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Abstract
Detecting anomalies at the time of happening is vital in environments like buildings and homes to identify potential cyber-
attacks. This paper discussed the various mechanisms to detect anomalies as soon as they occur. We shed light on crucial 
considerations when building machine learning models. We constructed and gathered data from multiple self-build (DIY) 
IoT devices with different in-situ sensors and found effective ways to find the point, contextual and combine anomalies. We 
also discussed several challenges and potential solutions when dealing with sensing devices that produce data at different 
sampling rates and how we need to pre-process them in machine learning models. This paper also looks at the pros and cons 
of extracting sub-datasets based on environmental conditions.
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1 Introduction

An anomaly is something unexpected, abnormal or distanced 
from the ordinary. From a technology perspective, an anom-
aly results from equipment malfunction, cyber or physical 
intrusion, financial fraud (e.g. credit card usage by hackers), 
terrorist activity, and an abrupt change detected by sensors 
in the physical environment due to an accident. Following 
are the types of anomalies: 

1. Point Anomalies: A single sample, different from normal 
samples. For example, a credit card (CC) transaction with 
an amount much larger than the CC holder’s routine transac-
tions.

2. Collective anomalies: A sample is a collection of several 
data points considered anomalous if it differs from other 
samples. For example, an electrocardiogram (ECG) is a 
collection of readings of the heart’s activity over a specific 
period as one data sample.

3. Contextual anomalies: If a sample is contextually differ-
ent from normal samples. Time is the context in time-

series data considering a situation where data is stream-
ing from sensors. An anomalous sample depends on a 
set of time-series values, e.g. a temperature trend of the 
last 30 min showing 20 ◦ C increases 50% abruptly. In 
some other time (context) 30◦ C is considered normal 
temperature.

Our work looked into all the above types of anomalies in our 
dataset. We proposed multiple solutions to look for abnor-
malities in various contexts, e.g. time-series, multivariate, 
and inter-device sensor combinations. The high-level idea 
behind anomaly detection is to (i) save resources by find-
ing faults in systems in advance, (ii) respond to events as 
early as possible (iii) deal with security breaches. Equip-
ment with the least latency from sensors is microcontrollers, 
and these devices are resource-constrained. With the rapidly 
growing IoT domain, there are a few off-the-shelf microcon-
trollers available now (Sudharsan et al. 2021) which sup-
port machine learning (ML) on edge using libraries, e.g. 
TensorFlow. Detecting anomalies as soon as they occur 
can help save a building from various challenges. Gas leak-
age by equipment malfunction or pipeline cracks, discom-
fort due to a sudden change in environment (temperature, 
humidity, noise, air quality, and others), infrastructure 
damage, physical access at a non-working time, or unau-
thorised personnel cyber-physical attacks related. Detecting 
anomalies at the edge ensures early response and reduces 
the risk of it getting ignored by the central system in case 
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of unavailability of network connectivity due to technical 
problems or cyber-attacks, e.g. Daniel of Service (DoS). 
We collected data from self-built physical devices with 32 
data streams from 14 unique sensors. We have combined 
intra-device data streams and inter-devices unique sensors’ 
streams. Other than the original “unconditional” dataset, 
we applied two (02) environmental conditions to the data 
set, then applied data preprocessing (scaling and reduction) 
techniques to each resulting data set and then used different 
ML algorithms. We tested all models using both normal and 
anomaly data sets and presented the results in HTML format 
at GitLab/ CyPhy Radar. We evaluated the models based on 
computational time vs the number of detected anomalies.

1.1  Contributions

• Impact of environmental conditions’ based data set in 
anomaly detection

• Pros and cons of conventional (scaling/reduction) and 
unconventional (atan) data preprocessing methods

• Comparison of different ML techniques
• Relations between various sensors in the context of dis-

covering anomalies in building
• Best practices to transform univariate data into time-

series format
• Handling missing data and synchronizing data streams 

from different devices

2  Anomaly detection within smart buildings

It is not energy-saving anymore; it is about the overall resil-
ience of smart buildings, which is the next big challenge. 
Smart buildings require mechanisms to mitigate or prevent 
fire, gas leakages, attacks, disasters, accidents, safety and 
security-related issues, and other unforeseen challenges. 
Secondary sensor networks can help mitigate such events 
by observing physical channels such as external eyes and 
ears. Any compromise-able device in a cyber network can 
allow attackers to gain control over the complete building 
management systems (Schiffer 2017).

2.1  Data collection setup

We have implemented a sensing network consisting of 
various 14 different environmental sensors, Arduino based 
microcontrollers and RaspberryPi (RPi) microprocessors, 
as shown in Table 1. The sensor reads the environmental 
changes and transfers readings to the attached RPi, directly 
or through a microcontroller, which then transforms and/or 
transfers these values to the ingestor using unique Message 
Queuing Telemetry Transport (MQTT) channels. The data 
set consists of 32 different data streams from eight (8) device 

sets, i.e. sensor-Arduino-RPi (DSet). Temperature, humidity 
sensors and some other associated data streams were dupli-
cated in two device-sets; although both device-sets were at 
the same place, one of the DSet’s sensors was influenced 
by a nearby heat source. Thus, the readings are different in 
these data streams. Timestamp and other properties were 
added to every new entry by the ingestor before inserting it 
into the data set. The probability of BLE and WiFi devices 
in the area was also calculator by the ingestor after receiv-
ing collective BLE and WiFi devices’ information from all 
other physical devices; these data streams in channels ble_
devices and wifi_devices were considered as virtual devices. 
Figure 1 shows the overall architecture of data collection 
setup, processing points, devices’ and channels’ names. 
We divided the data sets from July 24, 2020, to January 7, 
2021, and from March 26, 2021, to July 16, 2021, into two 
subsets, normal and abnormal, respectively. Both data sets 
were captured during normal routine operations, and some 
naturally occurring unusual activities were recorded in the 
time-frames of both data sets. We used the normal subset for 
training and testing machine learning models, whereas the 
anomaly subset was for testing purposes only.

• Physical devices = 8
• Virtual devices = 2
• Environmental conditions = 3
• Pre-processing techniques = 8
• Data streams (total) = 32
• Intra-device combinations = 626
• Data streams (unique sensors) = 14
• Inter-device combinations of unique sensors = 16383
• Machine learning techniques = 4

2.2  Data collection challenges

Some of the main challenges in data collection are:

• Time synchronisation, microcontrollers do not come 
with an internal time clock, making it tricky to keep data 
synchronised from different host devices, assuming the 
reporting time between each device is different.

• Handling heterogeneous data types, contexts and formats
• Low-resolution sensors, e.g., some generate integer val-

ues for reading instead of floating-point values, e.g., tem-
perature value 22 instead of 22.0–22.9.

• Some sensors generate arbitrary data, which is very dif-
ficult to detect and troubleshoot on edge.

• Dual channel sensors like temperature-humidity have 
sensing errors in either of the channels creating difficulty 
to troubleshoot on edge.

• Different communication mediums have different latency, 
which is also a challenge in time synchronisation.

https://gitlab.com/IOTGarage/cyphyradar
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• Communication modules provide limited access to the 
chip via AT Commands.

• Skipped or missed part of data at random times due to 
equipment malfunction, network connectivity, electric 
power or other issues.

2.3  Data cleaning and normalisation

We pre-processed the data sets before performing ML-asso-
ciated operations to save time and computational resources. 
There were various possible combinations of errors in data 
sets like null, non-numeric, or irrelevant values when captur-
ing data due to sensor malfunctions or ingestion processing. 
We removed all rows with null values, converted the date 
and time into a DataFrame supported format, changed the 
type data type of all other values to integer or float, and 
normalised data sets.

2.4  Data streams overview and analysis

Analysing all data streams, individually and jointly, is very 
important before applying operations. Analysis helps in 
getting a better understanding of data streams and helps 
in estimating which pre-processing technique with which 
type of model should be used to do further processing. The 
best way to visualise data streams is by graphs; we used 
interact-able graphs using Plotly-library to better understand 
the data streams from all sensors. We joined data streams 

from all devices to better understand the relations between 
each combination. Moreover, the Table 1 hosts details of 
all individual data streams with description, host device, 
MQTT topic, edge-processing technique (Process), mini-
mum value, maximum value, average, standard deviation 
(SD), and median absolute deviation (MAD).

2.4.1  Single data streams

Figure 2 hold visualization of some of the unique data 
streams. We structured sub-figures as a 1 × 2 matrix where 
the left side (1× ) graph shows all data and the right side 
(2× ) graph shows one-day activity. The left side graph of 
Fig. 2(A1) and (B1) that there is a sudden dip in tempera-
ture and increased humidity near the end of October 2020 
till the end of December 2020. We also observe that Air 
Quality is dropping abruptly at the same time. Though these 
events resulted from disconnection and/or power failure on 
the device, both were considered anomalous and kept in the 
data sets; we will discuss other aspects later in the paper. 
In Fig. 2(E2) and (F2), we observed that the 24 h trend of 
artificial light, and natural is identical except a few activi-
ties of artificial light can be found in the nighttime. The 
light sensor in the all-in-1 device, Fig. 2(H1) and (H2), share 
similar trends. It is noticeable that natural light trends are 
gradual compared to artificial light. We also noticed that 
activities related to Sound, Light, CO2 , infra, BLE devices 
and particulate concentration are stable and low-valued at 

Fig. 1  H1: passive InfraRed, H2: all-in-1 multi-sensor, H3: Sound4, H4: carbon dioxide, H5: infra-sound, H6: light, H7: sense-hat multi-sensor, 
H8: Sound3
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night time. Thus we decided to filter data sets based on day-
light conditions as well. We also observe a regular (not eve-
ryday) activity before the start of daylight time; this issue 
has consequences which will be discussed later in the paper.

2.4.2  Multi data streams

Analysing relations between different data streams is diffi-
cult, ineffective and time-consuming when done separately. 
So we visualised multiple data streams to analyse the rela-
tions demonstrated in Fig. 3. For example, in Fig. 3(A1), 
it can straightforwardly be noticed that the values of tem-
perature and humidity go opposite directions around the 
end of October 2020 till the end of December 2020. We 
can also notice the relation between natural and artificial 
light in Fig. 3(B1) and (B2). There are two possible types of 
multi-data streams in the given setup, intra-device and inter-
device. Visualising multiple data streams from one device 
is comparatively easy as there are a limited number of com-
binations. On the other hand, inter-device data stream com-
binations can be enormous, so we chose only (14) unique 
sensors’ data streams, see bold items in Table 1. We choose 
a couple of inter-device combination graphs for demonstra-
tion which can be seen in Fig. 3(C1) and (D1). Figure 3(D2) 
has a different situation plotted in which a fire alarm went 
off at night time and visited by a staff member to evaluate 
the situation, which triggered the light in the room as seen 
in the red circle. This activity is perfect to be considered a 
contextual anomaly. From the left side graph, we can see a 
regular activity of sound and light in the daytime. Later in 
this paper, we will evaluate ML models by considering two 
things (i) the regular activity detected as an anomaly, and 
(ii) the sound and light activity around 2100 h is considered 
an anomaly.

2.5  Data scaling and reduction techniques

The machine learns from the provided data instead of leg-
acy statistical or mathematical algorithms in the ML con-
text. It makes pre-processing of data sets an essential part 
of the process. Data standardisation is being largely prac-
tised for pre-processing data sets before performing ML. It 
drastically decreases the size of the input sample (in some 
cases) and time for a model generation compared to non-
scaled data. We adopted two techniques for standardisa-
tion, StandardScaler and MinMaxScaler. Standardisation 
techniques can only convert data into a certain range and 
can be reversed but can not reduce the dimensions of the 
input sample in the case of multivariate data. So, we used 
reduction techniques to convert multivariate data into uni-
variate. Reduction techniques help in reducing ML model 
generation time to a minimum. The resulting data sample 
from reduction techniques is computationally expensive 

Table 1  Data stream details
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to reverse. Which makes it hide properties of individual 
data streams or sensor values, e.g. value of temperature 
and humidity can only be known by the edge device but 

will be kept unknown by the fog or cloud device. Scal-
ing techniques are feasible on cloud/fog where a complete 
data set is available to evaluate a given ML model. We 

Fig. 2  Single data streams
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did not consider data scaling for ML models destined to 
run on edge devices (microcontrollers). We added another 
dimension to data sets after applying pre-processing tech-
niques to convert the data into time series, and the result-
ing sample was three-dimensional. We used two scaling 

techniques and five reduction techniques on the available 
data to evaluate the time difference for model generation. 
We experienced that scaling techniques take less time (a 
few microseconds) versus reduction techniques which 
takes 1500–2127 μ s to execute the process.

Fig. 3  Multi data streams
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2.5.1  Scaling techniques

We used the following data scaling techniques for this 
work. Standard Scaler calculate the mean and standard 
deviation of the input sample before applying Eq. 1. In 
Eq. 1 SSd is the standard scaler output sample of input 
sample d, u is equal to the mean of sample d and s is equal 
to the standard deviation of input sample d.

The resulting output sample has a mean = 0 and standard 
deviation = 1. We used the StandardScaler function from the 
sklearn library to perform this scaling operation.

MinMax Scaler is simpler than StandardScaler, there 
is no pre-calculation required as compared to Standard-
Scaler, and most frequently used for input sample stand-
ardisation. The output sample is in the range of 0–1. The 
corresponding output value of the minimum value in the 
sample will be 0, and the corresponding output value of 
the maximum value in the sample will be 1. These values 
are calculated using the Eq. 2. We used the MinMaxScaler 
function from the sklearn library to perform this scaling 
operation.

In Eq. 2 MMd is the MinMax scaler output sample of input 
d, d(min) is the minimum value in input sample d and 
d(max) is the maximum value in input sample d.

2.5.2  Reduction techniques

We used the following data reduction techniques for this 
paper.

Average is the sum of all values divided by the num-
ber of values resulting in a single value for each sample. 
Average can reflect the central tendency of multiple data 
streams while converting the input sample into univariate. 
Average requires the least processing resources as com-
pared to other pre-processing techniques. We used the 
average function from the NumPy library to execute this 
operation on the multi-variate input samples.

Standard deviation (SD) results in a univariate data stream 
that can reflect the spread of a multivariate input sample. It 
takes slightly more processing resources than average as the 
average input sample is a prerequisite for the SD equation 

(1)SSd =
(d − u)

s

(2)MMd =
(d − dmin)

(dmax − dmin)

(3)m̄ =
(
1

n

) n∑

i=1

xi

to be executed. We used the std function from the NumPy 
library to execute this operation on multi-variate input 
samples.

Median absolute deviation (MAD) calculates variability in 
the input sample, it is more computationally complex than 
SD because it is dependent on the median value of the input 
sample. MAD is more resilient in terms of outlier detec-
tion as compared to SD. We used the median_abs_deviation 
function from scipy.stats library for this operation.

Kurtosis (Ku) calculates the relative peakedness of an input 
sample, it requires both average and SD of the input sam-
ple thus the computational power requires is more than the 
previous techniques. We noticed that Ku is effective on 
larger data points in terms of influencing anomaly detec-
tion. We used stats.kurtosis function from scipy library for 
this operation.

Skewness (Skew) calculates the trends of the input sample, 
it can be a normal, negative or positive skewness value. 
Skew is the most computationally complex in our discussed 
techniques, it requires precomputed average and SD of the 
input sample. It is also effective on larger data points where 
a curve can be formed. We used stats.skew function from 
scipy library for this operation.

2.6  Data conversion to time series

We tried and compared different algorithms to convert 
series data in a time-series format, i.e. each row contains 
the number of future rows. In streaming data scenarios, 
anomalies are categorised based on data trends instead 
of points, e.g. the temperature in daytime hits 30 ◦ . In 
contrast, at night time, it remains below 18 ◦ . Consider-
ing a microcontroller without an internal clock can only 
be aware of the context be current values rather than time. 
The ML model shall be trained using a time-series-based 
input sample to achieve this functionally. Let us say the 
dimensions of the input sample are [Rows, data points], 
e.g. [36,484, 14], dimensions of the resulting sample 
become [Rows, Time Steps, data points], e.g. [36,484, 74, 

(4)𝜎 =

�∑n

i=1
(xi − x̄)2

n

(5)MAD = median(xi − x̄)

(6)K =
1

n

n∑

i=1

(xi − x̄)4

𝜎4

(7)Sk =
1

n

n∑

i=1

(xi − x̄)3

𝜎3
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14]. Let us say R represents data rows in the data set, T 
represents the number of required time-steps for each sam-
ple, X represents the use-able rows, and Y is the resulting 
time-series sample.

2.7  Anomaly detection techniques selection

We used the following anomaly detection techniques in 
this paper.

2.7.1  OneClassSVM (OSSVM)

Support vector machine (SVM) is one of the most com-
mon ML methods (Djenouri et al. 2019). SVM is primar-
ily used for classification (supervised ML) but can also 
be adopted for clustering (unsupervised ML). SVM is 
memory efficient, flexible, and suitable in high dimen-
sional spaces and even works with a smaller number of 
samples compared to dimensions. It has a sub-method, 
OneClass for outlier-detection, that tries to discover deci-
sion boundaries to achieve maximum distance between 
data points and source by using a clustering mechanism. 
The main idea behind OneClass was stalled because of 
its incompetence in finding outliers and determining non-
linear decision boundaries. However, with the introduction 
of soft margins and kernels, these issues were resolved 
(Amer et al. 2013). OneClass SVM splits all given data 
points from the source and amplifies the distance from 
this subspace to the source in the training phase. The 
function returns a binary output for each input row where 
+1 means smaller distance and −1 means larger distance 
where larger distance considers an anomaly (Schölkopf 
et al. 2000). It is widely used in various applications for 
both supervised and unsupervised learning methods. It is 
also heavily adopted in academia. An anomaly classifier 
using SVM was proposed (Araya et al. 2017) for detecting 
abnormal consumption behaviour. A method proposed by 
Ferdoash et al. (2015) to calculate excessive airflow in 
Heating Ventilation and Air Conditioning (HVAC) units 
in a large-scale Building Management System (BMS). 
They also calculated the pre-cooling start time for reach-
ing the required temperature using temperature sensors. 
Jakkula and Cook (2011) the proposes OneClass SVM for 
anomaly detection in smart home environments using pub-
licly available smart environment data sets. Himeur et al. 
(2021a) proposed a method to detect anomalous power 
consumption in buildings. OCSVM is highly effective on 

(8)
X ∈ {R0,R1,R2,… ,R − T}

Y ∈ {X + 1,X + 2,X + 3… ,X + T}

point anomalies and can be inferred on fog devices to be 
used in real-time environments.

2.7.2  Isolation forest (IF)

IF is one of the top-most used algorithms in the outlier 
detection domain because of its speed and simplicity. IF is 
based on ensemble learning. The idea behind IF is that ran-
domly developed decision trees can quickly isolate an outlier 
in the data set instead of detecting outliers using density or 
distance from other samples. Outliers are isolated because of 
the shorter path in the tree as they have fewer relations with 
other data points (Liu et al. 2008). In terms of functional 
performance in outlier detection, IF is the most popular algo-
rithm (Buschjager et al. 2020). We use the IsolationForest 
function from the SKLearn library to perform model genera-
tion. The function requires all samples as input and return 
a list of anomaly score for each sample. IF is also effective 
for point anomalies only. It is not suitable for fog devices in 
real-time scenarios as it requires a complete dataset.

2.7.3  CNN

In Deep Neural Networks (DNN), Convolutional Neural 
Network (CNN) is on the most wanted neural networks list. 
The name “Convolutional” comes from the matrixes-based 
linear operation. CNN models consist of multiple layers, 
e.g. max-pooling, fully-connected, and others (Albawi et al. 
2018). It brings significant improvement in computer vision 
(CV), Time series prediction and Natural Language Process-
ing (NLP). It covers a wide range of application scenarios by 
providing single and multidimensional layers, i.e. 1-D CNN, 
supporting Time Series Prediction and Signal Identification. 
2-D CNN enables Image Classification, Object Detection, 
Image Segmentation and Face Recognition and 3-D CNN, 
which helps in Human Action Recognition and Object Rec-
ognition/Detection (Li et al. 2021b). In contrast with other 
classification approaches, e.g. feature-based, CNN can find 
and learn relations and generate in-depth features from time-
series data streams automatically, e.g. speech recognition, 
ECG, price stocks, pattern recognition, rule discovery, and 
many more (Zhao et al. 2017). All platforms support CNN, 
i.e. Edge (microcontrollers), Fog (RaspberryPi, Mobile Plat-
forms) and Cloud (High-performance Linux, Windows or 
Other OSes). We implemented CNN by using TensorFlow 
API.

2.7.4  RNN

A recurrent Neural Network (RNN) is also a type of DNN, 
and it is designed with built-in memory, making it more 
suitable for time-series-based data streams. Another feature 
of RNN is that it can process information in bi-directional 
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instead of forwarding direction only. Typical RNN has a 
known issue of vanishing or exploding gradient, which 
affects its accuracy and overall performance. With the help 
of Long Short-Term Memory (LSTM) (Hochreiter and 
Schmidhuber 1997), which is designed with a memory cell 
to hold information over a period of time, this problem can 
be resolved. LSTM is complex but sophisticated, and has 
three gates input, output and forget. RNN models can pre-
dict the future value from time-based input compared with 
the data sample to calculate the loss. If the loss is greater 
than the threshold (pre-computed using the training sample), 
the data sample can be categorised as an anomaly. LSTM 
is widely used in various applications commonly based on 
time-series data. LSTM is available only on Fog and Cloud 
devices using the TensorFlow library. Anomaly detection in 
a time-series context is a significant application of LSTM.

3  Experimentation results

This section will discuss the results of different combina-
tions of data pre-processing and ML models. We tested 
selective TF models on all platforms (Cloud-Fog-Edge) 
and SKLearn models on Cloud and Fog only. SKLearn 
models predictions are binary (Anomaly = − 1, Normal = 
1) whereas TF models were based on future prediction, so 
the output was non-binary. Results for TF models were cal-
culated using a two steps process. First, we calculated the 
Mean Absolute Error (MAE) for the predicted loss method 
using Eq. 9 and threshold by using Eq. 10.

The equatrefeq:mae calculates the mean absolute error (aver-
age loss) of all input samples by calculating absolute loss 
for each sample, where n represents a number of samples, 
y represents predicted and x represents expected values of 
each sample.

Equation 10 dynamically calculates the threshold by calcu-
lating the standard deviation of MAE, multiplying it eight 
times and adding it with MAE. If the resulting loss of an 
input sample is greater than the threshold, the sample is con-
sidered anomalous.

3.1  Architectural configurations

As discussed previously, we are using four types of ML 
Models to train and test available data sets. These mod-
els are from two different APIs, Sci-kit Learn (SKLearn) 

(9)MAE =
1

n

n∑

t=1

|y − x|

(10)
Threshold = (8 × 𝜎(MAE)) +MAE

𝜎− > StandardDeviation

and TensorFlow (TF). SKLearn and RNN based models 
are available on Cloud and Fog platforms, whereas CNN 
is also deployable on edge devices. In this section, we will 
discuss the configurations of each algorithm. We configure 
the OCSVM model with 0.5 nu, “auto” gamma and “RBF” 
kernel parameters. We configure IF model for “auto” con-
tamination parameter. Early-Stopping to monitor loss with 
min_delta = 1e−2 and patience = 3 was configured for both 
CNN and RNN models. We converted the dataset for both 
NN models into 74-time steps. We also fixed 100 epochs 
(max), adam optimizer, and batch size to be 10 for both NN 
models. Our CNN model requires TensorFlow version 2.1.1 
and RNN on the 2.4.1 version. We configured CNN models 
with Conv1D layer, kernel size of 32, 5 filters and mean-
squared error for loss calculation. We used LSTM layers for 
RNN models with 32 neurons and mean-absolute-error for 
loss calculation.

3.2  Data streams’ configurations

We divided our data sets into two sub-datasets depending 
on daylight conditions, e.g., day time sub-dataset (DT) and 
night time sub-dataset (NT). We used unconditional data 
set (UC) for ML models as well. We implemented these 
scenarios on these two types of streams. Converting data-
sets into sub-datasets reduces the ML model generation time 
as well as inference time. It also supports (in some cases) 
the implementation of point-based anomaly detection, e.g. 
illumination. Events at nighttime can be detected with high 
accuracy and low computational resources if the ML model 
is trained using the NT sub-dataset. On the other hand, sub-
datasets are limited to specific circumstances only, e.g. if the 
buildings are designed to be illuminated 24x7.

i. Univariate (Single Data Streams): each data stream 
from all devices was used to train, test, and analyse mod-
els. Because these Data Streams were already uni-variate, 
reduction techniques were not applicable. ii. Multivariate 
(Multiple Data Stream): There can be enormous possible 
combinations between intra-device and inter-device data 
streams. Research has already been conducted about rela-
tions between physical channels like temperature-humidity 
with CO2Liu et al. (2017). Showing all possible combina-
tions of multi-data streams is overwhelming; thus, we have 
presented results of a few of these combinations and pre-
served all models and results stored for detailed analysis.

3.3  Results

3.3.1  Univariate vs multivariate

Reduction techniques returns univariate data so the model 
training time is identical for all number of data stream com-
binations. Total training time also depends on the number 
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of epochs executed before early stopping condition becomes 
true. Figure 4 shows model training times of scaled vs non-
scaled dataset, it can be observed that scaled dataset took 
more time for training in both CNN and RNN methods. 
It is also obvious to see that RNN CNN is efficient when 
compared to RNN. Due to limited knowledge of known 
anomalies in the dataset, it is difficult to determine overall 
efficiency of ML models.

3.3.2  Detecting anomalies using individual sensor data 
streams (univariate)

A comparison of temperature with edge-processed T data 
streams, which is atan (temperature), from the sense-hat 
device. We had 32 data streams, out of which 14 were from 
unique sensors, and 18 were associated streams. While 
comparing different sensor and associated data streams, 
we found that atan converted data streams required a lesser 
threshold value to find anomalies in novel data. The trans-
formed data streams were ineffective at certain stages where 
change suddenly fluctuated. As seen in circled in blue col-
our where anomalies are shown in orange dots in Fig. 5, a 

few anomalies found in T, all at a lower temperature, was 
not detected in the temperature model can be seen in green 
circles. When it comes to humidity, the edge-processed 
scaled data stream H was less sensitive as compared to the 
unprocessed data stream, as demonstrated in Fig. 6, the blue 
circles highlight the difference. Since we generated models 
for three environmental conditions, we found that the sum 
of anomalies found in two daylight condition-based data sets 
(dark=0, light=1) was equal to the number of anomalies 
found in the unconditional data set.

We also noticed that there is no difference in non-
scaled streams vs scaled streams in temperature and its 
associated data streams, e.g. T. Whereas other sensors and 
associated data streams show different results, e.g. a num-
ber of anomalies found original data stream of humidity 
sensor were noticeably different from StandardScaler but 
comparatively similar with MinMax. We observed that 
StandardScaler decreases sensitivity resulting in lesser 
anomalies as compared to the non-scaled data stream. It 
was also observed that MinMaxScaler increased sensitiv-
ity resulting in more anomalies. We found an obvious dif-
ference when comparing a number of anomalies in pres-
sure (P) and particulate concentration (M) data streams 
where StandardScaler results in drastically increased 
sensitivity, the number of anomalies are greater using 
a smaller threshold level. On the other hand, anomalies 
found in carbon dioxide (CO2 ) in scaled versions of data 
streams were fewer as compared to non-scaled data stream 
based models, which point toward a decrease in sensitiv-
ity. Another noticeable trend in the number of anomalies 
is that the sum of both conditional anomalies was mar-
ginally greater than the unconditional data set except for 
standard scaler based models. We found a unique trend 
in artificial sensor condition-based models. No anomalies 
were found in non-scaled and MinMax scaler models in 
conditional data sets, but standard scaled models found 

Fig. 4  Scaled vs non-scaled and RNN vs CNN model training times

Fig. 5  Temperature vs atan (temperature) comparison
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anomalies. Anomalies found in unconditional data set 
based models were similar to non-scaled and scaled mod-
els. Sound sensor-based models show an opposite reaction 
when it comes to anomalies; we found zero anomalies in 
UC and DT. Whereas NT based models found anomalies, 
non-scaled and MinMaxScaler models were pretty much 
similar. However, the StandardScaler model found more 
anomalies that represent increased sensitivity similar to 
previously discussed pressure and particulate concentra-
tion models.

3.3.3  Detecting anomalies using intra‑device (multivariate)

The total number of unique intra-device combinations of 
data streams was 626. We choose a few of them for analysis 
in this paper. We noticed that most of the data preprocessing 
techniques could find almost similar anomalies in the sense-
hat device (all data streams), except MinMaxScaler, which 
was extremely sensitive, and MAD was too insensitive. Kur-
tosis and Skewness were not effective. Zero anomalies were 
found when implemented on the temperature and humidity 
(Temp-Humidity) set. The behaviour of MinMaxScaler was 
the same in Temp-Humidity but turns regular when used on 
all other associated streams, i.e., T, P, H and HI (T-P-H-HI) 
MAD were also able to find the same contextual anomalies 
on this set. When looking at the results of all data streams 
in All-in-1, we found that MAD was most sensitive on UC 
and most insensitive on DT (zero anomalies). The average 
was not effective (a few anomalies detected) on NT and UC, 
whereas it could find the same contextual anomalies as other 
techniques. We noticed that temperature sensor readings 
were regularly dipping randomly and abruptly, which was 
one of the reasons for its influence over other data streams 
and thus on statistical outcomes. Looking at other models 

in all-in-1 devices, excluding temperature-related values, we 
found few anomalous activities.

3.3.4  Detecting anomalies using inter‑device multiple data 
streams (multivariate)

As discussed in an earlier section about the one known 
anomalous activity based on sound and light sensors’ data, 
we analyzed the particular activity to learn the effective-
ness of different algorithms and pre-processing techniques. 
We found that the CNN model with scaled, non-scaled and 
average sound and artificial values can spot the anomalous 
activity without spotting false positives (usual everyday 
activity). In contrast, RNN models were not successful in 
detecting the particular activity, as shown in Fig. 7. We also 
noticed that false positives were found in all models, along 
with detecting anomalous activity in the NT dataset. We 
also found that SKLearn based models overwhelmed false 
positives in all datasets.

3.3.5  Point, contextual, combined anomalies

Looking closely at Fig. 8, the two highlighted portions of the 
timeline of the temperature data stream from the sense-hat 
device. We observed at the end of April 2021 temperature 
sensor malfunctioned, resulting in an extreme increase to 
30 ◦ . Another event marked anomalous in highlighted point 
2 shows a sudden dip in temperature from 22.6 to 22.9 ◦ 
detected. While looking at historical data, both points are in 
the normal range, but this activity is considered anomalous 
in context. Figure 9 shows the combined activity of artificial 
light and sound for the week commencing on June 14, 2021. 
In the context, office activity started early, i.e. at 0530 h on 
Monday, Tuesday, and Thursday and was detected as anoma-
lous True Positive (TP). The office starts at 0700 h on Friday 
and Wednesday, as shown in the black circle. The Friday 

Fig. 6  Humidity vs percentage (humidity) comparison
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morning activity was detected as False Positive (FP). On the 
other hand, the Wednesday activity was accurately detected 
as True Negative (TN). In addition to day start activities, a 
TP anomaly was detected around 2100 h due to a response 
initiated as a result of a (separately operated) fire alarm.

4  Related work

There are some suggestions for supervised anomaly detec-
tion methods (Liu et al. 2015; Laptev et al. 2015). The 
results are promising, but labelled data is rare in the real 

Fig. 7  Sound & light known 
“anomalous activity” analysis

Fig. 8  1-Point anomaly vs 2-contextual anomaly in temperature data stream
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world. Perhaps unsupervised ML methods have become 
the focus of attention because of the excellent perfor-
mance and the flexibility provided (Li et al. 2021a). The 
scope of anomaly detection is not limited to specific areas. 
However, everywhere e.g., industry (Oh Dong and Yun Il 
2018), financial systems (Gran and Veiga 2010), health-
care and maintenance of spacecraft by detecting anoma-
lies (Gupta et al. 2014), cyber-physical system (Luo et al. 
2021), and smart buildings (Araya et al. 2016).

4.1  Anomaly detection techniques for IoT data

Research conducted by Microsoft (Ren et al. 2019) led to 
the development of an algorithm for detecting anomalies in 
time-series data using residual spectrum processing and con-
volutional neural networks (SR-CNN). However, they were 
mainly concerned about stationery and seasonal data, result-
ing in ineffective results on non-stationary data. Data from 
Surface-mounted audio sensors used with semi-supervised 
CNN auto-encoders (Oh Dong and Yun Il 2018) to detect 
faults in industrial machinery. A deep autoencoders based 
model has been proposed for detecting spectrum anomalies 
in wireless communications (Feng et al. 2017). The model 
developed in this work is to detect anomalies that may occur 
due to an abrupt change in the signal-to-noise ratio (SNR) 
of the monitored communications channel. In a critical 
infrastructure environment, if phasor data is manipulated, 
the control centres may take the wrong actions, negatively 

impacting power transmission reliability. To mitigate this 
threat (Yan and Yu 2015) proposed a deep autoencoder tech-
nique. Zhang et al. (2018) study uses data from a number 
of heterogeneous IIoT sensors, including temperature, pres-
sure, vibration, and others, to develop an RNN-LSTM based 
regression model to predict failures in pumps at a power sta-
tion. A new RNN-LSTM based method was developed (Hun-
dman et al. 2018) to detect anomalies in a massive amount of 
telemetry data from spacecraft. They also offered a method 
for evaluating that was non-parametric, dynamic, and unsu-
pervised. Another solution proposed (Wu et al. 2020) to 
detect anomalies in multi-seasonality time-series data using 
RNN-GRU also proposed a Local Trend Inconsistency met-
ric on top of their proposed anomaly detection algorithm. 
The authors of (Martí et al. 2015) proposed a combination 
of Yet Another Segmentation Algorithm (YASA) and One-
ClassSVM (OCSVM) in order to detect anomalous activities 
in turbomachines in the petroleum industry. The authors of 
(Aurino et al. 2014) used OCSVM to detect gunshots from 
audio signals. OCSVM grouped with DNN used to detect 
road traffic activities by Rovetta et al. (2020). Isolation For-
est (IF) was used to detect anomalies in smart audio sensors 
(Antonini et al. 2018). IF is also used, in combination with 
order-preserving hashing techniques, to detect anomalies by 
Xiang et al. (2020). Another novel approach proposed by 
Farzad and Gulliver T (2020) uses autoencoder based IF for 
log-based anomaly detection.

Fig. 9  Combined contextual anomalies in sound and artificial light data streams
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4.2  Environmental monitoring within buildings

In today’s world, human beings spend 90% of their time 
in built environments which includes residential, commer-
cial, education, as well as transport, i.e. vehicles, Brady 
(2021). Monitoring an indoor environment is different from 
industrial or mission-critical infrastructure, where normal 
activities are largely known because of the heterogene-
ous nature of activities. There are several environmental 
monitoring applications other than anomaly detection, e.g. 
Energy Monitoring, Comfort Level Monitoring. Environ-
ment monitoring is well researched. The heterogeneous 
nature of environments requires the selection of the suitable 
parameters, sensors technologies, communication mediums, 
placement and power arrangements. Major parameters in 
this domain are temperature, humidity, carbon emissions, 
illumination, airflow, and occupancy (Hayat et al. 2019). 
Air Quality (AQ) is becoming a critical matter. WHO 
reported that there are almost 7 million premature deaths 
are being caused by air pollution annually (WHO 2021). 
Authors of Saini et al. (2020) presented a survey of sys-
tem architectures used for Indoor Air Quality (IAQ) data 
collection as well as methods and applications for predic-
tion. Indoor environment quality plays an essential role in 
the health and well-being of human beings, Clements et al. 
(2019) presented a living lab to simulate real office spaces 
to support further research on environmental monitoring in 
the built environment. Occupancy monitoring is essential 
to determine air-conditioning and illumination requirements 
in buildings, Erickson et al. (2014) proposed a wireless sen-
sor network based occupancy model to be integrated with 
buildings conditioning systems. Based on two seasons of 
monitoring IAQ and thermal comforts in school building 
(Asif and Zeeshan 2020) recorded more than 50% increase 
in CO2 levels during class times. Thermal comfort has criti-
cal importance for the well-being and productivity of occu-
pants in indoor environments, Valinejadshoubi et al. (2021) 
proposed an integrated sensor-based thermal comport moni-
toring system for buildings which also provides the virtual 
visualization of thermal conditions in buildings. Authors 
of Nasaruddin et al. (2019) presented temperature and rela-
tive humidity monitoring solutions in high temperature and 
humid climate environments using well-calibrated thermal 
micro-climate devices and a single-board microcontroller.

4.3  Anomaly detection within buildings

Researchers propose a wide variety of methods for anomaly 
detection in buildings. The diversity of techniques reflects 
extensive work being done in this domain. Unsupervised 
learning has been used for fault detection and diagnostics in 
smart buildings. Authors of Capozzoli et al. (2015) proposed 
a simple technique based on unsupervised learning that can 

automatically detect anomalies in energy consumption based 
on the historically recorded data of active lighting power and 
total active power. They adopt statistical pattern recognition 
and ANN along-with other anomaly detection methods. A 
novel method, Strip, Bind, and Search (SBS), based on unsu-
pervised learning proposed by Fontugne et al. (2013) to help 
identify devices with anomalous behaviour by looking at 
inter-device relationships. The authors of Yizhe et al. (2021) 
also proposed a data mining based unsupervised learning 
technique to detect anomalies in HVAC systems; the pro-
posed work also performs dynamic energy performance 
evaluation. In the models proposed by Araya et al. (2017), 
overlapping sliding windows and ensemble anomaly detec-
tion were used to identify anomalies. The same authors also 
proposed a Collective Contextual Anomaly detection using 
similar techniques in their previous work (Araya et al. 2016). 
A Generalized Additive Model was proposed by Ploennigs 
et al. (2013) for diagnosing building problems based on the 
hierarchy of sub-meters. A Two-Step clustering algorithm 
based on unsupervised machine learning was proposed by 
Poh et al. (2020) to detect anomalous behaviour from physi-
cal access data of employees about their job profiles. In a 
distributed sensor network, an anomaly detection technique 
was proposed by Meyn et al. (2009) using semi-empirical 
Markov Models for time-series data. In a recent survey con-
ducted by Himeur et al. (2021b), the authors concluded that 
anomaly detection techniques could help in the reduction of 
energy consumption to benefit all stakeholders.

5  Lessons learnt and discussion

DIY based (single-board computers, microcontrollers, sen-
sors) IoT devices are widely available and becoming easy to 
deploy. These devices are micro-manageable and cost-effec-
tive, but it is a laborious job which leads to various chal-
lenges; while doing this research, we learnt the following 
lessons: (i) missing data due to run-time errors, (ii) threshold 
calculation, (iii) inter-device synchronisation, (iv) impor-
tance of “normal” dataset, (v) an overwhelming number of 
ML models, (vi) converting time-series data for unsuper-
vised ML processing and (vii) handling interactive graphs.

Missing data DIY devices are prone to configuration, 
deployment, and handling problems when used for capturing 
data on a long-term basis. There is no built-in notification 
system that can alert in case of any error; thus, the errors 
persist silently for an extended period, ultimately affect-
ing the dataset. During our data-capturing stage, we faced 
various scenarios where data collection stopped, e.g. device 
power outage, sensor malfunctions, communication errors, 
etc. thus; the data is missing during those time slots.

Threshold calculation Anomaly decision in time-series 
data using an unsupervised approach is based on loss and 
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threshold. The threshold is critical in the decision process 
and calculating the threshold for each configuration (data 
stream combinations with sub-datasets). A maximum loss 
value from a normal dataset (training dataset) can be used as 
a threshold; to achieve that, an utterly normal dataset (with-
out any capture-time errors) is required.

Inter-device synchronisation Due to multiple device set-
ups, there were synchronisation errors due to missed data 
in devices at different time slots. Data lost from any single 
device or frequency differences can result in synchronisation 
issues. This creates a unique challenge when combining data 
streams from inter-device. It is recommended to use a single 
host device for all sensors or create a master table with a sin-
gle timestamp at the ingester-end to keep data synchronised 
at capturing stage.

Importance of “normal” dataset For the above-learnt 
lessons, we observe the critical importance of a completely 
normal dataset, e.g. without run-time errors (communica-
tion, power, hardware).

An overwhelming number of ML models Due to the num-
ber of data streams, the number of combinations was in the 
thousands. The resulting ML models and associated results 
were overwhelming and difficult to observe and manage. 
A systematic approach needed to be adopted to handle the 
heterogeneous configuration of datasets, models, and results.

Converting time-series data for unsupervised ML pro-
cessing Time-series conversion of data sets using pandas 
data-frames is far more computationally expensive than 
using the NumPy library. It is wise to test and compare all 
available methods for each sub-task before starting mass 
processing. The result is the same for both methods.

Handling interactive graphs For unsupervised learning 
approaches for time series, analysing data using interac-
tive graphs is vital but requires extensive computational 
resources to load and interact graphs with multiple data 
streams.

6  Conclusion and future work

In this paper, we captured data streams from various in-situ 
sensors using different devices with a variety of configura-
tions. We were able to detect point, contextual and combined 
anomalies. We compared different ML methods combined 
with several data pre-processing techniques to better under-
stand how to efficiently detect anomalous activities in a 
smart building environment. We also evaluated the perfor-
mance of the conditional dataset (based on environmental 
conditions, e.g. daylight). We found that it can work better 
for detecting point anomalies as the activities are filtered for 
certain situations. A clean, anomaly-free dataset is required 
for model training for better results. Unconventional scal-
ing techniques, e.g., atan, can lower sensitivity for detection 

and an overhead during the data-capturing process; atan and 
other conversions can be performed in bulk at any later stage 
with reasonable computational resources. We explored rela-
tions between various sensors in finding anomalies in build-
ings. We also explored effective techniques to pre-process 
datasets to optimise ML models. We also introduced an 
inter-device data synchronisation technique to fill up missing 
time slots and trim time-series datasets when comparing dif-
ferent datasets. Threshold plays a vital role in reducing false 
positives and increasing true positives. A dynamic threshold 
calculation is essential to deal with the overwhelming con-
figuration of data streams. The day of the week can also be 
used as a context for anomaly detection in time-series data-
sets, but a large dataset is required for modelling. Availabil-
ity of a dataset with known anomalies will be an important 
step towards determining overall efficiency of ML models.
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