Canella: Privacy-Aware End-to-End Integrated IoT
Development Ecosystem

Atheer Aljeraisy Omer Rana Charith Perera
School of Computer Science and Informatics School of Computer Science School of Computer Science
Cardiff University Cardiff University Cardiff University
Cardiff, UK Cardiff, UK Cardiff, UK
Majmaah University, Saudi Arabia ranaof @cardiff.ac.uk PereraC @cardiff.ac.uk

aljeraisya@cardiff.ac.uk

Abstract—Applications for the Internet of Things (IoT) can
derive sensitive information about people, so developers must
protect users’ privacy in compliance with privacy and data
protection laws. However, developers face difficulties in ad-
dressing privacy issues as many applications exploit personal
data in a problematic manner. We present Canella, an inte-
grated IoT development ecosystem that is augmented with novel
privacy-preserving components for developing privacy-aware IoT
applications. Canella helps software developers meet privacy
requirements during the development phase and during rapid
prototyping, and it provides real-time feedback on potential
privacy concerns. Canella aims at assisting developers to (i) better
understand their code’s behavior, (ii) better overcome privacy
issues and comply with privacy and data protection laws, (iii)
reduce time to incorporate privacy into an IoT application, and
(iv) reduce the cognitive load of integrating privacy into an IoT
application. Thus, Canella can result in a significant improvement
in building privacy-aware IoT applications. (Demo Video)

Index Terms—Internet of Things, Privacy by Design, Software
Development, Data Protection, Privacy Law, Usable Privacy

I. INTRODUCTION AND MOTIVATION

Applications for the Internet of Things (IoT) can derive sen-
sitive information about individuals, so developers must ensure
that data is maintained in accordance with privacy and data
protection legislation. Nevertheless, developers still face many
difficulties in handling privacy issues, leading to numerous
applications exploiting sensitive data in a problematic way for
a number of reasons. First, it has been found that developers do
not treat privacy as a primary concern [1]. Second, developers
have a partial understanding of what should be considered to
protect users’ data [2]. Finally, developers lack knowledge of
their apps’ data practices, which makes it difficult to design
and implement effective privacy requirements [3].

Recent studies have revealed that developers face chal-
lenges when complying with privacy and data protection
laws when the regulations’ terms are ambiguous and it is
hard to understand and apply these legal requirements [4].
Due to this, it becomes important to transform these privacy
regulations into software requirements, a process known as
Privacy by Design (PbD) [5]. Several researchers have pro-
posed PbD principles, guidelines, strategies, and patterns to
assist developers in effectively integrating privacy-preserving
techniques into the development process [4]]. The General Data

Protection Regulation (GDPR) [4] assures the importance of
PbD and its applicability to all systems that process personal
data, a characteristic of IoT applications. However, most
guidelines are legal rather than technical. This makes them
unsuitable for application-building tools, disconnecting them
from developers’ practical environment. Hence, there is a need
to enrich existing developers’ tools with privacy-preserving
components. This will increase developers’ awareness of how
personal information is utilized and misused [4].

In this paper, we present Canella, an integrated IoT de-
velopment ecosystem. It is augmented with novel privacy-
preserving components that work together to help developers
build privacy-friendly end-to-end IoT applications. Canella
provides real-time feedback on potential privacy concerns and
recommends privacy-preserving components to be integrated
into IoT data flows. This can encourage developers to consider
the potential effects of their applications and the possibility of
using less risky options when dealing with personal data. As a
result, this can reduce developers’ cognitive load and the time
it takes to incorporate privacy into an IoT application.

II. Focus GROUP FOR REQUIREMENTS GATHERING

As the PbD schemes are the mechanism to comply with
privacy and data protection laws, Aljeraisy et al. have mapped
the elements of the PbD schemes with the principles and
individuals’ rights of their Combined Privacy Law Framework
(CPLF Thus, we conducted a focus group study with
novice developers to explore the applicability and feasibility of
designing and implementing these PbD schemes into different
IoT development environments, such as Arduino, Blockly, and
Node-RED, in a reusable manner. The participants were di-
vided into 25 groups, with three members in each group.

The results of the focus group study led us to design
and implement the privacy-preserving components of Canella
based on the PbD guidelines suggested by Perera et al.
[6]. This could refer to the clarity of the specifications of
these guidelines in comparison to other elements of the PbD
schemes as well as their context as they are specific to the
IoT domain. After analyzing all participants’ responses, we

IThe Combined Privacy Laws Framework refers to the selected privacy and
data protection laws analyzed in Aljeraisy et al.’s study [4].

https://iotgarage.net/projects/demos/AtheerPerCom2023Demo

excluded the guidelines that were not properly supported by
useful feedback. The resultant guidelines are shown in Figure
[[} Each guideline complies with one or more of the CPLF
principles. For example, a developer will follow the CPLF’s
Data Minimization principle when integrating Minimize Data
Storage into an IoT application. In this paper, we decided
to focus on the guidelines that are in line with the Data
Minimization principle of the CPLF as a starting point for
designing and implementing privacy-preserving components.
These are as follows: (1) Minimize Raw Data Intake; (2)
Minimize Data Storage; (3) Reduce Location Granularity; and
(4) Category-Based Aggregation.

Principles of the CPLF

Data Minimisation

o vy]

Guidelines of the PbD

1- Minimise Raw Data Intake 4- Reduce Location Granularity 7- Hidden Data Routing
— — —

2- Minimise Knowledge Discovery 5- Category Based Aggregation 8- Encrypted Data Communication
— — —

3- Minimise Data Storage 6- Time Period Based Aggregation
—

Fig. 1. The Relationship between Applying these PbD Guidelines and
Compliance with the Principles of the CPLF.

III. DESIGN AND IMPLEMENTATION OF CANELLA
A. Architecture of Canella

The architecture of Canella is based on the IoT architecture
in terms of how data moves through an IoT application.
Typically, data moves from sensing devices to gateway devices
and then to the cloud infrastructure. This pattern is usually
comprised of three components, which are edge nodes, fog
nodes, and cloud nodes, and these all have different computa-
tional capabilities. As shown in Figure [2] Canella utilizes two
widely used community IoT development tools:

Blockly—is an open-source library developed by Google
for adding block-based visual programming to an application.
The Blockly editor provides a user interface and a framework
to generate code using interlocking and graphical blocks [7].

Node-RED—is an open-source flow-based visual program-
ming development tool originally developed by IBM for
integrating hardware devices, APIs, and online services. It
provides a browser-based flow editor to (1) drag, drop, and
connect nodes in the pallets or (2) import JavaScript code [8].

Blockly@rduino ‘ £ Blocky

v
Generate ARDUINO Code

Edge Node

Cloud Node

..........

Fig. 2. Canella’s Architecture.

Figure 2] depicts Canella’s architecture, which particularly
utilizes Blockly @rduino [9]. It is a visual programming editor
based on Google’s Blockly that has been forked to generate
Arduino’s C/C++ code. The Blockly @rduino represents the
edge of an IoT application in Canella, using a microcontroller

(NodeMCU ESP8266). The Node-RED is the fog of an IoT
application in Canella that performs data processing and stor-
age. It is based on a single-board microcomputer with complex
computational capabilities (the Raspberry Pi). The Node-RED
can directly access data from sensors connected to an Arduino
board in several ways (e.g., via a serial port number or WiFi
using a protocol called MQTT). Then, the Node-RED sends
the analytical information to the cloud through WiFi using the
MQTT protocol for storage purposes.

Canella’s goal is to help developers handle privacy issues
on the edge and fog nodes of an IoT app to reduce privacy
risks before data is sent to the cloud node. As a result, we
created privacy blocks in Blocky @rduino and privacy nodes
in Node-RED (Figure [2). Together, these privacy-preserving
components help IoT developers meet privacy requirements
throughout the data lifecycle when building IoT applications.

B. Design and Implementation of Privacy Components

In this section, we demonstrate the design and implemen-
tation of the PbD guidelines. In particular, each privacy block
and privacy node corresponds to a specific PbD guideline that
is in line with CPLF principles. We define the shape of a
block, its field, and its connection points. Likewise, we specify
the node’s properties, edit dialog, and help text. To assist
developers in protecting personal data without compromising
the IoT application objective, we suggest different choices
for users’ data values. Privacy blocks and privacy nodes are
designed to be generic enough to be used in any IoT appli-
cation. Canella provides detailed information for developers
about the objective of each privacy block and privacy node.
In the same way, it supports information about compliance
with privacy and data protection laws on each privacy block
and privacy node to raise developers’ awareness of privacy
and data protection regulations.

Reduce Location Granularity: Granularity refers to the
level of detail represented by the data. High granularity
refers to detail at the atomic level, while low granularity
zooms out into a summary. The dissemination of location can
be considered coarse-grained, while the full address can be
considered fine-grained, which poses more privacy risks. The
Reduce Location Granularity performs reverse geocoding to
convert longitude and latitude into a human-readable address.
Accordingly, we designed its block and node to suggest to
developers three GPS coordinates for reducing location gran-
ularity to a postcode, city name, or country name, requiring
an API key to access the Google Maps API (Figure [3).

Minimize Raw Data Intake: IoT apps should convert raw
data into secondary context data to avoid privacy violations.
We designed the Minimize Raw Data Intake block to reduce
the amount of raw data it receives by taking the average of the
sensor data values over a specified period of time. Developers
can choose different types of data to minimize as well as
units of time (seconds, minutes, and hours) and are required
to input a number value for a selected time to calculate the
average of the data (Figure [3)). In Node-RED, however, it only
reduces the amount of raw data by calculating the average

of the sensor data values over the number of sensor data
values, as it receives data after the user completes a particular
workout. This guideline also advises building a platform that
actively discourages developers from accepting raw data. In
Canella, we apply this by developing warning messages in the
blocks that collect sensitive (e.g., heart rate) and personal (e.g.,
location) data in Blockly@rduino to encourage developers to
avoid accepting raw data into the application.
Category-Based Aggregation: This guideline suggests re-
ducing the granularity of the raw data. We designed the
category-based aggregation block and node to aggregate data
based on its average. It suggests different types of data for
developers to categorize, as well as different categories based
on the data type selected. For example, to categorize heart rate
data, the block and node suggest two categories: status (low,
normal, or high), or range (60-80 BPM) ((Figure [3).
Minimize Data Storage: This guideline suggests reducing
the amount of data stored by IoT applications. We designed
Minimize Data Storage to suggest different data types for de-
velopers to choose which data to delete (Figure [3)). Logically,
this block or node can be used once secondary contexts are
derived. This can be utilized when another privacy-preserving
component is added to an IoT application’s data flow.
Privacy Law Validator: A Privacy Law Validator
node recognizes data practices when sending data from
Blockly@rduino to Node-RED. It checks the compliance
status of the received data. Three data statuses are displayed:
(1) a red circle, indicating a privacy issue (the format of the
received data does not comply with privacy and data protection

laws); (2) a yellow circle, indicating partial compliance E]

with privacy and data protection laws; and (3) a green circle,
indicating compliance with privacy and data protection laws.

IV. DEMONSTRATION

To demonstrate Canella, we present a fictional use case for
a Fitness-Tracking IoT application. It is a helpful system that
enables trainees to track their activities easily. It also assists
trainers in monitoring trainees’ progress and encouraging them
for their wellbeing and safety.=== Figure [3| demonstrates the
system’s components: a wristband (with GPS and a heart rate
monitor), a trainer server where trainees are registered to moni-
tor their activities, and a cloud that is managed by a third party.
Developing such an application requires privacy compliance.
The challenge for developers is to integrate privacy-preserving
techniques into the data flow of an IoT application during the
development phase, which Canella might facilitate.

This demo will show the running Canella (Demo Video). To
illustrate how Canella works, we built custom blocks for build-
ing the Fitness-Tracking IoT application in Blockly @rduino.
In Node-RED, we have created a dashboard to allow trainers
to track their trainees. The demo will go through the archi-
tecture of Canella, presenting the used hardware components,
Blockly @rduino, and Node-RED. We will show how to use
Blockly @rduino to create a Fitness-Tracking IoT application.

2Partial compliance means that there is a chance to add an extra layer of
privacy-preserving techniques to the received data.

Privacy Blocks

Minimize Raw Data Intake E7T0K3
e LR 5 | Seconds -]

Onceauser icular activity, sentto

-7 lhe Ulvner! sen
- 6 . the analyze

trainees' progress toward their health goals.
tothe cloud.

Privacy Nodes
(A ‘9/
- % 0N ey i e
N e QR =
inize Dt Sirage (2 | .
o e ‘Category Based Aggregation
e I T | N 5
‘798&’66,, R
Moo, P s
ey
. a

wristband includes.

The wrist aheart rate monitor along with a GPS tracker.
r data during wovkouﬁ
Heart te and
cllculned active calores.
Tracker:track therainee'slocation and return the date, the Theclouauoveuaneenmavor
time,

e

Fig. 3. Integrate Privacy Blocks and Privacy Nodes into the Data Flow for
the Fitness-Tracking IoT Application During the Development Phase.
We will also demonstrate the real-time warning messages that
we developed in the blocks that collect personal or sensitive
data to notify developers about potential privacy issues. In
addition, we will present the privacy blocks that we created
in Blockly@rduino and how they could be added to the data
flow before the data is stored in Blockly@rduino or sent
to Node-RED. Then, we will show the interactivity between
Blockly@rduino and Node-RED. Following that, we will
present the privacy nodes that we have created in Node-RED
as well as their edit dialogues. Furthermore, we will present
the Privacy Law Validator node that could be used to check
the compliance status of the received data with privacy and
data protection laws. Finally, we will illustrate two examples
of how to integrate the privacy nodes into the received data
before the data is stored in Node-RED and sent to the cloud.
For instance, based on the use case, the exact location where
athletes may have performed the activity is not necessary.
Therefore, developers need to pick up the Reduce Location
Granularity block to reduce location granularity from latitude
and longitude to a postcode before sending the location to
Node-RED. Once Node-RED receives the data, developers
should integrate the Reduce Location Granularity node into the
data flow to reduce the location granularity from a postcode to
a city name before sending the data to the cloud. By doing so,
the user’s data is protected, and the objective of the Fitness-
Tracking IoT application is not affected.

REFERENCES

[1] R. Balebako and L. Cranor, “Improving app privacy: Nudging app
developers to protect user privacy,” IEEE Security and Privacy, vol. 12,
no. 4, pp. 55-58, 2014.

[2] 1. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and
A. Balissa, “Privacy by designers: software developers’ privacy mindset,”
Empirical Software Engineering, vol. 23, no. 1, pp. 259-289, 2018.

[3] R.Balebako, A. Marsh, J. Lin, J. Hong, and L. Faith Cranor, “The Privacy

and Security Behaviors of Smartphone App Developers,” In Proceedings

2014 Workshop on Usable Security, 2014.

A. Aljeraisy, M. Barati, O. Rana, and C. Perera, “Privacy laws and privacy

by design schemes for the internet of things: A developer’s perspective,”

ACM Comput. Surv., vol. 54, no. 5, may 2021.

[5] A. Cavoukian, “Privacy by Design,” Identity in the Information Society,
vol. 3, no. 2, pp. 1-12, 2010.

[6] C. Perera, M. Barhamgi, A. K. Bandara, M. Ajmal, B. Price, and
B. Nuseibeh, “Designing privacy-aware internet of things applications,”
Information Sciences, vol. 512, pp. 238-257, 2020.

[7]1 “Blockly.” [Online]. Available: https://developers.google.com/blockly

[8] “Node-RED.” [Online]. Available: jhttps://nodered.org/

[9] “Blockly @rduino: Create Code with Blocks.” [On-
line]. Available: https://create.arduino.cc/projecthub/libreduc/
blockly-rduino-create-code-with-blocks-b6d3e4

[4

=

https://iotgarage.net/projects/demos/AtheerPerCom2023Demo
https://developers.google.com/blockly
https://nodered.org/
https://create.arduino.cc/projecthub/libreduc/blockly-rduino-create-code-with-blocks-b6d3e4
https://create.arduino.cc/projecthub/libreduc/blockly-rduino-create-code-with-blocks-b6d3e4

	Introduction and Motivation
	Focus Group for Requirements Gathering
	Design and Implementation of Canella
	Architecture of Canella
	Design and Implementation of Privacy Components

	Demonstration
	References

