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Abstract

We show, within the framework of the massive Euclidean ϕ4-quantum field the-

ory in four dimensions, that the Wilson operator product expansion (OPE) is not

only an asymptotic expansion at short distances as previously believed, but even

converges at arbitrary finite distances. Our proof rests on a detailed estimation of

the remainder term in the OPE, of an arbitrary product of composite fields, inserted

as usual into a correlation function with further “spectator fields”. The estimates

are obtained using a suitably adapted version of the method of renormalization

group flow equations. Convergence follows because the remainder is seen to become

arbitrarily small as the OPE is carried out to sufficiently high order, i.e. to oper-

ators of sufficiently high dimension. Our results hold for arbitrary, but finite, loop

orders. As an interesting side-result of our estimates, we can also prove that the

“gradient expansion” of the effective action is convergent.

1 Introduction

All quantum field theories with well-behaved ultra violet behavior are believed to have

an operator product expansion (OPE) [18, 19]. This means that the product of any two
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local fields located at nearby points x and y can be expanded in the form

OA(x)OB(y) ∼
∑

C

CC
AB(x− y)OC(y), (1)

where A,B,C are labels for the various local fields in the given theory (incorporating also

their tensor character/spin), and where CC
AB are certain numerical coefficient functions—

or rather distributions—that depend on the theory under consideration, the coupling

constants, etc. The sign “∼” indicates that this can be understood as an asymptotic

expansion: If the sum on the right side is carried out to a sufficiently large but finite

order, then the remainder goes to zero fast as x → y in the sense of operator insertions

into a quantum state, or into a correlation function. The purpose of this paper is to

demonstrate in a specific model that the expansion is not only asymptotic in this sense,

but even converges at finite (!) distances, to arbitrary loop orders, in a perturbative

Euclidean quantum field theory.

Our result is not merely a technical footnote, but it furnishes an important insight

into the general structure of quantum field theory. Although our result is formulated in a

Euclidean setting, this is maybe best explained in the Minkowskian context. There, the

analogue of our result would be that correlation functions such as the two-point function

〈OA(x)OB(y)〉Ψ in a state1 Ψ are entirely determined by the collection of OPE coefficients

which are state independent, together with the 1-point functions 〈OC(y)〉Ψ:

〈OA(x)OB(y)〉Ψ =
∑

C

CC
AB(x− y) 〈OC(y)〉Ψ , (2)

where the infinite sum over “C” would be convergent, and (x− y)2 would not necessarily

have to be small2. An analogous statement would apply to the higher n-point functions.

Thus, the OPE coefficients capture the state-independent algebraic structure of QFT,

while all the information about the quantum state, i.e. n-point functions, is contained in

the 1-point functions (“form factors”) only. Our result is relevant also in that it supports

recent approaches to QFT such as [2, 3, 4] wherein the OPE is taken as the fundamental

input.

In this paper, we prove convergence of the OPE in the context of perturbative Eu-

clidean QFT, to arbitrary loop orders. The model that we consider is a hermitian scalar

field with self-interaction gϕ4 and mass m > 0 on flat 4-dimensional Euclidean space.

1The state should have a well-behaved high energy behavior. In the Minkowskian context, it should

e.g. have bounded energy E, see below for an appropriate replacement in the Euclidean context.
2Note however that one expects convergence to hold in the relativistic context only for spacelike

distances, (x− y)2 > 0, because of locality.
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The composite fields OA in this model are simply linear combinations of monomials in

the basic field ϕ and its derivatives and are denoted by

OA = ∂w1ϕ · · ·∂wnϕ , A = {n, w} , (3)

where each wi is a 4-dimensional multi-index, see “notations and conventions” for more

on multi-index notation. We define the engineering dimension of such a field as usual by

[A] = n+
∑

i

|wi| . (4)

Each OPE coefficient CC
AB(x − y) is itself a formal power series in ~ (“loop expansion”).

As usual in perturbation theory, we will not be concerned with the convergence of these

expansions in ~. Instead, in this paper, we will be concerned with the convergence of the

OPE (i.e. the expansion in “C”) at arbitrary but fixed order l in ~.

To analyze this issue, we must insert the left- and right sides of (1) into a correlation

function containing suitable “spectator fields”, which play the role of a quantum state in

the Euclidean context. A simple and natural choice for the spectator fields is e.g.

ϕ(fpi) :=

∫

d4x ϕ(x) fpi(x) , (5)

where pi is a 4-momentum, and where fpi is a smooth function whose Fourier transform

f̂pi(q) has compact support for q in a ball of radius ǫ around pi. Our main result is the

following

Theorem: Let the sum
∑

C in the operator product expansion (1) be over all C such

that

[C]− [A]− [B] ≤ ∆ (6)

where ∆ is some positive integer. Then for each such ∆, we have the following bound for

the “remainder” in the OPE in loop order l:

∣
∣
∣
∣

〈

OA(x)OB(0)ϕ(fp1) · · ·ϕ(fpn)
〉

−
∑

C

CC
AB(x)

〈

OC(0)ϕ(fp1) · · ·ϕ(fpn)
〉∣∣
∣
∣

(7)

≤ m[A]+[B]+n
√

[A]![B]! K̃ [A]+[B]
∏

i

sup |f̂pi|

× sup(1,
|~p|n
m

)2([A]+[B])(n+2l+1)+3n

n/2+2l
∑

λ=0

logλ sup(1, |~p|n
m
)

2λλ!

× 1√
∆!

(

K̃ m |x| sup(1,
|~p|n
m

)n+2l+1

)∆

.
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Here, 〈 . 〉 denote correlation functions, and K̃ is a constant depending on n, l. Further-

more, |~p|n is defined in eq. (51), and fpi are smooth test functions in position space, whose

support in momentum space is contained in a ball of radius ǫ around pi.

This result establishes the convergence of the OPE, i.e. the sum over C, at each fixed

order in perturbation theory, because the remainder evidently goes to zero as ∆ → ∞.

There are no conditions on x, so the OPE converges even at arbitrarily large distances!

But we note that such conditions could arise if we were to allow a wider class of spectator

fields, for example, if we were to replace fpi by test-functions whose Fourier transforms

are only decaying in momentum space, but are not of compact support. This type of

behavior can be understood in a way by the fact that |~p|n gives a measure for the “typical

energy” of the “state” in which we try to carry out the OPE. As the high energy behavior

of the “state” becomes worse, so do the convergence properties of the OPE.

To prove the theorem, one first has to give a prescription for defining the Schwinger

functions and OPE coefficients in renormalized perturbation theory. There are several

options; in this paper we find it convenient to use the Wilson-Wegner-Polchinski flow

equation method [15, 17, 18]. In this method, one first introduces an infrared cutoff

called Λ, and an ultraviolet cutoff called Λ0. One then defines the quantities of interest

for finite values of the cutoffs, and derives for them a flow equation as a function of Λ. For

suitable boundary conditions its solutions may be bounded inductively and uniformly in

the ultraviolet cutoff Λ0. The last fact makes it possible to remove the cutoff3 and at the

same time provides non-trivial bounds. In our case, we need bounds for the remainder in

the OPE. Again, such bounds are verified inductively.

While the general strategy is rather clear conceptually, it gets more involved in prac-

tice. This is because a relatively refined induction hypothesis is required to ensure that

it replicates itself in the induction process. The verification of the induction step is thus

the main technical task of this paper.

A side result of our estimations which may be of some interest is that the “gradient

expansion” (68) of the effective action converges at each fixed number of loops; the precise

statement may be found in Cor. 3.1.

3To show not only boundedness but also convergence in the limit Λ0 → ∞, one also has to study a

version of the flow equation that is differentiated w.r.t. the cutoff. We do not perform this step here

since it has already been performed in the literature for all quantities of interest in [7, 8]. The bounds

obtained there were less precise than those obtained here but this does not matter because also such less

stringent bounds are sufficient to merely show convergence in Λ0.
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Notations and conventions: Our convention for the Fourier transform in R
4 is

f(x) =

∫

p

f̂(p) eipx :=

∫

R4

d4p

(2π)4
eipx f̂(p) . (8)

We also use a standard multi-index notation. Our multi-indices are elements w =

(w1, . . . , wn) ∈ N4n, so that each wi ∈ N4 is a four-dimensional multiindex whose en-

tries are wi,µ ∈ N and µ = 1, . . . , 4. If f(~p) is a smooth function on R4n, we set

∂wf(~p) =
∏

i,µ

(
∂

∂pi,µ

)wi,µ

f(~p) (9)

and

w! =
∏

i,µ

wi,µ! , |w| =
∑

i,µ

wi,µ . (10)

We often need to take derivatives ∂w of a product of functions f1 . . . fn. Using the Leibniz

rule, such derivatives get distributed over the factors resulting in the sum of all terms of

the form c{vi} ∂
v1f1 . . . ∂

vrfr, where each vi is now a 4n-dimensional multi-index, where

v1 + · · ·+ vr = w, and where

c{vi} =
(v1 + · · ·+ vr)!

v1! . . . vr!
≤ r|w| (11)

is the associated weight factor.

If F (ϕ) is a differentiable function (in the Frechet space sense) of the Schwartz space

function ϕ ∈ S (R4), we denote its functional derivative as

d

dt
F (ϕ+ tψ)|t=0 =

∫

d4x
δF (ϕ)

δϕ(x)
ψ(x) , ψ ∈ S (R4) , (12)

where the right side is understood in the sense of distributions in S ′(R4). Multiple

functional derivatives are denoted in a similar way and define in general distributions on

multiple cartesian copies of R4.

2 Basic setup, flow equation framework

In this section we introduce the quantities of interest in this paper, namely the Schwinger

functions 〈. . . 〉, and the OPE coefficient functions, CC
AB. For this purpose, we will also

derive various useful auxiliary quantities such as connected and amputated Schwinger

functions, as well as certain “normal products”. The reason for defining these is that

they satisfy a suitably simple version of the flow equations, which we also give below.
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Renormalization theory based on the flow equation (FE) [17, 18, 15] of the renormalization

group has been reviewed quite often in the literature, so we will be relatively brief. The

first presentation in the form we use it here is in [9]. Reviews are in [14] and in [13] (in

German).

2.1 Connected amputated Green functions (CAG’s)

To begin, we introduce an infrared4 cutoff Λ, and an ultraviolet cutoff Λ0. These cut-

offs enter the definition of the theory through the propagator CΛ,Λ0 which is defined in

momentum space by

CΛ,Λ0(p) =
1

p2 +m2

[

exp

(

−p
2 +m2

Λ2
0

)

− exp

(

−p
2 +m2

Λ2

)]

. (13)

The full propagator is recovered for Λ → 0 and Λ0 → ∞ , and we always assume

0 < Λ , κ := sup(Λ, m) < Λ0 . (14)

Other choices of regularization are of course admissible. The one chosen in (13) has the

advantage of being analytic in p2 for Λ > 0. The propagator defines a corresponding

Gaussian measure µΛ,Λ0, whose covariance is ~CΛ,Λ0. The factor of ~ is inserted to obtain

a consistent loop expansion in the following. The interaction is taken to be

LΛ0(ϕ) =

∫

d4x
(

aΛ0 ϕ(x)2 + bΛ0 ∂ϕ(x)2 + cΛ0 ϕ(x)4
)

. (15)

It contains suitable counter terms satisfying aΛ0 = O(~), bΛ0 = O(~2) and cΛ0 = g
4!
+O(~).

They will be adjusted–and actually diverge–when Λ0 → ∞ in order to obtain a well

defined limit of the quantities of interest for us. We have anticipated this by making

them “running couplings”, i.e. functions of the ultra violet cutoff Λ0. The correlation (=

Schwinger-) functions of n basic fields with cutoff are then given by

〈ϕ(x1) · · ·ϕ(xn)〉 := (ZΛ,Λ0)−1

∫

dµΛ,Λ0 exp
(

− 1

~
LΛ0

)

ϕ(x1) · · ·ϕ(xn) . (16)

This is just the standard Euclidean path-integral, but note that the free part in the

Lagrangian has been absorbed into the Gaussian measure dµΛ,Λ0. The normalization

factor is chosen so that 〈1〉 = 1. This factor is finite only as long as we impose an

additional volume cutoff. But the infinite volume limit can be taken without difficulty once

4Such a cutoff is of course not necessary in a massive theory. The IR behavior is substantially modified

only for Λ above m.
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we pass to perturbative connected correlation functions which we will do in a moment.

For more details on this limit see [11, 14]. The path integral will be analyzed in the

perturbative sense, i.e. the exponentials are expanded out and the Gaussian integrals

are then performed. The full theory is obtained by sending the cutoffs Λ0 → ∞ and

Λ → 0, for a suitable choice of the running couplings. In the flow equation technique, the

correct behavior of the running couplings, necessary for a well-defined limit, is obtained by

deriving first a differential equation for the Schwinger functions in Λ, and by then defining

the running couplings implicitly through the boundary conditions for this equation.

These flow equations are written more conveniently in terms of the hierarchy of “con-

nected, amputated Schwinger functions” (CAG’s). Their generating functional is defined

through the convolution5 of the Gaussian measure with the exponentiated interaction.

− LΛ,Λ0 := ~ log µΛ,Λ0 ⋆ exp
(

− 1

~
LΛ0

)

− ~ logZΛ,Λ0 . (17)

The functional LΛ,Λ0 has an expansion as a formal power series in terms of Feynman

diagrams with precisely l loops, n external legs, and propagator CΛ,Λ0(p). As the name

suggests, only connected diagrams contribute, and the (free) propagators on the external

legs are removed. We will not use decompositions in terms of Feynman diagrams. But we

will also analyze the functional (17) in the sense of formal power series, i.e. we consider

the terms in the formal power series

LΛ,Λ0(ϕ) :=

∞∑

n>0

∞∑

l=0

~
l

∫

d4x1 . . . d
4xn LΛ,Λ0

n,l (x1, . . . , xn)ϕ(x1) · · ·ϕ(xn) , (18)

where ϕ ∈ S (R4) is any Schwartz space function. No statement is made about the

convergence of the series in ~. The objects on the right side, the CAG’s, are the basic

quantities in our analysis because they are easier to work with than the full Schwinger

functions. But the latter can of course be recovered from the CAG’s.

Because the connected amputated functions in position space are translation invariant,

their Fourier transforms, denoted LΛ,Λ0

n,l (p1, . . . , pn), are supported at p1 + · · · + pn = 0.

We consequently write, by abuse of notation

LΛ,Λ0

n,l (p1, . . . , pn) = δ4(
n∑

i=1

pi)LΛ,Λ0

n,l (p1, . . . , pn−1) , (19)

i.e. one of the momenta is determined in terms of the remaining n− 1 independent mo-

menta by momentum conservation. It is straightforward to see that, as functions of these

5The convolution is defined in general by (µΛ,Λ0 ⋆ F )(ϕ) =
∫
dµΛ,Λ0(ϕ′) F (ϕ+ ϕ′).
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remaining independent momenta, the connected amputated Green functions are smooth,

LΛ,Λ0

n,l (p1, . . . , pn−1) ∈ C∞(R4(n−1)). It is much less obvious, but will be demonstrated later

in Cor. 3.1, that they are in fact even analytic functions near ~p = 0, even after the cutoffs

are removed.

The flow equations are obtained by taking a Λ-derivative of eq.(17):

∂ΛL
Λ,Λ0 =

~

2
〈 δ
δϕ
, ĊΛ ⋆

δ

δϕ
〉LΛ,Λ0 − 1

2
〈 δ
δϕ
LΛ,Λ0, ĊΛ ⋆

δ

δϕ
LΛ,Λ0〉+ ~∂Λ logZ

Λ,Λ0 . (20)

Here we use the shorthand ĊΛ for ∂ΛC
Λ,Λ0 , which, as we note, does not depend on Λ0.

By 〈 , 〉 we denote the standard scalar product in L2(R4, d4x) , and ⋆ denotes convolution

in R4. For example

〈 δ
δϕ
, ĊΛ ⋆

δ

δϕ
〉 =

∫

d4xd4y ĊΛ(x− y)
δ

δϕ(x)

δ

δϕ(y)
(21)

is the “functional Laplace operator”. When expanded out in ϕ, the flow equations (20)

read in momentum space

∂Λ LΛ,Λ0

2n,l (p1, . . . p2n−1) =

(
2n+ 2

2

)∫

k

ĊΛ(k)LΛ,Λ0

2n+2,l−1(k,−k, p1, . . . p2n−1)

−2
∑

l1+l2=l,

n1+n2=n+1

n1n2 S

[

LΛ,Λ0

2n1,l1
(p1, . . . , p2n1−1) Ċ

Λ(q) LΛ,Λ0

2n2,l2
(−q, p2n1 , . . . , p2n−1)

]

(22)

with q = −p1 − . . .− p2n1−1 = p2n1 + p2n1+1 + . . .+ p2n .

The symbol S is an operator which acts on the functions of momenta (p1, . . . , p2n) by

taking the mean value over those permutations π of (1, . . . , 2n) , for which π(1) < π(2) <

. . . < π(2n1 − 1) and π(2n1) < π(2n1 + 1) < . . . < π(2n) . And we used the fact that

for the theory proposed through (15), only even moments of the effective action will be

non-vanishing due to the symmetry ϕ → −ϕ , and we thus wrote the equations only for

those.

We will also need the FE’s differentiated w.r.t. to components of the momentum variables.
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We obtain6:

∂Λ∂
w LΛ,Λ0

2n,l (p1, . . . , p2n−1) =

(
2n+ 2

2

)∫

k

ĊΛ(k) ∂wLΛ,Λ0

2n+2,l−1(k,−k, p1, . . . p2n−1) (23)

−2
∑

l1 + l2 = l

w1 + w2 + w3 = w

n1 + n2 = n + 1

n1n2 c{wj} S

[

∂w1LΛ,Λ0

2n1,l1
(p1, . . . , p2n1−1) ∂

w3ĊΛ(q) ∂w2LΛ,Λ0

2n2,l2
(−q, p2n1, . . . , p2n−1)

]

.

To define the CAG’s through the flow equations, we have to impose boundary condi-

tions. These are7, using the multi-index convention introduced above in “notations and

conventions”:

∂wL0,Λ0

n,l (~0) = δw,0 δn,4 δl,0
g

4!
for n+ |w| ≤ 4, (24)

as well as

∂wLΛ0,Λ0

n,l (~p) = 0 for n + |w| > 4. (25)

The CAG’s are then determined by integrating the flow equations subject to these bound-

ary conditions, see [9, 14]. In our context this is described in detail when we come to the

estimates of the CAG’s in sec. 3.

2.2 Insertions of composite fields, normal products and OPE

coefficients

For the purposes of this paper, and also in many applications, one would like to define

not only Schwinger functions of products of the basic field, but also ones containing

composite operators. These are obtained by replacing the action LΛ0 with an action

containing additional sources. To set things up properly, it is useful to introduce first

some notation. Let F∞
loc be the space of smooth local, polynomial functionals F (ϕ) of

ϕ ∈ S (R4). Any such functional can be written by definition as

F (ϕ) =
∑

A

∫

d4x OA(x) f
A(x) , fA ∈ C∞

0 (R4) , (26)

6In distributing the derivatives over the three factors in the second term on the r.h.s. with the Leibniz

rule, we have tacitly assumed that the momentum pi appears among those from LΛ,Λ0

2n1,l1
. If this is not

the case one has to parametrize LΛ,Λ0

2n1,l1
in terms of (say) (p2, . . . p2n1−1, q) with q = p2n1

+ . . .+ p2n , in

order to introduce the pi-dependence in LΛ,Λ0

2n1,l1
. For a fully systematic treatment see [1].

7We restrict to BPHZ renormalization conditions in their simplest form, more general choices are of

course equally admissible.
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where OA are composite operators as in eq. (3) and where the sum is finite. We now

consider instead of LΛ0 a modified action containing sources fA, given by replacing

LΛ0 → LΛ0
F := LΛ0 + F +

∞∑

j=0

BΛ0
j (F ⊗ · · · ⊗ F

︸ ︷︷ ︸

j

) , (27)

where the last term represents the counter terms and is for each j a suitable linear func-

tional8

BΛ0
j : (F∞

loc)
⊗j → F

∞ , (28)

that is symmetric, and of order O(~). These counter terms are designed to eliminate

the divergences arising from composite field insertions in the Schwinger functions when

one takes Λ0 → ∞. The Schwinger functions with insertions of r composite operators

are defined with the aid of functional derivatives with respect to the sources, setting the

sources fAi = 0 afterwards:

〈OA1(x1) · · ·OAr(xr)〉 := (29)

~
r δr

δfA1(x1) . . . δfAr(xr)
(ZΛ,Λ0)−1

∫

dµΛ,Λ0 exp
(

− 1

~
LΛ0
F (ϕ)

)∣
∣
∣
fAi=0

.

The previous definition of the CAG’s is a special case of this; there we take F =
∫
d4x f(x) ϕ(x), and we have BΛ0

j (F⊗j) = 0, because no extra counter terms are re-

quired for this simple insertion. As above, we can define a corresponding effective action

as

− LΛ,Λ0

F := ~ log µΛ,Λ0 ⋆ exp
(

− 1

~
(LΛ0 + F +

∞∑

j=0

BΛ0
j (F⊗j))

)

− logZΛ,Λ0 (30)

which is now a functional of the sources fAi, as well as of ϕ. Differentiating r times

with respect to the sources, and setting them to zero afterwards, gives the generating

functionals of the CAG’s with r operator insertions, namely:

LΛ,Λ0(OA1(x1)⊗ · · · ⊗ OAr(xr)) =
δr LΛ,Λ0

F

δfA1(x1) . . . δfAr(xr)

∣
∣
∣
∣
fAi=0

. (31)

The CAG’s with insertions satisfy a number of obvious properties, e.g. they are multi-

linear–as indicated by the tensor product notation–and symmetric in the insertions.

8As we will see it is possible to impose boundary conditions such that the multiply inserted Schwinger

functions become less singular at short distances (xi − xj)
2 → 0. In this case the maps Bj take their

values in the space F∞ of non-local functionals on Schwartz space.
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As the CAG’s without insertions, the CAG’s with insertions can be further expanded

in ϕ and ~, and this is denoted as

LΛ,Λ0

( r⊗

i=1

OAi
(xi)

)

=
∑

n,l≥0

~
l

∫

d4y1 . . . d
4yn LΛ,Λ0

n,l

( r⊗

i=1

OAi
(xi); y1, . . . , yn

) n∏

j=1

ϕ(yj) .

Due to the insertions in LΛ,Λ0

n,l (⊗jOAj
(xj), ~p), there is no restriction on the momentum

set ~p. However it follows from translation invariance that functions with insertions at a

translated set of points xj + a are obtained from those at a = 0 upon multiplication by

eia
∑n

i=1 pi . (32)

The CAG’s with insertions satisfy a flow equation of a similar nature as those without

insertions, and these are again obtained by taking derivatives of eq. (20) with respect to

the sources. For example, for one insertion, the flow equation (FE) is:

∂Λ L
Λ,Λ0(OA) =

~

2
〈 δ
δϕ
, ĊΛ⋆

δ

δϕ
〉LΛ,Λ0(OA)−〈 δ

δϕ
LΛ,Λ0(OA), Ċ

Λ⋆
δ

δϕ
LΛ,Λ0〉+ ∂Λ logZΛ,Λ0 .

(33)

It is important to note that this FE is linear and homogeneous w.r.t. the functional

LΛ,Λ0(OA) . The FE’s for multiple insertions are obtained similarly by taking more func-

tional derivatives with respect to the sources, for example for two insertions:

∂Λ L
Λ,Λ0(OA ⊗OB) =

~

2
〈 δ
δϕ
, ĊΛ ⋆

δ

δϕ
〉LΛ,Λ0(OA ⊗OB)

− 〈 δ
δϕ
LΛ,Λ0(OA ⊗OB), Ċ

Λ ⋆
δ

δϕ
LΛ,Λ0〉 (34)

− 〈 δ
δϕ
LΛ,Λ0(OA), Ċ

Λ ⋆
δ

δϕ
LΛ,Λ0(OB)〉 + ∂Λ logZΛ,Λ0 .

Thus, the flow equation for the CAG’s with two insertions is not linear homogeneous, but

involves a “source term” which is quadratic in the CAG’s with one insertion. If we want

to integrate the flow equations with insertions, we therefore have to ascend in the number

of insertions.

Expanding the FE’s for the generating functionals in terms of ~ and ϕ gives us again a

corresponding hierarchy of FE’s satisfied by the LΛ,Λ0

n,l (⊗iOAi
; ~p). For one insertion, these

equations are given below in eq. (47), whereas for two insertions, they are given below in

eq. (48) (without the index “D”).

The CAG’s with one insertion are not uniquely defined without imposing suitable

boundary conditions on the corresponding FE. For an operator OA and A = {n′, w′} (so

11



that its dimension is [A] = n′ + |w′|) the simplest choice of boundary conditions, which

also goes under the name of ”normal product”, is

∂wLΛ0,Λ0

n,l (OA(0); ~p) = 0 for n+ |w| > n′ + |w′| , (35)

and

∂wL0,Λ0

n,l (OA(0); 0) = i|w|w! δw,w′δn,n′δl,0 for n+ |w| ≤ n′ + |w′| . (36)

The δ-symbol only depends on the sets {w} = {w1, . . . , wn} and {w′} = {w′
1, . . . , w

′
n′}.

Due to the linearity of the FE, linear superpositions of normal products are also solutions

of the system of FE, and their boundary values are the corresponding superpositions.

It is also possible to extend the definition of the normal products in the following sense

which leads to the appearance of an additional index, D, measuring the degree of regular-

ity. For one insertion, these “oversubtracted” normal products are denoted LΛ,Λ0

n,l,D(OA; ~p)

and are defined for any D ≥ [A] through

∂wLΛ0,Λ0

n,l,D (OA(0); ~p) = 0 for n + |w| > D , (37)

and

∂wL0,Λ0

n,l,D(OA(0);~0) = mD−n−|w|i|w|w! δw,w′δn,n′δl,0 for n+ |w| ≤ D . (38)

In particular, for D = n′ + |w′| = [A], the oversubtracted normal products agree with the

previous ones, because they then satisfy the same FE and the same boundary conditions.

As the CAG’s with one insertion, the CAG’s with multiple insertions are not uniquely

defined by the FE without imposing a boundary condition. The simplest boundary con-

ditions for two insertions are given by:

∂wLΛ0,Λ0

n,l (OA(x)⊗OB(0); ~p) = 0 for all n + |w| ≥ 0 , (39)

and for all A,B. Imposing these boundary conditions means that no regularizing counter

terms for the corresponding operator product are introduced. The FE’s for the CAG’s

with insertions may be integrated subject to these boundary conditions, and this will be

our prescription for actually defining them. In the end, the cutoffs Λ,Λ0 are taken away,

and the limits will be controlled by the estimates that are given in the next section 3.

Regularized operator products for two or more insertions are denoted LΛ,Λ0

n,l,D(⊗iOAi
; ~p)

and are defined for any D ≥ 0. They are defined as the solutions to the FE (34), together

with the boundary conditions

∂wL0,Λ0

n,l,D(⊗iOAi
(xi);~0) = 0 for n+ |w| ≤ D , (40)

∂wLΛ0,Λ0

n,l,D (⊗iOAi
(xi); ~p) = 0 for n+ |w| > D . (41)

12



In particular, for D = −1, the normal products agree with the previously defined CAG’s

with multiple insertions, because they then satisfy the same boundary conditions and FE.

A useful property of the CAG’s (both ‘standard’ and ‘oversubtracted’), which follows

from our choice of boundary conditions, is the following. Let OA be as usual a monomial

in ϕ and its derivatives. Furthermore, for any multi-index w ∈ N4, let ∂wOA be the linear

combination of monomials that are obtained by carrying out the derivatives in the obvious

way. Then the CAG’s are seen [7, 8] to satisfy the “Lowenstein rule”:

∂wxi
LΛ,Λ0

D (OA1(x1)⊗ · · · ⊗ OAr(0)) (42)

=







LΛ,Λ0

D (OA1(x1)⊗ . . . ∂wxi
OAi

(xi)⊗ . . .OAr(0)) for r ≥ 2, i ≤ r − 1, D ≥ 0,

LΛ,Λ0

D+|w|(∂
w
x1
OA1(x1)) for r = 1, i = 1, D ≥ [A1] .

This property is important in order to define insertions containing derivatives in a consis-

tent way and has also been termed “action Ward identity”, or “Leibniz rule”. See [6, 5]

for a discussion of such conditions in other setups of renormalization theory.

A major advantage of the CAG’s for our purposes is that the OPE coefficients can be

expressed in terms of them in relatively simple manner, as we now explain. For F (ϕ) a

differentiable functional of Schwartz space functions ϕ ∈ S (R4), let DA be the operator

defined as

DAF =
(−i)|w|

n! w!
∂w~p

δn

δϕ̂(p1) · · · δϕ̂(pn)
F (ϕ)

∣
∣
∣
∣
ϕ̂=0,~p=0

, where A = {n, w}. (43)

Also, for a sufficiently smooth function f on R4, let the Taylor expansion operator Tj be

defined as

T
jf(x) =

∑

|w|=j

xw

w!
∂wf(0) . (44)

Then the OPE coefficients are defined as follows:

Definition 2.1. For a finite UV-cutoff Λ0, the OPE coefficients, CC
AB(x) are defined as

follows:

1. Let [C]− [A]− [B] < 0. Then we define

CC
AB(x) := DC

{

~L0,Λ0

[C]−1(OA(x)⊗OB(0))

}

. (45)

2. Let [C]− [A]− [B] ≥ 0. Then we define

CC
AB(x) := DC

{

~L0,Λ0

[C]−1((1− Σ
[C]−[A]−[B]−1
j=0 T

j)OA(x)⊗OB(0))−

− L0,Λ0

[C]−[B](T
[C]−[A]−[B]OA(x)) L

0,Λ0

[B] (OB(0))

}

. (46)
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Our bounds in the subsequent sections, or those in [8], imply that we can remove

the cutoff Λ0 in the CAG’s in the above formulas, and that the CC
AB are well-defined (as

smooth functions for x ∈ R
4 \ {0}) in the limit as Λ0 → ∞. The OPE coefficients of the

theory without cutoffs are defined to be this limit.

For our analysis of the operator products we need the FE’s expanded w.r.t. the number

of fields and loops. For one insertion we obtain from (33):

∂Λ LΛ,Λ0

2n,l (OA; p1, . . . , p2n) =

(
2n+ 2

2

)∫

k

ĊΛ(k)LΛ,Λ0

2n+2,l−1(OA; k,−k, p1, . . . p2n) (47)

−4
∑

l1 + l2 = l

n1 + n2 = n + 1

n1n2 S

[

LΛ,Λ0

2n1,l1
(OA; q, p1, . . . , p2n1−1)Ċ

Λ(q)LΛ,Λ0

2n2,l2
( p2n1, . . . , p2n)

]

with9 q = p2n1 + . . .+ p2n .

When expanded out in moments and powers of ~ the FE’s for two insertions (34) read:

∂Λ LΛ,Λ0

2n,l,D(OA ⊗OB; p1, . . . , p2n) (48)

=

(
2n+ 2

2

)∫

k

ĊΛ(k)LΛ,Λ0

2n+2,l−1,D(OA ⊗OB; k,−k, p1, . . . , p2n)

−4
∑

l1 + l2 = l,

n1 + n2 = n + 1

n1n2 S

[

LΛ,Λ0

2n1,l1,D
(OA ⊗OB; q, p1, . . . , p2n1−1) Ċ

Λ(q) LΛ,Λ0

2n2,l2
(p2n1 , . . . , p2n)

−
∫

k

LΛ,Λ0

2n1,l1
(OA; k, p1, . . . , p2n1−1) Ċ

Λ(k) LΛ,Λ0

2n2,l2
(OB;−k, p2n1 , . . . , p2n)

]

with q = p2n1 + . . .+ p2n .

The symmetrization operator S is defined as above in (22).

3 Bounds on CAG’s

In this section, we will derive bounds on the CAG’s, including those with insertions. These

bounds will imply the existence of the limits Λ → 0 and Λ0 → ∞, but they will also be

sufficient to prove the main result Thm. 3 of this paper.

The bounds on the CAG’s depend on the choice of the coupling constant g entering the

flow equation via the boundary condition L0,Λ0
4,0 (~0) = g

4!
. The loop expanded (inserted or

9Note that by symmetry and translation invariance LΛ,Λ0

2n2,l2
( p2n1

, . . . , p2n) =

LΛ,Λ0

2n2,l2
(−q, p2n1

, . . . , p2n−1).
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non inserted) CAG’s depend on this coupling in an obvious way; the noninserted functions

L2n,l carry a power of g
2n−2

2
+l for example. To simplify the subsequent bounds, we will

always set g = 1 in the following.

3.1 A collection of useful bounds

The following bounds which largely stem from [12] will be useful to control the solutions

of the various FE’s:

The Λ-derivative of the propagator (13) is given by

ĊΛ(p) = − 2

Λ3
e−

p2+m2

Λ2 . (49)

We find

1)

2
m3

Λ3
e−

m2

Λ2 ≤ 1 ,
mN

ΛN
e−

m2

Λ2 ≤
√
N ! . (50)

2) For given momentum set (p1, . . . , pn) we use the (shorthand) definitions

~p ≡ (p1, . . . , pn) , |~p|n ≡ sup
J⊂{1,...,n}

|
∑

i∈J
pi| , ~pn+2 ≡ (~p, k, −k) . (51)

Subsequently we sometimes simply write |~p| instead of |~p|2n. Then we claim

∫

k
Λ

e−
1
2
( k
Λ
)2 logλ(sup(

|~p|2n+2

κ
,
κ

m
)) ≤ logλ(sup(

|~p|
κ
,
κ

m
)) + [λ!]1/2 , κ = sup(Λ, m) .

(52)

The proof is in [12] , Lemma 4 and (54)–(58).

3) For s ∈ N

λ=l−1∑

λ=0

1

2λ λ!

∫ Λ0

Λ

dΛ′ Λ′−s−1
(
logλ(sup(

|~p|2n
κ′

,
κ′

m
)) + [λ!]1/2

)
(53)

≤ 5
Λ−s

s

λ=l−1∑

λ=0

1

2λ λ!
logλ sup(

|~p|2n
κ

,
κ

m
) .

We wrote κ′ = sup(Λ′, m) . For the proof10 see Lemma 5 in [12].

10In fact, the proof in [12] is given for Λ ≥ m, but it can be extended to Λ < m without any problem.
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4) For integers n , n1 , n2 ≥ 1 , l , l1 , λ1 , l2 , λ2 ≥ 0

∑

l1+l2=l,

n1+n2=n+1,

λ1≤l1, λ2≤l2
,

λ1+λ2=λ

1

(l1 + 1)2 (l2 + 1)2 n2
1 n

2
2

n!

n1!n2!

λ!

λ1!λ2!

(n1 + l1 − 1)! (n2 + l2 − 1)!

(n + l − 1)!

≤ 20
1

(l + 1)2
1

n2
. (54)

For the proof see Lemma 2 in [12].

5) We will repeatedly use bounds on the Hermite polynomials Hn(x) = (−1)n ex
2 d

dxn e−x2
:

Hn(x) ≤ k
√
n! 2n/2 ex

2/2 , k = 1.086 . . . . (55)

For a proof see [16], p. 324. It then follows directly from this bound that

∣
∣∂w e−

q2+m2

Λ2 | ≤ k Λ−|w| √|w|! 2
|w|
2 e−

q2

2Λ2 e−
m2

Λ2 . (56)

3.2 Bounds on higher derivatives of CAG’s without insertions

Bounds on higher derivatives of CAG’s are proven inductively with the aid of the flow

equation. As compared to the bounds to be found in the literature [12] the new ingredient

here is a sufficiently precise control of those bounds as regards their dependence on the

the number of derivatives |w|. We want to show

Proposition 3.1. There exists a constant K > 0 such that for 2n+ |w| ≥ 5

|∂wLΛ,Λ0

2n,l (p1, . . . , pn−1)| ≤
√

|w|! Λ4−2n−|w| K(2n+4l−4)(|w|+1) (n+l−2)!

λ=ℓ(n,l)
∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
.

(57)

Here

ℓ(n, l) = l if n ≥ 2 , ℓ(n, l) = l − 1 if n = 1 . (58)

The proposition is a consequence of the subsequent

Lemma 3.1. There exists a constant K > 0 such that for 2n+ |w| ≥ 5

|∂wLΛ,Λ0

2n,l (p1, . . . , p2n−1)| ≤
√

|w|! Λ4−2n−|w| K
(2n+4l−4)(|w|+1)

(l + 1)2 n!n3
(n+l−1)!

λ=ℓ∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
.

(59)
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Remark : The Lemma is sharper than the proposition, and the stated bound is suited

as an inductive statement for its proof. Subsequently we will however use the (shorter)

bound from the proposition.

Proof :

The proof is based on the standard inductive scheme which goes up in n+ l and for given

n + l goes up in l, and for given n, l descends in |w| . For 2n + |w| ≤ 4 we will use the

bounds from the Theorem and Proposition11 in [12] :

|LΛ,Λ0

4,l (~p)| ≤ K2l

(l + 1)2 24
(1 + l)!

λ=l∑

λ=0

logλ( sup( |~p|
κ
, κ
m
))

2λ λ!
, (60)

|∂wLΛ,Λ0

2,l (p)| ≤ sup(|p|, κ)2−|w| K2l−1

(l + 1)2
l!

λ=l−1∑

λ=0

logλ( sup( |p|
κ
, κ
m
))

2λ λ!
. (61)

A) The first term on the r.h.s. of the FE

Integrating the FE (23) w.r.t. the flow parameter Λ′ from Λ to Λ0 gives the following

bound12 for the first term on the r.h.s. of the FE (writing κ′ = sup(Λ′, m) ):

∫ Λ0

Λ

dΛ′
∫

k

2

Λ′3 e−
k2+m2

Λ′2 Λ′4−(2n+2)−|w|
λ=l−1∑

λ=0

logλ(sup( |~p|2n+2

κ′ , κ
′

m
))

2λ λ!

× (2n+ 1)(2n+ 2)

2

√

|w|! K(2n+4l−6)(|w|+1)

l2 (n + 1)! (n+ 1)3
(n+ l − 1)!

≤ (
n

n + 1
)3 (2n+ 1)

K(2n+4l−6)(|w|+1)

l2 n!n3
(n+ l − 1)!

√

|w|!
λ=l−1∑

λ=0

1

2λ λ!
(62)

×
∫ Λ0

Λ

dΛ′ Λ′3−2n−|w| e−
m2

Λ′2

∫

k

e−
k2

Λ′2 logλ(sup(
|~p|2n+2

κ′
,
κ′

m
)) .

Using

|~p|2n+2 ≤ |~p|+ |k| (63)

we bound the momentum integral with the aid of (52). On performing the integral over

Λ′ in (62) and using (53) we therefore obtain the following bound for (62)

Λ4−2n−|w| K
(2n+4l−4)(|w|+1)

l2 n!n3
(n+ l − 1)!

√

|w|!
λ=ℓ∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
(64)

11We have slightly simplified the respective expressions which is possible if admitting for a slightly

larger K as compared to [12].
12We assume l ≥ 1 , otherwise the contribution is zero.
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×
[
5 K−2(|w|+1) 2|w|] (

n

n + 1
)3

2n+ 1

2n+ |w| − 4
.

We realize that (64) is smaller than the inductive bound divided by 2 if K ≥ 4 .

B) The second term on the r.h.s. of the FE

We assume without loss that 2n+4l ≥ 6 , otherwise the contribution is zero. Subsequently

we will also assume that neither term is a two-point function with |w| ≤ 1 . If one of them

is so, we first have to bound the term sup(q, κ′)2−|w| arising from (61) together with

the exponential e−
q2

2Λ′2 from the differentiated propagator, remember also (55, 56), by

2Λ′2−|w| . Afterwards this contribution can be absorbed into the subsequent proof at the

cost of a factor of 2 in the lower bound on K .

Integrating the inductive bound on the second term on the r.h.s. of the FE from Λ to

Λ0 then gives us the following bound - where we also understand that the sup w.r.t. the

permutations of the momentum attributions has been taken

∫ Λ0

Λ

dΛ′ Λ′8−(2n+2)−|w1|−|w2| K(2n+4l−6)(|w1|+|w2|+2)
∑

l1 + l2 = l,

w1 + w2 + w3 = w,

n1 + n2 = n + 1

2 c{wi}
n1

(l1 + 1)2 n1!n
3
1

n2

(l2 + 1)2 n2!n
3
2

×
√

|w1|! (n1 + l1 − 1)!
λ1=ℓ1∑

λ1=0

logλ1( sup( |~p|
κ′ ,

κ′

m
))

2λ1 λ1!

2

Λ′3 |∂w3 e−
q2+m2

Λ′2 |

×
√

|w2|! (n2 + l2 − 1)!

λ2=ℓ2∑

λ2=0

logλ2( sup( |~p|
κ′ ,

κ′

m
)))

2λ2 λ2!

≤
∑

l1 + l2 = l,

n1 + n2 = n + 1,

λ1 ≤ l1, λ2 ≤ l2

1

(l1 + 1)2 (l2 + 1)2
1

n2
1 n

2
2

n!

n1!n2!

(λ1 + λ2)!

λ1!λ2!

(n1 + l1 − 1)! (n2 + l2 − 1)!

(n+ l − 1)!

× 2 K(2n+4l−6)(|w|+2) (n+ l − 1)!

n!

∫ Λ0

Λ

dΛ′ Λ′6−2n−|w1|−|w2| log
λ1+λ2( sup( |~p|

κ′ ,
κ′

m
))

2λ1+λ2 (λ1 + λ2)!

×
∑

w1 + w2 + w3 = w

c{wi}
2

Λ′3 |∂w3 e−
q2+m2

Λ′2 |
√

|w1|! |w2|! .

Using (54, 56) we then arrive at the bound13

20
1

(l + 1)2
1

n2
2 K(2n+4l−6)(|w|+2) 1

n!
(n+ l−1)!

∫ Λ0

Λ

dΛ′ Λ′3−2n−|w|
∑

0≤λ≤ℓ

logλ( sup( |~p|
κ′ ,

κ′

m
))

2λ λ!

13note that if 2n = 2 we have 2n1 = 2n2 = 2 , and the restriction to λ ≤ ℓ in the sum over λ is justified.
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×
∑

wi

c{wi} 2
1
2
|w3| k

√

|w1|! |w2|! |w3|! . (65)

Using also (53) we verify the inductive bound

Λ4−2n−|w| K(2n+4l−4)(|w|+1) 1

(l + 1)2
1

n3

1

n!
(n+ l − 1)!

√

|w|!
∑

0≤λ≤ℓ

logλ( sup( |~p|
κ
, κ
m
))

2λ λ!

multiplied by 1/4, on imposing the lower bound on K

K−2(|w|+2) 40
n

2n+ |w| − 4

∑

wi

c{wi} 2
1
2
|w3| ≤ 1/4 , (66)

which is satisfied if

K ≥ (640)
1
4 3

1
2 .

The following variant of Lemma 3.1 is proven analogously :

Corollary 3.1. There exists a constant K > 0 such that for 2n + |w| ≥ 5

|∂wLΛ,Λ0

2n,l (~p)| ≤
√

|w|! (|w|+ 2n− 4)!κ4−2n−|w| K
(2n+4l−4)(|w|+1)

n!
(n + l − 1)!

×
λ=l∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
. (67)

As a consequence, the “gradient expansion” of the effective action

L0,∞(ϕ) =
∑

n,l,w

∫

R4

aw,n,l ϕ(x) ∂
w1ϕ(x) · · ·∂wn−1ϕ(x) d4x (68)

with

aw,n,l :=
~l

w!
(−i∂)wL0,∞

n,l (~0) (69)

converges absolutely for each fixed loop order l, for each fixed n, and each Schwartz-space

configuration ϕ such that ϕ̂(p) has support in a sufficiently small ball around p = 0 in

momentum space. Furthermore, the expansion in l is locally Borel summable.

The bound (67) is weaker than the one of eq. (59), in the sense that it replaces
√

|w|! by
√

|w|! (|w|+ 2n− 4)! , and stronger in the sense that it replaces Λ4−2n−|w| by

κ4−2n−|w| (14). In the proof there is no change as regards the first term on the r.h.s. of
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the FE ; as regards the second term we use the bound (50)14 which permits to transform

negative powers of Λ into negative powers of κ at the cost of a square root of a factorial.

In the following we will only need Proposition 3.1.

3.3 Bounds on CAG’s with one insertion

Throughout this section, we fix a monomial OA with A = {n′, w′}, and we denote the

dimension of this monomial by

D′ := n′ + |w′| = [A] . (70)

For simplicity, we also assume that n′ is even, the odd case can be treated similarly. We

begin by rewriting the FE (47) with this insertion, with additional momentum derivatives:

∂Λ∂
w LΛ,Λ0

2n,l,D(OA; p1, . . . p2n) =

(
2n + 2

2

)∫

k

ĊΛ(k) ∂wLΛ,Λ0

2n+2,l−1,D(OA; k,−k, p1, . . . p2n)
(71)

−
∑

l1 + l2 = l,

w1 + w2 + w3 = w,

n1 + n2 = n + 1

4n1 n2 c{wj}S

[

∂w1LΛ,Λ0

2n1,l1,D
(OA; q, p1, . . . , p2n1−1) ∂

w3ĊΛ(q) ∂w2LΛ,Λ0

2n2,l2
(p2n1 , . . . , p2n)

]

As always in this subsection, the insertion is at the point x = 0. Inspection of the FE

shows that the renormalizability proof for the functions LΛ,Λ0

n,l,D can be performed on using

the same inductive scheme as the one used for the LΛ,Λ0

n,l , namely going up in n + l, for

fixed n+ l ascending in l , and for fixed n, l descending in |w| . Bounds on the functions

without insertions LΛ,Λ0

n,l are taken from the previous section. The boundary conditions for

the LΛ,Λ0

n,l,D were given above in eqs. (37), (38). We consider the case D = D′ = n′ + |w′| ,
(36), and denote LΛ,Λ0

2n,l,D(OA; ~p) simply by LΛ,Λ0

2n,l (OA; ~p) if D = [A] .

Theorem 1. There exists a constant K > 0 such that for Λ > 0

|∂wLΛ,Λ0

2n,l (OA; ~p)| ≤ ΛD−2n−|w|K(4n+8l−4)|w| KD(n+2l)3

×
√

|w′|! |w|!
d(D,n,l,w)
∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

ℓ′(n,l)
∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
. (72)

We set

d(D, n, l, w) := D(2n+ 2l) + sup(D + 1− 2n− |w|, 0) , (73)

ℓ′(n, l) := 2l + n− 1 . (74)

14Note that in the previous proof the factor of e−m2/Λ2

is simply bounded by one and thus is still at

our disposal.
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Proof :

We use the notation and the bounds of Proposition 3.1 and proceed similarly as there. If

not written explicitly the arguments of ℓ′ are supposed to be n, l , those of ℓ′1 to be n1, l1 .

We start considering

I) Irrelevant terms with 2n+ |w| > D :

A) The first term on the r.h.s. of the FE

Integrating the inductive bound on the first term from the r.h.s. of the FE (71) over Λ′

between Λ0 and Λ gives the following bound15:

∫ Λ0

Λ

dΛ′
∫

k

2

Λ′3 e−
k2+m2

Λ′2 Λ′D−(2n+2)−|w|
d(D,n+1,l−1,w)

∑

µ=0

1√
µ!

(
|~p|2n+2

Λ′ )µ
λ=ℓ′−1∑

λ=0

logλ(sup( |~p|2n+2

κ′ , κ
′

m
))

2λ λ!

×
(
2n+ 2

2

)
√

|w′|! |w|! K(4n+8l−8)|w| KD(n+2l−1)3

≤
(
2n+ 2

2

)
√

|w′|! |w|! K(4n+8l−8)|w| KD(n+2l−1)3
λ=ℓ′−1∑

λ=0

1

2λ λ!

×
∫ Λ0

Λ

dΛ′ Λ′D−1−2n−|w|
d(D,n,l,w)
∑

µ=0

1√
µ!

∫

k/Λ′

(
|~p|2n+2

Λ′ )µ logλ(
|~p|2n+2

κ′
,
κ′

m
) e−

k2

Λ′2 . (75)

Using (51) we show that

|~p|2n+2 ≤ |~p|+ |k|

and bound the momentum integral by

d∑

µ=0

1√
µ!

sup
x
{e−x2/2 (

|~p|2n+2

Λ′ )µ}
∫

x

e−x2/2 logλ(sup(
|~p|2n+2

κ′
,
κ′

m
)) (x =

k

Λ′ )

≤
[

d∑

µ=0

1√
µ!

µ
∑

ρ=0

(
µ

ρ

)

(
|~p|
Λ′ )

ρ 2
µ−ρ
2 (

µ− ρ

2
)!
] [

logλ(sup(
|~p|2n
κ′

,
κ′

m
)) + (λ!)1/2

]
(76)

with the aid of (52). The first factor in (76) can then be bounded by

d∑

µ=0

1√
µ!

µ
∑

ρ=0

(
µ

ρ

)

(
|~p|
Λ′ )

ρ (
µ− ρ

2
)! 2

µ−ρ
2 ≤

d∑

ρ=0

(
|~p|
Λ′ )

ρ

d∑

µ=ρ

1√
µ!

(
µ

ρ

)

(
µ− ρ

2
)! 2

µ−ρ
2 (77)

≤
d∑

µ=0

1√
µ!

(
|~p|
Λ′ )

µ

d−µ
∑

ρ=0

(
ρ+ µ

µ

)

(
ρ

2
)! 2

ρ
2

√

µ!

(ρ+ µ)!
≤ 2d

d∑

µ=0

1√
µ!
(
|~p|
Λ′ )

µ ,

15Assuming l ≥ 1, otherwise the contribution is zero, and writing κ′ = sup(Λ′,m) .
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where the last bound is obtained from Stirling and binomial type estimates.

Performing the integral over Λ′ in (75) and using (53), we therefore obtain the following

bound for (75):

ΛD−2n−|w| KD(n+2l)3 K(4n+8l−4)|w|
d∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

λ=ℓ′−1∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!

× K−D[(n+2l)(n+2l−1)+1]−|w| [5
(n+ 1)(2n+ 1)

2n+ |w| −D
2d K−2D(n+2l)(n+2l−1)−3|w|] . (78)

As a consequence, this contribution to ∂wLΛ,Λ0

2n,l (OA, ~p) satisfies the inductive bound

multiplied by

A(D, n, l, w) := 1/8 K−|w|K−2D[(n+2l)(n+2l−1)+1] , (79)

if we assume K to be sufficiently large such that

5(n+ 1)(2n+ 1) 2d K−2D(n+2l)(n+2l−1)−3|w| ≤ 1/8 . (80)

B) The second term on the r.h.s. of the FE

Integrating the inductive bound on the second term on the r.h.s. of the FE over Λ′

between Λ and Λ0 gives the following bound16, using that |~p|2n1, |~p|2n2 ≤ |~p|2n ≡ |~p| and

taking the sup w.r.t. the permutations of the momentum assignments:

∫ Λ0

Λ

dΛ′ Λ′D+4−2n−2−|w1|−|w2| K(4n1+8l1−4+2n2+4l2−4)(|w1|+|w2|+1) KD(n1+2l1)3

×
∑

l1+l2=l,
w1+w2+w3=w,
n1+n2=n+1

4 c{wi} n1n2

√

|w′|! |w1|!
d(D,n1,l1,w1)∑

µ=0

1√
µ!

(
|~p|
Λ′ )

µ

λ1=ℓ′1∑

λ1=0

logλ1( sup( |~p|
κ′ ,

κ′

m
))

2λ1 λ1!

× 2

Λ′3 |∂w3 e−
q2+m2

Λ′2 |
√

|w2|! (n2 + l2 − 2)!
λ2=ℓ2∑

λ2=0

logλ2( sup( |~p|
κ′ ,

κ′

m
))

2λ2 λ2!

≤
∑

l1+l2=l,
n1+n2=n+1,

λ1≤ℓ′1, λ2≤ℓ2

(n2 + l2)! 4n1
(λ1 + λ2)!

λ1!λ2!
K(4n+8l−6)(|w|+1) KD(n1+2l1)3

16 Note that the lowest possible value of 4n + 8l − 4 which may give a nonvanishing contribution on

the r.h.s. is 4. This is realized for (n = 2, l = 0). Thus the corresponding exponent of K in the inductive

bound is never negative. A negative exponent could give a bound incompatible with the boundary

contributions from (36).
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×
∫ Λ0

Λ

dΛ′ Λ′D+2−2n−|w1|−|w2|
d(D,n1,l1,w1)∑

µ=0

1√
µ!

(
|~p|
Λ′ )

µ logλ1+λ2( sup( |~p|
κ′ ,

κ′

m
))

2λ1+λ2 (λ1 + λ2)!

×
∑

w1+w2+w3=w

c{wi}
2

Λ′3 |∂w3 e−
q2+m2

Λ′2 | |w′|! |w1|! |w2|! .

Using (56) and the fact that ℓ′1 + ℓ2 ≤ ℓ′ , we arrive at the bound

∑

l1+l2=l,
n1+n2=n+1

(n2+l2)! 4n1 ℓ
′ 2ℓ

′

K(4n+8l−6)(|w|+1) KD(n1+2l1)3
∑

wi

c{wi} 2
1
2
|w3| k

√

|w′|! |w3|! |w1|! |w2|!

×
d(D,n1,l1,w1)∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

∫ Λ0

Λ

dΛ′ Λ′D−2n−|w|−1
∑

0≤λ≤ℓ′

logλ( sup( |~p|
κ′ ,

κ′

m
))

2λ λ!
. (81)

Using also (53) we verify the bound

ΛD−2n−|w| K(4n+8l−4)|w|+D(n+2l)3
√

|w′|! |w|!
d(D,n1,l1,w1)∑

ν=0

1√
µ!

(
|~p|
Λ
)µ

∑

0≤λ≤ℓ′

logλ( sup( |~p|
κ
, κ
m
))

2λ λ!
,

(82)

multiplied by (79)–on imposing the lower bound on K

K−2D(n+2l)[(n+2l)−1]+(4n+8l−6)−|w| 5k
∑

l1+l2=l,
n1+n2=n+1

(n2 + l2)! 4n1 ℓ
′ 2ℓ

′
∑

wi

c{wi} 2
|w3|
2 ≤ 1

8
(83)

where we used that n1 + 2l1 ≤ n+ 2l− 1 . Noting also 2n1 + 2l1 ≤ 2n+ 2l− 2 we verify

that

d(D, n1, l1, w1) ≤ d(D, n, l, w) , (84)

with the aid of definition (73), so that (82) is bounded by (72), as required.

Adding the bounds on the first and second terms on the r.h.s. of the FE we verify the

bound (72) multiplied by 2A(D, n, l, w) for K sufficiently large to satisfy (80), (83).

II) Relevant terms at vanishing external momentum

Relevant terms - i.e. 2n + |w| ≤ D - are first constructed at zero external momentum

with the aid of the Taylor series

∂v~p f2n(~p) =
∑

|w|≤D−2n−|v|

~pw

w!
[∂w+v

~p f2n](0) +
∑

|w|=D+1−2n−|v|
~pw

∫ 1

0

dτ
(1− τ)|w|−1

(|w| − 1)!
[∂ w+v

~p f2n](τ~p) .

(85)

We note that for the relevant terms we also have to take into account the contribution

from the boundary condition, see (36); the factor of w! δw,w′ in the boundary condition
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exhausts the factor of
√
w!w′! present in the inductive bound (72), which thus cannot be

sharpened in this respect. We consider the r.h.s. of the FE for the term ∂w+v
~p LΛ,Λ0

2n,l (OA,~0)

with 2n+ |w + v| ≤ D .

A) The first term on the r.h.s. of the FE

Integrating the FE (71) w.r.t. Λ′ from 0 to Λ –assuming again without loss of generality

l ≥ 1–gives the following bound for the first term on the r.h.s. of the FE:
(
2n+ 2

2

)

K(4n+8l−8)|w+v|KD(n+2l−1)3
√

|w′|! |w + v|!
∫ Λ

0

dΛ′ Λ′D−(2n+2)−|w+v| 2

Λ′3

×
∫

k

e−
k2+m2

Λ′2

d(D,n,l,w+v)
∑

µ=0

1√
µ!
(
|k|
Λ′ )

µ
λ=ℓ′−1∑

λ=0

logλ(sup( |k|
κ′ ,

κ′

m
))

2λ λ!

≤
(
2n + 2

2

)

K(4n+8l−8)|w+v| KD(n+2l−1)3
√

|w′|! |w + v|!
d(D,n,l,w+v)

∑

µ=0

λ=ℓ′−1∑

λ=0

1

2λ λ!

× 2

∫ Λ

0

dΛ′ Λ′D−(2n+1)−|w+v| e−
m2

Λ′2

∫

|k|

Λ′

1√
µ!
(
|k|
Λ′ )

µ logλ(sup(
|k|
κ′
,
κ′

m
)) e−

k2

Λ′2 . (86)

We bound the momentum integral as before in (76) by

2
µ
2

1√
µ!

(
µ

2
)! [logλ(

κ′

m
) + (λ!)1/2] . (87)

Summing over µ , and using (µ
2
)! ≤ 2−µ/2

√
µ+ 1

√
µ! , the first term from (87) can then

be bounded by

d(D,n,l,w+v)
∑

µ=0

2
µ
2 2−

µ
2

√

µ+ 1 ≤ 2 d(D, n, l, w + v)3/2 . (88)

Using that
∫ Λ

0

dΛ′ Λ′D−(2n+1)−|w+v| logλ(
κ′

m
) e−

m2

Λ′2

≤ ΛD−2n−|w+v|







logλ( κ
m
) if D − 2n− |w + v| > 0,

2(λ+ 1)−1 logλ+1( κ
m
) if D − 2n− |w + v| = 0,

(89)

we therefore obtain for (86) the bound
(
2n+ 2

2

)

K(4n+8l−8)|w+v| KD(n+2l−1)3
√

|w′|! |w + v|!

× ΛD−2n−|w+v| 2 d(D, n, l, w + v)3/2 6
λ=ℓ′∑

λ=0

1

2λλ!
logλ(

κ

m
) . (90)
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As a consequence, this contribution to ∂w+vLΛ,Λ0

2n,l (OA,~0) satisfies the inductive bound

multiplied by (79) (with w → w + v) under the condition that

12

(
2n+ 2

2

)

d(D, n, l, w + v)3/2 K−2D(n+2l)(n+2l−1)−3|w+v| ≤ 1/8 .

B) The second term on the r.h.s. of the FE

Integrating the inductive bound on the second term on the r.h.s. of the FE from 0 to Λ

gives the following bound at zero momentum

∑

l1+l2=l,
w1+w2+w3=w+v,

n1+n2=n+1

4n1n2

∫ Λ

0

dΛ′ Λ′D+4−2n−2−|w1|−|w2| K(4n1+8l1−4+2n2+4l2−4)(|w1|+|w2|+1) KD(n1+2l1)3

× c{wi}
√

|w′|! |w1|!
λ1=ℓ′1∑

λ1=0

logλ1(κ
′

m
)

2λ1 λ1!

2

Λ′3

∣
∣
∣∂w3 e−

q2+m2

Λ′2

∣
∣
∣
q=0

√

|w2|! (n2+l2−2)!

λ2=ℓ2∑

λ2=0

logλ2(κ
′

m
)

2λ2 λ2!

≤
∑

l1+l2=l,
n1+n2=n+1,

λ1≤ℓ′1, λ2≤ℓ2

(n2 + l2)! 4n1
(λ1 + λ2)!

λ1!λ2!
K(4n+8l−6)(|w|+|v|+1) KD(n1+2l1)3

∑

w1+w2+w3
=w+v

c{wi}

×
∫ Λ

0

dΛ′ Λ′D+2−2n−|w1|−|w2| logλ1+λ2(κ
′

m
)

2λ1+λ2 (λ1 + λ2)!

2

Λ′3

∣
∣
∣∂w3 e−

q2+m2

Λ′2

∣
∣
∣
q=0

√

|w′|!|w1|!|w2|! ,

remembering (74) and (58) which imply that ℓ′1+ℓ2 ≤ ℓ′ . Using (56) we obtain the bound

∑

l1+l2=l,
n1+n2=n+1

(n2+l2)! 4n1 l2
l K(4n+8l−6)(|w+v|+1) KD(n1+2l1)3

∑

wi

c{wi} k 2
1
2
|w3|

√

|w′|! |w3|! |w1|! |w2|!

×
∫ Λ

0

dΛ′ Λ′D−2n−|w+v|−1 e
− m2

Λ′2
∑

0≤λ≤ℓ′

logλ(κ
′

m
)

2λ λ!
. (91)

Using also (53) and proceeding as in (89, 90) we verify the inductive bound (72)

ΛD−2n−|w+v| K(4n+8l−4)|w+v|+D(n+2l)3
√

|w′|! |w + v|!
∑

0≤λ≤ℓ′

logλ( κ
m
)

2λ λ!
,

multiplied by (79) (with w → w + v) on imposing the lower bound on K

6K−2D(n+2l)(n+2l−1)+(4n+8l−6)−|w+v| 5k
∑

l1+l2=l,
n1+n2=n+1

(n2 + l2)! 4n1 ℓ
′ 2ℓ

′
∑

∑
wi=w+v

c{wi} 2
|w3|
2 ≤ 1

8
.

(92)
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For |w + v| + 2n = D we have to add the boundary term from (36). Since it is

non-vanishing only if w + v = w′ we can bound it by
√

|w + v|!|w′|! and it is thus

accommodated for by the bound from Theorem 1 multiplied by 1
8
, remember also footnote

16.

III) Schwinger functions with |v|+ 2n ≤ D at arbitrary external momenta

We have to sum the series (85).

|∂v~p LΛ,Λ0

2n,l (OA, ~p)| =

∣
∣

∑

|w|≤D−2n−|v|

~pw

w!
∂w+v
~p LΛ,Λ0

2n,l (OA,~0) +
∑

|w|=D+1−2n−|v|
~pw

∫ 1

0

(1− τ)|w|−1

(|w| − 1)!
∂ w+v
~p LΛ,Λ0

1,2n,l(OA, τ~p)
∣
∣

(93)

≤
[

∑

|w|≤D−2n−|v|
(
|~p|
Λ

)|w| 4A(D, n, l, w + v) K(4n+8l−4)|w+v|
√

|w′|! |w + v|!
w!

λ=ℓ′∑

λ=0

logλ( κ
m
)

2λ λ!

(94)

+
∑

|w|=D+1−2n−|v|
4A(D, n, l, w+v) (

|~p|
Λ
)|w| |w|K(4n+8l−4)|w+v|

√

|w′|! |w + v|!
|w|!

∫ 1

0

dτ(1−τ)|w|−1

×
d(D,n,l,w+v)

∑

µ=0

1√
µ!
(
τ |~p|
Λ

)µ
λ=ℓ′∑

λ=0

logλ(sup( τ |~p|
κ
, κ
m
))

2λ λ!

]

KD(n+2l)3 ΛD−2n−|v| .

where A is given in (79). We used the induction hypothesis, after transforming powers of

p into powers of p over Λ multiplied by powers of Λ .

Using the following estimate
√

|w′|! |w + v|!
w!

≤
√

|w′|! |v|!
√

|w|!
2

|w+v|
2

|w|!
w!

≤
√

|w′|! |v|!
√

|w|!
2

|w|+|v|
2 (8n)|w| ,

we obtain a bound for 2n+ |v| ≤ D :

|∂v~p LΛ,Λ0

2n,l (OA, ~p)| ≤ ΛD−2n−|v| √|w′|! |v|! KD(n+2l)3

×
[

∑

w,2n+|v+w|≤D

4A(D, n, l, w+v)
1

√

|w|!
(
|~p|
Λ

)|w| 2
|w|+|v|

2 (8n)|w| K(4n+8l−4)|w+v|
λ=ℓ′∑

λ=0

logλ( κ
m
)

2λ λ!

+
∑

w,|w|=D+1−2n−|v|
4A(D, n, l, w+v)

1
√

|w|!
(
|~p|
Λ
)|w| |w|K(4n+8l−4)|w+v| 2

|w|+|v|+2
2 (8n)|w| (95)

×
∫ 1

0

dτ(1− τ)|w|−1

d(D,n,l,w+v)
∑

µ=0

1√
µ!
(
τ |~p|
Λ

)µ
λ=ℓ′∑

λ=0

logλ(sup( τ |~p|
κ
, κ
m
))

2λ λ!

]
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≤ ΛD−2n−|v| √|w′|! |v|! KD(n+l)3

×
[

∑

w,2n+|v+w|≤D

4A(D, n, l, w)
1

√

|w|!
(
|~p|
Λ

)|w| 2
|w|+|v|

2 (8n)|w| K(4+8l−4)|w+v|
λ=ℓ′∑

λ=0

logλ( κ
m
)

2λ λ!

+
∑

|w|=D+1−2n−|v|
4A(D, n, l, w) |w|K(4n+8l−4)|w+v| 2

|w|+|v|+2
2 (8n)|w|

×
d(D,n,l,w+v)+|w|

∑

µ=0

2
µ
2

√
µ!
(
|~p|
Λ
)µ

λ=ℓ′∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!

]

. (96)

These bounds are compatible with the induction hypothesis since

i)

d(D, n, l, w + v) + |w| ≤ d(D, n, l, v) (97)

for |w| ≤ D − 2n− |v|+ 1 , as a consequence of the definition of d (73),

ii)
∑

|w|≤D+1−2n−|v|
(8n)|w| 2

d(D,n,l,v)
2

+|w| |w|K(4n+8l−4)|w| 4A(D, n, l, w) ≤ 1

for K sufficiently large.

Corollary 3.2. For Λ ≤ m and K sufficiently large we have the bounds

|∂wLΛ,Λ0

2n,l (OA, ~p)| ≤ mD−2n−|w| K(4n+8l−4)|w| KD(n+2l)3

×
√

|w′|! |w|! [2n+ |w| −D]+!

d(D,n,l,w)
∑

µ=0

(
|~p|
m

)µ
λ=ℓ′∑

λ=0

logλ+(
|~p|
m
)

2λ λ!
. (98)

Remark: These bounds show that the functions LΛ,Λ0

2n,l (OA; ~p) have a convergent Taylor

expansion around zero momentum, since the growth of the Taylor coefficients is bounded

by K̃ |w| |w|! for w large and suitable K̃ .

Proof : To prove the Corollary we may insert the bounds of Theorem 1 on the r.h.s. of

the FE. We may then use the factors exp(−m2/Λ′2) present in both terms to bound the

negative powers of Λ by a square root of a factorial :

∫ m

0

dΛ ′ exp(−m2/Λ′2)
Λ′D−2n−|w|−µ−1

√
µ!

≤ mD−2n−|w|−µ

√

(2n+ |w|+ µ−D)+!√
µ!
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≤ 2
1
2
(2n+|w|+µ−D)+ mD−2n−|w|−µ

√

(2n+ |w| −D)+! .

These bounds cannot serve as a viable induction hypothesis however, since the powers of

momenta (now without 1√
µ!
) would create additional square roots of factorials in the next

step of induction.

For later use, we also note the

Corollary 3.3. The inductive proof of Theorem 1 is valid for a somewhat larger constant

K also if we replace d in the statement of the theorem by 2d, or if we replace ℓ′ by ℓ′ +1.

Proof : The key properties for d that enter the proof are the inequalities (84) and (97),

which are evidently also satisfied for 2d. The key properties required for ℓ′ = ℓ′(n, l) are

that ℓ′(n + 1, l − 1) < ℓ′(n, l) for l ≥ 1 and ℓ′(n1, l1) + ℓ(n2, l2) < ℓ′(n, l) on the r.h.s. of

the FE, where ℓ(n, l) is as in eq. (58). These properties are evidently also satisfied by the

quantity ℓ′ + 1.

3.4 Bounds on normal products with two insertions

We now provide bounds on the normal products LΛ,Λ0

n,l,D(OA ⊗OB; ~p) with two insertions.

Each of these insertions is a monomial in the basic fields with A = {n′, w′} and B =

{n′′, w′′}. Again, we will assume for simplicity that both n′ and n′′ are even. We will use

the notation D′ for the combined dimension of the two insertions,

D′ := [A] + [B] = n′ + n′′ + |w′|+ |w′′| . (99)

These normal products were defined above in sec. 2 as the solutions to the FE’s (48), and

the boundary conditions are given above in eq. (40) and eq. (41). Our bounds are given

in the following theorem:

Theorem 2. There exists a constant K > 0 such that for |w| ≤ D′ + 1:

|∂wLΛ,Λ0

2n,l,D′(OA ⊗OB; ~p)| ≤ ΛD′−2n−|w|K(4n+8l−4)|w| KD′(n+2l)3

√

|w|! |w′|! |w′′|!
d′(n,l,w,D′)

∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

λ=ℓ′+1∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
, (100)

d′ = 2[D′(2n + 2l) + sup(D′ + 1− 2n− |w|, 0)] , ℓ′(n, l) = 2l + n− 1 . (101)
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Proof:

To prove this theorem, we use the FE’s for normal products with two insertions, given

above in eq. (48). We apply a derivative ∂w~p to both sides of the equation. Then we

integrate the FE’s over Λ subject to the appropriate boundary condition, using the same

inductive scheme as described in the previous subsections. Depending on the boundary

condition, we again have to distinguish the cases 2n + |w| ≤ D′ and 2n + |w| > D′. The

right side of the FE, eq. (48), has three terms. The first two terms involve the CAG’s

with two insertions, whereas the last term only involves the CAG’s with one insertion,

for which we already have the bounds in Theorem 1. The structure of the bound for the

CAG’s with two insertions claimed in the theorem is exactly the same as that for one

insertion, and the first two terms on the right side of the FE also have exactly the same

structure as the corresponding two terms in the FE for one insertion. Therefore, in view

of Cor. 3.3, the first two terms in the FE can be treated in literally the same manner as in

the previous section with D = D′ there. The third term on the right side of the FE has

a different form, but it involves only the CAG’s with one insertion, for which we already

have bounds. Thus, we can concentrate only on the third term on the right side of the

FE, and we need to show that this term satisfies our inductive bound. We begin with the

following

Lemma 3.2. For |w| ≤ D′ +1, n+1 = n1 +n2, l = l1 + l2, we have the following bound:
∣
∣
∣
∣
∂w~p

∫

k

LΛ,Λ0

2n1,l1
(OA; k, p1, . . . , p2n1−1) Ċ

Λ(k) LΛ,Λ0

2n2,l2
(OB;−k, p2n1, . . . , p2n)

∣
∣
∣
∣

≤ M K
(4n+8l−4)|w|
1 K

D′(n+2l)3

1

√

|w|! |w′|! |w′′|! ΛD′−2n−|w|−1 e−m2/Λ2

×
d′(n,l,w,D′)

∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

λ=ℓ′∑

λ=0

logλ(sup( |~p|
κ
, κ
m
)) +

√
λ!

2λ λ!
. (102)

Here K1 is the constant from Theorem 1, and M = 5|w|2|w|/222d
′
(ℓ′ + 1)2ℓ

′+1.

Proof: We can pull the ∂w~p inside the integral. Then we first use the transformation

properties of the CAG’s under translations to write

∂w~p [LΛ,Λ0

2n1,l1
(OA(x); k, p1, . . . , p2n1−1) Ċ

Λ(k) LΛ,Λ0

2n2,l2
(OB(0);−k, p2n1, . . . , p2n)]

=
∑

w1+w2+w3=w

c{wi} ∂
w3

~p eix(k+p1+...+p2n1−1) ∂w1

~p LΛ,Λ0

2n1+1,l1
(OA(0); k, p1, . . . , p2n1−1)

× ĊΛ(k) ∂w2

~p LΛ,Λ0

2n2,l2
(OB(0);−k, p2n1 , . . . , p2n) (103)

Now, the ~p-derivatives on ∂w3

~p eix(k+p1+...+p2n1−1) can be converted into k-derivatives, and

then in the subsequent k-integral in (102) moved onto the other terms by means of a
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partial integration, because the integrand decays sufficiently rapidly for large k by the

bounds in Theorem 1. We can then insert these bounds, and we can also use the standard

multi-nomial bound c{wi} ≤ 3|w|. Carrying out these manipulations, and using also (56),

and the inequality D′(n+2l)3 ≥ [A](n1 +2l1)
3 + [B](n2 +2l2)

3 in view of (99), results in

the bound:
∣
∣
∣
∣
∂w~p

∫

k

LΛ,Λ0

2n1,l1
(OA; k, p1, . . . , p2n1−1) Ċ

Λ(k) LΛ,Λ0

2n2,l2
(OB;−k, p2n1, . . . , p2n)

∣
∣
∣
∣

≤ M0 K
(4n+8l−4)|w|
1 K

D′(n+2l)3

1

√

|w|! |w′|! |w′′|! ΛD′−2n−|w|−5 e−m2/Λ2

×
d1+d2∑

µ=0

1√
µ!

∫

k

e−|k|2/2Λ2

(
|~p|+ |k|

Λ
)µ

ℓ′∑

λ=0

logλ(sup( |~p|+|k|
κ

, κ
m
))

2λ λ!
, (104)

for the constant K1 provided by Theorem 1, and M0 = 5|w|2ℓ
′+12d1+d2(ℓ′ + 1)2|w|/2. Here,

n + 1 = n1 + n2, l = l1 + l2, and d1 = [A](2n1 + 2l1) + sup([A] + 1 − 2n1 − |w1|, 0),
d2 = [B](2n2+2l2)+sup([B]+1−2n2−|w2|, 0) is as in Theorem 1. Using that |w| ≤ D′+1,

we can show that d1 + d2 ≤ d′, so we can replace the upper limit of the sum over µ by

d′. Furthermore, we can now bound the k-integral in (104) exactly as in (76) and (77),

leading to the bound

d′∑

µ=0

∫

k/Λ

e−|k|2/2Λ2

(
|~p|+ |k|

Λ
)µ

ℓ′∑

λ=0

logλ(sup( |~p|+|k|
κ

, κ
m
))

2λ λ!

≤ 2d
′

d′(n,l,w,D′)
∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

ℓ′∑

λ=0

logλ(sup( |~p|
κ
, κ
m
)) +

√
λ!

2λ λ!
. (105)

Inserting this into the previous bound gives the statement of the lemma.

We now return to the inductive step, which consists in integrating ∂w~p on the right side

of the FE eq. (48) against Λ, subject to appropriate boundary conditions. Concerning

these boundary conditions, we must as usual consider separately two cases:

The case 2n+|w| > D′: In this case the boundary condition is ∂wLΛ0,Λ0

2n,l,D′(OA⊗OB ; ~p) = 0,

so we integrate the right side of the FE differentiated by ∂w~p from Λ0 down to Λ. We have

to consider the three terms on the right side separately. The first two can be handled as

in the previous subsection. So we need to focus only on the third term on the right side
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of the FE. Using the previous lemma, and the inequality (53), we get

∣
∣
∣
∣

∫ Λ0

Λ

dΛ′∂w~p

∫

k

LΛ′,Λ0

2n1,l1
(OA; k, p1, . . . , p2n1−1) Ċ

Λ′

(k) LΛ′,Λ0

2n2,l2
(OB;−k, p2n1 , . . . , p2n)

∣
∣
∣
∣

≤ M K
(4n+8l−4)|w|
1 K

D′(n+2l)3

1

√

|w|! |w′|! |w′′|!
∫ Λ0

Λ

dΛ′Λ′−1+D′−2n−|w| e−m2/Λ′2

×
d′(n,l,w,D′)

∑

µ=0

1√
µ!

(
|~p|
Λ′ )

µ
ℓ′∑

λ=0

logλ(sup( |~p|
κ′ ,

κ′

m
)) +

√
λ!

2λ λ!

≤ 10M K
(4n+8l−4)|w|
1 K

D′(n+2l)3

1

√

|w|! |w′|! |w′′|! ΛD′−2n−|w|

×
d′(n,l,w,D′)

∑

µ=0

1√
µ!

(
|~p|
Λ
)µ

ℓ′∑

λ=0

logλ(sup( |~p|
κ
, κ
m
))

2λ λ!
. (106)

In order to bound the Λ′-integral of the third term on the right side of the FE, we must

additionally multiply this by 4n1n2, apply the symmetrization operator S, and sum over

n1, n2, l1, l2, subject to n + 1 = n1 + n2, l = l1 + l2. Then we see that we reproduce

the inductive bound in Theorem 2 on the FE multiplied by 1/8 by choosing K ≥ K1

sufficiently large such that

40(l + 1)(n + 1)3M K
D′(n+l)3

1 ≤ 1

8
KD′(n+l)3 , (107)

which is possible in view of D′ ≥ 2n+ |w|+ 1.

The case 2n+|w| ≤ D′: In this case the boundary condition is ∂wL0,Λ0

2n,l,D′(OA⊗OB;~0) = 0,

so we integrate the right side of the FE differentiated by ∂w~p from Λ down to 0. We have

to consider the three terms on the right side separately. The first two can be handled as

in the previous subsection. So we need to focus again only on the third term on the right

side of the FE. This is done first for zero momentum ~p = ~0, and the results for arbitrary

momentum are then constructed using the Taylor formula with remainder. Using the

previous lemma, we now get

∣
∣
∣
∣

∫ Λ

0

dΛ′∂w~p

∫

k

LΛ′,Λ0

2n1,l1
(OA; k, 0, . . . , 0) Ċ

Λ′

(k) LΛ′,Λ0

2n2,l2
(OB;−k, 0, . . . , 0)

∣
∣
∣
∣

≤ M K
(4n+8l−4)|w|
1 K

D′(n+2l)3

1

√

|w|! |w′|! |w′′|!

×
∫ Λ

0

dΛ′Λ′D′−2n−|w|−1 e−m2/Λ′2
ℓ′∑

λ=0

logλ(κ
′

m
) +

√
λ!

2λ λ!
, (108)
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noting that there is no boundary term. The Λ′-integral is now bounded by

∫ Λ

0

dΛ′Λ′D′−2n−|w|−1 e−m2/Λ′2
ℓ′∑

λ=0

logλ(κ
′

m
) +

√
λ!

2λ λ!

≤ ΛD′−2n−|w|
ℓ′∑

λ=0

1

2λ λ!







1
λ+1

logλ+1( κ
m
) +

√
λ! log( κ

m
) + 1 if D′ − 2n− |w| = 0,

logλ( κ
m
)+

√
λ!

D′−2n−|w| if D′ − 2n− |w| > 0

≤ 6(l + 1)ΛD′−2n−|w|
ℓ′+1∑

λ=0

logλ( κ
m
)

2λ λ!
. (109)

In order to bound the Λ′ integral of the third term on the right side of the FE, we must

additionally multiply (108) by 4n1n2, apply the symmetrization operator S, and sum over

n1, n2, l1, l2, subject to n + 1 = n1 + n2, l = l1 + l2. Then we see that we reproduce the

inductive bound in Theorem 2 on the FE multiplied by 1/8 provided that

4 · 6(l + 1)(ℓ′ + 1) (n+ 1)3MK
D′(n+l)3

1 ≤ 1

8
KD′(n+l)3 , K1 ≤ K (110)

which can be satisfied for K sufficiently large in view of |w| ≤ D′ + 1. The bounds at

non-zero momentum are obtained using the Taylor expansion with remainder technique as

in eq. (93), but now for two insertions. The arguments are in parallel with the case of one

insertion, noting that d′ satisfies the key property d′(D′, n, l, w + v) + |w| ≤ d′(D′, n, l, v)

analogous to (97). Thus, each of the two terms in eq. (93) satisfies the inductive bound

multiplied by 1/8 for sufficiently large K.

Hence, we have seen that ∂w~p of the third term in the FE (48), integrated against Λ,

can be estimated by 1/2 of the inductive bound. The first two terms can be treated in the

same manner as the corresponding terms in the FE with one insertion, and can thereby be

bounded by 1/2 times the inductive bound as well for sufficiently large K. This concludes

the proof of the theorem.

We can insert the bound obtained in the previous theorem one more time into the

FE’s and integrate from 0 to m . If this is done, and if we also carry out the sum over µ

in the bound, we obtain, in the same way as Corollary 3.2 was obtained17 from Theorem

1:

Corollary 3.4. There exists a constant K > 0 such that:

|L0,Λ0

2n,l,D′(OA(x)⊗OB(0); ~p)| ≤ mD′−2nKD′(n+2l)3
√

|w′|! |w′′|! sup(1, |~p|
m

)d
′

2l+n∑

λ=0

logλ+(
|~p|
m
)

2λ λ!
.

(111)

17The factor
√

(2n−D′)+! can be absorbed by choosing K slightly larger.
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Here, d′ = 2[D′(2n + 2l) + sup(D′ + 1− 2n, 0)].

4 Bound on the remainder in the OPE

The bounds on the CAG’s obtained in the previous section put us in a position to give the

proof of our main result, namely the bound on the remainder of the OPE. As stated in

the introduction, we introduce test-functions fpi chosen such that the support supp f̂pi ⊂
{q ∈ R4 | |pi − q| ≤ ǫ} for some arbitrary but fixed ǫ. In terms of these test-functions,

the spectator fields are defined as ϕ(fpi) =
∫
d4x ϕ(x) fpi(x). We use the same notation

as in the previous section concerning the composite fields: D′ = [A] + [B], and A =

{n′, w′}, B = {n′′, w′′}. Our result, which we presented already in the introduction, is

Theorem 3. Let the sum
∑

C in the operator product expansion (1) be over all C such

that

[C]− [A]− [B] ≤ ∆ (112)

where ∆ is some positive integer. Then for each such ∆, we have the following bound for

the “remainder” in the OPE in loop order l:
∣
∣
∣
∣

〈

OA(x)OB(0)ϕ(fp1) · · ·ϕ(fpn)
〉

−
∑

C

CC
AB(x)

〈

OC(0)ϕ(fp1) · · ·ϕ(fpn)
〉
∣
∣
∣
∣

≤ m[A]+[B]+n
√

[A]![B]! K̃ [A]+[B]
∏

i

sup |f̂pi|

× sup(1,
|~p|n
m

)2([A]+[B])(n+2l+1)+3n

2l+n/2
∑

λ=0

logλ sup(1, |~p|n
m

)

2λλ!

× 1√
∆!

(

K̃ m |x| sup(1,
|~p|n
m

)n+2l+1

)∆

.

Here, there are n spectator fields, 〈 . 〉 denote Schwinger functions, and K̃ is a constant

depending on n, l. Furthermore, |~p|n is defined in eq. (51).

Proof:

Let us begin by defining the “remainder functional” for D = 0, 1, 2, ... by

RΛ,Λ0

D (OA(x)⊗OB(0)) := ~LΛ,Λ0(OA(x)⊗OB(0))− LΛ,Λ0(OA(x))L
Λ,Λ0(OB(0))−

−
∑

C

CC
AB(x) L

Λ,Λ0(OC(0)) , (113)

where the sum is over all C with [C] ≤ D. The corresponding moments of this functional

are written as RΛ,Λ0

D,n,l. Going through the definitions given in sec. 2, we can write the
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remainder in the OPE - with UV-cutoff Λ0 and IR-cutoff set to Λ = 0, and still considering

the full formal power series in ~ - as

〈

OA(x)OB(0) ϕ̂(p1) · · · ϕ̂(pn)
〉

−
∑

C

CC
AB(x)

〈

OC(0) ϕ̂(p1) · · · ϕ̂(pn)
〉

= (114)

−
∑

I1∪...∪Ij={1,...,n},
l, l1+...+lj=l

~
n+l+1−j R0,Λ0

D,|I1|,l1(OA(x)⊗OB(0); ~pI1) L̃0,Λ0

|I2|,l2(~pI2) · · · L̃
0,Λ0

|Ij |,lj(~pIj)
n∏

i=1

C0,Λ0(pi) .

Here, L̃0,Λ0

n,l (~p) are the expansion coefficients of the generating functional L̃0,Λ0(ϕ) =

−L0,Λ0(ϕ) + 1
2
〈ϕ, (C0,Λ0)−1 ⋆ ϕ〉, without any momentum conservation delta-functions

taken out. Thus, we need to estimate the quantities L0,Λ0

n,l , the quantities R0,Λ0

D,n,l, and

the covariances C0,Λ0. Our bounds on the CAG’s without insertions give us

|L0,Λ0

2n,l (~p)| ≤ m4−2nK2n+4l−4(n+ l − 1)!
l∑

λ=0

logλ sup(1, |~p|
m
)

2λ λ!
(115)

and we also have the trivial bound C0,Λ0(p) ≤ [sup(|p|, m)]−2. Thus, what remains is to

give bounds on R0,Λ0

D,n,l. We have the following lemma about the remainder functional:

Lemma 4.1. Let Tj be the Taylor operator introduced in eq. (44). Then the remainder

functionals satisfy:

RΛ,Λ0

D (OA(x)⊗OB(0)) = (1−Σ∆
j=0T

j)
{

~LΛ,Λ0

D (OA(x)⊗OB(0))− LΛ,Λ0(OA(x))L
Λ,Λ0(OB(0))

}

where ∆ := D −D′ , D′ = [A] + [B]. For ∆ < 0 the sum is by definition empty.

Proof: Recalling the definition of the “oversubtracted” CAG’s with two insertions, we

first consider the telescopic sum

LΛ,Λ0(OA ⊗OB) = LΛ,Λ0

D (OA ⊗OB) +

D∑

j=0

[LΛ,Λ0

j−1 (OA ⊗OB)− LΛ,Λ0

j (OA ⊗OB)] , (116)

where D < D′ = [A] + [B]. Next, for any 0 ≤ j, we prove the relation

LΛ,Λ0

j−1 (OA ⊗OB)− LΛ,Λ0

j (OA ⊗OB) =
∑

C:[C]=j

DC{L0,Λ0

j−1 (OA ⊗OB)} LΛ,Λ0(OC) . (117)

To see this, we make the observation that both sides of the equation obey the same

homogeneous FE, and the same boundary conditions, owing to the choice for the boundary
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conditions made for the CAG’s. Hence they must be equal. In view of our definition of

the OPE-coefficients CC
AB for [C] < D′ eq. (45), we conclude that, for D < D′, we have

~LΛ,Λ0(OA ⊗OB) = ~LΛ,Λ0

D (OA ⊗OB) +
∑

[C]≤D

CC
AB LΛ,Λ0(OC) . (118)

We now subtract from both sides LΛ,Λ0(OA)L
Λ,Λ0(OB), and we bring the sum with the

OPE coefficients over to the left. Then we get the claim of the lemma for D < D′. The

case of general D now works by induction. We first observe that, for ∆ = D − D′, we

have

T
∆+1

{

~LΛ,Λ0

D+1(OA ⊗OB)− LΛ,Λ0(OA)L
Λ,Λ0(OB)

}

= −
∑

[C]=D+1

DC
{
L0,Λ0(T∆+1OA)L

0,Λ0(OB)
}
LΛ,Λ0(OC) . (119)

This follows again because both sides satisfy the same linear, homogeneous FE with the

same boundary conditions. Next, using the inductive hypothesis, and making trivial

re-arrangements in the sums:

RΛ,Λ0

D+1(OA ⊗OB) = RΛ,Λ0

D (OA ⊗OB)− Σ[C]=D+1CC
AB LΛ,Λ0(OC)

= (1− Σ∆
j=0T

j)
{

~LΛ,Λ0

D (OA ⊗OB)− LΛ,Λ0(OA)L
Λ,Λ0(OB)

}

− Σ[C]=D+1CC
AB LΛ,Λ0(OC)

= (1− Σ∆+1
j=0 T

j)
{

~LΛ,Λ0

D+1(OA ⊗OB)− LΛ,Λ0(OA)L
Λ,Λ0(OB)

}

+ ~(1− Σ∆
j=0T

j)
{

LΛ,Λ0

D (OA ⊗OB)− LΛ,Λ0

D+1(OA ⊗OB)
}

+ T
∆+1

{

~LΛ,Λ0

D+1(OA ⊗OB)− LΛ,Λ0(OA)L
Λ,Λ0(OB)

}

− Σ[C]=D+1CC
AB LΛ,Λ0(OC) . (120)

We are now in a position to substitute the formulas (117) and (119) for the second and

third term on the right side, together with the definition of CC
AB for [C] ≥ D′ for the

fourth term. Then the last three terms are seen to cancel out, and we are left with the

claim of the lemma.

Note that for a function f on R4 of differentiability class CN+1, we have the formula

(1− ΣN
j=0T

j)f(x) =
∑

|w|=N+1

xw

N !

∫ 1

0

(1− τ)N ∂wf(τx) dτ (121)

for the remainder of a Taylor expansion in x carried out to order N . By [8], the functionals

LΛ,Λ0

D (OA(x)⊗OB(0)) are of differentiability class C∆ in the variable x, where ∆ = D−D′,

whereas the functionals LΛ,Λ0(OA(x)) are smooth in x. We write the operator 1−
∑

j≤∆ Tj
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in the statement of the previous lemma as (1 −
∑

j≤∆−1T
j) − T

∆, and we rewrite the

first operator in parenthesis as a remainder in a Taylor expansion to order N = ∆ − 1

as in (121). Then, by the previous lemma and the Lowenstein-rules, we can write the

remainder as:

RΛ,Λ0

D (OA(x)⊗OB(0)) =
∑

|w|=∆

[
xw

(∆− 1)!

∫ 1

0

dτ (1− τ)∆−1 (122)

×
(

~LΛ,Λ0

D (∂wOA(τx)⊗OB(0))− LΛ,Λ0(∂wOA(τx))L
Λ,Λ0(OB(0))

)

−
xw

w!

(

~LΛ,Λ0

D (∂wOA(0)⊗OB(0)) − LΛ,Λ0(∂wOA(0))L
Λ,Λ0(OB(0))

)]

where ∂wOA on the right side denotes the linear combination of insertions obtained by

formally carrying out the differentiations:

∂wOA =
∑

w1+...+wn′=w

c{wi} ∂
w1+w′

1ϕ · · ·∂wn′+w′
n′ϕ . (123)

Taking the moments of this equation, and setting also Λ = 0, gives:

R0,Λ0

D,n,l(OA(x)⊗OB(0); ~p) =
∑

|w|=∆

[
xw

(∆− 1)!

∫ 1

0

dτ (1− τ)∆−1

×
(

L0,Λ0

n,l−1,D(∂
wOA(τx)⊗OB(0); ~p)−

∑

I1 ∪ I2 = {1, ..., n}

l1 + l2 = l

L0,Λ0

|I1|,l1(∂
wOA(τx); ~pI1)L0,Λ0

|I2|,l2(OB(0); ~pI2)
)

−

xw

w!

(

L0,Λ0

n,l−1,D(∂
wOA(0)⊗OB(0); ~p) −

∑

I1 ∪ I2 = {1, ..., n}

l1 + l2 = l

L0,Λ0

|I1|,l1(∂
wOA(0); ~pI1)L0,Λ0

|I2|,l2(OB(0); ~pI2)
)]

.

At this stage, we can use our previous bounds on the CAG’s to control the remainder.
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Using Cor. 3.4, the first term in [. . . ] can be bounded by

∣
∣
∣
∣

∑

|w|=∆

xw

(∆− 1)!

∫ 1

0

dτ (1− τ)∆−1 L0,Λ0

n,l−1,D(∂
wOA(τx)⊗OB(0); ~p)

∣
∣
∣
∣

(124)

≤ |x|∆
(∆− 1)!

∑

|w|=∆

sup
0≤τ≤1

∣
∣
∣
∣
L0,Λ0

n,l−1,D(∂
wOA(τx)⊗OB(0); ~p)

∣
∣
∣
∣

≤ |x|∆
(∆− 1)!

mD−n KD(n/2+2l−2)3
√

(|w′|+∆)! |w′′|!

×
∑

|w|=∆

∑

w1+...+wn′=w

c{wi} sup(1,
|~p|
m

)2D(n+2l−1)

2l+n/2−2
∑

λ=0

logλ+(
|~p|
m
)

2λλ!

≤ mD′−n (K(n/2+2l−2)3 m|x|)∆ KD′(n/2+2l−2)3

× sup(1,
|~p|
m

)2D(n+2l−1)

√

|w′|! |w′′|!√
∆!

2l+n/2−2
∑

λ=0

logλ+(
|~p|
m
)

2λλ!
.

The last inequality holds for a somewhat larger constant K needed in order to absorb

factors ∆, (4n′)∆ ≤ (4n′ + 4n′′)∆ ≤ [4(n + 2l + 1)]∆ from the sum over w, and 2D
′+∆

from (|w′| + ∆)! ≤ 2|w
′|+∆|w′|!∆! ≤ 2D

′+∆|w′|! ∆! . The other three terms in [. . . ] can

be estimated in the same way using also our estimates for the CAG’s with one operator

insertion given in Cor. 3.2. They are bounded by an expression of the same form. Putting

these straightforward estimates together, and defining also K̃ := K(n/2+2l)3 , we thereby

demonstrate the following lemma:

Lemma 4.2. Let D′ = [A] + [B], D = D′ + ∆,∆ = 0, 1, 2, ... and A = {n′, w′}, B =

{n′′, w′′}. The remainder functional satisfies the uniform bound

|R0,Λ0

D,n,l(OA(x)⊗OB(0); ~p)| (125)

≤ mD′−n (K̃ m |x|)∆ K̃D′

sup(1,
|~p|
m

)2D(n+2l+1)

√

|w′|! |w′′|!√
∆!

2l+n/2
∑

λ=0

logλ+(
|~p|
m
)

2λλ!

with a constant K̃ depending only on n, l.

Substituting the bound stated in the lemma into eq. (114), using the trivial estimate

C0,Λ0(p) ≤ [sup(m, |p|)]−2, the estimate (115), and the fact that f̂pi is supported in a ball

of radius ǫ around pi , we get the statement of the theorem for a sufficiently large new

constant K̃. This completes the proof.
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