km distribution of the harvest mouse Micromys minutus  in Great Britain.  Shaded 
boxes represent presence in 10km squares.  Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
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Cricetidae 

The bank vole is considered to be common and is found throughout mainland 

Britain (Figure 3.4).  It primarily occurs in mature, mixed deciduous woods 

containing a thick field layer, but can also be found in hedges and young tree 

plantations (Harris et al. 1995).   Although its diet is mainly herbivorous, it includes 

similar items to the wood mouse but with a higher proportion of leaf matter and 

invertebrates (Shore & Hare 2008).   

 

The field vole (Figure 3.5) is abundant in areas where ungrazed, rough grassland 

occurs, although it has also been recorded in hedgerows, moorland and woodlands 

(Harris et al. 1995).  Its diet is completely herbivorous, consisting of leaves, stems 

and some moss (Lambin 2008).  Despite cyclic population explosions and crashes 

(Huitu et al.  2004), they are considered to be extremely abundant and are 

important prey source for predators such as the barn owl Tyto alba (Love et al. 

2000). 

 

 
Figure 3.4 10km distribution of the bank vole Myodes glareolus in Great Britain.  Shaded boxes 
represent presence in 10km squares.  Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
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Figure 3.5 10km distribution of the field vole Microtus agrestis  in Great Britain.  Shaded boxes 
represent presence in 10km squares.  Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
 

Soricidae 

The common shrew and pygmy shrew are abundant in mainland Britain (Figures 

3.6 and 3.7), inhabiting areas containing low vegetation such as hedges, woods and 

dense grass.   

 

They are opportunistic predators, particularly favouring prey from the Orders 

Coleoptera, Araneae, Opiliones and Isopoda, as well as insect larvae (Churchfield 

1982).  Other prey items include adult flies, slugs and worms, and small quantities 

of plant material and seeds may also be taken (Churchfield & Searle 2008).  There is 

thought to be very little overlap in the diet of the pygmy and common shrew.  

However, invertebrates active in the litter surface are targeted mainly by the 

pygmy shrew, which preys on smaller individuals than the common shrew.  The 

common shrew, in turn has a larger proportion of earthworms, slugs and snails in 

its diet and thus, interspecific competition for food resources is reduced (Pernetta 

1976). In large numbers, shrews can significantly reduce the numbers of large 
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invertebrates in grassland communities (Churchfield et al. 1991) and this may be 

beneficial to man if pest species are amongst the invertebrates consumed. 

 

The water shrew is widely distributed throughout the UK (Churchfield & Searle 

2008; Figure 3.8) and is usually associated with fast-running, pollution-free streams 

and rivers.  It has been recorded in woodland and on agricultural land, but this is 

thought to be a transient presence as it travels between preferred habitats (Harris et 

al. 1995).  Its diet comprises a range of both terrestrial and aquatic invertebrates, 

small aquatic vertebrates and amphibians, and it can survive away from water on a 

terrestrial invertebrate diet (Churchfield 2008).  All shrews have a high metabolic 

rate and require a daily consumption, from 50% of their body weight (water shrew) 

to 125% (common shrew) or 150% (pygmy shrew) in order to avoid starvation 

(Churchfield & Searle 2008).  Lifespan is short, with high mortality rates in autumn.  

For some time, the reason for this was unknown, until the naturalists of a century 

ago concluded that it was nothing more than old age causing the deaths (Moffat 

1910).  All the above shrew species are listed on Schedule 6 of the Wildlife and 

Countryside Act 1981, which makes it illegal to kill them or take them by certain 

methods.  Despite this, if activities are undertaken for scientific, educational, 

marking or other restricted purposes, licensing is available (Mitchell-Jones et al. 

2008). 
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Figure 3.6 10km distribution of the common shrew Sorex araneus in Great Britain.  Shaded boxes 
represent presence in 10km squares.  Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
 

 
Figure 3.7 10km distribution of the pygmy shrew Sorex minutus in Great Britain.  Shaded boxes 
represent presence in 10km squares. Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
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Figure 3.8 10km distribution of the water shrew Neomys fodiens  in Great Britain.  Shaded boxes 
represent presence in 10km squares.  Data source: National Biodiversity Network Gateway 
http://data.nbn.org.uk © Crown copyright and database rights 2011 Ordnance Survey [100017955].   
  

3.1.3 Population dynamics 

Populations of small mammals are prone to fluctuations, both seasonally each year 

and also on a 3-5 year cycle (Huitu et al. 2004; Korpimäki & Norrdahl 1998).  The 

cyclic fluctuations can result in population crashes, even when environmental 

conditions are conducive for breeding.  The mechanisms underlying this are poorly 

understood, although the influence of predators is thought to be significant 

(Korpimäki & Norrdahl 1998).  For example, Korpimäki & Norrdahl (1998) found 

that in a year when vole populations crashed elsewhere, an area of experimental 

predator removal did not show the same population decrease, leading the authors to 

conclude that predator presence was an important factor, if not the sole predictor of 

population change.   

 

Seasonal population peaks vary between species: Huitu et al. (2004) found that 

common shrew populations peaked earlier in the year than field voles, which were 

followed by peaks in bank vole numbers.  Some interspecific effects were also seen, 
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with common shrew population growth appearing to be negatively affected by 

rodent density in peak vole years, and bank voles showing a temporary negative 

effect where field vole density was increasing (Huitu et al. 2004).  Kotzageorgis & 

Mason (1997) reported seasonal variations in trapping success in hedgerows: harvest 

mice were only caught in winter, wood mice numbers increased in autumn/winter 

and declined in spring, bank voles were most likely to be caught in spring/summer 

and common shrew numbers peaked in summer, declining rapidly in autumn.  No 

obvious pattern was seen for yellow-necked mice.  However, yellow-necked mice 

are often found in buildings over the winter (Marsh & Montgomery 2008) and this 

may influence their numbers in their usual habitats at this time of year.  Another 

trapping study in wet meadows revealed seasonal peaks in autumn and winter, with 

the lowest numbers occurring in spring and summer for the 10 small mammal 

species caught (Schmidt et al. 2005).  Studies of barn owl diet through pellet 

analysis also show seasonal variation in small mammals consumed.  Field voles 

formed a major part of the diet through autumn and winter, but when their 

numbers decreased in spring and summer, Apodemus spp. were consumed in 

greater numbers (Love et al. 2000). 

 

3.1.4 Predators 

Small mammals form an important part of the diet of many larger animals.   

 

Birds 

Barn owl pellets have been shown to contain remains of all eight small mammal 

species mentioned above (Love et al. 2000).  Other avian small mammal specialist 

predators include the tawny owl Strix aluco, long eared owl Asio otus, short eared 

owl Asio flammeus, kestrel Falco tinnunculus and great grey shrike Lanius 

excubitor (Karlsson 2007; O’Mahony et al. 1999; Korpimäki 1985).  Crows Corvus 

spp., magpies Pica pica and even pheasants Phasianus spp. may include small 

mammals in their diet (Trout 1978). 
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Reptiles and amphibians 

Small rodents (and particularly their young) are known to be preyed on by adders 

Vipera berus  (Shore & Hare 2008; Aitchison 1987) and even by toads (Harris 1979).    

 

Mammals 

In a study of twelve forested areas, red fox Vulpes vulpes scats contained the full 

range of 100% small mammal remains to none at all. Where small mammal remains 

were found, they predominantly consisted of field voles, the proportion of which 

within the diet was negatively associated with the availability of roe deer Capreolus 

capreolus carrion (O’Mahony et al. 1999).  Similarly, high proportions of Microtus 

voles were found in fox scats in an agricultural area of Finland (Dell’Arte et al. 

2007).   It is possible that in sheep-grazed areas, the availability to foxes of ovine 

placenta at lambing time will reduce their small mammal consumption (FM Slater 

pers. comm).   

 

Other mammalian predators include the domestic cat Felis catus (Woods et al. 

2003), badger Meles meles, American mink Mustela vison, stoat Mustela erminea 

(O’Mahony et al. 1999), weasel Mustela nivalis and European polecat Mustela 

putorius (Macdonald & Barrett 1993).   

 

3.1.5 Feeding ecology on agricultural land 

The small mammal species included in this study have a range of dietary habits: 

from herbivorous voles and insectivorous shrews to generalist mice, although 

foraging behaviour depends on both the habitat in which they live and seasonality.  

Wood mice living on agricultural land have a varied diet, consuming animal matter, 

weed seeds and grains, whereas bank voles select more green plant matter (Abt & 

Bock 1998).  When surveyed in wheat and barley fields, wood mice showed a 

preference for wheat, whereas common voles Microtus arvalis showed no 

preference between crops (Heroldova et al. 2008).  Both these findings were 
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supported by laboratory feeding experiments (Heroldova et al. 2008).  Green (1979) 

reported that the majority of wood mouse diet from April to June comprised weed 

seed and flowers, but changed to cereal endosperm from September to March.  

There is also evidence that wood mice, on a microhabitat scale, respond to patches 

of favoured weed seeds within an otherwise relatively homogenous area of arable 

crops (Tew et al. 2000).   

 

Favoured prey items of common shrews, such as beetles, worms, snails and isopods, 

are taken where possible, regardless of their abundance, whereas a diet of less 

favoured prey such as centipedes (Chilopoda), spiders (Araneae) and insect larvae is 

only taken when these taxa are available in high numbers (Churchfield 1982).  

 

3.1.6 Agri-environment schemes, set-aside land and new woodland subsidies 

Agri-environment schemes were originally introduced to the UK in the late 1980s 

as a way of trying to enhance biodiversity through adoption of more 

“environmentally friendly” farming practices.  Set-aside (a proportion of land taken 

out of arable production for a minimum of one year) was introduced under reforms 

of the Common Agricultural Policy (CAP) by the European Commission in 1988 as 

a means of reducing overproduction of cereals (Macdonald et al. 2007).   The 

scheme became compulsory in 1992 and therefore gave further potential for 

increasing biodiversity, even though this had not been the primary aim (Macdonald 

et al. 2007).  Compulsory set-aside was suspended in 2008, in response to fears 

about rising wheat prices, after flooding affected harvests, although some land is 

still classed as set-aside as a requirement of certain Environmental Stewardship 

options (DEFRA 2009).  Many of the studies cited here (e.g. Macdonald et al. 2007; 

Askew et al. 2007; Tattersall et al. 1999, 2000, 2001, 2002) were undertaken during 

the existence of set-aside and therefore the UK rules pertaining to it are shown 

below for clarification (Table 3.1). 
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Table 3.1 The time-spans within which certain actions were required to be undertaken in order to 
comply with set-aside rules (DEFRA 2006). 
Dates Action required 

 

From 15th January No harvest of crops or grazing on the set-aside.  By this 
time, green cover needs to be established through either 
sowing wildlife cover crops or grasses, or by allowing 
natural regeneration. 
 

1 March – 15 July Operations on set-aside land to be avoided in order to 
minimise potential harm to nesting birds and other wildlife 
 

15 April Earliest date on which non-selective herbicides may be 
used 
 

15 July – 15 August Compulsory cut of green cover OR 
15 July – 31 August Compulsory destruction of green cover 

 

31 August End of set-aside period   
 

 

A study of the methods of set-aside establishment using different seed mixes (one 

with a species-rich grass and forb mix and the other with a simpler mix of grass and 

clovers) found that wood mice preferred the species-rich areas, even though the 

sward was shorter and therefore provided less cover (Tattersall et al. 1999).  In a 

further study (Tattersall et al. 2000), the use of set-aside by field voles was 

examined.  No field voles were caught in the plots until 9 months after 

establishment, and even then, they were caught in low numbers and were assumed 

to be transient in the plot.  However, from 20 months after establishment of the 

set-aside, field vole numbers steadily increased, indicating an expanding resident 

population.  Subsequent to this (2-9 year old set-aside), field vole abundance was 

more closely related to high proportions of grass and litter than the increasing age 

of the plot (Tattersall et al. 2000). 

 

A further agri-environment option is to leave uncultivated margins or headlands 

around an arable field, usually 2 m, 6 m or 20 m in width.  Bank voles and common 

shrews were found in higher numbers in a grassy 3 m margin than in conventional 

fields where the crop was sown right to the edge (Shore et al. 2005).  However, in 

the same study, wood mice showed no preference and field voles were only caught 
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infrequently, possibly due to the short time-span of the newly established margins 

(Shore et al. 2005). Askew et al. (2007) found that in  2 m margins, sward height 

correlated positively with small mammal abundance and that cutting the margins 

every 2 – 3 years rather than annually resulted in higher overall abundance as well 

as greater species richness of small mammals. 

 

The Welsh Assembly Government (WAG) will introduce a new agri-environment 

scheme, “Glastir” from 2012, which replaces the previous four schemes (“Tir Gofal”, 

“Tir Cynnal”, “Tir Mynydd” and the Organic Farming Scheme).  This is intended to 

produce payments to farmers in return for delivery of specific environmental goods, 

focusing on priority issues identified under the CAP Healthcheck Agreement in 

2008, as well as important issues relating to climate change.  These are stated to be: 

 “Managing soils to help conserve our carbon stocks. 

 Improving water quality. 

 Managing water to help reduce flood risks. 

 Conserving and enhancing biodiversity. 

 Managing landscapes and historic environment. 

 New opportunities to improve public access to the countryside.” 

(WAG 2010) 

 

Another important part of the scheme comes under the Glastir “All-Wales 

Element” in which further funding is available under the Agricultural Carbon 

Reduction and Efficiency Scheme (ACRES).  Grants will be made available for 

certain forms of energy generation including biomass boilers, although at present, 

the target fuel for these is home-produced woodchip (WAG 2010).   

 

Glastir prescriptions relevant to small mammals on agricultural land include: 

♦ Creation of wildlife corridors using shrubs, trees and rough grass margins 
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♦ Allowing field corners of improved land to revert to scrub and rough 

grassland 

♦ Creation of rough grass margins along cereal crop fields 

♦ Sowing of wildlife cover crops rich in seed resources (WAG 2010). 

 

Further schemes exist, under different guises in England, Wales and Scotland, in 

which subsidies are also available for newly planted woods on farmland.   

 

3.1.7 Arable land 

Within an arable landscape, there is potential for a wide variety of crops to be 

grown: from cereals such as wheat, maize, oats and barley, to oilseed rape, potatoes, 

soft fruit and energy crops.  Most previous small mammal studies have concentrated 

on cereal crops.  Todd et al. (2000) radio-tracked wood mice on winter-sown arable 

crop fields in both winter and summer.  In winter, preference for habitats (relative 

to their availability) was ranked hedgerow > oil-seed rape > barley > wheat.  The 

strongest preference for the hedgerow in winter, was thought to be a result of 

changed foraging behaviour during winter, when predation risk from avian 

predators was higher in exposed crop fields (Todd et al. 2000).   Within the cereal 

fields, the preferences were thought to reflect the marginally higher sward in the 

oil-seed rape and the availability of beech masts and acorns in a wood adjacent to 

the oil-seed rape field.  Summer habitat preference relative to availability ranked 

hedgerow > wheat > barley > oil-seed rape, although in terms of habitat availability, 

hedgerow was a rare resource in relation to the area of crop fields, and the wood 

mice tended to spend the summer in the crops (Todd et al. 2000).  Their apparent 

avoidance of oil-seed rape fields may have been due to the dense sward shading-out 

weeds and reducing other potential food sources within the crop field (Todd et al. 

2000).  When habitat preference of wood mice in arable fields was examined in 

finer detail, it was found that areas in which they spent the most time contained 

less bare earth and greater quantities of non-crop food plants than areas where they 
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were only recorded as transient.  These aspects of microhabitat were deemed to be 

more important to their foraging decisions (and hence their overall habitat choice) 

than the particular type of crop monoculture (Tew et al. 2000). 

 

3.1.8 Hedges and woodlands 

Linear features such as hedgerows have generally been thought to provide a vital 

corridor between habitats, particularly for small mammals.  For example, species 

such as the dormouse preferentially stay in corridors such as hedgerows, rather 

than cross gaps in order to reach another patch of appropriate woodland habitat 

(Bright 1998).  Despite such evidence of hedgerows being used as dispersal 

corridors, there is relatively little direct evidence that they contribute to 

maintaining woodland fauna in fragmented habitats (Davies & Pullin 2007).  

Tattersall et al. (2004) found that woodland plots connected with hedgerows (and 

therefore allowing immigration) were more likely to contain wood mice than plots 

which were not well-connected.  On pastoral land, both wood mouse and bank 

vole density were determined by hedgerow connectivity, and a rough ungrazed 

margin fenced off from the grazed field contained higher densities of field voles 

(Gelling et al. 2007; Butet et al. 2006).  Tattersall et al. (2002) found that bank voles 

preferred linear habitat such as field margins and set-aside compared with non-

linear blocks of similar habitat, but found no such effects for field voles, wood mice 

or common shrews.  Harvest mice also showed a preference for field edges in arable 

land (Moore et al. 2003).  In a comparison of three French agricultural landscapes 

differing in intensification levels, hedgerows in the most highly intensified 

landscape contained higher small mammal biomass (but lower diversity) than the 

less intensified areas (Michel et al. 2006). 

 

Management of hedgerows can dramatically affect the small mammal populations 

living them.  Wood mice were found to be robust in their preference for hedge 

habitat in the autumn, even after the hedges were cut back, but yellow-necked 
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mice abandoned the hedgerow completely after this intervention (Kotzageorgis & 

Mason 1997).  The extent of ground cover also affected presence of bank voles and 

common shrews: this was partly related to hedgerow age, as both newly established 

and mature unmanaged hedges had relatively sparse ground vegetation 

(Kotzageorgis & Mason 1997). 

 

Where new woodlands were planted under the subsidised scheme previously 

described, Moore et al. (2003) reported greater abundance and diversity of small 

mammals within the new plantations compared with hedgerows and agricultural 

land.  Harvest mice and wood mice were the most abundant small mammal species 

within the new woodland. 

 

3.1.9 Grazing and agricultural practices 

The different habitat requirements of small mammal species mean that species 

richness, abundance and community composition will vary according to the height, 

structure and type of vegetation available (Moro & Gadal 2007).  All successional 

stages of grassland vegetation are used by most small mammals, although some 

strong habitat preferences exist, such as harvest mice in ruderal vegetation and 

wood mice in late seral stages, (Churchfield et al. 1997).   

 

Most small mammals are at risk from avian predators where little vegetation cover 

is available and this promotes changes in foraging behaviour in Microtus spp. voles 

(Jacob & Brown 2000).  The grazing of pastoral land at high intensity can result in a 

reduced small mammal biomass (Wheeler 2008; Schmidt 2005; Steen et al. 2005; 

Montgomery & Dowie 1993).  Conversely, low grazing intensity by either cattle or 

sheep was found to have a positive effect on biomass and survival of small mammals 

compared with ungrazed plots; this was thought to be due to different sward 

heights creating a mosaic effect (Schmidt et al. 2005).  However, Moro & Gadal 

(2007) found the opposite pattern, with no small mammals caught in sheep-grazed 
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open fields that lacked a field-edge habitat.  Grazing by large herbivores not only 

reduces cover for small mammals, but may also create competition for food 

resources and disturbance through trampling (Torre et al. 2007; Flowerdew & 

Ellwood 2000).  Moro & Gadal (2007) did, however, find higher densities of small 

mammals in wooded areas to which sheep had access, suggesting that lack of cover 

was the primary factor driving the low small mammal abundance in the sheep-

grazed fields, rather than competition with sheep for food. 

 

Agricultural management practices involving cutting or removal of vegetation may 

also have important effects on small mammals.  The practice of mowing and leaving 

the cut grass in situ as a mulch, resulted in an increased vole population, suggesting 

that the cut, lying vegetation formed a conducive habitat (Jacob 2003).  However, 

in an arable setting, although harvest itself did not affect wood mouse populations, 

removal of the crop cover led to emigration and increased mortality from 

predation, resulting in an overall 80% reduction in population levels (Tew & 

Macdonald 1993).  A change in the practice of mowing vegetation around ditches 

in The Netherlands resulted in greater abundance and species richness of small 

mammals, when annual mowing was performed on only one side of the ditch each 

year, instead of both sides being mown at the same time.  The resulting reedy 

habitat supported common voles, harvest mice and common shrews (Huijser et al. 

2001). 

 

3.1.10 Energy crops 

In Britain, agricultural land is increasingly being used to grow perennial biomass 

energy crops, usually short rotation coppice willow or tall grasses.  Land area 

planted with Miscanthus in the UK increased from 52 ha in 2002 to approximately 

12,700 ha in 2009.  In 1998, there were 200 ha short rotation coppice, which 

increased to 6,400 ha in 2009 (Thompson 2009).  Much of the interest in tall 

perennial biomass grasses in the UK has centred around Miscanthus spp. and 
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Phalaris arundinacea.  The agronomy, harvesting regime and use of these crops as 

fuel has been well studied and documented (Prochnow et al. 2009; Lewandowski et 

al. 2003; Price et al. 2003; Landström et al. 1996).  Less well documented are some 

of the environmental impacts of growing these crops, in particular the effects on 

biodiversity.  These biomass crops are being grown not only on arable land, but also 

on improved grassland, and the impact of this change of land use on native wildlife 

is uncertain.  This has led to either speculation about - or modelling of -possible 

negative effects (Eggers et al. 2009; Anderson et al. 2004).  Reasons cited for these 

concerns have predominantly been related to the introduction of a novel, non-

native monoculture, potentially across wide areas of agricultural land (Anderson et 

al. 2004).   

 

There is a current paucity of work concerning the diversity of small mammals in 

biomass crops.  Fry & Slater (2009) found that the small mammal fauna of short-

rotation willow coppice throughout Wales, UK was less diverse than the 

surrounding hedgerows and headlands, where a total of six species were caught 

(wood mouse, yellow-necked mouse, field vole, bank vole, common shrew and 

pygmy shrew).  Despite this reduced species diversity, the willow crop contained 

nearly double the number of individuals found in the hedge and headland 

combined.  This abundant, yet species-poor small mammal fauna of the willow crop 

was dominated by the wood mouse (Fry & Slater 2009). 

 

Semere and Slater (2007a, b) investigated a broad range of organisms within 

Miscanthus and Phalaris crops in Herefordshire, UK up to three years after planting 

for a Department for Trade and Industry (DTI) contract.  During that period, the 

authors reported the same six small mammal species as Fry & Slater (2009), but in 

both the cropped areas and field margins.  Wood mice dominated in both areas, 

although the greatest numbers and diversity were found in the field margins. Due 

to the restricted terms of the contract no arable-land comparison plots were used, 
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so it is unknown how the diversity of small mammals caught within the biomass 

crops would have compared with those in a cereal crop.  Despite this, it was 

suggested that the presence of weed vegetation in the biomass crops as well as the 

low input management and the large amount of standing dry matter over the 

winter would together increase the benefits for biodiversity in general (and small 

mammal diversity in particular) in comparison with traditional arable crops 

(Semere & Slater 2007a, b). 

 

Tombs (2007, unpublished) used one night of trapping per month to investigate 

small mammal distribution in adjacent plots of mixed woodland, grazed pasture, 

Miscanthus and Phalaris, between January and July. The woodland contained the 

highest abundance of small mammals and the grazed area the lowest.  Wood mice 

dominated in all areas, while the only clear preference for the biomass crops was 

shown by field voles, which were captured in higher numbers in Phalaris.  In 

addition to habitat preferences, temporal effects were apparent, with abundance of 

bank voles and yellow-necked mice increasing over the duration of the study. 

 

3.1.11 Aims 

In view of the limited prior work, which was carried out on predominantly young 

biomass crops (<3 years since planting), the aims of this study were to test for 

differences in small mammal species abundance and community diversity, between 

established biomass crops (>3 years) and other grassland or arable crops found 

within close proximity of the biomass crops.  The wider aim was to predict the 

impact on small mammal biodiversity of a shift to increased biomass crop 

production on agricultural land. 
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3.2 Materials and methods  

3.2.1 (a) Year 1 surveys and sites 

Four field sites in the UK, across Wales and the English border, comprising a total 

of four plots each of Miscanthus and Phalaris were included (see a more detailed 

description in Chapter 1).  The two largest sites were in predominantly arable areas: 

site ‘N’ was surrounded by rotations of spring barley and fodder beet, whilst ‘HM’ 

was surrounded by crops of oats and blackcurrants. The remaining two sites ‘LL’ 

and ‘PP’ were in predominantly pastoral hilly areas, with surrounding fields grazed 

by sheep and cattle. Individual plot size ranged from 0.25 ha (‘LL’) to 8 ha (‘HM’).  

All sites had a traditional field structure, of a boundary hedge separated from the 

crop by an uncultivated margin of between 2 and 6 m were present at all sites. 

Comparison plots took the form of a neighbouring field containing a non-biomass 

crop and included livestock-grazed grassland, set-aside and a blackcurrant field. 

 
3.2.1 (b) Live trapping  

Small mammal surveys were carried out at each field site for one night in each two-

month period from April 2008 (immediately after harvest of above-ground 

material), to February 2009, after which the crops were mown again.  One of the 

Miscanthus sites (‘HM') was unexpectedly (to the author) mown early, in mid-

December 2008 and the rhizomes were subsequently dug up, which brought an end 

to surveys there.  Crops at site ‘N’ were mowed at the end of February 2009 and the 

scheduled small mammal survey for that month was therefore forfeited in order to 

be able to carry out a more extensive survey for harvest mice before the crop was 

lost. 

 

Trapping was performed in calm, dry, mild conditions, which were needed for 

other fieldwork carried out at the same time (reported in Chapter 5).  This, in 

addition to other logistical factors determined the order in which sampling was 

performed at each site.  A thermometer was left at each site overnight, for the 
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duration that the traps were set, and maximum and minimum temperatures were 

recorded.   Table 3.2 details the types of crops available at the different sites. 

 
Table 3.2 Details of the trapping sessions at the different sites during Year 1 (2008-9). 
Site Crop types available Times 

surveyed 
No. of traps per 
site 

LL Miscanthus x1 and Phalaris x1 6 70 
HM Miscanthus x1 only 4 50 
N Miscanthus x1 and Phalaris x1 5 90 
PP Miscanthus x1 and Phalaris x2 6 110 

 

Longworth live traps (Chitty and Kempson 1949), Penlon Ltd, Abingdon, UK were 

provisioned with mixed seed, hay and mealworms.  They were set within each crop 

at a series of transects running parallel with the crop edge, at 10, 20 and 50 (where 

available) metres into the crop (Figure 3.9).  Traps were also set in a transect in the 

middle of the uncultivated field margins (known as “headlands”).  In comparison 

plots, a transect at least 20 m from the field boundary was established.  Each 

transect contained 10 traps at a minimum distance of 2 m intervals.  Traps were set 

in the evening, approximately 30 minutes before dusk and checked early the 

following morning (around 2 hours after sunrise) before being removed.  Small 

mammals were identified to species only and released at the point of capture. 

 

 
Figure 3.9 A Longworth trap set at the base of a clump of Miscanthus (left) and a captured wood 
mouse (right). 
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3.2.2 (a) Year 2 surveys and site 

In Year 2, (2009-10), surveys were restricted to site ‘N’ and were intended to focus 

on the harvest mouse.  Transects were originally laid at 20, 50 and 100 m from the 

north crop edge (Figure 3.2)  as used in Year 1, into the Miscanthus (henceforth 

‘Miscanthus 1’) and Phalaris crops.  After the first survey, it became apparent that 

in order to assess the wider distribution of small mammals throughout the field, 

trap lines needed to be increased to include a transect nearer to the south hedge 

(180 m, instead of the 50 m transect), and the same distance transects were also 

established in the slightly younger Miscanthus plot (‘Miscanthus 2’) adjacent to the 

east side of the Phalaris.   

 
A line of traps was also positioned in each of the hedgerows (rather than the 

headlands) surrounding the biomass field, and also on the opposite side of the north 

hedge in the barley field.  For the first three surveys, additional trap transects were 

set in the crop and hedgerow of the Miscanthus field (‘Miscanthus 3’) across the 

track from the main field.  However, these were suspended after harvest in March 

as no harvest mice were trapped there during the time-span in which they were 

trapped in the main field, and the resulting spare traps were used to increase 

coverage of the main field as described above.  Additionally, trap lines were set in 

adjacent fields of maize and spring barley, from when the crop had reached a height 

of approximately 20 cm, until harvested. In order to maximize access and minimize 

crop damage, these transects were located at 20 and 50 m from the edge of the crop 

and where possible, followed the “tram-lines” left by the passage of tractor wheels 

(see Figure 3.10 for transect locations). 
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Figure 3.10 Positions of the transects (bold red lines) within the different crops at site ‘N’ in Year 2 
(2009-10).   
 

3.2.2 (b) Live trapping 

Traps were provisioned as detailed previously (section 3.2.1(b)), but with the 

addition of pieces of carrot as a moisture source during hot weather.  Traps in areas 

not already shaded by vegetation were covered with squares of hessian cloth in 

order to prevent overheating in the sun. 

 
Ten traps per transect were used, with trapping performed for 48 hours at 1-month 

intervals (for dates see Table 3.3).  Traps were checked at each dawn and dusk.  

Midday checks were also made through spring and summer until short daylight 

hours from late October 2009 to late January 2010 made this impracticable and 

unnecessary.  All harvest mice captured were weighed, sexed and given a unique 

fur clip before release to allow subsequent recognition if re-trapped (see more 

detailed description in Chapter 4, section 4.2.3). Any other small mammals 

captured were identified to species only before being released at the point of 

capture.   
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Table 3.3 Dates of trapping sessions in Year 2 (2009-10) at site “N” and status of the various crops at 
those times. 
Date Comments 
19-21 Feb 2009 Both crops intact 
24-26 Feb 2009 Both crops intact 
04-06 Mar 2009 Miscanthus 1 & 2 now stubble, Phalaris still standing 
23-25 Mar 2009 Phalaris now stubble.  Transects expanded to include  

180 m in Miscanthus 1 & 2 and Phalaris 
21-23 Apr 2009  
19-21 May 2009  
01-03 Jul 2009 Added barley 20 and 50 m transects, tripods in use 

throughout 
04-06 Aug 2009 Added maize 20 and 50 m transects 
02-04 Sep 2009 Barley now stubble 
29 Sep -1 Oct 2009  
27-29 Oct 2009 Maize now stubble 
24-26 Nov 2009 Miscanthus traps taken off tripods and placed at ground level 

as wind and crop movement causing traps to fall off 
(05-07 Jan 2010) Intended survey not carried out due to extreme winter 

weather 
26-28 Jan 2010 Miscanthus 2 now stubble, Miscanthus 1 and Phalaris still 

standing – final survey 
Feb 2010 Remainder of biomass crops harvested 

 

Tripods were constructed from 1 m bamboo poles and wire, and included a sloping 

platform of plastic mesh approximately 40 cm above ground level.  Once both 

cereal and biomass crops had reached a height of 50 cm, alternate Longworth traps 

within the crops were elevated on a tripod with the entrance in contact with the 

vegetation, in an effort to target harvest mice dwelling in the stalk zone (Figure 

3.11).    
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Figure 3.11 Longworth traps suspended on tripods in Phalaris (left) and barley (right). 
 

3.2.3 Vegetation and crop characteristics 

Crop height was recorded at each survey during Year 1.  Five crop stems in close 

proximity were selected at five points along each transect of each crop and the 

height to the topmost ligule was recorded.  At the same five points within the 

transect, light readings were taken both above  the crop and at ground level using a 

light meter (British Gas Energy Studies Measuring Instrument Mk2, Portec, Milton 

Keynes, UK).  The ambient light reaching ground level was calculated as a 

percentage of the light reaching the top of the crop and this was taken to represent 

the extent of shading by the crop at ground level. 

 
Every four months in Year 1 (commencing in April 2008), vegetation surveys were 

carried out.  A 50 cm x 50 cm quadrat was placed at one end of the 20 m transect 

and then at a further four points equally spaced 4 m apart along the transect. 

Within each quadrat, percentage cover of crop, crop litter, other litter, bare ground, 

bryophytes and individual non-crop plant species were estimated visually.   A 

further vegetation survey was carried out once in Year 2 (October 2009). 
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3.2.4 Data analysis 

Data were analysed using the statistical package STATISTICA 9.1 (StatSoft Inc).  

Normality of data frequency distributions was checked using the Shapiro-Wilk test. 

Normally distributed data were analysed using Factorial or One-way Analysis of 

Variance (ANOVA) or t-tests.  Where non-Gaussian distributions occurred, it was 

impossible to achieve normality using data transformations.  In these instances, 

differences in small mammal abundance between the different crops, transects and 

time periods were tested using non-parametric Kruskal-Wallis tests.   

 

As different sites and crops had different numbers of transects, comparisons 

between trapping periods were made using a calculation of numbers of individual 

animals per 100 trap-nights (TN).  One TN represents one trap set for one night.  

Small mammal distribution was quantified by calculating the percentage of 

transects in which they were trapped.   

 

Relationships between small mammal abundance, different species and crop 

characteristics were explored using Spearman’s rank correlation and by Generalized 

Linear Models (GLM) and Canonical Component Analysis (CCA). 

 

Shannon-Wiener Index and Simpson’s Index of Diversity were calculated for the 

different sampling areas using an online calculator (Young 2009).  In some analyses 

for Year 1, such as crop preference and seasonality, only data from the Phalaris 

crops mown in spring were included.  This excluded one field at one site (‘PP2’), 

which was mown in autumn and then grazed by sheep in November 2008. 

 

In order to make Year 2 data directly comparable with Year 1 (where trapping was 

only performed for one night), only captures from the first night of trapping were 

included in general small mammal analysis.  More detailed harvest mouse data is 

reported separately in Chapter 4. 
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3.2.5 Abbreviations 

The following abbreviations are used in tables and figures for the different small 

mammal species: WM = wood mouse, YNM = yellow-necked mouse, HM = harvest 

mouse, FV = field vole, BV = bank vole, CS = common shrew, PS = pygmy shrew, 

WS = water shrew. 
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3.3 Results 

3.3.1 Small mammal captures 

Trapping dates in Year 1 and mean temperatures for those dates are shown in Table 

3.4.  A total of 21 trapping sessions across the four sites were carried out giving a 

total of 1730 trap nights (TN).     

 

Table 3.4 Dates of small mammal trapping at the different sites in Year 1 (2008-9) and the mean 
temperatures at the sites measured on those dates.  Site abbreviations as described in Section 1.8. 
Trapping date Sample period 

designation 
Site Mean  

temperature (°C) 
11/04/08 April 2008 LL 5.9  
17/04/08 April 2008 HM 11.5  
25/04/08 April 2008 PP 11.0  
08/05/08 April 2008 N 16.0  
02/06/08 June 2008 HM 16.5  
06/06/08 June 2008 PP 14.0  
02/07/08 June 2008 LL 16.0  
09/07/08 June 2008 N 17.0  
06/08/08 August 2008 PP 18.0  
15/08/08 August 2008 HM 15.0  
19/08/08 August 2008 N 14.5  
28/08/08 August 2008 LL 14.8  
07/10/08 October 2008 PP 14.0  
10/10/08 October 2008 LL 10.3  
27/10/08 October 2008 HM 8.0  
06/11/08 October 2008 N 10.5  
18/12/08 December 2008 PP 7.5  
19/12/08 December 2008 LL 3.5  
27/01/09 December 2008 N 4.5  
12/02/09 February 2009 PP 3.9  
17/02/09 February 2009 LL 3.9  

 

Year 1 surveys resulted in a total of 219 small mammal captures, giving a catch per 

unit effort (CPUE) of 12.7%.  Eight species of small mammal were trapped as shown 

by site in Table 3.5 and by crop in Table 3.6. 
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Table 3.5 Total numbers of the different small mammal species trapped in Year 1 (2008-9) by site. 
Site 

Species 
HM LL N PP Total no. trapped 

Wood mouse  10 43 31 59 143  
Yellow-necked mouse  3 9 0 0 12  
Harvest mouse  0 0 8 0 8  
Bank vole  0 1 5 3 9  
Field vole  1 4 7 21 33  
Common shrew  0 7 3 2 12  
Pygmy shrew  0 1 0 0 1  
Water shrew  0 0 0 1 1  

 

Table 3.6 Total numbers of the different small mammal species trapped in Year 1 (2008-9) by 
habitat. 

Habitat 
Species 

Comparison 
plots 

Headlands Miscanthus Phalaris 

Wood mouse  1  25  78  39  
Yellow-necked mouse  0  7  4  1  
Harvest mouse  0  0  2  6  
Bank vole  0  4  2  3  
Field vole  5  2  4  22  
Common shrew  1  0  4  7  
Pygmy shrew  0  0  0  1  
Water shrew  0  0  0  1  
Total 7  38  94  80  

 

In Year 2 at site ‘N’, 550 animals were trapped during 1825 trap nights, giving a 

CPUE of 30.1% (see Table 3.7). 

 

Table 3.7 Total numbers of small mammals trapped during one night at each sampling period in the 
different areas at site “N” in Year 2 (2009-10). 

Habitat 
Species 

Comparison 
plots (arable) 

Hedges Miscanthus Phalaris Total 

Wood mouse 16  164  116  35  331  

Harvest mouse 0  0  2  27  29  

Bank vole 0  88  13  4  105  

Field vole 1  7  0  2  10  

Common shrew 0  29  15  9  53  

Pygmy shrew 0  13  2  1  16  

Water shrew 0  1  2  3  6  

Total 17  302  150  81  550  
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Table 3.8 shows a breakdown of catches in the areas surveyed, shown as number 

trapped per 100 TN for both Year 1 and Year 2.   

 

Table 3.8 Numbers of the different small mammal species captured per 100 TN (includes autumn-
mown Phalaris  ‘PP2’).  

Year 
 

Habitat 
 

WM 
 

YNM 
 

HM 
 

BV 
 

FV 
 

CS 
 

PS 
 

WS 
 

 
Total 

 

1 Comparison <1 0 0 0 3 <1 0 0 4 
2 Comparison 16 0 0 0 1 0 0 0 17 
1 Headland 6 2 0 1 <1 0 0 0 9 
2 Hedgerow 24 0 0 13 1 4 2 <1 49 
1 Miscanthus 15 1 <1 <1 1 1 0 0 18 
2 Miscanthus 20 0 <1 2 0 3 <1 <1 26 
1 Phalaris 7 <1 1 <1 4 1 <1 <1 14 
2 Phalaris 8 0 7 1 0.5 2 <1 <1 20 

 

The percentage of transects per survey area in which the species was found over 

one year are shown in Table 3.9 and represented graphically in Figure 3.12. 

 

Table 3.9 Distribution small mammal species in different crops/habitats in Year 1 (2008-9) and Year 
2 (2009-10).  Values shown are the percentage of transects in each survey area in which the species 
was trapped over the course of 1 year (excluding ‘PP2’ after it was harvested).    

Year 
 

Habitat 
 

Total no.  
transects 

WM 
 

YNM 
 

HM 
 

BV 
 

FV 
 

CS 
 

PS 
 

WS 
 

Total 

1 Comparison 20 5 0 0 0 15 5 0 0 15 
2 Comparison 10 90 0 0 0 10 0 0 0 17 
1 Headland 44 34 11 0 9 2 0 0 0 45 
2 Hedge 64 80 0 0 67 8 34 19 2 94 
1 Miscanthus 51 67 8 2 4 6 8 0 0 71 
2 Miscanthus 58 74 0 3 19 0 19 3 3 81 
1 Phalaris 51 39 2 8 6 24 12 2 2 65 
2 Phalaris 37 46 0 32 8 3 16 3 8 70 
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Figure 3.12 The percentage of transects in which small mammals were trapped in the various 
habitats in both Year 1 and Year 2. 
 

3.3.2 Crop preference 

Year 1 

Small mammal catch totals for Year 1 were adjusted to exclude data from the 

autumn-mowed ‘PP2’ Phalaris as it was not representative of the management of all 

other Phalaris fields in the survey, which were left standing over winter and only 

mowed in late spring.  Total small mammal catch was significantly different 

between survey areas (Kruskal-Wallis: H (3, N = 167) = 22.274 P <0.0001) in the 

order Miscanthus > Phalaris > headlands > comparison plots.  Multiple comparisons 

(within an overall Kruskal-Wallis test) showed that counts in Miscanthus were 

significantly higher than in the headlands (P = 0.025) and the comparison plots       

(P <0.001), Phalaris counts were significantly higher than the comparison plots       

(P = 0.006) but no significant differences existed between the headlands and the 

comparison plots (P = 0.584) or between Miscanthus and Phalaris (Figure 3.13 and 

Table 3.10).   A breakdown of the proportions of the different species of small 

mammals caught in the different areas is shown in Figure 3.14. 
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Figure 3.13 Mean number of small mammals captured per 100 TN in the different habitats trapped 
during Year 1.  Bars represent ± 1 SE.  Significantly different values are annotated with different 
letters; ‘ab’ = not significantly different from ‘a’ or ‘b’. 
 

Table 3.10 Pairwise comparison P-values (adjusted for multiple comparisons within an overall 
Kruskal-Wallis test) for significant differences in total small mammal numbers between the different 
areas surveyed in Year 1 (2008-9).  * = significant result. 
 Comparison plots Headlands Miscanthus   

Headland 0.905   
Miscanthus <0.001* 0.009*  
Phalaris 0.010* 0.221 >0.999 

Comparison plots                    Headlands                 Miscanthus           Phalaris 
           Survey area 

b 

b 

a 

ab 
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Figure 3.14 Relative abundance of the small mammal species trapped in each habitat across the four 
field sites in Year 1.  Error bars represent ±1SE for mean no. of all species per 100 trap nights. 
 

Year 2 

Total small mammal catch was also significantly different between the areas 

surveyed in Year 2 (Kruskal-Wallis test: H (3, N=169) = 33.725, P <0.0001) with the 

hedges containing higher numbers than any other area (P <0.01) (Figures 3.15, 3.16 

and Table 3.11).  Mean catch per 100 TN per transect are shown in Appendix 1. 

Comparison plots         Headlands            Miscanthus    Phalaris 



   
S.J. Clapham  152   

 

Control Hedge Miscanthus Phalaris

Survey area

0

10

20

30

40

50

M
ea

n 
sm

al
l m

am
m

al
s p

er
 1

00
 tr

ap
 n

ig
ht

s

 
Figure 3.15 Mean number of small mammals captured per 100 TN in the different habitats surveyed 
during Year 2.  Bars represent ± 1 SE.   Values annotated with different letters are significantly 
different. 
 

Table 3.11 Pairwise comparison P values (adjusted for multiple comparisons within an overall 
Kruskal-Wallis test) for significant differences in total small mammal numbers between the different 
areas surveyed in Year 2 (2009-10).  * = significant result. 

 Comparison plots   Hedges   Miscanthus   

Hedges 0.006*   
Miscanthus 1.000 0.001*  
Phalaris 1.000 <0.001* 0.885 

  Comparison plots                     Hedges             Miscanthus         
 

a 
a 

a 

b 
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Figure 3.16 Relative abundance of the different small mammal species trapped in each habitat at 
field site “N” in Year 2.  Error bars represent ±1SE for mean no. of all species per 100 TN.   
 

In addition to being the most abundant small mammal trapped overall, the wood 

mouse was the most widespread species and appeared in a higher percentage of 

transects in all areas except the comparison plots than any other species.  In Year 1 

they were found in significantly higher numbers in Miscanthus than in Phalaris, 

the headlands or comparison plots (Kruskal-Wallis test: H (3, N= 173) = 32.938,       

P <0.0001).  Year 2, also showed significant differences between areas (Kruskal-

Wallis test: H (3, N= 169) = 17.541 P <0.001) with most wood mice in the hedges, 

then the Miscanthus.  The only significant differences existed between the hedges 

and Phalaris (P <0.001) and Miscanthus and Phalaris (P <0.05). 

 

Yellow-necked mice were not found in the comparison plots and were generally 

caught in low numbers as they only occurred at two sites in the study (‘LL’ and 

‘HM’).  However, numbers were highest in the headlands, followed by Miscanthus 

and Phalaris, although these differences were not significant (Kruskal-Wallis test: 

H (3, N= 172) = 5.823 P = 0.121). 
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Harvest mice were found more frequently in Phalaris than any other area in which 

they were caught.  Although it was not a significant result for the two trapping 

periods during which they were caught in Year 1, a significant preference for 

Phalaris was revealed in Year 2 (Kruskal-Wallis test: H (3, N= 169) = 37.290                

P <0.0001). 

 

Field vole numbers showed significant differences in the separate areas sampled in 

Year 1 (Kruskal-Wallis test: H (3, N= 172) = 10.808 P = 0.013), with the highest 

numbers found in Phalaris and comparison plots > Miscanthus > headland. 

However, there was no statistical difference between the Phalaris and comparison 

plots (Mann-Whitney U-test P = 0.717).  In Year 2, field vole captures appeared to 

be lower (10 compared with 33 in Year 1) and no significant preference for any area 

was shown (Kruskal-Wallis test: H (3, N= 169) = 5.620 P = 0.132). 

 

No bank voles were caught in the comparison plots.  In Year 1, their numbers were 

similar in the headlands and Phalaris, but fewer in Miscanthus, but these 

differences were not significant (Kruskal-Wallis test: H (3, N = 172) = 2.587,             

P = 0.460).  In Year 2, significant differences between areas was seen (Kruskal-

Wallis test: H (3,    N= 169) = 56.4864 P <0.001) with a preference for the hedges 

over any other habitat (P <0.01). 

 

Common shrews were most numerous in Phalaris then Miscanthus, comparison 

plots and headland, but this variation was not a significant effect in Year 1 

(Kruskal-Wallis test: H (3, N= 172) = 4.876 P = 0.181).  In Year 2 there was a 

significant difference between areas (Kruskal-Wallis test: H (3, N= 169) = 8.774,      

P <0.05) but when this was tested using multiple comparisons for the different 

areas, no significant preference was demonstrated. 
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Pygmy shrews and water shrews were caught in very low numbers in Year 1 (one 

each in Phalaris) and therefore their crop preference was impossible to calculate.  

However, during Year 2, a larger number were caught.  Pygmy shrews showed 

significant differences in abundance between areas trapped (Kruskal-Wallis test:     

H (3, N= 169) = 12.532 P <0.01), but as with the common shrew, no habitat 

preference was demonstrated.  Water shrews were caught in all areas other than 

the comparison plots and did not show any significant preferences (Kruskal-Wallis 

test: H (3, N= 169) = 3.332 P = 0.343). 

 

The arable comparison plots in Year 2 included the cereals spring barley and maize, 

which were only surveyed from when the crops were >20 cm high until harvest.  

This resulted in a short trapping season from early July until late October.  Wood 

mice were found in both the barley and maize (12.5 and 18.3 per 100 TN 

respectively) and one field vole was found in the barley (equivalent to 2.5 per 100 

TN).  No other species was found in the cereals and numbers for the same time 

period were lower in the cereals than the biomass crops although this was not a 

significant difference (Table 3.10). 

 

3.3.3 Edge effect 

No significant differences in total small mammal catch were demonstrated between 

transects at differing distances from the edge of either of the biomass crops or in the 

cereal comparison plots (Table 3.12). 

 

Table 3.12 Kruskal Wallis (K-W) test for differences between transects for total mammals per 100 
TN in individual crops and years (CP = comparison plots). 

Year Crop K-W H N P 
1 Miscanthus 1.021  51  0.600  
1 Phalaris 1.311  57  0.519  
2 Miscanthus 2.702  58  0.259  
2 Phalaris 0.509  37  0.775  
2 Cereal CP 2.352  10  0.125  
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3.3.4 Seasonal changes in small mammal assemblage 

The total number of small mammals caught in the biomass cropped areas showed a 

significant seasonal difference between sampling periods in Year 1 (Kruskal-Wallis 

ANOVA by Ranks; H (5, N= 51) = 33.072 P <0.0001 ) with numbers rising from 

their lowest in April to a peak in December and declining again in February.  In the 

non-biomass cropped areas (headlands and comparison plots), maximum numbers 

were also trapped in December, but no significant difference existed between 

months (Figure 3.17).  Within the biomass crops, no significant seasonal differences 

in total small mammal catch were seen in Year 2, although actual numbers were at 

their lowest immediately after harvest in April, and also in January of Year 2 after 

the harsh winter of 2009-10 (Figure 3.18).  In the hedgerows, Kruskal-Wallis tests 

showed significant seasonal differences (H (9, N = 64) = 22.806, P = 0.007).  Multiple 

comparisons showed this difference to only be significant for small mammal counts 

in October and May (P = 0.033).  Small mammal abundance showed a negative 

correlation with increasing mean daily temperatures at each survey during Year 1  

(rs = -0.30, P <0.001).   

 

0

5

10

15

20

25

30

35

40

H/C M/P H/C M/P H/C M/P H/C M/P H/C M/P H/C M/P

Apr-08 Jun-08 Aug-08 Oct-08 Dec-08 Feb-09

Date and area

M
ea

n 
sm

al
l 

m
am

m
al

s 
pe

r 
10

0T
N

 
Figure 3.17 Year 1 seasonal variation in total small mammal numbers trapped in biomass cropped 
areas M/P (Miscanthus and Phalaris) and non-cropped areas H/C (headlands and comparison plots).  
Mean per 100 TN ±1SE are shown. 
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Figure 3.18 Year 2 seasonal variation in total small mammal numbers trapped in biomass cropped 
areas M/P (Miscanthus and Phalaris) and in the hedgerows and comparison plots (H/C).  Mean count 
per 100 TN ±1SE are shown. 
 

In the cereal comparison plots, no seasonal difference was recorded (Kruskal-Wallis 

test H (3, N = 10) = 3.173, P = 0.366), but the short duration of trapping due to the 

crop cycle may have rendered this analysis unreliable. 

 

An analysis of the cumulative number of different species trapped over time in the 

different crops and at the different field sites was made.  The species accumulation 

curves for individual crops and sites in Figures 3.19 and 3.20 show that in many 

areas, maximum species diversity was only accounted for after 10 – 12 months of 

trapping, which for this study coincided with winter months.  A further species 

accumulation curve (Figure 3.21) shows the time taken to trap the maximum 

number of species at site ‘N’ in Year 2. 
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Figure 3.19 Species accumulation curve showing the time taken to trap the maximum number of 
small mammal species in the different areas surveyed during Year 1, using combined data from the 
four field sites. 
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Figure 3.20 Species accumulation curve showing time taken to trap the maximum number of small 
mammal species in the different field sites during Year 1, using combined data from the different 
areas surveyed at each site. 
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Figure 3.21 Species accumulation curve showing time taken to trap the maximum number of small 
mammal species in the different areas surveyed during Year 2 using combined data from the four 
field sites. 
 

3.3.5 (a) Diversity indices 

Phalaris contained the most diverse assemblage of small mammals and had the 

highest number of species in both years (see Table 3.13).   

 

Table 3.13 Counts of small mammals, species number and diversity index scores for the different 
habitats surveyed.  Simpson’s Index of Diversity: 1 = maximum diversity and Shannon-Wiener 
Index: maximum diversity occurs at 1.946.  
Year Survey area 

 
No. 

species 
No. individuals 

per 100 trap nights 
Simpson’s 

Index 
Shannon 

Index 
1 Comparison plots 3 3.5  0.52 0.80 
2 Comparison plots 2 17  0.12 0.22 
1 Headlands 4 8.6  0.53 0.98 
2 Hedges 6 41.2  0.61 1.20 
1 Miscanthus 6 18.4  0.31 0.72 
2 Miscanthus 6 25.9  0.39 0.81 
1 Phalaris 8 11.6  0.68 1.40 
2 Phalaris 8 17  0.69 1.38 

 

Although Miscanthus contained the highest overall number of small mammals per 

trap night in Year 1, it contained fewer species than Phalaris.  In Year 2, the hedges 
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contained the highest number of individuals, but the same number of species as 

Miscanthus.  

 

3.3.5 (b) Seasonal diversity changes 

Catch (per 100 trap nights) from the different sampling sessions was divided into 

three seasonal groups of four months each in each habitat.  Diversity indices were 

calculated for each group, with zero diversity value given for any habitat/group 

with only one species present.  Year 1 and Year 2 diversity values were plotted 

together for the biomass grasses, but were plotted separately for the hedge and 

headlands, as these were not considered to be equivalent habitat in terms of their 

small mammal population distribution (Figures 3.22 – 3.25).  Diversity values in the 

biomass grasses changed over time, but not in a manner that was consistent 

between the two years.  In both Miscanthus and Phalaris, the lowest diversity 

scores were recorded in the period April-July of Year 2.  A more consistent pattern 

was shown in the headlands and hedgerows, with very little variation in Simpson’s 

Index at the different times of year.   
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Figure 3.22 Simpson’s Index for small mammals in Miscanthus, showing seasonal values for Years      
1 & 2. 
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Figure 3.23 Simpson’s Index for small mammals in Phalaris, showing seasonal values for Years 1 & 2. 
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Figure 3.24 Simpson’s Index for small mammals in the headlands, showing seasonal values for Year 
1. 
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Figure 3.25 Simpson’s Index for small mammals in the hedges showing seasonal values for Year 2. 
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3.3.6 Crop management effects 

The two Phalaris fields at ‘PP’ were mown at different times: ‘PP1’ in spring and 

‘PP2’ in late summer (Year 1).  The total number of all mammal species caught in 

these two fields closely followed the timing of mowing, with an immediate 

reduction seen when only stubble was present.  The highest numbers of small 

mammals were caught in December in ‘PP1’.  Factorial ANOVA of total mammal 

numbers at all dates and both fields showed significant differences between ‘PP1’ 

and ‘PP2’ Phalaris crops (F(1, 18) = 4.418, P = 0.049) and also sampling dates              

(F(5, 18) = 4.680, P = 0.007) but the strongest effect was seen for combined date and 

site   (F(5, 18) = 9.8291, P = 0.0001).  Figure 3.26 shows these differences plotted by 

sampling date, with the date of mowing also indicated. 
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Figure 3.26 Total mammal catch (per 10-trap transect) by month in ‘PP’ Phalaris in relation to 
mowing dates.   
 Key:           ‘PP1’      ‘PP2’ Mowing date of ‘PP1’  Mowing date of ‘PP2’.  

 

The association between total mammal catch in ‘PP’ Phalaris and the crop height is 

further illustrated in Figure 3.27. 
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Figure 3.27 The relationship between total mammals caught in ‘PP’ Phalaris and height of the crop 
through the trapping season in ‘PP1’ and ‘PP2’.  Mowing dates are indicated by     . 
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3.3.7 Crop characteristics 

As in the Phalaris at site ‘PP’, the total number of small mammals at all the sites in 

Year 1 was correlated with sward height in both Miscanthus and Phalaris, but not 

in the headlands.  Miscanthus showed the strongest positive correlation (Spearman 

ranked correlation rs = 0.765, P < 0.05, N = 51 trap lines surveyed), but Phalaris 

height also correlated positively with total mammal catch (Spearman ranked 

correlation rs = 0.657, N = 57, P < 0.05) as shown in Figures 3.28 (a) and (b). 
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Figure 3.28(a) Correlations between crop sward height (cm) and total mammal catch in Miscanthus 
with polynomial trendline fitted. 
 
 

(a) 
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Figure 3.28(b) Correlations between crop sward height (cm) and total mammal catch in Phalaris 
with polynomial trendline fitted. 
 

Wood mouse abundance was positively associated with crop height in both Phalaris 

and Miscanthus (Spearman ranked correlation rs = 0.22, P <0.05, N = 57 and              

rs = 0.71, P <0.05, N = 51 respectively).  Field voles also showed a positive 

relationship with sward height in Phalaris (rs = 0.39, P <0.05, N = 57).  When other 

factors relating to the crop, such as percentage cover and total weed cover were 

taken into account (combined Year 1 and Year 2 data, CCA), the wood mouse, 

common shrew and pygmy shrew all showed an association with crop height 

(Figure 3.29). 

 

(b) 
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Figure 3.29 CCA plot of small mammal species abundance in relation to percentage cover of biomass 
crop, crop height and the percentage cover of weeds present (combined Year 1 and Year 2 data).   
 

Total abundance of small mammals and some individual species abundances were 

positively correlated with crop percentage cover (Year 1; Table 3.14). 

 

Table 3.14 Correlation matrix for small mammals and crop percentage cover in Year 1.  Significant 
Spearman R-values are highlighted: * P <0.05  ** P <0.01, NS = not significant. 
 Spearman R-value / significance 
Type Miscanthus Phalaris 
Total mammals 0.34    * 0.33    * 
Harvest mouse 0.17   NS 0.45    ** 
Field vole 0.32    * -0.05  NS 

Wood mouse 0.31    * 0.11    NS 

 

Wood mice, which showed positive correlations with both Miscanthus sward 

height and percentage cover showed a significant negative correlation with light 

intensity reaching ground level (rs = -0.56, P <0.001, N = 51).   
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Field voles demonstrated a positive relationship with percentage cover of non- crop 

grasses (Gramineae) in the Phalaris crops (rs = 0.50, P < 0.001, N = 57).  Harvest 

mice demonstrated a negative correlation with weed cover in Phalaris (rs = -0.29, P 

< 0.05, N = 57) whereas common shrews had a positive association with weed cover 

in Miscanthus (rs = 0.33, P < 0.05, N = 51). 

 

3.3.8 Interspecific associations  

A CCA plot of small mammal species in both crops showed some grouping effects.  

Three groups were seen along different axes:  one group comprising wood mice, 

common shrews, pygmy shrews and yellow-necked mice.  Opposite this axis were 

bank voles and harvest mice, with a separate grouping existing for water shrews 

and field voles (Figure 3.30). 
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Figure 3.30 CCA plot of associations between small mammals in biomass crops (Miscanthus and 
Phalaris combined). 
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3.3.9 Feeding ecology 

Distribution of small mammals in and around the crops was partially influenced by 

their diet.  Small mammal species with an omnivorous diet comprised the highest 

proportion of individuals in all areas except the grass comparison plots, where 

herbivores dominated.  A small proportion of insectivores were present in all areas 

except the barley and maize (Figure 3.31). 
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Figure 3.31 Proportions of small mammals within the different areas surveyed in both Year 1 and 2, 
grouped according to diet. (CP = comparison plot). 
 

When data for Year 1 and Year 2 were combined, the omnivore group (comprising 

wood mice, yellow-necked mice, harvest mice and bank voles) showed significant 

differences in their distribution throughout the areas surveyed (Kruskal-Wallis test: 

H (6, N = 361) = 79.203 P < 0.0001), with highest numbers in the hedges and the 

lowest numbers in the grass comparison plots (Table 3.15 and Figure 3.32). 
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Table 3.15 Pairwise comparison P-values (adjusted for multiple comparisons within an overall 
Kruskal-Wallis test) for significant differences between the areas surveyed for the numbers of 
omnivorous small mammals per 100 TN.  CP = comparison plots. 

 
Grass  

Comparison 
Headland 

 
Miscanthus 

 
Phalaris 

 
Barley 

Comparison  
Maize 

Comparison 
Grass CP             
Headland 0.035            
Miscanthus <0.001  0.245          
Phalaris 0.025  1.000  0.027        
Barley CP 1.000  1.000  1.000  1.000      
Maize CP 0.091  1.000  1.000  1.000  1.000    
Hedge <0.001  <0.001  0.002  <0.001  1.000  1.000  
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Figure 3.32 Distribution of omnivorous small mammals in the different areas surveyed in Year 1 and 
2.  Figures shown are means per 100 TN with SE and SD also shown. 
 

The insectivore group (all three species of shrew) also showed significant 

differences in distribution (Kruskal-Wallis ANOVA by ranks: H (6, N = 361) = 

32.593, P < 0.0001) with higher numbers in the hedges, but multiple comparisons 

failed to identify significant differences between the areas surveyed.  No significant 

results were demonstrated for the herbivores (represented by the field vole). 

Grass         Headland      Miscanthus     Phalaris        Barley           Maize          Hedge 
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3.3.10 Mortalities 

From a total of 1,810 captures over the two years of trapping, 13 animals were 

found dead in traps, equating to an overall mortality rate of 0.7%.  A breakdown of 

deaths per species is shown in Table 3.16.  Quantities of live food placed in the trap 

were increased each time a shrew death occurred and apart from a common shrew 

death in October 2009 where live food remained in the trap, no deaths occurred 

after September 2009.  Another common shrew death in March 2009 was likely to 

have resulted from the fact that a wood mouse was also caught in the trap at the 

same time.  The only dead harvest mouse was the first one to be trapped in Year 1 

and was a juvenile.  Adequate food supplies and hay remained in the trap, so the 

cause of this death was unknown. 

 

Table 3.16 Small mammal mortality rates for Year 1 and 2 by species. 
Species Animals trapped Mortalities  

Year 1 Year 2 Total Year 1 Year 2 Total Percentage 

WM 143  801  944  0  1  1  0.1%  
YNM 12  0  12  0  0  0  0%  
HM 8  78  86  1  0  1  1.3%  
All mice 
 

163  879  1042  1  1  2  0.2%  

BV 9  400  409  0  0  0  0%  
FV 33  38  71  0  0  0  0%  
All voles 
 

42  438  480  0  0  0  0%  

CS 12  199  211  2  8  10  4.7%  
PS 1  35  36  0  1  1  2.8%  
WS 1  32  33  0  0  0  0%  
All shrews 14  266  280 

  
 
 

2  9  11  3.9%  

 

3.3.11 Multiple mammal captures, and non-mammal captures 

Multiple captures within the same trap occurred far more frequently than had been 

expected and comprised different combinations of animals (Table 3.17).  Apart from 

the common shrew / wood mouse combination mentioned above, neither party of 

any other combination seemed to suffer as a consequence. 
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Wrens Troglodytes troglodytes were caught in Longworth traps on five occasions 

(including a bird previously ringed in a mist-net capture), and a juvenile common 

toad Bufo bufo was recorded once. 

 

Table 3.17 Frequency of the types of multiple occupancy in the same Longworth trap for all small 
mammal captures in Year 1 and 2. 
Combination Times recorded 

Wood mouse + wood mouse 5 
Bank vole + bank vole 3 
Harvest mouse + harvest mouse 1 
Wood mouse + bank vole 2 
Wood mouse + common shrew 1 
Common shrew + pygmy shrew 1 
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3.4 Discussion 

Live trapping for small mammals in both the Year 1 surveys across four field sites 

and Year 2 surveys at one site revealed that the biomass crops were well utilised by 

up to eight small mammal species.  Although in Year 2, the hedges contained the 

highest abundance of small mammals, the diversity of the assemblage was 

equivalent to that found within Miscanthus, but was less diverse than the 

assemblage in Phalaris.  Population numbers peaked in winter, at a time when the 

spring-mown biomass was still standing and providing good habitat not provided 

by other agricultural crops. 

 

3.4.1 Trapping techniques 

In the first year of the study, the trip weight of the treadles in the traps was set at 

medium sensitivity and resulted in low catch of pygmy and common shrews.  The 

subsequent intensive survey of harvest mice at one of the field sites (see Chapter 4) 

was performed after reducing trip weight and many more pygmy and common 

shrews were trapped during this time, suggesting that increasing the trip weight 

threshold does indeed prevent shrew capture if they are not the target animal in a 

study. 

 

Time and funding dictated that Longworth traps were only set for one night on 

each survey of each site in Year 1, which may have influenced and reduced total 

catch.  Field voles have been reported to show “new object reaction” (neophobia), 

which reduces their likelihood of entering traps on their first encounter with them 

(Chitty & Kempson 1949).  Sealander et al. (1958) found that only 50% of 

approaches by house mice to Sherman traps resulted in captures.  Pre-baiting is a 

technique whereby baited traps are set for one or more nights with their doors 

locked open, allowing the animals to enter the traps and feed without being caught, 

thus becoming accustomed to them.  This technique in combination with trapping 
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for several consecutive nights, is recommended where possible (Gurnell & 

Flowerdew 2006).   

 

Tombs (unpublished) trapped monthly for 4 consecutive nights in 2007 in both 

Miscanthus and Phalaris.  Her data from 1,800 trap nights showed that 38% (N = 61 

out of 159) of the final catch of wood mice, 29% (N = 28 out of 97) of yellow-

necked mice, 25% (N = 1 out of 4) of bank voles and 29% (N = 15 out of 54) field 

voles were caught during the first night of trapping.  The only four common shrews 

were caught on the second night of trapping.   

 

Similar analysis was performed by Underhill (2003) on the captures of three species 

at two sites in June.  She found a similar mean rate of trap success for wood mice on 

the first night (44%), but caught fewer field voles and more common shrews: these 

two species showed a particularly reduced tendency to enter traps at an early stage.  

These rates were much improved after initiating pre-baiting in subsequent months 

(Underhill 2003). 

 

From these data, it is apparent that one night of trapping will not give a true 

estimate of population size, but at the very least gives a measure of abundance and 

was a replicable measure at the different sites.  

 

There may also be some variability in trapping success at different times of year.  

Tanton (1965) suggests that a reduction in wood mouse captures during the summer 

months could be due to a changed behavioural response related to higher food 

availability and the reduced need to explore and therefore enter traps.  He therefore 

also urges caution in using summer data to estimate population size.  Similar 

changes in behaviour resulting in reduced “trappability” over the summer have also 

been reported in harvest mice, although the reasons for this are not known (Roger 

Trout, personal communication). 
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A further factor to be considered when using live traps is the possibility of 

restricting an animal’s range of movement.  In a comparison between monitoring 

small mammal movements using live-trapping and radio-tracking, live traps 

reduced the apparent distances travelled by small mammals and therefore may not 

necessarily show their true patterns of movement around a habitat (Szacki 1999). 

 

In this study, the decision to use trap-lines was driven both by the difficulty of 

gaining access into the full-grown crops and also the intention to show effects of 

distance from the crop edge.  Use of trap lines is considered a valid technique where 

only a relative index of abundance is required, however results may be ambiguous 

if the home range of trapped individuals varies in size between habitats (Tanton 

1965).  In studies where population size estimates are required, a grid pattern and 

the use of capture-mark-recapture is recommended (Gurnell & Flowerdew 2006).  

A variation on this is the web design for trap layout, which allows plot-less or 

distance sampling data analysis (Anderson et al. 1983).  As Year 1 logistics did not 

allow for more than one night of trapping at each survey period, no capture-mark-

recapture studies were possible. 

 

The Year 2 data considered in this chapter are included in an attempt to expand the 

depth of understanding of how the small mammal species use the biomass habitat.  

It is important, however to bear in mind that the results are therefore specific to 

one site only and may not have the same strength as capture data from multiple 

sites.   

 

3.4.2 Abundance of individual small mammal species and crop preference 

Wood mice were the most abundant small mammal species in all areas except the 

comparison plots and this reflects findings by Semere & Slater (2007a) in young 

Phalaris and Miscanthus crops.  Similar results were also found in that more field 

voles were caught in Phalaris than Miscanthus (Semere & Slater 2005).  However, 
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this study recorded significantly higher numbers of mammals trapped within the 

crop fields in Year 1 (mean of 16.8 ±1.59 per 100 TN for both Phalaris and 

Miscanthus) compared to the field margins (8.6 ± 1.97 per 100 TN), which is the 

opposite of Semere & Slater’s (2005) findings of 7.9 per 100 TN for the crops and 

12.8 for the margins.  There was a different distribution again in Year 2, with 

hedges accounting for a mean of 43.1 ±3.21 per 100 TN and the crops 22.5 ±2.0 per 

100 TN.  These differences may be due to a number of factors: 

1. Differences in field margin structure between Year 1 and Semere & Slater’s sites, 

2. The headlands in Year 1 acting as a completely different habitat type to the 

hedges in Year 2, 

3. Other site-specific factors.  Year 1 data has the advantage of being spread across 

multiple sites across Wales, whereas Year 2 focuses on a single site and Semere & 

Slater on a single geographical area. 

 

In terms of individual crops, Miscanthus contained a significantly higher mean 

number of small mammals than Phalaris (18.4 ±2.4 per 100 TN and 14.1 ±2.0 per 

100 TN respectively in Year 1 and 25.7 ±2.8 per 100 TN and 19.5 ±2.8 per 100 TN in 

Year 2) and this may have been a function of the greater sward height in the 

Miscanthus.   

 

Yellow-necked mice were caught in small numbers at two sites and in every area 

except the comparison plots.  They are known to be a woodland species, preferring 

high levels of canopy cover (Marsh & Harris 2000) or undisturbed hedgerows 

(Kotzageorgis & Mason 1997) where their diet is comprised of tree seeds rather 

than herbaceous weed seeds (Marsh & Montgomery 2008).  So their presence in 

Miscanthus, particularly at site ‘LL’ which was adjacent to broad-leaved woodland 

is a little surprising.  Whether they were foraging when caught, or simply using the 

available cover is unknown and only a technique such as radio-telemetry could 

provide answers as to how they use the crop. 
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3.4.3 Small mammal species diversity 

In Year 1, Phalaris contained both the highest number of species (eight) and the 

highest diversity when species evenness was taken into account.  Miscanthus 

contained six species, but had the lowest diversity of all areas sampled.  When Year 

2 results were added to Year 1, a total of eight species had been trapped in both 

Miscanthus and Phalaris in comparison with seven species in the headlands and 

hedgerows.  Again, this differed from the findings of Semere & Slater (2005) who 

found up to five species in Phalaris and only one species (wood mouse) in 

Miscanthus.  Throughout both years, Phalaris remained the most diverse habitat 

despite there being seasonal variation in the Simpson’s Index scores.  In Year 2 at 

site ‘N’, a substantial drop in diversity was seen in the biomass crops from April – 

June. This was likely to be as a result of the material being harvested as no such 

variation was seen in the hedges during the same time-period.  Perennial biomass 

grass crops are unique in terms of their architecture and management and as such 

there is little to compare them with in terms of ‘natural’ habitats.  In terms of 

structure, a Phragmites spp. reedbed would be the closest approximation and these 

have been reported widely as being suitable habitat for harvest mice (Riordan et al.  

2007; Surmacki et al. 2005; Harris 1979), but are also associated with a range of 

other small mammal species (Scott et al. 2008).  The results from this study show 

that biomass grass crops are utilised by the whole range of native small mammals, 

even those not particularly associated with traditional arable crops. 

 

3.4.4 Edge effect 

Small mammals were captured in all the areas of the crops in which traps were set 

and there was no demonstrable edge effect for any of the small mammal species.  

Tattersall et al. (2002) reported a preference by bank voles for linear habitat such as 

field margins, but this was not supported by the results of the present study, which 

recorded bank voles at up to 20 m into the non-linear crops.  Harvest mice were 

also trapped at all transects in the crop regardless of distance from the edge and 



   
S.J. Clapham  178   

 

again, this disagrees with results reported for arable land by Moore et al. (2003).  

This suggests that the architecture of both Miscanthus and Phalaris crop fields 

provides sufficient cover and resources to readily support small mammal numbers 

that would otherwise be associated with hedgerows or field margins. 

 

3.4.5 Feeding ecology 

The small mammals in this study were grouped into three feeding guilds: 

omnivorous (wood mice, yellow-necked mice, harvest mice and bank voles), 

insectivorous (all three species of shrew) and herbivorous (field vole).  The 

omnivorous group dominated in all areas except the grass comparison plots, but 

showed a statistical preference for the hedgerows.  This could be due to the 

additional food resources available there, in terms of fruits, nuts and berries, as well 

as a different array of seeds and animal matter.  As expected, the grass comparison 

plots had a higher proportion of herbivorous small mammals relative to any other 

crop or margin habitat, although no statistical preference was shown by them in 

any one habitat.  The weed and invertebrate content of the biomass crops may also 

be of significance with regard to distribution of small mammals and these factors 

have been discussed in Chapters 2 & 6. 

 

3.4.6 Crop height and management 

Crop height was a significant factor in determining small mammal presence, with 

total numbers positively correlated with height in both crops in Year 1.  When 

analysed by individual species, the field vole showed a positive association with 

sward height in Phalaris and the wood mouse in Miscanthus.  No such association 

was seen for the bank vole or shrews and this may indicate that close ground cover 

is more important to them than sward height (Churchfield & Searle 2008; 

Kotzageorgis & Mason 1997).  Headlands were unmanaged at all but one site where 

they were mown annually in September (PP).  Despite this, sward height in the 

headlands had very little influence on small mammal presence.  This was 
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unexpected in view of the findings of Askew et al. (2007) and Shore et al. (2005), 

where grassy margins in conventional arable crop fields resulted in higher numbers 

and diversity of small mammals.  These results may be due to higher numbers of 

small mammals utilising the biomass crop habitat, and the headland therefore being 

of lesser importance.  The only comparison plots where small mammals were found 

were ungrazed areas of grassland, where tussocks and a litter layer had formed, 

which is known to be of more importance to field voles than successional age 

(Tattersall et al. 2000).  No small mammals were caught in grazed comparison plots 

and this is likely to be due to both perceived and actual increased predation risk 

where there is less cover (Jacob & Brown 2000) rather than direct competition for 

food resources from the large grazing mammals (Moro & Gadal 2007).   

 

Mowing of the crops in spring had the immediate effect of reducing small mammal 

numbers, although as this intervention occurs at a time when populations are 

usually at their lowest, cause and effect may be difficult to separate.  However, as a 

field of Phalaris at ‘PP’ (‘PP2’) was mowed in September for a separate study (ADAS 

Field to Farmer Project: late autumn grazing study), it was possible to identify the 

effects of mowing at a time when small mammal populations are rising.  By 

December, the September-mown Phalaris (‘PP2’) had only reached a height of  10 

cm, compared to 122 cm in the uncut field (‘PP1’).  Corresponding small mammal 

numbers in December were highly significantly different between the two fields, 

with a total of 3 per 100 TN in ‘PP2’ and 55 per 100 TN in ‘PP1’.  This implies that 

the current management of commercial biomass crops that are harvested in spring 

provides essential winter habitat for small mammals when their populations are at a 

peak.  This is also the time of year at which no other arable crops are standing: 

winter-sown cereal fields are largely bare earth (Todd et al. 2000) and grass swards 

in pastoral areas are short. 
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Once the biomass grass crops are over two years old, aside from harvesting in 

spring, there is minimal disturbance throughout the rest of the year (Price et al. 

2003), which could be particularly important to small mammal species that are 

sensitive to disturbance (Kotzageorgis & Mason 1997).  It also means that the 

breeding season is not interrupted by harvesting as would be the case in annual 

cereal crops and this could be another key benefit to small mammal populations in 

the biomass grass crops. 

 

Lack of pesticide inputs may also make biomass grass crops more favourable to 

small mammal populations.  In a US study, densities of both gray-tailed voles 

Microtus canicaudus and deer mice Peromyscus maniculatus in alfalfa crops were 

depressed after the application of the insecticide azinphos-methyl (Schauber et al. 

1997).  It is also possible that the presence within the biomass crops of the 

omnivorous harvest mouse, which is susceptible to bioaccumulation of chemical 

toxins, is a good indicator of quality habitat (Bence et al. 2003). 

 

3.4.7 Seasonal effects 

Seasonal variation in total small mammal abundance followed the general patterns 

reported elsewhere (Schmidt et al. 2005; Tattersall et al. 2004; Kotzageorgis & 

Mason 1997) with peaks in winter and lowest numbers in spring.  The negative 

correlation of small mammal abundance with increasing daily temperatures may be 

in part due to this seasonal effect.  The seasonal variation was more pronounced in 

the biomass crops in Year 1, although there was also a winter peak in numbers in 

the headlands.  This suggests that rising numbers within the biomass crops were 

due to successful breeding rather than immigration from the headlands, but further 

work involving capture-mark-recapture or radio-telemetry would need to be 

carried out to confirm this. 
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Two species were only caught at certain times of year: harvest mice only between 

the months of September and March and water shrews only between October and 

January.  Trout (1978a) found similar results in both live trapping of small 

mammals and analysis of barn owl pellets for small mammal remains.  In a study of 

deciduous woodland, Tanton (1965) suggested that wood mice may be difficult to 

catch in the summer months due to good food supplies changing behavioural 

patterns, including trap avoidance.  Whether this is also true of species such as the 

harvest mouse and water shrew is unknown, but could explain their seasonal 

presence.  Gurnell (1978) proposed that summer wood mouse populations were 

heavily influenced by the aggressive behaviour of males, which resulted in lower 

survival rates for juveniles in spring and summer compared to the autumn.  Despite 

the mowing of the biomass grass crop and removal of the harvested material in 

spring, wood mouse numbers were still higher in summer than in spring in the 

biomass crops.  This could have been due to reduced food resources in the crops 

making the wood mice more trappable, as implied by Tanton (1965), or may also 

have been a true reflection of higher numbers of wood mice able to exploit the 

resource. 

 

With the highest numbers of small mammals trapped in the winter, and the fact 

that it took 10-12 months to trap the maximum number of small mammal species, it 

is clear that seasonal factors must be taken into account when censusing small 

mammals in biomass crops.  Semere & Slater (2007a) only carried out small 

mammal trapping in spring and in September and therefore may have missed 

recording species such as the harvest mouse, (whose geographical range extends 

into the area they studied), and water shrews, which if present would also have 

been overlooked.  Best practice dictates that trapping is not performed in unduly 

cold conditions (Gurnell & Flowerdew 2006), but with careful planning winter 

surveys can successfully be carried out.   
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3.4.8 Relationship with other crop characteristics 

As already established, cover as protection from predators is vital for small 

mammals in an agricultural landscape (Jacob & Brown 2000) and the animals in this 

study followed the reported trend.  Not only did total small mammal numbers 

correlate positively with crop cover in both crops, but individual species such as 

harvest mice in Phalaris and wood mice in Miscanthus also showed a response.  A 

dense crop is likely to be particularly important to harvest mice (who showed the 

most significant relationship with percentage cover), as they spend a large 

proportion of their time foraging and breeding arboreally in the stalk zone 

throughout the summer (Trout 1978a).   

 

By virtue of weedy patches between rhizome clumps in the early establishment 

phase, Miscanthus crops have the potential to support greater biodiversity through 

additional food resources such as weed seeds and the invertebrates that utilise the 

non-crop vegetation (Semere & Slater 2007b; Marshall et al. 2003).  No correlation 

was found between the total number of small mammals and the percentage cover of 

weeds within the crops.  However, harvest mice showed a negative correlation 

with weed cover in Phalaris, assumed to be due to their association with increased 

crop cover.  Common shrews were associated positively with weed cover in 

Miscanthus and this may either be due to arthropod prey associated with the 

weeds, or the additional cover provided by them (Kotzageorgis & Mason 1997). 

 

Increasing percentage cover of non-crop Gramineae was a predictor of field vole 

numbers in the Phalaris crops.  Field voles consume a herbivorous diet (Lambin 

2008) and although they may graze Phalaris during its early stages of growth, it is 

likely that non-crop grasses become an important component of their diet when 

the Phalaris grows taller and its leafy matter is out of their reach. 
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Certain associations between small mammal species both in relation to crop 

variables and other species were shown in PCA plots.  In the biomass crops, wood 

mice and common shrews were positioned along the same axis, likely to be related 

to available cover.  The two vole species showed varying associations in different 

crops and this is probably driven by the different microhabitats within the crops in 

relation to their differing requirements (Tew et al. 2000).  Harvest mice occupied an 

opposite axis to the wood mice and this may be a result of competitive exclusion by 

the wood mice, which are competitively superior (Riordan et al. 2007). 

 

3.4.9 Biomass crops in comparison with other agricultural land uses 

The crop fields in this study varied in size, but all retained a traditional structure of 

crop, field margin (mostly 6 m uncultivated headland) and hedgerow.  There are 

several features of biomass crops that make them potentially very conducive to 

wildlife.  The uncultivated margins contain a large percentage of grasses, which 

when allowed to grow unchecked develop into tussocks, but also form a litter layer 

in which there are small mammal runs.  Barn owls, which have declined in the UK 

over recent years are increasingly dependent on this type of habitat in which to 

hunt small mammals, as modernisation in farming practices has led to a reduction 

in good vole habitat such as rough grassland and hay meadows (Bond et al. 2005).  

The fact that the biomass field margins are predominantly 6 m rather than 2 m 

wide make them particularly conducive as the estimated optimal width of grassy 

margins based on barn owl hunting height and hearing range is 7 m (Askew et al. 

2007).  Significant shading can occur close to hedgerows, particularly unmanaged, 

tall ones, so it is conducive to the productiveness of the biomass crop to leave 

uncultivated margins between the crop and hedge.  As set-aside is being reduced on 

a national scale, the importance of these margins may become increased, especially 

in predominantly arable areas.  Retaining the existing hedge structure will also be 

of importance to small mammals, particularly after harvest in spring when hedges 

are likely to provide cover and food resources until the crop re-grows.  
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3.4.10 Arable crop comparison plots 

The first year of small mammal trapping intended to compare biomass grass crops 

with the land use prior to crop establishment (mainly pasture) and did not include 

cereal crops even at the predominantly arable ‘N’ site due to lack of suitable crops 

to survey.  However, by the intensive study in Year 2, spring barley and maize were 

available and therefore used, in order to give a better indication of small mammal 

presence on arable as well as pastoral land in comparison with the biomass crops.   

 

The ubiquitous wood mouse was found in the maize and barley, both on the ground 

and in the aerial traps.  Only one field vole was trapped in the barley and none in 

the maize.  Although formal vegetation surveys were not carried out in the cereals, 

visually, it was apparent that weed management was more effective than in the 

biomass crops.  The drilled barley grew in a dense manner with no visible bare 

earth.  The architecture of the maize crop resulted in a dense canopy of leaves, 

shading out all but a few weeds growing in the otherwise bare soil around the 

stems.  With architecture more like dense grassland, the barley appeared to be a 

more suitable habitat for the needs of the field vole than the maize.  The lack of low 

vegetation in the maize would also have resulted in less available food for the 

herbivorous vole, however the climbing skills and wider diet range of the wood 

mouse mean that more food would have been available to it in the maize.  With the 

abundance of wood mice in the maize, it is perhaps surprising that no bank voles 

were found there. 

 

Use of arable land by small mammals has been well reported (Heroldova et al. 2008; 

Tew et al. 2000; Todd et al. 2000; Tew & Macdonald 1993; Green 1979), but very 

little work has been done on maize.  Although it is an annual arable crop, maize 

plant architecture is more like Miscanthus than any other cereal and a comparison 

between the two could be revealing.  Bilenca et al. (2007) reported higher trapping 

success in ‘weedy’ (≥ 50% cover) maize compared to maize with very few weeds in 
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Argentina.  However when compared overall with soybean crops, there was no 

difference in small mammal abundance in the two crops, leading the authors to 

conclude that their numbers were determined by microhabitat rather than specific 

crops, and this concurs with the findings of Tew et al. (2000).   

 

3.4.11 Comparisons with woody biomass crops 

Some parallels are seen between the characteristics of the small mammals found in 

perennial grass and woody biomass crops.  Fry & Slater (2009) also found the wood 

mouse to be the most abundant species in willow coppice.  As with Year 1 results 

from the grass crops, they also found that the willow contained higher numbers of 

small mammals than the headlands and hedges.  However, the species present in 

the willow was restricted to the wood mouse, yellow-necked mouse, bank vole and 

field vole.  Common and pygmy shrews were only caught in the headlands and 

hedgerows and they found no evidence of the harvest mouse or water shrew.  One 

of the willow coppice sites was within 3 km of the ‘N’ grass crop (albeit across the 

Eastern Cleddau river) and therefore had the potential to contain the same species.  

The presence, therefore of eight species in the grass crops suggests that Miscanthus 

and Phalaris provide a more favourable crop habitat for small mammals than 

willow coppice. 

 

3.4.12 Conclusions 

In conclusion, biomass grass crops have been demonstrated in this chapter to be 

widely used by small mammals.  Although the hedgerows contained higher 

abundance of small mammals, Phalaris crops contained the highest diversity.  A 

Biodiversity Action Plan priority species, the harvest mouse was abundant in the 

Phalaris, and was also found in lower numbers in the Miscanthus.  Both biomass 

crops contained higher diversity and abundance of small mammals than cereal 

crops such as spring barley and maize.  The agronomy of these perennial grasses 

within the traditional field structure where uncultivated headlands and hedgerows 
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are maintained are therefore likely to have a positive rather than negative effect on 

small mammals through the provision of additional habitat and food resources. 
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Abstract 
The harvest mouse Micromys minutus is through to have declined in abundance in 

recent years, and as a Biodiversity Action Plan (BAP) species, national effort is 

being put into its conservation.  Harvest mouse presence was detected during the 

small mammal surveys in biomass crops at the Pembrokeshire (Wales, UK) site, and 

more intensive monthly surveys were therefore carried out for a further year at the 

site.  The aim was to better understand the harvest mouse population in and around 

the biomass crops, through the use of a capture-mark-recapture programme and the 

recording of biometric data.   

 

In addition to the live-trapping, searches for above-ground nests were carried out, 

and barn owl pellets collected within close proximity of the biomass field were 

examined for harvest mouse remains.  Harvest mice were only captured within the 

two biomass crops, although nests were found in hedgerows nearby as well as in 

the Phalaris.  No harvest mice were found within the adjacent barley or maize 

fields.  Within the biomass crops, harvest mice demonstrated a distinct preference 

for Phalaris, although they were also trapped in small numbers in the Miscanthus.  

Harvest mice trapped in Miscanthus were more likely to be males than females.  

Some of the Longworth traps were set elevated into the stalk zone and these were 

more likely to contain females than males.  The weights of male harvest mice in 

autumn were significantly lower than those recorded in winter or spring.  In 

conclusion, biomass grass crops, particularly Phalaris are considered to be good 

habitat for populations of harvest mice. 
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4.1 Introduction 

4.1.1 Post-glacial history and distribution of the harvest mouse 

During the last Ice Age, genetic and fossil evidence suggests that the harvest mouse 

Micromys minutus Pallas (Rodentia) was only found in China.  The species is 

thought to have spread back across northern Asia and Europe once the ice sheets 

retreated (Harris 1979a).  This is confirmed by mitochondrial DNA analysis, which 

also suggests that there was considerable expansion and contraction of their range 

during the mid-late Pleistocene (Yasuda et al. 2005).  Whether harvest mice 

reached Britain by natural dispersion across a land bridge from the continent or 

were subsequently introduced by human actions was for some time unclear (Harris 

1979b), although a recent discovery in the UK of specimens from the early 

postglacial period suggests they should be classed as truly native (Trout and Harris 

2008).   

 

The first observations on the harvest mouse in Britain were published by Thomas 

Pennant in 1766, but a formal description was only published later by Pallas in 

1771 (Harris 1979b).  By the end of the nineteenth century, the harvest mouse had 

been reported in most English counties and eastern Scotland, with some records 

appearing to result from the spread of the species into previously un-colonised areas 

as a result of accidental transport with hay and cereals (Harris et al. 1995).   There 

were also some records of harvest mice in North Wales by the beginning of the 

twentieth century (Harris 1979a).  Even at this point there was concern that 

numbers in the UK were declining and at the time this was attributed to advances 

in the design of reaping machines causing high mortality during harvest.  However, 

Harris (1979a) advised caution in assuming a decline, as the lack of accurate records 

and changes in agricultural practices to a more mechanised approach make 

population changes difficult to infer. 
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4.1.2 Morphology 

The harvest mouse is the smallest European rodent, characterised by russet-orange 

fur dorsally, with a sharp delineation to white fur underneath.  It has a blunt 

muzzle, small furry ears and a long, prehensile tail measuring approximately the 

same length as the head and body combined (Harris 1979b).  The head-body length 

ranges from 50-80 mm, tail from 50-70 mm and body weight from 5-11 g 

(Macdonald and Barrett 1993).  The harvest mouse is well adapted to a life climbing 

amongst grass and cereal stems as it has a proportionally light skeleton, its tail is 

used extensively and it has an opposable outer toe on the hind foot which allows it 

to firmly grip vegetation stems (Harris 1979b).  Climbing skills develop rapidly in 

the young during the short lactation period of 15-16 days and prehensile use of the 

tail develops by the time the pups are 11 days old (Ishiwaka and Mori 1999).   

 

The small size of the harvest mouse combined with its large surface area to volume 

ratio of 4.9 (Trout 1978b) and its active arboreal lifestyle means that it requires a 

high calorific intake equivalent to that of a 20 g mouse Apodemus spp. or vole 

Microtus spp. (Harris 1979b).  However, as it is able to select food with higher 

energy per volume such as seeds, even this high intake is far less than that required 

by similarly sized shrews Sorex spp. which are restricted to water-rich (and 

therefore less energy-dense) invertebrates (Harris 1979b).  Although generally 

more nocturnal, the harvest mouse is active for short periods every two to three 

hours, with peaks at dawn and dusk (Harris 1979b). 

 

4.1.3 Life-history and breeding biology 

The lifespan of the harvest mouse is short, with a maximum age of 18 months 

recorded in a wild animal (Macdonald and Barrett 1993).  The breeding season is 

usually from May to October, but may extend to December in warmer, drier years 

with most litters being born in the months of August and September (Harris 1979c).  

Females are sexually mature at eight weeks old and can produce from three to 
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seven litters per year, each containing between three and eight young (mean 5.4 

±0.16, (Harris 1979c)) with a short gestation period of 19 days (Harris 1979b).  In 

captivity, a maximum of nine litters has been recorded for a single female (Trout 

1978b).  This rapid breeding pattern can result in four generations successfully 

reproducing within one breeding season (Trout and Harris 2008).   

 

The harvest mouse is the only small mammal to weave above-ground nests from 

shredded grass blades (Trout and Harris 2008).  The spherical breeding nests of      

6-10 cm diameter are supported by grass stems or the stems of shrubby species such 

as blackthorn Prunus spinosa, bramble Rubus fructicosus or hawthorn Crataegeus 

monogyna, at a height of between 30 and 60 cm above ground level (Macdonald & 

Barrett 1993).  A new nest is built for each litter (Trout and Harris 2008).  Harvest 

mouse pups are born blind with un-differentiated digits.  They develop rapidly, 

with eyes opening at 8 days old and they are able to climb stems and walk weakly 

on flat surfaces at 9 days old (Trout 1978b).  They start to make excursions outside 

the nest from 11 days old and by 16 days old are chased away from the nest by the 

mother (Trout 1978b). 

 

In Britain, litters found in harvest mouse nests across the whole breeding season 

had an average mortality rate of 12% – usually involving loss of the whole litter 

rather than the death of a proportion of the individuals within it.  This increased to 

80% in autumn litters, which are more prone to climatic influences such as heavy 

rainfall and cold temperatures (Harris 1979c).   

 

The harvest mouse is reported as being difficult to capture from late spring to late 

summer (Trout 1978a) which is believed to be due to behavioural changes during 

the breeding season (Trout, personal communication).   Where animals were 

caught in summer, they tended to be juveniles rather than adults (Trout 1978a).  

Similarly, Trout (1978a) and Buckley (1977) found a corresponding seasonal 
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absence of harvest mouse remains in barn owl Tyto alba pellets during the  

summer.  It is possible that some of these behavioural changes involve less time 

spent at ground level, since the success of summer trapping can be increased 

slightly through the use of aerial traps (Sibbald et al. 2006).  

 

4.1.4 Feeding ecology 

Harvest mice are omnivorous, with a varied diet including seeds, cereal grains, 

young leafy shoots, insects, fruits, berries and fungi, and even cannibalisation of 

injured or dead conspecifics has also been reported (Harris 1979b).  The harvest 

mouse has been recorded eating bird eggs, for example from the nests of reed 

warblers Acrocephalus scirpaceus in reedbeds (Honza et al. 1998).  Diet changes 

seasonally.  In autumn and winter, Russian harvest mouse stomachs contained 

predominantly grass and cereal seeds, while as spring progressed into summer, a 

higher proportion of green matter and insects were consumed (Trout 1978b).  As 

the diet is partly insectivorous, harvest mice are vulnerable to the effects of 

pesticides as a result of bioaccumulation of toxins from contaminated prey (Harris 

et al. 1995).   

 

4.1.5 Habitat use 

Traditionally, the harvest mouse has been associated with cereal fields, spending 

the summer in the stalk zone of grain crops and moving into the hedgerows after 

harvest.  During the winter, it forages at ground level and is therefore more easily 

caught in Longworth traps at this time (Harris 1979b).   

 

Surveys undertaken in the 1970s found most harvest mice along linear features 

such as field margins, ditches, verges and hedges, while their presence in cereal 

crops was less common (Harris et al. 1995).  Moore et al. (2003) also reported a 

preference by the harvest mouse for arable field margins rather than the crops 

themselves.   
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Tall, dense grassy areas, patches of brambles, reedbeds and ditches are favoured 

(Trout and Harris 2008), as well as areas of sedge and litter in fenland (Flowerdew 

et al. 1977).  Harvest mice have been found in higher densities than wood mice 

Apodemus sylvaticus in new farm woodlands in the early stages after planting 

(Moore et al. 2003), but were not found at all in short rotation willow coppice in an 

area of Pembrokeshire where they have been trapped in other habitats nearby (Fry 

and Slater 2009).   

 

Despite a strong connection with farmland, the harvest mouse has also been found 

in non-agricultural habitats including urban environments such as churchyards and 

gardens, where undisturbed areas of dense grass and forbs were present (Dickman 

1986).  When the M11 motorway was built in North Essex, UK, harvest mice 

rapidly colonised the embankments in the second year when tall grasses, 

willowherbs Epilobium spp., thistles Cirsium spp. and teasel Dipsacus fullonum 

were the dominant vegetation types (Harris 1979a).  

 

 Across its wider range, the harvest mouse inhabit bamboo clumps, maize and rice 

plants (Harris 1979b), as well as Miscanthus spp. in Japan (Hata 2011, Ishiwaka et 

al. 2010; Hata et al. 2010; Kuroe et al. 2007) and stands of Phalaris arundinacea and 

Phragmites australis  in the Petite Camargue, France (Durrer et al. 2006). 

 

4.1.6 Nest-building habitat selection 

Breeding nests have been found in at least 36 species of grasses, with cocksfoot 

Dactylis glomerata, reed canary grass Phalaris arundinacea and common reed 

Phragmites australis being most commonly used (Table 4.1; Harris 1979a). 
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Table 4.1 Monocotyledonous plants used by harvest mice for nest building (from Harris 1979a). 
Plant species Percentage of nests built in each plant species 
Cocksfoot  21 
Reed canary grass  14 
Common reed  10 
Other monocotyledons  50 (of which 24% unidentified) 
Cereals  5 

 

A study of Polish reedbeds (comprised largely of P. australis) found that harvest 

mouse nest site selection varied according to vegetation structure and soil moisture 

levels.  Within the reedbed, the factors most likely to positively influence nest 

building were smaller, sparser reed shoots and a high abundance of sedges Carex 

spp. and grasses, whereas where there were tall, thick reed stems and abundant 

herbaceous vegetation, nest occurrence was lower (Surmacki et al. 2005).   These 

findings are similar to those from a study of harvest mice in grassland of different 

successional stages.  Harvest mice preferred the early and ruderal successional 

phases where there was taller vegetation architecture and a greater mix of both 

annual and perennial grasses and forbs and a more closed ground cover 

(Churchfield et al. 1997).    

 

In wetter areas of reedbed, (where the mean height of the reeds was greater), 

harvest mouse nests occurred at up to twice the height of those constructed in the 

reeds growing where the soil was drier and less likely to flood (Surmacki et al. 

2005).  More recently, Hata (2011) also reported that nest height in flood plains and 

marshes was related more to the height of the plant in which the nest was 

constructed, rather than the presence or absence of water at the base of the plant. 

 

Habitat preferences appear to be broadly similar across the harvest mouse’s 

geographical range: Hata et al. (2010) report that in Japan, the plant preferred by 

harvest mice for nest-building over all other perennial grasses was Amur silvergrass 

Miscanthus sacchariflorus of at least 120-160 cm height.  In a further study of 

harvest mouse nests, M. sacchariflorus was the most commonly used nesting plant, 



   
S.J. Clapham  202   

 

comprising 87% in flood-plain habitat and 57% on embankment habitat (Hata 

2011). 

 

Some agri-environment schemes include prescriptions such as the formation of 

“beetle banks” alongside arable crops, originally intended to provide a winter refuge 

for predatory beetles and spiders.  However, the banks have been shown to benefit 

many other invertebrates, birds and small mammals due to the tussocky grasses 

planted within them, which provide shelter and feeding opportunities (Bence et al. 

2003).  In a comparison between these beetle banks and grassy field margins, Bence 

et al. (2003) found higher numbers of harvest mouse breeding nests in the beetle 

banks than in an equivalent area of field margin.  They also noted that cocksfoot 

and thistles provided the majority of the supporting structure for the nests in beetle 

banks, whereas the absence of such tussocks in the field margins resulted in thorns 

such as hawthorn, blackthorn and brambles being preferred.   

 

Non-breeding nests of around 4 cm diameter, used as shelter by non-breeding mice 

are also built throughout the year.  During the winter, the harvest mouse often 

builds nests in the base of grass tussocks close to the ground, but also uses a wide 

variety of sites for nest building, from old bird nests to stacks of bales, walls and 

banks (Harris 1979b).  A study in Japan surveyed land where farmers burn away the 

native grass Miscanthus sinensis and discovered that nest building at ground level 

commonly occurred after the burn, which was in the non-breeding season between 

September and March (Ishiwaka et al. 2010). 

 

4.1.7 Predation, competition and survival 

Harvest mice, and particularly the young, are included in the diet of many different 

predators: birds such as owls (Order Strigiformes), kestrels Falco tinnunculus and 

crows Corvus spp., as well as larger birds that are usually less likely to eat small 

mammals, such as pheasants Phasianus colchicus and blackbirds Turdus merulus.  
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Harvest mice are also eaten by a range of mammalian predators including foxes 

Vulpes vulpes, weasels Mustela nivalis and domestic cats Felis catus; as well by 

adders Vipera berus  and toads Bufo spp. (Trout and Harris 2008; Nelson et al. 2005; 

Harris 1979b). 

 

The harvest mouse suffers from competition with larger mammals, particularly 

browsing deer (Order Artiodactyla) in young woodlands (Flowerdew & Ellwood 

2000).  This can involve direct competition for food resources such as fruits, 

seedlings and herbs, or it may be less direct, through destruction of nesting habitat 

and cover (e.g. grazing of grasses and removal of scrub). 

 

Ylönen (1990) attempted to quantify competition between the harvest mouse and 

the bank vole Myodes glareolus using 0.5 ha enclosures where food availability was 

controlled.  Where there was only one food station available in each enclosure, the 

voles excluded the mice, leading to poor harvest mouse survival rates over winter 

and a slowed growth of the population during the next breeding season.  However, 

where food supplies were numerous and distributed evenly throughout the 

enclosures, harvest mice fared as well as the voles, and the voles actively avoided 

the mice (Ylönen 1990).  The author also conducted some laboratory-based trap-

choice experiments and found that bank voles preferred to enter a trap containing 

the odour of another vole rather than a washed one or one that had previously 

contained a harvest mouse.  The harvest mice showed neither preference nor 

avoidance of any trap odour, indicating that the mechanism of competitive 

exclusion of harvest mice by bank voles is primarily through food limitation, rather 

than by direct physical avoidance.    

 

In some habitats, both harvest mice and wood mice use the available resources in a 

three-dimensional manner, by climbing vertically into the vegetation where they 

lead an arboreal existence, as well as spending time at ground level.  Factors such as 
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the life history, larger size and lower energy requirements of the wood mouse mean 

that it is likely to be competitively superior over the harvest mouse in these 

arboreal niches that are not exploited by other small mammal species (Riordan et 

al. 2007).  

 

4.1.8 Effects of land management   

Stubble-burning after harvest can be devastating to populations of harvest mice, 

particularly where the field headlands are also affected.  Other rodents have been 

observed to move out of the path of the fire ahead of the burn, but harvest mice 

appear not to do this, and subsequent examination of affected areas has suggested 

that this causes substantial mortality rates (Harris 1979a; Trout 1978a).   

 

Habitat containing tussocky grasses suitable for harvest mice, can be found on road 

verges, but the time of year at which these are mown usually coincides with the 

peak of the breeding season and is therefore likely to result in mortality of any 

litters of young mice within the nest at the time (Harris 1979b).  A study of the 

management of reedy ditches alongside agricultural land in The Netherlands found 

that mowing ditch sides in alternate years, rather than annually, led to higher 

numbers of harvest mice where the resulting reed vegetation provided cover over 

the winter (Huijser et al. 2001).  Similarly, in their Japanese range, a change in the 

management of embankments to intermittent mowing of Miscanthus sacchariflorus 

resulted in a greater number of harvest mouse nests and an extended nesting period 

in comparison with embankments where regular mowing was carried out (Hata et 

al. 2010). 

 

Agricultural management in Great Britain has changed dramatically in the last 50 

years.  For example, Chamberlain et al. (2000) report six-fold increases in silage 

production from 0.2 x 104 tonnes dry matter (t dm) in 1970 to 1.2 x 104 t dm in 

1990.  During the same period, hay production halved from 0.8 x 104 t dm to 0.4 x 
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104 t dm.  Hay meadows are only cut once in late summer, when the grass is tall 

and has seeded, whereas silage is cut 2-3 times over the growing season, before the 

seed has set (Chamberlain et al. 2000).  As a result, the hay meadows provide better 

habitat for the harvest mouse than silage swards. 

 

Timing of harvest can also impact on harvest mouse populations in cereal crops.  

Winter cereals are generally sown between September and December to allow 

shoot emergence before the first frosts, then are harvested in July – August, 

coinciding with the peak of the harvest mouse breeding season.  Spring cereals are 

sown in February and then harvested in August – September, allowing any existing 

harvest mouse populations time to breed before harvest (Harris et al. 1995).  During 

the late-20th Century, there was a general switch towards winter-sown rather than 

spring-sown crops.  The main reason for spring sowing of cereals was to aid weed 

control, as the physical process of ploughing the land in spring enabled destruction 

of any weeds that had germinated over the winter (Chamberlain et al. 2000).  The 

advent of pre-emergent and grass herbicides has resulted in winter crops becoming 

more prevalent than spring ones: in 1965, the area of winter wheat in the UK was  

5 x 105 ha, rising to 17 x 105 ha by 1995.  Over the same period, the area of spring 

wheat fell from a maximum of 2.6 x 105 ha to 0.1 x 105 ha (Chamberlain et al. 2000).  

Despite the apparent advantage of spring crops for harvest mice, Harris (1979b) 

suggests that winter cereals could provide nesting habitat earlier in the season than 

would be possible in spring-sown crops, even if there is an increased risk of 

mortality for young still in the nest by the time that the winter crops are harvested. 

 

Advances in arable mechanisation have led to a more uniform crop plant 

distribution, through drilling seed in rows directly under the soil surface.  The 

older method of broadcasting seed onto the surface of the soil tended to produce 

uneven and sometimes dense patches of crop plants, which were deemed more 

suitable for harvest mouse nest building (Harris 1979b).  These changes, and other 
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advances such as combine harvesters replacing reaping machines, were formerly 

thought to have had negative effects on harvest mouse populations.  This is no 

longer believed to be the case, as the animals continue to inhabit crop fields 

established by drilling the seed (Harris 1979b).  The harvest mice are thought to 

escape to ground level as the combine harvester passes, resulting in fewer 

mortalities within the harvester than was originally believed.  Straw left lying on 

the ground by the combine harvester gives cover to the mice as they move to 

nearby hedgerows; although they are still vulnerable to avian predators during this 

time (Harris 1979b). 

 

4.1.9 Population status 

The current population and conservation status of the harvest mouse is unclear.  It 

is thought that numbers have suffered declines in the last century, but survey data 

are scarce and casual sightings may have reduced with mechanisation of harvesting 

processes, which has physically removed humans further away from the crop than 

when harvesting was carried out by hand or by more basic machinery (Harris 

1979b).  There has, however, been sufficient concern at a possible decline for the 

harvest mouse to be listed as a UK Biodiversity Action Plan (UKBAP) species 

(Sibbald et al. 2006).  It also appears on the International Union for Conservation of 

Nature (IUCN) Red List, although it is currently designated as a species of least 

concern due to its worldwide distribution as a common species, combined with the 

absence of any major threats (Aplin et al. 2008). 

 

Local harvest mouse populations can fluctuate enormously, with climatic factors 

such as heavy rainfall and extreme temperatures being responsible for higher 

mortality rates than predation (Harris 1979b).  There are also marked seasonal 

fluctuations; harvest mouse populations peak in November and reach their lowest 

numbers in February and March (Haberl & Krystufek 2003; Harris 1979b; Trout 

1978a).   
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Harris (1979a), in conjunction with the Mammal Society, conducted a survey of 

harvest mouse presence across the UK between 1973 and 1977, by means of 

enlisting the general public to complete recording sheets.  1,205 record sheets were 

returned and the results are shown in Table 4.2.  It should be borne in mind, 

however, that this survey relied on the enthusiasm of non-randomly distributed 

volunteers and therefore may not be a true reflection of harvest mouse distribution 

(Harris 1979a). 

 

Table 4.2 Harvest mouse records from 1973-1977 courtesy of Harris (1979a). 
Country County  Number of records 
England 53 Watsonian vice-counties 1167 
Wales         Pembroke  4 
         Monmouth  17 
         Glamorgan  13 
         Caernarvon  2 
 Total 36 
Scotland Edinburgh only 2 

 

Another major survey was undertaken by the Mammal Society in 1997, whereby 

sites previously known to have harvest mouse presence were searched for breeding 

nests.  Of the original 800 sites monitored, a nest presence level of only 29% was 

present in 300 sites and suitable habitat for harvest mice was no longer present in 

24% of sites (Flowerdew 2004).  It is unclear as to the mechanism for this change, 

but it is possible that even small changes within previously suitable habitat could 

render it unsuitable for harvest mice.  

 

Possible reasons for declines in harvest mouse numbers are thought to be related to 

loss of suitable habitat caused by a loss of hedgerows, removed in order to increase 

field sizes and agricultural intensification.  Old-fashioned cereal varieties tended to 

have longer stems, which were easier to handle during harvest with reaping 

machines, and the long straw had subsequent uses such as for thatching roofs.  

However, these long-stemmed varieties were prone to “lodging”, where the stems 
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bend or break when subjected to heavy rain or wind, resulting in flattened areas of 

the crop.  These flattened areas remain damp and are then difficult to harvest, as 

well as resulting in reduced grain quality.  For this reason, shorter-stemmed cereal 

varieties are now favoured by farmers due to their increased resistance to lodging, 

and these may not provide adequate height for the building of breeding nests by 

harvest mice (Harris et al. 1995).  In the 1940s and 1950s, harvest mice were still 

found in high numbers in the traditional ricks where cereals were stored prior to 

threshing (Harris et al. 1995; Venables & Leslie 1942), but the advent of the 

combine harvester ended the requirement for ricks as storage and therefore 

resulted in a further loss of winter habitat for the harvest mouse.   

 

Predation by owls provides a further means of monitoring harvest mouse numbers, 

through analysis of pellet contents.  A survey of barn owl pellets by the Mammal 

Society found that harvest mice accounted for 2.2% of barn owl prey species 

(Sibbald et al. 2006).  Love et al. (2000) compared barn owl pellet contents between 

a first period of 1956 - 1974 and a second from 1993 - 1997.  There was a marked 

increase in the median percentage frequency that harvest mouse remains were 

found between the two periods.  This increase appears to contradict the findings 

over a similar period of time reported by Flowerdew (2004), although Love et al. 

(2000) suggest that loss of habitat has resulted in the remaining harvest mouse 

populations being at higher risk of predation.  There was a rise in the percentage of 

arable sites in the pellet survey, from 37% in 1974 (of which 58% of sites where 

harvest mice were found were arable) to 60% in 1997 (of which 80% of harvest 

mouse sites were arable; Love et al. 2000).  However, it is unclear whether there is a 

link between increasing area of arable sites and barn owl predation rates, or 

whether some other mechanism related to management is in effect.  The 1997 

survey also revealed harvest mouse presence in the North of England for the first 

time, but an absence from barn owl pellets from Wales and Scotland, where they 

had been reported in small numbers in the 1974 survey (Love et al. 2000).   
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A further study in 1997 investigated predation by the British domestic cat.  Data 

were collected by means of questionnaires completed by cat owners, regarding the 

types of prey items brought into the home, therefore relying on the ability of 

householders to identify various small mammals.  Approximately 30% of small 

mammal prey were categorised by householders as “mice” or “unknown mammal”, 

but where harvest mice were identified and reported, they comprised around 2% of 

the total (Woods et al. 2003).  Although this does not provide a definitive estimate 

of the numbers of harvest mice preyed on by domestic cats due to the identification 

difficulties and also the possibility of small prey being consumed in situ without 

being brought home, the proportion is similar to the 2.2% of prey items reported 

for barn owls by Love et al. (2000). 

 

National population estimates of harvest mice are almost impossible to calculate, 

due to the lack of population density data, fragmented winter habitats and 

fluctuating local populations (Harris et al. 1995).  However, Harris et al. (1995) used 

meta analysis to determine the ratio of wood mice to harvest mice (27:1), allowing 

them to arrive at a pre-breeding population estimate of 141, 500 harvest mice in 

England and 10,000 in Wales.  The data used by Harris et al. (1995) came from a 

range of trapping and owl pellet samples, which in themselves showed great 

variation.  These data are shown in Table 4.3 with further calculations from papers 

published since 1995. 
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Table 4.3 Analysis of different small mammal studies using ratios of wood mice to harvest mice as a 
means of estimating harvest mouse populations. 
Type of study Time of 

year 
Ratio of wood 
mice to 
harvest mice 
 

Source 

Trapping in agri-environment 
prescriptions on arable farms (new 
farm woodlands, permanent set-aside, 
2 m and 6 m margins).  Ratio relates 
to total catch from all areas surveyed. 
 

Nov-Dec  
 

43:1  (2003) 
69:1  (2004) 

Askew et al. 
(2007) 
 

Trapping in roadside verges (tripping 
weight set at 10g to reduce shrew 
captures, therefore also excluding all 
but pregnant female harvest mice 
from capture). 
 

Aug-Sep 73:1 Bellamy et al. 
(2000) 

Trapping in new farm woodlands, 
farmland and hedgerows. 

Nov-Dec 1:1  (new 
woodlands) 
9:1  
(farmland) 
61:1  
(hedgerows) 
 

Moore et al. 
(2003) 

Barn owl pellet analysis. 
 

Not 
known 
 

15:1 Love et al. 
(2000) 

Cat predation questionnaires. 
 

Not 
known 
 

11:1 Woods et al. 
(2003) 

Meta analysis of methods below: Not 
known 
 

27:1  (total) Harris et al. 
(1995) 

     Barn owl pellets       9:1  
     Short eared owl Asio flammeus 
pellets 

      81:1  

     Bottle samples       37:1  
     Trapping samples       58:1  
Mean ratio from above studies  34:1 ±9 (1SE)  
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4.1.10 Benefits of harvest mouse presence in agricultural crops 

Even though the harvest mouse can cause some minor damage to yield when found 

in cereal crops, its presence could also be beneficial as pests such as wheat aphids 

are included in its diet (Harris 1979b).  Indeed, field evidence for control of crop 

pests by harvest mice come from a Japanese study (Ishiwaka & Masuda 2008), in 

which experimental enclosures of Guinea grass Panicum maximum suffered less 

leaf damage from introduced armyworm Mythimna seperata caterpillars where 

harvest mice were present and this effect may also occur in crops containing native 

British pest species. 

 

The broad diet of the harvest mouse, which includes invertebrates, means that it is 

vulnerable to the effects of agrochemicals and this has prompted the suggestion that 

its presence can therefore be used as an indicator of good quality habitat within an 

arable setting (Bence et al. 2003). 

 

4.1.11 Aims of the study 

Initial findings in Year 1 (Chapter 3) in crops of reed canary grass Phalaris 

arundinacea and Miscanthus x giganteus suggested that harvest mouse presence at 

site ‘N’ was predominantly in and around the Phalaris and the north hedge 

adjoining it, as determined by the presence of above-ground nests and live captures 

(Figure 4.2).   The primary aims of this study were therefore to: 

1. Widen the survey area at site ‘N’ and intensify the trapping sessions in order 

to pinpoint the distribution and movement of harvest mice around the 

Phalaris and Miscanthus crops, 

2. Determine whether harvest mice were also present in the adjacent hedges 

and cereal crops, 

3. Analyse seasonal trends in harvest mouse presence in the crops and 

surrounding habitats (if present), 
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4. Assess if there was evidence of breeding in the different crops and 

surrounding habitats , 

5. Assess characteristics of the crop/non-crop vegetation in relation to harvest  

 mouse presence, and 

6. Investigate the biology of the harvest mice present in the biomass crops by 

describing variables such as weight, sex etc.  
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4.2 Materials and methods 

4.2.1 Traps 

Longworth live traps were used as described in Chapter 3.  The trap-door treadles 

were adjusted to maximum sensitivity in order to increase the likelihood that the 

light weight of the harvest mice would trigger the trapdoor mechanism.  This also 

increased the chances of catching shrews and therefore extra provision of live food 

was made to prevent shrew mortalities.  The traps were provisioned with mixed 

seed and live mealworms (Tenebrio molitor larvae) and filled with bedding hay to 

ensure that any animals trapped had plenty of food and warmth until the traps 

were checked at dawn and dusk (with additional midday checks in summer).  

During hot weather, pieces of carrot were added as a moisture source and traps 

exposed to the sun were shaded with pieces of Hessian sacking.   

 

 
Figure 4.1 Longworth traps suspended on tripods in Phalaris (left) and barley (right). 
 

Tripods were constructed from 1 m bamboo poles wired together, with a slightly 

sloping platform of 5 mm plastic mesh attached approximately 40 cm above ground 

level.   Once both cereal and biomass crops had reached a height of 50 cm, the 
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locations of Longworth traps along the transect were alternated between ground 

level and elevated positions.  The elevated traps were placed on tripods so that the 

entrances were in contact with the vegetation in an effort to target harvest mice 

dwelling in the stalk zone (Figure 4.1).   

 

4.2.2 Transects 

The locations of the trapping transects are shown in Figure 4.2.  Transects were 

approximately 40 m in length and ten Longworth traps were set approximately 4 m 

apart along each transect line.  Transects were originally laid at 20 and 100 m from 

the same crop edge that was used in Year 1 into Miscanthus 1 and the Phalaris 

crops.  However, it became apparent that in order to assess the wider distribution of 

harvest mice throughout the field, trap lines needed to be increased to include a 

transect nearer to the south hedge (180 m), and all three equivalent distances in the 

slightly younger Miscanthus  2.  A line of traps was also positioned in each of the 

four surrounding hedgerows and on the other side of the north hedge bordering the 

barley field.  For the first three surveys, additional trap transects were set in the 

crop and hedgerow of the Miscanthus 3 field across the track from the main field.  

However, these were suspended after harvest of the biomass as no harvest mice 

were trapped there during the time-span in which they were trapped in the main 

field and the resulting spare traps were used to increase coverage of the main field 

as described above.  Additionally, trap lines were set in adjacent fields of maize and 

spring barley from when the crop had reached a height of approximately 20 cm, 

until harvested. In order to maximize access and minimize crop damage, these 

transects were located at 20 and 50 m from the edge of the crop and followed tram-

lines (sparse crop growth along the parallel narrow lines made by tractor wheels 

during crop management) where possible (see Figure 4.2 for transect locations and 

Table 4.4 for descriptions and numbers). 

 



   
S.J. Clapham  215   

 

 
Figure 4.2 Positions of the transects within the different crops at site “N” (bold red transect lines 
show approximate position and length).  
 

Monthly trapping was performed at monthly intervals (for dates see Table 4.5), 

with the traps left in position for 48 hours.  The traps were initially set up by 

midday on the first day, and checked at each dawn and dusk, with additional 

midday checks during long summer days following practices recommended by 

Gurnell & Flowerdew (2006). 
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Table 4.4 Description of transects used for Longworth trapping, indicating distances into the crops 
from the edge (m). 

Transect no. Location (distances indicate position relative to the crop edge) 
1 Phalaris 20 m (previously established) 
2 Phalaris 100 m 
3 Phalaris 180 m 
4 Miscanthus 1 20 m (previously established) 
5 Miscanthus 1 100 m 
6 Miscanthus 1 180 m 
7 Miscanthus 2 20 m 
8 Miscanthus 2 100 m 
9 Miscanthus 2 180 m 
10 North hedge (main field) 
11 West hedge (main field)  
12 South hedge (main field) 
13 East hedge (main field) 
14 Barley field hedge 
15 Miscanthus 3 20 m (field 2) (suspended after March harvest) 
16 Hedge 1 (field 2) (suspended after March harvest) 
17 Hedge 2 (field 2) (suspended after March harvest) 
18 Barley 20 m 
19 Barley 50 m 
20 Maize 20 m 
21 Maize 50 m 

 

Table 4.5 Dates of trapping sessions in Year 2 at site “N”. 
Date Comments 
19-21 Feb 2009 Both crops intact 
24-26 Feb 2009 Both crops intact 
04-06 March 2009 Miscanthus 1 & 2 now stubble, Phalaris intact 
23-25 March 2009 Phalaris now stubble.  Transects expanded to include 180 m in 

Miscanthus 1 & 2 and Phalaris 
08-09 April 2009 Only surrounding woodland and biomass bale stack trapped 
21-23 April 2009  
19-21 May 2009  
01-03 July 2009 Added barley 20 and 50 m transects, tripods in use throughout 
04-06 Aug 2009 Added maize 20 and 50 m transects 
02-04 Sept 2009 Barley now stubble 
29 Sept – 01 Oct 2009  
27-29 Oct 2009 Maize now stubble 
24-26 Nov 2009 Miscanthus traps taken off tripods and placed at ground level as 

wind and crop movement causing traps to fall off tripods 
(05-07 Jan 2010) Intended survey not carried out due to extreme winter weather 
26-28 Jan 2010 Miscanthus 2 harvested, Miscanthus 1 and Phalaris still 

standing – final trapping survey 
February 2010 Remainder of biomass crops harvested 
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4.2.3 Biometric measurements and marking for individual identification 

Harvest mice were sexed, weighed and marked with a number code, by clipping the 

guard hairs of the dorsal fur in a unique pattern (Gurnell & Flowerdew 2006; Figure 

4.3).   

 
Figure 4.3 Coding system used for marking the harvest mice. Small areas of guard hair on the 
animal’s back are clipped to expose the grey under-fur in the numbered locations to produce the 
individual codes (adapted from Gurnell & Flowerdew 2006). 
 

Available codes for the fur clipping ranged from 0001 to 3456 (see Figure 4.4), 

whereby the use of the numbers 1-6 once per code gave a total of 54 possible 

unique codes.   

 

Harvest mice at the beginning of the coding system would have less fur removed 

than those at the end, where up to four areas of fur could be cut.  This was of 

concern, as the insulation and waterproof properties of the coat could be 

compromised.  As it was thought possible that no animals would be caught for a 

period of time over the summer during which the marks might disappear, it was 

decided that marking carried out before harvest in spring 2009 would include a 

prefix of 1 in all records.  Animals caught after harvest would be marked from the 

beginning of the coding system again (therefore removing less fur) and a prefix of 2 

would be applied to distinguish them from pre-harvest capture records.  Therefore 
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the code for the first mouse caught in spring was HM10001 (Harvest mouse 10001) 

and the first in autumn was HM20001. 
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Figure 4.4 The dorsal marking positions available to create 54 unique codes, whereby each number 
is only used once at a time. 
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Figure 4.5 Photographs of the harvest mouse fur-clip marking system (clockwise from top left 0015, 
0035, 0056 and 0145).  
 

The harvest mice were then photographed (Figure 4.5 for examples) in order to aid 

recognition if recaptured and they were then released at the trap location.   The 

intention was not only to record harvest mouse presence in the crops, but also to 

mark as many individuals as possible in order to track their movements around the 

study area. 

 

4.2.4 Additional traps  

During the first two surveys in February 2009, some of the hedge transects had an 

occupancy rate of 70-100%.  At these occupancy levels, it is recommended to 

increase trap capacity (Gurnell & Flowerdew 2006).  After harvest, it was thought 

that there might be migration from the crops into the hedges (Harris 1979b) and 

with the possible higher trap occupancy, trap numbers in the hedges were doubled 

for the survey immediately after harvest in March 2009, with two traps at each 

position instead of one.   

 

It was not known exactly at what point in the year the harvest mice leave the stalk 

zone for an existence on the ground, although it is thought to coincide with the 
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die-back of vegetation in the autumn (Riordan et al. 2007).  It was therefore 

decided that as soon as harvest mice were caught on the ground as well as in the 

aerial traps, an additional five traps per transect would be placed on the ground 

(one underneath each raised trap), in order to maximise chances of capture.  This 

was only relevant for Phalaris (from the beginning of October) as no harvest mice 

were caught in elevated traps in the Miscanthus and due to problems with crop 

movement in windy conditions causing the traps to fall off the tripods, all 10 traps 

in Miscanthus were placed on the ground from November onwards.  As harvest 

mice continued to be caught in the elevated traps in the Phalaris, the 15 traps per 

transect were used until the surveys ended. 

 

4.2.5 Additional surveys 

Trapping 

Immediately after harvest of both grass crops was complete, no harvest mice were 

trapped in the stubble or hedges.  In order to determine whether they had moved 

beyond the hedgerows, a 24 hour trapping period was carried out in the woodland 

scrub around the west and south edges of the field using 100 traps.  In each line of 

10 traps, 2 were elevated on a tripod in order that the entrance was accessible to 

any animals in brambles and other understorey vegetation.  Traps were also laid in 

and around a pile of bales from the 2008 biomass harvest in a neighbouring field. 

 

Nest searches 

Every month, the crops and hedges were searched for nests.  This was done by 

walking slowly through the crops whilst looking for the characteristic above-

ground nests.  Searches in the hedgerows consisted of examining clumps of 

cocksfoot and other grass tussocks as well as brambles and blackthorn. 
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Barn owl pellet analysis 

A barn owl Tyto alba was seen hunting in the biomass crop field and two roosts 

were found within 1 km of the field (Figure 4.6).  One of these was a hollow (but 

living) ash tree in a hedge-line and the other was in a barn (used for storage of 

wood and machinery, but little-used by humans) at the periphery of a group of 

farm buildings.  From October to January (avoiding the owls’ breeding season), 

these roosts were visited monthly and all visible pellets collected.  It was apparent 

that the barn was not in regular use by barn owls at the time, as no new pellets 

were found after the initial collection, but the ash tree was observed to be in 

regular use and new pellets were found during some of the monthly collections.  A 

total of 79 pellets and a large quantity of loose pellet debris were recovered from 

both roost sites for analysis of small mammal content.  Pellets were soaked in luke-

warm water and skulls and jawbones were separated from fur and other bones 

under a dissecting microscope.  These were then identified to species using Yalden 

(2009) and a record was made of the number of skulls and lower left and right 

dentaries for each species.  All pellets collected from the same site on the same date 

were analysed as a ‘batch’, although each pellet was dissected and counted 

individually.  In order to calculate the actual number of each small mammal species 

per batch, the maximum number of either skulls, left or right dentaries in each 

batch was used (Love et al.  2000).  Calculations were then made of the percentage 

of each species found at each roost site.  It was not possible to analyse pellet 

contents by month as new pellets were not found on every visit and collections 

only took place from September to January.  The age of pellets deposited in dry 

places can be estimated by certain characteristics of the pellet matrix (Ramsden & 

Ramsden 2002) but one end of the barn and the ash tree roost were exposed to rain, 

causing deterioration of the pellet matrix and rendering it impossible to estimate 

when they might have been deposited. 
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Figure 4.6 Map showing the two barn owl roosts from which pellets were collected for analysis, in 
relation to the biomass crop field.   
 

Vegetation characteristics 

Vegetation surveys were carried out once in late autumn 2009 in the Phalaris and 

Miscanthus.  A 50 cm x 50 cm quadrat was placed at five regularly spaced locations 

along each transect and an estimation was made of percentage cover of all vascular 

plant species, litter and bare ground.  Crop height was also measured by taking five 

stems at each quadrat location and recording the distance from ground level to the 

topmost leaf ligule. 

 

4.2.6 Data analysis 

Data were analysed using the statistical package STATISTICA 10.0 (StatSoft Inc).  

Normality of distribution was assessed using the Shapiro-Wilk test.  Factorial or 

one-way Analyses of Variance (ANOVA) were used where data were normally 

distributed.  Where non-Gaussian distributions occurred, it was impossible to 

achieve normality using transformations.  In these instances, differences in harvest 

mouse abundance between the different crops, transects and time periods, as well as 
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sex and weight were tested using non-parametric Kruskal-Wallis tests.  Generalized 

linear models (GLM) were used to describe relationships between harvest mouse 

abundance, crop characteristics and the abundance of other small mammal species, 

as well as describing factors relating to body weight and the height of trap in which 

they were caught. 

 

Comparisons between trapping periods were made using a calculation of numbers 

of individual animals per 100 trap-nights (TN), where one TN represents one trap 

set for one night.   

 

Abbreviations used in tables and figures are as follows: WM: wood mouse, HM: 

harvest mouse, BV: bank vole, FV: field vole Microtus agrestis, CS: common shrew 

Sorex araneus, PS: pygmy shrew Sorex minutus, WS: water shrew Neomys fodiens 

and HsM: house mouse Mus domesticus. 
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4.3 Results  

4.3.1 Number of small mammal captures 

The year-long period of monthly surveys between February 2009 and January 2010 

comprised 3,860 trap nights across the biomass crops, cereal crops and hedges.  A 

total of 1,598 captures of seven species of small mammal were made, shown in 

Table. 4.6.  Results from the first night of trapping at each session are presented in 

Chapter 3.    

 

Table 4.6 Total numbers and percentages of small mammal captures and in the 3,860 trap nights at 
site ‘N’ during the intensive survey. 
 WM HM BV FV CS PS WS 
Total captures in all habitats 809 85 400 38 199 35 32 
% of small mammal catch 50.6 5.3 25.0 2.4 12.5 2.2 2.0 
Total in Miscanthus 268 14 37 2 25 4 5 
% in Miscanthus 75.5 3.9 10.4 0.6 7.0 1.1 1.4 
Total in Phalaris 96 71 13 8 32 4 12 
% in Phalaris 40.7 30.1 5.5 3.4 13.6 1.7 5.1 
Total in both biomass crops 364 85 50 10 57 8 17 
% in both biomass crops 61.6 14.4 8.5 1.7 9.6 1.4 2.9 

 

A total of 69 harvest mice were captured 85 times.  Two escaped before marking 

was possible, but the remaining 67 were fur-clipped with individual codes. Of 

these, 34 were females, 33 were males and four had juvenile pelage (greyer dorsal 

fur).  One juvenile was found dead in a trap in November 2008 despite food 

remaining in the trap, but no further harvest mouse mortalities occurred in the 

survey year.   

 

No harvest mice were caught during the additional survey of the woodland scrub 

and bale stack after the harvest of biomass in March 2009.  Despite this, there was 

evidence of previous small mammal activity in the bale stack with small tunnels 

and some nests visible within the material, although it could not be determined 

which small mammal species had made the nests. 
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In comparison with estimates of harvest mouse populations from published work 

elsewhere, site ‘N’ contained a low ratio of wood mice to harvest mice, calculated as 

follows: 10:1 (all areas surveyed throughout the year), 5:1 (biomass crops only 

throughout the year) and 3:1 (biomass crops only during the months in which 

harvest mice were caught).  When taking into account percentage cover of the 

biomass crops, transect location and other rodent species, a GLM explaining harvest 

mouse abundance showed a significant association (P <0.0001) between the 

abundance of wood mice with harvest mice (Wald statistic = 205.259, df = 1, 

Poisson distribution, log-link function).  Scrutiny of the parameter estimate showed 

this to be a negative association (estimate = -0.021 ±0.002).  

 

4.3.2 Crop preference and evidence of breeding 

Harvest mice were markedly more abundant in the Phalaris than the Miscanthus, 

with the total number of captures standing at 71 and 14 respectively (including all 

recaptures).  GLM analysis of harvest mouse abundance in relation to capture 

month, crops and transects showed this to be significant result (P <0.0001; Figure 

4.7 and Table 4.7). 
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Figure 4.7 Mean numbers ±1 SE of harvest mice per 100 TN (trap nights) in both biomass crops 
between the months of September and March (the months during which harvest mouse captures 
were made).  
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Table 4.7 Results from a generalized linear model (GLM) describing variation in harvest mouse 
abundance in the two biomass crops, taking into account the month of capture and crop species 
(independent variables, all treated as fixed factors), using a log link function for a Poisson 
distribution.  
 df Log-likelihood Chi - square P - value 
Intercept 1 -146.600     
Crop type 1 -122.595  48.0081  <0.0001 
Month 6 -68.883  107.4249  <0.0001 
Crop type*Month 3 -62.090  13.5869    0.004 

 

There also appeared to be a difference in the distribution of the sexes between the 

Miscanthus and Phalaris cropped areas.  Whilst numbers of males and females in 

Phalaris were not significantly different (Wilcoxon matched pairs test Z = 0.928,     

N = 71, P = 0.353), there were significantly more males than females in Miscanthus 

(Wilcoxon matched pairs test Z = 2.354, N = 14, P = 0.019).  There were also 

significantly higher numbers of females in the Phalaris than the Miscanthus 

(Kruskal-Wallis H (1, N = 85) = 8.176, P  = 0.004) and more males in the Miscanthus 

than Phalaris (Kruskal-Wallis H (1, N = 85) = 8.176, P = 0.004).  These differences 

are plotted in Figure 4.8. 
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Figure 4.8 Distribution of male and female harvest mice in the two biomass grass crops.  Values 
shown are mean per capture ±1SE.    
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None of the captured females appeared to be pregnant or lactating at the time of 

capture.  Four of the harvest mice were considered to be in juvenile pelage and 

were therefore estimated to be <30 days old at the time of capture.  A total of 18 

breeding harvest mouse nests were found in the Phalaris, north hedge and the 

fence line between the barley field and the track (Figure 4.9), but only in winter 

2008/09.  No breeding nests were found in the winter of 2009/10.  Where breeding 

nests were present in Phalaris, they were constructed from the crop leaves and 

were suspended in between Phalaris stems rather than any other non-crop plant.  

Nests found in the hedgerows were predominantly built in clumps of cocksfoot 

with three found suspended on bramble stems. 

 

 
Figure 4.9 Map of the site “N” showing the distribution of harvest mouse nests (bold red transect 
lines not to scale).  © Crown Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap 
supplied service. 
 

4.3.3 Distance into the crops 

The highest numbers of harvest mice caught within the crops tended to be found in 

the 20 m transects, followed by 100 m and 180 m although this was not a significant 

difference (Kruskal-Wallis H (2, N = 45) = 2.729, P = 0.256, Figure 4.10). 
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Figure 4.10 Mean number per 100 TN of harvest mice found in the transects at different distances 
into the biomass crops. 
 

4.3.4 Times of day trapped 

Mean time elapsed between trap checks throughout the day ranged from 13.5 

trapping hours for the morning check, 5.5 hours for the midday check and 4 hours 

for the evening check.  The highest numbers of harvest mice were caught in the 

morning (Table 4.8), but when these figures were adjusted to capture rate per hour, 

no significant difference existed between the different times of day in which the 

traps were checked (F(4, 21) = 0.660, P = 0.627.  There was also no significant 

difference between the sexes in terms of how many were caught in each time 

period (F(4, 40) = 0.792, P = 0.537). 
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Table 4.8 Total and mean captures per trapping session and per trap hour of male and female harvest 
mice at different times of day in both biomass crops during the months in which they were captured 
(September – March). M = Miscanthus, P = Phalaris. 
Time Sex Total Mean ± SE Mean per hour 

M   P M P Combined crops 
AM Male 6 27  1.5 ± 0.9 3.0 ± 1.0 0.15  

Female 1 29  0.3 ± 0.3 3.2 ± 0.9 0.14  
MID Male 3 1  0.8 ± 0.5 0.1 ± 0.1 0.05  

Female 0 7  0.00 0. 0.8 ± 0.4 0.08  
PM Male 3 3  0.8 ± 0.5 0.3 ± 0.2 0.10  

Female 1 4  0.3 ± 0.3 0.4 ± 0.2 0.08  
 

Capture rates during the day (combined midday and dusk checks) increased during 

the winter, but this was not a significant effect (Figure 4.11). 
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Figure 4.11 Relative proportion of harvest mouse captures at different times of day in the three 
seasons in which they were caught.  Figures represent the number of captures per hour for the 
different times of trap check (AM = dawn, MID = midday, PM = dusk). 
 

4.3.5 Recaptures 

56 harvest mice were caught once only.  Eleven were recaptured, representing 16% 

of the total (Table 4.9).  One individual (HM10013) was caught seven times, and 

was found in the same trap in five out of six checks during one survey. 
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Table 4.9 Details of the number of times individually marked harvest mice were recaptured, dates of 
first and last capture and the biomass crop(s) where caught. 
Individual 
ID 

Sex 
 

Date of first 
capture 

Date of last 
capture 

Times 
caught 

Crops in which 
trapped 

HM10003 M 20/02/09 26/02/09 2 Phalaris & Miscanthus 
HM10004 F 21/02/09 25/02/09 2 Phalaris 
HM10012 M 21/02/09 25/02/09 2 Phalaris & Miscanthus 
HM10013 M 26/02/09 06/03/09 7 Phalaris & Miscanthus 
HM10025 F 25/02/09 25/02/09 2 Phalaris 
HM10026 M 25/02/09 26/02//09 2 Phalaris 
HM10056 M 26/02/09 06/03/09 2 Phalaris & Miscanthus 
HM20001 F 04/09/09 28/01/10 2 Phalaris 
HM20005 F 01/10/09 26/11/09 3 Phalaris 
HM20014 F 01/10/09 29/10/09 3 Phalaris & Miscanthus 
HM20123 F 25/11/09 26/11/09 2 Phalaris 

 

Of the eleven recaptured harvest mice, five were male and six were female.  One 

(HM20005) was considered to be in juvenile pelage on first capture, but had 

moulted into an adult pelage by the time it was recaptured 56 days later. 

 

Time from first to last capture ranged from eight hours (HM10025) to 146 days 

(HM20001).  No animals marked in spring 2009 were captured later in the year.   

 

Five harvest mice moved from one crop to the other: two from Phalaris to 

Miscanthus and three in the opposite direction.  Apart from one, all other 

recaptures (both within the same or a different crop) were within the same distance 

from the crop edge.  There was some movement along the transects themselves 

however, with eight of the eleven being caught in different trap positions when 

recaptured.  Maximum distance travelled by any recaptured harvest mouse was 

approximately 85 m (HM 20014 – initially caught in Phalaris 20 m, subsequently in 

Miscanthus2, 20 m, and finally in Phalaris 100 m).  Recaptured harvest mice 

travelled a mean distance of 12.5 ±6.1 m (median 4 m). 
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4.3.6 Body weight 

Harvest mouse body weight varied significantly between seasons and this seasonal 

difference was sex-dependent, (Table 4.10). 

 

Table 4.10 Results from a generalized linear model (GLM) describing variation in harvest mouse 
body weight taking into account sex and season, using a log link function for a normal distribution. 

 df Deviance Resid. df Resid. Dev F Pr(>F) 

Null   75 60.222   

Season 22 19.728 73 40.494 21.613 <0.00001 

Sex 1 1.9134 72 38.580 4.193 0.044 

Season:Sex 2 6.633 70 31.947 7.267 0.001 

 

Overall, male harvest mice were significantly heavier than the females (mean 6.49 

±0.15 g and 5.97 ±0.1 g respectively, Kruskal-Wallis H (1, N = 84) = 6.417,                

P = 0.011) as shown in Figure 4.12. 
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Figure 4.12 Mean body weights ±1SE of male and female harvest mice at site ‘N’.  
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Scrutiny of the coefficient values from the GLM showed that the difference in body 

weight in males compared with females was greater in winter than in autumn 

(estimated seasonal change in the sex-difference in body mass 0.204 g, SE 0.057 g, t-

value 3.598, P < 0.001).  Male harvest mouse body weight was at its maximum in 

winter and lowest in autumn (Figure 4.13). 
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Figure 4.13 Seasonal changes in the body weight of male and female harvest mice.  Values shown are 
mean weight (g) ±1SE. 
 

There were no significant differences between the mean weights of harvest mice 

found in the two different biomass crops when individual sexes were taken into 

account (Table 4.11).   
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Table 4.11 Comparisons of mean body weights ±1SE of harvest mice in the two biomass crops.  
Results from a Kruskal-Wallis test for body weight differences between males and females in the 
same crop are shown with P – values. 
Harvest 
mouse 
sex 

Mean weight 
(g) in 

Miscanthus 

N Mean weight 
(g) in 

Phalaris 

N df KW-H P - value 

Male 6.7 ±0.2 g 
 

11 6.3 ±0.2 g, 
 

25 1 1.360 
 

0.244 

Female 6.5 ±0.3 g 
 

2 5.9 ±0.1 g 
 

39 1 1.309 
 

0.253 
 
 

4.3.7 Seasonal differences in captures 

In spring 2009, the final capture of any harvest mice was on 6th March.  After a 6 

month absence from the traps, the first individual caught in the autumn was on the 

4th September 2009.  The number of captures in the Phalaris showed no significant 

change during the seasons in which harvest mice were being caught.  Due to the 

earlier harvest in February (classed as winter), Miscanthus showed an apparent 

absence of captures in spring.   

 

Harvest mouse captures in January 2010 were lower than expected.  Figure 4.14 

shows predicted captures for that month based on the mean catch per 100 TN in 

February and November 2009.   
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Figure 4.14 Harvest mouse captures per 100 TN for each monthly trapping session of the year-long 
survey.  The dotted line and open diamond represent the predicted catch for January 2010 based on 
abundance in February and November 2009. 
 

Other rodents also declined in number between November 2009 and January 2010, 

which was a particularly cold period, but all of the shrew species increased in 

abundance, although only in small numbers (Table 4.12). 

 

Table 4.12 Declines and increases in total catch of the rodent and shrew species between the surveys 
in November 2009 and January 2010.  
 November 2009 January 2010 Difference 
Wood mouse 48  15  -68%  
Harvest mouse 20  5  -75%  
Bank vole 5  3  -40%  
Common shrew 6  7  +17%  
Pygmy shrew 0  2  N/A  
Water shrew 7  8  +14%  

 

4.3.8 Captures at different heights  

Harvest mice were caught in the elevated traps in the Phalaris (a total of 26 

captures, Table 4.13), but were not captured at all in the elevated traps in 
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Miscanthus.  During the same period, 60 wood mice were caught in the Miscanthus 

elevated traps, more than in the elevated traps in Phalaris, where a total of 26 wood 

mouse captures were made. 

 

Table 4.13 Total numbers of harvest mice caught in traps at the two different height levels within 
the two biomass grass crops for the duration that different height traps were used (May 2009 – Jan 
2010). 
Trap height Miscanthus Phalaris 
Elevated 0 26 
Ground-level  2 12 

 

Numbers of harvest mice trapped in either the ground-level traps or those elevated 

on tripods in the Phalaris between September and January were compared (Figure 

4.15).  A total of 12 animals were trapped at ground level during that time-period, 

compared with 26 in the elevated traps, which was a significantly different result 

(Kruskal Wallis H (1, N = 24) = 5.932, P = 0.01).  The first harvest mouse caught on 

4th September was in an elevated trap, as were four of the five harvest mice caught 

in the final survey at the end of January 2010. 

 
Significant relationships between the sex of the harvest mouse and the height of 

trap in which it was captured were also demonstrated.  Females were significantly 

more likely to be found in elevated traps (Kruskal-Wallis H (1, N = 24) = 5.645,              

P = 0.018), but for males, no significant preference was seen between the two trap 

heights (Kruskal-Wallis H (1, N = 24) = 0.586, P = 0.444; Figure 4.16). 
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Figure 4.15 Seasonal changes in the numbers of harvest mice caught in elevated and ground-level 
traps (Sep 2009 – Jan 2010). 
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Figure 4.16 The relationship between harvest mouse sex and the height at which they were trapped 
in Phalaris between the months of September 2009 and January 2010.  Figures shown are means per 
transect ±1SE. 
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4.3.9 Crop characteristics and harvest mouse abundance 

A generalised linear model (GLM) was used to assess the effect of different crop 

characteristics on harvest mouse abundance.  Crop type (Phalaris), crop height and 

the percentage cover of non-crop grasses were shown to be significant predictors of 

harvest mouse abundance (Table 4.14).   

 

Table 4.14 Results from a generalized linear model (GLM) describing variation in harvest mouse 
abundance in the biomass crops taking into account various crop characteristics, using a log link 
function for a Poisson distribution. 

 df Estimate SE Wald statistic P- value 
Intercept 1 -1.398 3.241 0.186  0.667  
Crop height 1 0.017 0.006 8.636  0.003  
Crop % cover 1 -0.003 0.037 0.008  0.929  
Crop type 
(Phalaris) 

 
1 

 
3.212 

 
0.446 

 
51.977 

 
 

<0.0001 
 

Litter 1 0.039 0.038 1.070  0.301  
Bare ground 1 0.010 0.036 0.075  0.785  
Non-crop 
grasses 

 
1 

 
0.046 

 
0.009 

 
25.697 

 
 

<0.0001 
 

 

4.3.10 Barn owl pellets 

The 79 pellets and pellet-debris contained the remains eight species of small 

mammal (<50 g), as well as rat Rattus spp., chiropteran and avian remains, with 

field voles dominating the prey items (Table 4.15). 

 

Table 4.15 Prey items found in barn owl pellets from two roost sites within 1 km of the biomass crop 
field.   
Type of prey Percentage of total items 
Field vole 33.5  
Wood mouse 16  
Common shrew 13  
Bank vole 6.3  
Water shrew 6.0  
Pygmy shrew 3.9  
Harvest mouse 2.1  
Unknown bird 0.5  
House mouse  0.2  
Rat  0.2  
Unknown bat 0.1  
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Figure 4.17 Proportions of the different prey items at the two different barn owl roosts.  Asterisks 
show significant differences between the roost sites. 
 

Both wood mice and bank voles were found in higher proportions at the ash tree 

roost than the barn (Kruskal-Wallis H (1, N = 79) = 13.631, P < 0.001 and Kruskal-

Wallis H (1, N = 79) = 7.072, P = 0.008 respectively) as shown in Figure 4.17. 

 

There were also differences between the proportions of the seven small mammal 

species trapped in the crop field and found in the owl pellets (Figure 4.18).  Both 

wood mice and bank voles accounted for a higher proportion of captures from live-

trapping than from pellet items, but for field voles the reverse was seen.  All three 

shrew species appeared in the pellets in higher proportions than they were 

captured in the crop fields. 
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Figure 4.18 Comparison between the proportions of the different species caught in the biomass crop 
field over 1 year and those found as prey items in barn owl pellets (time range unknown).   
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4.4 Discussion 

4.4.1 Presence of harvest mice and nests within the crops 

Most harvest mice were trapped in Phalaris, with far fewer trapped per unit effort 

in Miscanthus and none in the hedgerows.  Harvest mouse and breeding nest 

presence in the Phalaris was not entirely unexpected, as it has previously been 

reported as one of the favoured monocotyledons used for nest-building (Harris 

1979a).  The absence of trapped individuals in the hedgerows during the survey 

year was unexpected, as several harvest mouse nests were present in the hedgerows.  

Previous studies have widely reported breeding nests in hedgerow vegetation, 

particularly in bramble, hawthorn, blackthorn and cocksfoot (Bence et al. 2003; 

Harris 1979a).  Where nests were found in the hedgerows around the biomass crops 

in the present study, they were constructed in these types of vegetation, which 

were in abundance.  This may be due to some kind of seasonal change in habitat use 

occurring; for example if the hedgerows were suitable habitat early in the breeding 

season, but the biomass crop habitat became more attractive later in the year. 

 

Despite harvest mice being trapped in low numbers in the Miscanthus, no nests 

were found there.  Harvest mice native to Japan regularly breed in Miscanthus spp. 

(Hata 2011; Hata et al. 2010; Kuroe et al. 2007) so it is possible that breeding nests 

were present in the Miscanthus crop, but not as easily detected as those in the 

Phalaris.  This may have been as a result of the mass of fallen leaves filling the space 

in between the stems near the ground and thus obscuring any nests present. 

Harvest mouse nests have been found in Miscanthus in Staffordshire (Derek 

Crawley, personal communication, Figure 4.19), so it is evident that they do at least 

occasionally breed in Miscanthus in Great Britain.   
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Figure 4.19 Harvest mouse above-ground nests in Phalaris (left; photo by Jenny Clapham) and 
Miscanthus (right; photo by Derek Crawley, Staffordshire Mammal Group). 
 

Another possibility is that, given a choice between Miscanthus and Phalaris, the 

female harvest mice preferred the stem structure of the Phalaris for nest-building 

and therefore used that in preference to the Miscanthus.  This possibility is 

supported by the finding that females were caught less frequently in the 

Miscanthus than Phalaris.  Within Phragmites reedbeds, which are structurally 

similar to Miscanthus, nest building is less common where the stem structure is tall 

and thick with abundant herbaceous vegetation compared with sparser reed stems 

and abundant grasses and sedges (Surmacki et al. 2005). 

 

No harvest mice were trapped in either the barley or maize crops.  Harris (1979a) 

reported harvest mouse presence in most types of arable crop including barley, but 

not in maize.  No other references can be found relating to harvest mice in maize, 

although Harris (1979a) cites unpublished work by Saint-Giron that showed a 

positive correlation between harvest mouse presence in barn owl pellets and the 

quantity of maize grown in the area. 

 

There was no bias in the sex ratio of harvest mice captured across the whole site.  

This is in agreement with work performed throughout the year by Trout (1978a), 

although he did find that male numbers were lower in the middle of winter.   
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Assuming that the Phalaris is the preferred crop, the higher numbers of male 

harvest mice caught in the Miscanthus could be related to their larger home range 

size of 400 m2 compared with 350 m2 for females (Trout 1978b).    Within the 

biomass crops, movement of recaptured individuals was not extensive (mean of 12 

m), which was in agreement with Harris (1979b) who reported that most harvest 

mouse movement was restricted to a straight-line distance of less than 15 m.  

Durrer et al. (2006) attached radio-transmitters to captive-bred harvest mice which 

were then released into marshland habitat.   Their positions were tracked hourly 

for 12 hours, with males moving a mean of 39 m and females 19 m.  Their results 

should be viewed with caution however, as movements of previously captive mice 

in a foreign environment may not be true of wild mice.  However, longer distances 

may have been travelled through or between the biomass crops, but these would 

only have been detected if the individuals involved had been recaptured. 

 

Miscanthus contains a higher abundance of small mammals (of most of the taxa 

present locally) than Phalaris (Chapter 3), suggesting that there are good food 

resources within the Miscanthus crop.  This may result in it predominantly being 

used by harvest mice for foraging and that breeding activities are restricted to the 

Phalaris.  The high number of other small mammals within the Miscanthus may 

create interspecific competition that may also be a factor in how harvest mice are 

distributed.  75% of small mammal captures within Miscanthus were wood mice, in 

comparison with 4% harvest mice, whereas wood mice only comprised 41% of 

captures in the Phalaris crops compared with 30% harvest mice.  Riordan et al. 

(2007) suggest that within a three-dimensional arboreal habitat populated by both 

harvest mice and wood mice, wood mice should be competitively superior due to a 

combination of biometrics and life history traits, and in the current study, 

increasing numbers of wood mice correlated negatively with harvest mouse 

numbers in the biomass crops.  Competition from bank voles is likely to be less 

intense due to their predominantly ground-dwelling existence: where food is 
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widespread and abundant, bank voles actively avoid harvest mice (Ylönen 1990).  

The only time the bank voles were found to be competitively superior was when 

food supplies were limited.   

 

Compared with other estimates of harvest mouse populations, site ‘N’ contains a 

low ratio of wood mice to harvest mice:  10:1 (in all areas surveyed throughout the 

year); 5:1 (biomass crops only throughout the year); 3:1 (biomass crops only during 

the months in which harvest mice were caught).  These ratios are low in 

comparison with the mean ratio of 27:1 from the meta-analysis by Harris (1995) or 

the mean of 34:1 calculated from further papers (reported in Table 4.3). This low 

ratio appears to be site- and habitat-specific as reported ratios vary widely.  For 

example, Moore et al. (2003) recorded ratios of 1:1 in new woodland plantations 

and 9:1 on farmland.   Within all habitats surveyed in this study for the duration of 

the year-long trapping regime, harvest mice comprised 5.3% of all small mammals 

caught and this is similar to the 5.8% reported by Durrer et al. (2006) in a 

marshland habitat of Phragmites spp. and Phalaris.   

 

4.4.2 Distance into crop 

Moore et al. (2003) reported that harvest mice on arable land were only associated 

with linear features, suggesting that there could be an edge effect in the crops.  This 

was not the case in either biomass crop as harvest mice were distributed 

throughout.  There did appear to be a slight tendency for more harvest mice to be 

trapped in the transects 20 m from the crop edge, but this was not a significant 

trend.  After harvest of the biomass, it is possible that the harvest mice retreat to 

the field margins until such a time as the biomass crop provides suitable habitat 

once more.  In that instance, as the crop is re-colonised there may be a higher 

concentration nearer to the margins, but as no harvest mice were captured at that 

time, that mechanism remains unknown.  This therefore suggests that in biomass 
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grass crops, linear features such as hedges may be of lesser importance than in other 

agricultural habitats. 

 

4.4.3 Activity throughout the day 

The majority of harvest mice were captured overnight (and found in the morning 

trap check), with far fewer caught in the middle of the day or in the evening.  This 

agrees with previous studies on captive harvest mice, which showed activity during 

every hour of the day, but with peaks at dusk and dawn, regardless of day length 

(Trout 1978b).  The morning check also represented the longest time since the 

previous check, and the longer period without disturbance may have added to the 

increased morning catch.  In terms of catch per hour, no difference between times 

of trap checks were apparent. 

 

Seasonal differences in daily activity levels were reported by Trout (1978b) who 

found that wild harvest mice followed a predominantly nocturnal existence in 

summer and autumn, changing to a diurnal pattern in winter.  Although harvest 

mice in the biomass crops also showed increased diurnal activity in winter, this was 

not significantly different from the autumn or spring.   Durrer et al. (2006) reported 

no bias in the time of capture between morning and evening for the eight harvest 

mice they caught in autumn. 

 

No significant time differences were demonstrated between the sexes and this 

therefore suggests that daily activity patterns are similar in both sexes. 

 

4.4.4 Recaptures 

Detection of recaptured individuals depends on the persistence of the marking 

method.  Fur clipping is considered to be a non-traumatic marking technique 

where the pigment-rich ends of the guard hairs are removed with scissors, exposing 

the grey under-fur (Putman 1995; Gurnell & Flowerdew 1982).  It is now the 
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preferred method to more invasive techniques that were previously used.  These 

included mutilation-based methods such as toe-clipping (Taber 1956); or the 

ringing of a hind leg (Chitty 1937), which often led to loss of circulation and the 

need to amputate (Evans 1942).  In small mammals with larger ears, numbered ear 

tags have been used, although these can be lost through grooming, infection or 

through general wear (Taber 1956).  Fur clip marks are predicted to remain 

detectable for up to 3 – 6 months but this partly depends on how moult progresses 

and how quickly the hair re-grows (Gurnell & Flowerdew 2006; Howe & Lane 

2004).  In the biomass crops, the longest interval between first capture (September 

2009) and last capture (January 2010) was 146 days, after which the fur clip was still 

easily visible.  This indicates that within this period, all recaptured individuals 

would have been readily apparent. 

 

No animals marked before harvest in spring 2009 were known to be recaptured in 

the autumn or winter.  This may have been due to the fur marks having grown out 

during a summer moult, or otherwise because those caught in the autumn and 

winter were progeny of the summer breeding season.  Only four animals were in 

juvenile pelage on first capture, but as moult into adult pelage starts when they are 

30 days old and is usually complete by 45 days old (Trout 1978b), it is possible that 

those caught in adult pelage in the biomass crops during the autumn and early 

winter were still less than two months old.  It has been estimated that in October, 

up to 16% of the harvest mice in a population were less than two months of age 

(Trout 1978a). 

 

Of the eleven recaptured individuals, only three were caught more than twice.  

Males were no more likely to re-enter traps than females, although the “trap 

happy” HM1013, captured seven times in total was male.  Published data on other 

harvest mouse recaptures are sparse, although Riordan et al. (2007) recaptured two 

of the total of eight harvest mice trapped in autumn/winter.  Of these two 
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individuals, one was caught twice and one three times.  There was movement of 

harvest mice between the two crops, although apart from one recapture, all these 

were along a transect line at the same distance from the crop edge.  For those 

recaptured within the same crop transect, most were found at a different trap 

position from their first capture, although distance moved was mostly around five 

metres. 

 

Capture/mark/recapture methods are well established for tracking movements of 

individual animals, but the use of live traps can itself limit the daily movements of 

individual animals (Szacki 1999).  Use of live trapping generally also only shows 

presence or absence in certain areas, rather than specific movements or amount of 

time spent in habitats.   

 

In larger mammals, radio telemetry is frequently used to provide this kind of data, 

but it is only recently that radio-transmitters small enough and light enough to be 

used on harvest mice have been produced.  Durrer et al. (2006) glued radio-

transmitters to captive-bred harvest mice which were then released into a 

marshland.  They were able to successfully track the mice until the transmitters fell 

off, between 56 and 64 hours after attachment.  A further study (Buss et al. 2009) 

trialled two designs of radio-transmitter on captive-bred harvest mice: a collar 

formed by a cable-tie, and a backpack version glued to the dorsal fur.  Both versions 

weighed no more than 5% of the animal’s weight, which is considered to be the 

maximum weight that can be applied without negatively impacting the animal.  

Grooming behaviour intensified in the first few hours after attachment, leading the 

authors to advise keeping wild animals captive for at least four hours after 

attachment of the device, in order to reduce the increased predation risk associated 

with the grooming and consequent distraction caused by the foreign object.  Most 

of the backpacks were lost within 10 days and this was attributed to the type of glue 

used.  Food consumption and body weight were measured for the duration that the 
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device was worn, with no negative effects being seen for the collar device in terms 

of weight loss or increased dietary intake, in comparison with harvest mice that had 

been handled but not had a transmitter attached.  The backpack group lost some 

weight, but this was thought to be skewed by the inclusion of heavier than normal 

individuals who simply reduced their weight to more normal limits.  The authors 

concluded that once a sufficiently effective glue for the backpacks was found, that 

radio-telemetry using these devices would not cause any detriment to the mice 

(Buss et al. 2009).    

 

The use of radio-telemetry could be a vital tool in the future for gaining insight into 

how harvest mice use and move within and use their habitats, and most especially 

to determine their movements once the biomass is harvested. 

 

4.4.5 Body weight variations 

Across the year of trapping in the biomass crops, mean weight of males (6.4 ±0.2 g, 

n = 36) was significantly higher than the females (6.0 ±0.1 g, n = 41).  Riordan et al. 

(2007) also reported heavier males (mean 6.1 ±0.4 g, n = 6) than females (4.8 ±0.2 g, 

n = 2) in their much smaller sample.  Mean weights were not significantly different 

for harvest mice caught in the different biomass grass crops, suggesting that they 

were able to exploit equivalent food resources in the two crops. 

 

Mean weight of male harvest mice was significantly lower in the autumn 

(September, October and November) than in the winter or spring.  In comparison 

with their maximum weight in winter, mean weight in the autumn was 33% lower.  

Harvest mice reach full adult weight by the time they moult into adult pelage at 45 

days old (Harris 1979b) and as only four animals were considered to be in juvenile 

pelage when weighed, it is less likely that the lower autumn male weight can be 

accounted for by increased numbers of juvenile mice.  Although females were also 

at their lowest weight in the autumn, the difference to their maximum weight 
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recorded in spring was a non-significant mass change of 8%.  The weight difference 

between the autumn and spring was smaller in female harvest mice despite possible 

differences due to breeding and pregnancy (although no females were witnessed to 

be lactating at the time of weighing).  The difference in male weight between 

autumn and winter is less likely to be related to available food resources than to 

changed behaviour in the breeding season that results in a loss of condition.  

Harvest mice are not considered to be sociable animals, with dominant members of 

the population often demonstrating aggressive behaviour to subordinates and 

juveniles (Harris 1979b).  Trout (1978b) reports frequent aggression between 

captive males, but also comments that when breeding is not taking place, high 

densities of harvest mice co-exist amicably.  During the breeding season, one or 

several males may pursue a female until she is receptive (Harris 1979b) and the time 

taken up by the pursuit of mates is likely to reduce the foraging time available to 

males, potentially leading to a reduction in body mass.  Brandt & Macdonald (2011) 

reported that under laboratory conditions, female harvest mice in oestrous 

preferred heavier males and it is therefore clearly in the male harvest mouse’s 

interest to maintain their weight during the breeding season. 

 

Riordan et al. (2007) reported an opposite trend for combined mean weights of four 

species of rodent (harvest mouse, wood mouse, bank vole and field vole), where 

maximum weight was recorded in spring/summer, dropping further in autumn and 

the lowest weights recorded in winter.  Work on the meadow vole Microtus 

pennsylvanicus also revealed loss of weight during the winter after a peak at the 

beginning of August, with weight only starting to increase in February (Iverson & 

Turner 1974).  This was thought to be due not only to the reduction of available 

food, but also an influence of day-length cues.  Jackson et al. (2001) live-trapped 

field voles between November and March for two years and recorded minimum 

mean body mass in January and the maximum in March.  Korn (1989) suggests that 
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winter weight loss is related to the need to reduce energy requirements outside the 

breeding season during harsh winter weather, and is also triggered by photoperiod.  

 

Where repeat trapping has been performed, declines in body mass have been 

reported for three North American small mammal species (Pearson et al. 2003).  

Mass loss was attributed to hypothermia and dehydration and the authors therefore 

warn against the use of overall small mammal biomass as a population index for this 

reason.  However, mass loss in the male harvest mice in the biomass crops occurred 

before the onset of cold winter weather, and at a time where food resources should 

be at a peak, suggesting that these are the least likely causative factors.  Although 

there is a potential risk of weight loss or dehydration occurring during the time that 

the harvest mice were in the traps, the provision of grain, mealworms and carrot 

should have ensured that this did not occur.  No further explanations for seasonal 

body mass changes could be found in the literature. 

 

4.4.6 Seasonal differences in captures 

Other studies have reported an absence of harvest mouse captures in late spring and 

summer (Durrer et al. 2006; Trout 1978a).  In the current study, the latest captures 

in spring coincided with the timing of harvest and no harvest mice were captured 

in other areas of the site once harvest was complete.  This was despite the 

availability of adjacent woodland with a dense ground layer and also dense 

hedgerows around the site, both of which should provide suitable habitat. It is 

unknown whether captures may have continued beyond the end of March had a 

buffer strip of Phalaris or Miscanthus have been left as a refuge.  Certainly one of 

the individuals captured in the Miscanthus crop before it was harvested had moved 

to the Phalaris crop, which stood intact for a further week after the Miscanthus was 

cut.   Whether this movement occurred as a result of the harvesting process or prior 

to it happening is unknown.  An assumption could be made that movement to 

other suitable habitat would be the norm for any harvest mouse surviving the 
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harvesting process and therefore that areas of crop left un-harvested as a refuge 

could be useful. 

 

Without any post-harvest captures, it is impossible to know what the harvest-

induced mortality rates would have been – either due to the mechanical process of 

harvesting or the resulting increased predation rates when the crop cover is 

removed (e.g. Tew & Macdonald 1993).   

 

The first autumn capture of a harvest mouse on 4th September is considered to be 

earlier in the autumn than usual (Roger Trout – personal communication), as most 

harvest mice only start to enter traps again in October. 

 

In the months that harvest mice were caught, no seasonal change in capture rates 

was seen in Phalaris.  As the Miscanthus was harvested in February (winter), no 

capture data for spring (March, April, May) were available.  Despite this, there 

were no differences between autumn and winter catches in Miscanthus.   Winter 

2009 / 2010 was particularly harsh, with temperatures in Pembrokeshire reaching 

minus 16°C, with prolonged snowfall for several weeks.  The intended survey at the 

beginning of January had to be cancelled due to these weather conditions.  By the 

end of January, conditions were suitable for trapping once more, but capture 

success appeared to be lower than expected based on the trend seen the previous 

winter.  Whether this was entirely due to the climatic conditions is uncertain.  A 

confounding factor existed, in that the landowner had taken advantage of the frosty 

weather and had already harvested Miscanthus 2, as well as one swathe of 

Miscanthus 1 before realizing that surveys had not yet ended.  Whether this 

mechanical disturbance prompted harvest mouse movement out of the crops is 

unknown.   
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Despite this, on the final survey at the end of January, two key animals were 

captured: HM20036, a male which, at 7.3 g was the heaviest harvest mouse 

captured since February 2009, and also HM20001 - the first harvest mouse to be 

captured in autumn 2009.  The heavy weight of HM20036 and the relative 

longevity of HM20001 suggest that the severity of the winter did not necessarily 

negatively affect harvest mouse survival.  Abundance of other species captured at 

the same survey showed varying declines and increases from the previous survey in 

November 2009.  Wood mice, harvest mice and bank voles were all captured in 

lower numbers in January 2010, but captures of all shrew species increased.  This 

increase in shrew captures may have resulted from increased foraging activity and 

therefore an increased likelihood of them entering traps to find food.  But it is 

striking that the shrews had survived well despite the cold temperatures and the 

shrews’ very high metabolic rate, possibly by being able to exploit the insulated 

area of vegetation between the ground and snow.  The harvest mice, with both 

their relatively high surface area: volume ratio of 4.9 (Trout 1978b) and their 

omnivorous diet, as well as a ground-based winter existence might therefore be 

expected to survive harsh conditions as well as the shrews.  

 

Whether indeed the mechanical disturbance accounted for the reduced numbers of 

harvest mice rather than winter weather cannot be answered with the available 

data, but the availability of radio-telemetry to determine movements would have 

been useful. 

 

It has generally been accepted that the seasonal pattern of harvest mouse 

population growth reaches its peak in November and is at its lowest in February 

and March (Haberl & Krystufek 2003; Harris 1979b; Trout 1978a).  If that is the 

case, the high numbers of harvest mice caught in February and March in the 

biomass crops could represent a significantly larger population in the surrounding 

countryside than first thought. 
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4.4.7 Captures at different heights 

It is known that harvest mice spend the summer in the stalk zone and are difficult 

to catch during this time (Trout 1978a).  In order to increase chances of capture 

during the summer, from the time that the biomass crops were approximately       

50 cm high and the cereal crops were >20 cm high, traps elevated 40 cm above 

ground level on tripods were alternated with traps set at ground level along the 

length of each transect.  The height of 40 cm was chosen as it represents the most 

commonly recorded height of nests within beetle banks and field margins (Bence et 

al. 2003).  Harvest mice were only caught in the elevated traps in Phalaris.  This 

appeared to be a species-specific factor rather than a structural one, as many more 

wood mice were caught in the elevated traps in Miscanthus than in Phalaris.  

Riordan et al. (2007) also reported a high trapping success rate of 38% for wood 

mice in elevated traps, in contrast to the results of Nordvig et al. (2001) where 

wood mice were not trapped at all in elevated traps in field margins.  The elevated 

traps in the Miscanthus were moved to ground level in November, as strong winds 

bent the Miscanthus stems so much that the tripods were knocked over causing the 

traps to fall to the ground.   

 

Total numbers of harvest mice caught in elevated traps were over double those 

found at ground level.  The attempt to trap harvest mice earlier in the summer 

using elevated traps was successful in that the first harvest mouse capture in early 

September was made in an elevated trap.  However, by the beginning of October, 

ground-level captures were also being made, so any temporal advantage of using 

elevated traps seemed to be short-lived and did not show the same success as 

reported by Sibbald et al. (2006).  Overall though, elevated traps resulted in more 

harvest mouse captures than those at ground level, suggesting that optimum 

trapping methodology should include traps at both heights.  
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There was a link between the sex of the harvest mouse and the height of the trap it 

was caught in, whereby females were more likely to be found in elevated traps.  It 

is unclear, however, whether this resulted from the differing foraging behaviour of 

males and females.  As most captures were made outside the breeding season, 

females were perhaps less likely to stay around aerial breeding nest sites than when 

actively breeding, so the reason for the higher numbers of females in elevated traps 

is unknown. 

 

4.4.8 Crop characteristics 

Neither the percentage of crop cover nor crop height were significant factors in 

determining harvest mouse presence, but the quantity of bare ground, litter and 

non-crop grasses were significant factors.  This is in accordance with results found 

in reedbeds, where nest-building was more commonly associated with less dense 

stems and an abundance of grasses and sedges (Surmacki et al. 2005). 

 

4.4.9 Barn owl pellets 

Barn owls are known to have a hunting range of approximately 1 km from their 

nest site during the breeding season, extending to 4.5 km during the winter 

(Ramsden & Ramsden 2002).  It is likely that the occupants of the two roosts would 

have the biomass crop field within their hunting range and this appeared to be 

confirmed by the sighting of a barn owl hunting in the field late one evening.  It is 

therefore assumed that the contents of the pellets would include small mammals 

from the biomass crop field as well as from the surrounding farmland.  

 

Proportions of potential small mammal prey known to be present within the 

biomass field (i.e. those caught in the live traps) and those actually consumed by 

the barn owls had a different composition.  This indicates a degree of prey selection 

or differences between species of small mammals in their risk of capture by barn 

owls, which hunt preferred prey, not necessarily those that are the most 
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abundantly available (Love et al. 2000).  Although wood mice were the most 

abundant species in the traps in the current study, the field vole dominated in the 

pellets, as also reported by Love et al. (2000).  One has to use some caution, 

however, when considering these results: (a) because although it is likely that the 

pellets contained prey from the crop field, it would not have been the sole hunting 

area; (b) the trapping data covered a whole year, but some of the pellets may have 

been older than that and therefore could have represented cyclic prey abundance 

not detected by the trapping, and (c) any statistical analysis beyond the calculation 

of percentages was not possible.   

 

Harvest mice comprised 2.1% of all prey items in the pellets, which is in agreement 

with other work on barn owl pellets (Sibbald et al. 2006; Love et al. 2000) and 

domestic cat prey (Woods et al. 2003).  As 5% of the total small mammals trapped 

over the course of a year at the biomass site were harvest mice, one can infer that 

they are only a minor prey item for the barn owl and are hunted in proportion with 

their abundance.  Had it been possible to collect pellets monthly for the whole 

year, it may have been possible to match barn owl prey with live-captures on a 

seasonal basis.  However, there is evidence to suspect that the two are related, since 

Trout (1978a) reported an absence of harvest mouse remains in barn owl pellets 

that coincided with the time during which they were not found in traps over the 

summer. 

 

Barn owls most commonly hunt in rough grassland (Askew et al. 2007) and are able 

to catch prey at some depth into the vegetation.  A factor to consider in the biomass 

grass crops is the ease of access for hunting barn owls in relation to the architecture 

of the crops.  Small mammals in Phalaris may be accessible to them, but both the 

dense stems and height of the Miscanthus may prevent them from hunting 

effectively within it. 
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4.4.10 Context within Wales 

Harris (1979a) reported only 36 harvest mouse records for Wales between 1973 and 

1977, of which nest sightings were predominant.  In Pembrokeshire only 9 harvest 

mouse records had been reported before this study was undertaken (Figure 4.20), 

although this was possibly due to lack of intensive surveys in the area rather than 

there only being a small population present.  A large, dense, mature reedbed is 

present on the banks of the Eastern Cleddau river, within a kilometre of the 

biomass grass crops.  It is possible that the population of harvest mice utilised this as 

habitat at some stage prior to the biomass crops being planted.  At the time of this 

study, the reedbed was searched for the presence of harvest mice, but no nests were 

found.  Useful future work would include more detailed surveys of the general area, 

in order to establish whether the biomass crop field harvest mice are a unique 

population, or one of many previously unrecorded populations in the general area. 

 

 
Figure 4.20 Map of Pembrokeshire showing previous harvest mouse records in relation to the 
biomass crop site (Courtesy of A. Haycock, County Mammal Recorder). 

Key: 
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4.4.11 Conclusions 

In conclusion: concern has been expressed in some quarters about possible negative 

effects of biomass grass crops on native faunal biodiversity (Groom et al. 2008).  

Results from this study indicate that the biomass grass crops, particularly Phalaris 

provide excellent habitat, supporting a minimum of 58 harvest mice in one hectare 

over one year at the site in Pembrokeshire.  In this study, harvest mice were 

trapped in both crops, but not in the surrounding hedgerows or cereal crops.  

Recaptured individuals were often captured at different locations, indicating that 

movement around and between the crops occurred.  Harvest mice were only 

trapped between the months of September and March, suggesting that small 

mammal surveys outside these times may not adequately describe harvest mouse 

presence.  Breeding nests were evident in the Phalaris and the surrounding 

hedgerows, and the capture of individuals in juvenile pelage showed that breeding 

was occurring.  Biometric data showed seasonal fluctuations in male harvest mouse 

body weight that has not been previously reported.  Although males and females 

were captured overall in equivalent numbers, harvest mice caught in Miscanthus 

were more likely to be males. 

 

If comparisons are to be made between Miscanthus and Phalaris, then the Phalaris 

is undoubtedly a superior habitat for harvest mice and could be considered as a 

possible ‘conservation crop’ in areas where efforts are being made to restore or 

increase harvest mouse populations. 

 

If Bence et al. (2003) are correct in their assumption that the harvest mouse is a 

good indicator of habitat quality and faunal diversity in general, the results 

reported here for harvest mice suggest that fears relating to the introduction of 

perennial biomass grass crops are unfounded.   
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Abstract 

Plantations of the biomass grasses Miscanthus x giganteus and Phalaris arundinacea 

could become widespread on UK agricultural land as part of a move to produce 

more low carbon energy.  Fears have been expressed regarding the potential impact 

of these plantations on bird species using farmland, in particular those species 

which are farmland habitat specialists.  Between April 2008 and January 2010, 

surveys by means of walking transects and mist netting were carried out bi-

monthly at four biomass grass crop sites and adjacent comparison sites across mid- 

and west-Wales and Herefordshire in order to determine bird species presence 

within the biomass crops and the comparison sites.  Birds caught in mist nets were 

ringed and biometric measurements were taken. 

 
A combination of mist netting and walking surveys revealed more bird species than 

would have been detected using only one survey technique.  Miscanthus contained 

a more abundant and diverse bird assemblage than the Phalaris.  There were no 

differences in the abundance of either males and females, or juveniles and adults 

within the biomass crops.  The predominant component of the diet of birds in the 

biomass crops was invertebrates rather than seeds, and no significant differences 

were seen between birds caught in the two biomass crops in terms of body 

condition.  More red-listed bird species were found in the comparison sites than the 

biomass crops, and the biomass crops contained more birds typical of woodland 

than farmland habitat.  More farmland habitat-associated bird species were found 

in the comparison plots.  The biomass crops contained several summer migrants, 

mainly warblers that were not found in the comparison plots. 
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5.1 Introduction 

5.1.1 Farmland bird declines and agricultural intensification 

Land used for agriculture (pasture and arable land) and horticulture, together 

accounted for 58% of land use in Wales and 68% in England in 2007 (NERC 2009; 

Smart et al. 2009).  These “farmland” habitats therefore represent a very large and 

important habitat for birds.  Farmland habitat varies widely, from upland moors 

through to grasslands, cereal, fruit and vegetable crops.  In addition to land in 

primary agricultural production, farmland often also incorporates areas of 

woodland and hedgerows.  This mosaic of habitats provides opportunities for many 

different bird species, many of them farmland specialists. 

 

In recent years, concern has been raised over rates of decline in some farmland bird 

species.  Between 1990 and 2000, European farmland bird populations showed a 

significant decline, unmatched in any other habitat assemblage and linked to 

agricultural intensification (Donald et al. 2006).   Different studies cover various 

time-spans, from the 1960s to the present day, but all are in agreement that certain 

farmland species are in significant decline (e.g. Donald et al. 2006; Henderson et al. 

2004; Taylor & Grant 2004; Chamberlain & Fuller 2001; Fuller et al. 1995).  

Declines of 86% (24 of 28 species) in the distribution of farmland birds were 

reported between 1970 and 1990 (Fuller et al. 1995) and a 44% reduction in 

farmland birds on the Index of Population of Wild Birds from 1970 to 2005 was 

reported by DEFRA (2006).  These rates of decline exceed those of birds in other 

habitats, such as woodland birds.  Possible reasons for the rapid declines among 

farmland birds vary between species and are related to different pressures related to 

habitat, predation pressures and climate (Fuller et al. 1995), although modern 

farming techniques are widely linked to farmland bird declines (Grice et al. 2004).  

Summer migrants face additional pressures at their overwintering grounds, as was 

seen in the whitethroat Sylvia communis, which suffered a population crash in 

1968 – 1969 due to a drought in its African winter range (Fuller et al. 1995). 
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Current global trends in land-use changes, agricultural intensification and 

increasing usage of agrochemicals have been predicted to lead to a loss of up to 18% 

of the world’s avifauna (15.3 billion birds) by 2050 (Teyssedre & Couvet 2007).  

These predictions are based on agricultural expansion alone and do not include 

other threats to bird populations such as over-harvesting, climate change or 

biological invasions.  Within Europe, range contractions and population declines in 

farmland birds were found to be greater in capitalist countries where agricultural 

intensification was well-established in comparison with former communist 

countries with less intensification of agriculture over the 20th Century.  Indeed, 

more than 30% of variance in bird population changes could be explained by cereal 

yield alone (Teyssedre & Couvet 2007).  Although the general trend for most 

farmland bird species has been one of reduced populations, conversely, a small 

number of species have actually increased in number in association with 

agricultural changes.  Examples of this include the whitethroat and chaffinch 

Fringilla coelebs, which showed an increase in numbers between 1970 and 1990 

(Chamberlain & Fuller 2001).  This may reflect the level of specialism demonstrated 

by individual species in terms of reliance upon farmland habitat for breeding and 

foraging: generalist farmland birds increased by 4% between 1970 and 2002, 

whereas farmland  specialists declined by 58% over the same period (Gregory et al. 

2004). 

 

Agricultural intensification has led to changes in both grassland and arable crop 

structure.  Grass swards have become more dense and homogenous, resulting in loss 

of botanical and faunal diversity (Wilson et al. 2005).  Crop structure influences 

bird presence in several ways: through concealing predators (or the birds from 

them), protection or exposure to the prevailing weather and the abundance of food 

(Wilson et al. 2005).  Skylark Alauda arvensis were seen to favour tractor-wheel 

tram-lines in cereal crops for foraging, despite a lower abundance of prey items 
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within them.  This may have been influenced by a trade-off between the need for 

vigilance and food accessibility (Wilson et al. 2005). 

 

For some non-passerine bird species, breeding failure is thought to be a more 

significant contributor to their decline than failure to survive as adults (Gregory et 

al. 2004).  Ground-nesting birds are particularly sensitive to production intensity, 

which can lead to increased disturbance, either from higher stocking rates of 

livestock or increased machinery use.  Bas et al. (2009) report that 68% of ground-

nesting species responded negatively to farming intensity, compared with only 21% 

of hedge-nesters, despite the loss of hedgerows during the intensification process.  

This further illustrates the complexities of the effects of intensification on bird 

species with different habitat requirements. 

 

5.1.2 Grassland birds 

The wide array of habitat requirements of different bird species means that effects 

of agricultural intensification can also vary across spatial scales.  Gates & Donald 

(2000) examined local extinctions of farmland bird species, and found that although 

habitat requirements differ between species, an area suitable for one species was 

also likely to be suitable for other species.  Areas abandoned by birds had become 

intrinsically unsuitable compared with other areas in which the species persisted.  

 

Both Gates & Donald (2000) and Chamberlain & Fuller (2001) reported reduced 

bird populations in grassland-dominated areas, predominantly in western parts of 

Britain.  In marginal upland, grassland-associated species such as the skylark, 

wheatear Oenanthe oenanthe, whinchat Saxicola rubetra, yellow wagtail Motacilla 

flava and yellowhammer Emberiza citrinella  declined by 80% between 1968 and 

1980 (Henderson et al. 2004).  Reasons for declines in grassland birds cannot be 

generalised, but it is thought that reseeding with competitive grass species and 

increased use of fertilizer and pesticides are contributory factors (Fuller et al. 1995).  
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Such changes reduce botanical and invertebrate diversity and result in lower food 

availability.  A change from hay meadows with a single cut in late summer to grass 

cut for silage multiple times over the summer, as well as higher stocking levels on 

lowland grazed fields may also influence breeding success for ground-nesting birds, 

resulting from reduced sward height and an increase in trampling (Fuller et al. 

1995).  Intensity of grazing can be of importance to grassland birds, as the height of 

sward at which a bird prefers to forage will determine how susceptible it is to 

grazing (Martin & Possingham 2005). 

 

In general, modern intensive grassland systems are not as favourable habitats for 

some farmland birds as mixed or arable systems (Chamberlain & Fuller 2001).  In 

Alpine meadows, fledging success of the whinchat was greater in traditionally 

managed meadows than those under more intensive management.  In the intensive 

meadows, invertebrate density was lower and foraging distances were greater, 

which resulted in a reduced invertebrate biomass being fed to the chicks (Britschgi 

et al. 2006).  A study comparing varying intensities of grassland management with 

fallow land revealed the highest numbers of medium-sized arthropods in grazed 

pastures and extensively used (two – three cuts of grass taken per year) meadows 

(Zahn et al. 2010).  Fallow land had similar numbers of arthropods as the extensive 

meadows and pasture, all of which contained greater quantities than were found in 

intensively used (cut more than three times per year) meadows.  Two or more cuts 

of grass per year resulted in reduced arthropod diversity (Zahn et al. 2010).  

However, increased use of nitrogen fertilizer and shorter swards resulting from 

increased grazing pressure have been shown to have a positive impact on the 

starling Sturnus vulgaris, blackbird Turdus merula, pied wagtail Motacilla alba, 

dunnock Prunella modularis  and corvids, through improved access to soil 

invertebrates (Atkinson et al. 2004).    Measures to improve foraging habitat for 

birds include scarification of grassland sward in order to produce a mosaic of bare 

ground patches can benefit both ground invertebrate and seed feeders, but the 
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effect may be short-lived (Schaub et al. 2010; Whittingham et al. 2006; Perkins et 

al. 2000). 

 

Buckingham et al. (2006) found that sward structure was more important to 

foraging birds than the types of plants within the sward.  Tall swards are associated 

with higher invertebrate abundance and diversity in comparison with shorter 

swards (Atkinson et al. 2004) and may also be preferred by granivorous birds 

(Buckingham et al. 2006).  Where longer swards are exploited, there is a risk of the 

bird becoming wet and chilled if the vegetation is wet, and this may be a significant 

factor when making foraging decisions (Wilson et al. 2005; Perkins et al. 2000).  

Increased risk of predation in taller swards (as a result of obstructed view of 

potential predators), as well as increased difficulty in accessing prey items amongst 

dense vegetation may influence the preference for foraging in shorter swards and 

bare ground seen by soil invertebrate feeders (Buckingham et al. 2006; Atkinson et 

al. 2004).   

 

Pärt & Söderström (1999) also reported on the relative importance of sward 

structure and plant species composition in relation to bird diversity.  Only a very 

weak relationship was seen between vascular plant diversity and bird diversity, 

suggesting that use of botanical species richness as an overall indicator of general 

biodiversity was unreliable.  Plant community composition relies heavily on local 

abiotic factors, whereas birds are able to move more extensively around a habitat 

and their diversity is more likely to be influenced on a landscape scale (Pärt & 

Söderström 1999).  Nevertheless, plant diversity may itself influence bird 

abundance and distribution: either generalised herbicide applications or more 

locally utilised spot control of individual weed plants can result in reduced numbers 

of foraging granivorous birds (Buckingham et al. 2006). 
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Much of the agricultural landscape of northern and western Britain contains 

marginal upland pasture.  In these areas between 1968 and 1980, there was an 80% 

reduction in numbers of skylark, wheatear, whinchat, yellow wagtail and 

yellowhammer.  Several species were also only found in 50% of plots in which they 

were originally found at the beginning of that period and the declining species 

were predominantly those which required grassland for nesting or foraging 

(Henderson et al. 2004). 

 

5.1.3 Changed arable crop rotations 

A change from spring-sown cereal crops to those drilled in autumn as part of 

agricultural intensification is thought to have had a negative impact on farmland 

bird populations, through both the absence of winter stubbles and springtime 

ploughing (Fuller et al. 1995).  Winter stubbles provide spilt grain and seeds of 

annual weeds that are important resources for granivorous bird species.  Springtime 

ploughing provides access to invertebrate food resources that are vital to 

insectivorous birds prior to the breeding season (Fuller et al. 1995).  For ground-

nesting species such as the skylark, crop height was highly significant to their 

breeding success, with lower occupancy rates in swards of over 30 cm height 

(Chamberlain et al. 1999).  Autumn-sown crops were taller earlier in the breeding 

season, resulting in fewer breeding attempts than those made in spring-sown 

cereals, where the breeding season was longer (Gregory et al. 2004; Siriwardena et 

al. 2001).   Although Siriwardena et al. (2001) reported positive associations 

between acreage sown with spring barley and the breeding success of the bullfinch 

Pyrrhula pyrrhula, tree sparrow Passer montanus and yellowhammer, a general 

reduction in bird breeding performance was associated with areas where intensive 

agriculture was practised.  

 

 

 



   
S.J. Clapham  270   

 

5.1.4 Mixed farming as an alternative to arable or pastoral 

Prior to the advent of mechanisation, horse powered farming methods dominated 

and mixed farming was more common due to the need for the working horses to be 

fed cereals in addition to grazing.  The requirement for mixed farming was reduced 

when mechanisation negated the need for horses to work the land, although in 

some areas it is still practised.  Mechanisation also led to larger-scale operations and 

more intensive agriculture, particularly when agro-chemicals became available 

(Robinson et al. 2001).  Homogenisation of the landscape, through focusing on one 

type of crop, is likely to lead to a reduction in biodiversity and so the conservation 

of biodiversity requires the maintenance of a diversity of vegetation and habitat 

types on all forms of agricultural land (Martin & Possingham 2005; Woodhouse et 

al. 2005). 

 

The complexities of habitat requirements by different farmland specialists can 

hamper attempts to devise strategies for optimum agricultural management for 

birds.  An increase in the area of arable land within a pastoral landscape benefited 

grey partridge Perdix perdix, skylark, tree sparrow, corn bunting Emberiza 

calandra, reed bunting  Emberiza schoeniclus, yellowhammer and whitethroat, but 

had a negative impact on house sparrow Passer domesticus, dunnock, robin 

Erithacus rubecula, blackcap Sylvia atricapilla and four finch species (Robinson et 

al. 2001).   Siriwardena et al. (2001) also reported positive impacts on breeding 

success for the yellowhammer where the area of arable land increased, but the 

opposite for skylark and reed bunting.  Although it is thought that feeding and 

nesting opportunities should be more numerous where mixed farmland is present, 

Siriwardena et al. (2001) could not identify any positive benefits at the level of 

breeding success for individual pairs of birds, although they thought that at 

community level, there may be benefits in terms of abundance and diversity. 
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5.1.5 Impacts of agri-environment schemes and set-aside land 

Agri-environment schemes were introduced in the 1980s in order to benefit 

biodiversity through the adoption of more ‘environmentally friendly’ practices in 

return for additional financial subsidies paid to farmers by the European Union.  In 

addition to this, a further ‘set-aside’ scheme was established around the same time, 

intended to reduce the overproduction of cereals.  It prescribed that a certain 

proportion of land (up to 10%) be taken out of arable production for a minimum of 

one year and this proved to have additional benefits for wildlife (Macdonald et al. 

2007).  More detail on this scheme is given in section 3.1.6.  Compulsory use of land 

as set-aside was curtailed in 2008, although some areas of set-aside land still exist as 

part of agri-environment schemes (DEFRA 2009).   

 

While the compulsory set-aside scheme was in existence, the land included in the 

scheme was associated with increased density and diversity of bird species in 

comparison with grass or tillage (Gillings et al. 2010; Bracken & Bolger 2006).  Since 

the abandonment of the set-aside scheme, it is estimated that between 25% and 

50% of farmland birds will be affected by the loss of set-aside habitat, resulting in 

the need for them to relocate to other winter habitats, a factor which could increase 

the rate of decline in species such as the yellowhammer and skylark (Gillings et al. 

2010). 

 

Agri-environment schemes available to farmers have evolved since they were first 

introduced, and the available options also vary between the different countries of 

the UK.  Management options may benefit different taxa in different ways.  For 

example, the yellowhammer has an ideal nesting habitat of grassy margins and 

hedges bordered by vegetated ditches (Bradbury et al. 2000), but options to create 

optimal foraging areas for birds include a floristically diverse field margin rather 

than one comprised only of grasses (Vickery et al. 2009).  It is clear that no one field 

margin option is suitable for all species at all times of year and this suggests that a 
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mosaic of management options of margins, boundaries and hedgerows is best for 

maintaining biodiversity at a landscape scale (Vickery et al. 2009).  It has also been 

suggested that agri-environment options based on a regional or local scale may be 

more likely to benefit farmland birds rather than on a national scale due to the 

variation in habitat requirements of different avian taxa in different parts of the 

country (Gottschalk et al. 2010; Whittingham et al. 2007).  There is some question, 

however, of the efficacy of agri-environment schemes in conserving declining bird 

populations in Europe, but this is thought to be due to the fact that few schemes 

specifically target birds (Donald et al. 2006). 

 

A lead-in period also needs to be considered in establishing agri-environment 

options.  In England, the Arable Stewardship Scheme showed little benefit to 

farmland birds in the first two years.  However, the longer grass leys were left 

untilled, the higher the number of invertebrates present and the more suitable the 

leys as foraging habitat for species such as the starling (Bradbury & Allen 2003) – an 

effect that would not have been apparent in the early stages after establishment. 

 

The major effects of pesticides are discussed below, but organic farming is often 

purported to be more environmentally aware and can lead to higher abundance of 

species such as the lapwing Vanellus vanellus.  However, the absence of agro-

chemical use in organic farming systems may result in an increased requirement for 

mechanisation and disturbance in order to control weeds and this could negatively 

influence nest success for lapwing and other ground-nesters (Kragten & Snoo 2007). 

 

5.1.6 Impacts of pesticides 

Pesticides (specifically herbicides and insecticides) may either have a direct effect 

on farmland birds, by reducing the availability of invertebrate food or weed seeds, 

or an indirect effect, where herbicides reduce numbers of weed-associated 

invertebrates (Boatman et al. 2004).  The indirect effect of herbicides is made more 
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complex by the fact that not only does weed control reduce the number of 

phytophagous invertebrates, but also affects other invertebrates by removing 

refuges and changing the microclimate within the crop (Moreby & Southway 

1999).  In general, agricultural intensification is linked to a reduced abundance of 

invertebrates, which in turn has impacted on bird populations (Benton et al. 2002). 

 

Corn buntings changed their foraging patterns in response to herbicide use, 

favouring crop areas in which applications were the lowest (Brickle et al. (2000).  

The authors also examined availability of small invertebrates suitable as chick-food 

items and found these to be negatively related to pesticide applications.  In studies 

on the effects of pesticide use on the yellowhammer a significant relationship was 

seen between application rates and chick food, as well as nestling condition, growth 

rate and ultimate survival (Boatman et al. 2004).  The condition of nestlings at day 6 

after hatching was positively correlated with the availability of invertebrates 

suitable as chick food (Hart et al. 2006).  Early broods were particularly affected by 

the reduced availability of chick food due to insecticide applications, whereas the 

diet of broods hatched later in the season was supplemented with unripe grain 

(Morris et al. 2005) and therefore less susceptible to low invertebrate availability.  

Effects of insecticide on bird mortality were not just restricted to the chicks: adults 

in areas of low invertebrate density were thought to compromise their own survival 

by allocating more time and energy to feeding their chicks (Boatman et al. 2004). 

 

Ways of mitigating the effects of pesticide use were examined by Holland et al. 

(1999).  They found that the majority of arthropods within a crop field were within 

60 m of the crop edge (a result of recolonisation from the field margins), and 

suggested that a 6 m buffer zone (in which pesticides were not sprayed) at the crop 

edge would facilitate movement of invertebrates back into the crop.  Depletion of 

invertebrates in the middle of crop fields as a result of insecticide use negatively 

affect the skylark (Holland et al. 1999), as it has been noted that they tend to forage 
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well away from hedges at the field margin as an anti-predator strategy (Wilson et 

al. 2005). 

 

5.1.7 Impacts of biomass grass crops 

Until very recently, the potential effects of energy grass plantations on bird 

populations have been based on speculation, rather than empirical data, particularly 

as some of the grasses used are non-native.  In an American Midwest scenario, it 

was thought that switchgrass Panicum virgatum biomass crops would create habitat 

for some grassland birds, but negatively impact others (Murray et al. 2003).  In the 

UK, the tall and dense structure of Miscanthus x giganteus crops was hypothesized 

to have a potentially negative effect on birds preferring to feed or breed in open 

habitats (Anderson et al. 2004).  A study of Miscanthus and Phalaris arundinacea 

fields in the first three years after establishment, (where the height of Miscanthus 

ranged from 53 – 225 cm and Phalaris  60 – 215 cm) recorded a higher abundance 

and diversity of birds within the hedges than the crop fields.  The exceptions to this 

were the skylark, lapwing and meadow pipit Anthus pratensis, which were more 

abundant within the biomass fields.  These were found predominantly in the 

Miscanthus, thought to be due to its patchy nature and the presence of areas of bare 

ground within the crop (Semere & Slater 2007).  Bellamy et al. (2009) reported 

different findings in their work on two to three year old Miscanthus fields in 

comparison with winter wheat fields.  In this case, skylarks were more abundant in 

the wheat fields, whereas game birds, snipe Gallinago gallinago and granivorous 

passerines were found in higher densities in the Miscanthus during the winter 

(Bellamy et al. 2009).  The densities of birds within the Miscanthus crops were 

similar to those found in willow short rotation coppice (SRC), or set-aside fields, all 

of which were higher than those found in cereal crops (Bellamy et al. 2009).  Sage 

et al. (2010) also found the assemblage of birds in Miscanthus similar to those found 

in SRC willow or scrub but at lower densities.  In general they concluded that the 
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overall effect of Miscanthus plantations on bird populations was neutral, within 

which there were benefits for some species and detrimental effects on others. 

 

 Vepsäläinen (2010) looked specifically at Phalaris crops as a habitat for skylarks.  

Although the birds were present within the crop early in the season, as the grass 

grew, numbers of skylarks within it decreased, suggesting that Phalaris was an 

inferior breeding habitat.  This was attributed to the unsuitability of the crop for 

skylark nests later in the breeding season due to closure of the crop canopy. 

 

5.1.8 Aims  

The aims of this chapter were to assess diversity and abundance of birds within the 

two biomass crops, using a combination of live-trapping (mist net captures) and 

direct observation during walking surveys.  A secondary aim was to use biometric 

data from captured birds (such as body mass, sex and age) to further characterise 

traits of birds in the two crops.  It was hypothesised that there would be no impact 

on bird diversity and abundance where the biomass crops were grown. 
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5.2 Materials and Methods  

5.2.1 Mist netting 

Bird surveys were carried out once in every two-month period from April 2008 

until the end of January 2010.  The same four sites across mid and west Wales and 

Herefordshire containing crops of the biomass grasses Miscanthus x giganteus and   

Phalaris arundinacea (as described more fully in Chapter 1) were used.  A transect 

at 10, 20 and 50 m (where available) from the crop edge was established and a 20 m 

ride with a width of one metre was cut in the vegetation so that the mist net was 

unhindered by the crop.  One 18 m long x 2.5 m high, four-shelved mist net was 

erected in each transect and opened up from no later than one hour after sunrise 

during calm, dry, mild weather.  Nets were checked every 30 minutes and closed 

down after two hours.  Birds caught were identified to species, sexed, aged  

(following Svensson 1992) and fitted with a uniquely numbered metal ring.  Their 

condition was then assessed from observing tracheal pit fat deposition and pectoral 

muscle condition scored using the classes described in the  British Trust for 

Ornithology (BTO) Ringer’s Manual (Redfern & Clark 2001).  Finally, the birds 

were weighed while being held immobile inside a flexible plastic cone on a balance 

accurate to 0.1 g (Salter, UK) before being released.   

 

Across the four sites, a total of 35 mist netting sessions were carried out during the 

two years.  The final session at site ‘HM’ took place on 27/10/08: the biomass was 

then mown without notice by the landowner on 19/12/08, before the December 

survey could be undertaken.  Subsequent to that, the Miscanthus rhizomes in the 

study field were dug up and no suitable replacement field was available at the site, 

so surveys there ended at that point.  At site ‘N’, harvest of the biomass crop started 

on 27/02/09 before the February survey was undertaken.  At sites ‘PP’ and ‘LL’, 

harvest was originally expected to take place in April, so all survey equipment was 

removed in advance.  However, due to weather constraints and limited availability 

of contractors, harvest did not take place until 05/05/09 at PP and 04/06/09 at site 
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‘LL’, which resulted in a missed survey for April 2009 at site ‘LL’.  The cold weather 

in January 2010 provided good conditions for early harvest in February and because 

of this, surveys were curtailed at the end of January 2010 in order for the land 

managers to proceed with the harvest.  Due to the intermittent presence of 

livestock or growing crops, it was not possible to erect mist nets in the comparison 

plot fields at each survey, but two nets were set in the comparison plots on the six 

occasions that this was possible.  Mist netting sessions at each site were dependent 

on suitable weather conditions and the order in which the different sites were 

surveyed varied as a result of these and other logistical factors (Table 5.1). 

 

Table 5.1 Detail of mist netting dates at the different sites over the two survey years.  + C denotes 
surveys where it was also possible to erect mist nets in the comparison sites. 
Survey period ‘LL’ ‘N’ ‘PP’ ‘HM’ 
Apr/May 2008 10/04/08 08/05/08 25/04/08 17/04/08 
Jun/Jul 2008 02/07/08  16/07/08 06/06/08 02/06/08 
Aug/Sep 2008 26/08/08 20/08/08 05/08/08 15/08/08 
Oct/Nov 2008 17/10/08 + C 07/11/08 08/10/08 27/10/08 + C 
Dec/Jan 2008 19/12/08 28/01/09 18/12/08  
Feb/Mar 2009 17/02/09  13/02/09  
Apr/May 2009  23/04/09  14/05/09   
Jun/Jul 2009 05/06/09  03/07/09 + C 09/07/09  
Aug/Sep 2009 11/08/09 + C 10/09/09 12/09/09  
Oct/Nov 2009 06/10/09 + C 28/10/09 09/11/09  
Dec/Jan 2010 18/01/10 + C 23/01/10 24/01/10  

 

5.2.2 Walking survey  

Prior to any other disturbance on arrival at a field site for each bi-monthly survey, 

a walking survey of the biomass crops and comparison plots was carried out.  This 

involved walking through and around a similar area of the fields with binoculars 

for the same time period, noting any birds encountered.  Most birds observed were 

disturbed into flight, but where bird calls could be located to a particular crop, this 

was also counted.  Any further bird species seen at other times in the fields (e.g. 

those encountered elsewhere whilst walking between mist nets) were also 

recorded.  Birds such as corvids and raptors flying over the crops but not 
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specifically interacting with them were discounted, but swallows Hirundo rustica 

seen hawking for insects low over the crops were included in the counts. 

 

5.2.3 Analysis 

Data were analysed using the statistical package STATISTICA 10.0 (StatSoft Inc 

2011).  Normality of distributions were checked using the Shapiro-Wilk test.  

Where data were normally distributed, ANOVA (Analysis of Variance) and post-

hoc Tukey HSD (Honestly Significant Difference) tests were used to determine 

significant differences.  Where non-Gaussian distributions occurred, normalising 

transformations were unsuccessful, so non-parametric tests (Mann-Whitney U or 

Kruskal-Wallis tests) were used in these instances.    

 

As different numbers of mist nets were used in differently sized plots, the 

abundance of birds caught was standardised to number per 18 m net per hour 

(PNPH) for statistical analyses.  Bird species recorded five or more times across the 

whole survey period from April 2008 – January 2010 were included in analysis of 

any crop preference. 

 

As bird weights varied considerably between species, a more uniform measure of 

body mass index (BMI) was calculated by dividing the body weight (g) by wing 

length (mm) (e.g. Fry & Slater 2009). 

 

Birds recorded within the study sites were categorised as residents, summer 

migrants or winter migrants as designated by the British Trust for Ornithology 

(www.BTO.org).  The same source was also used to group the birds into feeding 

guilds, based on their predominant dietary intake and to determine their 

conservation classification (red, amber or green listed). 

Species diversity was measured in three ways.  Firstly by a maximum species count 

in each area, but also by calculating Simpsons Index of Diversity, where 1- D = Σ(n / 
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N)2  and the Shannon-Wiener Index where H’ = - Σ (pi ln pi) using an on-line 

calculator (Young 2011).  Maximum diversity occurs at 1 for Simpson’s Index but 

varies depending on species richness for the Shannon-Wiener Index (H(max) = ln S).. 

 

Primary habitat associations (i.e. farmland, woodland etc) were identified for each 

species based on those defined in the Index of Populations of Wild Birds (DEFRA 

2009). 
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5.3 Results 

5.3.1 Mist netting and walking surveys 

A total of 138 birds of 20 species were caught in the mist nets.  79 individuals of 15 

species were caught in the Miscanthus, 57 individuals of 15 species in Phalaris, and 

2 individuals of 2 species in the comparison plots (Table 5.2).  The three most 

abundant species captured were the blue tit Cyanistes caeruleus, robin and 

blackbird.   

 

Table 5.2 Abundance of the bird species caught in the mist nets in the different habitats.                  
M = Miscanthus, P = Phalaris, CP = Comparison plots. 
Species M P CP  Total 
Dunnock Prunella modularis 8  2    10  
Reed warbler Acrocephalus scirpaceus  2  1    3  
Sedge warbler Acrocephalus schoenobaenus 1  5    6  
Chiffchaff Phylloscopus collybita 3  2    5  
Goldcrest Regulus regulus 2      2  
Willow warbler Phylloscopus trochilus   1    1  
Redstart Phoenicurus phoenicurus 1      1  
Robin Erithacus rubecula 18  4    22  
Blackbird Turdus merula 9  5  1  15  
Mistle thrush Turdus viscivorus     1  1  
Song thrush Turdus philomelos 4  1    5  
Blue tit Cyanistes caeruleus 18  12    30  
Great tit Parus major 5  3    8  
Long tailed tit Aegithalos caudatus   1    1  
Treecreeper Certhia familiaris   1    1  
Wren Troglodytes troglodytes 4  9    13  
Reed bunting Emberiza schoeniclus 2  9    11  
Bullfinch Pyrrhula pyrrula 1      1  
Chaffinch Fringilla coelebs 1      1  
Starling Sturnus vulgaris   1    1  
Total 79  57  2  138  

 

When calculated as mean per mist net per hour (PNPH), Miscanthus had the 

highest catch of 0.47 birds PNPH (Figure 5.1) although this was not significantly 

different from the 0.37 in Phalaris or 0.17 in the comparison plots (Kruskal-Wallis 

H (2, N = 74) = 3.112, P = 0.211). 
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Figure 5.1 Mean catch of birds per net per hour (PNPH) ±1SE in the different areas surveyed. 
 

When results from the walking surveys (Table 5.3) were added to those from the 

mist netting, a total of 37 bird species was recorded across all areas, of which 26 

were in Miscanthus, 21 in Phalaris and 16 in the comparison plots.  Total numbers 

of birds recorded in the three areas are shown in Table 5.4.  The gamekeeper at ‘N’ 

also reported witnessing a goshawk Accipiter gentilis unsuccessfully attacking a 

water rail Rallus aquaticus in the Phalaris, but this sighting has not been included 

in the analysis. 

 

 

 

 

 

 

 

 

 

 

         Miscanthus    Phalaris      Comparisons 
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Table 5.3 List of birds recorded during the walking surveys. 
Bird species Miscanthus Phalaris Comparison 

plots 
Pheasant Phasianus colchicus 8  10  6  
Lapwing Vanellus vanellus 0  0  5  
Curlew Numenius arquata 1  0  0  
Woodcock Scolopax rusticola 2  0  0  
Great black backed gull Larus marinus 0  0  2  
Woodpigeon Columba palumbus 0  0  4  
Barn owl Tyto alba 1  0  0  
Little owl Athene noctua 1  0  0  
Skylark Alauda arvensis 1  0  0  
Swallow Hirundo rustica 11  9  5  
Meadow pipit Anthus pratensis 1  1  2  
Pied wagtail Motacilla alba 0  0  1  
Sedge warbler Acrocephalus 
schoenobaenus 

1  4  0  

Chiffchaff Phylloscopus collybita 1  0  0  
Wheatear Oenanthe oenanthe 2  0  0  
Redstart Phoenicurus phoenicurus 0  1  0  
Robin Erithacus rubecula 2  0  2  
Blackbird Turdus merula 16  3  6  
Mistle thrush Turdus viscivorus 2  0  1  
Redwing Turdus iliacus 0  0  10  
Song thrush Turdus philomelos 3  4  4  
Blue tit Cyanistes caeruleus 1  0  0  
Great tit Parus major 1  0  0  
Wren Troglodytes troglodytes 2  9  0  
Reed bunting Emberiza schoeniclus 5  12  2  
Chaffinch Fringilla coelebs 0  1  0  
Starling Sturnus vulgaris 0  0  20  
Magpie Pica pica 0  1  0  
Carrion crow Corvus corone 1  0  4  
Jackdaw Corvus monedula 0  0  14  
Total 63  55  88  

 

 

 

 

 

 



   
S.J. Clapham  283   

 

Table 5.4 The total numbers of individual birds (of all species) and the number of individual species 
recorded in the different habitats, based on both mist net captures and walking surveys.  NB: where 
the same species was seen on walking survey and also caught in mist nets, the highest number seen 
(or ringed) in either survey was recorded (rather than the sum of the two), to exclude duplicate 
records where birds observed on the walking survey were subsequently captured and ringed. 
Habitat Total birds recorded  No. of species 
Miscanthus 134  26  
Phalaris 96  21  
Comparison plots  88  16  

 

A number of bird species were recorded only in a single habitat or at a single site 

(Table 5.5 ). 

 

Table 5.5 Bird species recorded in only one habitat or at only one site when surveyed using a 
combination of mist netting and walking surveys.  Numbers in parentheses indicate the number of 
the species recorded by both survey techniques. 

Site 
Habitat 

N LL PP HM 

Miscanthus Curlew (1) 

Woodcock (1) 
Barn owl (1) 
Skylark (1) 
Meadow pipit (1) 
Reed warbler (2) 
Sedge warbler (6) 
Goldcrest (1) 
Bullfinch (1) 
 

 Woodcock (1) 
Goldcrest (1) 

Little owl (1) 
Wheatear (2) 

Phalaris Meadow pipit (1) 
Reed warbler (1) 
Sedge warbler (6) 
 

Willow warbler (1) 

Long tailed tit (1) 

Treecreeper (1) 

Magpie (1)  

Comparison 
plots 

Great black-
backed gull (2) 
Meadow pipit (2) 

Pied wagtail (1) 

Redwing (10) 
 Lapwing (5) 

Woodpigeon (4) 
Jackdaw (14) 
 

 

Detectability of a bird species by the two survey methods partly depended on the 

crop type; in Miscanthus, a greater number of species were detected during walking 

transects than by mist netting, whereas the opposite occurred in Phalaris       

(Figure 5.2).  Furthermore, Figure 5.2 also shows that the cumulative species count 
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continued to increase throughout the series of surveys: even on the final survey, a 

new species was detected in each crop. 
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Figure 5.2 Species accumulation curve for the two biomass crops, showing individual numbers for 
mist netting and walking survey and the cumulative numbers of species detected using a 
combination of the two survey techniques. 
 

Table 5.6 details species detected by one or other, or both survey techniques. 
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Table 5.6 The efficiency of walking surveys and mist-netting in terms of uniqueness of species 
detected by each means. 
Miscanthus Phalaris 
Walking 
survey 
only 

Mist nets 
only 

Detected by 
both 

Walking 
survey only 

Mist nets only Detected by 
both 

Pheasant 
Barn owl 
Curlew 
Woodcock 
Little owl 
Skylark 
Swallow 
Meadow 
pipit 
Wheatear 
Mistle 
thrush 
Carrion 
crow 
 

Dunnock 
Reed warbler 
Goldcrest 
Redstart 
Bullfinch 
Chaffinch 
 

Sedge 
warbler 
Chiffchaff 
Robin 
Blackbird 
Song thrush 
Blue tit 
Great tit 
Wren  
Reed bunting 
 

Pheasant 
Swallow 
Meadow 
pipit 
Redstart 
Chaffinch 
Magpie 
 
 

Dunnock 
Reed warbler 
Chiffchaff 
Willow warbler 
Robin 
Blue tit 
Great tit 
Long-tailed tit 
Treecreeper 
Starling 
 

Sedge warbler 
Blackbird  
Song thrush 
Wren Reed 
bunting 
 
 

 

5.3.2 Crop/habitat  preference 

In terms of total numbers of birds caught per net per hour (PNPH), there was no 

significant difference in catch between the two crops or comparison plots (Kruskal-

Wallis H (2, N = 74) = 3.112 P = 0.211).  Neither was any individual bird species 

trapped in significantly higher abundance in one habitat than another (Table 5.7). 

 

Table 5.7 Mann-Whitney U Test results for individual bird species PNPH in the two biomass crops.  
Analysis only includes those species recorded five or more times. 

 

Phalaris Miscanthus 
 

U 
 

Z - value 
 

P - value Rank Sum 
Valid 

N 
Rank Sum 

Valid 
N 

Blackbird 1035 32 1312 36 507 -0.85 0.40 
Blue tit 1066 32 1280 36 538 -0.46 0.64 
Chiffchaff 1107 32 1239 36 573 0.03 0.98 
Dunnock 1090 32 1257 36 562 -0.17 0.86 
Reed bunting 1110 32 1237 36 571 0.06 0.95 
Reed warbler 1090 32 1256 36 562 -0.17 0.87 
Robin 1030 32 1316 36 502 -0.90 0.37 
Sedge warbler 1125 32 1222 36 556 0.25 0.81 
Song thrush 1142 32 1204 36 538 0.46 0.64 
Wren 1175 32  36 505 0.87 0.39 
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5.3.3 Distance into crop 

When the position of the net in which the birds were caught was taken into 

account, significantly higher numbers were trapped in the 10 m transect than the 

20 m (but not the 50 m transect) in Miscanthus, Kruskal-Wallis ANOVA by ranks  

P = 0.027 (Table 5.8).   

 

Table 5.8 P – values for pairwise post-hoc comparisons of the total number of birds caught in the 
different transects in Miscanthus: Kruskal-Wallis H (2, N = 84) = 8.083 P = 0.018. 
Transect 10 m  20 m  50 m  
10 m   0.027  0.599  
20 m 0.027    1.000  
50 m 0.599  1.000     

 

Although it appeared that the 10 m transect in Phalaris also contained more birds 

than either of the other two transects, this was not a statistically significant result 

(Kruskal-Wallis H (2, N = 93) = 3.255 P = 0.197, Figure 5.3).   
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Figure 5.3 Mean catch of birds ±1SE per visit per transect in both biomass crops. 
 

When tested for individual species, no further significant distance / edge effects 

were seen, although some species did show considerable (but non-significant) 

variation in where they were caught (Figure 5.4). 
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Figure 5.4 Distribution (by transect) of the most commonly captured birds in the biomass crops.  
Figures shown are means per net per visit +1SE.  Abbreviations: Blabi = blackbird, Bluti = blue tit, 
Chiff = chiffchaff, Dunno = dunnock, Greti = great tit, Reebu = reed bunting, Reewa = reed warbler, 
Sedwa = sedge warbler, Sonth = song thrush. 
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5.3.4 Age and sex 

Sex was determined in 74 birds, 38 of which were female and 36 male.  Chi-squared 

tests showed no significant differences in the abundance of either sex in either crop 

(Table 5.9). 

 

Table 5.9 Chi-squared (χ2) results for male and female birds in the two biomass crops. 
 
 

No. male birds No. female birds χ2 df P - value 

Miscanthus 23  25 0.083 1 0.773 

Phalaris 13  13 0 1 >0.999 

 

For the birds in which age could be determined, there was no significant difference 

in the crop in which they were caught, for birds either <1 year or >1 year in age 

(Kruskal-Wallis H (1, N = 72) = 0.109, P = 0.742 and H (1, N = 72) = 0.297, P = 0.586 

respectively).   

 

5.3.5 Recaptures 

As each individual bird captured in mist nets was fitted with a uniquely coded ring, 

it was possible to identify them if they were caught at a subsequent survey.  12 of 

the birds caught in mist nets at the biomass crop sites had previously been ringed: 

five of these at a feeder within 1 km of the crops at site ‘LL’ and one at an unknown 

location.  Six birds had been previously ringed within the biomass crops, and details 

of time elapsed between captures, changes in location and weight are shown in 

Table 5.10. 
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Table 5.10 Detail of the individual birds recaptured within the biomass crops (site, crop, transect).                          
M = Miscanthus, P = Phalaris.   
Species & unique 
ring no. 

Where / when 
caught initially  

Where / when 
re-trapped 

Days elapsed 
between 
captures 

Weight 
difference  

Reed bunting 
V760299 

‘N’ M 10 m 
20/08/08 

‘N’ P 10 m  
28/01/09 

161  -0.5 g  

Blue tit 
V760324 

‘LL’ P 10 m 
17/10/2008 

‘LL’ P 20 m 
14/11/08 

28  +1.3 g  

Robin 
V760328 

‘LL’ P 10 m 
17/10/08 

‘LL’ M 20 m 
14/01/09 

89  +3.1 g  

Robin 
V760387 

‘LL’ M 10 m 
19/12/08 

‘LL’ P 10 m 
05/06/09 

168  -1.2 g  

Blue tit 
V760725 

‘LL’ M 10 m 
06/10/09 

‘LL’ M 20 m 
18/01/10 

104  0g  

Robin 
V760726 

‘N’ M 20 m 
28/10/09 

‘N’ M 50 m 
23/01/2010 

87  +1.5 g  

 

5.3.6 Feeding ecology 

As a group, obligate invertebrate feeders showed a significant difference in 

abundance between the three habitat types (Kruskal-Wallis H (2, N = 101) = 6.876 

P = 0.032), but on pairwise comparison, no significant differences between 

individual habitats were seen.  Birds with diets including both invertebrates and 

fruit/berries were found in significantly different abundances in the three habitats 

(Kruskal-Wallis H (2, N = 101) = 9.126, P = 0.01).  Pairwise comparisons (adjusted 

for multiple comparisons) showed a higher abundance of this group in the 

Miscanthus than the comparison plots (P = 0.03), but no significant differences 

were seen between the comparison plots and the Phalaris crop (P = 0.949).  Those 

with a diet of invertebrates and seeds were also significantly more abundant in the 

biomass crops than the comparison plots (Kruskal-Wallis H (2, N = 101) = 31.355,   

P < 0.0001).  Pairwise comparisons (adjusted for multiple comparisons) showed 

significantly less of the invertebrate/seed group in the comparison plots than in the 

Miscanthus (P < 0.0001) or Phalaris crop (P = 0.001). 
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5.3.7 Condition scores  

Body mass index (BMI = weight divided by wing length) was tested against date, 

species and crop type.  Although BMI varied throughout the year, this was not 

significant result (ANOVA F(5, 121) = 1.543, P = 0.182, Figure 5.5).  Neither was there 

any significant difference between the BMI of birds caught in the two biomass 

crops (F(1, 126) = 0.396, P = 0.530). 
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Figure 5.5 Seasonal changes in body mass index (BMI) of birds within both biomass crops over one 
year.  Values shown are means ±1SE. 
 

5.3.8 Diversity of bird species 

Species richness (total number of species recorded) across all sites and crops was 

lower in the second year of surveys than the first (ANOVA F(1, 28) = 11.428,                

P = 0.022).  There was also a significant difference in species richness between 

habitats (F(2, 28) = 11.657, P < 0.001, Table 5.11).  When examined further using a 

Tukey HSD post-hoc test, it revealed that both Miscanthus and Phalaris contained 

more species than the comparison plots   (P < 0.001 and P = 0.013 respectively).  

There was a non-significant temporal difference between the months in which 
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surveys were carried out: the lowest observed species richness occurred in February 

and the highest occurred in June. 

 

Table 5.11 The three measures of biodiversity within the different habitats.  Maximum diversity 
occurs at 1 for Simpson’s Index of Diversity and 3.5 for the Shannon-Wiener Index.  Figures shown 
are scores calculated from the total number of each species within each habitat across all sites and all 
dates and the mean of the Simpson and Shannon scores for each visit.  On visits where there was a 
zero bird count or only 1 species present, no diversity score could be calculated and these were 
omitted from calculations. 

  Shannon-Wiener index Simpson’s index 
 Species no. Habitat Mean Habitat Mean 
Miscanthus 26 2.32 1.09 0.97 0.96 
Phalaris 21 2.19 0.98 0.95 0.92 
Comparison 
plots  

15 
 

1.72 
 

0.88 
 

0.88 
 

0.89 
 

 

Diversity scores could not be calculated for visits where only one or no bird species 

were detected and these visits were therefore omitted from analysis.  Both Shannon 

and Simpson’s diversity scores were highest in the Miscanthus and lowest in the 

comparison plots (Figure 5.6). 
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Figure 5.6 Mean (±1SE) Simpson’s Index of Diversity and Shannon-Wiener scores for the three 
habitats. 

        Miscanthus            Phalaris           Comparisons 
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Non-significant seasonal differences also occurred for each diversity index, 

whereby Shannon scores were highest in autumn and Simpson’s scores in spring.   

 

5.3.9 Species of conservation concern 

Four red-listed bird species (lapwing, starling, song thrush and redwing) were 

recorded in the comparison plots – more than in either of the biomass crops, 

although there was a high variability in the abundance of these species in the 

comparison plots and the difference between habitats was not statistically 

significant.  For amber-listed species, Miscanthus appeared to be more favourable 

than any other habitat (Table 5.12), but this was not a statistically significant 

difference (Kruskal-Wallis H (2, N = 99) = 5.052, P = 0.08).  For a full list of 

conservation status designations for the birds caught, see Appendix 2. 

 

Table 5.12 The number of species in the different conservation designations in the different habitats. 
Designation Miscanthus Phalaris Comparison plots 
Red list 2  2  4 
Amber list  10  5  5 
Green list  12  13  6 
No designation 2  1  1 

 

5.3.10 Habitat associations and habitat specialists 

A full list of the habitat association designations (DEFRA 2009) of the birds 

recorded in this study is shown in Table 5.13. 
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Table 5.13 Habitat associations as defined in the Index of Populations of Wild Birds (DEFRA 2009).  
Species deemed to be specialists in that habitat are listed in italics. 

Woodland 
 

Farmland  Upland Lowland 
wetland 

Other/non-classified 

Blackbird Jackdaw Curlew Reed warbler Barn owl 
Blue tit Lapwing Meadow pipit Sedge warbler Barn swallow 
Bullfinch Little owl Wheatear  Carrion crow 
Chaffinch Reed bunting   Great black backed gull 
Chiffchaff Skylark   Magpie 
Dunnock Starling   Mistle thrush 
Goldcrest Woodpigeon   Pheasant 
Great tit    Pied wagtail 
Long tailed tit    Redwing 
Redstart    Woodcock 
Robin     
Song thrush     
Treecreeper     
Wren     
Willow warbler     

 

Most of the bird species recorded in the biomass crops were considered to be 

woodland species rather than farmland species (Figure 5.7).  In comparison with 

the comparison plots, the abundance of woodland birds was significantly different 

in the biomass crops (Kruskal-Wallis H (2, N = 101) = 32.004, P < 0.0001).  Pairwise 

comparisons (adjusted for multiple comparisons) showed that both Miscanthus and 

Phalaris crops contained a higher abundance of woodland birds than the 

comparison plots (P < 0.0001 and P = 0.001 for Miscanthus and Phalaris 

respectively).  Although there was a higher abundance of farmland birds in the 

comparison plots than the biomass crops, variance in abundance was high and there 

was no significant difference between the comparison plots and the biomass crops 

(Kruskal Wallis H (2, N = 101) = 3.127, P = 0.209). 
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Figure 5.7 Proportions of the birds with different habitat associations in each habitat. 

Comparison plots 
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5.3.11 Seasonal changes and the influence of migrants 

With the influence of both summer and winter migrant species, both the number 

of species and counts of individual birds in the different habitats varied between 

winter and the breeding season (Table 5.14). 

 

Table 5.14 Species and individual counts during both the breeding season (summer) and winter. 
 Species count Individual count 
 
Habitat 

Winter Breeding 
season 

Winter Breeding 
season 

Miscanthus  15 20 58 76 
Phalaris 13 16 40 56 
Comparison plots 7 13 39 50 

 

Total catch of birds PNPH were significantly different between survey months 

(Kruskal-Wallis H (5, N = 68), P = 0.035.  The lowest numbers of birds PNPH were 

recorded in April, and the highest in December and February, and there was a 

significant difference between the counts in April and December (pairwise 

comparison adjusted for multiple comparisons P = 0.028).  The abundance of only 

two species varied significantly with the months in which they were caught.  Reed 

warblers were caught in higher abundance in the August surveys (Kruskal-Wallis H 

(5, N = 68) = 18.813, P = 0.002) and wrens in December and February surveys 

Kruskal-Wallis H (5, N = 68), P = 0.023 respectively). 

 

The classification of migrant and resident birds is shown in Table 5.15.  The 

percentage of resident birds found in all three habitats was similar, but when tested, 

both Phalaris and Miscanthus held significantly higher percentages of resident birds 

than the comparison plots (Kruskal-Wallis H (2, N = 101) = 15.105, P = 0.019 and P 

< 0.001 respectively).  The two biomass crops had similar numbers of summer 

migrants, but no winter migrants.  Conversely, the comparison plots had more 

winter than summer migrants (Table 5.16), but despite this trend, no significant 

differences existed between habitats for either summer migrants (Kruskal-Wallis 
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test: H (2, N = 101) = 5.464 P = 0.065) or winter migrants (Kruskal-Wallis test: H (2, 

N = 101) = 1.886, P = 0.390).   

 

Table 5.15 Migrant or resident status of the birds recorded within the study sites (as classified by 
BTO). 

Resident Summer migrants Winter migrants 

Barn owl 
Blackbird 
Blue tit 
Bullfinch 
Carrion crow  
Chaffinch 
Curlew 
Dunnock 
Great black-backed gull 
Goldcrest 
Great tit 
Jackdaw 
Lapwing  
Long-tailed tit 

Magpie 
Meadow pipit 
Mistle thrush 
Pheasant 
Pied wagtail 
Reed bunting 
Robin 
Skylark 
Song thrush 
Starling 
Treecreeper 
Woodcock 
Wood pigeon 
Wren 

Chiffchaff 
Redstart 
Reed warbler 
Sedge warbler 
Swallow 
Wheatear 
Willow warbler 

Redwing 

 

Table 5.16  The percentage of resident and migrant birds in the three habitats. 
 Resident Summer migrant Winter migrant 
Miscanthus 84% 16% 0 
Phalaris 83% 17% 0 
Comparison plots 82% 5% 13% 

 

5.3.12 Bird taxonomic groupings 

The species contained in each group are detailed in Table 5.17. 
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Table 5.17 Categories of the birds used in the analysis and the species they contain. 
Group Species within group 
Corvids Crow, jackdaw, magpie 
Dunnocks/wrens Dunnock, treecreeper, wren 
Finches/buntings Bullfinch, chaffinch, reed bunting 
Owls Barn owl, little owl 
Pheasants/pigeons Pheasant, wood pigeon 
Pipits/wagtails Meadow pipit, pied wagtail 
Larks Skylark 
Swallows Swallow 
Thrushes Blackbird, mistle thrush, redstart, redwing, robin, song 

thrush, starling, wheatear 
Tits Blue tit, great tit, long tailed tit 
Waders/seabirds Curlew, lapwing, great black-backed gull, woodcock 
Warblers Chiffchaff, goldcrest, reed warbler, sedge warbler, 

willow warbler 
 

Some bird taxonomic groups were found in significantly different numbers in the 

three different habitats (Table 5.18 and Figure 5.8).  Both dunnocks/wrens and 

finches/buntings were found only in the biomass crops and not in the comparison 

plots, accounting for the significant differences.  Only one group (pipits/wagtails) 

recorded in all three habitats, were seen significantly more in the comparison plots 

than the biomass crops.  Waders/seabirds were also significantly more abundant in 

the comparison plots than in the Miscanthus but were not recorded at all in the 

Phalaris.  The only significant preference between the two biomass crops was 

shown by thrushes/starlings, which were recorded in greater numbers in 

Miscanthus (Kruskal-Wallis  H (1, N = 68) = 5.102 P = 0.024). 

 

Table 5.18 Kruskal Wallis ANOVA by ranks showing the bird groups in which significant 
differences existed between the different habitats. 
 H value (df 2, N = 82) P - value 
Dunnocks/wrens 7.329 0.026 
Finches/buntings 6.044 0.049 
Pipits/wagtails 6.849 0.033 
Waders/seabirds 8.012 0.018 
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Figure 5.8 Abundance of the different bird groupings in the three habitats.  Figures shown are mean 
number per visit ±1SE and significant differences (P < 0.05) between habitats are indicated by . 
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5.4 Discussion 

A higher abundance and diversity of birds was found in Miscanthus crops than 

Phalaris crops, although both crops appeared to provide good habitat for birds, 

particularly those normally associated with woodland or reedbed habitat. 

 

5.4.1 Effectiveness of mist netting and walking surveys 

The lack of availability of the comparison plots for mist-netting at every survey 

may have influenced the results in terms of the accuracy of estimates of comparison 

plot bird abundance in comparison with the biomass crops.  However, when the 

comparison plots (in the form of grazed grass fields or barley) were used, the mist 

nets were visibly obvious to the human eye (and therefore also likely to be visible 

to birds), whereas nets within the biomass crops, particularly Miscanthus were 

much less detectable (Figure 5.9).  The small number of birds captured in the 

comparison plots could either have been a true measure of what was there or 

simply due to any birds present avoiding the highly visible nets.  Variability in the 

bird abundance recorded during walking surveys was also very high, particularly in 

the comparison plots, where sometimes no birds were recorded at all and at other 

times a whole flock was present.  Logistics and funding dictated that surveys were 

only carried out bi-monthly, but more regular surveys of longer duration may have 

produced less variable results.   

 

 
Figure 5.9 Photographs of mist nets in operation in Phalaris (left) and Miscanthus (right) at site ‘PP’. 
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Previous studies on birds in Miscanthus (Sage et al. 2010; Bellamy et al. 2009) and 

Miscanthus and Phalaris (Semere & Slater 2005) have relied purely on walking 

census techniques, whereby birds seen or heard whilst a surveyor walks through a 

habitat are recorded.  It is apparent that adding in mist nets to the sampling 

protocol allowed the detection of additional species that were not recorded on 

walking surveys (Table 5.7).  This was particularly noticeable in the Phalaris, where 

10 species were detected by the use of mist nets alone, 6 unique species were 

detected in the walking surveys and 5 species detected by both means.  It was also 

noted, however, that the resident reed bunting flocks at sites ‘LL’ and ‘N’ actively 

avoided mist nets in the Phalaris by the second year: they were often seen flying 

over or around the nets if disturbed by the surveyor on a mist net round.  

Generally, more reed buntings were seen than caught and those captured tended to 

be juveniles that were likely to be naïve to capture in mist nets.  This potential 

learned avoidance of mist nets may mean that the data collected through their use 

may not be a true indication of bird abundance (Remsen & Good 1996).  For this 

reason, no attempt was made to calculate bird population densities and only their 

presence or absence in each field was noted.  However, the use of both mist nets 

and walking surveys increased the range of bird species detected and as such are an 

optimal combination. 

 

In the Miscanthus, walking surveys remained a more effective way of detecting 

bird species than the mist nets.  This was particularly true for the larger birds such 

as the corvids, waders and owls (although the little owl was seen perching on a mist 

net pole!).  Many of the additional species detected in Miscanthus during walking 

surveys were seen soon after harvest, (when stubble or short new growth was 

present), rather than later in the growing season.  The way in which birds were 

detected in the full-grown biomass crops during walking surveys was different in 

each crop, due to the different vegetative structure.  In the Phalaris crop, reed 

buntings and wrens were often seen moving between different parts of the crop, 



   
S.J. Clapham  301   

 

and if disturbed, would fly a short distance before settling back into the crop 

vegetation.  Within the Miscanthus, some birds were detected by their alarm calls, 

or from being seen flying into the crop from elsewhere on the surveyor’s approach, 

as well as being seen directly in the crop. 

 

5.4.2 Crop preference 

In total, Miscanthus appeared to contain a higher abundance of birds compared to 

the Phalaris and comparison plots, even if this difference was not statistically 

significant.  It also contained a higher total number of species across the whole year 

(26 species) than either the comparison plots or the Phalaris crops.  The number of 

species present in Miscanthus crops was 15 in winter and 20 in summer.  The 

species richness in the biomass crops in the present study, though partially 

dependent on observer effort, is comparable with other work on birds in 

Miscanthus in the UK (Table 5.19). 

 
Table 5.19 Details from previously published studies on bird species numbers recorded in 
Miscanthus in either the breeding (B) season (summer) or non-breeding (NB) season (winter). 
Source Area surveyed Type of crop Total spp.  NB B 
Sage et al. (2010) SW England ‘Mature’ 26 20 14 
Bellamy et al. (2009) Cambridgeshire 1 – 4  yrs old 37 24 24 
Semere & Slater (2005) Herefordshire Newly planted 

– 2 yrs old 
26 13 24 

Current study Mid and west 
Wales and 
Herefordshire 

Mature (>3 
years old) 

27 15 20 

 

Despite the geographical differences between the other published studies and this 

one, many species were found in common.  Eight species were reported as present 

by all four studies and a further 13 species were recorded in three out of the four 

(Tables 5.20 (a) and (b)).  
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Table 5.20 (a) and (b) Species data from previously published work on birds in Miscanthus in the UK 
in comparison with the present study, in order of abundance.  NB = non=breeding season / winter 
and B = breeding season / summer.  Species recorded in at least three of the four studies are in bold 
(a) and in two studies or less, normal type (b). 

 (a) Bellamy et al.  
2009 

Sage et al. 
2010 

Semere & Slater 
2005 

Current study 

Species NB B NB B NB B NB B 
Blackbird Turdus merula Y Y Y Y Y Y Y Y 
Carrion crow Corvus corone Y Y  Y Y Y  Y 
Chaffinch Fringilla coelebs Y  Y Y Y Y Y  
Jackdaw Corvus monedula  Y  Y  Y Y  
Meadow pipit Anthus pratensis Y Y Y Y Y Y  Y 
Pheasant Phasianus colchicus Y Y Y  Y Y Y Y 
Skylark Alauda arvensis Y Y  Y Y Y  Y 
WrenTroglodytes troglodytes Y  Y   Y Y  
Blue titCyanistes caeruleus   Y  Y  Y Y 
Dunnock Prunella modularis  Y Y Y   Y Y 
Great tit Parus major  Y    Y Y Y 
Linnet  Carduelis cannabina Y Y Y  Y Y   
Red-legged partridge Alectoris rufa Y Y Y Y Y Y   
Reed bunting Emberiza schoeniclus Y Y Y Y   Y Y 
Reed warbler Acrocephalus scirpaceus  Y Y Y    Y 
Robin Erithacus rubecula   Y  Y  Y Y 
Song thrush Turdus philomelos Y Y Y    Y Y 
Woodcock Scolopax rusticola Y  Y    Y  
Woodpigeon Columba palumbus  Y  Y Y Y   
Yellow wagtail Motacilla flava  Y  Y Y Y   
Yellowhammer Y Y Y Y  Y   
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 (b) Bellamy et al. 
2009 

Sage et al. 
2010 

Semere & Slater 
2005 

Current study 

Species NB B NB B NB B NB B 
Fieldfare Turdus pilaris Y     Y   
Goldfinch Carduelis carduelis   Y  Y Y   
Greenfinch Carduelis chloris Y   Y     
Grey partridge Perdix perdix  Y    Y Y   
House sparrow Passer domesticus Y    Y Y   
Mistle thrush Turdus viscivorus      Y  Y 
Pied wagtail Motacilla alba   Y  Y Y   
Sedge warbler Acrocephalus 
schoenobaenus 

 Y      Y 

Snipe Gallinago gallinago  Y  Y      
Stock dove Columba oenas  Y    Y   
Whitethroat Sylvia communis  Y    Y   
Barn owl Tyto alba        Y 
Bullfinch Pyrrhula pyrrhula       Y  
Chiffchaff Phylloscopus collybita        Y 
Common redpoll Carduelis flammea Y        
Corn bunting Emberiza calandra Y Y       
Curlew Numenius arquata       Y  
Goldcrest Regulus regulus       Y  
Jay Garrulus glandarius  Y       
Kestrel Falco tinnunculus Y        
Lapwing Vanellus vanellus     Y Y   
Lesser redpoll Carduelis cabaret Y        
Little owl Athene noctua        Y 
Long-tailed tit Aegithalos caudatus   Y      
Magpie Pica pica  Y       
Mallard Anas platyrhynchos  Y       
Moorhen Gallinula chloropus Y        
Redstart Phoenicurus phoenicurus        Y 
Redwing Turdus iliacus Y        
Rook Corvus frugilegus  Y       
Sparrowhawk Accipiter nisus Y        
Starling Sturnus vulgaris       Y   
Stonechat Saxicola torquatus    Y      
Swallow Hirundo rustica        Y 
Wheatear Oenanthe oenanthe        Y 

 

Only one other study of birds has been conducted in Phalaris in the UK (Semere & 

Slater 2005).  Their results are compared to this study in Table 5.21.  Only six 

species were reported in both studies, none of which are considered to be unusual 

on farmland.  It is possible that birds regard Phalaris crops in a similar way to a hay 

or cereal crop in the way in which they utilise the habitat.  This possibility is 

supported by Vepsäläinen (2010), who found that there was no difference between 

Phalaris and conventionally cultivated crops for the most abundant bird species 

found within them.  In the current study however, reed buntings were seen more 
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often and in higher abundance in the Phalaris than the adjacent spring barley field 

at one of the sites, suggesting a preference for the Phalaris.   

 

Table 5.21 Species data from the only previously published work on birds in Phalaris in the UK in 
comparison with this study in order of abundance.  NB = non=breeding season / winter and B = 
breeding season / summer.  Species recorded in both the studies are in bold. 
 Semere & Slater 2005 Current study 
 NB B NB B 
Pheasant Y Y Y Y 
Wren Y Y Y Y 
Blue tit  Y Y Y 
Chaffinch Y Y Y  
Meadow pipit Y   Y 
Blackbird Y Y Y Y 
Great tit   Y Y 
Linnet Y Y   
Red-legged partridge Y Y   
Reed bunting   Y Y 
Robin   Y Y 
Skylark Y Y   
Song thrush   Y Y 
Blackcap   Y   
Carrion crow  Y   
Chiffchaff    Y 
Dunnock   Y  
Grey partridge Y    
Long-tailed tit    Y 
Magpie    Y 
Mistle thrush  Y   
Pied wagtail  Y   
Redstart   Y  
Reed warbler    Y 
Sedge warbler    Y 
Starling   Y  
Swallow    Y 
Treecreeper   Y  
Willow warbler    Y 
Wood pigeon  Y   

 

The current study found that the presence or absence of some species was varied 

between sites as well as between crop types.  An example of this was the reed and 

sedge warblers which were only found at site ‘N’, which is within 1 km of a 
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reedbed on the Eastern Cleddau river in SW Wales.  Bird presence in any habitat is 

strongly influenced by the surrounding landscape, particularly as birds are highly 

mobile (Chiron et al. 2010) and the presence of nearby reedbed habitat could 

explain the presence of reed and sedge warblers at site ‘N’, whereas they were 

absent from the other sites, which were not close to reedbeds. 

 

5.4.3 Edge effects 

There appeared to be an inconsistent edge effect in Miscanthus, with more birds 

caught in the 10 m transect than the 20 m one, yet no significant differences were 

seen between the 10 m and 50 m transects.  Although there were no significant 

individual species preferences for any particular transect, the distribution of birds 

through the crops varied widely and may account for the results recorded.   

 

Greater species diversity has been linked to the boundaries between habitat types, 

and it is thought that this results from a more diverse plant assemblage and 

structure in such edge habitats (Yahner 1988).  Higher abundance and bird species 

richness was reported in edge habitat of common reed Phragmites australis in 

comparison with habitats in the interior of the reedbed (Meyer et al. 2010).  

However, edge habitat may not be ideal for all species, or at all times for year; for 

example in a mature reedbed, reed bunting nests close to the water’s edge suffered 

higher predation levels than those further away from the edge (Schiegg et al. 2007).  

Negative effects on reproductive success were also seen in a study on great tits in 

woodland habitat, whereby birds in edge habitats had lower breeding success than 

those in central plots.  Possible reasons thought to be poorer habitat quality, higher 

risk of predation and overcrowding by poor quality conspecifics (Wilkin et al. 

2007).   In the present study, birds were seen flying into the Miscanthus crops 

when disturbed and its use as a refuge from predators could explain why higher 

numbers were caught within the first 10 m from the crop edge.  However the fact 

that the number of birds in the 50 m transect was not significantly different from 
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the 10 m transect suggests that they were doing something other than evading 

predators and therefore were likely to have been engaged in activities related to 

feeding or breeding, even if this was not witnessed. 

 

5.4.4 Sex and age 

Although many of the birds caught in the breeding season were in juvenile 

plumage, birds less than a year old were not statistically more likely to be caught in 

either biomass crop than those of one year old or more.  No bird nests were seen 

within either of the crops, but it is entirely possible that breeding was taking place, 

given the abundance of young birds.  It is not always possible to sex birds caught in 

the mist nets – some species are not sexually dimorphic and for those species where 

a difference between the appearance of the two sexes exists, the juvenile plumage 

often does not show the dimorphic characteristics required.  Despite this, for those 

birds that could be sexed, no significant bias in the sex ratio was seen in either of 

the crops. 

 

5.4.5 Recaptures 

The small number of recaptures within the biomass crops does not reveal a great 

deal about the individual’s crop preference as some were recaptured in the same 

crop and some in the other habitat types.  Time elapsing between captures ranged 

from weeks to months, but no between-year recaptures were found.  Some birds 

had gained weight since first capture and others weighed less.  Seasonal changes in 

food abundance are more likely to have been responsible for this, rather than 

diurnal weight changes, as trapping was carried out during the same time of day at 

each survey.  Reasons for a low recapture rate may have been due to mist-net 

avoidance by wary individuals (Remsen & Good 1996), mortality or transient 

populations that had moved on by the next survey.  
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5.4.6 Feeding ecology and condition scores 

All species for which a significant difference in abundance was seen between 

habitats were species which fed on invertebrates and either seeds or fruit/berries.  

Analysis was based on feeding habits throughout the year, as some granivores and 

their chicks feed on invertebrates during the breeding season (Bellamy et al. 2009).  

If the invertebrate feeders are indeed foraging within the crops, then it is assumed 

that adequate food supplies are available.  For species reliant on small grass and 

weed seed during the winter such as the reed bunting (Peach et al. 1999), the 

relatively abundant ground cover by this type of non-crop vegetation as well as the 

presence of some bare earth may be important. 

 

5.4.7 Crop management effects 

Although herbicides are required for the first two years after establishment of 

biomass grass crops, after this time the canopy closes early enough in the growing 

season to prevent competitive weeds from dominating and no further herbicide 

should be required for the life of the crop (DEFRA 2001).  Although there have 

recently been reports of the first potential aphid pests on Miscanthus crops in the 

USA (Bradshaw et al. 2010), it is not known to have any invertebrate pests in the 

UK at the current time and therefore does not require insecticide applications 

(DEFRA 2001).  Although Semere & Slater (2005) reported the presence of peach 

aphids Myzus persicae in Phalaris, they were not deemed to be in sufficient 

quantities to have detrimental effects on yield.  Agrochemicals, particularly 

pesticides are well documented as having both direct and indirect negative effects 

on birds (Boatman et al. 2004; Benton et al. 2002; Holland et al. 1999; Moreby & 

Southway 1999).  The absence of agrochemical inputs to biomass grass crops can 

only be a positive influence for birds in this respect, as a higher abundance of plant 

and invertebrate food is likely to be present within the crops.  Annual and 

perennial weeds were surveyed in the biomass crops and both they and their 
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associated invertebrates as potential food resources for birds have been discussed in 

Chapter 2.    

 

The biomass crops are left standing over the winter, with harvest occurring in 

spring.  This timing of harvesting optimises the lowering of both moisture and 

nutrient levels within the biomass: harvest in winter or autumn results in higher 

levels of pollutants such as sulphur dioxide when the material is burned 

(Lewandowski & Heinz 2003).  This spring harvest ensures that winter habitat, 

capable of providing shelter and invertebrate food is available to the birds within 

the crop and also ensures that no bird nests are destroyed, as may happen in arable 

crops harvested in late summer and autumn.   

 

5.4.8 Bird diversity 

The nature and significance of variation in bird diversity in the current study very 

much depended on which index was used.  The most basic measure, species 

richness, was higher in the Miscanthus and Phalaris than the comparison plots.  

Biodiversity is considered to be more than just the number of species present and 

scores such as the Shannon-Wiener Index both take into account and give extra 

weight to rare species and evenness of species counts.  In the case of the Shannon-

Wiener index, non-significant differences were apparent, whereby Miscanthus 

appeared to contain the most diverse bird assemblage.  Caution must be used, 

however when using these indices when applied to low counts.  When diversity 

indices were calculated per visit, a habitat with one each of two species, two each of 

two species or one each of four species all scored a maximum diversity count on the 

Simpson’s index, whereas in reality they would not be considered to be diverse at 

all.  Where only one individual of one species was recorded in a habitat, it was 

impossible to calculate a diversity score and therefore these data were omitted from 

analysis, (even though the absence of birds itself says something useful about the 

habitat).   
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There were also differences between analyses based on whether the diversity score 

was calculated for the habitat as a whole (i.e. total number of individuals of each 

species present in each habitat during all surveys) or whether diversity scores are 

calculated at each visit and a mean of these values is used.  In order to perform 

statistical analysis, the latter is required, but the resulting figures are considerably 

different from the whole-habitat scores, particularly when calculating the 

Shannon-Wiener index.  Even then, differences in variances in the indices make 

traditional statistical analysis such as ANOVA impossible (Rogers & Hsu 2001).  

Izsak & Papp (2000) argue that traditional ecological diversity scores and other 

measures of biodiversity do not adequately describe the relationship between the 

taxonomic differences and abundance that is necessary to truly define the 

biodiversity of a system.  Various alternative biodiversity indices have been 

suggested (Campos & Isaza 2009; Benayas & de la Montana 2003), but as yet, the 

Simpson Index of Diversity and Shannon-Wiener index remain the best-known 

and most regularly used.  The Simpson’s Index certainly seems to be 

unrepresentative in the analysis of the low bird numbers per visit in this study and 

should be interpreted with caution in comparison with other habitats where 

greater numbers were recorded. 

 

Seasonal variation in diversity scores were seen in the biomass crops, although 

these variations themselves varied between the diversity indices.  Simpson’s Index 

of Diversity was higher in spring, whereas Shannon-Wiener was higher in the 

autumn.  This difference may be due to the greater weighting of rare species in the 

Shannon-Wiener Index, but again shows inconsistencies between the indices. 

 

5.4.9 Species of conservation concern 

This study recorded fewer red-listed birds within either of the biomass crops than 

the comparison plots, but other published studies of birds in Miscanthus have 
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reported differently (Sage et al. 2010; Bellamy et al. 2009; Semere & Slater 2005).  

Of note, three red-listed farmland birds (linnet, yellow wagtail and yellowhammer) 

were recorded in all three studies (Table 5.20 (a)).  Two studies reported fieldfare, 

grey partridge and house sparrow, while corn bunting and lesser redpoll were only 

recorded by one (Sage et al. 2010; Bellamy et al. 2009; Semere & Slater 2005).  It is 

possible that the other studies took place in areas dominated by arable farming and 

were therefore more likely to encounter these species, which are more typical of 

arable landscapes than the current study, which included predominantly pastoral 

areas. 

 

A red-listed bird that was recorded in all three habitats in this study was the song 

thrush.  Although there were no statistically significant differences between 

habitats, it was recorded more times in the Miscanthus than the Phalaris or the 

comparison plots. 

 

The other red-listed species seen in Miscanthus in the current study was the 

skylark.  Although this species has been recorded in other studies in Miscanthus, it 

was found in lower numbers than in comparison plots of arable, grassland or short 

rotation coppice (SRC) willow (Sage et al. 2010: Bellamy et al. 2009).  The skylark 

prefers to nest in open areas, and more particularly where swards are less than 30 

cm tall (Chamberlain et al. 1999).  This has led to speculation that the closed 

canopy formed by mature Miscanthus would be unsuitable as nesting habitat and 

may even form a ‘breeding trap’ where the nests are initiated while the crop is still 

very short, the rapid growth of the crop leads to abandonment of nests prior to the 

young fledging (Anderson et al. 2004).  Bellamy et al. (2009) found that areas of 

sparse crop growth and gaps in the canopy allowed the skylark and meadow pipit to 

continue using the fields even as the crop matured.  This sparse canopy, however, 

may not be available in better-managed, dense crops of the type surveyed by Sage 

et al. (2010), which supported fewer skylark than comparison plots of wheat, grass 
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or SRC.  Even if Miscanthus does provide areas suitable for nesting, it is less likely 

to be used for foraging during the breeding season.  The skylark depends on early 

detection of predators, favouring open areas of field away from the hedges (Wilson 

et al. 2005) and thus may choose not to remain in Miscanthus fields to forage once 

the crop has started to grow tall.  With regard to Phalaris as a potential skylark 

nesting habitat, Vepsäläinen (2010) concluded that although the crop architecture 

was suitable for a first nest in the breeding season, it became poor habitat for any 

subsequent broods.  In May, he reported that Phalaris contained equivalent skylark 

numbers to the comparison conventional crops, but by June their numbers were 

lower in Phalaris and by July they were only seen near the edge of the crop rather 

than in the middle. 

 

A large number of amber-listed birds were recorded in the biomass crops.  One of 

these recorded at three sites was the reed bunting, which was recorded in both 

biomass grass crop types, although its abundance was non-significantly higher in 

the Phalaris.  It has been one of the species particularly affected by agricultural 

intensification, with a 59% reduction in population across the whole of the UK 

between 1968 and 1991 (Fuller et al. 1995).  Peach et al. (1999) attribute the advent 

of widespread herbicide use to its decline, through the resulting reduced 

availability of small grass and weed seeds on which they rely for over-winter 

survival.  The reed bunting was red-listed from 1996 to 2007 but was then down-

graded to amber as populations had stabilised at reduced levels (www.BTO.org). 

 

Brickle & Peach (2004) found that rank and emergent vegetation was preferred by 

reed buntings in comparison with set-aside, oil-seed rape and cereals.  This was 

thought to be due to the superior foraging opportunities and also concealment of 

their nests in this habitat.  This was in agreement with the findings of Siriwardena 

et al. (2001), whereby breeding success of the reed bunting was negatively 

associated with increasing areas of arable land.  Reed buntings were recorded in the 
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three previously mentioned studies on birds in Miscanthus, so the biomass grass 

crop habitat is apparently very suitable for them.  Bradbury et al. (2010) reported 

on agri-environment prescriptions likely to benefit farmland birds as well as 

enhancing ecosystem service delivery.  They suggested that the planting of small-

scale wetlands around field margins as buffer zones for pollutants increased 

invertebrate diversity and provided habitat for reed buntings, sedge warbler and 

grasshopper warbler.  The introduction of biomass grass crops into arable areas 

would also create suitable habitat for reed bunting, whilst still being a 

commercially viable crop. 

 

Birds were not systematically surveyed in the uncultivated field margins.  Due to 

the narrow nature of the margins (2 – 6 m), it would have been impossible to tell 

whether any birds caught in mist nets within them were utilising the margins, or 

simply moving between the hedge and crop.  However, the presence of rough, 

grassy, uncultivated margins of 6 m width around the biomass crops is likely to 

benefit many different bird species.  The barn owl relies on this habitat for hunting 

small mammals, but the reduced availability of rough grassland of this kind and hay 

meadows on farmland in recent times is associated with a negative impact on the 

barn owl (Bond et al. 2005).  It has also been shown that an optimal width of grass 

strip for hunting barn owls is 7 m (Askew et al. 2007) and as such, the 6 m margins 

present around the biomass crops may be valuable.  Uncultivated and unsprayed 

field margins also tend to have high botanical diversity (de Snoo 1999) which in 

turn can attract a higher diversity of invertebrates.  A similar botanical composition 

would have been found on set-aside land, which was reported to increase the 

density and diversity of bird species when compared to tillage or grass (Gillings et 

al. 2010; Bracken & Bolger 2006).  As compulsory set-aside has now been 

discontinued, many farmland bird species will have suffered reduced habitat 

availability as a consequence (Gillings et al. 2010), and the presence of uncultivated 
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field margins such as those around the biomass crops may become ever more 

important. 

 

5.4.10 Habitat associations and groupings 

Most of the birds recorded within the biomass crops in this study were considered 

to be predominantly woodland species, as had also been reported by Sage et al. 

(2010) and Bellamy et al. (2009).  Nonetheless, it was unexpected that the goldcrest, 

usually associated with conifers (www.BTO.org) should be found in Miscanthus at 

two different sites.   

 

Species normally associated with open ground were recorded within the crops, but 

only at a time when the crop was newly harvested or in the very early stages of 

growth, which is in agreement with the findings of Bellamy et al. (2009).  The 

heterogeneous structure of Miscanthus throughout the year in addition to the 

presence of wide uncultivated margins and hedgerows around it provide potential 

nesting and foraging habitat for a wide variety of birds. 

 

In terms of habitat structure, the closest approximation to Miscanthus would be a 

reedbed, and it is therefore not unexpected that sedge and reed warbler and waders 

were present within it.  Although this study found species such as the reed warbler 

and sedge warbler (usually associated with reedbeds) in the Phalaris, it is unknown 

what influence the close proximity of the Miscanthus may have had.  At the three 

sites where Phalaris was grown, there was a Miscanthus plot within 10 m of it.  The 

architecture of the Miscanthus may have been more suitable for nest-building by 

these warblers, and the adjacent Phalaris may just have been used for foraging.  

Vepsäläinen (2010) studied Phalaris crops in Finland and recorded grasshopper 

warbler Locustella naevia and Blyth’s reed warbler Acrocephalus dumetorum 

within the Phalaris, but not within cereal comparison plots, suggesting that the 
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Phalaris is indeed a good warbler habitat, even in the absence of adjacent 

Miscanthus. 

 

Several of the taxonomic groups of birds in this study (dunnocks/wrens, 

finches/buntings, tits/warblers) were only found within the biomass crops, 

reflecting the fact that these groups predominantly represent birds of woodland or 

reedbed rather than open farmland.  The groups containing corvids, 

pheasants/pigeons and thrushes/starlings were found in non-significantly higher 

abundance in the comparison plots than the biomass crops.  Again, variance in 

abundance was high, particularly for the thrushes/starlings, whose high numbers 

were predominantly composed of flocks of redwings and starlings. 

 

5.4.11 Seasonal changes 

All three habitats contained non-significantly higher species numbers and 

abundance of birds in the summer / breeding season in comparison with winter.  

This was partially influenced by the influx of some summer migrants, but it is not 

known whether this is because the crops were being utilised for breeding, feeding 

or shelter by the birds present.  Semere & Slater (2005) reported the crops being 

used for breeding by the skylark, grey partridge, lapwing and pheasant, whilst 

pheasant, grey partridge, wren and linnet were seen foraging in the crops during 

the winter.  Bellamy et al. (2009) recorded breeding pairs of pheasant, skylark, red-

legged partridge, reed bunting and reed warbler in the Miscanthus.  In Japan where 

Miscanthus is a native plant species, Stewart et al. (2009) reported the eastern great 

reed warbler Acrocephalus arundinaceus orientalis, Japanese reed bunting 

Emberiza yessoensis and meadow bunting Emberiza cioides nesting in Miscanthus 

sinensis, one of the parent forms of the hybrid M. x giganteus.  Further work on 

how birds move around and utilise the crops through the use of radio-telemetry, or 

by direct observations of behaviour, would be most useful for understanding the 

spatial and temporal patterns of habitat use in biomass crops. 
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5.4.12 Biomass grass crops in the context of effects of agricultural intensification 

Birds in western, grassland dominated areas of the UK have declined more 

markedly than in other parts of the country (Chamberlain & Fuller 2001; Gates & 

Donald 2000).  The cultivation of biomass grasses may provide additional habitat 

for declining bird species – either through the structure and resources within the 

crop, or from the associated uncultivated field margins.  The presence of these 

margins within arable areas may, in some way compensate for the loss of set-aside 

land, by providing floristically diverse areas of vegetation. 

 

Herbicides are known to have both direct and indirect effects on granivorous and 

insectivorous birds (Buckingham et al. 2006; Boatman et al. 2004; Moreby & 

Southway 1999) and a habitat free of these chemicals is likely to have positive 

impacts on these birds.  Although herbicides may used in the first two years after 

establishment of the biomass grass crops, usually there is no further requirement for 

agrochemicals, potentially for 20 years in Miscanthus and five years in Phalaris, if 

the crops are grown to their maximum life-span.  In Miscanthus, the architecture of 

the rhizome clumps and occasional gaps in between the plants allow some weeds to 

grow.  However, these weed patches tend not to be very dense or tall and therefore 

make good foraging patches for granivorous birds feeding on their seeds.  Although 

the stems of Phalaris tend to grow more densely together, some weeds also grow 

within the crop, attracting pollinating and herbivorous insects (see Chapter 2) as 

well as providing a seed resource.  Intrinsically, Phalaris is likely to be a good food 

resource for granivorous bird species as it produces large seed-bearing heads. 

 

Many over-wintering granivorous birds feed on the small grass and weed seeds that 

have grown within stubbles that have been left over the winter prior to sowing of 

spring crops (Fuller et al. 1995).  Where stubbles are sprayed with herbicide and 

ploughed in autumn prior to the planting of winter cereals, no such weed cover 

exists.  The weeds present within the biomass crops may be an important foraging 
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resource.  In addition, the dry standing biomass provides an architecturally distinct 

habitat providing shelter during the winter, unlike other arable crops, which are 

harvested in the autumn.   

 

5.4.13 Conclusions 

A diverse range of birds was recorded in both biomass grass crops, although 

Miscanthus contained a higher abundance and diversity than the Phalaris.  Birds 

recorded within the biomass crops tended to be of species usually associated with 

woodland or reedbeds rather than farmland specialists, although some of these 

were also present in lower numbers.  A combination of mist-netting and walking 

surveys revealed a greater number of species than either technique alone.  No 

differences in sex, age or body mass were seen in birds captured in either crop. 

 

Although the overall impact of biomass grass crops on different bird species varies, 

the evidence presented in this chapter provides support for the view that the crops 

create new structural habitat that provides food resources and shelter for birds on 

farmland in comparison with areas of grazed pasture. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
S.J. Clapham  317   

 

5.5 References 

Anderson G, Haskins L & Nelson S (2004) The effects of bioenergy crops on 
farmland birds in the UK: a review of current knowledge and future predictions. In: 
Parris K, and Poincet T [eds.] Biomass and Agriculture; Sustainability, Markets and 
Policies. Paris: OECD, pp. 199-218.  

Askew NP, Searle JB, & Moore NP (2007) Agri-environment schemes and foraging 
of barn owls Tyto alba. Agriculture Ecosystems & Environment 118, 109-114.  

Atkinson PW, Buckingham D & Morris AJ (2004) What factors determine where 
invertebrate-feeding birds forage in dry agricultural grasslands? Ibis 146, 99-107.  

Bas Y, Renard M & Jiguet F (2009) Nesting strategy predicts farmland bird response 
to agricultural intensity. Agriculture Ecosystems & Environment 134, 143-147.  

Bellamy PE, Croxton PJ, Heard MS, Hinsley SA, Hulmes L, Hulmes S, Nuttall P, 
Pywell RF & Rothery P (2009) The impact of growing Miscanthus for biomass on 
farmland bird populations. Biomass & Bioenergy 33, 191-199.  

Benayas JMR & de la Montana E (2003) Identifying areas of high-value vertebrate 
diversity for strengthening conservation. Biological Conservation 114, 357-370.  

Benton TG, Bryant DM, Cole L & Crick HQP (2002) Linking agricultural practice 
to insect and bird populations, a historical study over three decades. Journal of 
Applied Ecology 39, 673-687.  

Boatman ND, Brickle NW, Hart JD, Milsom TP, Morris AJ, Murray AWA, Murray 
KA et al. (2004) Evidence for the indirect effects of pesticides on farmland birds. 
Ibis 146, 131-143.  

Bond G, Burnside NG, Metcalfe DJ, Scott DM, & Blamire J (2005) The effects of 
land-use and landscape structure on barn owl (Tyto alba) breeding success in 
southern England, UK. Landscape Ecology 20, 555-566.  

Bracken F & Bolger T (2006) Effects of set-aside management on birds breeding in 
lowland Ireland. Agriculture Ecosystems & Environment 117, 178-184.  

Bradbury RB & Allen DS (2003) Evaluation of the impact of the pilot UK Arable 
Stewardship Scheme on breeding and wintering birds. Bird Study 50, 131-141.  

Bradbury RB, Kyrkos A, Morris AJ, Clark SC, Perkins AJ & Wilson JD (2000) 
Habitat associations and breeding success of yellowhammers on lowland farmland. 
Journal of Applied Ecology 37, 789-805.  



   
S.J. Clapham  318   

 

Bradbury RB, Stoate C & Tallowin JRB (2010) Lowland farmland bird conservation 
in the context of wider ecosystem service delivery. Journal of Applied Ecology 47, 
986-993.  

Bradshaw JD, Prasifka JR, Steffey KL & Gray ME (2010) First report of field 
populations of two potential aphid pests of the bioenergy crop Miscanthus x 
giganteus. Florida Entomologist 93, 135-137.  

Brickle NW, Harper DGC, Aebischer NJ & Cockayne SH (2000) Effects of 
agricultural intensification on the breeding success of corn buntings Miliaria 
calandra. Journal of Applied Ecology 37, 742-755.  

Brickle NW & Peach WJ (2004) The breeding ecology of Reed Buntings Emberiza 
schoeniclus in farmland and wetland habitats in lowland England. Ibis 146, 69-77.  

British Trust for Ornithology (BTO) http://www.bto.org/about-birds/birdfacts/ 

Britschgi A, Spaar R & Arlettaz R (2006) Impact of grassland farming intensification 
on the breeding ecology of an indicator insectivorous passerine, the Whinchat 
Saxicola rubetra: Lessons for overall Alpine meadowland management. Biological 
Conservation 130, 193-205.  

Buckingham DL, Peach W J & Fox DS (2006) Effects of agricultural management on 
the use of lowland grassland by foraging birds. Agriculture Ecosystems & 
Environment 112, 21-40.  

Campos D & Isaza JF (2009) A geometrical index for measuring species diversity. 
Ecological Indicators 9, 651-658.  

Chamberlain DE & Fuller RJ (2001) Contrasting patterns of change in the 
distribution and abundance of farmland birds in relation to farming system in 
lowland Britain. Global Ecology and Biogeography 10, 399-409.  

Chamberlain DE, Wilson AM, Browne SJ & Vickery JA (1999) Effects of habitat 
type and management on the abundance of skylarks in the breeding season. Journal 
of Applied Ecology 36, 856-870.  

Chiron F, Filippi-Codaccioni O, Jiguet F & Devictor V (2010) Effects of non-
cropped landscape diversity on spatial dynamics of farmland birds in intensive 
farming systems. Biological Conservation 143, 2609-2616.  

de Snoo GR (1999) Unsprayed field margins, effects on environment, biodiversity 
and agricultural practice. Landscape and Urban Planning 46, 151-160.  

DEFRA (2001) Planting and growing Miscanthus: best practice guidelines. London.  



   
S.J. Clapham  319   

 

DEFRA (2009) Index of the UK population of wild birds - Individual species indices 
http://data.defra.gov.uk/env/wdtb31wild_birds_200910.csv 

Donald PF, Sanderson FJ, Burfield IJ & van Bommel FPJ (2006) Further evidence of 
continent-wide impacts of agricultural intensification on European farmland birds, 
1990-2000. Agriculture Ecosystems & Environment 116, 189-196.  

Fry D & Slater FM (2009) The biodiversity of short rotation coppice in the Welsh 
landscape.  A report to the Institute of Biological, Environmental and Rural 
Sciences, Aberystwyth University for EU Project “Willows for Wales.” 
Aberystwyth.  

Fuller RJ, Gregory RD, Gibbons DW, Marchant JH, Wilson JD, Baillie SR & Carter 
N (1995) Population declines and range contractions among lowland farmland birds 
in Britain. Conservation Biology 9, 1425-1441.  

Gates S & Donald PF (2000) Local extinction of British farmland birds and the 
prediction of further loss. Journal of Applied Ecology 37, 806-820.  

Gillings S, Henderson IG, Morris A J & Vickery JA (2010) Assessing the 
implications of the loss of set-aside for farmland birds. Ibis 152, 713-723.  

Gottschalk TK, Dittrich R, Diekotter T, Sheridan P, Wolters V & Ekschmitt K 
(2010) Modelling land-use sustainability using farmland birds as indicators. 
Ecological Indicators 10, 15-23.  

Gregory RD, Noble DG & Custance J (2004) The state of play of farmland birds: 
population trends and conservation status of lowland farmland birds in the United 
Kingdom. Ibis 146, 1-13.  

Grice P, Evans A, Osmond J & Brand-Hardy R (2004) Science into policy: the role 
of research in the development of a recovery plan for farmland birds in England. 
Ibis 146, 239-249.  

Hart JD, Milsom TP, Fisher G, Wilkins V, Moreby SJ, Murray AWA & Robertson 
PA  (2006) The relationship between yellowhammer breeding performance, 
arthropod abundance and insecticide applications on arable farmland. Journal of 
Applied Ecology 43, 81-91.  

Henderson IG, Fuller RJ, Conway GJ & Gough SJ (2004) Evidence for declines in 
populations of grassland-associated birds in marginal upland areas of Britain. Bird 
Study 51, 12-19.  

Holland JM, Winder L & Perry JN (1999) Arthropod prey of farmland birds: their 
spatial distribution within a sprayed field with and without buffer zones. Aspects of 
Applied Biology 54, 1-8.  



   
S.J. Clapham  320   

 

Izsak J & Papp L (2000) A link between ecological diversity indices and measures of 
biodiversity. Ecological Modelling 130, 151-156.  

Kragten S & de Snoo GR (2007) Nest success of Lapwings Vanellus vanellus on 
organic and conventional arable farms in the Netherlands. Ibis 149, 742-749.  

Lewandowski I & Heinz A (2003) Delayed harvest of Miscanthus - influences on 
biomass quantity and quality and environmental impacts of energy production. 
European Journal of Agronomy 19, 45-63.  

MacDonald DW, Tattersall FH, Service KM, Firbank LG & Feber RE (2007) 
Mammals, agri-environment schemes and set-aside - what are the putative 
benefits? Mammal Review 37, 259-277.  

Martin TG & Possingham HP (2005) Predicting the impact of livestock grazing on 
birds using foraging height data. Journal of Applied Ecology 42, 400-408.  

Moreby SJ & Southway SE (1999) Influence of autumn applied herbicides on 
summer and autumn food available to birds in winter wheat fields in southern 
England. Agriculture Ecosystems & Environment 72, 285-297.  

Morris AJ, Wilson JD, Whittingham MJ & Bradbury RB (2005) Indirect effects of 
pesticides on breeding yellowhammer (Emberiza citrinella). Agriculture 
Ecosystems & Environment 106, 1-16.  

Murray LD, Best LB, Jacobsen TJ & Braster ML (2003) Potential effects on grassland 
birds of converting marginal cropland to switchgrass biomass production. Biomass 
& Bioenergy 25, 167-175.  

NERC/Centre for Ecology & Hydrology (2009) Countryside Survey: England 
Results from 2007. Department for Environment, Food and Rural Affairs, Natural 
England, 119pp. (CEH Project Number: C03259).  

Pärt T & Söderström B (1999) Conservation value of semi-natural pastures in 
Sweden: Contrasting botanical and avian measures. Conservation Biology 13, 755-
765.  

Peach WJ, Siriwardena GM & Gregory RD (1999) Long-term changes in over-
winter survival rates explain the decline of reed buntings Emberiza schoeniclus in 
Britain. Journal of Applied Ecology 36, 798-811.  

Perkins AJ, Whittingham MJ, Bradbury RB, Wilson JD, Morris AJ & Barnett PR 
(2000) Habitat characteristics affecting use of lowland agricultural grassland by 
birds in winter. Biological Conservation 95, 279-294.  

Redfern C P F & Clark J A (2001) Ringers Manual. 4th ed. Thetford: BTO.  



   
S.J. Clapham  321   

 

Remsen JV & Good DA (1996) Misuse of data from mist-net captures to assess 
relative abundance in bird populations. Auk 113, 381-398.  

Robinson RA, Wilson JD & Crick HQP (2001) The importance of arable habitat for 
farmland birds in grassland landscapes. Journal of Applied Ecology 38, 1059-1069.  

Rogers JA & Hsu JC (2001).  Multiple comparisons of biodiversity.  Biometrical 
Journal 43, 617-625. 

Sage R, Cunningham M, Haughton AJ, Mallott MD, Bohan DA, Riche A & Karp A 
(2010) The environmental impacts of biomass crops: use by birds of Miscanthus in 
summer and winter in southwestern England. Ibis 152, 487-499.  

Schaub M, Martinez N, Tagmann-Ioset A, Weisshaupt N, Maurer ML, Reichlin TS, 
Abadi F, Zbinden N, Jenni L & Arlettaz R (2010) Patches of bare ground as a staple 
commodity for declining ground-foraging insectivorous farmland birds. PLoS One 
5, e13115.  

Semere T & Slater FM (2005) The effects of energy grass plantations on 
biodiversity. London: Department of Trade and Industry.  

Semere T & Slater FM (2007) Ground flora, small mammal and bird species 
diversity in Miscanthus (Miscanthus x giganteus) and reed canary-grass (Phalaris 
arundinacea) fields. Biomass & Bioenergy 31, 20-29.  

Siriwardena GM, Baillie SR, Crick HQP & Wilson JD (2001) Changes in agricultural 
land-use and breeding performance of some granivorous farmland passerines in 
Britain. Agriculture Ecosystems & Environment 84, 191-206.  

Smart SM, Allen D, Murphy J, Carey PD, Emmett BA, Reynolds B, Simpson IC, 
Evans RA, Skates J, Scott WA, Maskell LC, Norton LR, Rossall MJ & Wood C  
(2009) Countryside Survey: Wales Results from 2007. NERC/Centre for Ecology & 
Hydrology, Welsh Assembly Government, Countryside Council for Wales, 94pp. 
(CEH Project Number: C03259). 

StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. 
www.statsoft.com. 

Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T & Bollero G (2009) 
The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy 
crop development, in its native range in Japan: a review. Global Change Biology 
Bioenergy 1, 126-153.  

Svensson L (1992) Identification guide to European passerines.  Stockholm: 
Märstatryck. 



   
S.J. Clapham  322   

 

Taylor IR & Grant MC (2004) Long-term trends in the abundance of breeding 
Lapwing Vanellus vanellus in relation to land-use change on upland farmland in 
southern Scotland. Bird Study 51, 133-142.  

Teyssedre A & Couvet D (2007) Expected impact of agriculture expansion on the 
world avifauna. Comptes Rendus Biologies 330, 247-254.  

Vepsäläinen V (2010) Energy crop cultivations of reed canary grass - An inferior 
breeding habitat for the skylark, a characteristic farmland bird species. Biomass & 
Bioenergy 34, 993-998.  

Vickery JA, Feber RE & Fuller RJ (2009) Arable field margins managed for 
biodiversity conservation: A review of food resource provision for farmland birds. 
Agriculture Ecosystems & Environment 133, 1-13.  

Whittingham MJ, Devereux CL, Evans A D & Bradbury RB (2006) Altering 
perceived predation risk and food availability: management prescriptions to benefit 
farmland birds on stubble fields. Journal of Applied Ecology 43, 640-650.  

Whittingham MJ, Krebs JR, Swetnam RD, Vickery JA, Wilson JD & Freckleton RP 
(2007) Should conservation strategies consider spatial generality? Farmland birds 
show regional not national patterns of habitat association. Ecology Letters 10, 25-
35.  

Wilson JD, Whittingham MJ & Bradbury RB (2005) The management of crop 
structure: a general approach to reversing the impacts of agricultural intensification 
on birds? Ibis 147, 453-463.  

Woodhouse SP, Good JEG, Lovett AA, Fuller RJ & Dolman PM (2005) Effects of 
land-use and agricultural management on birds of marginal farmland: a case study 
in the Llŷn peninsula, Wales. Agriculture Ecosystems & Environment 107, 331-340.  

Yahner RH (1988) Changes in wildlife communities near edges. Conservation 
Biology 2, 333-339.  

Young A R (2011) Biodiversity Calculator: 
http://alyoung.com/labs/biodiversity_calculator.html, accessed 10th January 2011. 

Zahn A, Englmaier I & Drobny M (2010) Food availability for insectivores in 
grasslands: arthropod abundance in pastures, meadows and fallow land. Applied 
Ecology and Environmental Research 8, 87-100.  

 

 



   

 

 

 

Chapter 6 

 

 

General Discussion 

 

 

 

 

 

 

 

 

 
 



   
S.J. Clapham  324   

 

6.1 The challenge of quantifying biodiversity  

The remit of this thesis was to examine the biodiversity of birds, small mammals, 

invertebrates and non-crop plants within plantations of Miscanthus and Phalaris 

biomass crops, and to compare this with the biodiversity of adjacent areas of 

farmland.   It is assumed that these biomass crops would primarily be grown 

commercially as feedstock for biomass energy but with other potential uses for the 

end product such as animal bedding, paper or thatching. 

 

The first issue that arose with the remit was that of how best to measure 

biodiversity.  In this thesis, a wide range of survey techniques targeting many 

different taxonomic groups was used, as it was felt that a novel crop such as 

Miscanthus warranted a broad approach.  It has been suggested that surrogate 

measures of biodiversity using narrow taxonomic groups are appropriate under 

certain circumstances (e.g. Anderson et al. 2011; Bohac 1999; Kevan 1999).  Such a 

narrow approach can require high levels of taxonomic expertise to identify an 

invertebrate genus such as Carabidae (Coleoptera) to species level, yet still relies on 

the assumption that the diversity represented by the focal taxon is representative of 

biodiversity across all taxa, which is not necessarily valid.  Indeed, the results of the 

present study suggest that for these biomass crops, using a narrow taxonomic group 

as a measure of overall biodiversity may be inappropriate.  Three measures of 

biodiversity were examined: species (or family) richness, Simpson’s index and 

Shannon’s index, but for each major taxonomic group considered (birds, small 

mammals and invertebrates), a different habitat was deemed to be the best for 

maximising biodiversity.  Small mammals, as defined by the three measures were 

more diverse in Phalaris, but birds were most diverse in Miscanthus.  Invertebrates 

were most diverse in the headlands as defined by family richness and the Shannon-

Wiener index, but were most diverse in Miscanthus in terms of the Simpson’s 

index.   These differences highlight the fact that the apparent value of a habitat for 
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biodiversity depends dramatically on the measures of biodiversity and the 

taxonomic group(s) used.   

 

Even the calculation of the diversity indices provided different results, depending 

on exactly how they were calculated; either using the total number of individual 

species/families recorded per habitat across the year, or using the mean of the 

index-specific score calculated at each visit.   

 

When either biodiversity index has been calculated, unequal variances exist, even if 

the groups being compared are of an equivalent size (Rogers & Hsu 2001) and 

therefore parametric statistical tests such as ANOVA are not appropriate.  

Alternative measures of diversity that can be more readily tested for statistically 

significant differences have been proposed (Rogers & Hsu 2001), but these are not 

as well recognised nor as easily calculated as either Simpson’s or Shannon’s indices. 

 

6.2 Limitations of methods used. 

Many of the survey techniques used were very dependent on fair weather 

conditions, which did not always prevail.  This resulted in varying time spans 

between surveys at the same sites.  Sometimes it took nearly the whole two month 

sampling interval for appropriate weather conditions to allow the completion of 

surveys at all four study sites, which meant that in the peak of the growing season, 

crop height was much taller at the last of the sites to be surveyed in the two-month 

period than it was at the first site.  Thus, interpretation of seasonal effects may also 

have been influenced by crop height / time within the sampling interval as well as 

by the time of year. 

 

The rapid growth rate of the Miscanthus and resulting dense stems made 

movements through the crop very difficult.  This did not directly affect bird and 
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small mammal trapping techniques, but certainly had an effect on invertebrate 

sampling using a sweep net. 

 

In this study, it was considered that the use of mist nets to capture birds in the 

headlands was inappropriate, as it would be impossible to determine whether the 

bird was moving between the crop and the hedge, or actively using the headland.  

Other authors who surveyed birds in Miscanthus (e.g. Sage et al. 2010 and Bellamy 

et al. 2009) reported using a technique, whereby an observer counted all birds 

flushed up out of the crop by someone else walking through the crop.  In the early 

phases of Miscanthus growth, this may be a good technique to use, but as the crop 

reaches head-height and above, it became more difficult to see any birds flying out 

of the crop.  

 

6.3 Benefits to biodiversity 

Overall, crop fields of Miscanthus and Phalaris contained a higher diversity of birds 

and small mammals than the comparison sites.  The hedgerows and headlands were 

the best habitat for small mammals in terms of abundance, and for invertebrates in 

terms of diversity.  Providing that plantations of these biomass grass crops retain 

the traditional field structure of hedgerow and headlands around the crop itself, 

then the quantity of available good habitat to all taxa will be maintained. 

 

6.4 Red-listed and Biodiversity Action Plan (BAP) species 

The harvest mouse was the notable small mammal BAP priority species found 

within the biomass grasses at one site, and this study provided the first record of 

their presence in that local area.  Previous records in the whole county 

(Pembrokeshire) only numbered 3 in the last 10 years and 7 prior to 2000, with the 

closest previous record more than 10 km away. 
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The current conservation status of the water shrew is unclear.  Despite usually 

being associated with fast-running streams, and occasionally being found in 

woodland or other habitats, it was recorded in the biomass crops at three sites.  One 

site contained particularly high numbers, all of which were captured during winter 

months.   Either this type of agricultural habitat is commonly used by water 

shrews, but they have been under-recorded in previous studies, or the biomass 

crops may provide a particularly suitable winter habitat for the water shrew. 

 

Although the biomass crops contained some red-listed bird species, they were more 

prevalent in the comparison sites.  This may reflect the fact that many of the red-

listed birds found on agricultural land are farmland specialists, requiring specific 

habitat such as open areas of short grass sward (e.g. starling) or regularly tilled and 

cropped land (skylark).  Although the biomass grasses did not necessarily provide 

optimal habitat for these declining farmland specialist birds, they did create habitat 

that was well used by other bird species. 

 

6.5 Winter shelter 

A key feature of the biomass grass crops is the fact that they are left standing over 

the winter.  Although leaving the crop to stand in-situ until spring harvest is 

known to slightly reduce overall biomass, the quality of the resulting combusted 

material is improved by harvest in spring rather than autumn.  This management 

practice provides valuable winter habitat that is not available where any other 

commercial grass or cereal crop is grown in the UK.   The biomass crops may act as 

surrogates for reedbed habitat for flock-roosting winter bird species and also appear 

to support a high winter abundance of small mammals.  This benefit to small 

mammals was demonstrated at the ADAS experimental plot at site ‘PP’ in 

Ceredigion, where there was a significantly higher small mammal abundance 

during the winter months in the Phalaris crop that was left standing at full height 
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until February, in comparison with areas of the crop that were mown in August 

(leaving only very short crop re-growth over the winter).   

  

6.6 Trophic relationships and food availability within the crops 

It could have been tempting in this thesis, to try to correlate abundance and 

diversity of invertebrates and weeds with the birds and small mammals present and 

then to infer possible trophic relationships.  However, such statistical associations 

do not necessarily imply cause and effect.  Rather, this thesis has shown that plant 

and invertebrate food resources known to be important for birds and small 

mammals were recorded within the crops and that therefore the biomass grass 

crops are likely to be good habitat for them.   

 

Future work could include the use of radio-telemetry to track the small-scale 

movements of both resident birds and small mammals, in order to determine how 

they are using the biomass crops.  It would be useful to determine whether shelter 

is the key benefit within the crops, or whether sufficient food resources exist 

within them for the animals to remain there without dependence on other 

available habitats. 

 

6.7 Ecosystem services 

Within the existing biomass grass crop field structure that included a hedgerow and 

uncultivated wide headland, many beneficial invertebrates including pollinators, 

parasitoids and predators were found.  As a native species in the UK, Phalaris may 

naturally suffer attacks by pests, but it is not known whether this is at economically 

damaging levels.  At the current time, Miscanthus in the UK, as a non-native 

species, does not have any known insect pests, and there is no requirement for 

insecticide use in the crops.  This absence of insecticide use could mean that the 

biomass grass crops can act as a reservoir of beneficial invertebrates able to perform 

biological control of pest species in adjacent arable crops through predation or 
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parasitism.  The uncultivated margins and weedy patches within the crops also 

provided nectar sources for both pollinators and parasitoids.  In an otherwise 

homogenous monoculture landscape, these field margins and non-crop plants could 

be essential in maintaining a high diversity of these invertebrates in agricultural 

landscapes. 

 

Many invertebrate families found within the crops are essential for breaking down 

organic matter and returning carbon to the soil.  Both Miscanthus and Phalaris 

fields are reported to be net sinks of carbon (Shurpali et al. 2009; Kahle et al. 2001) 

and as such have a potentially important role in contributing to reducing 

atmospheric CO2.  As biomass crop species are perennial plants, tillage is 

dramatically reduced in comparison with annual crops such as the main food crops, 

further reducing organic carbon losses from the soil.  Furthermore, the use of 

biomass grasses as a renewable fuel (in that growth of the crop removes the same 

amount of carbon from the atmosphere as its combustion releases) reduces the need 

for fossil fuels to be combusted.  If the biomass grass crop fields are only a short 

distance from the power station, then transport costs are low and the net carbon 

costs of producing biomass fuel are low, such that the biomass crops can be a very 

low-carbon energy source (Department for the Environment, Food and Rural 

Affairs (DEFRA) 2007). 

 

6.8 Opportunities for future work 

The current study included surveys in two commercial crops and two experimental 

plots of biomass grasses, which resulted in a range of plot sizes being available.  

Further work on larger commercial crops that includes surveys further than 50 m 

into the crop from the crop edge would be necessary in order to assess the impact of 

cropped areas of a larger size.   
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The use of radio-telemetry for small mammals and birds using the biomass grass 

habitat would reveal more about how the crops are utilised, in terms of feeding, 

breeding or shelter than can be determined using the techniques described in this 

thesis. 

 

6.9 Conclusions 

In conclusion: plantations of biomass grass crops such as Miscanthus x giganteus 

and Phalaris arundinacea in the UK enhance the biodiversity of birds and small 

mammals in the agricultural landscape, when grown in small to medium sized plots 

surrounded by uncultivated headlands and hedgerows.  Furthermore, these crop 

field structures also support a diversity of non-crop vegetation and invertebrates 

with important roles in trophic webs and the provision of ecosystem services. 
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Appendix 1 
 

Details of small mammals caught per 100 trap nights per transect in Year 1 and Year 2 (based on the 
first night of trapping only).  Key to species: WM = wood mouse, YNM = yellow-necked mouse, HM 
= harvest mouse, BV = bank vole, FV = field vole, CS = common shrew, PS = pygmy shrew, WS = 
water shrew.  Key to sites: HM = Hinton Manor, LL = Llysdinam, N = Narberth, PP1 = Pwllpeiran 
field 1, PP2 = Pwllpeiran field 2. 

Year 1          
Site Habitat Transect WM YNM HM BV FV CS PS WS 
HM  Comparison  3 0 0 0 3 0 0 0 
HM  Headland  0 3 0 0 0 0 0 0 
HM  Miscanthus 10 5 3 0 0 0 0 0 0 
HM  Miscanthus 20 5 0 0 0 0 0 0 0 
HM  Miscanthus 50 13 3 0 0 0 0 0 0 
LL Comparison  0 0 0 0 0 0 0 0 
LL Headland  10 5 0 1 2 0 0 0 
LL Miscanthus 10 13 2 0 0 0 3 0 0 
LL Miscanthus 20 23 2 0 0 2 2 0 0 
LL Phalaris 10 12 2 0 0 0 2 0 0 
LL Phalaris 20 5 0 0 0 2 5 2 0 
N Comparison  0 0 0 0 8 2 0 0 
N Headland  2 0 0 3 0 0 0 0 
N Miscanthus 10 16 0 0 0 2 0 0 0 
N Miscanthus 20 16 0 0 0 0 0 0 0 
N Miscanthus 50 12 0 4 0 0 0 0 0 
N Phalaris 10 8 0 4 2 2 0 0 0 
N Phalaris 20 2 0 4 2 2 0 0 0 
N Phalaris 50 4 0 4 0 0 4 0 0 
PP1 Comparison  0 0 0 0 0 0 0 0 
PP1 Headland  8 0 0 0 0 0 0 0 
PP1 Miscanthus 10 25 0 0 0 3 2 0 0 
PP1 Miscanthus 20 17 0 0 3 0 0 0 0 
PP1 Phalaris 10 2 0 0 0 17 2 0 2 
PP1 Phalaris 20 2 0 0 2 13 0 0 0 
PP2 Headland  2 0 0 0 0 0 0 0 
PP2 Phalaris 10 15 0 0 0 0 0 0 0 
PP2 Phalaris 20 10 0 0 0 0 0 0 0 
PP2 Phalaris 50 8 0 0 0 2 0 0 0 
           
Year 2          
Site Habitat Transect WM YNM HM BV FV CS PS WS 
N Hedge East 60 0 0 37 4 28 2 1 
N Hedge South 93 0 0 55 1 3 2 2 
N Hedge West 82 0 0 75 0 2 1 0 
N Hedge North 31 0 0 34 14 48 10 3 
N Phalaris 20 15 0 27 4 0 14 1 5 
N Phalaris 100 32 0 19 6 4 8 1 7 
N Phalaris 180 33 0 12 1 1 15 0 2 
N Miscanthus1 20 45 0 4 8 0 2 1 1 
N Miscanthus1 100 58 0 4 6 0 1 1 2 
N Miscanthus1 180 65 0 1 14 0 3 3 3 
N Miscanthus2 20 43 0 3 1 1 6 1 0 
N Miscanthus2 180 43 0 0 5 1 13 0 5 
N Miscanthus2 180 48 0 0 11 0 8 3 2 
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Appendix 2 
 
Birds recorded in this study, where recorded, conservation status and usual habitat associations.  
Conservation status from www.BTO.org, habitat associations from DEFRA 2009 (see section 5.5 for 
full citations).  Key to where recorded: M = Miscanthus, P = Phalaris, C = comparison plots. 
Key to habitat associations: F = farmland, FS = farmland specialist, LW = lowland wetland, O = other 
/ unclassified, S = seabird, U = upland, W = woodland, WS = woodland specialist. 

Family Species Common 
name 

Where recorded Status Habitat  
 M P C 

Aegithalidae Aegithalos caudatus Long tailed tit  1  Green W 
Alaudidae Alauda arvensis Skylark 1   Red FS 
Certhidae Certhia familiaris Treecreeper  1  Green WS 
Charadriidae Vanellus vanellus Lapwing   5 Red FS 
Columbidae Columba palumbus Woodpigeon   4 Green F 
Corvidae Corvus corone Carrion crow 1  4 Green O 
 Corvus monedula Jackdaw   14 Green FS 
 Pica pica Magpie  1  Green O 
Emberizidae Emberiza schoeniclus Reed bunting 6 17 2 Amber F  
Fringillidae Fringilla coelebs Chaffinch 1 1  Green W 
 Pyrrhula pyrrhula Bullfinch 1   Amber W 
Hirundinidae Hirundo rustica Barn swallow 11 9 5 Amber O 
Laridae Larus marinus Great black 

backed gull 
  2 Amber S 

Motacillidae Anthus pratensis Meadow pipit 1 1 2 Amber U 
 Motacilla alba Pied wagtail   1 Green O 
Paridae Cyanistes caeruleus Blue tit 18 12  Green W 
 Parus major Great tit 6 3  Green WS 
Phasianidae Phasianus colchicus Pheasant 8 106  None  
Prunellidae Prunella modularis Dunnock 8 2  Green W 
Scolopacidae Numenius arquata Curlew 1   Amber U 
 Scolopax rusticola Woodcock 2   Amber SW 
Strigidae Athene noctua Little owl 1   None F 
Sturnidae Sturnus vulgaris Starling  1 20 Red FS 
Sylviidae Phylloscopus collybita Chiffchaff 4 1  Green WS 
 Regulus regulus Goldcrest 2   Green WS 
 Acrocephalus scirpaceus Reed warbler 2 1  Green LW 
 Acrocephalus 

schoenobaenus 
Sedge warbler 1 5  Green LW 

 Phylloscopus trochilus Willow warbler  1  Amber WS 
Troglodytidae Troglodytes troglodytes Wren 6 11  Green W 
Turdidae Turdus merula Blackbird 21 7 7 Green W 
 Phoenicurus phoenicurus Restart 1 1  Amber WS 
 Turdus iliacus Redwing   10 Red ?F 
 Oenanthe oenanthe Wheatear 2   Amber U 
 Erithacus rubecula Robin 19 4 2 Green W 
 Turdus philomelos Song thrush 7 5 4 Red W 
 Turdus viscivorus Mistle thrush 2  1 Amber O 
Tytonidae Tyto alba Barn owl 1     Amber ?F 
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	Another technology under development is pyrolysis (fast or slow), which involves heating biomass in the absence of oxygen to produce the liquid product “bio-oil”.  This can be used instead of mineral oil for generating power and has the advantage of b...
	1.1.8 Perennial grass types
	Four main types of perennial grass have been identified as potentially good biomass sources in Europe: Miscanthus x giganteus, reed canary grass Phalaris arundinacea, giant reed Arundo donax and switchgrass Panicum virgatum (Lewandowski et al. 2003). ...
	Plantations of only two of these grasses (Miscanthus and Phalaris) were available in the required geographical area (mid and west Wales) and therefore for the purposes of this thesis, only these two biomass grass types are considered.
	1.1.9 Markets for biomass
	An essential element of growing biomass crops as a renewable energy, is that there is a viable market for the crop that is sufficiently local, to minimize transport-induced CO2 emissions.  Increasingly, biomass boilers are being used for small scale h...
	1.1.10 Properties of good biomass for combustion
	Plant material that is too high in nutrients and alkali inorganic elements can cause damage to power plants through slag formation, fouling and corrosion (Monti et al. 2008).  These processes occur through accumulation of deposits on heat exchangers w...
	1.2 Miscanthus
	1.2.1 Miscanthus - description and agronomy
	Miscanthus x giganteus Greef & Deuter ex Hodkinson is a sterile allopolyploid hybrid produced by crossing Miscanthus sinensis with Miscanthus sacchariflorus (Stewart et al. 2009).  The native range of these two species is East Asia, where their use as...
	M. x giganteus (hereafter referred to as Miscanthus) has a C4 photosynthetic pathway (Farrell et al. 2006), resulting in a higher water use efficiency than C3 plants.  As it cannot produce viable seed, propagation has to be via rhizomes planted direct...
	Pre-emergence herbicides and those specifically targeting broadleaved weed species do not damage Miscanthus plants or reduce the biomass produced, whereas herbicides with grass activity cause significant damage and as a consequence, a reduction in bio...
	Miscanthus was found to produce significantly more biomass than switchgrass in a varied range of growing conditions, although yield was constrained by water rather than nitrogen availability (Heaton et al. 2004).  Yields of 10-15 t DM ha-1 a-1 have be...
	Once established, the rhizomes grow outwards underground, from which a closely packed clump of stems grow (Figure 1.1).
	Figure 1.1 Stages of growth of the Miscanthus crop through the year.  Clockwise from top left: April, June, October and January
	By the end of the growing season in the UK, crop height can be around 3 m and can be harvested annually from the first growing season after planting, although yield doesn’t reach maximum production until around three years after planting.  Unlike swit...
	The leaves also senesce and fall to the ground at the end of the growing season, leaving mainly dry stems/canes, which can comprise up to 92% of harvested dry matter (Christian et al. 2008).  Senesced leaves provide organic inputs to the soil, estimat...
	1.2.2 Fertilizers, productivity and longevity
	The lifetime of a single planting of annually-harvested Miscanthus is estimated to be 20 years (DEFRA 2001), and a crop in silty loam soil has been recorded as continuing to be productive after 14 years with no additional fertilizers (Christian et al....
	It has been suggested that part of the nitrogen (N) efficiency of Miscanthus, requiring little or no fertilizer input to the crop, is linked to some kind of biological N-fixation ability (Davis et al. 2010).  M. sinensis has been shown to have an asso...
	Studies on the effects of artificial fertilizers have produced some conflicting results.  Christian et al. (2008) reported no effect of N fertilizers on yield of Miscanthus, but recommended a small yearly application of P in order to reduce the risk o...
	The use of artificial fertilizers also has implications for the quality of the biomass for pyrolysis.  Application of nitrogen fertilizer in high quantities reduced the cell wall components and increased the ash content, making it a less suitable feed...
	A further positive attribute of Miscanthus plantations is their ability to decrease nitrate load to watersheds, which is proportionally more effective than reduction in N fertilizer use alone (Ng et al. 2010).
	1.2.3 Timing of Miscanthus harvest
	Harvest usually occurs between January and March and a relatively low moisture content of 25-50% is achieved depending on the harvesting method used (DEFRA 2001).  Harvesting in spring (rather than late autumn or winter) can result in a reduction in t...
	Once the harvested crop is baled, it is recommended that Miscanthus is stored under cover in order to keep moisture content stable and prevent degradation of the material (Nolan et al. 2009).
	Timing of harvest can also affect the quality of the biomass for combustion due to the movement of minerals around the plant tissue.  In general, the concentration of minerals within the plant tissues is highest in the late spring and early summer.  A...
	Earlier harvests in December have been shown to increase energy yields, but result in higher sulphur dioxide (SO2) emissions during combustion, thus increasing the pollution produced (Lewandowski and Heinz 2003).  Even delayed harvest in spring may no...
	Balancing the effects of winter weather on loss of biomass yield against reduction in N content of the biomass need to be considered on a local scale, as climatic conditions and soil nutrient level vary between the areas where biomass crops are grown ...
	Work on pyrolysis of Miscanthus does not seem to include differences incurred by different harvest dates.  However, a study on switchgrass found that the energy content of the products of pyrolysis were around 80% for later harvested biomass and only ...
	A different harvest date might also be required for Miscanthus intended for lignocellulosic ethanol production.  Hodgson et al. (2010b) reported higher lignin and hemicellulose content from winter harvests in comparison with biomass harvested in autum...

	1.3 Phalaris
	1.3.1 Phalaris description and agronomy
	Phalaris arundinacea L. (Figure 1.2) is a plant native to Eurasia and North America, commonly found in damp areas.  Crops are sown by either broadcasting or drilling seed and can be harvested using machinery (such as forage harvesters) usually used fo...
	Figure 1.2 The different phases of Phalaris crop growth through the year.  Clockwise from top left: April, July, November and February
	Phalaris is the indigenous grass thought to produce the best biomass yields for Northern Europe and has been studied widely in Scandinavia, where it has been cultivated for forage and hay for livestock for many years (Andersson 2000).  Although local ...
	The use of Phalaris as a biomass energy source was first initiated in Scandinavia in the late 1990s, when it was co-fired with wood waste in biomass energy plants.  In 2004, bioenergy accounted for 21% of energy used in Finland (Pahkala et al. 2008) a...
	High content of ash and alkali metals in biomass can cause problems during combustion, as well as creating additional pollution (Burvall 1997).  Soil type and quality can influence these factors and need to be taken into consideration when producing b...
	Clay soil also increased lignin content of the biomass at the expense of glucose and xylose, a factor which could be of importance if the material was used for lignocellulosic ethanol production (Finell et al. 2010).  Breeding programmes for Phalaris ...
	1.3.2 Fertilizers, productivity and longevity
	In Finland, it is common practice to use fertilizer on Phalaris crops in organic soils (Shurpali et al. 2009).  However, it has been shown that such applications do not increase growth of the crop, but in fact increase levels of N, P, K and S in harve...
	Potential life-span of a Phalaris crop appears to vary.  Experimental areas of the crop in Finland are still productive after 16 years (Pahkala et al. 2008) but on more organic soils, typical rotations last for 10 years (Shurpali et al. 2009).
	1.3.3 Timing of harvest
	Burvall (1997) found that delaying harvest until spring resulted in lower concentrations of Cl, alkali and S in the Phalaris biomass.  This late harvest practice was originally introduced in Sweden to coincide with the melting of the snow that has cov...
	It was deemed to be physiologically better for the plant to be allowed to grow unhindered for the whole growing season.  Harvest in August resulted in no re- growth, despite this potentially being possible until the end of October (Landström et al. 19...

	1.4 Considerations for both grasses
	1.4.1 Stem content
	A high proportion of stems in the harvested biomass of both Miscanthus and Phalaris crops is important to its quality, as when combusted, less ash is produced by stems than leaves (Christian et al. 2008; Monti et al. 2008; Landström et al. 1996).  A s...
	1.4.2 Lodging
	Lodging, where stems bend, causing the crop to ‘fall over’ can become a problem with late harvesting and result in a smaller harvest of Phalaris (Pahkala et al. 2008).  The weakness of stems that leads to lodging was thought to be responsible for redu...
	Where an increase in above-ground Miscanthus biomass occurred as a result of high levels of nitrogen fertilization, there was also an increased incidence of lodging, which was not seen at lower fertilization levels (Kaack & Schwarz 2001).  Miscanthus ...
	Figure 1.3 Miscanthus in Herefordshire, where heavy snowfall in winter 2007/8 caused lodging of the stems.
	1.4.3 Carbon balance and future climate scenarios
	The effect of planting biomass crops on soil carbon stocks is dependent on soil type, climatic conditions, prior land management and previously cultivated vegetation (Hillier et al. 2009).  Miscanthus plantations have been reported as contributing sig...
	Monti et al. (2009) found that replacing conventional (annual) arable rotations with perennial energy crops resulted in an average 50% lower impact on soil carbon stocks.  Dondini et al. (2009) reported that Miscanthus crops grown on land previously u...
	Cultivation of Miscanthus on grassland led to initial soil organic carbon (SOC) losses, but this was soon replaced by carbon sequestered by the crop (Anderson-Teixeira et al. 2009).  This organic matter was found to be as stable as that produced by C3...
	Some authors argue that the replacement of natural ecosystems with biomass crops could cause a net source of carbon that would not be counterbalanced by the biofuel benefits (Monti et al. 2009).  Hughes et al. (2010) modelled the effects of large-scal...
	The current target of the UK government is to increase the area of biomass crops to 1.1 million ha by 2020, and Haughton et al. (2009) suggest that in England alone, an area of 3.1 million ha suitable for planting biomass crops is available. Biomass s...
	If the climate were to warm significantly, this may have negative impacts on the growing of many different kinds of crops in the UK.  If rainfall was reduced, then food crops such as oats, rye and potatoes may be restricted to more northerly agricultu...
	Rises in atmospheric CO2 are largely predicted to enhance photosynthesis and therefore the productivity of C3 plants (Leakey 2009). C4 plants such as Miscanthus do not benefit from raised CO2 levels, unless drought stress is present, in which case the...
	1.4.4 Invasiveness
	Introductions of non-native plant species can carry a risk of escape and subsequent classification as an invasive pest species.  Barney & Di Tomaso (2008) used a weed risk-assessment tool to assess possible invasiveness of biomass grasses in the USA. ...
	In the USA, an invasive genotype of Phalaris in wetland has caused problems for local biodiversity (Wrobel et al. 2009) and as such has been used as a model system to study botanical invasiveness (Lavergne & Molofsky 2004).
	1.4.5 Economics and farmer attitudes
	Many factors are involved in the growing of biomass, which is still a relatively new form of renewable energy that requires specific markets for its use, whether through combustion for heat and power or lignocellulosic ethanol production.  Different c...
	Farmers contracted by energy companies to grow Phalaris in Finland were enthusiastic about it as a crop, with 55% seeking to grow more than originally contracted (Pahkala et al. 2008).   The main reason for growing Phalaris was related to the lower wo...
	1.4.6 Pests and diseases
	In general, Miscanthus is considered to be of low risk for pests and diseases in the UK due to it being a non-native species.  However, it belongs to the sorghum tribe (Andropogoneae) along with other crops such as maize and sugar cane and could there...
	In the USA, there have been reports of aphid infestations in Miscanthus plantations (Bradshaw et al. 2010), and the fall armyworm Spodoptera frugiperda shows the ability to develop on Miscanthus leaves under laboratory conditions (Prasifka et al. 2009...
	The susceptibility of M. sinensis and Phalaris to two isolates of barley yellow dwarf virus (BYDV) and one isolate of cereal yellow dwarf virus (CYDV) was tested by Lamptey et al. (2003).  They reported that M. sinensis infection only occurred with on...

	1.5 Other uses for perennial grass crops
	1.5.1 Animal bedding
	Phalaris has been investigated as a potential bedding material, particularly in areas where there is very little arable production and costs of obtaining cereal-crop straw are high (McLean 2007).  It was found to be a viable alternative to straw, espe...
	1.5.2 Animal fodder
	Nutrient composition of Phalaris hay matched that of Timothy Phleum pratense, but was less digestible to horses, which also showed a preference for Timothy in terms of voluntary dry matter intake (Ordakowski-Burk et al. 2006).  ADAS (2008, unpublished...
	1.5.3 Phytoremediation
	Phalaris has been shown to be of use for wastewater treatment when planted in artificially constructed wetlands, where its growth is equivalent to that of natural stands (Vymazal & Krőpfelová 2005).  Phalaris was also found to be superior to common re...
	1.5.4 Phytochemicals
	Increasingly, alternatives to various substances that rely on fossil-based oil for their manufacture are being sought.  Villaverde et al. (2010; 2009) reported on a process for fractionation of phenolic compounds (e.g. syringaldehyde, vanillic acid, v...

	1.6 Biodiversity and biomass crops: an introduction
	1.6.1 Biodiversity and land use change
	Loss of biodiversity is a worldwide problem, which can be attributed to a number of factors, including intensification of agriculture and forestry.  One of the ways of intensifying agricultural output is to turn to monocultures, which reduce structura...
	Table 1.1 Changes in agricultural practices at local and landscape levels (adapted from Tscharntke et al. 2005)
	Agricultural intensification can also lead to loss of ecosystem services and processes such as biological pest control, crop pollination, grassland production and resistance to plant invasion (Tscharntke et al. 2005).  However, it is recognised that i...
	More detail about the effects of agricultural intensification on invertebrates, non-crop vegetation, birds and small mammals are discussed in Chapters 2 – 5.
	1.6.2 Impact on wildlife of biomass grass crops
	Growing energy grass crops is a relatively new option available to farmers.  This presents a good opportunity for the impact of growing mature biomass crops on biodiversity to be studied before they become widespread as a monoculture.  Many attributes...
	The annual cropping cycle involves minimal intervention and results in the crops being undisturbed for much of the year.  Thus, the biomass crops may provide refuge for wildlife throughout the summer and winter (Price et al. 2004).  Although many posi...

	1.7 Aims of this thesis
	Aim 1.  To investigate bird and small mammal abundance and diversity within Miscanthus and Phalaris crops (of 3 years and older) and their headlands as well as adjacent comparison sites representative of local land use prior to biomass crops being gro...
	(a)  Live capture/release of small mammals using Longworth traps
	(b)  Mist net capture/release and walking transects surveys of birds
	(c)  Animals were identified to species and diversity indices calculated.
	Aim 2.  To investigate food resources (invertebrates and non-crop vegetation) for birds and small mammals within the crop:
	(a)  Invertebrate families caught in pitfalls, pan traps and by sweep netting were examined in relation to feeding ecology of birds and small mammals
	(b)  Vegetation surveys were conducted in order to identify percentage cover of non-crop vegetation.
	Aim 3.  To define the crop characteristics (age / height / density / canopy shading / size of plot) that may influence biodiversity within it:
	(a)  Percentage cover, height of the crop and canopy shading were recorded at increasing distances into the crop
	(b)  Crop characteristics were related to the abundance and diversity of the birds and small mammals present using statistical analysis.

	1.8 Field sites
	1.8.1 Llysdinam, Powys (LL)

	Figure 1.4 Maps showing the location of the field site and crops at LL.  Key: M = Miscanthus,
	P = Phalaris and CS = comparison site.  © Crown Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap supplied service.
	1.8.2 Narberth, Pembrokeshire (N)

	Figure 1.5 Maps showing the location of the field site and crops at N.  Key: M = Miscanthus,
	P = Phalaris and CS = comparison site.  M1 was used in the first year, M2 added for the second year.   © Crown Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap supplied service.
	1.8.3 Pwllpeiran, Ceredigion (PP)

	Figure 1.3 Maps showing the location of the field site and crops at PP.  Key: M = Miscanthus,
	P = Phalaris and CS = comparison site.  See text for explanation of P1 and P2.  © Crown Copyright/database right 2011.  An Ordnance Survey/ Edina Digimap supplied service.
	1.8.4 Hinton Manor, Herefordshire (HM)

	Figure 1.4 Maps showing the location of the field site and crops at HM.  Key: M = Miscanthus, BC = blackcurrant fields, CS = set-aside grass comparison site.  Red Bank M* = study field.  © Crown Copyright/database right 2011.  An Ordnance Survey/ Edin...
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