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Abstract

The need to effectively analyse high dimensional data is increasingly crucial to many

fields as data collection and storage capabilities continue to grow. Working with high

dimensional data is fraught with difficulties, making many data analysis methods inadvis-

able, unstable or entirely unavailable.

The Mahalanobis distance and data whitening are two methods that are integral to multi-

variate data analysis. These methods are reliant on the inverse of the covariance matrix,

which is often non-existent or unstable in high dimensions. The methods that are cur-

rently used to circumvent singularity in the covariance matrix often impose structural

assumptions on the data, which are not always appropriate or known.

In this thesis, three novel methods are proposed. Two of these methods are distance mea-

sures which measure the proximity of a point x to a set of points X. The simplicial dis-

tances find the average volume of all k-dimensional simplices between x and vertices of X.

The minimal-variance distances aim to minimize the variance of the distances produced,

while adhering to a constraint ensuring similar behaviour to the Mahalanobis distance.

Finally, the minimal-variance whitening method is detailed. This is a method of data

whitening, and is constructed by minimizing the total variation of the transformed data

subject to a constraint.

All of these novel methods are shown to behave similarly to the Mahalanobis distances

and data whitening methods that are used for full-rank data. Furthermore, unlike the meth-

ods that rely on the inverse covariance matrix, these new methods are well-defined for

degenerate data and do not impose structural assumptions. This thesis explores the aims,

constructions and limitations of these new methods, and offers many empirical examples

and comparisons of their performances when used with high dimensional data.
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Chapter 1

Introduction

The ability to analyse and make sense of large amounts of data is fundamental to modern

decision making processes. Data analysis is an umbrella term that can refer to any method

of learning from data. This can range from simple investigations of data, such as the

production of summary statistics, through to more advanced techniques often referred

to as ‘machine learning’. These methodologies are used in all manner of applications,

including business intelligence [139], healthcare [230], security [52], insurance [40] and

education [211], to name a few.

Many data analysis methods are reliant on measures of similarity between ‘observations’

in a dataset. A simple example of this could be measuring how similar different people

(‘observations’) are based on some known properties (‘variables’) about them, such as

their height, weight and age. There are many measures of similarity that are used in data

analysis; in the case of numerical data these are referred to as ‘distance measures’.

The rapid advancement of technology over the last few decades has seen exponential

growth in computational power, computing efficiency and computer storage [200]. The

ability to collect an abundance of data is therefore accessible to anyone. This may be in

the form of ‘big data’, which is often used to refer to a lot of observations within a dataset

[97], or high dimensional data, which refers to a large amount of variables in a dataset

[124], or both simultaneously.

This thesis considers high dimensional data analysis methods. The ability to measure dis-

tance in high dimensional data is known to be problematic, which can in turn render many

1
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data analysis methods unavailable. The research presented in this thesis addresses some

of the issues found in measuring distances within high dimensional data, and proposes

new methodology to be used. Furthermore, methods of pre-processing data for analysis

can suffer from similar issues in high dimensional spaces, and so alternative techniques

are suggested.

The rest of this chapter is organised as follows. Section 1.1 gives a brief summary of the

motivation and aims of the research disseminated in this thesis. Section 1.2 details the

structure of the thesis, and provides a short summary of each chapter that follows.

1.1 Thesis Objective

In multivariate data analysis, the Mahalanobis distance is often relied upon to measure

proximity between observations in a dataset. The Mahalanobis distance transforms the

data into a space where variables are uncorrelated and have unit variance. This removes

the interference caused by interactions between the variables and accounts for issues

caused by variables of differing scales. The Mahalanobis distance uses the inverse co-

variance matrix to perform such a transformation. However, in correlated data (where the

distance measure is most useful), the covariance matrix is often singular, rendering the

Mahalanobis distance unusable. The covariance matrix is also known to be singular in

cases where the number of observations is less than the number of variables.

The method of data whitening is also relied upon heavily in multivariate data analysis as

a pre-processing technique. Data whitening again transforms a dataset to a space with

uncorrelated variables of unit variance, where further analysis can then be performed.

The most common methods of whitening are also reliant on the inverse covariance matrix

(specifically, the square root of the inverse covariance matrix), which is unavailable in

correlated and (most) high dimensional data.

The objective of this thesis is to provide alternative methods that can account for correla-

tions and varying scales in the same way that Mahalanobis distances and data whitening

do, but that are available in the case of a singular covariance matrix. Two distance mea-

sures are proposed for this purpose, and one method of data whitening is given. An

overview of these methods will be given in the next section.
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1.2 Thesis Structure and Overview

This thesis contains six chapters, the first of which is this introductory chapter. An

overview of the following chapters is given below.

• Chapter 2 provides a literature review on topics relevant to the research in this

thesis. An introduction to distances measures is given, including the Mahalanobis

distance which motivates much of the research performed in the rest of the thesis.

The concept of data whitening is also outlined. A summary of some of the issues

found in high dimensional data analysis is given, with specific focus on distance

measures. Finally, an evaluation of estimators for the covariance matrix and its

inverse is given, as such estimators are often used in Mahalanobis distances and

data whitening methods.

• Chapter 3 discusses the simplicial distances, a multivariate distance measure first

introduced in [192] and later built upon in [85] and this thesis. The metric uses the

volumes of simplices to measure proximity, and can be tuned using parameters as

to not suffer with degeneracy in the way that the Mahalanobis distance does.

• Chapter 4 introduces the minimal-variance distances, which were introduced in

[85], having been inspired by trends seen when performing parameter experiments

with the simplicial distances. This distance measure is found using an optimization

function to minimize the variances of the distances produced, which helps to re-

move correlations in a dataset. A constraint is imposed to ensure similar behaviour

to the Mahalanobis distance, should it exist.

• Chapter 5 further proposes the concept of minimal-variance whitening, having first

been introduced in [84]. This method aims to transform a multivariate dataset to

have variables with unit variance and no correlations between one another. This is

again achieved using a constrained optimization method, and is usable in the case

of degeneracy, unlike many popular methods of data whitening.

• Chapter 6 gives a summary of the research in this thesis and details future work that

could be performed to build upon this work.
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Chapter 2

Literature Review

This chapter aims to give an overview of the methods that have motivated the research

detailed in this thesis. An introduction to several distance measures is given, as well as

the reasons for their downfalls in high dimensional spaces. A similar analysis is then pro-

vided regarding data whitening methods for high dimensional data. Both of these topics

suffer from the so-called ‘curse of dimensionality’, a term which encompasses the coun-

terintuitive behaviour of data and data analysis methods in high dimensional spaces. A

review of techniques proposed in the literature to evade this issue is given, with particular

focus on the estimation of the covariance and inverse covariance matrix. The benefits

and drawbacks of such techniques are also discussed. Overall, this literature review aims

to illustrate the issues with distance measures and data whitening in high dimensional

spaces, and motivates the need for the development of further methods to overcome such

issues.

2.1 Introduction

High dimensional data is defined to be data with a large number of variables, where the

definition of ‘large’ is dependent on the application, field and number of observations. The

ubiquity of high dimensional data can be attributed to the continuous development of data

collection and storage resources, as well as an ever increasing amount of computational

power [200]. Typical examples of high dimensional datasets include microarray gene

expression datasets [27, 90], where thousands of genes (variables) can be collected but

5
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the number of tissue samples (observations) may only be in the range of tens. Financial

datasets are also often high dimensional, as the number of features or returns per stock

can be much higher than the number of stocks themselves [16]. Many other fields of

research are now reliant on methods to deal with high dimensional data, including medical

imaging [252], chemometrics [78], text classification [181] and astronomy [119], to name

a few.

Classical statistical and data analysis methods often assume that the number of obser-

vations in a dataset is far greater than the number of variables [124], meaning there is

enough information to accurately estimate the properties of the dataset. If the number of

variables (or the dimensionality) of the dataset is similar to or greater than the number

of observations, many of these classical methods are either incomputable (for example,

simple linear regression [124]) or produce unreliable and sometimes nonsensical results

[8]. The need for methodology to deal with high dimensional data has therefore rapidly

increased as the presence of such data continues to grow.

Many multivariate data analysis methods are reliant on the ability to measure the proxim-

ity from one observation to another, including classification, clustering and outlier detec-

tion methods. The ℓp distances include the Euclidean and Manhattan distances, and are

the most commonly applied distance measures in Euclidean space. The Mahalanobis dis-

tance is constructed specifically for multivariate datasets, and can account for correlations

and variations in the scale of variables, the presence of which can often be problematic

for ℓp distances.

Multivariate data analysis often requires that the data has been ‘pre-processed’ before be-

ing analyzed. Pre-processing is a broad term that covers many transformations of data,

including dealing with missing variables or editing mistakes in data entries. Data whiten-

ing is a common pre-processing step which removes correlations between variables and

standardizes all variables to have mean zero and unit variance. This can help to simplify

many multivariate data analysis methods [130] and has been shown to improve the output

of machine learning algorithms [112].

The Mahalanobis distance and data whitening are two of many data science techniques

that are reliant on the inverse of the covariance matrix. The covariance matrix describes

the spread of variables in a dataset, as well as how the variables interact with one another.
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In low dimensional applications, the covariance matrix of a dataset is well estimated by

the sample covariance matrix. However, this is often not the case when the dimensionality

of the dataset grows [23]. Even if the sample covariance matrix is a good estimator, the

inversion of a high dimensional covariance matrix can be extremely costly. It is common

for the sample covariance matrix to be singular in high dimensions [235], caused by highly

correlated variables or the presence of more variables than observations. In such cases,

methods that are reliant on the inverse covariance matrix are unavailable. To overcome

this, many estimators for the covariance matrix and its inverse have been produced for

specific use with high dimensional data.

This literature review is structured as follows. In Section 2.2 some multivariate distance

measures are defined, with a focus on the ℓp distances and the Mahalanobis distance.

Section 2.3 outlines the method and applications of whitening a multivariate dataset.

Section 2.4 delves further into the issues that arise from working with high dimensional

datasets, including the counterintuitive nature of high dimensional geometry and the im-

pact this has on measures of proximity between high dimensional objects. Finally, Sec-

tion 2.5 details the reliance on the covariance matrix and its inverse in multivariate analy-

sis, and gives a summary of methods to estimate these matrices in high dimensions.

2.2 Distance measures

A distance measure is a function that outputs a measure of proximity between two objects.

In many contexts, these objects will be points within a set. Let x, y, z ∈ X be three points

in a set of points X. A function f : X×X→R is called a distance measure if the following

three axioms hold:

1. f (x,y) = 0⇔ x = y,

2. f (x,y) = f (y, x),

3. f (x,z) ≤ f (x,y)+ f (y,z) (triangle inequality).

Many multivariate data analysis methods are reliant on the ability to accurately measure

the distances between observations in a dataset. Examples of methods that depend on

distance measures include the following:
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• The K-means clustering algorithm [160] is an unsupervised learning algorithm that

seeks to partition data into K groups, known as clusters. K clusters are formed using

an initialization method [53], and the proximity from every point in the dataset is

measured to the mean of each cluster using the squared Euclidean distance. Each

point is then assigned to its closest cluster. The clusters are re-evalutated, the means

of the new clusters are calculated, and the algorithm repeats until the means of

each cluster converge (i.e. the means do not change with each new iteration). See

Algorithm 1 in Chapter 3 for an algorithmic representation, or [7, 120, 221] for

references on the method.

• The K-nearest neighbours (K-NN) algorithm [13, 80] is a supervised learning method

used to classify observations. As the algorithm is a supervised method, the observa-

tions in the dataset must have pre-assigned class labels. The algorithm is then used

to find the class labels of any new unlabelled observation, called the query point.

The proximities from the query point to all other points in the dataset are calculated

(usually using the Euclidean distance), and the points that return the K smallest

distances are called the K nearest neighbours of the query point. The label of the

query point is then taken to be the mode of the labels of the K nearest neighbours.

For more information, see [3, 228].

• Several outlier detection methods are reliant on measuring the proximity of points

to the rest of the dataset. Examples include K-NN based methods [17, 195] and

other density based methods, such as DBSCAN [72] and Local Outlier Factor [43].

The distance measure chosen in such applications can have an influential effect on the

outcome of the method [3, 212], and so making an informed and appropriate choice is

integral to the success of data analysis methods.

2.2.1 ℓp distances

Many multivariate data analysis methods use the Euclidean distance by default to mea-

sure the distance between two points in Euclidean space. For points x = (x1, . . . , xd) ,

y = (y1, . . . ,yd) ∈ Rd, the Euclidean distance is defined as

DE(x,y) =

√√√ d∑
i=1

(xi− yi)2.
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The Euclidean distance is a specific case of the so-called ℓp distances, which are defined

as

Dp(x,y) =

 d∑
i=1

|xi− yi|
p


1/p

for a given parameter p. The Euclidean distance uses p = 2. Other common distances of

this form include the Manhattan distance, which uses p = 1, and the ℓ∞ distance which

returns the maximum difference between two coordinates of x and y. Fractional ℓp metrics

use a parameter 0 < p < 1, but these are not well defined distance measures as they do not

satisfy the triangle inequality [135].

The ℓp distances work well for relatively low dimensional datasets, where the dimensions

within the dataset are roughly on the same scale. However, if variables are measured on

different scales, or if there are correlations between the variables, the Euclidean distance

(and other ℓp distances) can produce some misleading results. As an example, consider

Figure 2.1a, which shows the plot of 300 observations generated from a 2-dimensional

Gaussian distribution with covariance matrix Σ =
(

5 8
8 10

)
. The mean of this set of points is

shown by the red cross. Two new points are added to the dataset, shown by the orange

diamond and green square. If one of these points were to be identified as an outlier

by eye, the green square would be the obvious choice. However, using the Euclidean

distance to measure the distance from the mean of the dataset to the orange diamond

gives a distance of 14.89, and the distance to the green square is 8.03. Therefore, using

the Euclidean distance, the orange diamond would be labelled as the outlier before the

green square.

This downfall of the Euclidean distance (and other ℓp distances) is due to the fact it only

accounts for the two points being measured, and does not take the distribution of any

wider data into consideration. If data is high dimensional or more complex than the data

given in Figure 2.1a, the need for a reliable distance measure is imperative.

2.2.2 Mahalanobis distance

The Mahalanobis distance was first introduced by P.C. Mahalanobis in 1936 [163]. Let

X ∈ Rd×N be a set of d-dimensional points with empirical mean vector µ ∈ Rd and empir-

ical covariance matrix Σ. The Mahalanobis distance from a point x ∈ Rd to the set X is
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Figure 2.1: (a) A set of 300 points generated from a Gaussian distribution with correla-

tions (blue points), with empirical mean shown by the red cross. Two further points have

been added (orange diamond and green square). (b) The same dataset after being decor-

related and standardized by Mahalanobis whitening.

defined as follows:

DM (x,X) =
√

(x−µ)⊤Σ−1 (x−µ). (2.1)

This can also be viewed as the distance from x to the point µ with respect to the set X.

The distance measure is therefore not limited to finding distances between points and

distributions; the point µ can be replaced in Equation (2.1) by another point y ∈ Rd to

find the Mahalanobis distance between x and y with respect to the set X. If the set X has

covariance matrix Σ = I, where I is the d-dimensional identity matrix, the Mahalanobis

distance reduces to the Euclidean distance.

By using the inverse of the covariance matrix, the Mahalanobis distance removes correla-

tions in the data and scales every variable to have unit variance. This transforms the data

from its elliptical shape, like the data in Figure 2.1a, to have a spherical shape, as seen in

Figure 2.1b. The Euclidean distance is then used to find the distances in the transformed

space. Using the example in Figure 2.1, the Mahalanobis distance from the mean of the

blue points to the orange diamond is 4.18, and is 8.29 to the green square, meaning the

green square would be labelled as the outlier as hoped.

The Mahalanobis distance is clearly an extremely valuable measure in multivariate data
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analysis, and has many applications including cluster analysis [87, 260], outlier detection

[193], text classification [218], Bayesian inference [10, 67] and image processing [187,

269]. A wide range of fields benefit from implementing the Mahalanobis distance, with

applications in finance [55, 224], ecology [73], genetics [165, 178] and other medical

fields [58, 225], to name a few.

The main attraction of the Mahalanobis distance is its ability to intuitively measure dis-

tances in elliptically-distributed data. Data is elliptically distributed when correlations

are present in the data, meaning the Mahalanobis distance is particularly relied upon in

such settings. However, correlations in a dataset are often the cause of singularity (or

near-singularity) in the covariance matrix, meaning the inverse of the covariance matrix

is either nonexistent or unstable. Therefore, in the cases where the Mahalanobis distance

is needed the most, it is often unavailable. The covariance matrix of a dataset is also

singular when the number of variables is greater than the number of observations, as is

common in many modern datasets. In such circumstances, it is common to use the Moore-

Penrose pseudoinverse of the covariance matrix, or find some alternative way to compute

the covariance matrix. Both of these methods will be discussed in due course.

2.3 Data whitening

Data whitening is a method of transforming a dataset to have decorrelated and standard-

ized variables. Fully decorrelated data possesses a diagonal covariance matrix, and stan-

dardized data has unit variance for each variable [107]. In the case of non-degenerate

data, the covariance matrix of a whitened dataset is the identity matrix. By removing

the elliptic structure of the data through such whitening transformations, more interest-

ing and complex structures can be uncovered that may have previously been hidden in

correlations, such as clusters, outliers or sparsity [115, 156]. Furthermore, the orthog-

onality of whitened variables can improve the computational time and performance of

many statistical and machine learning methods [112, 133, 145, 249, 275].

Several methods of whitening are outlined in [130], including methods that are scale-

invariant and methods aimed at improving dimension reduction. The most commonly

used whitening technique is Mahalanobis whitening. Let X, Σ and µ be defined as in
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Section 2.2.2. The dataset X is transformed by Mahalanobis whitening as follows:

XΣ−1/2 = Σ
−1/2(X−µ).

This method is popularly used to whiten data before performing many classical multivari-

ate analysis processes. The transformed data XΣ−1/2 has zero-valued mean and the d× d

identity matrix I as the covariance matrix.

The success of Mahalanobis whitening depends on the ability to compute Σ−1/2 in a way

that is both accurate and stable. However, it is common for big, high dimensional data

to be close to degeneracy or of low-rank [235], yielding unstable computations of Σ−1/2.

Numerous examples of this problem are observed in fields such as recommender systems

[155, 273], finance [22], medicine [206], genomics [255], and social networks [157].

These issues also arise in generalized mixture models [261], multiple regression [99, 104],

adaptive algorithms [24], and linear discriminant analysis [265]. This is because variables

often possess (approximate) linear dependencies, resulting in a covariance matrix Σ that

is singular, or very close to singularity. As such, the inverse of the covariance matrix

does not exist, or is at least unstable, making it inadvisable or impossible to calculate

Σ−1/2.

Despite this, it has been demonstrated that applying a whitening transformation prior

to data analysis methods, such as clustering [268], dimension reduction [209] or out-

lier detection [93], often results in better empirical results. Theoretically, Mahalanobis

whitening underpins weighted least squares [207], PCA [116, 125], canonical correlation

analysis [96] and most of the array of classic multivariate statistics methods [156, 166].

Crucially, decorrelated and standardized data greatly simplifies both theoretical and prac-

tical multivariate data analysis [6, 14, 54, 169, 231, 262].

Recent literature has shown that whitening can also be used to improve the training of

neural networks [111]. Often, normalization is used in such training rather than whiten-

ing, due to ill-conditioned problems [161] and the great expense of computing a large

inverse square root covariance matrix [118], despite whitening being preferable if it is

possible [112].

As with the Mahalanobis distance discussed in Section 2.2.2, many methods attempt to

circumvent the aforementioned problems by use of the square root of the Moore-Penrose
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pseudoinverse Σ− to Σ or some other estimator for the covariance matrix. Section 2.5 will

discuss these estimators in more detail.

2.4 High dimensional data

As previously mentioned, many data analysis processes assume that the number of ob-

servations in a dataset is much greater than the number of variables. Classical theoretical

results, such as the law of large numbers and the central limit theorem, are reliant on this

assumption [124]. However, the advancements in data collection, storage capabilities and

computational power over the last few decades have given rise to new formats of data that

may not satisfy this assumption. It is commonly agreed that high dimensional data is de-

fined to be a collection of observations with a large number of variables (or dimensions).

Despite this, there is not an explicit definition of how many variables this is, or how it re-

lates to the number of observations. Let d be the number of dimensions, and let N be the

number of observations in a dataset. A few of the varied definitions of high dimensional

data are as follows:

• Data with more than 3 variables [153],

• Data with more than 10 variables [20],

• Data with d ≥ N [217],

• Data with d much larger than N (often orders of magnitude larger) [44].

There are many other definitions available throughout the literature [245, 247]. High

dimensional data, no matter the precise definition used, brings with it phenomena and

complications that are not present in low dimensional spaces. For dimensions as low as

d = 5, the geometry of Euclidean space begins to behave counterintuitively, as will be

discussed in Section 2.4.1.

The ‘curse of dimensionality’ is a term coined by Richard E. Bellman [28] that is often

used to encompass the issues caused by working in high dimensional spaces that are not

present in three-or-lower dimensional spaces. These issues span many fields, including

optimization [190], data mining [238] and machine learning models [30, 63]. The specific

issues relating to distance measures will be covered in Section 2.4.2.
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2.4.1 High dimensional geometry

High dimensional space is characterised by geometrical properties that are very different

to the properties of two and three dimensional spaces. Some examples of these counter-

intuitive properties are given below:

• Most of the volume of a high dimensional object is located near the surface of the

object [38]. For example, in the unit hypersphere in d dimensions (for large d),

most of the volume is located in a small annulus near the edge of the sphere. This

implies that most points will have close-to-unit length, see [238] for more intuition

on this.

• Most of the volume of the high dimensional unit hypersphere is also concentrated

near its ‘equator’, for any equator chosen [38]. Therefore, for two random points

generated on the d-dimensional unit hypersphere, there is a high probability that

the two points are orthogonal (or nearly orthogonal). This can be generalized to N

points, where there is high probability that the N points will be pairwise orthogonal

[91].

• Let Sd,r be the d-dimensional hypersphere with radius r. As d→∞, Vol(Sd,1)→ 0;

that is, the volume of the d-dimensional unit hypersphere goes to zero. Figure 2.2a

illustrates this phenomenon for hyperspheres with radii equal to 0.9, 1 and 1.1.

Zimek et al. [274] explain that this should be viewed as the ratio of the volume

of the hypersphere to the volume of the hypercube with side lengths 1 (the volume

of which will always be 1). This makes the values plotted in Figure 2.2a unitless,

allowing for comparisons between volumes of different dimensions.

• Let Cd,r be the d-dimensional hypercube with radius r (i.e. edge length 2r). Then,

as d→∞, Vol(Sd,r)/Vol(Cd,r)→ 0. That is, the ratio of the volume of a hypersphere

with radius r to the volume of a hypercube with radius r tends towards zero as d

increases, as demonstrated in Figure 2.2b. This indicates that most of the volume

of a hypercube is located in its corners [238, 239]. See Figure 2.4 of [38] for a

visualization of this.

Properties like those given above serve as a warning for high dimensional data analysis:

methods that perform well in low dimensional spaces are not guaranteed to perform sim-
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Figure 2.2: For r = 0.9, 1, 1.1: (a) The volume of d-dimensional hyperspheres with radius

r as d increases. (b) The ratio of the volume of d dimensional unit hyperspheres with

radius r over the volume of the d-dimensional hypercube with radius r as d increases.

ilarly in high dimensional spaces. The aforementioned properties imply that high dimen-

sional space is mostly empty, suggesting that high dimensional data is often embedded

in lower dimensional subspaces. There are many implications for measures of proximity

between points in high dimensional data, some of which will be highlighted in the next

section.

2.4.2 Distance measures in high dimensional data

As discussed in Section 2.2, many multivariate data analysis methods are heavily reliant

on the ability to measure the distance between observations in a dataset. For high dimen-

sional data, this is even more significant, as the ability to visualize and understand the data

becomes more difficult as the dimension d grows. However, measures of proximity are

highly susceptible to the curse of dimensionality. Some examples of the effects of high

dimensionality on distance measures are given below.

Diminishing relative contrast For a distance measure D, let Dmin(d) and Dmax(d) be

the minimum and maximum distances measured between any two points in a d-dimensional

dataset (with no assumptions on the distributions of this dataset). Define the relative con-

trast of the distance as

R(d) =
Dmax(d)−Dmin(d)

Dmin(d)
.
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Beyer et al. [33] showed that as d increases, the expected relative contrast of distances

tends towards zero:

lim
d→∞

E (R(d))→ 0.

That is, as the dimension increases, the difference between the minimum and the maxi-

mum distances measured in a dataset becomes smaller and smaller. This phenomenon is

often known as distance functions losing their usefulness, or the ‘concentration effect’,

and is acknowledged in many fields of research [4, 12, 39, 59, 128, 134, 136].

Hinneburg et al. [103] show that ℓp distances with lower values of p seem to be better at

handling this concentration effect. For example, the ℓ1 distance often produces a higher

relative contrast than the ℓ2 distance in high dimensions, making the distance measure

more ‘useful’. Encouraged by this trend, Aggarwal et al. [5] show that using fractional

ℓp metrics with 0 < p < 1 can counter the concentration effect even more, making these

potentially more useful in higher dimensional spaces. However, it has been shown that

this is only applicable to uniformly distributed data [81], and that the performance of

different norms are very much data dependent [175]. Furthermore, using 0 < p < 1 gives a

metric that does not satisfy the triangle inequality, so fractional ℓp metrics are not formal

distance measures by the definition given in Section 2.2. This metric can therefore not be

used with any methods that assume the triangle inequality holds [71, 138].

Furthermore, for the Euclidean distance (and therefore likely other ℓp distances like the

Manhattan distance), it has been shown that the decreasing relative contrast is only appli-

cable when the variables are independent and identically distributed [69], and the effect is

less extreme for data with correlations, or data made up of a mix of distributions (such as

clustered data or Gaussian mixture models) [33, 108, 274].

Irrelevant attributes As dimensionality increases, the possiblity for irrelevant attributes

grows. The presence of irrelevant attributes decreases the signal-to-noise ratio of a dataset,

which reduces the separability of points, masking the relevant variables and worsening the

relative contrast of distances [31, 274].

However, if all attributes are relevant to the data (i.e. they all help to characterise cluster-

ings or distributions), the separability of data is likely to grow in a way that will not suffer

due to the concentration effect [108]. Relevant attributes are likely have correlations be-
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tween each other, which is shown in [69] to be an important characteristic to avoid the

concentration effect. The effect of relevant versus irrelevant attributes has also been noted

in [32] and [59].

Measuring data with d > N In some settings, high dimensional data specifically refers

to data with a greater number of dimensions than observations. This type of data is often

known as high dimension low sample size (HDLSS) data, and is commonly found in

fields such as genetics [92], chemometrics [95] and image analysis [264]. HDLSS data

has implications for many types of data analysis. For example, many machine learning

models struggle with overfitting [159, 208] in such circumstances.

Within the context of distance measures, HDLSS data causes issues for the Mahalanobis

distance as there is not enough data present to accurately estimate the covariance matrix

using the sample covariance matrix. Other methods for estimating the covariance matrix

in such circumstances will be discussed in Section 2.5.2. Even if the covariance matrix

can be calculated reliably, the inversion required to use the Mahalanobis distance can also

cause issues: inverting a covariance matrix of size d×d becomes costly as d increases, and

the estimated covariance matrix (not necessarily the classical sample covariance matrix)

is likely to be singular. In the next section, the estimation of covariance matrices and

inverse covariance matrices in high dimensions will be considered.

2.5 Covariance and inverse covariance matrices

The covariance matrix of a d-dimensional dataset is a d× d matrix that characterises the

variance and covariance of the variables. The variance of the ith variable is given by

the ith diagonal entry in the covariance matrix. The covariance between variable i and

variable j is given by the (i, j)th entry of the covariance matrix. The covariance matrix is

also known as the variance-covariance matrix, and is denoted here by Σ.

The covariance matrix is used for many data analysis methods, such as optimization [210]

and dimension reduction [123, 172], with applications in fields such as economics [148],

image processing [177] and chemical analysis [213]. As already discussed, it is funda-

mental to the implementation of both the Mahalanobis distance and data whitening.
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2.5.1 The sample covariance matrix

The population covariance matrix Σ is the ‘true’ covariance matrix, if the whole popula-

tion of the data is known. If data is generated synthetically from the normal distribution,

the covariance matrix used to generate the data is the population covariance matrix. It is

not common to know the population covariance matrix, and so the sample covariance ma-

trix Σ̃ is often used to estimate it. For a dataset X = {x1, . . . , xN} ∈ R
d×N with sample mean

µ̃ = 1
N
∑N

i=1 xi ∈ R
d, the sample covariance matrix is typically defined as follows:

Σ̃ =
1

N −1

N∑
i=1

(xi− µ̃) (xi− µ̃)⊤ .

The denominator N −1 is due to the reliance on the estimated sample mean µ̃. If the pop-

ulation mean is known and used, this can be swapped for a denominator of N. The sample

covariance matrix is an unbiased and efficient estimator in well-conditioned data (that is,

data that is full rank and has d << N) [15]. However, for HDLSS data, the sample covari-

ance matrix is shown to no longer estimate the population covariance matrix well [23, 48].

Furthermore, the sample covariance matrix is singular in HDLSS settings, meaning it is

not possible to calculate the Mahalanobis distance or perform data whitening. There are

two options to alleviate this issue: find another estimate of the covariance matrix, or find

an alternative to the inverse of the covariance matrix. The former of these options will be

considered in the next section, and the latter in Section 2.5.5.

2.5.2 Alternative covariance matrix estimates

In order to circumvent the issues with the sample covariance matrix in high dimensions,

many alternative methods of calculating or regularizing covariance matrices have been

suggested. These methods often impose structural assumptions on the covariance matrix,

and take advantage of such structures. A few of these methods are outlined below.

Banding In many settings, such as those considering spatial and temporal data, it is

appropriate to assume that if the indices of variable i and variable j are far apart, the

covariance between variable i and variable j is negligible. That is, for a covariance matrix

Σ =
(
σi j

)d

i, j=1
and some threshold t, it is assumed that the following is likely to hold:

|i− j| > t =⇒ σi j = 0.
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Such matrices are called ‘bandable covariance matrices’, and the banded estimator given

by Bickel and Levina [35] is:

Σ̂i j =


σ̃i j |i− j| ≤ t,

0 otherwise

where Σ̃ =
(
σ̃i j

)d

i, j=1
is the sample covariance matrix. The performance of the banded

estimator is highly dependent on the choice of the threshold value t, which is often found

via cross-validation [189].

Tapering Building on the idea of bandable covariance matrices, Cai et al. [50] proposed

the tapering of the off-diagonals of the sample covariance matrix, where some natural

ordering of the variables is assumed. Their suggestion is dependent on a parameter h,

with 1 ≤ h ≤ d, such that Σ̂ =
(
wi jσ̃i j

)d

i, j=1
with weights wi j defined as:

wi j =


1 |i− j| ≤ h/2,

2− 2|i− j|
h h/2 < |i− j| < h,

0 otherwise.

The authors show that this estimator has good empirical performance and often outper-

forms the banded covariance matrix estimator. Methods of choosing an appropriate pa-

rameter h for tapering estimators have also been studied [49, 50].

Many extensions on the idea of banded and tapered off-diagonals to estimate the covari-

ance matrix have been proposed, see Chapter 2.1 of [141] and Chapter 6 of [189] for

further details.

Thresholding Whereas banding and tapering assume some natural order in the vari-

ables to inform adjustments to the covariance matrix, the technique known as ‘threshold-

ing’ does not require ordered variables. Instead, it is assumed that the covariance matrix

is sparsely populated (i.e. that the majority of the off-diagonal elements of Σ are zero or

close to zero). Rather than amending the entries of the sample covariance matrix based

on the distance of the indices |i− j|, thresholding methods instead consider the absolute
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value of the entry |σ̃i j| in the sample covariance matrix itself:

Σ̂i j =


σ̃i j |σ̃i j| ≥ g,

0 otherwise,
(2.2)

where g is a user-defined threshold. This estimator was suggested by Bickel and Levina

[34] and Karoui [70], and is invariant to permutations of the variables. In [202] a method

is introduced using more generalized thresholding functions, rather than a hard threshold

as in Equation (2.2). An adaptive thresholding method is suggested in [46] in which

each individual entry σ̃i j has its own threshold gi j, rather than a universal threshold g for

all entries of the sample covariance matrix. This leads to a more flexible estimator but

requires further parameter estimation.

Dimension reduction It is common to use dimension reduction techniques when work-

ing in high dimensions to make the data more manageable, and then perform data anal-

ysis (including the calculation of the covariance matrix) on this new, lower dimensional

dataset. Methods can be divided into two categories: feature selection and feature extrac-

tion. Feature selection is the method of choosing a subset of the original variables and

creating a new dataset from these variables. This method is simple and cheap, but often

requires domain-specific understanding of the data and risks losing a lot of information.

Feature extraction is typically more involved, as it transforms the data to a new, lower

dimensional set of variables while retaining as much information as possible.

Principal component analysis (PCA) is the most commonly used dimension reduction

technique. The data is projected to a lower dimensional space (with the new dimension

set by the user) where singularity and low rank are no longer an issue. However, in high

dimensions this is not always straightforward, as PCA is calculated using the singular

value decomposition (SVD) of the covariance matrix of the original data. Firstly, the SVD

can be extremely computationally expensive as dimensions increase [136]. Secondly,

PCA is often inconsistent in high dimensions due to the reliance on the sample covariance

matrix [9, 184].

Shrinkage When d > N, it is known that the eigenvalues of the sample covariance ma-

trix Σ̃ do not approximate the eigenvalues of the population covariance matrix Σ well
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[219]. Specifically, the largest eigenvalue of Σ̃ is often larger than the largest eigen-

value of Σ, and the smallest eigenvalue of Σ̃ is smaller than the smallest eigenvalue of Σ.

See Figure 2.2 of [189] for empirical evidence of this phenomenon. To counteract this,

‘shrinkage’ methods were introduced to pull the eigenvalues closer towards some central

value(s).

Linear shrinkage estimators are of the form

Σ̂ = γ1T +γ2Σ̃,

where Σ̃ is the sample covariance matrix, T is a d× d matrix called the shrinkage target

matrix, and γ1, γ2 are parameters to be found, known as the ‘shrinkage coefficients’. The

shrinkage target matrix T is typically a well-conditioned matrix.

The Ledoit-Wolf shrinkage estimator [149] is defined as follows:

Σ̂LW = γ1I+γ2Σ̃ =
β2

α2+β2 νI+
α2

α2+β2 Σ̃, (2.3)

where α2 = ∥Σ−µI∥2F , β2 = E
[
∥Σ̃−Σ∥2F

]
and ν= trace

(
Σ̃
)
/d. Here, ∥·∥F denotes the Frobe-

nius norm. The estimator given in Equation (2.3) is proven to be the linear combination

of the identity matrix I and the sample covariance matrix Σ̃ that fulfills the following

optimization problem:

min
γ1,γ2

E
[
∥Σ̂−Σ∥2F

]
s.t. Σ̂ = γ1I+γ2Σ̃.

Ledoit and Wolf [149] also suggests estimators for α, β and µ. These estimators are reliant

on some structural assumptions of Σ. The estimator given by (2.3) is shown to be a consis-

tent and successful estimator for the population covariance matrix, and is positive-definite.

It has also inspired many other linear shrinkage estimators. Cross-validation techniques

to estimate parameters have also been suggested [246]. Various alternative shrinkage tar-

get matrices have been proposed in the literature, including diagonal matrices [205], the

single-factor matrix [147], the constant correlation model [148] and multi-target matrices

[143]. Linear shrinkage models are highly dependent on the choice of the target matrix,

which imposes some assumed structure on Σ. Shrinkage estimators also do not affect the

eigenvectors of the covariance matrix. It has been shown that the sample eigenvectors are

not consistent when d is large [122], meaning shrinkage estimators may not be appropriate

to use with any methods relying on eigenvectors, such as PCA [154].
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Many non-linear shrinkage estimators have also been proposed to circumvent the issue

of choosing an appropriate target matrix. These methods often begin with the spectral

decomposition of the sample covariance matrix: Σ̃ = PΛ̃P⊤, where P is the matrix of

eigenvectors and Λ̃ is the diagonal matrix with the eigenvalues of Σ̃ as its diagonal entries.

The estimator is then of the form

Σ̂ = P∆P⊤,

where ∆ is a diagonal matrix whose entries are shrunken values of the eigenvalues in Λ̃.

It is shown in [149] that linear shrinkage estimators can be written in this form, and in the

linear case all eigenvalues have the same shrinkage function applied to them. In non-linear

shrinkage, each eigenvalue can be adjusted individually. This produces an estimator that

is at least as good as a linear shrinkage estimator [150]. For some examples of non-linear

shrinkage, see [1, 146, 254]. For more information on shrinkage estimators, see [150],

Chapter 4.1 of [189] or Chapter 3 of [141] for reviews on common methods.

Many further covariance estimators have been proposed in the literature that are not in-

cluded here, such as modified Cholesky decomposition [110], factor-based models [74,

75], alternating projection models [102], Newton-type methods [194] and penalized meth-

ods [197]. For recent surveys on high dimensional covariance estimation, see [48, 141,

189].

2.5.3 The inverse covariance matrix

A square matrix A ∈ Rd×d is non-singular if there exists a matrix B ∈ Rd×d such that

AB = BA = I

where I is the d×d identity matrix. If such a matrix B exists, it is unique and is called the

inverse of the matrix A, denoted A−1.

The inverse covariance matrix is relied upon for many applications, including linear dis-

criminant analysis [117] and optimization methods [222], as well as for the Mahalanobis

distance and data whitening. If the dataset has many correlations, some low-rank structure

or has more variables than observations, it is likely that the sample covariance matrix is

singular, rendering many of these data analysis methods unusable. In such cases, there are

three options. Firstly, one can estimate the covariance matrix using the sample covariance
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matrix, and find the ‘generalized inverse’ of this estimate, which will be discussed shortly.

Alternatively, one can use one of the alternative covariance matrix estimates, as detailed

in Section 2.5.2, and invert this if it is nonsingular. Finally, one can directly estimate the

inverse covariance matrix, which will be considered in Section 2.5.5.

Generalized inverse of a matrix If a matrix A is singular, the inverse of the matrix

A−1 does not exist. In such cases, a generalized inverse of the singular matrix can be

used. A generalized inverse of a d × d matrix A is a d × d matrix Ag which satisfies

AAgA = A [243]. If the matrix A is not singular, the generalized inverse is exactly the

inverse Ag = A−1 [236].

There are many different types of generalized inverses, with different conditions and aims.

Roger Penrose showed that for every matrix A ∈ Rd×m, there exists a unique matrix Ag

satisfying the four following conditions, known as the Penrose conditions [186]:

1. AAgA = A

2. AgAAg = Ag

3. (AAg)⋆ = AAg

4. (AgA)⋆ = AgA

where A⋆ denotes the conjugate transpose of A. If a matrix satisfies the first condition

only, it is called a generalized inverse of A. If the first two conditions are satisfied by

Ag, it is called a reflexive generalized inverse of A. The unique matrix that satisfies all

four of the Penrose conditions is called the Moore-Penrose inverse, the Moore-Penrose

pseudoinverse, or simply the pseudoinverse of the matrix A, and is often denoted by A−

[176, 186]. This will be discussed further in the next section.

Many other generalized inverses exist, including the following:

• The right-sided inverse is a matrix A−1
R ∈ R

d×d that satisfies AA−1
R = I [227]. The

left-sided inverse of a matrix is defined analogously.

• A constrained generalized inverse is found by solving a system of linear equations,

with the added constraint that the solution is in a given subspace. An example is the

Bott-Duffin inverse of A [41, 65].
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• The Drazin inverse AD [66, 272] is often categorized as a generalized inverse, de-

spite not always fulfilling the condition AADA = A.

See [29] for an extensive overview of alternative generalized inverse matrices.

2.5.4 The Moore-Penrose pseudoinverse

The Moore-Penrose (MP) pseudoinverse A− is discussed in more depth here, thanks to

its uniqueness and popularity in the literature. There are many different ways of com-

puting the MP pseudoinverse of a matrix. In [215], seven fast methods of computation

are discussed and the numerical stability of these methods is highlighted, as well as their

computational complexity.

Construction of the Moore-Penrose pseudoinverse The MP pseudoinverse is classi-

cally computed through the singular value decomposition (SVD). For the matrix A, let

A = US V⋆ be the SVD, where U is a unitary matrix, S is a diagonal matrix with the sin-

gular values {s1, s2, . . . , sd} of A on the diagonal, and V is a unitary matrix. If the entries

of A are all real, U and V are real, orthogonal matrices. Then the MP pseudoinverse is

given by A− = VS −U⋆. The diagonal matrix S − is calculated by taking the reciprocal of

all nonzero elements in S , and leaving all zero elements in place:

S =



s1 0 . . . 0

0 s2 . . . 0
...

...
. . .

...

0 0 . . . sd


, S −ii =


1/si si , 0,

0 si = 0.
(2.4)

Computing the MP pseudoinverse via the SVD is relatively simple, accurate and numeri-

cally stable in a lot of cases. However, the cost of computing the SVD can be prohibitive

for large matrices [215]. Furthermore, floating point computation can make it hard to

know which singular values are very small, and which are exactly zero, creating the need

to set a tolerance.

Another method of computing the MP pseudoinverse is via the rank decomposition of

the d× d matrix A with rank r ≤ d [29, Theorem 5]. The rank decomposition is written

A = BC, where B is a d× r matrix and C is a r× d matrix, both of rank r. Then the MP
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pseudoinverse inverse is calculated as

A− = (BC)− =C⊤(CC⊤)−1(B⊤B)−1B⊤.

Much like the SVD method, this method is hindered by the time-intensive process of

finding the rank decomposition of A and the inverses of CC⊤ and B⊤B. Furthermore,

computing the inverses of the matrix products CC⊤ and B⊤B can often introduce numer-

ical issues, leading to severe loss of accuracy.

The QR decomposition can be used to calculate the MP pseudoinverse and can be found

in a number of ways. The Gram Schmidt method can be used and is cheap to implement,

but is an unstable algorithm [83]. Using Householder reflections [236] to calculate the

QR decomposition is much more stable, but is computationally expensive and not par-

allelizable. The QR decomposition can be quicker to compute than the SVD, but can

sometimes underestimate the rank of a matrix [215]. Many other methods of calculating

the MP pseudoinverse have been suggested, including iterative methods [188], numerical

methods [129] and methods using Cholesky factorization [60], to name a few.

Drawbacks of the Moore-Penrose pseudoinverse There are clearly many benefits to

using the MP pseudoinverse, such as its uniqueness [236], generalization to the true in-

verse in full-rank cases [45] and that the MP pseudoinverse of the MP pseudoinverse is

the original matrix: (A−)− = A. The MP pseudoinverse is also free from assumptions

about the structure of the matrix A. These benefits, plus the simplicity of implementa-

tion, have seen the MP pseudoinverse used for many applications, including classification

[248], clustering [140] and dimension reduction [232]. It is also used across many fields,

such as image processing [57], medical imaging [216], analysis of genomic data [223]

and financial applications [152], to name a few.

The MP pseudoinverse is constructed by finding the reciprocal of nonzero eigenvalues,

and letting the inverse of any zero eigenvalues be equal to zero, see (2.4). By using

all nonzero eigenvalues, the MP pseudoinverse can be adversely affected by very small

eigenvalues. It can be difficult to differentiate between very small nonzero eigenvalues

and zero eigenvalues, requiring a user-set threshold for eigenvalues to be classed as zero

eigenvalues. Furthermore, any minor changes in the small eigenvalues of the matrix A

cause huge changes in A−, making the MP pseudoinverse very sensitive.
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Consider the population covariance matrix Σ and the sample covariance matrix Σ̃ of a

dataset X. In classical d < N cases, the small eigenvalues of Σ̃ usually relate to noise and

so the relevant variables in X can be removed, or the eigenvalue changed to zero. As

discussed in Section 2.5.2, the sample covariance matrix in d ≥ N cases is not a consistent

estimator. In these HDLSS circumstances, the small nonzero eigenvalues of Σ̃ do not

necessarily relate to noisy variables, and the eigenvalues in Σ that correspond to these

small eigenvalues in Σ̃ may not be small. Therefore, removing these variables from X or

changing the eigenvalues to zero can cause a loss of information. It is shown that this,

combined with the MP pseudoinverse, can cause inconsistency in applications such as

regression and classification [196, 205]. See [109] for a study into the error caused in

machine learning methods through the use of the MP pseudoinverse.

2.5.5 Alternative inverse covariance matrix estimates

As discussed previously, to find the inverse of the covariance matrix, it is common to find

an estimator of the covariance matrix Σ̂, and then invert this estimator to find Σ̂−1. If Σ̂ is

not invertible, one may need to use the MP pseudoinverse from the previous section, or

some other method of inversion [101] to estimate the inverse covariance matrix. However,

in high dimensions, this approach may not be ideal. As the dimension d of the covariance

matrix increases, inversion of Σ̂ becomes more time-intensive. Furthermore, any error in

the estimator Σ̂ may be greatly amplified by its inversion. Instead, a number of estimators

have been proposed to find the inverse covariance matrix directly. These methods rely on

assumptions on the structure of the data, and take advantage of such structures.

Banding If there is a natural ordering of the variables, a banding technique can be used

to estimate the inverse covariance matrix, much like the method used to estimate the

covariance matrix in Section 2.5.2. Wu and Pourahmadi [257] introduced the method of

banding using the modified Cholesky decomposition for the inverse covariance matrix,

which has been shown to be a consistent estimator [35, 258]. Further estimators of this

type have since been proposed, see [25, 154, 151, 259].

Sparsity It is often assumed that the inverse covariance matrix should be a sparse ma-

trix. Even if variables are correlated with one another, sparsity is common in the inverse
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covariance matrix. If Σ−1
i j = 0, the ith and jth variables are conditionally independent,

given the other variables [82]. Imposing sparsity assumptions is closely related to the

practice of setting entries of the inverse covariance matrix to zero, known as ‘covariance

selection’ [64].

There are several proposed methods for estimating the inverse covariance matrix using

sparsity assumptions. Let Ω̂ denote an estimator of the inverse covariance matrix. Penal-

ized likelihood methods are amongst the most common estimation methods, and are often

of the form:

Ω̂ = argmin
Ω

trace
(
Σ̂Ω

)
− log|Ω|+

∑
i, j

Pw
(
|Ωi j|

) ,
where Σ̂ is the sample covariance matrix, and Pw

(
|Ωi j|

)
is a penalty function on the off-

diagonals of the matrix Ω with weights w. The ℓ1 penalty Pw(x) = w|x| is commonly used

[82, 201, 267]. However, this approach is computationally very intensive, particularly in

high dimensions [154].

If every column of the inverse covariance matrix is assumed to be sparse, column-by-

column estimation can be used. Meinhausen and Bühlmann [173] propose using lasso

regression techniques to estimate every column of the inverse covariance matrix, and sev-

eral other similar methods have since been produced [47, 266]. Although these methods

are less computationally intensive, they do require a stricter sparsity assumption than

many other sparse inverse covariance matrix estimates.

For more information on estimators of the inverse covariance matrix that rely on sparsity

assumptions, see [75, 142]. Estimating the inverse covariance matrix is clearly extremely

reliant on structural assumptions of the matrix, which may not always be appropriate

for the given application. If used incorrectly, sparsity and banding based methods can

produce very inconsistent estimators of the true inverse covariance matrix.

2.6 Chapter summary

This chapter has summarized methods of navigating the curse of dimensionality in rela-

tion to distance measures, whitening and covariance matrix estimation. It is shown that

the geometry of high dimensional spaces leads to problems in using classical methods

that are often relied upon in low dimensional spaces, such as the ℓp distances.
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The motivation for using the Mahalanobis distance in multivariate data is illustrated in

Section 2.2.2. The Mahalanobis distance is most commonly required in data with cor-

related variables. However, it is exactly this property that often makes the Mahalanobis

distance unusable, as correlations make the covariance matrix of the data singular and

thus not invertible. The sample covariance matrix is also singular in the case of HDLSS

data, which is increasingly common in modern data analysis. The same issues arise in the

application of data whitening, which is discussed in Section 2.3.

The sample covariance matrix is a popular and unbiased estimator for the covariance

matrix in low dimensions. However, when the dimensionality of the dataset outstrips the

number of observations, the sample covariance matrix is no longer a good estimator for

the population covariance matrix. In Section 2.5.2, a number of alternative estimators for

the covariance matrix are given. Many of these estimators are specifically constructed for

the HDLSS case, and rely on assumptions such as ordered variables or sparsity.

Section 2.5.4 discusses the famous Moore-Penrose pseudoinverse, which calculates a gen-

eralized inverse of a singular matrix. This method is commonly used due to its ease and

good results in lower dimensions. However, it is shown that in high dimensions it can be

difficult to compute and can cause a loss of information.

When working in high dimensions, the practice of finding an estimator for the covariance

matrix and then inverting it may not be appropriate or practical. Firstly, the process of

inverting a large dimensional matrix is extremely time consuming. Secondly, any errors in

the estimator of the covariance matrix will be amplified by the inversion of the matrix. As

such, many authors have proposed methods to approximate the inverse of the covariance

matrix directly from the data itself, as explored in Section 2.5.5. These methods are also

reliant on structural assumptions, again including variable ordering and sparsity.

The aim of this literature review is to show the circular issue of requiring methods to ac-

count for correlations and singularity in datasets, but not being able to use these methods

because of such correlations and singularity. The alternative estimators proposed in the

literature are often heavily reliant on structural assumptions of the data, which may not

always be appropriate. These issues form the motivation for the research presented in this

thesis. The methods proposed in Chapters 3, 4 and 5 are successful in the cases of corre-

lations and singularity, without imposing structural assumptions on the dataset.



Chapter 3

Simplicial Distances

The research presented in this chapter forms part of a publication I have co-authored [85]

entitled Simplicial and Minimal-Variance Distances in Multivariate Data Analysis,

published in Journal of Statistical Theory and Practice, available at https://doi.org/

10.1007/s42519-021-00227-7 .

The differences between the published manuscript and the contents of this chapter are:

• This chapter does not include research on minimal-variance distances (which is

given in Chapter 4);

• The manuscript compares the simplicial distances to the minimal-variance distances

in their efficiency and through numerical examples. These comparisons will be in-

cluded in Chapter 4 of this thesis, after introducing the minimal-variance distances;

• This chapter gives details of the distribution of the simplicial distances (Section 3.4),

which are not included in the manuscript;

• Additional empirical examples relating solely to the simplicial distances are given

in this chapter.

The aims of the research presented in this chapter are:

• To produce a distance measure which performs similarly to the Mahalanobis dis-

tance in multivariate data, but without the issues of degeneracy faced by the Maha-

lanobis distance, as detailed in the literature review (see Section 2.2.2);
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• To produce a non-model based method of measuring proximity. The Mahalanobis

distance relies on an estimator of the covariance matrix (which often imposes as-

sumptions on the data, see Section 2.5 of the literature review). The simplicial dis-

tances are based on simplices formed by the data, so do not require such estimators

or assumptions;

• To highlight how the simplicial distances can be used to form an ℓ1 version of

the Mahalanobis distance, as ℓ1 distances are shown to be more useful in some

circumstances in high dimensional data analysis (see Section 2.4.2);

• To illustrate the spectrum of metrics created by the simplicial distances, and to give

recommendations for parameter choices and application uses.

3.1 Introduction

Pronzato et al. [192] introduced a family of distances called the simplicial distances.

These distances are parameterized by a value k, an integer which takes value between

1 and d, where d is the dimension of the dataset being measured. The distances can be

used to find the proximity of a point x ∈ Rd to a set of points X = {x1, x2, . . . , xN} ∈ R
d×N .

The distance is calculated as follows: compute the volumes of all possible k-dimensional

simplices formed by the point x and all points from the set X, and raise the average vol-

ume to a user-defined exponent δ > 0 to give the k-simplicial distance between x and X.

Figure 3.1 gives a visualization of three-dimensional simplices formed by points within

three-dimensional space.

Figure 3.1: Examples of three-dimensional simplices in three-dimensional space.
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For general values of δ > 0, when k = 1 the simplicial distance between the point x and

the set X is proportional to the ℓδ-distances in Rd between x and the mean of the set of

points X. Therefore, when δ = 2, using k = 1 gives distances proportional to the squared

Euclidean distances. It can be shown that using k = d with δ = 2 gives distances propor-

tional to the squared Mahalanobis distance (if the inverse of the covariance matrix exists)

[192].

Other choices of the parameters k and δ will be discussed in detail in Section 3.3 and can

be used to alter distances to make them more appropriate for specific purposes. Through-

out this chapter, the terms ‘k-simplicial distances’ and ‘simplicial distances’ are used

interchangeably, but with the former often referring to the distance using a specific value

of k, and the latter referring to the distances more generally.

This rest of this chapter is structured as follows. Section 3.2 describes the methods of

calculating the simplicial distances. Section 3.3 discusses the impact of using different

parameters for the simplicial distance; namely the degree parameter k and the exponent

parameter δ. The distribution of the simplicial distance with δ = 2 is considered in Sec-

tion 3.4. Finally, some applications of the distance measure are given in Section 3.5,

including outlier detection, clustering and data whitening.

3.2 Constructing the simplicial distances

The simplicial distance was initially proposed by Pronzato et al. [192]. The authors de-

scribe two methods of calculating the distances, both of which will be outlined (with some

modifications) in this section. In particular, Section 3.2.1 describes the formal construc-

tion of the distance through volumes of simplices, as previously described. A normal-

ization constant has been introduced which was not present in the aforementioned paper.

Section 3.2.2 outlines an alternative, faster method for construction when δ = 2, using

elementary symmetric functions and polynomial methods. Section 3.2.3 gives a novel

approach to the calculation of simplicial distances using sampling methods, with the pur-

pose of improving computation time for the distance when found directly using simplex

volumes.



32 CHAPTER 3. SIMPLICIAL DISTANCES

3.2.1 Construction through simplex volumes

Let X = {x1, . . . , xN} ∈ R
d×N be a set of N points in d dimensions, with no assumptions

on how this set of points has been generated. The sample mean and covariance matrix

associated with the set X are defined as follows:

µ =
1
N

N∑
j=1

x j , Σ =
1
N

N∑
j=1

(x j−µ)(x j−µ)⊤, (3.1)

where the biased covariance matrix is defined here to simplify some later calculations.

The k-simplicial distance between a point x ∈ Rd and the set X is defined as the average

volume of all possible k-dimensional simplices formed by x and any k points in X, raised

to a given power δ > 0. Let r ≤ d be the intrinsic dimension of the data set X, which is

the rank of X when X is considered as a d×N matrix. The volumes of all k-dimensional

simplices are zero for k > r, and so it makes no sense to use k > r.

Let Vk(x, z1, . . . , zk) be the volume of a k-dimensional simplex with vertices x ∈ Rd and

z1, . . . , zk ∈ R
d. Following Theorem 4 of [192], this volume can be computed by

Vk(x, z1, . . . , zk) =
1
k!

∣∣∣det(Z⊤Z)
∣∣∣1/2 ,

where det(A) is the determinant of the matrix A and |a| is the absolute value of the scalar

a. Z is the d× k matrix with columns [(z1− x) (z2− x) . . . (zk − x)]. Let

J =
{
( j1, . . . , jk) ∈ {1, . . . , N}k | j1 < . . . < jk

}
(3.2)

be the set of all ordered k-combinations of the indices in {1, . . . , N}. Define

Pk,δ(x, X) =
1(
N
k

) ∑
( j1, ..., jk)∈J

V δ
k (x, x j1 , . . . , x jk) , (3.3)

which is the average volume of all k-dimensional simplices created by the point x and

points in X, raised to the power of a user-defined scalar δ > 0. For given δ > 0 and

1 ≤ k ≤ r, the centre of the set X (that is, the k-simplicial multidimensional median [179])

is defined as

µk,δ = arg min
x∈Rd

Pk,δ(x, X) ,

which may not be uniquely defined [276]. The k-simplicial outlyingness function is then

defined by

Ok,δ(x,X) =
Pk,δ(x, X)

Pk,δ(µk,δ, X)
−1 . (3.4)
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The function (3.4) is non-negative, has value 0 at the centre of the sample and is unitless;

which are the required properties that an outlyingness function must possess [250]. For

any δ > 0, the k-simplicial distance (here to the power of δ) from a point x to the dataset

X is

ρδk,δ(x, X) = ck,δOk,δ(x, X) = ck,δ

(
Pk,δ(x, X)

Pk,δ(µk,δ, X)
−1

)
, (3.5)

where the constant ck,δ is chosen so that

1
N

N∑
j=1

ρδk,δ(x j, X) = 1 . (3.6)

The normalization in Equation (3.6) is introduced to ensure consistency of the simplicial

distances for different values of k. It is shown in Section 3.2.2 that for δ = 2 and all k ≤ r,

the normalization constant takes value ck,2 = 1/k. In the cases where δ , 2, the constants

ck,δ are found numerically from Equation (3.6).

For δ = 2 and any eligible k, the centre of the set X is given by the sample mean µk,δ = µ

[192, Theorem 5]. Then, similarly to Section 3.1 of [192],

1
N

N∑
j=1

Pk,2(x j, X) = (k+1)Pk,2(µ, X) . (3.7)

The squared k-simplicial distance (of order δ = 2) from the point x to the dataset X is then

defined as

ρ2
k,2(x, X) =

1
k

Ok,2(x, X) =
1
k

(
Pk,2(x, X)
Pk,2(µ, X)

−1
)
. (3.8)

The difference between Equation (3.8) and the corresponding definition in [192, Equa-

tion 17] is the introduction of the normalizing constant 1/k, which provides consistency

of the distances for different k in the sense that Equation (3.6) holds for δ = 2 and all

k = 1, 2 . . . , r. The equality in Equation (3.6) with δ = 2 directly follows from Equa-

tion (3.7).

Evaluation of the distances given by Equation (3.8) can be computationally time-consuming

when performed ‘directly’ by the empirical calculation of the volumes of all
(
N
k

)
simplices.

In Section 3.2.2, an alternative polynomial method for use with δ = 2 is given, which is

much faster. Section 3.2.3 then outlines a sampling approach to reduce computation time

when calculating the distance using the volumes of the simplices directly.
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3.2.2 Construction through elementary symmetric functions

Let Λ = {λ1, . . . , λd} be the set of eigenvalues of the matrix Σ defined in (3.1). The ele-

mentary symmetric function of degree k ≤ d associated with the set Λ is given by

ek(Λ) =
∑

1≤i1<i2<...<ik≤d

λi1 . . .λik ,

with e0(Λ) = 1. If k > r = rank(X) then ek(Λ) = 0 and the k-simplicial distance is always

0. For k ≤ r, define the function

qk(Σ) =
k−1∑
i=0

(−1)iek−i−1(Λ)Σi (3.9)

and the associated matrix

Sk =
qk(Σ)
ek(Λ)

.

As follows from Section 3.2 of [192], for any k ≤ r, the distance defined in Equation (3.8)

can be written as:

ρ2
k,2(x,X) =

1
k

(x−µ)⊤Sk(x−µ) . (3.10)

Note that the d × d matrices Sk, k = 1, . . . , r, are polynomials in the covariance ma-

trix Σ.

Since S1 = I/trace(Σ), where I is the d×d identity matrix, for k = 1 the squared simplicial

distance in Equation (3.10) is equal to the squared Euclidean distance over the trace of

the covariance matrix Σ of the data X:

ρ2
1,2(x,X) = (x−µ)⊤S1(x−µ) = (x−µ)⊤

q1(Σ)
e1(Λ)

(x−µ) =
(x−µ)⊤(x−µ)

trace(Σ)
.

Section 3.1 of [192] shows that when k = d and Σ is invertible, Sd = Σ
−1. That is, the

squared simplicial distance (3.10) is equal to the squared Mahalanobis distance over d:

ρ2
d,2(x,X) =

1
d

(x−µ)⊤Sd(x−µ) =
1
d

(x−µ)⊤Σ−1(x−µ) .

The following theorem compares the variance of the squared Euclidean distance, Maha-

lanobis distance and simplicial distance with k = 2 and δ = 2.

Theorem 1. Assume X = {x1, . . . , xN} ∼ Nd(µ, Σ). That is, let X be a set of N normally

distributed d-dimensional points with sample mean µ and sample covariance matrix Σ, as
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defined in (3.1). Let Λ = {λ1, . . . , λd} be the set of eigenvalues of the matrix Σ. Assume

rank(X) = r ≤ d and let x ∈ X. Then

Var
(
ρ2

r,2(x, X)
)
≤ Var

(
ρ2

2,2(x, X)
)
< Var

(
ρ2

1,2(x, X)
)
,

where ρ2
k,2(x, X) is the squared k-simplicial distance between the point x and set X as

defined in Equation (3.5) with δ = 2.

Proof. The simplicial distance between a point x and set X with k = 2 and δ = 2 can be

written as

ρ2
2,2(x, X) = (x−µ)⊤

Sk

k
(x−µ) = (x−µ)⊤

S2

2
(x−µ) = (x−µ)⊤

q2(Σ)
2e2(Λ)

(x−µ)

with q2(Σ) = e1(Λ)I −Σ, from Equation (3.9). From (A.1) in Appendix A.2, the variance

of the simplicial distance with k = 2 and δ = 2 is given by

Var
(
ρ2

2,2(x, X)
)
= 2trace

([S 2

2
Σ

]2)
=

trace
(
Σ2(e1(Λ)I−Σ)2

)
2e2(Λ)2 , (3.11)

Let ηi =
∑

j,iλ j =
∑r

j=1λ j −λi = e1(Λ)−λi. Consider the second-order elementary sym-

metric polynomial:

e2(Λ) =
∑
i< j

λiλ j =
1
2

∑
i, j

λiλ j =
1
2

 r∑
i=1

r∑
j=1

λiλ j−

r∑
i=1

λ2
i

 = 1
2

r∑
j=1

λ jη j .

Then Equation (3.11) can be re-written as:

Var
(
ρ2

2,2(x, X)
)
=

trace
(
Σ2(e1(Λ)I−Σ)2

)
2e2(Λ)2 =

∑d
j=1λ

2
j(e1(Λ)−λ j)2

2(1
2
∑d

j=1λ jη j)2
=

2
∑r

j=1λ
2
jη

2
j

(
∑r

j=1λ jη j)2 . (3.12)

Using (A.2) from Appendix A.3, the variance of the distance with k = 1 and δ = 2 is:

Var
(
ρ2

1,2(x, X)
)
=

2
∑r

j=1λ
2
j

(
∑r

j=1λ j)2 . (3.13)

Consider the denominator in Equation (3.13). By the Cauchy-Schwartz inequality, r∑
j=1

λ j


2

=

 r∑
j=1

1 ·λ j


2

≤

r∑
j=1

12
r∑

j=1

λ2
j = r

r∑
j=1

λ2
j ,

and so it follows that

Var
(
ρ2

1,2(x, X)
)
=

2
∑r

j=1λ
2
j

(
∑r

j=1λ j)2 ≥
2
∑r

j=1λ
2
j

r
∑r

j=1λ
2
j

=
2
r
= Var

(
ρ2

r,2(x, X)
)
.
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Again using the Cauchy-Schwartz inequality, the denominator in Equation (3.12) has the

inequality  r∑
j=1

λ jη j


2

≤ r
r∑

j=1

λ2
jη

2
j ,

and therefore

Var
(
ρ2

2,2(x,X)
)
=

2
∑r

j=1λ
2
jη

2
j

(
∑r

j=1λ jη j)2 ≥
2
∑r

j=1λ
2
jη

2
j

r
∑r

j=1λ
2
jη

2
j

=
2
r
= Var

(
ρ2

r,2(x,X)
)
.

It remains to show that

Var
(
ρ2

1,2(x, X)
)
=

2
∑r

j=1λ
2
j(∑r

j=1λ j
)2 ≥

2
∑r

j=1λ
2
jη

2
j

(
∑r

j=1λ jη j)2 = Var
(
ρ2

2,2(x, X)
)
. (3.14)

The validity of the inequality in (3.14) does not depend on the change λi→ cλi for all i and

for any constant c > 0. Therefore, it is viable to choose λ1,λ2, . . . ,λr such that
∑r

i=1λi = 1.

Equation (3.14) can then be expressed as moments of a random variable ξ concentrated

on [0,1] having values λi with probabilities λi.

Let τ j = E
[
ξ j

]
. Using this notation, consider the following properties:

r∑
j=1

λ j = E
[
ξ0

]
= 1,

r∑
j=1

λ2
j = E

[
ξ
]
= τ1,

r∑
j=1

λ jη j =

r∑
j=1

λ j(1−λ j) = 1−E
[
ξ
]
= 1−τ1,

r∑
j=1

λ2
jη

2
j =

r∑
j=1

λ2
j(1−λ j)2 = E

[
ξ
]
−2E

[
ξ2

]
+E

[
ξ3

]
= τ1−2τ2+τ3.

Using these properties the inequality in (3.14) has the form

τ1 ≥
τ1−2τ2+τ3

(1−τ1)2 .

Rearranging gives τ3
1 + 2τ2 − 2τ2

1 − τ3 ≥ 0, which is true for all probability measures on

[0, 1]. □

Theorem 1 helps to prove the intuition that as k increases, the variance of the simplicial

distances between points within the set X and the set X itself decreases. This intuition

will be illustrated and discussed further in Section 3.3.1.
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3.2.3 Computation using sampling methods

Section 3.2.2 introduced a fast polynomial method to produce the simplicial distances

between x and X when using the parameter δ = 2. When using δ , 2, the distances must

be computed using the methods outlined in Section 3.2.1: by averaging the volumes of

all
(
N
k

)
simplices formed with x and X ∈ Rd×N . This can be extremely computationally

intensive, particularly for large d and large N.

To circumvent this problem and reduce computation time, the volumes of a subset of

the simplices can be found, rather than all possible simplices. The size of the sample of

simplices depends on the user’s wish for precision versus time improvement. This size

does not have to be large to achieve practically accurate approximations, which will be

demonstrated in the examples that follow, where less than 0.05% of all possible simplices

are used when use k = 3 is considered, and less than 0.0004% when using k = 4.

Let J be the set of all ordered k-combinations of the indices in {1, . . . , N}, as defined

in Equation (3.2). To compute the simplicial distances, the values of Pk,δ(x,X) defined

in Equation (3.3) must be computed. The method of approximating these values using

sampling is as follows.

For any sampling percentage γ ∈ [0,1], create J(γ), a subset of J of size |J(γ)| =
⌈
γ×

(
N
k

)⌉
.

Approximate (3.3) by finding the volumes of the simplices indexed by the indices in J(γ)

and x:

Pk,δ,γ(x,X) =
1
|J(γ)|

∑
( j1,..., jk)∈J(γ)

V δ
k (x, x j1 , . . . , x jk).

A simple but efficient way of constructing J(γ) consists of taking random samples of

size k without replacement from the set {1,2, . . . ,N}, see [37]. This reduces computation

time dramatically, and in examples that follow it is clear that this method of sampling is

effective in producing results extremely close to those of the ‘full’ distance measure, in

which the volumes of all available simplices are calculated.

Three numerical examples are given to illustrate the sampling method and its perfor-

mance. In each of the examples, N = 500 points are generated from a d-dimensional

multivariate normal distribution, with zero mean and diagonal covariance matrix. Ta-

ble 3.1 gives the values of d and the eigenvalues of the covariance matrix used to generate

the datasets. The sample covariance matrix is used when computing the distances, and so
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the true eigenvalues of the matrix will differ slightly from those given in Table 3.1. The

parameters k = 3 and k = 4 are used in the examples that follow, as it will later be shown

that using relatively low values of k often produces results not dissimilar to higher degree

polynomials (see Section 3.3.1).

Λ d Eigenvalues

ΛA 10 [100,4,3,2,1]+ [0.0001]∗4+ [0]

ΛB 50 [100,10]+ [1]∗5+ [0.0001]∗33+ [0]∗10

ΛC 50 [100,100]+ [1]∗10+ [0.00001]∗10+ [0]∗28

Table 3.1: Details of datasets generated to be used in sampling examples. For each dataset,

N = 500 points are generated from the d-dimensional Gaussian distribution with zero

mean and diagonal covariance matrix, with the eigenvalues in the table on the diagonal

(written in Python notation).

For each of the datasets, the distances from all points in the dataset X to the sample mean

of the dataset µ are calculated, using the full sample of simplices (where possible) and

then a smaller sample using 10,000 simplices. For δ = 2, the ‘full’ distance is found

using the fast polynomial method described in Section 3.2.2. For δ = 1, however, the

‘full’ distance requires the computation of
(
500

k

)
simplices, which gets large very quicky.

Instead, a subsample of 10,000 simplices is compared to a larger sample of simplices

(1% of the total amount of simplices in the k = 3 case, 0.01% in the k = 4 case). The

effect that the different sample sizes have on the distribution of distances can be seen by

investigating moments and histograms of distances.

Example 1: Λ = ΛA. Histograms of the simplicial distances with and without using

sampling are given in Figure 3.2 for δ = 2 and δ = 1. These histograms show that the

distribution of distances produced using a sample of simplices is extremely similar to

the distribution produced using all possible simplices (or a much larger sample, when

considering δ = 1 here). This indicates that sampling can be used to effectively reduce

computation time without significantly changing the output of the distance measure. Ta-

bles 3.2a and 3.2b also demonstrate this through summary statistics for k = 3 and k = 4

respectively.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distances

0

20

40

60

80

100

Fr
eq

ue
nc

y 
of

 d
ist

an
ce

2.07 105 simplices
10000 simplices

(b) k = 3, δ = 1

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distances

0

20

40

60

80

100

Fr
eq

ue
nc

y 
of

 d
ist

an
ce

2.57 109 simplices
10000 simplices

(c) k = 4, δ = 2
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(d) k = 4, δ = 1

Figure 3.2: Histograms to compare the distribution of the simplicial distances from all

points to the mean for eigenvalues ΛA with different parameters k and δ for different

sampling amounts. The blue solid line is the full (or larger) sample of simplices, the

orange dotted line is the smaller sample of simplices.

δ = 2 δ = 1

# simplices 2.07 ·107 104 2.07 ·105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.11 0.11 0.27 0.28

Skewness 0.49 0.49 0.81 0.81

Kurtosis 0.31 0.31 0.85 0.87

(a) k = 3

δ = 2 δ = 1

# simplices 2.57 ·109 104 2.57 ·105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.10 0.10 0.23 0.23

Skewness 0.38 0.40 0.61 0.60

Kurtosis 0.10 0.12 0.34 0.34

(b) k = 4

Table 3.2: Summary statistics of the distances when (a) k = 3, (b) k = 4 with eigenvalues

ΛA. Table headers indicate the value of δ used. The second row gives the number of

simplices sampled.



40 CHAPTER 3. SIMPLICIAL DISTANCES

Example 2: Λ = ΛB. Figure 3.3 and Tables 3.3a and 3.3b show again that using a

low number of simplices produces distances that are mostly the same as the full distance

measure. This example illustrates that the sampling method is effective even in cases with

a lot of small and zero eigenvalues.
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(c) k = 4, δ = 2
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(d) k = 4, δ = 1

Figure 3.3: Histograms to compare the distribution of the simplicial distances from all

points to the mean for eigenvalues ΛB with different parameters k and δ for different

sampling amounts. The blue solid line is the full (or larger) sample of simplices, the

orange dotted line is the smaller subsample of simplices.

δ = 2 δ = 1

# simplices 2.07 ·107 104 2.07 ·105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.06 0.06 0.16 0.16

Skewness 1.08 1.08 1.29 1.29

Kurtosis 1.42 1.42 2.00 1.97

(a) k = 3

δ = 2 δ = 1

# simplices 2.57 ·109 104 2.57 ·105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.04 0.04 0.11 0.11

Skewness 0.91 0.91 1.09 1.08

Kurtosis 1.20 1.16 1.58 1.52

(b) k = 4

Table 3.3: Summary statistics of the distances when (a) k = 3, (b) k = 4 with eigenvalues

ΛB. Table headers indicate the value of δ used. The second row gives the number of

simplices sampled.
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Example 3: Λ = ΛC . The third dataset considered here is 50-dimensional with many

small and zero eigenvalues. Figure 3.4 and Tables 3.4a and 3.4b show that small and zero

eigenvalues do not affect the success of the sampling method, as the distribution of the

distances measured are very close.
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(a) k = 3, δ = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Distances

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y 
of

 d
ist

an
ce

2.07 105 simplices
10000 simplices

(b) k = 3, δ = 1
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(c) k = 4, δ = 2
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(d) k = 4, δ = 1

Figure 3.4: Histograms to compare the distribution of the simplicial distances from all

points to the mean for eigenvalues ΛC with different parameters k and δ for different

sampling amounts. The blue solid line is the full (or larger) sample of simplices, the

orange dotted line is the smaller sample of simplices.

δ = 2 δ = 1

# simplices 2.07 ·107 104 2.07 ·105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.08 0.08 0.22 0.22

Skewness 0.81 0.81 1.10 1.11

Kurtosis 1.64 1.64 2.43 2.47

(a) k = 3

δ = 2 δ = 1

# simplices 2.57 ·109 104 2.57 ·105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.06 0.06 0.14 0.14

Skewness 0.62 0.62 0.86 0.86

Kurtosis 1.36 1.34 1.82 1.84

(b) k = 4

Table 3.4: Summary statistics of the distances when (a) k = 3, (b) k = 4 with eigenvalues

ΛC . Table headers indicate the value of δ used. The second row gives the number of

simplices sampled.
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Overall, it is clear that sampling is an effective way to drastically reduce computation

time while maintaining very similar results to the full simplicial distances. This means

that using the distances with δ , 2 is much more accessible than it otherwise would be.

Section 3.3.2 considers the choice of the parameter δ in more depth, including a compar-

ison of computation times.

3.3 Parameter selection for the simplicial distances

The simplicial distance measure is characterised by two parameters. The parameter k

dictates the dimension of the simplices used to calculate the simplicial distances (or the

degree of the polynomial used, if using the method detailed in Section 3.2.2). Different

values of k can affect the performance of the distances drastically, as will be shown in

Section 3.3.1, and can provide access to the ℓδ distance and Mahalanobis distance (if it

exists).

The exponent parameter δ also changes the behaviour of the distance: in Section 3.3.2,

the effect of the parameter δ is compared to the commonly used ℓδ distance measures.

The time taken to compute the distance is affected by the choice of k and δ, which may

play an influential part in parameter selection. The time taken to compute the distance

will therefore also be explored in Section 3.3.2.

3.3.1 Choosing k in the simplicial distances

The choice of the parameter k can greatly influence the behaviour of the simplicial dis-

tances. This section considers how different choices of k affect the distance through ex-

perimental results.

For the three datasets detailed in Table 3.1, the k-simplicial distances between all points

x ∈ X to the dataset X itself are found, for both δ = 2 and δ = 1. Values of k ≤ r are

considered, where r is the rank of the dataset being considered. Figure 3.5 shows the

plots of the empirical cumulative distribution function (CDF) for each combination of

parameters, for the three datasets. Note that for distances using δ = 1, sampling is used to

find the distance, using the method described in Section 3.2.3. Examples using δ = 2 also

consider the squared Moore-Penrose (MP) Mahalanobis distance over r, which is equal
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to the k-simplicial distance with k = r.

Example 1: Λ = ΛA. The CDFs for the distances with δ = 2 and δ = 1 are given in Fig-

ure 3.5a and Figure 3.5b, respectively. These figures indicate that the squared Euclidean

distance (proportional to the simplicial distance with k = 1, δ = 2) produces a large range

of distances with high variance, when compared to the distances produced with other val-

ues of k. In the δ = 2 case, low values of k (compared to the rank r = 9) begin to converge

away from the squared Euclidean distance, and towards the squared MP Mahalanobis dis-

tance quickly. Figure 3.5b shows a similar pattern for the distance with δ= 1: the variance

of the distances decrease as the value of k increases.

Example 2: Λ = ΛB. The CDFs for the distances with both δ = 2 and δ = 1 are given in

Figure 3.5c and Figure 3.5d. For relatively low values of k (compared to the rank r = 40),

such as k = 10, the distances converge towards those produced when k = r, i.e. the MP

Mahalanobis distance in the case δ = 2. A similar profile is observed for δ = 1.

Example 3: Λ = ΛC . The CDFs for the distances with δ = 2 and δ = 1 are given in

Figure 3.5e and Figure 3.5f. Again, for relatively low values of k (compared to rank

r = 22) the CDFs of the simplicial distances converge towards the CDF of the distance

where k = r. Note that in Figure 3.5f, for δ = 1, k = 10, the CDF of the distances lies

directly underneath the CDF of the distances using k = 22, as the distances produced are

so similar.

Figure 3.5 demonstrates that the simplicial distances transition from the squared Eu-

clidean distance to the squared Mahalanobis distance for δ = 2 as k increases, up to some

scaling. A similar monotonic behaviour is shown for δ = 1. The eigenvalues of the sample

covariance matrix have an effect on what an appropriate choice of k may be. It is impor-

tant to ensure the most influential dimensions (that is, those with the largest eigenvalues)

are all considered, by taking k larger than the number of large eigenvalues.

For example, consider Figure 3.5e. The two large eigenvalues in ΛC [100,100] result in

the distances with k = 2 behaving similarly to the distances with k = 1, particularly in the

δ = 2 case. In Figure 3.5a, which considers ΛA, the CDF produced using the distance with

k = 2 is very different to the CDF where k = 1, as there is only one large eigenvalue.
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(b) ΛA, δ = 1
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(c) ΛB, δ = 2
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(d) ΛB, δ = 1
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(e) ΛC , δ = 2
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(f) ΛC , δ = 1

Figure 3.5: CDFs of the simplicial distances using different values of k for the datasets

given in Table 3.1 using δ = 2 and δ = 1.
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In general, it is recommended to use a value of k that is larger than the number of ‘large’

eigenvalues the covariance matrix Σ has. This is easier to see when there is a clear elbow

or ‘drop-off’ in the value of the eigenvalues. Otherwise it can be appropriate to find

the simplicial distances with several values of k and measure the best value according to

some metric appropriate to the task, much like methods used when performing K-means

clustering and other parameter-dependent tasks.

Not much performance gain is made by choosing a value of k that also encompasses the

smaller eigenvalues. As an example of this, see Figure 3.5c, where there are two ‘large’

eigenvalues, 5 ‘medium’ eigenvalues, 33 ‘small’ eigenvalues and 10 zero eigenvalues.

Taking k = 10 does not give a huge improvement in performance compared to k = 5,

where performance is measured here by the minimizing of variance, but using k = 10 is

more computationally expensive.

3.3.2 Choosing δ in the simplicial distances

This section considers the choice of the exponent parameter δ. Some intuition behind the

different choices of δ is given by drawing comparisons to the well-known ℓδ distance mea-

sures, defined below. Comparisons between the simplicial distances with different values

of δ will be made by measuring the relative contrast of the distances, as considered by

Aggarwal et al. in [5]. The subsection will conclude with some timing comparisons be-

tween the distance using the methods outlined in Section 3.2.2 for δ = 2, and the sampling

methods outlined in Section 3.2.3 for other values of δ.

The choice of the parameter δ has a large influence on the behaviour of the simplicial

distances. When k = 1, the simplicial distance between a point x ∈Rd and the set X ∈ Rd×N

is proportional to the ℓδ distance between x and µ, the sample mean of the dataset X [192].

The ℓδ distances are defined as

ℓδ(x, µ) =

 d∑
i=1

|xi−µi|
δ


1/δ

,

and were previously introduced in Section 2.2.1 of the literature review.

The ℓ2 distance is also known as the Euclidean distance, and is perhaps the most com-

monly used distance measure in data analysis. It is particularly useful for applications
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such as outlier detection: a greater value is assigned to outliers due to the square expo-

nent in the ℓ2 measure, putting more emphasis on outlying points and making them more

detectable than distances with δ < 2. However, this does mean that if outliers are not

removed from a dataset, the ℓ2 distance is much more likely to be influenced by them,

meaning it is not always a very robust distance. It also reduces the importance of points

near each other, as the small value of the distance becomes smaller when squared.

The ℓ1 distance is also commonly known as the Manhattan distance. It is the sum of

absolute differences between each component of the points. On the contrary to the ℓ2

distance, the ℓ1 distance is more resistant to outliers in the sense that it does not put more

emphasis on large values, and so will not be as easily influenced by outliers. Clearly,

the choice of distance measure is very much dependent on the application, and neither of

these distance measures will consistently outperform the other, as is true for all distance

measures.

Relative constrast of the distances

As discussed in Section 2.4.2 of the literature review, the difference between the minimum

and the maximum pairwise distances between any two points in a dataset tends to zero

as the dimension d of the data increases [33]. This is shown to be the case for a variety

of distance measures and data distributions. Let D(δ,k)
min (d) and D(δ,k)

max(d) be the minimum

and maximum pairwise distances of all points in a d-dimensional dataset measured by the

simplicial distance with parameter δ. Define the relative contrast (RC) as:

R(δ,k)(d) =
D(δ,k)

max(d)−D(δ,k)
min (d)

D(δ,k)
min (d)

. (3.15)

The minimum value of R(δ,k)(d) is zero, when D(δ,k)
max(d) = D(δ,k)

min (d). A small RC value near

zero indicates that there is very little difference between the maximum and the minimum

distances measured in the dataset, decreasing the meaningfulness of the distance.

It is shown in [5] that R(2,1)(d) (the RC of the Euclidean distance) is typically smaller than

R(1,1)(d) (the RC of the Manhattan distance), particularly as d increases, which indicates

that the ℓ1 distance is often a more useful and intuitive distance measure in high dimen-

sions. The authors also show that it can be beneficial to use ℓ f metrics with f ∈ (0,1) in

high dimensional spaces. The examples given in [5] are extended below to the simplicial

distances with different values of k and δ.
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First, the RCs of the regular ℓδ distances are considered, for δ = 1/2, δ = 1 and δ = 2. Fig-

ure 3.6 compares the RCs of these distances for different dimensions, for both uniformly

distributed and normally distributed data. The methodology for uniformly distributed data

is as follows, for each value of d:

1. Generate 100 d-dimensional datasets from the standard uniform distribution, each

with 100 points. Centre each dataset by subtracting its mean.

2. For each dataset, find the distances from each point to the origin using a given ℓδ

distance.

3. For each dataset, find the RC (3.15) of the distance measure.

4. Calculate the mean RC for each distance measure over the 100 datasets.

The mean RC over the 100 datasets is plotted in Figure 3.6a, for each value of δ. The

same method is used in Figure 3.6b, but the datasets are generated from the standard

multivariate Gaussian distribution. As expected, given the results in [5], the RC decreases

as δ increases, which may indicate that δ = 1/2 is the more suitable distance for high

dimensional data analysis. However, the ℓδ distance with δ < 1 is known to not satisfy the

triangle inequality [135], making it a ‘semi-distance’ [251], rather than a formal distance

measure. Consequently, any methods that rely on the triangle inequality cannot use an ℓδ

distance with δ < 1 [26, 71, 180, 183]. Therefore, it is recommended to use a well-defined

distance rather than a semi-distance to avoid producing nonsensical results [175].

0 100 200 300 400 500
d

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e 

Co
nt

ra
st

1/2

1
2

(a) Uniform data

0 100 200 300 400 500
d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e 

Co
nt

ra
st

1/2

1
2

(b) Gaussian data

Figure 3.6: Relative contrast of the ℓ1/2, ℓ1 and ℓ2 distances for (a) uniform data and (b)

Gaussian data as d increases, averaged over 100 generated datasets.
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This exercise is now repeated using the simplicial distances. Experiments showed that the

RC of the simplicial distance was similar for different values of k, so only k = 3 is used

in Figure 3.7. The simplicial distance with δ = 1/2 clearly has a larger relative contrast

than the simplicial distance with δ = 1 and δ = 2 for all values of d considered, for both

the uniform and Gaussian examples. Using δ = 1 also consistently has a higher relative

contrast than δ = 2. According to the claim that a higher RC means a more informative

distance measure [5], the simplicial distance with parameter δ= 1/2 would be the distance

of choice, out of the three considered here. However, considering the previous discussion

about semi-distances, one should proceed with caution if using the δ = 1/2 parameter, and

perhaps should consider sticking to the classical values of δ = 1 and δ = 2, as suggested

in [175] for the ℓδ distances.
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Figure 3.7: Relative contrasts of the simplicial distances with k = 3 for (a) uniform data

and (b) Gaussian data as d increases, averaged over 100 generated datasets.

The RC plots also allow for comparison between different types of distances, e.g. between

simplicial distances and ℓδ distances. Define the ‘Mahalanobis-δ’ distance as follows. For

a set of points X ∈ Rd×N , find the mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. Use the

mean and the square root of the inverse covariance matrix to whiten and centre the data:

Y = Σ−1/2(X−µ) ∈Rd×N . Then find distances from all points in the whitened data Y to the

origin with an ℓδ distance to give the Mahalanobis-δ distance. In Figures 3.8 and 3.9, the

RC values of the ℓδ distances are compared to the Mahalanobis-δ distances, as well as the

simplicial distance with different values of δ for k = 2,3,4.

Figures 3.8 and 3.9 show that for all values of δ, the Mahalanobis-δ distance gives the
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smallest RC. For δ = 2, there is a negligible difference between the RC values of the

ℓδ distance and the simplicial distance. For δ = 1 and δ = 1/2, the simplicial distance

measures give higher RC than both the ℓδ and Mahalanobis-δ distances. According to the

claims in [5], this indicates that using the simplicial distance with δ = 1 or δ = 1/2 gives

more informative results than using the ℓδ or Mahalanobis-δ distances.
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Figure 3.8: Relative contrasts of the ℓδ distances, Mahalanobis-δ distances and simplicial

distances with k = 2, 3, 4 and different values of δ for uniformly distributed data with

increasing d.
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Figure 3.9: Relative contrasts of the ℓδ distances, Mahalanobis-δ distances and simplicial

distances with k = 2, 3, 4 and different values of δ for Gaussian distributed data with

increasing d.

Overall, it is recommended to use the simplicial distance with δ = 1 or δ = 2. The simpli-

cial distance with δ = 1/2 or other values of δ < 1 can produce distances with higher RC

values, but the cost of violating the triangle inequality can be great [26].

Choosing between the parameters δ = 1 and δ = 2 is a decision usually based on appli-

cation. Much like the discussion of the ℓ2 distance versus the ℓ1 distance at the start of

this section, the simplicial distance with δ = 1 can provide a more robust distance mea-

sure that is resistant to outliers. It has been shown [5] that the Manhattan distance is a
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more appropriate distance measure to be used in high dimensions than other ℓp distances

(p ∈ Z+), as it has a higher RC. Based on this theory, one could deduce that using δ = 1 in

the simplicial distance is a better choice than using δ = 2 for preserving contrast between

the distances of the points.

Timing comparisons

The computation time may be another influence in the choice of the parameter δ in the

simplicial distance. When using δ = 2, there is a method of computation through poly-

nomials, outlined in Section 3.2.2, which is often faster than computing the distances

through simplices. Otherwise, if using δ , 2, the volumes of simplices must be calculated

directly. Sampling methods (discussed in Section 3.2.3) can help speed up the calculation

of simplex volumes to improve computation time when using δ , 2.

In this subsection, some simulations are performed to illustrate the differences in timings

for different values of the parameter δ. For each value of d ∈ {3, 5, 10, 20, 30, 50, 100, 200,

500, 1000}, 100 different datasets are generated from the standard normal distribution,

each with N = 1000 points. For values of k ∈ {3, 4, 5, 6, 7}, where k ≤ d, the simplicial

distance from all 1000 points to the dataset itself is measured. Table 3.5 and Table 3.6

give the mean time (and standard deviation) taken to measure the 1000 distances in one

dataset when using the simplicial distance for δ = 2 and δ = 1, respectively.

Table 3.5 gives the mean time and standard deviation to calculate 1000 distances using

δ = 2 through polynomial methods. Within the polynomial Sk, the summation in Equa-

tion (3.9) includes powers of Σi (i = {0,1, . . . ,k−1}) to find qk(Σ). As d increases the com-

putation time increases, as it becomes more computationally expensive to find powers of

the d×d matrix Σ. To improve computation time, it is recommended to iteratively multi-

ply by Σ (this method is used to find the timings in Table 3.5) or use Horner’s method for

polynomial evaluation to find these powers, see Section 4.2 of [101]. Parallel processing

could also be used to improve the computation speed, particularly as d gets large.

The timings given for δ = 1 in Table 3.6 are slower than those for δ = 2, for the most

part, due to the need to compute the distance via simplex volumes. However, there is a

lot of potential improvement to be made in computation time. For example, there may be

more efficient ways to find the samples of simplices. Let g be the number of simplices
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@
@
@
@@

d

k
3 4 5 6 7

3 0.015 ± 0.003 — — — —

5 0.024 ± 0.004 0.025 ± 0.004 0.025 ± 0.005 — —

10 0.042 ± 0.010 0.041 ± 0.008 0.041 ± 0.009 0.041 ± 0.010 0.043 ± 0.011

20 0.093 ± 0.009 0.091 ± 0.008 0.093 ± 0.009 0.094 ± 0.010 0.091 ± 0.008

30 0.171 ± 0.014 0.173 ± 0.013 0.170 ± 0.014 0.170 ± 0.011 0.172 ± 0.014

50 0.379 ± 0.020 0.374 ± 0.015 0.379 ± 0.016 0.383 ± 0.021 0.377 ± 0.016

100 1.558 ± 0.208 1.523 ± 0.163 1.544 ± 0.213 1.513 ± 0.169 1.529 ± 0.206

200 5.500 ± 0.758 5.521 ± 0.811 5.502 ± 0.668 5.484 ± 0.790 5.445 ± 0.649

500 24.597 ± 1.026 24.533 ± 0.989 24.362 ± 0.675 24.340 ± 0.744 24.492 ± 0.683

1000 89.273 ± 3.621 88.955 ± 2.749 89.248 ± 3.413 88.927 ± 2.705 88.619 ± 2.083

Table 3.5: The mean ± standard deviation time (in seconds) taken to compute the simpli-

cial distance with δ = 2 for N=1000 points for changing d and k, using the polynomial

method from Section 3.2.2.

to be sampled. Currently, the code used for this example finds g random combinations

of the indices {1,2, . . . ,N}, checks for duplicates and replaces them with a new random

combination, and repeats until there are no duplicates. Furthermore, these distances were

computed without the use of any parallel processing. Parallel processing could be used

in two ways here: either by assigning points to different processors, which could speed

the computation up considerably, or by finding the volumes of the g simplices in paral-

lel.

Figure 3.10 gives a visualization of the mean time taken to produce the distances for

different values of δ and k. When δ = 2, different values of k have minimal impact on the

time taken to produce the distances. However, the time taken to compute the distance is

affected by the dimension d of the dataset.

On the other hand, Figure 3.10 shows that the time taken to compute distances when δ = 1

is affected by the parameter k. The dimension of the dataset does have an effect on the

time taken to compute distances, but not in a monotonic way, and this effect is not as

pronounced as it is on δ = 2.
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@
@
@
@@

d

k
3 4 5 6 7

3 66.956 ± 3.920 — — — —

5 69.163 ± 5.381 70.401 ± 3.927 73.411 ± 4.374 — —

10 66.360 ± 4.327 67.743 ± 3.278 71.005 ± 4.861 75.329 ± 6.224 76.544 ± 4.746

20 63.099 ± 0.718 65.001 ± 0.647 67.578 ± 0.805 71.033 ± 0.967 73.723 ± 0.907

30 57.888 ± 6.962 60.010 ± 7.406 63.432 ± 8.002 65.949 ± 8.061 67.569 ± 7.656

50 52.631 ± 1.720 56.791 ± 1.874 56.289 ± 1.979 59.299 ± 2.207 61.488 ± 2.227

100 52.635 ± 1.173 56.483 ± 1.348 56.750 ± 1.243 60.303 ± 1.462 62.960 ± 1.348

200 54.216 ± 0.497 55.502 ± 0.378 59.479 ± 0.999 63.319 ± 1.289 67.446 ± 1.572

500 61.209 ± 1.040 62.235 ± 0.798 70.591 ± 0.758 75.887 ± 1.008 84.250 ± 1.592

1000 76.743 ± 6.663 76.971 ± 5.904 89.149 ± 8.086 96.216 ± 6.934 112.356 ± 8.644

Table 3.6: The mean ± standard deviation time (in seconds) taken to compute the simpli-

cial distance with δ = 1 for N=1000 points for changing d and k, using a sample of 1000

simplices.
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Figure 3.10: Plotting the mean time taken to find N = 1000 distances over 100 runs, using

the simplicial distances with different values of δ and k. The left plot considers δ = 2, the

right plot considers δ = 1 with a sample of 1000 simplices.

Overall, it seems that using δ = 2 through the elementary symmetric function method in

Section 3.2.2 is much faster than using δ = 1 for smaller values of d with a sample of

simplices. However, as d increases (particularly for d = 1000), this time advantage over

δ = 1 becomes less significant. This will be affected by the size of the sample of simplices

when computing using volumes, but this sampling parameter can be adjusted according

to the preference of time vs precision.
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3.4 Distribution of the simplicial distances with δ = 2

As in Section 3.2, let X = {x1, . . . , xN} be a d ×N matrix. Let the d-dimensional vector

µ be the sample mean of the N observations, and let Σ be the d × d sample covariance

matrix of X. From Section 3.2.2, the k-simplicial distance with δ = 2 can be written as the

quadratic form

ρ2
k,2(x, X) = (x−µ)⊤

Sk

k
(x−µ). (3.16)

This makes it possible to use known properties of quadratic forms [171] to find repre-

sentations of this distance through random variables, as well as the probability density

function (PDF) and cumulative distribution function (CDF) of the distances produced us-

ing the simplicial distances. The translation of the points x by −µ gives E
[
ρ2

k,2(x, X)
]
= 0,

which simplifies the calculations.

3.4.1 Nonsingular case

First, consider the case where Σ is a nonsingular matrix. Define W = Σ
1
2

Sk
k Σ

1
2 . Let

P = [P1, . . . ,Pd] be an orthogonal matrix which diagonalizes W; that is,

P⊤WP = P⊤Σ
1
2

Sk

k
Σ

1
2 P = diag(ψ1, . . . , ψd)

where Ψ = {ψ1, . . . , ψd} are the eigenvalues of W. Define the matrix U = P⊤Σ−
1
2 X. The

distance measure can then be represented through random variables as

ρ2
k,2(x, X) =

d∑
j=1

ψ jU2
j , (3.17)

as given by Equation 3.1a.5 in [171]. It can be shown, thanks to this representation, that

ρ2
k,2(x, X) is a linear combination of independent central chi-square variables.

The results of Section 4.2 of [171] give rise to the PDF and CDF of the distances when Σ

is nonsingular. The PDF and CDF of ρ2
k,2(x, X) are, respectively,

fd(Ψ, y) =
∞∑
ℓ=0

(−1)ℓcℓ
y

d
2+ℓ−1

Γ(d
2 + ℓ)

, 0 < y <∞ (3.18)

and

Fd(Ψ, y) =
∞∑
ℓ=0

(−1)ℓcℓ
y

d
2+ℓ

Γ(d
2 + ℓ−1)

, 0 < y <∞,
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where

cℓ =


Πd

j=1(2ψ j)−1/2 ℓ = 0,

1
ℓ

∑ℓ−1
j=0 gℓ− jc j ℓ ≥ 1,

and

gℓ =
1
2

d∑
j=1

(2ψ j)−ℓ.

The random variable representation and PDF equation are shown in practice in Fig-

ure 3.11. 500 observations are generated from a 10-dimensional dataset X ∼ N(0,Σ),

where Σ has eigenvalues [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]. The distance from every point

x ∈ X to the mean of the dataset X is calculated using the simplicial distance with k = 6,

and is shown as the blue solid line in Figure 3.11a. The random variable representation

as given in (3.17) is shown by the dotted orange line in Figure 3.11a. These two lines in

Figure 3.11a coincide, showing the representation exactly matches the distances produced

by the simplicial distance with k = 6. In Figure 3.11b, the blue histogram again shows

the distances calculated using the simplicial distance, and the orange solid line shows

the PDF calculated using Equation (3.18). The histogram closely matches the PDF line.
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Figure 3.11: Using k = 6, the simplicial distance is measured from all points in a non-

singular 10-dimensional dataset to the centre. Figure (a) compares these distances (blue

solid line) with the random variable representation in (3.17) (orange dotted line); Figure

(b) compares these distances (blue histogram) with the PDF given in Equation (3.18) (or-

ange solid line).
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3.4.2 Singular case

The case where Σ is a singular matrix with rank r < d is now considered. Again following

the results given in [171], write Σ = BB⊤, where B is a matrix of size d× r with rank r.

Consider the linear transformation X−µ = BY , where Y is an r×N matrix with E[Y] = 0

and identity covariance matrix. Then Equation (3.16) can be written as:

ρ2
k,2(x, X) = (BY)⊤

Sk

k
BY = Y⊤B⊤

Sk

k
BY.

Let P be an orthogonal matrix such that

P⊤B⊤
Sk

k
BP = diag(ψ1, . . . , ψr),

where Ψ = {ψ1, . . . , ψr} are the eigenvalues of B⊤ Sk
k B. Letting Z = P⊤Y , there is then the

following representation through random variables:

ρ2
k,2(x, X) = Z⊤diag(ψ1, . . . , ψr)Z =

r∑
j=1

ψ jZ2
j . (3.19)

Assuming B⊤ Sk
k B , 0, the PDF and CDF of the simplicial distance in the singular case

are given, respectively, as follows:

fd(Ψ, y) =
∞∑
ℓ=0

cℓ
y

r
2+ℓ−1

Γ( r
2 + ℓ)

, 0 < y <∞, (3.20)

Fd(Ψ, y) =
∞∑
ℓ=0

cℓ
y

r
2+ℓ

Γ( r
2 + ℓ+1)

, 0 < y <∞,

where

cℓ =


Πr

j=1(2ψ j)−
1
2 ℓ = 0,

1
ℓ

∑ℓ−1
j=0 gℓ− jc j ℓ ≥ 1,

and

gℓ =
1
2

ℓ∑
j=1

(2ψ j)−ℓ(−1)ℓ.

Figure 3.12 repeats the findings of Figure 3.11 for the case where Σ is singular. As before,

500 observations are generated from a 10-dimensional dataset X ∼ N(0,Σ), where Σ now

has eigenvalues [10, 9, 8, 7, 6, 5, 4, 3, 2, 0]. The histogram of simplicial distance with

k = 5 between every point x ∈ X and the sample mean of X again coincides with the

histogram produced by the random variable representation in Figure 3.12a. The orange

line representing the PDF in Figure 3.12b is also a good fit to the simplicial distances

shown by the histogram.
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Figure 3.12: Using k = 5, the simplicial distance is measured from all points in a singular

10-dimensional dataset to the centre. Figure (a) compares these distances (blue solid line)

with the random variable representation in Equation (3.19) (orange dotted line); Figure (b)

compares these distances (blue histogram) with the PDF given in Equation (3.20) (orange

solid line).

3.4.3 Moments of the simplicial distances with δ = 2

The first four central moments of the simplicial distances can be found using Lemma 6.1

of [199]. The general form of the moments of a quadratic form are given in Appendix A.1.

For a dataset X with mean µ and covariance matrix Σ, consider the k-simplicial distance

with δ = 2 from a point x ∈ X to the dataset X as the quadratic form:

ρ2
k,2(x,X) = (x−µ)⊤

Sk

k
(x−µ).

The expectation, variance, skewness and kurtosis of the k-simplicial distance with δ = 2

are:

E
(
ρ2

k,2(x,X)
)
=

1
k

trace(SkΣ)

Var
(
ρ2

k,2(x,X)
)
=

2
k2 trace

(
[SkΣ]2

)
Skew

(
ρ2

k,2(x,X)
)
=

2
√

2trace
(
[SkΣ]3

)
trace

(
[SkΣ]2

)3/2

Kurt
(
ρ2

k,2(x,X)
)
=

12trace
(
[SkΣ]4

)
trace

(
[SkΣ]2

)2 .

(3.21)

For more information on the derivation of the equations in (3.21), see Appendix A.2. The

necessary conditions for the moment formulae in (3.21) to hold are:
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• The matrix Sk must be symmetric. Sk is a weighted sum of the covariance matrix

Σ, which is symmetric by definition.

• (x− µ) ∼ N(0,Σ), with Σ positive definite. Given x ∼ N(µ,Σ), the centered value

(x− µ) satisfies this condition. As Σ is the covariance matrix of X, it is positive

definite by definition.

To check the accuracy of these moment formulae, Table 3.7 and Table 3.8 compare them

with the empirical moments. To do so, 1000 random Gaussian datasets are generated and

the simplicial distances (with various values of k) are calculated. The empirical moments

are calculated for each dataset, and the mean (and standard deviation) for each of the

moments over the 1000 datasets is reported in the table. These can then be compared

to the mean of the theoretical moments given in (3.21). Table 3.7 considers d = 10, and

Table 3.8 considers d = 100.

Mean Variance Skewness Kurtosis

k = 3

Empirical 1.000 (6.82e-06) 0.316 (0.007) 1.267 (0.018) 2.619 (0.058)

Theoretical 1.000 (3.39e-16) 0.340 (0.019) 1.320 (0.046) 2.778 (0.203)

k = 5

Empirical 1.000 (1.55e-06) 0.316 (0.004) 1.260 (0.014) 2.569 (0.061)

Theoretical 1.000 (1.08e-15) 0.289 (0.011) 1.154 (0.022) 2.070 (0.078)

k = 7

Empirical 1.000 (6.41e-07) 0.300 (0.005) 1.215 (0.013) 2.410 (0.040)

Theoretical 1.000 (2.95e-13) 0.252 (0.008) 1.036 (0.013) 1.634 (0.037)

Table 3.7: Comparison of the empirical and theoretical means (standard deviations) of

the moment values of the simplicial distance over 1000 runs for randomly generated 10-

dimensional Gaussian datasets.
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Mean Variance Skewness Kurtosis

k = 3

Empirical 1.000 (8.53e-06) 0.041 (0.005) 0.552 (0.112) 1.088 (1.009)

Theoretical 1.000 (4.88e-16) 0.040 (0.001) 0.502 (0.005) 0.424 (0.011)

k = 5

Empirical 1.000 (3.92e-07) 0.039 (0.001) 0.494 (0.004) 0.506 (0.026)

Theoretical 1.000 (5.06e-16) 0.039 (0.001) 0.493 (0.005) 0.406 (0.009)

k = 7

Empirical 1.000 (2.39e-07) 0.039 (0.001) 0.486 (0.002) 0.452 (0.010)

Theoretical 1.000 (4.67e-16) 0.039 (0.008) 0.484 (0.004) 0.390 (0.008)

Table 3.8: Comparison of the empirical and theoretical means (standard deviations) of

the moment values of the simplicial distance over 1000 runs for randomly generated 100-

dimensional Gaussian datasets.

3.5 Applications of the simplicial distances

The possible applications of the simplicial distances are abundant, as many multivariate

data analysis methods are reliant on measures of distance between points in space. As the

dimension increases, finding a reliable distance measure becomes challenging, thanks to

poor relative contrast (see Section 2.4.2) and counterintuitive geometrical properties (see

Section 2.4.1). It is increasingly likely that data will have correlations as more variables

are added, making the use of the Mahalanobis distance more desirable as dimensions

increase. However, these correlations, combined with the often low-rank nature of high

dimensional data [235], mean that the Mahalanobis distance is commonly unavailable due

to degeneracy, and an alternative distance measure must be used.

The applications considered here include outlier detection, K-means clustering and the

whitening of datasets. Of course, the need for distances that are usable in degenerate and

correlated datasets stretch far beyond these examples, and can be considered in applica-

tions as varied as approximate Bayesian computation [10], image processing [269, 270]

and support vector machines [242]. The Mahalanobis distance is used across many fields,

including chemometrics [42, 62], finance [137, 224] and genomics [226, 256].
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3.5.1 Outlier labelling

This section describes one potential application of the simplicial distance measure. The

simplicial distance is a useful tool in identifying outlying points in high dimensional de-

generate datasets, where the Euclidean distance struggles to measure distance meaning-

fully, and the Mahalanobis relies on the inversion of a matrix possessing many small (and

possibly zero) eigenvalues. This example considers how the parameter k and the scalar

power δ affect the performance of outlier detection using simplicial distances.

Dataset Eigenvalues µ1 µ2

DI ΛI = [100,10,1,1]+ [0.00001]∗5+ [0] [0]∗10 [1]∗10

DII ΛII = [100,10,1,1]+ [0.00001]∗5+ [0] [0]∗10 [0]∗5+ [1]∗5

DIII ΛIII = [100,4,3,2,1]+ [0.00001]∗4+ [0] [0]∗10 [1]∗10

Table 3.9: Details of the datasets to be used in outlier labelling. All have d = 20 and

are made of two clusters of different sizes and different means µ1 and µ2, but the same

covariance matrix with the eigenvalues given in the table. The table gives details in Python

notation.

Three examples will be given, each with different sets of data. Each dataset Di is made up

of two clusters: Di,1 and Di,2 for i= I, II, III. The first cluster Di,1 has 450 points, mean µ1

as specified in Table 3.9 and covariance matrix produced by a matrix with eigenvalues as

specified in the table, rotated by a rotation matrix. See Appendix C.1 for more information

on the rotation method. The second cluster Di,2 has 50 points, a different mean µ2 but the

same covariance matrix as Di,1. By doing this, the robustness of the distances against

rotations and correlations in the data is tested, as well as the ability to tell two similar but

separate clusters apart.

The distances of all points in the dataset Di to the larger cluster Di,1 are measured. The

furthest 50 points from this larger cluster Di,1 are labelled as outliers for each dataset i.

Table 3.10 shows how many of the points the simplicial distances correctly labelled as

inliers and outliers, for different values of k and δ. If the method incorrectly labels all the

outlying points as inliers, the minimum value of 400 is achieved. A score of 500 indicates

all points were labelled correctly as outliers and inliers.
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Dataset DI Dataset DII Dataset DIII

k δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 δ = 1

1 412 412 408 408 406 406

2 412 412 418 418 420 416

3 440 444 432 442 436 436

4 492 500 482 498 444 448

5 500 500 500 500 482 496

6 500 500 500 500 500 500

7 414 500 416 500 498 500

8 410 500 408 500 406 500

9 412 500 410 500 406 500

Table 3.10: Number of points correctly identified as outliers and inliers by the simplicial

distances with differing values of k and δ, for datasets detailed in Table 3.9. Minimum

value is 400, maximum value is 500.

Table 3.11 provides the area under the receiver operating characteristic curve (AUC) score

for the labels produced by the distances, for different values of k and δ. The AUC score

measures the overall performance of a binary classifier, where a score of 1 indicates a per-

fect labelling and 0 is the minimum score, with a score of 0.5 indicating an uninformative

classifier.

Considering the simplicial distance with δ = 2, the values of k that perform best are

those that roughly correspond to the number of ‘large’ eigenvalues, as explained in Sec-

tion 3.3.1. For dataset DI , there are 4 ‘large’ eigenvalues and the values k = {4, 5, 6}

perform best when using δ = 2. Similar results are shown in datasets DII and DIII . Larger

values of k begin to break down when δ= 2 as they require the use of the smaller eigenval-

ues in all distance calculations, indicating that lower values of k outperform the squared

Moore-Penrose Mahalanobis distance over r.

Distances using δ = 1 are more robust to the effect of degeneracy. The performance im-

proves as k increases, but unlike the δ = 2 case, there is no breakdown in success once k

encompasses the smaller eigenvalues too, making it less sensitive to the choice of k than

the distance with δ= 2. This is likely due to the instability in the polynomials used to com-
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Dataset DI Dataset DII Dataset DIII

k δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 δ = 1

1 0.51 0.51 0.49 0.49 0.48 0.48

2 0.51 0.51 0.54 0.54 0.56 0.53

3 0.67 0.69 0.62 0.68 0.64 0.64

4 0.96 1.00 0.90 0.99 0.69 0.71

5 1.00 1.00 1.00 1.00 0.90 0.98

6 1.00 1.00 1.00 1.00 1.00 1.00

7 0.52 1.00 0.53 1.00 0.99 1.00

8 0.50 1.00 0.49 1.00 0.48 1.00

9 0.51 1.00 0.50 1.00 0.48 1.00

Table 3.11: AUC scores for outlier detection when using the simplicial distance with

different values of k and δ, for datasets detailed in Table 3.9.

pute the distances with δ = 2. The distances using δ = 1 were computed through simplex

volumes using very low sampling amounts, and so there is not considerable computational

time disadvantage in using δ = 1 over δ = 2, as seen in Section 3.3.2.

Overall, this example shows that using δ= 1 can produce a more stable and robust distance

measure than using δ= 2 as k increases, particularly for outlier detection applications.

3.5.2 K-means clustering

K-means clustering is an unsupervised machine learning algorithm, used to group data

into K groups, known as ‘clusters’. The K-means algorithm aims to find K groups within

the data, each with a centre point (known as a ‘centroid’) such that the total sum of dis-

tances between the points and their respective cluster centroid is minimized. An overview

of the method is given in Algorithm 1. The K-Means algorithm is classically applied

using the Euclidean distance, but research has shown success in applying the algorithm

with the Mahalanobis distance to exploit the covariance structure of a dataset [87, 174].

The performance of K-means clustering can be highly dependent on the initial method

of picking the first centroids, also known as the ‘initialisation method’ [53]. For further

details on the algorithm and its modifications, see [7, 120, 160, 221].
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Algorithm 1: K-means algorithm
Input: K: the number of clusters desired; X = {x1, x2, . . . , xN}: data matrix;

initialisation method; D(x,y): distance measure

Output: Produce K clusters of the points

1 Find the initial set of cluster centroids {c1, . . . ,ck} for the clusters C1, . . . ,Ck, using the

initialisation method chosen.

2 for xi ∈ X do

3 Compute the distance from xi to each cluster centroid c j using the chosen

distance measure D(xi,c j).

4 Let c∗ be the cluster centroid which minimizes this distance:

c∗ = argmin
c j

D(xi,c j)

5 Assign xi to the cluster associated with centroid c∗.

6 end

7 Update the cluster centroids with the mean of all the points in each cluster. For

j = 1, . . . ,K:

c j =
1
|C j|

∑
xi∈C j

xi

8 Repeat steps 2-7 until there is no reassignment of clusters to any points and no

movement of centroids, or some other stopping criterion.

Figure 3.13 shows iterations of the K-means algorithm on a 2-dimensional dataset gener-

ated to have 3 clusters. K-means is applied here using the state of the art Python package

Scikit-Learn [185]. The three clusters have the same covariance matrix, but different

means. In this example, the Euclidean distance does not correctly identify the three clus-

ters due to the elliptical nature of the clusters. When using the Euclidean distance, it is

assumed that the clusters are spherical.

To make use of the simplicial distance (or Mahalanobis distance) when using K-means,

an initial estimate of the clusters is needed to provide a starting covariance matrix for each

of the clusters [56]. Figure 3.14 shows the iterations of K-means clustering on the same

dataset as the one in Figure 3.13, but using the simplicial distance with k = 2 and δ = 2 as

the distance function. Iteration 8 of the Euclidean K-means (Figure 3.13h) is used as the
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Figure 3.13: Iterations of K-means with number of clusters K = 3, using the Euclidean

distance. Different colours indicate clusters, red stars indicate centroids and grey dotted

ellipses show the confidence ellipse for each cluster with 3 standard deviations.

starting point. The distance from every point xi ∈ X to each cluster centroid c j is found

using the respective sample covariance matrix Σ j of that cluster in that iteration. Given

that k = d and δ = 2, this is equivalent to using the Mahalanobis distance (upto a scaling

factor):

ρ2
2,2(xi,C j) =

1
2

(xi− c j)⊤Σ−1
j (xi− c j)

As the simplicial and Mahalanobis distances can account for non-spherical covariance

matrices, K-means using these distances correctly identifies the clusters in Figure 3.14.

The benefits of using the simplicial distance for applications such as clustering become

more evident as the dimensionality of the dataset increases. Consider a 20-dimensional

dataset made of three clusters, again all generated with the same covariance matrix Σ. Σ

is generated using eigenvalues [10, 0.5] + [0.3 ** i for i in range(18)] (us-

ing Python notation), and then rotated using the method detailed in Appendix C.1. This

creates a degenerate, correlated covariance matrix with a rank that is hard to detect. K-

means clustering is performed 500 times using three distance measures: the Euclidean

distance, the Mahalanobis distance with the Moore-Penrose pseudoinverse (denoted here

by Mahalanobis-pinv) and the simplicial distance with k = 3, all of which are performed

using the steps given in Algorithm 1. The adjusted rand (AR) score is used to compare
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Figure 3.14: Iterations of K-means with number of clusters K = 3, using the simplicial

distance with k = 2 and δ = 2. Different colours indicate clusters, red stars indicate cen-

troids and grey dotted ellipses show the confidence ellipse for each cluster with 3 standard

deviations.

the ‘true’ labels to the labels returned by the K-means algorithm. This metric is a measure

of similarity between two cluster labellings and is adjusted for chance (for more informa-

tion, see Appendix D.1 or [113, 185]). Figure 3.15 shows violin plots of the adjusted rand

scores.

Due to the non-spherical distribution of the clusters, the Euclidean distance does not per-

form as well in the clustering algorithm as those distances that account for elliptical dis-

tributions. The Mahalanobis-pinv distance performs better than the Euclidean distance

thanks to this, but the lack of clarity in the rank of the clusters causes issue in using the

Moore-Penrose pseudoinverse (see Section 2.5.4 for more information on the downfalls

of the Moore-Penrose pseudoinverse). The true inverse is not available for use within the

Mahalanobis distance here due to singularity. The simplicial distance with k = 3 performs

much more successfully, with median AR score equal to 1. There is a wider spread of
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Figure 3.15: Violin plot showing the distribution of adjusted rand scores of 500 runs of

K-means clustering with the Euclidean, Mahalanobis-pinv and simplicial k = 3 distances.

The red line shows the median adjusted rand score of the 500 runs for each distance.

AR scores for the simplicial distance, but the K-means algorithm is usually run several

times to find the best performing labelling, due to possible influences from initializations

and the possibility of falling into local minima [185]. This example shows that there are

circumstances in which the Euclidean distance and Mahalanobis distance do not perform

as well as the simplicial distance in clustering a dataset; particularly when the dataset is

correlated and degenerate.

3.5.3 Data whitening with simplices

Let X ∼ Nd(µ,Σ). When using δ = 2 in the simplicial distances, the matrix Sk is used as

an alternative to Σ−1 when finding distances of the form ρ2
Σ−1(x,X) = (x−µ)⊤Σ−1(x−µ).

There are many applications where it is beneficial to whiten a dataset, see Section 2.3

in the literature review for some examples. Whitening a full-rank dataset transforms the

dataset to have mean zero and covariance matrix equal to the d × d identity matrix. A

whitening transformation usually takes the form

XW =W(X−µ)

where W is referred to as the whitening matrix. In Mahalanobis whitening, W = Σ−1/2. It

is proposed here that W = S 1/2
k is used in place of Σ−1/2; this method will be referred to

as ‘simplicial whitening’.

As an example, consider a dataset X(A) randomly generated from a multivariate normal

distribution in d = 10 dimensions, with mean zero and covariance matrix Σ(A), where Σ(A)
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is generated to have eigenvalues [10, 5, 4, 3, 2, 1.5, 1, 0.5, 0.1, 0.01] and rotated using the

method detailed in Appendix C.1. The whitening of X(A) is illustrated using heatmaps of

the covariance matrix: Figure 3.16a shows the heatmap of the covariance matrix of X(A),

and Figure 3.16b shows the heatmap after Mahalanobis whitening, which is exactly equal

to the identity matrix.

(a) Covariance matrix of dataset X(A) (b) Covariance matrix of Σ−1/2X(A)

Figure 3.16: Heatmaps of the covariance matrix of the dataset X(A) (a) before whitening

and (b) after being whitened by the inverse square root of the covariance matrix.

(a) S 1/2
4 X(A) (b) S 1/2

6 X(A) (c) S 1/2
8 X(A) (d) S 1/2

10 X(A)

Figure 3.17: Heatmaps of the covariance matrices of the dataset X(A) after being whitened

by the square root of the simplicial matrix Sk with (a) k = 4, (b) k = 6, (c) k = 8, (d) k = 10.

As with the simplicial distances, there is a gradual movement towards results similar to

Mahalanobis whitening as k increases in simplicial whitening, with k = d equal exactly to

the Mahalanobis whitening result.

The above exercise is repeated with a degenerate dataset. X(B) is again generated from

a 10-dimensional multivariate normal distribution with zero mean. Let L be a uniform

random matrix generated by the numpy.random.rand function in Python. Set the last
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(a) Covariance matrix of dataset X(B) (b) Covariance matrix of Σ−1/2X(B)

Figure 3.18: Heatmaps of the covariance matrix of the dataset X(B) (a) before whiten-

ing and (b) after being whitened by the Moore-Penrose pseudoinverse square root of the

covariance matrix.

row and column of L to be all zeros, and then let Σ(B) = L⊤L be the covariance matrix used

to generate X(B). The eigenvalues of the empirical covariance matrix of X(B) are [20.09,

1.53, 1.16, 0.80, 0.57, 0.35, 0.13, 0.05, 0.02, 0]. Since the covariance matrix is singular,

the square root of the Moore-Penrose pseudoinverse is used in Figure 3.18b. The fully

whitened covariance matrix is equal to the identity matrix with the last diagonal entry

equal to zero.

(a) S 1/2
4 X(B) (b) S 1/2

6 X(B) (c) S 1/2
8 X(B) (d) S 1/2

9 X(B)

Figure 3.19: Heatmaps of the covariance matrices of the dataset X(B) after being whitened

by the square root of the simplicial matrix Sk with (a) k = 4, (b) k = 6, (c) k = 8, (d) k = 9.

As with the previous example, the whitening becomes gradually more successful as k

increases. When k = r, where r is the rank of X(B), simplicial whitening produces the same

results as whitening with the square root of the Moore-Penrose pseudoinverse.

Consider a third dataset X(C) in 50-dimensions. The dataset is generated in the same way

as dataset X(B), and has eigenvalues [610.83, 15.84, 14.94, 12.82, 12.17, 11.37, 10.51,
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9.60, 8.81, 8.15, 7.95, 7.15, 6.50, 5.99, 5.47, 5.26, 4.64, 4.19, 3.94, 3.92, 3.52, 3.33, 3.06,

2.82, 2.64, 2.40, 2.14, 1.89, 1.77, 1.56, 1.39, 1.30, 1.04, 0.95, 0.87, 0.75, 0.66, 0.44, 0.36,

0.34, 0.28, 0.26, 0.17, 0.06, 0.05, 0.03, 0.03, 0, 0, 0]. Figure 3.20 shows the heatmaps

of the covariance matrix of X(C) and the covariance matrix after whitening by the square

root of the Moore-Penrose pseudoinverse matrix.

(a) Covariance matrix of dataset X(C) (b) Covariance matrix of Σ−1/2X(C)

Figure 3.20: Heatmaps of the covariance matrix of the dataset X(C) (a) before whiten-

ing and (b) after being whitened by the Moore-Penrose pseudoinverse square root of the

covariance matrix.

Figure 3.21 shows heatmaps of the covariance matrices after simplicial whitening with

different values of k. As with the 10-dimensional examples, a gradual improvement is

shown as k increases. However, perfect whitening (like the Moore-Penrose pseudoinverse

in Figure 3.20b) is not reached, as after k = 12 there is instability in the whitening.

To improve the simplicial whitening results, a method called ‘iterative whitening’ will

briefly be introduced here. This method will be more formally introduced in Section 5.4.

For simplicity and without loss of generality, assume µ = 0. Let Σ0 be the covariance

matrix of the dataset X = X(C).

To use iterative whitening, apply the whitening transformation XW1 =W1X, where W1 = S 1/2
k

using covariance matrix Σ0. Find the covariance matrix of XW1 , denoted Σ1, and find a new

whitening matrix W2 = S 1/2
k using covariance matrix Σ1. XW1 is then whitened by calcu-

lating XW2 =W2XW1 . This is repeated as many times as desired. As shown by Figure 3.22,

this results in much improved whitening capabilities using simplicial whitening.
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(a) S 1/2
3 X(C) (b) S 1/2

8 X(C) (c) S 1/2
10 X(C) (d) S 1/2

12 X(C)

Figure 3.21: Heatmaps of the covariance matrices of the dataset X(C) after being whitened

by the square root of the simplicial matrix Sk with (a) k = 3, (b) k = 8, (c) k = 10, (d) k = 12.

(a) Iteration 3 (b) Iteration 10 (c) Iteration 15 (d) Iteration 25

Figure 3.22: Heatmaps of the covariance matrix of the dataset X(C) after being iteratively

whitened by the square root of the simplicial matrix Sk with k = 9 after (a) 3 iterations,

(b) 10 iterations (c) 15 iterations, (d) 25 iterations.

Of course, applying iterative whitening is more computationally intensive than applying

the whitening transformation once. Figure 3.23 illustrates the time taken to compute the

whitened dataset with iterative whitening using different values of k. The black dotted

line also shows how long it takes to compute the whitened dataset using k = 12 and no

iteration, as given in Figure 3.22(d). This is clearly faster, but the results given by iterative

whitening are superior, and so it is likely worthwhile to use the slightly more expensive

iterative method.

The last dataset considered, X(D), is a 64-dimensional real dataset known as ‘Digits’.

This dataset will be used throughout examples in this thesis, see Section 5.3.1 for more

information (specifically Table 5.2). The dataset has rank r = 61, number of observations

N = 1791, and the covariance matrix of the dataset is given in Figure 3.24a. As r < d,

the covariance matrix of the dataset is singular. The square root of the Moore-Penrose

pseudoinverse is therefore used to perform Mahalanobis whitening, the results of which

are given in Figure 3.24b.
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Figure 3.23: Time taken to compute simplicial whitened copies of XC , using iterative

whitening with different values of k. The black dotted line shows the time to compute a

non-iteratively whitened dataset using k = 12.

Figure 3.25 shows that simplicial whitening does remove some correlations, but doesn’t

whiten the dataset as well as the Moore-Penrose pseudoinverse does in Figure 3.24b. As

with the previous example, the whitening transformation can be improved by applying

several iterations of simplicial whitening, as in Figure 3.27, where the dataset is near-

whitened (although requires some scaling). Such an improvement is more time consum-

ing, as demonstrated in Figure 3.26. Lower values of k can be used to improve such time

cost, at the potential expense of results, making this a performance versus time tradeoff,

as experiments show higher values of k perform better for this example.

(a) Covariance matrix of dataset Digits (b) Covariance matrix of whitened dataset Digits

Figure 3.24: Heatmaps of the covariance matrix of the dataset Digits (a) before whiten-

ing and (b) after being whitened by the Moore-Penrose pseudoinverse square root of the

covariance matrix.
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(a) S 1/2
3 X(D) (b) S 1/2

9 X(D) (c) S 1/2
19 X(D) (d) S 1/2

24 X(D)

Figure 3.25: Heatmaps of the covariance matrices of the dataset Digits after being

whitened by the square root of the simplicial matrix Sk with (a) k = 3, (b) k = 9, (c)

k = 19, (d) k = 24.
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Figure 3.26: Time taken to compute simplicial whitened copies of the Digits dataset,

using iterative whitening with different values of k. The black dotted line shows the time

to compute a non-iteratively whitened dataset using k = 12.

Overall, the simplicial distance matrix Sk can perform as a good alternative to the inverse

covariance matrix when it is not available, as has been demonstrated in a data whitening

setting amongst other applications.

3.6 Chapter summary

This chapter has presented the simplicial distances, a spectrum of distance measures found

using the volumes of k-dimensional simplices formed by data observations. The distance

was first introduced in [192], and has been adapted and built upon in [85] and this chapter.

The benefits of this distance measure include:

• The ability to account for correlations and rotations in the data when measuring

distances, which many common multivariate distance measures fail to do;
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(a) Iteration 3 (b) Iteration 10 (c) Iteration 15 (d) Iteration 29

Figure 3.27: Heatmaps of the covariance matrix of the dataset X(D) (so-called ‘Digits’)

after being iteratively whitened by the square root of the k-simplicial matrix Sk with k = 9

after (a) 3 iterations, (b) 10 iterations (c) 15 iterations, (d) 29 iterations.

• The ability to be used in degenerate (and near-degenerate) data, unlike the Maha-

lanobis distance;

• The amenability of the distance measure using parameters, making it more suitable

for varying applications;

• The lack of assumptions imposed on the data when using the distance, unlike many

alternatives to Σ and Σ−1 (see Section 2.5);

• Quick methods of computation via elementary symmetric functions and sampling

methods.

Some of the limitations of this method include:

• Instability if k is chosen too high in the elementary symmetric function representa-

tion. This is in line with other polynomial-based methods, where it is not recom-

mended to use a high degree [101];

• Not always achieving perfect whitening in Section 3.5.3. The suggestion of iterative

whitening methods can help to alleviate this issue;

• Calculating the full distance through simplex volumes is computationally expen-

sive. Using elementary symmetric functions or subsampling methods can reduce

the cost of computing the distance.

Two different methods for constructing the simplicial distances were provided, depending

on parameter choices. For any choice of the parameter δ, the distance can be constructed

using volumes of simplices (Section 3.2.1). When δ = 2, a method using elementary sym-
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metric functions and polynomials can be used to calculate the distances (Section 3.2.2),

making the distance more accessible and time-efficient. This method can be used to repre-

sent the distance through quadratic forms, allowing moments and distribution properties

to be found (Section 3.4). If the parameter δ is chosen not to be 2, a method of sampling

the simplices is given to improve the computational expense and time spent finding the

distance (Section 3.2.3). This is shown to have very minimal effect on the distance found,

making δ , 2 a viable parameter choice for the simplicial distances.

A discussion around the selection of parameters is given in Section 3.3. The parameter k

controls the dimension of the simplices (or degree of the polynomial, in the δ = 2 case).

When k = 1, the distance is proportional to the Euclidean distance. As k increases towards

r (the rank of the dataset), the behaviour of the distances become more and more similar to

the behaviour of the Mahalanobis distances. However, in later examples, numerical insta-

bility starts to cause issues for high values of k, particularly when used in conjunction with

the elementary symmetric function method of calculation. It is therefore recommended to

use a low value of k, which accounts for correlations in a similar way to the Mahalanobis

distance (if it were to exist), but will not be hindered by instability issues.

The parameter δ is an exponent in the simplicial distances, and can be likened to the

choice of δ in the ℓδ distances. While δ = 2 provides a distance similar to the very popular

Euclidean distance, it is known that ℓ1 distances can be more robust in high dimensions.

This is corroborated by the investigation into relative contrasts in Section 3.3.2. There-

fore, δ = 1 may be a good parameter choice in examples where outliers are present, or

the dimension is very high. A further consideration in the choice of parameter δ is the

time expense, which is also investigated in Section 3.3.2. It is shown that for low dimen-

sions, using the functional approach for δ= 2 is quicker than calculating distances directly

through simplex volumes. However, as the dimensions increase, this time advantage de-

creases, particularly if the sample size of simplices is well controlled.

Various numerical examples that highlight the potential applications of the simplicial dis-

tances are given in Section 3.5. The robustness of the distances using δ = 1 is shown

in an outlier detection setting. The simplicial distances outperform the Mahalanobis and

Euclidean distance in certain clustering examples with degeneracy and rotation in high di-

mensions. There are examples illustrating how the polynomial matrix found when using
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the δ = 2 parameter can be used to whiten data, and the concept of iterative data whitening

is briefly introduced, which will be further considered in Section 5.4.

Overall, this chapter has demonstrated that the simplicial distance measure is a robust yet

flexible method of measuring proximity in multivariate data. It performs well in cases

where existing methods like the Mahalanobis distance does not, and it does not impose

structural assumptions in its construction, unlike many other alternative methods to the

Mahalanobis distance.

The next chapter of this thesis will consider a novel distance measure with similar benefits,

inspired by some of the results produced by the simplicial distances.



Chapter 4

Minimal-Variance Distances

The research presented in this chapter forms part of a publication I have co-authored [85],

entitled Simplicial and Minimal-Variance Distances in Multivariate Data Analysis,

published in Journal of Statistical Theory and Practice, available at https://doi.org/

10.1007/s42519-021-00227-7.

The differences between the published manuscript and the contents of this chapter are:

• This chapter only includes research on minimal-variance distances. Research re-

garding simplicial distances is given in Chapter 3;

• This chapter details construction of the minimal-variance distances through poly-

nomials and weighted linear regression, whereas the publication only considers the

polynomial method;

• A more general approach to the constraint imposed on the distance measure is pro-

posed in this chapter. Investigations into the effects caused by changing the param-

eter in the constraint are given;

• Further applications of the minimal-variance distances are considered here. This

includes an outlier labelling example and comparisons to other distances in HDLSS

settings;

• Two alternative constraints for use within the minimal-variance distances are sug-

gested in this chapter.
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The aims of the research presented in this chapter are:

• To produces a family of distance measures which perform similarly to the Maha-

lanobis distance in multivariate data, but are not subject to the issues of degeneracy

faced by the Mahalanobis distance (see Section 2.2.2);

• To compute distance measures which minimize the overall variance of the distances

produced, motivated by trends shown by the simplicial distances in Chapter 3;

• To illustrate the flexibility of the minimal-variance distances, through choices of

parameters and different forms of constraints;

• To compare the minimal-variance distances to the simplicial distances, as well as

the Euclidean and Mahalanobis distances.

4.1 Introduction

Let X = {x1, x2, . . . , xN} ∈ R
d×N be a d-dimensional set of N points, with mean µ and co-

variance matrix Σ. This chapter presents a new family of distance measures, the so-called

‘minimal-variance’ distances. The motivation behind these distance measures is driven

by trends shown in images such as Figure 4.1, which was first presented in Section 3.3.1.

This figure shows the cumulative distribution functions (CDFs) of the simplicial distances,

discussed in Chapter 3, for various parameters k. The distance measures that perform

‘best’ (i.e. similarly to the Mahalanobis distance) are those that produce distances with

the smallest variance. The aim is therefore to find a matrix A that minimizes the variance

of the quadratic form (xi−µ)⊤A(xi−µ) for all xi ∈ X.
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Figure 4.1: CDFs of simplicial distances measured in a 50-dimensional dataset with dif-

ferent values of k. This figure is first seen in Section 3.3.1.
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4.2 Constructing the minimal-variance distances

In Section 4 of [85], the minimal-variance distances are constructed using polynomials in

the covariance matrix. A Lagrange multiplier method is used to find the polynomial coeffi-

cients that will minimize the variance of the distances, while abiding by a constraint which

ensures the minimal-variance matrix A behaves similarly to an inverse. In Section 4.2.1,

this method is generalized to use alternative constraints. Section 4.2.2 offers another

method of construction, using weighted linear regression to find the distances.

4.2.1 Construction through polynomials

Let X be defined as in Section 4.1. For a d× d symmetric matrix A, define the quadratic

form

ρ2
A(x,X) = (x−µ)⊤A(x−µ).

If A is positive definite, then ρA(x,X) can be considered as a generalized distance from a

point x ∈ Rd to the set of points X. Assuming for now that Σ is full-rank, the minimal-

variance distance constructs a matrix polynomial A in Σ of degree k ≤ d, where k is a user-

defined parameter. Like the simplicial distances, this forms a spectrum of distances which

includes the Mahalanobis distance when the degree parameter k is equal to d. Under the

assumptions x ∼ Nd(µ,Σ) and X ∼ Nd(µ,Σ) (x does not necessarily belong to X), the first

two moments of ρ2
A(x,X) are given by:

E
(
ρ2

A(x,X)
)
= trace(AΣ),

Var
(
ρ2

A(x,X)
)
= 2trace

(
[AΣ]2

)
,

(4.1)

see Appendix A.5 for details on the derivation of these moments.

Construction using a generalized constraint

For a chosen degree parameter k ∈ Z with k ≤ d, let the matrix A be the matrix that mini-

mizes the variance Var
(
ρ2

A(x,X)
)

subject to the constraint

trace
(
AΣα

)
= trace

(
Σα−1

)
, (4.2)

where α ∈R. This constraint forces the matrix A to behave similarly to Σ−1 (if Σ−1 exists).

The effect that different values of α have on the approximation to Σ−1 will be considered
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in Section 4.3.2. The constraint (4.2) differs to the constraint given in [85], where (4.2)

only takes the value α = 1. The method with a general value of α will be outlined here,

and a summary of the results with the case α = 1 is given at the end of this subsection.

Furthermore, Equation (4.2) is not the only constraint that can force A to have similar

properties to Σ−1; different forms of constraints are discussed in Section 4.6 that were not

considered in [85].

Define Ak to be a polynomial in Σ of degree k−1:

Ak =

k−1∑
i=0

θiΣ
i = θ⊤αΣ(k) , (4.3)

where θα = (θ0, θ1, . . . , θk−1)⊤ is defined to be the vector of k coefficients to be found, and

Σ(k) =
(
Σ0, Σ1, . . . , Σk−1

)⊤
. Define the Vandermonde matrix

V =
(
λi+1

j

)
j=1, ...,d,

i=0, ...,k−1
=



λ1 λ2
1 . . . λk

1

λ2 λ2
2 . . . λk

2
...

...
...

...

λd λ2
d . . . λk

d


, (4.4)

where λ1, λ2, . . . , λd are the eigenvalues of Σ. From Equations (4.1) and (4.3), the variance

of the quadratic form can be written as:

Var
(
ρ2

Ak
(x,X)

)
= 2trace

(
[AkΣ]2

)
= 2trace

k−1∑
i=0

θiΣ
i+1

k−1∑
j=0

θ jΣ
j+1

 = 2θ⊤αV⊤Vθα . (4.5)

Let Sα = trace(Σα), and define

S(α,k) = (Sα, Sα+1, . . . , Sα+k−1)⊤ =
(
trace

(
Σα

)
, trace

(
Σα+1

)
, . . . , trace

(
Σα+k−1

))⊤
.

Using Equation (4.3),

trace(AkΣ
α) = trace

k−1∑
i=0

θiΣ
i+α

 = θ⊤α trace
(
Σ(k)Σ

α
)
= θ⊤αS(α,k)

and so the constraint (4.2) can now be written in the form

θ
⊤
αS(α,k) = Sα−1 . (4.6)

The following theorem produces the optimal vector of coefficients θα that gives the minimal-

variance distances subject to the constraint (4.6) with parameter k.
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Theorem 2. Define υ to be the number of nonzero unique eigenvalues of the positive

definite covariance matrix Σ. For k ≤ υ, the matrix polynomial

Ak =

k−1∑
i=0

θiΣ
i = θ⊤αΣ(k)

that minimizes Var
(
ρ2

Ak
(x,X)

)
subject to the constraint θ⊤αS(α,k) = Sα−1 has coefficients

θ
∗
α =

Sα−1

S⊤(α,k)(V
⊤V)−1S(α,k)

(V⊤V)−1S(α,k). (4.7)

Proof. Form a Lagrange function to minimize 1
4Var

(
ρ2

Ak
(x,X)

)
= 1

2θ
⊤
αV⊤Vθα, subject to

the constraint (4.6). The Lagrange function with multiplier ω is given by

L(θα,ω) =
1
2
θ
⊤
αV⊤Vθα−ω

(
θ
⊤
αS(α,k)−Sα−1

)
. (4.8)

Minimize (4.8) by differentiating with respect to θα and setting the result to 0, which

gives:

V⊤Vθα = ωS(α,k),

and therefore θα is found to be

θα = ω
(
V⊤V

)−1
S(α,k). (4.9)

Re-writing the constraint θ⊤αS(α,k) = Sα−1 using Equation (4.9) gives

ωS⊤(α,k)(V
⊤V)−1S(α,k) = Sα−1. (4.10)

Let the scalar ω be written as ωα,k to show the dependency on parameters α and k. Then,

rearrange (4.10) to find ωα,k:

ω = ωα,k =
Sα−1

S⊤(α,k)(V
⊤V)−1S(α,k)

(4.11)

and therefore the solution to (4.8) is given by Equation (4.7). □

By substituting (4.7) into Equation (4.5), an expression for the variance of the minimal-

variance distance using Ak can be found:

Var
(
ρ2

Ak
(x,X)

)
=

2S 2
α−1

S⊤(α,k) (V⊤V)−1 S (α,k)
.
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Construction using a constraint with ααα = 1

In [85], the constraint is given with α = 1, rather than the generalized version discussed

above. Different choices of the parameter α will be studied in Section 4.3.2, where it will

be shown that using α = 1 gives an unbiased estimator for Σ−1, and is therefore a natural

choice. Using α = 1, the constraint (4.6) becomes

trace(AkΣ) = d, (4.12)

which can be written in the form

θ
⊤
1 S(1,k) = d.

Substituting α= 1 into Equation (4.7), the vector of coefficients that provides the minimal-

variance distance for this parameter is given as:

θ
∗
1 =

d
S⊤(1,k)(V

⊤V)−1S(1,k)
(V⊤V)−1S(1,k). (4.13)

The variance of the minimal-variance distance with α = 1 is therefore

Var
(
ρ2

Ak
(x,X)

)
=

2d2

S⊤(1,k) (V⊤V)−1 S (1,k)
. (4.14)

4.2.2 Construction through weighted linear regression

In this section, a different approach to constructing the minimal-variance polynomials is

used. The aim is to find a polynomial of degree k that approximates a function of the

inverse eigenvalues, and this is done using weighted linear regression. As before, the

method is first considered using a general value of the parameter α, and then the specific

case with α = 1 is detailed.

General values of the parameter α

Consider the problem from the perspective of weighted linear regression: approximate the

inverse covariance matrix Σ−1 by finding the spectral polynomial Pk(λ) such that Pk(λ j)

approximates 1
λ
β
j

for j = 1, . . . ,d, where β is a function of α that will be determined shortly.

Define the regression model

λ
−β
j =

k−1∑
i=0

θiλ
i
j+ε(λ j) ( j = 1, . . . , d), (4.15)
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where the approximation errors ε(λ j) are assumed to be uncorrelated random values with

zero mean and variances σ2(λ j) = 1/w(λ j), where w : (0,∞)→ (0,∞) is a weight func-

tion to be chosen. The regression model (4.15) can be written in the matrix notation as

Y = Lθα+ε, where

Y =



λ
−β
1

λ
−β
2
...

λ
−β
d


, L =

(
λi

j

)
j=1, ...,d,

i=0, ...,k−1
=



1 λ1 . . . λk−1
1

1 λ2 . . . λk−1
2

...
...

. . .
...

1 λd . . . λk−1
d


, (4.16)

θα = (θ0, θ1, . . . , θk−1)⊤ is the vector of coefficients sought and ε = (ε(λ1), . . . , ε(λd))⊤ is the

vector of errors. By assumption, E (ε) = 0 and the covariance matrix of ε is

W = D (ε) = diag
(

1
w(λ1)

, . . . ,
1

w(λd)

)
(4.17)

for some given weight function w. Then W−1 = diag(w(λ1), . . . ,w(λd)) . The weighted

least squares estimate (WLSE) θ̂α of θα is given by

θ̂α =
(
L⊤W−1L

)−1
L⊤W−1Y =

(
L⊤W−

1
2 W−

1
2 L

)−1
L⊤W−

1
2 W−

1
2 Y. (4.18)

To make θ̂α correspond to θ∗α from Equation (4.7), define the weight function w to be

w(λ) = λ2. This gives

W−
1
2 L =



λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λd





1 λ1 . . . λk−1
1

1 λ2 . . . λk−1
2

...
...

. . .
...

1 λd . . . λk−1
d


=



λ1 λ2
1 . . . λk

1

λ2 λ2
2 . . . λk

2
...

...
. . .

...

λd λ2
d . . . λk

d


= V.

It is therefore possible to replace W−
1
2 L in Equation (4.18) with the matrix V , which

gives θ̂α =
(
V⊤V

)−1 V⊤W−
1
2 Y . To make θ̂α equal to θ∗α from Equation (4.7), the vector

Y = (y1, . . . , yd)⊤ needs to be defined such that V⊤W−
1
2 Y = S(α,k). This can be written in

summation form as
d∑

i=1

λ
j+1
i yi =

d∑
i=1

λ
α+ j−1
i (4.19)

for j = 1, . . . , k. For Equation (4.19) to hold, let yi = λ
α−2
i . Therefore

Y =
(
λα−2

1 ,λα−2
2 , . . . ,λα−2

d

)⊤
, (4.20)
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which gives β = 2−α. It is therefore possible to write θ̂α as:

θ̂α =
(
V⊤V

)−1
V⊤W−

1
2 Y =

(
V⊤V

)−1
S(α,k).

Redefine θ̂α to include a constant that ensures the minimal-variance constraint (4.2) is

satisfied. Let

θ̂α = ωα,k
(
V⊤V

)−1
S (α,k). (4.21)

To find the optimal value of the constant ωα,k, substitute θ̂α in place of θα in the constraint

(4.6): θ̂αS(α,k) = Sα−1. Replacing θ̂α with the right-hand side of Equation (4.21) and

rearranging for ωα,k gives

ωα,k =
Sα−1

S⊤(α,k) (V⊤V)−1 S(α,k)
=

Sα−1

Y⊤W−1L
(
L⊤W−1L

)−1 L⊤W−1Y
.

Thus, the vector θ̂α is given by

θ̂α =
Sα−1

Y⊤W−1L
(
L⊤W−1L

)−1 L⊤W−1Y

(
L⊤W−1L

)−1
L⊤W−1Y

=
Sα−1

S⊤(α,k)(V
⊤V)−1S(α,k)

(V⊤V)−1S(α,k),

which is exactly the vector given in Equation (4.7). The WLSE for general α gives the

matrix polynomial

Ak =

k−1∑
i=0

θiΣ
i

which estimates f (λ j) = 1
λ2−α

j
for all eigenvalues λ1, λ2, . . . , λd of Σ.

Using the parameter α = 1

In Section 4.3.2, the effects of different values of the parameter α on the minimal-variance

distances will be considered. However, using α = 1 is a sensible choice for many reasons.

As indicated above, the minimal-variance polynomial estimates f (λ j) = 1
λ2−α

j
. Using α = 1

is therefore the only value to provide an unbiased estimator for Σ−1 (although corrections

for other values of α are given in Section 4.3.2).

Using α = 1 produces the constraint (4.12), and the formula for the vector of coefficients

is given by

θ̂1 =
d

Y⊤W−1L
(
L⊤W−1L

)−1 L⊤W−1Y

(
L⊤W−1L

)−1
L⊤W−1Y

=
d

S⊤(1,k)(V
⊤V)−1S(1,k)

(V⊤V)−1S(1,k).
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4.2.3 Equivalence to the Mahalanobis distance

The following theorem shows that if Σ is invertible and all eigenvalues are different, then

Ad = Σ
−1 when α = 1. This indicates that the minimal-variance distances with α = 1 and

k = d are equal to the Mahalanobis distance.

Theorem 3. Assume that all eigenvalues λ1, . . . ,λd of the d×d matrix Σ are positive and

pairwise different. Then for α = 1, Ad = Σ
−1, where Ad is defined by Equations (4.3) and

(4.13) with k = d.

Proof. Let the matrices L and W be defined as in (4.16) and (4.17), respectively, with

the weight function in W defined as w(λ) = λ2. Let the vector Y be defined as in Equa-

tion (4.20). Recall from Equations (4.18) and (4.21) that, for α = 1, the coefficient vector

can be written as θ1 = ω1,d
(
L⊤W−1L

)−1
L⊤W−1Y , and so

(
L⊤W−1L

)−1
L⊤W−1Y = 1

ω1,d
θ1.

Since k = d, and 1
ω1,d
θ1 is the WLSE,

1
ω1,d
θ
⊤
1 Σ(d) =

1
ω1,d

Ad = Σ
−1

exactly. Therefore, if ω1,d = 1, this implies that Ad = Σ
−1. Recall that

ω1,d =
d

S⊤(1,d)(V
⊤V)−1S(1,d)

.

As k = d and all eigenvalues λi , i = 1, . . . ,d, are positive and pairwise different, the d× d

Vandermonde matrix V is non-degenerate. Following the methodology of [100], denote

(V−1)⊤ = B =
(
bi j

)d

i, j=1
. From the definition of an inverse, BV = I, which can be written

as:

BV =
d∑

t=1

bitλ
t
j =


1 i = j,

0 i , j.

The tth entry of the vector S(1,k) is equal to
∑d

1=1λ
t
j. Thus, (V−1)⊤S (1,k) = 1, where 1 is a

d-dimensional vector of ones. This gives

ωd =
d

S⊤(1,d)V
−1(V−1)⊤S (1,d)

=
d

1⊤1
= 1.

□

The theorem can easily be generalized to the case when the multiplicities of the eigen-

values are arbitrary, or when there are zero eigenvalues. Recall that υ is the number of



84 CHAPTER 4. MINIMAL-VARIANCE DISTANCES

unique nonzero eigenvalues. In the case where all the eigenvalues are nonzero, Aυ = Σ−1.

If there are eigenvalues equal to zero, the true inverse of Σ does not exist, but Aυ is a gen-

eralized inverse according to the definition in [29]. In these cases, use the Moore-Penrose

pseudoinverse of V in place of V−1.

4.2.4 Comparison to characteristic polynomial inversion

It is known that methods that take advantage of matrix multiplications, such as polyno-

mial functions of matrices, are usually much faster than directly inverting a matrix when

performed on modern computers [101]. For a full-rank matrix Σ with characteristic poly-

nomial det(Σ− xI) = xd + c1xd−1 + · · ·+ cd, the Cayley-Hamilton theorem states that the

inverse of Σ can be calculated by:

Σ−1
CH = −

1
cd

Σd−1+

d−1∑
i=1

ciΣ
d−i−1

 .
However, in Section 4.8 of [101] the authors write that using the characteristic polyno-

mial to compute a function (such as the inverse) of a matrix is not recommended, as

the characteristic polynomial of a matrix cannot be reliably computed in floating point

arithmetic. The authors illustrate this with a numerical example. Let Σ = 3I, where I

is the d-dimensional identity matrix. The authors then compute the inverse Σ−1
CH using

the Cayley-Hamilton theorem for d ∈ [25,60]. Figure 4.2a recreates Figure 4.2 of [101],

where the infinity norm between Σ−1
CH and the true inverse Σ−1 = 1

3 I is plotted. As d

increases, the error becomes more and more pronounced.

Figure 4.2b performs the same exercise using the minimal-variance polynomial with k= 4.

The degree of this polynomial is clearly much lower than the degree of the characteristic

polynomial, and therefore does not suffer from the same numerical instability and error

as Σ−1
CH . Therefore, the minimal-variance polynomial is not only cheaper than using the

characteristic polynomial, but is also much more stable. It will be shown in the numerical

examples given in Section 4.5 that using low values of k is recommended for performance,

and as such using a polynomial method to compute an approximation of the inverse is

justified.
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Figure 4.2: For increasing d, the infinity norm is plotted between the true inverse of

Σ = 3I and (a) the inverse calculated through the characteristic polynomial; (b) the inverse

calculated through the minimal-variance polynomial with k = 4. Note the scale is 1e−17

in (b).

4.3 Effects of the parameter α on the minimal-variance

distances

As previously alluded to, the parameter choice α = 1 is the only value of α that provides

an unbiased estimator to Σ−1 in the minimal-variance distances. In this section, the effects

of different values of the parameter α are considered. First, comparisons to the best linear

unbiased estimator are given by comparing the variances of the distances produced with

different values of α. The effect of α on the scalar value ωα,k is then explored in the

context of recovering the desired eigenvalues. A correction for the biasedness of the

estimator with α , 1 is also discussed.

4.3.1 Comparison to the best linear unbiased estimator

An unbiased estimator τ̂ of a parameter τ is called the best linear unbiased estimator

(BLUE) if, for all unbiased estimators τ̃,

Var(τ̂) ≤ Var(τ̃).

That is, the BLUE of τ has the minimum variance of all unbiased estimators of τ. Typi-

cally, the BLUE is found using the weighted least squares method, as in Equation (4.18),
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using weights that ensure equal variance of the errors (where the errors are as defined in

Equation (4.15)).

The estimators proposed for θα are weighted least squares estimators scaled by some con-

stant ωα,k. This scaling ensures that the estimators satisfy the constraint (4.2) for varying

values of α. Using this scaling constant has an effect on the bias and the variance of the

estimators. Therefore, values of α can be chosen such that a slightly biased estimator is

obtained, with smaller variance than the BLUE.

For the various estimators of θα considered so far, a correspondence can be made to the

BLUE of θα, denoted θ̂BLUE, if ωα,k = 1. For instance, in Section 4.2.1, the coefficients of

the polynomial are given by

θ̂α = ωα,k
(
L⊤W−1L

)−1
L⊤W−1Y,

which, if ωα,k = 1, is exactly the BLUE of the vector of coefficients θα. Theorem 3 shows

that for full rank Σ, when α = 1 and k = d, ω1,d = 1.

Consider the Mean Squared Error (MSE) of the estimators as a function of the constant

ωα,k, and compare it to the MSE of the BLUE of θα. Let θ̃α(λ) be the estimator, and let

θ̂BLUE(λ) be the BLUE of θα. Then it is always the case that

θ̃α(λ) = ωα,kθ̂BLUE(λ).

The MSE of an estimator can be written as the sum of the variance and the squared bias

of the estimator. Define Var(ωα,k) and Bias(ωα,k) to be the variance and squared bias,

respectively, of the estimator θ̃α(λ) = ωα,kθ̂BLUE(λ) as follows:

Var(ωα,k) = E
[∫ (
θ̃α(λ)−E

[
θ̃α(λ)

])2
]
dλ = ω2

α,kE
[∫ (
θ̂BLUE(λ)−E

[
θ̂BLUE(λ)

])2
]
dλ,

Bias(ωα,k) =
∫ (

1
λ
−ωα,k

1
λ

)2

dλ = (1−ωα,k)2
∫

1
λ

dλ.

Let VarBLUE = Var(1) denote the variance of the BLUE of the coefficient vector θα. It is

therefore clear that Var(ωα,k) = ω2
α,kVarBLUE. The MSE of the estimator with the constant

ωα,k can then be written as

MSE(ωα,k) = Var(ωα,k)+Bias(ωα,k) = ω2
α,kVarBLUE+ (1−ωα,k)2Λ,

where Λ = 1
d
∑d

i=1λ
2
i .
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As an example of a constant ωα,k that produces a biased but low-variance estimator, de-

fine

ω̌α,k =
Λ

VarBLUE+Λ
,

such that

MSE(ω̌α,k) =
ΛVarBLUE

Λ+VarBLUE

< VarBLUE =MSE(1).

Therefore, choosing ωα,k = ω̌α,k gives an estimator θ̃α(λ) with smaller MSE than the

BLUE θ̂BLUE(λ). This is desirable, but does make the estimator θ̃α(λ) a biased estimator.

At the end of Section 4.2.1, it is shown that the polynomials with parameter α approximate

Σ2−α. Several numerical examples are considered in Section 4.3.2, where this biasedness

is discussed, along with an approach to counteract it.

4.3.2 Numerical examples on the effects of α

This section explores the impact of different values of α on the minimal-variance dis-

tances. As seen in Section 4.2.3 and Section 4.3.1, using α = 1 and k = d produces the

BLUE of θα, which means using these parameters recovers the Mahalanobis distance ex-

actly, if Σ is not singular (see Theorem 3). Using α > 1 gives a biased estimator for θα, but

with the potential to find distances ρAk(x,X) with smaller variance. The following numer-

ical examples will explore this concept, and discuss methods to correct for the biasedness

when using α , 1.

Example 1

The effect of different values of α will first be illustrated with a small toy example, with

d = 6. Let Σ be a diagonal matrix with diagonal entries [6,5,4,3,2,1]. Table 4.1a shows

the values of ωα,k (given by Equation (4.11)) for different values of α and k. When α = 1

and k= 6, A6 is a diagonal matrix with diagonal entries [0.167,0.2,0.25,0.33,0.5,1] which

is exactly equal to Σ−1 (noting that 0.167 and 0.33 have been rounded).

Recall from Section 4.3.1 that Var(ωα,k) =ω2
α,kVarBLUE. Table 4.1a shows that when α > 1,

ωα,k < ω1,k for each k considered. That is, when α > 1, an estimator with lower variance

than the BLUE is produced, which is corroborated by Table 4.1b.

However, the estimators of θα approximate Σα−2. When α = 1, this means the estimators

approximate Σ−1. If α = 1.05 is used, for example, the estimators are actually approxi-



88 CHAPTER 4. MINIMAL-VARIANCE DISTANCES

@
@

@
@@

α

k
2 3 4 5 6

1.00 1.055 1.013 1.002 1.000 1.000

1.01 1.041 1.001 0.991 0.989 0.989

1.02 1.028 0.990 0.980 0.978 0.978

1.05 0.988 0.955 0.947 0.946 0.945

(a) ωα,k

@
@

@
@@

α

k
2 3 4 5 6

1.00 12.659 12.156 12.026 12.002 12.000

1.01 12.635 12.149 12.025 12.002 12.000

1.02 12.610 12.141 12.022 12.000 11.998

1.05 12.535 12.115 12.010 11.991 11.989

(b) Var
(
ρAk (x,X)

)
with α

Table 4.1: Example 1: The values (3.d.p) of (a) ωα,k and (b) the variance of the minimal-

variance distances with parameters α and k.

α A6 Σα−2

1.00 [0.167, 0.2, 0.25, 0.333, 0.5, 1.0] [0.167, 0.2, 0.25, 0.333, 0.5, 1.0]

1.01 [0.168, 0.201, 0.251, 0.333, 0.498, 0.989] [0.17, 0.203, 0.253, 0.337, 0.503, 1.0]

1.02 [0.169, 0.202, 0.251, 0.333, 0.496, 0.978] [0.173, 0.207, 0.257, 0.341, 0.507, 1.0]

1.05 [0.172, 0.205, 0.253, 0.333, 0.489, 0.945] [0.182, 0.217, 0.268, 0.352, 0.518, 1.0]

Table 4.2: Example 1: Diagonal entries of A6 and Σα−2 for different values of α.

mating Σ1.05−2 = Σ−0.95. Table 4.2 shows the diagonal entries of A6 for different values of

α, as well as the diagonal entries for Σα−2.

The biasedness of the approximation to Σ−1 can be corrected for as follows. Given that the

estimators approximate Σα−2, this approximation should be expontentiated by 1/(2−α)

by the following logic:

(Ak)
1

2−α ≈
(
Σα−2

) 1
2−α = Σ−1.

To investigate how well this approximation works, consider the value of (Ak)
1

2−α Σ. If

(Ak)
1

2−α is a good approximation to Σ−1, (Ak)
1

2−α Σ should equal the identity matrix. Ta-

ble 4.3 shows the diagonal entries of A6Σ and (A6)
1

2−α Σ for this example. The diagonal

entries of A6Σ are roughly centered around 1, but have different values. On the other

hand, (A6)
1

2−α Σ produces a scaled identity matrix, roughly equal to (2−α)I, where I is the

identity matrix. Of course, from here it is easy to recover a matrix that multiplies by Σ to

produce the exact identity matrix, if required. Table 4.4 shows that the variance does not

increase in this case, meaning the approximaion is still of minimal variance.
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α A6Σ (A6)
1

2−α Σ

1.00 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1.01 [1.007, 1.005, 1.003, 1.0, 0.996, 0.989] [0.989, 0.989, 0.989, 0.989, 0.989, 0.989]

1.02 [1.014, 1.01, 1.006, 1.0, 0.992, 0.978] [0.978, 0.978, 0.978, 0.978, 0.978, 0.978]

1.05 [1.034, 1.025, 1.013, 0.999, 0.979, 0.945] [0.943, 0.943, 0.943, 0.943, 0.943, 0.943]

Table 4.3: Example 1: Diagonal values of A6Σ and (A6)
1

2−α Σ.

α A6Σ (A6)
1

2−α Σ

1.00 12.000 12.000

1.01 12.000 11.736

1.02 11.998 11.470

1.05 11.989 10.661

Table 4.4: Example 1: Variance of the quadratic form ρ2
B(x,X) for B = A6Σ and

B = (A6)
1

2−α Σ, using (4.1).

Note, however, that even without the correction described above, the minimal-variance

polynomial is still an extremely close approximation to Σ−1 for values of α close to 1.

The polynomials found using k = 6 and different values of α are given in Figure 4.3,

where it is clear the polynomials are almost equal, particularly in the range of eigenvalues

(i.e. between 1 and 6 for this example).

Figure 4.3: Example 1: Polynomial fit of A6 with different values of α. All polynomials

considered are roughly equal.
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Example 2

The above exercise is now repeated, but with a degenerate covariance matrix. Let Σ be a

diagonal matrix with entries [5,4,3,2,1,0]. The covariance matrix has d = 6 dimensions,

but has rank r = 5, so only values of k up to and including 5 are considered.

Table 4.5a shows the values of ωα,k for this dataset. Unlike the previous example, when

k = 5 and α = 1, ωα,k does not equal 1. Recall that the constraint (4.2) of the minimal-

variance polynomial is

trace
(
AΣα

)
= trace

(
Σα−1

)
.

When α = 1, this constraint is therefore

trace(AΣ) = trace
(
Σ0

)
,

the right-hand side of which is always equal to d. However, if A is to behave like a

pseudoinverse, the matrix multiplication AΣ should equal the identity matrix with the last

d− r diagonal entries equal to 0, meaning the desired constraint is actually trace(AΣ) = r.

Therefore, in degenerate cases, ω1,r = d/r. To counteract this, simply multiply Ar by

r/d, which is shown in Table 4.5a (and other tables relating to this example) denoted

by α = 1.00∗. This is not an issue with other values of α, as Σα−1 on the right side of

the constraint has the same rank as Σ for α , 1. Table 4.5b shows the variance of the

minimal-variance distances with different values of k and α for example 2. As expected,

as ωα,k decreases, so does the variance, for each value of k.

For α , 1, Table 4.6 shows that A5 with α = 1 does not approximate the Moore-Penrose

pseudoinverse Σ− perfectly. For α = 1, the diagonal values corresponding to nonzero

values are equal to the diagonal values of 6
5Σ
−, as discussed previously. The row with

α = 1.00∗ indicates the matrix has been multiplied by 5/6, and the diagonal entries corre-

sponding to the nonzero entries of Σ match the Moore-Penrose inverse exactly.

Table 4.7 shows the result of exponentiating A5 by 1
2−α when multiplied by Σ. As ex-

pected, when α = 1, the diagonal entries of A5Σ are d/r. When α , 1, the exponential is

needed to ensure the minimal-variance approximation multiplied by Σ produces a mul-

tiple of the identity matrix I, as in example 1. Table 4.8 shows the variance of each

approximation, which is not negatively affected by the exponentiation.
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@
@

@
@@

α

k
2 3 4 5

1.00 1.255 1.210 1.201 1.200

1.00* 1.045 1.008 1.001 1.000

1.01 1.034 0.998 0.991 0.990

1.02 1.022 0.988 0.982 0.981

1.05 0.988 0.959 0.953 0.952

(a) ωα,k

@
@

@
@@

α

k
2 3 4 5

1.00 15.055 14.520 14.411 14.400

1.00* 12.545 12.100 12.010 12.000

1.01 10.438 10.080 10.007 10.000

1.02 10.422 10.075 10.006 9.999

1.05 10.371 10.060 9.998 9.992

(b) Var
(
ρAk (x,X)

)
with α

Table 4.5: Example 2: The values (3.d.p) of (a) ωα,k and (b) the variance of the minimal-

variance distances with parameters α and k. Parameter α = 1.00∗ indicates that ω1,k has

been multiplied by r/d.

α A5 Σα−2

1.00 [0.24, 0.3, 0.4, 0.6, 1.2, 2.74] [0.2, 0.25, 0.333, 0.5, 1.0, 0.0]

1.00* [0.2, 0.25, 0.333, 0.5, 1.0, 2.238] [0.2, 0.25, 0.333, 0.5, 1.0, 0.0]

1.01 [0.201, 0.251, 0.334, 0.499, 0.99, 2.249] [0.203, 0.253, 0.337, 0.503, 1.0, 0.0]

1.02 [0.203, 0.252, 0.334, 0.497, 0.981, 2.216] [0.207, 0.257, 0.341, 0.507, 1.0, 0.0]

1.05 [0.206, 0.255, 0.335, 0.493, 0.952, 2.116] [0.217, 0.268, 0.352, 0.518, 1.0, 0.0]

Table 4.6: Example 2: Diagonal entries of A5 and Σα−2 for different values of α. α= 1.00∗

indicates that ω1,k has been multiplied by r/d.

α A5Σ (A5)
1

2−α Σ

1.00 [1.2, 1.2, 1.2, 1.2, 1.2, 0.0] [1.2, 1.2, 1.2, 1.2, 1.2, 0.0]

1.00* [1.0, 1.0, 1.0, 1.0, 1.0, 0.0] [1.2, 1.2, 1.2, 1.2, 1.2, 0.0]

1.01 [1.006, 1.004, 1.001, 0.997, 0.99, 0.0] [0.99, 0.99, 0.99, 0.99, 0.99, 0.0]

1.02 [1.013, 1.008, 1.003, 0.995, 0.981, 0.0] [0.98, 0.98, 0.98, 0.98, 0.98, 0.0]

1.05 [1.032, 1.02, 1.006, 0.986, 0.952, 0.0] [0.95, 0.95, 0.95, 0.95, 0.95, 0.0]

Table 4.7: Example 2: Diagonal values of A5Σ and (A5)
1

2−α Σ. α = 1.00∗ indicates that

ω1,k has been multiplied by r/d.
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α A5Σ (A5)
1

2−α Σ

1.00 14.400 14.400

1.00* 10.000 10.000

1.01 10.000 9.807

1.02 9.999 9.613

1.05 9.992 9.019

Table 4.8: Example 2: Variance of the quadratic form ρ2
B(x,X) for B = A5Σ and

B = (A5)
1

2−α Σ, using (4.1). α = 1.00∗ indicates that ω1,k has been multiplied by r/d.

Similarly to example 1, Figure 4.4 shows that the minimal-variance polynomials are very

similar for various values of α, except for α = 1. This is due to the rank of trace
(
Σ0

)
, as

previously described. As before, simplify multiply this polynomial by r/d = 5/6 to find

the polynomial with correct rank, denoted by α = 1.00∗ in Figure 4.4.

Figure 4.4: Example 2: Polynomial fit of A5 with different values of α. The parameter

α = 1.00∗ denotes that the polynomial has been scaled by r/d. None of the polynomials

have been exponentiated by 1/(2−α).

4.4 Efficiency of the minimal-variance and simplicial dis-

tances

In this section, the efficiency of the minimal-variance distances with α = 1 and the sim-

plicial distances with δ = 2 (introduced in Chapter 3) are compared in relation to the

Mahalanobis distance. In Section 3.2.2, it is shown that the simplicial distances with



4.4. EFFICIENCY OF THE MINIMAL-VARIANCE AND SIMPLICIAL DISTANCES93

k = r, where r = rank(Σ), are equal to the Mahalanobis distances over r (where the Moore-

Penrose pseudoinverse is used if r , d). To align with the simplicial distances, the Maha-

lanobis distances are multiplied by 1/r in this section, and the minimal-variance distances

are multiplied by 1/d for comparability. The previous section explains why 1/d is needed

rather than 1/r in the minimal-variance case with α = 1.

Define the efficiency of the minimal-variance distances as the variance of the minimal-

variance distances over the variance of the Mahalanobis distances:

eff(k)
MV =

Var
(
ρ2

Ak/d
(x,X)

)
Var

(
ρΣ−1/r(x,X)

) = 2/
(
S⊤(1,k)(V

⊤V)−1S (1,k)
)

2/r
, (4.22)

with Var
(
ρ2

Ak
(x,X)

)
derived in Equation (4.14) and Var

(
ρΣ−1(x,X)

)
defined in Appendix A.4.

The efficiency of the simplicial distances with δ = 2 is defined analogously as

eff(k)
simp =

Var
(
ρ2

k,2(x,X)
)

Var
(
ρ2
Σ−1/r

(x,X)
) = (2/k2)trace

(
[S kΣ]2

)
2/r

, (4.23)

with Var
(
ρ2

k,2(x,X)
)

stated in (A.1) in Appendix A.2.

In the following three examples, N = 500 points are generated from d-dimensional mul-

tivariate normal distributions with zero mean and diagonal covariance matrices Σi with

eigenvalues Λi = {λ1, . . . ,λd}, for i = 1,2,3. The eigenvalues of each covariance matrix Σi

are, respectively:

Λ1 = [10,7,6,5,4,3,2,1,1,1] ,

Λ2 = [10,4,3,2,1,1,1,1,1,1] ,

Λ3 = [10,5,3,2,1,1,1,1,1,0] .

Table 4.9 demonstrates the good efficiency of the minimal-variance distances even for

small k. Note that k − 1 is the order of the minimal-variance polynomial; in these ex-

amples, linear and quadratic polynomials perform well. The efficiency of the simplicial

distances improves as k gets larger but also has variance tolerably close to that of the

Mahalanobis distance even for k significantly smaller than r.

For larger dimensions, with covariance matrices possessing a number of zero eigenval-

ues, the examples are more striking. Table 4.10 gives the results of performing the same
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exercise on the datasets described in Section 3.2.3, with eigenvalues given in Table 3.1.

Table 4.10 shows that the minimal-variance distances start to have similar variance to

the squared Mahalanobis distances (with the Moore-Penrose pseudoinverse) when using

much lower values of k than the simplicial distances. For values as low as k = 2, the vari-

ance of the minimal-variance distances is much closer than the variance of the simplicial

distances to the variance of the Mahalanobis distances.

Λ1 Λ2 Λ3

k eff(k)
simp eff(k)

MV eff(k)
simp eff(k)

MV eff(k)
simp eff(k)

MV

1 1.51 1.51 2.16 2.16 2.06 2.06

2 1.40 1.18 1.64 1.20 1.62 1.22

3 1.32 1.05 1.38 1.02 1.37 1.03

4 1.24 1.01 1.23 1.00 1.21 1.00

5 1.17 1.00 1.13 1.00 1.12 1.00

6 1.12 1.00 1.07 1.00 1.06 1.00

7 1.07 1.00 1.04 1.00 1.02 0.99

8 1.03 1.00 1.01 1.00 1.00 1.00

9 1.01 1.00 1.00 1.00 1.00 1.00

10 1.00 0.00 1.00 0.00 N/A N/A

Table 4.9: Efficiences (4.22) and (4.23) for different k, with three different sets of eigen-

values of the covariance matrix Σ given by Λi, i = 1,2,3.

ΛA ΛB ΛC

k eff(k)
simp eff(k)

MV eff(k)
simp eff(k)

MV eff(k)
simp eff(k)

MV

1 7.58 7.58 24.25 24.25 10.00 10.00

2 2.83 2.07 9.79 4.72 9.17 5.55

3 2.09 1.84 5.87 1.95 4.77 1.87

4 1.87 1.80 4.21 1.90 3.20 1.83

Table 4.10: Efficiences (4.22) and (4.23) for different k, with three different sets of eigen-

values of the covariance matrix Σ as given in Table 3.1 in Section 3.2.3.
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Little performance gain is seen when choosing k > 3 in these examples, indicating that Ak

even with small k is often a good enough approximation to the inverse of the covariance

matrix from the viewpoint of the distances generated by this matrix. From an efficiency

perspective, the minimal-variance distances produce better results at a lower computa-

tional cost than the simplicial distances.

4.5 Applications of the minimal-variance distances

As with the simplicial distances discussed in Chapter 3, the minimal-variance distances

have a multitude of applications due to the dependancy of multivariate data analysis on

distance measures. Distances in correlated high dimensional spaces are notoriously dif-

ficult to measure reliably due to variable subspaces [182] and singularity [235], which

hinder the performance of the Mahalanobis distance. Classical low-dimensional distance

measures such as the Euclidean and Manhattan distances also struggle, thanks to the cor-

related nature of high dimensional data and the issues of diminishing relative contrast [5].

For further information on distance measures in high dimensions, see Section 2.4.2 of the

literature review.

This section considers the use of minimal-variance distances in applications such as K-

means clustering and outlier detection. It is also shown that the minimal-variance dis-

tances perform well in cases where the dimensionality d is greater than the number of

observations N in a dataset, which has been a prominent and much-studied problem in

multivariate data analysis in recent years [9, 95, 204].

4.5.1 K-means clustering

The K-means clustering method was introduced in Section 3.5.2, with Algorithm 1 de-

tailing the exact procedure. As discussed previously, the K-means algorithm can benefit

from replacing the classic Euclidean distance measure with a distance that can account for

elliptical distributions in data. Figure 3.15 in Section 3.5.2 illustrates the potential ben-

efit available when using the simplicial distance, rather than the Euclidean or so-called

Mahalanobis-pinv distance, which uses the Moore-Penrose pseudoinverse in the Maha-

lanobis distance in case of degenerate data. Using the same datasets and methodology as

those that produced Figure 3.15, Figure 4.5 shows the adjusted rand score of K-means
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clustering with the different distance measures, now including the minimal-variance dis-

tance. Figure 4.5 shows that the minimal-variance distances have very similar perfor-

mance to the simplicial distances with k = 3. Both of the distances suggested in this thesis

outperform the Euclidean and Mahalanobis-pinv distances on the degenerate, correlated

datasets generated in this example.

Euclidean Mahalanobis-pinv Simplicial k = 3 MV k = 3
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Figure 4.5: Violin plot showing the distribution of adjusted rand scores of 500 runs of

K-means clustering with the Euclidean, Mahalanobis-pinv, simplicial k = 3 and minimal-

variance k = 3 distances. The red line shows the median adjusted rand score of the 500

runs for each distance.

To further illustrate the performance of the K-means clustering algorithm with the minimal-

variance and simplicial distances, 5 real datasets are considered. The datasets are obtained

from the UCI Machine Learning Repository [68], with the exception of ‘Digits’ which

was obtained through the Python package Scikit-Learn [185]. The details of the datasets

are given in Table 4.11.

Each dataset was appropriately pre-processed: rows with missing values were removed,

and the data was normalized such that each variable has values in range [0, 1]. It is

important to note that the parameter K used in the K-Means clustering algorithm is used

to indicate how many clusters are sought, and is different to the parameter k used in

the distance measures. For each dataset, the choice of K in the K-Means algorithm is

used as the ‘true’ number of clusters, given in Table 4.11, as these datasets are all fully

labelled.

A more thorough discussion of how to use non-Euclidean distances in K-means cluster-

ing is given in Section 3.5.2. As with the examples given in that section, the minimal-

variance, simplicial and Mahalanobis distances all require an initial estimate of the co-
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Dataset d N No. of Clusters

Iris 4 150 3

Wine 13 178 3

Image Seg. 19 210 7

Digits 64 1797 10

Protein 77 1080 8

Table 4.11: Real datasets used to evaluate performance of distances when used with K-

Means clustering. d is the number of variables in the dataset, and N is the number of

observations.

variance matrices of the clusters, which is obtained by performing a few iterations of

K-means clustering using the Euclidean distance first, as in [56]. Clearly, this initial esti-

mate can have a large influence on the resulting clusters found by the other distances, so

the K-Means algorithm is run 1000 times for each distance.

As these datasets are fully labelled, the labels given by K-Means can be compared to the

‘true’ labels to assess the performance of the clustering algorithm. Two external evalu-

ation methods are used in this section, namely the adjusted rand (AR) score [113, 185]

and the purity score [167]. These two different evaluation methods are used alongside

one another to corroborate the results. AR scores are in the range [-1, 1] and purity scores

are in the range [0, 1], with larger scores indicating a better labelling for both metrics.

Further information about these clustering metrics is given in Appendix D.

Figure 4.6 gives the AR and purity scores for the K-Means clustering of each dataset

using the distance measures being considered. For the minimal-variance and simplicial

distances, the distances with values of k which produced the highest scores are shown.

Note that the Mahalanobis distance uses the Moore-Penrose pseudoinverse when the data

is degenerate. The eigenvalues for each of the datasets in Table 4.11 can be found in

Appendix C.2. The influence of these eigenvalues on the performance of the distance

measures is important, particularly when choosing values of k. When discussing eigen-

values being ‘close to zero’, this is in relation to the largest eigenvalue. There is no

specific threshold for being ‘close to zero’, but the examples that follow should give some

intuition about choosing the parameter k.



98 CHAPTER 4. MINIMAL-VARIANCE DISTANCES

ED MD MV-2 MV-3 MV-4 SD-2 SD-3 SD-4
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ad
ju

st
ed

 R
an

d 
Sc

or
e

(a) Iris, AR
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(b) Iris, Purity
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(c) Wine, AR
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(d) Wine, Purity
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(e) Image, AR
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(f) Image, Purity
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(g) Digits, AR
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(h) Digits, Purity
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(i) Protein, AR
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Figure 4.6: Adjusted rand scores and purity scores of the clusterings produced by K-

Means when using different distance measures. ED: Euclidean distance, MD: Maha-

lanobis distance, MV-k: Minimal-variance distance with parameter k, SD-k: Simplicial

distance with parameter k.
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Iris is a 4-dimensional dataset, with no extreme small eigenvalues in comparison to its

largest eigenvalue. Figure 4.6a, Figure 4.6b and Table 4.12 show that the Mahalanobis

distance performs best, joint with the simplicial and minimal-variance distances when

k = 4 (recall that these distances are equivalent to the Mahalanobis distance when k = d).

The Iris dataset is low-dimensional and full-rank, and hence the Mahalanobis distance

can use the true inverse of the covariance matrix. This example illustrates the perfor-

mance gains that can be made in cluster analysis by taking the correlations in the data into

consideration.

k Simplicial Min-Var

2 0.716 (0) 0.562 (0)

3 0.904 (0) 0.869 (0)

4 0.904 (0) 0.904 (0)

Euc. 0.716 (0)

Mah. 0.904 (0)

Table 4.12: Iris dataset: Median AR scores (and standard deviations) for each given dis-

tance. Bold figures denote the highest score(s) out of all methods used.

Figure 4.6c, Figure 4.6d and Table 4.13a consider the Wine dataset, and show that the Ma-

halanobis, minimal-variance and simplicial distances outperform the Euclidean distance,

again highlighting the importance of accounting for correlation. The Wine dataset has

some very small eigenvalues compared to its largest eigenvalue, and as such the Moore-

Penrose pseudoinverse is likely to have been adversely impacted [109]. Choosing the

minimal-variance or simplicial distance avoids this impact, and as such produces better

clustering results.

The Wine example highlights that the minimal-variance distance performs well with lower

values of k, whereas the simplicial distance requires a higher value of k to achieve its best

results, as seen before in the efficiency evaluations in Section 4.4. This indicates that both

distances can achieve equally good results, but the minimal-variance distance does so with

lower computational time. However, the minimal-variance distance is more sensitive to a

too-high choice of k, as seen by the decrease in AR scores in Table 4.13a.
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k Simplicial Min-Var

2 0.714 (0.000) 0.817 (0.017)

3 0.759 (0.000) 0.917 (0.007)

4 0.759 (0.000) 0.915 (0.007)

5 0.818 (0.005) 0.915 (0.007)

6 0.833 (0.004) 0.915 (0.007)

7 0.899 (0.004) 0.915 (0.007)

8 0.899 (0.006) 0.915 (0.007)

9 0.917 (0.004) 0.915 (0.006)

10 0.915 (0.006) 0.913 (0.005)

11 0.915 (0.006) 0.869 (0.017)

12 0.915 (0.006) 0.899 (0.006)

13 0.899 (0.012) 0.854 (0.000)

Euc. 0.854 (0.01)

Mah. 0.899 (0.01)

(a) Wine dataset

k Simplicial Min-Var

2 0.360 (0.063) 0.238 (0.084)

3 0.247 (0.074) 0.344 (0.063)

4 0.339 (0.070) 0.448 (0.027)

5 0.392 (0.047) 0.465 (0.027)

6 0.451 (0.051) 0.460 (0.026)

7 0.451 (0.022) 0.456 (0.023)

8 0.451 (0.044) 0.454 (0.021)

9 0.449 (0.047) 0.454 (0.028)

Euc. 0.464 (0.020)

Mah. 0.285 (0.067)

(b) Image Segmentation dataset

Table 4.13: Wine and Image Segmentation datasets: Median AR scores (and standard

deviations) for each given dataset and distance. Bold figures denote the highest score(s)

out of all methods used.

The Image Segmentation dataset has a number of very large eigenvalues, some eigenval-

ues very close to zero, and five zero eigenvalues, see Appendix C.2 for more details on

these eigenvalues. Figure 4.6e and Figure 4.6f show that the Mahalanobis distance per-

forms worse than the Euclidean distance, perhaps due to the effect of very small eigenval-

ues on the Moore-Penrose pseudoinverse, as noted in [109].

The minimal-variance and simplicial distances outperform the Mahalanobis distance when

clustering the Image Segmentation dataset, as they are less likely to be adversely affected

by these small eigenvalues. Table 4.13b shows that the minimal-variance distance at-

tains the highest AR score out of all the distances, but does not improve greatly on the

Euclidean distance.
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k Simplicial Min-Var

2 0.596 (0.019) 0.709 (0.018)

3 0.620 (0.017) 0.707 (0.017)

4 0.642 (0.019) 0.701 (0.016)

5 0.657 (0.019) 0.696 (0.017)

6 0.663 (0.017) 0.693 (0.016)

7 0.677 (0.019) 0.695 (0.016)

8 0.686 (0.019) 0.691 (0.015)

9 0.690 (0.019) 0.689 (0.142)

10 0.693 (0.019) 0.686 (0.144)

11 0.695 (0.018) 0.689 (0.111)

12 0.696 (0.018) 0.679 (0.230)

13 0.697 (0.018) 0.664 (0.174)

14 0.696 (0.018) 0.605 (0.226)

15 0.696 (0.017) 0.673 (0.166)

16 0.695 (0.017) 0.679 (0.173)

17 0.694 (0.017) 0.658 (0.180)

18 0.692 (0.017) 0.664 (0.222)

Euc. 0.666 (0.012)

Mah. 0.677 (0.014)

(a) Digits dataset

k Simplicial Min-Var

2 0.140 (0.057) 0.130 (0.057)

3 0.140 (0.055) 0.185 (0.020)

4 0.141 (0.050) 0.208 (0.021)

5 0.143 (0.044) 0.195 (0.015)

6 0.156 (0.024) 0.194 (0.019)

7 0.164 (0.024) 0.189 (0.014)

8 0.176 (0.026) 0.183 (0.017)

9 0.183 (0.026) 0.181 (0.027)

10 0.189 (0.028) 0.179 (0.032)

11 0.192 (0.026) 0.178 (0.041)

12 0.194 (0.021) 0.186 (0.058)

13 0.197 (0.020) 0.184 (0.022)

14 0.196 (0.019) 0.185 (0.008)

15 0.191 (0.021) 0.184 (0.026)

Euc. 0.172 (0.012)

Mah. 0.172 (0.012)

(b) Protein dataset

Table 4.14: Digits and Protein datasets: Median AR scores (and standard deviations)

for each given dataset and distance. Bold figures denote the highest score(s) out of all

methods used.

The Digits and Protein datasets (Tables 4.14a and 4.14b, respectively) both have a sub-

stantial number of small and zero eigenvalues (see Appendix C.2), indicating why the

distances proposed perform better than the Mahalanobis distance (using the pseudoin-

verse). The Mahalanobis distance does not add much performance gain compared to the

Euclidean distance in these examples, but the correct choice of k in the minimal-variance

or simplicial distances provides improvement.
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These examples show that K-Means clustering with the minimal-variance distance reaches

its best AR score with relatively low values of k, whereas the simplicial distance needs

higher values of k to reach this. However, the simplicial distance is less likely to break-

down for too-high a choice of k, as seen in Table 4.13a and Table 4.14a with the minimal-

variance distance. For the simplicial distance, the values of k that produce the best AR

score roughly match with the number of ‘larger’ eigenvalues in the datasets, as seen in

Section 3.3.1.

4.5.2 Outlier labelling

Outlier labelling is often reliant on distance measures to measure the proximity of a point

to a set of points [132, 214]. This section will apply the Euclidean, Mahalanobis, sim-

plicial and minimal-variance distances in an outlier detection setting. 23 real datasets

are used in this section, all obtained from the Outlier Detection DataSets (ODDS) source

[198], which collates labelled outlier detection datasets for use by the research commu-

nity. Information on the dimensionality, number of observations and number of outliers

in each dataset is given in Table C.2 in Appendix C.2.

The method used will be a simple one (the same as in Section 3.5.1) to ensure the com-

parisons are made based on the distances used, rather than their interaction with more

complex outlier detection methods. As the datasets used in this example are fully la-

belled, it is known how many outliers there are. Let m be the number of outliers for each

dataset. For each distance being considered, calculate the distance from each point to the

dataset itself, and label the furthest m points as the outliers. Table 4.15 gives the adjusted

rand (AR) scores of the labels assigned by each distance (see Appendix D.1 for informa-

tion on the AR score metric). For the simplicial and minimal-variance distances, only the

highest AR scores are given, along with the corresponding value of k used to find them.

Note that the Moore-Penrose pseudoinverse has been used in the Mahalanobis distance,

as several of the datasets considered have singular covariance matrices.

The Euclidean distance only performs best on 2 of the 23 datasets considered (BreastW

and Glass, the latter of which has the same AR score as the Mahalanobis distance). The

Mahalanobis distance has a strictly higher AR score than the other distances for 4 of the

23 datasets. Of those datasets where the maximum AR score is given by both the Ma-
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halanobis distance and either the simplicial and/or minimal-variance distance (i.e. Glass,

Speech, Musk, Ionosphere), the value of k used in the latter distance is much lower than

the dimension d (and the rank r) of the datasets. This means that using the simplicial

or minimal-variance distance is less computationally intensive than the Mahalanobis dis-

tance, which corresponds to these distances with k = r.

Dataset Euclidean Mahalanobis Simplicial Min-Var

Lympho 0.287 0.633 0.814 (k = 5) 0.814 (k = 2)

WBC 0.568 0.620 0.568 (k = 1) 0.568 (k = 1)

Glass 0.066 0.066 0.066 (k = 1) 0.066 (k = 1)

Vowels 0.142 0.569 0.569 (k = 11) 0.611 (k = 6)

Cardio 0.554 0.547 0.627 (k = 10) 0.627 (k = 4)

Thyroid 0.123 0.580 0.491 (k = 5) 0.558 (k = 5)

Musk 0.201 1.000 1.000 (k = 2) 1.000 (k = 2)

Satimage-2 0.825 0.652 0.942 (k = 7) 0.942 (k = 3)

Letter -0.012 0.268 0.159 (k = 10) 0.258 (k = 10)

Speech -0.000 0.129 0.016 (k = 4) 0.129 (k = 5)

Pima 0.140 0.132 0.145 (k = 2) 0.149 (k = 2)

Satellite 0.200 0.349 0.364 (k = 8) 0.395 (k = 8)

Shuttle 0.864 0.951 0.953 (k = 6) 0.947 (k = 6)

BreastW 0.863 0.830 0.863 (k = 1) 0.863 (k = 1)

Arrhythmia 0.333 0.953 0.402 (k = 9) 0.420 (k = 9)

Ionosphere 0.178 0.743 0.723 (k = 7) 0.743 (k = 4)

MNIST 0.333 0.512 0.418 (k = 10) 0.547 (k = 8)

Optdigits -0.021 -0.028 0.135 (k = 21) 0.207 (k = 3)

Cover -0.010 0.077 0.384 (k = 5) 0.507 (k = 4)

Mammography 0.247 0.355 0.347 (k = 5) 0.367 (k = 5)

Annthyroid 0.035 0.318 0.297 (k = 5) 0.305 (k = 4)

Pendigits 0.173 0.053 0.372 (k = 3) 0.398 (k = 2)

Wine 0.875 0.755 0.875 (k = 1) 1.000 (k = 4)

Table 4.15: Adjusted rand (AR) scores of the outlier labellings given by different distance

measures. Bold values indicate the highest AR score(s) across the distances for each

dataset.
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There is one dataset where the simplicial distance performs strictly best (Shuttle), but

there are six more where it performs joint best with the minimal-variance distance. How-

ever, the minimal-variance distance performs strictly best on 10 of the 23 datasets, and

joint best on a further 8 datasets. This means of the 23 datsets considered, the minimal-

variance distance performs best in detecting outliers out of all the distances considered

for 18 of them.

Consider the datasets (Lympho, Cardio, Satimage-2) where the simplicial and minimal-

variance distances produce equal AR scores, not including those where k = 1 as this is just

the Euclidean distance. The value of k used to achieve these AR scores is consistently

lower in the minimal-variance distance than the simplicial distance, making it a more

efficient distance measure to use, with less risk of instability.

Of those datasets where the minimal-variance distance does not perform the best out of

all distance measures, it is often very close to the higher AR score (e.g. datasets Letter,

Shuttle, Annthyroid). The datasets considered here all vary greatly in dimensionality,

number of observations, number of outliers and distribution, and yet the minimal-variance

seems to perform well on the vast majority of them.

4.5.3 Using minimal-variance distances when d > N

It is common for multivariate datasets to have dimension d less than the number of obser-

vations N, particularly in fields such as genomics [59], medical imaging and chemomet-

rics [95]. More information on the issues of so-called ‘high dimension low sample size’

(HDLSS) datasets is given in Section 2.4 of the literature review.

Two synthetic datasets will be used to compare the performance of distances on high

dimensional datasets; one dataset has d < N, the other has d > N. In the d < N example,

X is a 100-dimensional dataset made of two clusters, X1 and X2. Both clusters have

500 points each and identity covariance matrix. X1 has mean µ1 = 0, and X2 has mean

µ2 = 1. The distance to µ1, i.e. to the cluster X1, is found using the Euclidean distance, the

Mahalanobis distance, and the minimal-variance distance with k ∈ [1,9], for every point

x ∈ X. For each distance measure, let M1 be the mean distance from the points in X1 to µ1,

and let M2 be the mean distance from the points in X2 to µ1. The ratio M1/M2 therefore

indicates how well separated the distances are between the clusters.
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Figure 4.7: The ratios of the mean of the distances from the first cluster over the mean

of the distances from the second cluster, using the Euclidean, Mahalanobis and minimal-

variance distances. The x-axis indicates the value of k used in the minimal-variance dis-

tance.

Figure 4.7a shows a plot of the ratios M1/M2 for each of the distances considered, and

the exact values are given in Table 4.16. The grey solid line shows the ‘borderline’ value

of 1, which would imply no separability in the clusters. The Mahalanobis distance clearly

demonstrates the best separability, as expected. The Euclidean distance also shows good

separability, and the minimal-variance distances transition between the two classical dis-

tance measures as the parameter k increases.

For the d > N case, the only difference in the construction of the dataset is that the di-

mensionality is 200, and both clusters only have 50 points each. The same experiment is

performed, where the Mahalanobis distance now uses the Moore-Penrose pseudoinverse

as the covariance matrix of this dataset is singular, and is referred to as the ‘Mahalanobis-

pinv’ distance. The ‘Mahalanobis-LW’ distance uses the Ledoit-Wolf shrinkage covari-

ance estimator, which is discussed in Section 2.5.2 of the literature review. Here, the

Ledoit-Wolf shrinkage covariance estimator is found using the covariance.LedoitWolf

class from the Scikit-Learn package [185] in Python.

Figure 4.7b shows the ratio M2/M1 in the d > N case. In this example, the Mahalanobis-

pinv distance produces a ratio less than 1 (0.73 to be exact, see Table 4.16 for all values),

indicating that the distance between points in X2 were measured closer to µ1 than the

points in X1 were. The Moore-Penrose pseudoinverse is known to have issues when
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d > N [109], so this finding is perhaps unsurprising. The Mahalanobis distance is clearly

improved by using the Ledoit-Wolf estimator in place of the sample covariance matrix; the

ratio using this distance is greater than 1, and greater than the ratio obtained when using

the Euclidean distance. However, the minimal-variance distances (using the classical

sample covariance matrix) clearly outperform the other distance measures in this example,

with a higher ratio value for all values of k > 1.
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(a) Lung Cancer Dataset
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(b) Breast Cancer Dataset (log scale)

Figure 4.8: The ratios of the mean of the distances from the first cluster over the mean

of the distances from the second cluster in (a) the Lung Cancer dataset and (b) the Breast

Cancer dataset, using the Euclidean, Mahalanobis and minimal variance distances. The

x-axis indicates the value of k used in the minimal-variance distances. Note that the y-axis

in (b) is log-scale.

Figure 4.8 shows the results of the same exercise having been performed on real datasets.

The ‘Lung Cancer’ dataset [105] (obtained from the UCI Machine Learning Repository

[68]) has 56 dimensions and only 36 observations, making it a d > N dataset. The dataset

has 3 groups, but the second and third group have been merged in this example to make

it a binary classification problem. The distance is again measured from all points in the

first cluster to its mean µ1, and from all points in the second cluster to µ1. Figure 4.8a

shows that the Mahalanobis distance with the Moore-Penrose pseudoinverse does not

appropriately separate the data, with a ratio value of 0.59 (again given in Table 4.16). The

Euclidean distance provides an improvement on this, as does the Mahalanobis distance

with the Ledoit-Wolf shrinkage estimator. However, the minimal-variance distances with

k > 5 clearly provide the best separation of the clusters.
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The ‘Breast Cancer’ dataset [170] is an array of mRNA expression data, with d = 1925 and

N = 133, made up of two clusters. The Mahalanobis distance (with the Moore-Penrose

pseudoinverse) and the Euclidean distance both surpass the borderline value of 1, but the

minimal-variance distances provide a much larger separation. The Mahalanobis distance

with the Ledoit-Wolf shrinkage estimator has the highest ratio M2/M1 in this example,

see Figure 4.8b and Table 4.16, but the minimal-variance distance is very close.

The minimal-variance distances consistently provide reliable results (and often the best

results) when considering the separation of clusters in datasets with both d < N and d > N.

Other distance measures may sometimes provide better results in given circumstances

(e.g. the Mahalanobis distance when d <N, and the Mahalanobis distance with the Ledoit-

Wolf estimator in given d > N examples), but the minimal-variance distances perform

consistently well over all examples. Thus, it can be recommended to use the minimal-

variance distance for multivariate data analysis tasks that rely on good separation, such as

clustering and classification problems.

Distance d < N d > N Lung Cancer Breast Cancer

Euclidean 2.04 2.17 1.88 5.71

Mahalanobis 2.39 0.73 0.59 3.35

Mahalanobis-LW 1.05 2.64 11.67 582.52

Minimal-Variance

k = 1 2.04 2.17 1.88 5.71

k = 2 2.26 3.88 3.51 9.01

k = 3 2.36 5.91 5.89 16.04

k = 4 2.38 8.11 8.82 22.17

k = 5 2.38 10.2 11.23 31.45

k = 6 2.39 12.2 14.29 40.88

k = 7 2.39 14.35 17.22 55.10

k = 8 2.39 16.53 22.27 416.72

k = 9 2.39 18.65 24.22 63.46

Table 4.16: Values of the ratio M2/M1 for each of the distances considered, for each

dataset in Section 4.5.3. Bold and italic values indicate the highest and second highest

values of the ratio for each dataset.
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4.6 Alternative constraints for minimal-variance distances

In Section 4.2, the minimal-variance distances are constructed by minimizing the vari-

ance of distances produced, subject to a constraint. The constraint given in (4.2) is

trace(AΣα) = trace
(
Σα−1

)
, where the parameter α has default value 1 in [85] and in this

thesis. The motivation for this choice of constraint is to force the matrix A to behave

similarly to the inverse covariance matrix Σ−1, if it exists. However, this is clearly not the

only possible constraint that can force A to behave similarly to the inverse of Σ. In this

section, the performance of the minimal-variance distances with two different constraints

will be considered. Let the above constraint with α = 1 be denoted ‘constraint 0’ in this

section.

Constraint 1 The first new method seeks to minimize Var
(
ρ2

Ak
(x,X)

)
subject to the new

constraint

∥AkΣ− I∥2 = 0, (4.24)

where ∥B∥2 = trace
(
B⊤B

)
, for any matrix B. Following the same method as that in Sec-

tion 4.2.1, using γ as the Lagrange multiplier, the Lagrangian is found to be

Φ(Ak) = trace
(
[AkΣ]2

)
+γ ∥AkΣ− I∥2

= trace
(
AkΣ

2Ak
)
+γ

(
trace

(
AkΣ

2Ak
)
−2trace(AkΣ)+d

)
= (1+γ)trace

(
θ⊤Σ(k)Σ

2Σ(k)θ
)
−2γtrace

(
θ⊤Σ(k)Σ

)
+γd

= (1+γ)θ⊤V⊤Vθ−2γθ⊤S (1,k)+γd

= ϕk(θ).

Therefore, minimizing the variance subject to the constraint (4.24) is equivalent to min-

imizing ϕk(θ) with respect to θ. Differentiating ϕk(θ), setting the result to zero and rear-

ranging for θ gives the solution

θ̂γ =
γ

1+γ
(V⊤V)−1S (1,k).

That is, the previous constant ωα,k is replaced by γ/(1+ γ). If γ → ∞, the BLUE is

obtained.

Constraint 2 The second new method aims to minimize Var
(
ρ2

Ak
(x,X)

)
subject to the

constraint

∥ΣAkΣ−Σ∥
2 = 0,
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where, again, ∥B∥2 = trace
(
B⊤B

)
. The Lagrange function in this case is

Ψ(Ak) = trace
(
[AkΣ]2

)
+γ∥ΣAkΣ−Σ∥

2

= trace
(
A⊤k Σ

2Ak
)
+γ(trace

(
AkΣ

4Ak
)
−2trace(AkΣ

3)+ trace(Σ2))

= θ⊤V⊤Vθ+γ(θ⊤V̄⊤V̄θ−2θ⊤S(3,k)+S2)

= ψk(θ),

where

V̄ =
(
λi+2

j

)
j=1, ...,d,

i=0, ...,k−1
=



λ2
1 λ3

1 . . . λk+1
1

λ2
2 λ3

2 . . . λk+1
2

...
...

...
...

λ2
d λ3

d . . . λk+1
d


.

The solution to the minimization problem is given by

θ̄γ = γ
(
V⊤V +γV̄⊤V̄

)−1
S(3,k).

Full rank example with new constraints Consider the 10-dimensional covariance ma-

trix Σ= diag(10,9,8,7,6,5,4,3,2,1). Five different methods will be used to invert Σ:

• The true inverse Σ−1;

• The minimal-variance method with constraint 0 and α = 1;

• The minimal-variance method with constraint 0 and α = 1.05;

• The minimal-variance method with constraint 1 with various values of γ;

• The minimal-variance method with constraint 2 with various values of γ.

The first set of examples will use k = 7 in all minimal-variance methods. Figure 4.9a

shows the variances of the quadratic form using each of the methods above, using Equa-

tion (4.1) to find this variance. The two new constraints give a much lower variance for

low values of γ, and converge towards the variance of the other methods as γ increases. As

previously seen, low variances in distances can provide more helpful distance measures

in multivariate settings. Figure 4.9b shows the 2-norm ∥A7−Σ
−1∥ between the matrix A7

produced by each technique and the true inverse Σ−1. Clearly, the value for the inverse

is 0. The new constraints have larger differences to the inverse for low values of γ, but

this converges to a smaller value as γ increases, particularly for the first new constraint.



110 CHAPTER 4. MINIMAL-VARIANCE DISTANCES

100 101 102 103

 (log scale)

6

8

10

12

14

16

18

20

Va
ria

nc
e 

of
 q

ua
dr

at
ic 

fo
rm

Inverse (var = 20)
MV = 1 (var = 20)
MV = 1.05 (var = 19.975)
MV new constraint 1
MV new constraint 2

(a) Variance of quadratic forms

100 101 102 103

 (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||A
1 ||

2

Inverse (norm = 0)
MV = 1 (norm = 0.013)
MV = 1.05 (norm = 0.082)
MV new constraint 1
MV new constraint 2

(b) Norms
∥∥∥A7−Σ

−1
∥∥∥

2

Figure 4.9: Comparisons of the minimal-variance methods with different constraints, with

k = 7, for a full-rank matrix. The x-axis shows the parameter γ, which relates to the two

new constraints.

Table 4.17 shows the variances of distances produced using the new minimal-variance

methods, as well as the eigenvalues of the product A7Σ. For contrast, when using the

exact inverse, the variance is exactly 20, and the eigenvalues are all exactly 1. When

using the original minimal-variance method with k = 7, the variance is 20.002, and the

eigenvalues of A7Σ are [1.017, 1.012, 1.011, 1.003, 1.001, 0.995, 0.994, 0.994, 0.992,

0.982]. The eigenvalues for all minimal-variance methods remain close to one. The first

new constraint produces lower variance for lower values of γ, whereas the second new

constraint has lower variance as γ gets higher.

If the above example is considered with k = 9, the second new constraint has instability

issues. However, the first new constraint has good results, given in Table 4.18. For ref-

erence, the original minimal-variance method with k = 9 has variance 20 and eigenvalues

[1.001, 1.001, 1. , 1. , 1. , 1. , 1. , 0.999, 0.999, 0.999].

Both new constraints suggested give distances with lower variance than both the original

minimal-variance method and using the true inverse. The eigenvalues of the product AΣ

are close to being all ones, particularly as the parameter γ increases. Much like the choice

of α in the previous minimal-variance definition, the choice of the parameter γ informs

the tradeoff between accuracy and low variance. The first new constraint is preferable in

this example, as the variances are lower for most values of k, the eigenvalues of A7Σ are

closer to all ones and it is more stable for higher values of k.
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γ Variance (con-

straint 1)

Eigenvalues of A7Σ

(constraint 1)

Variance (con-

straint 2)

Eigenvalues of A7Σ

(constraint 2)

50 19.221395 [0.997, 0.992, 0.991, 0.983,

0.981, 0.976, 0.975, 0.974,

0.972, 0.963]

19.77133 [1.02, 1.004, 1.002, 1.0, 1.0,

0.999, 0.996, 0.994, 0.99,

0.935]

100 19.603901 [1.006, 1.002, 1.001, 0.993,

0.991, 0.985, 0.984, 0.984,

0.982, 0.972]

19.824753 [1.023, 1.005, 1.003, 1.0,

1.0, 0.999, 0.996, 0.995,

0.991, 0.942]

250 19.838911 [1.012, 1.007, 1.007, 0.999,

0.997, 0.991, 0.99, 0.989,

0.988, 0.978]

19.857155 [1.026, 1.005, 1.003, 1.001,

1.0, 0.999, 0.996, 0.995,

0.992, 0.947]

500 19.918187 [1.014, 1.01, 1.009, 1.001,

0.999, 0.993, 0.992, 0.991,

0.99, 0.98]

19.86803 [1.026, 1.005, 1.003, 1.001,

1.0, 0.999, 0.996, 0.995,

0.992, 0.948]

1000 19.958004 [1.015, 1.011, 1.01, 1.002,

1.0, 0.994, 0.993, 0.992,

0.991, 0.981]

19.873449 [1.027, 1.005, 1.003, 1.001,

1.0, 0.999, 0.996, 0.995,

0.992, 0.949]

Table 4.17: The variance of the quadratic forms for the two new minimal-variance meth-

ods with k = 7, for different parameters γ, for a full-rank matrix. The eigenvalues of AΣ

are also given for both methods.

γ Variance (con-

straint 1)

Eigenvalues of A9Σ (constraint 1)

50 19.22186 [0.981, 0.981, 0.981, 0.981, 0.980, 0.980, 0.980, 0.980, 0.980, 0.979]

100 19.60438 [0.991, 0.991, 0.990, 0.990, 0.990, 0.990, 0.990, 0.989, 0.989, 0.989]

250 19.83939 [0.997, 0.997, 0.996, 0.996, 0.996, 0.996, 0.996, 0.995, 0.995, 0.995]

500 19.91867 [0.999, 0.999, 0.998, 0.998, 0.998, 0.998, 0.998, 0.997, 0.997, 0.997]

1000 19.95849 [1.0, 1.0, 0.999, 0.999, 0.999, 0.999, 0.999, 0.998, 0.998, 0.998]

Table 4.18: The variance of the quadratic forms for the minimal-variance method using

constraint 1 with k = 9, for different parameters γ, for a full-rank matrix. The eigenvalues

of AΣ are also given.
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Degenerate example with new constraints The same exercise is repeated for a matrix

that does not have full rank: Σ= diag(5,4,2,1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,0).

Figure 4.10a shows the variance of the quadratic forms using the different methods as

listed in the previous example, replacing the true inverse with the Moore-Penrose pseu-

doinverse Σ−. The parameter k = 5 is used for all minimal-variance methods. The variance

of the two new methods is much lower than the other methods, for all values of γ consid-

ered.

Figure 4.10b shows the 2-norm between the matrix produced and the true inverse of the

covariance matrix. The two new methods have higher norm than the other methods, but it

decreases as γ increases. Like the previous method, the parameter γ can be used to adjust

the tradeoff between accuracy and variance.
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Figure 4.10: Comparisons of the minimal-variance methods with different constraints,

with k = 5, for a degenerate matrix. The x-axis shows the parameter γ, which relates to

the two new constraints.

The distances produced using the pseudoinverse have variance 2r = 26, and the eigen-

values of Σ−Σ are all exactly one or zero. The original minimal-variance method has

variance 25.804 when k = 5, and the eigenvalues of A5Σ are [1.399, 1.327, 1.173, 1.062,

1.032, 1.025, 1.02, 0.915, 0.819, 0.793, 0.741, 0.675, 0.62, 0]. Table 4.19 shows the

variances of the quadratic forms with the two new constraints, and the eigenvalues of AΣ

for A produced by the two new methods. The eigenvalues using constraint 1 are slightly

closer to 1 than those produced using constraint 2. However, the variance using constraint

2 is considerably smaller for all values of γ.
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Overall, the optimal constraint to be used in the minimal-variance method is dependent on

the dataset, the application and the desire for accuracy versus low variance. The minimal-

variance method is extremely adaptable thanks to the interchangeable constraints shown

here, and further adjustments to both the constraint and the function to be minimized

could be considered.

γ Variance (con-

straint 1)

Eigenvalues AΣ

(constraint 1)

Variance (con-

straint 2)

Eigenvalues AΣ

(constraint 2)

50 23.654503 [1.34, 1.27, 1.123, 1.017,

0.988, 0.981, 0.976, 0.876,

0.784, 0.76, 0.709, 0.646,

0.593, 0.0]

14.698196 [0.999, 0.999, 0.995, 0.982,

0.975, 0.829, 0.698, 0.598,

0.522, 0.462, 0.414, 0.375,

0.342, 0.0]

100 24.125228 [1.353, 1.283, 1.134, 1.027,

0.998, 0.991, 0.986, 0.885,

0.792, 0.767, 0.716, 0.653,

0.599, 0.0]

16.227192 [1.062, 1.0, 0.999, 0.998,

0.98, 0.913, 0.775, 0.667,

0.584, 0.518, 0.465, 0.421,

0.385, 0.0]

250 24.414439 [1.361, 1.29, 1.141, 1.033,

1.004, 0.997, 0.992, 0.89,

0.797, 0.772, 0.72, 0.656,

0.603, 0.0]

17.400193 [1.118, 1.0, 1.0, 1.0, 0.983,

0.973, 0.83, 0.717, 0.628,

0.558, 0.501, 0.455, 0.416,

0.0]

500 24.511999 [1.364, 1.293, 1.143, 1.035,

1.006, 0.999, 0.994, 0.892,

0.799, 0.773, 0.722, 0.658,

0.604, 0.0]

17.846217 [1.139, 1.0, 1.0, 1.0, 0.995,

0.984, 0.85, 0.735, 0.644,

0.572, 0.514, 0.467, 0.427,

0.0]

1000 24.560998 [1.365, 1.294, 1.144, 1.036,

1.007, 1.0, 0.995, 0.893,

0.799, 0.774, 0.722, 0.658,

0.605, 0.0]

18.08105 [1.149, 1.006, 1.0, 1.0, 1.0,

0.984, 0.861, 0.744, 0.653,

0.58, 0.521, 0.473, 0.433,

0.0]

Table 4.19: The variance of the quadratic forms for the two new minimal-variance meth-

ods with k = 5, for different parameters γ, for a degenerate matrix. The eigenvalues of

A5Σ are also given for both methods.
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4.7 Chapter summary

This chapter has presented the minimal-variance distances, which were first introduced in

[85], a paper co-authored by myself and my supervisors. The distance measure aims to

minimize the variance of the distances found, while producing results similar to the Ma-

halanobis distance. The benefits of using the minimal-variance distances include:

• The ability to use the minimal-variance distance measure in degenerate and near-

degenerate data, something not available to the Mahalanobis distance;

• The adjustability of the distance: the degree parameter k allows for adjustment in

computation time and applicability in degenerate data, and the parameter α controls

the tradeoff between bias and low variance. The ability to change the constraint

allows for further customisation of the distance;

• The ability to account for correlations and rotations in the data without imposing

assumptions on the data, unlike many popular multivariate distance measures;

• The efficiency of the distance measure compared to other alternatives to the Maha-

lanobis distance.

The limitations of the minimal-variance distances include:

• Instability if k is chosen too high, as with many polynomial methods [101]. Possible

methods to help improve this issue are given in Chapter 5;

• This method is reliant on an estimator of the sample covariance matrix, which is

known to be problematic in high dimensions (see Section 2.5.1 in the literature

review). However, examples with d > N show this doesn’t seem to cause issues,

and the method could be extended to use different estimators of the covariance

matrix.

Section 4.2 proposes two methods of constructing the minimal-variance distances. The

polynomial method was first introduced in [85], and the weighted linear regression method

was first suggested in Section 4.2.2. The distance was generalized to consider a new pa-

rameter α, which was not given in [85]. This parameter controls the constraint imposed

on the distances, and has an effect on the variance and bias of the results. Both methods of

construction produce the same minimal-variance distances, but offer different perspectives
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which help to motivate the distance measure. The linear regression approach indicates that

α = 1 is a natural choice of the parameter α, and a theorem was given to prove that when

k = d and α = 1, the minimal-variance matrix is equal to Σ−1 for full-rank Σ.

The choice of the parameter α is studied further in Section 4.3. It is shown that for

α= 1, the best linear unbiased estimator is obtained, whereas higher values of α produce a

slightly biased but lower variance estimator. A correction for this biasedness is suggested

in Section 4.3.2, and shown in practice on some empirical examples.

Section 4.4 explores the efficiency of the minimal-variance distances compared to the

simplicial distances, where the efficiency of a distance is defined as the variance of the

distance over the variance of the Mahalanobis distance. It is shown that the minimal-

variance distances are more efficient, in this sense, than the simplicial distances, making

them less computationally and time intensive than the simplicial distances. For small

examples, the efficiency of both distances considered equals one for given values of k,

showing the variances are equal to the Mahalanobis distance.

Numerical examples of applications using the minimal-variance distances are given in

Section 4.5. The applications considered include a K-means clustering exercise, an out-

lier labelling example and a comparison of separation ability with d > N. All of these

examples use real data, and the performance of the minimal-variance distances is com-

pared to the simplicial distances, the Euclidean distance and the Mahalanobis distance

across all examples. The minimal-variance distances often produce the best results out of

the distance measures for all applications considered.

Finally, the flexibility of the minimal-variance distances is proven as Section 4.6 considers

two new constraints. The constraints ensure that the minimal-variance matrix A behaves

similarly to an inverse or a pseudoinverse, as appropriate. The two new constraints often

have lower variance than the original constraint, but slightly less accuracy.

Overall, the minimal-variance distance is a strong alternative to the Mahalanobis distance

in times when Σ is singular, or close to singularity. It performs well when there are

small eigenvalues, and can outperform a variety of other distance measures on a wide

range of tasks. The next chapter of this thesis introduces ‘minimal-variance whitening’,

which takes the theory of minimal-variance distances and applies it to data transformation

methods.
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Chapter 5

Minimal-Variance Whitening

The research presented in this chapter is based on the contents of a publication I have co-

authored [84], entitled Polynomial whitening for high-dimensional data, published in

Computational Statistics, available at https://doi.org/10.1007/s00180-022-01277-6.

The differences between the published manuscript and the contents of this chapter are as

follows:

• This chapter gives an extension to the minimal-variance whitening method in the

form of ‘iterative minimal-variance whitening’, introduced in Section 5.4;

• Additional empirical examples are provided in this chapter, including examples

utilising random projection for very high dimensional data, principal component

analysis and iterative minimal-variance whitening;

• The ‘fuzzy minimal-variance rank estimation’ method is introduced in this chapter;

• Alternative constraints are suggested and explored in Section 5.6 of this chapter.

The aims of the research presented in this chapter are:

• To produce a method of data whitening which performs similarly to Mahalanobis

whitening, particularly when Mahalanobis whitening is not available due to singu-

larity in the covariance matrix;

• To minimize the total variation of the transformed data subject to a given constraint,

following the trends of Chapter 4;
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• To show how the minimal-variance whitening method can be used to detect singu-

larity in the covariance matrix and approximate the matrix rank;

• To introduce the method of ‘iterative minimal-variance whitening’ for improved

stability and performance;

• To highlight methods of applying minimal-variance whitening to extremely high

dimensional data.

5.1 Introduction

Data whitening is a method of transforming a dataset by decorrelating and standardizing

its variables. Let X ∈ Rd×N be a d-dimensional dataset with N observations, with mean µ

and covariance matrix Σ. Whitening transformations are typically of the form A(X −µ),

where A is known as the whitening matrix. The most common method of whitening data is

Mahalanobis whitening, which uses the whitening matrix A = Σ−1/2. Figure 5.1 illustrates

the effect that a whitening transformation has on the covariance matrix of a dataset. Fig-

ure 5.1a shows the heatmap of the covariance matrix of a dataset, and Figure 5.1b shows

the heatmap of the covariance matrix of the same dataset after Mahalanobis whitening

has been applied, with all correlations removed and equal values on the diagonal. More

information on Mahalanobis whitening, and data whitening more generally, is given in

Section 2.3 of the literature review.
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Figure 5.1: Heatmaps of the covariance matrices of (a) a dataset with correlations and

variables of different scales (b) the same dataset after Mahalanobis whitening.
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Much like the Mahalanobis distance seen in Chapter 4, whitening transformations are

also reliant on the inverse of the covariance matrix (more specifically, the square root

of the inverse). Due to singularity in the covariance matrix, which is common in high

dimensions, the inverse does not always exist, making data whitening unavailable in such

circumstances. The polynomial methods introduced in Chapter 4 have therefore inspired

the production of similar methods with the aim of whitening data.

This chapter is structured as follows. Section 5.2 introduces the minimal-variance whiten-

ing method. More specifically, Section 5.2.1 details how the minimal-variance whitening

method is formed, with the main result given in Theorem 4. Section 5.2.2 discusses the

effect of the parameters in the minimal-variance polynomial, namely the degree parame-

ter k and the constraint parameter α. Several numerical examples of the minimal-variance

whitening method are given in Section 5.3, including outlier detection, dimension reduc-

tion and comparisons to other whitening methods. Section 5.4 introduces an extension to

minimal-variance whitening called ‘iterative minimal-variance whitening’, and gives ex-

amples of this in practice. The final two subsections of the chapter give alternative ways

that the minimal-variance whitening polynomial could be used: to estimate the rank of

a matrix and to approximate Σ−1 (with comparisons to the method used to approximated

Σ−1 in Chapter 5). A summary of the chapter is given in Section 5.8.

5.2 Constructing the minimal-variance whitening matrix

Much like the construction of the minimal-variance distances in Section 4.2.1, the minimal-

variance whitening matrix is constructed through polynomials in the covariance matrix.

A similar approach is used, now seeking to minimize the total variation of the whitened

data. A constraint is again enforced on the polynomial to ensure the minimal-variance

whitening matrix behaves like the square root of an inverse, where it exists.

5.2.1 Construction through polynomials

Let X ∈ Rd×N be a matrix of data, with d dimensions and N observations. Denote the

empirical mean vector and covariance matrix of X by µ ∈ Rd and Σ ∈ Rd×d, respectively.

As in Chapter 4, let Sα = trace(Σα) and S(α,k) = (Sα, Sα+1, . . . , Sα+k−1).
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Define the vectors θα = (θ0, θ1, . . . , θk−1)⊤ and Σ(k) =
(
Σ0, Σ1, . . . , Σk−1

)⊤
, where θα is

dependent on a parameter α that will be discussed shortly. The matrix Ak is defined to be

a (k−1)-degree polynomial in the covariance matrix Σ, of the form:

Ak =

k−1∑
i=0

θiΣ
i = θ⊤αΣ(k) . (5.1)

For a chosen integer k such that k ≤ d, the objective is to find the vector of k coefficients

of the matrix polynomial, denoted θα = (θ0, θ1, . . . , θk−1)⊤ in Equation (5.1), so that the

total variation of the transformed data XAk = Ak(X −µ) is minimized, subject to suitable

constraints. The covariance matrix of the transformed data is D(XAk) = AkΣA⊤k , and the

total variation of XAk is given by:

trace
(
D(XAk)

)
= trace

(
AkΣA⊤k

)
= trace

k−1∑
i=0

θiΣ
iΣ

k−1∑
j=0

θ jΣ
j


= θ⊤α M(k)θα,

where the matrix M(k) is defined as

M(k) =



S1 S2 · · · Sk

S2 S3 · · · Sk+1
...

...
. . .

...

Sk Sk+1 · · · S2k−1


.

To ensure non-trivial solutions to the minimization of the total variation, a constraint

on the coefficient vector is needed. There are a number of options for this constraint,

including constraints of the form

trace
(
AkΣ

α) = trace
(
Σα−1/2

)
(5.2)

for some scalar value α. This can be written using the notation defined above as

θ
⊤
αS(α,k) = Sα−1/2.

A constraint of this form ensures that the minimal-variance polynomial matrix Ak has

similar qualities to Σ−1/2, in the cases where Σ−1/2 exists. Appropriate values of α in the

constraint (5.2) will be considered in Section 5.2.2, after the following theorem. Theo-

rem 4 derives the optimal coefficient vector θα to minimize total variation while adhering

to the constraint (5.2).
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Theorem 4. Let X ∈ Rd×N be a d-dimensional dataset with N observations, having em-

pirical mean vector µ and empirical covariance matrix Σ. For k ≤ d, k ∈ Z, the matrix

polynomial Ak =
∑k−1

i=0 θiΣ
i = θ⊤αΣ(k) that minimizes trace

(
D(XAk)

)
subject to the constraint

θ⊤αS(α,k) = Sα−1/2 has coefficients given by

θ̂α =
Sα−1/2

S⊤(α,k)M
−1
(k)S(α,k)

M−1
(k)S(α,k) . (5.3)

Proof. The aim is to minimize 1
2 trace

(
D

(
XAk

))
subject to the constraint (5.2), where the

constant 1/2 is introduced to simplify calculations. The Lagrange function L (θα,ω) with

Lagrange multiplier ω is given by

L(θα,ω) =
1
2
θ
⊤
α M(k)θα−ω

(
θ
⊤
αS(α,k)−Sα−1/2

)
. (5.4)

To minimize the Lagrange function, differentiate Equation (5.4) with respect to θα and set

the result equal to 0, which gives:

M(k)θα = ωS(α,k).

This can then be rearranged to find an estimator for θα:

θ̂α = ωM−1
(k)S(α,k). (5.5)

Let ω = ωα,k to show the dependancy of the scalar on the parameters α and k. The value

of ωα,k can be found by substituting (5.5) for θα into the constraint θ⊤αS(α,k) = Sα−1/2 and

rearranging:

ωα,k =
Sα−1/2

S⊤(α,k)M
−1
(k)S(α,k)

.

Thus, the vector of coefficients which minimizes trace
(
D(XAk)

)
subject to the constraint

(5.2) is given by Equation (5.3). The polynomial with these coefficients is called the

minimal-variance whitening polynomial, and the matrix produced by the polynomial is

called the minimal-variance whitening matrix. □

An outline of how to produce and use the minimal-variance polynomial matrix to whiten

a dataset is given in Algorithm 2.
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Algorithm 2: Minimal-variance whitening method
Input: X: data; k: degree of polynomial; α: constraint parameter; µ: mean of X; Σ:

covariance matrix of X

Output: XAk : transformed data

θ̂α =
Sα−1/2

S⊤(α,k)M
−1
(k)S(α,k)

M−1
(k)S(α,k)

Ak =

k−1∑
i=0

θiΣ
i

XAk = Ak(X−µ)

5.2.2 Parameter selection for minimal-variance whitening

The minimal-variance polynomial is reliant on the setting of two parameters. The param-

eter α relates to the constraint (5.2), which controls how the minimal-variance whitening

matrix approximates Σ−1/2. The parameter k controls the degree of the minimal-variance

polynomial, which can be used as a trade-off between accuracy and time taken to cal-

culate the polynomial. Both parameters will be explored in the following sections, and

suggestions on how to set them are given.

Choice of the parameter α

The parameter α in used to set the constraint (5.2), and will affect the outcome of poly-

nomial whitening. Theoretically, any value of α will produce an alternative whitening

matrix to Σ−1. Using α = 1 produces the constraint

trace(AkΣ) = trace
(
Σ1/2

)
,

while letting α = 1/2 will give the constraint

trace
(
AkΣ

1/2
)
= trace(I) ,

where I is the d×d identity matrix.

The outcomes of polynomial whitening using different values of α will be studied us-

ing empirical investigations. Figure 5.2 considers three different datasets, with d = 10,

d = 50 and d = 150, respectively. The nonzero eigenvalues of the datasets (detailed in

Appendix C.3) are plotted along the horizontal axes, and the reciprocal square root eigen-

values are plotted on the vertical axes. The minimal-variance whitening polynomials with

different values of α are then plotted, using the following method.
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(a) d = 10 (b) d = 50 (c) d = 150

Figure 5.2: Comparing the effect of constraints with α = 1/2, k = 7 (red, solid line) and

α = 1, k = 22 (green, dotted line) on the fit of the minimal-variance polynomial to the

inverse square root of the simulated eigenvalues (blue points). The eigenvalues are given

in Appendix C.3, for datasets generated with (a) 10 dimensions, (b) 50 dimensions and

(c) 150 dimensions.

Find the coefficients θα = (θ0, θ1, . . . , θk−1)⊤ of the minimal-variance whitening polynomial

using Equation (5.3), and write the polynomial as in Equation (5.1), replacing the matrix

Σ with a symbol t:

pk(t) = θ0t0+ θ1t1+ · · ·+ θk−1tk−1. (5.6)

This polynomial can then be plotted for different values of t. In Figure 5.2, the polynomi-

als are plotted using α = 1 and α = 1/2, using the value of k that provided the best fit to

the reciprocal square roots of the eigenvalues.

As demonstrated in Figure 5.2, using the parameter α = 1 requires a much higher value

of k to obtain the polynomial with the best fit. It has been shown in both Chapter 3

and Chapter 4 that using higher degree polynomials can induce instability, and therefore

lower-degree polynomials are preferred. Furthermore, it can be shown for low values of

the parameter k that θα is a vector with a scalar value in the first entry, and every other

entry all zeros. See Appendix B.1 for a further explanation on this.

The polynomial with α = 1/2 performed better in these experiments, in terms of data

whitening success, stability and computational cost. This constraint works well in the case

of non-degenerate data (when Σ is essentially non-singular). The method also performs

well in the case of singular data, but requires an adjustment, much like the minimal-

variance distances.
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Using the parameter α = 1/2 in the minimal-variance distances is equivalent to enforcing

the constraint trace
(
AkΣ

1/2
)
= trace(I) = d. It may be preferable to adjust the constraint

to require trace
(
AkΣ

1/2
)
= r, where r is the rank of the data. This constraint has been

applied to all relevant examples, including those in Figure 5.2, and will be discussed in

more detail in Section 5.2.3.

Choice of the parameter k

The true inverse square root of a full-rank covariance matrix can be written as a (d−1)-

degree polynomial using the characteristic polynomial of the matrix. The minimal-variance

whitening polynomial with parameter k forms a (k− 1)-degree polynomial, as defined in

Equation (5.1). As k increases, the polynomial can theoretically approximate the square

root of the characteristic polynomial more accurately. However, not only is it more com-

putationally intensive to compute a polynomial as the degree increases, but the opportu-

nity for instability to occur is much greater, particularly in high dimensions (see the dis-

cussion in Section 4.2.4 and the examples given in Section 5.3.1). As such, keeping values

of the parameter k relatively low is not only beneficial for cost, but for stability.

Figure 5.3 considers the same datasets as those in Figure 5.2, but uses parameters α = 1/2

and k = {4,5,6} to plot the polynomials. As can be seen by the polynomial fit to the

reciprocal square roots of the eigenvalues in Figure 5.3, choosing low values of k can

produce good approximations for the inverse square root of the covariance matrix. This

will be further demonstrated in the numerical examples in Section 5.3.

To choose the best value of k, it may be appropriate to run the same experiment multiple

times with different values of k and use a problem-specific metric to identify the best

value of k for that dataset. For example, in Section 5.3.1, the Wasserstein metric is used

to compare the whitened data to the standard normal distribution, as well as a sum-of-

squares-based metric. The value of k chosen is the one which produces the lowest values

for these metrics. This is similar to techniques used in many parameterized methods, such

as using scree plots or silhouette scores to judge the best number of clusters to use in a

clustering algorithm.
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(a) d = 10 (b) d = 50 (c) d = 150

Figure 5.3: The minimal-variance polynomial fit to simulated eigenvalues (blue, values

given in Appendix C.3) for datasets with (a) 10 dimensions, (b) 50 dimensions and (c)

150 dimensions. Parameters used are α = 1/2 and k = 4 (red, dotted line), k = 5 (green,

dash-dot line) and k = 6 (orange dashed line).

5.2.3 Constraint adjustment for rank-deficient data

The Moore-Penrose pseudoinverse Σ− has the property that

trace
(
(Σ−)1/2Σ1/2

)
= r, (5.7)

where r is the rank of Σ. However, for matrices with many small eigenvalues, r is hard to

calculate [241], and approximations of r are often based on arbitrary eigenvalue thresh-

olding or subjective elbow plots [131]. In cases where Σ is not full-rank, an adjustment is

proposed to modify the constraint (5.2) to be more similar to Equation (5.7). This discus-

sion is analogous to the findings given in Section 4.3.2 regarding the minimal-variance

distances.

Two examples are given in Figure 5.4 to illustrate the constraint adjustment, using the

same datasets as in Section 5.2.2 (the eigenvalues of which can be found in Appendix C.3).

The figures plot the eigenvalues of datasets against their reciprocal square root eigenval-

ues.

The minimal-variance polynomial using the original constraint (5.2) is shown in Fig-

ure 5.4a and Figure 5.4b as the red, dashed line. The method of plotting these polyno-

mials is described in Section 5.2.2. Although the original polynomials take the correct

shape, they are clearly placed too high and do not fit the plot of the reciprocal square root

eigenvalues. Multiplying the polynomials by some constant ck between 0 and 1 ensures

a better fit of the polynomial. A method for finding an optimal value of c is as follows.
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(a) d = 50 (b) d = 150

Figure 5.4: The minimal-variance polynomial with k = 5 fit to simulated eigenvalues

(blue, the same as those in Figure 5.2) before (red, dashed line) and after (green, solid

line) adjustment for rank-deficient data, as described in Section 5.2.3.

Let Λ = {λ1, . . . ,λd} be the set of all eigenvalues of Σ, and let Λ̃ = {λi ∈ Λ : λi , 0} be the

set of all nonzero eigenvalues of Σ. In the case of very large dimensions, computation of

eigenvalues λi is certainly out of reach; in this case, as will be discussed in Section 5.3.3, it

is suggested to project the data to a low dimensional space and use the set of eigenvalues

for the low dimensional projection of the data. The constant ck can be found in any

number of ways; here the goal is to minimize the distance between the minimal-variance

polynomial pk(λ) (as in Equation (5.6)) and the target values 1/λ1/2, for λ ∈ Λ̃. Letting

w(λ) be a suitable weight function, the value c∗k from

c∗k = argmin
ck∈(0,1]

∑
λ∈Λ̃

w(λ)[ck · pk(λ)−λ−0.5]2

minimizes the weighted sum of squares between the polynomial and the reciprocal square

root of the nonzero eigenvalues. The optimal value of the adjustment constant ck is then

found to be

c∗k =
∑
λ∈Λ̃w(λ)λ−0.5 pk(λ)∑
λ∈Λ̃w(λ)pk(λ)2 . (5.8)

In Figure 5.4, the weight function w(λ) = λ is used, and in general this weight function

is recommended. However, the choice of w(λ) can be altered to adjust the fit of the

polynomial to the eigenvalues. If the user is more concerned about fitting the polynomial

to the larger eigenvalues of the dataset, they may decide to use w(λ) = λi with i > 1, for

example.
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The adjusted polynomials (given by the green solid line in Figure 5.4) clearly fit the

desired points much more successfully than the original polynomials. However, if this

adjustment is not performed, the data transformed by the minimal-variance whitening

matrix Ak will still be approximately isotropic, as this adjustment is simply a multiplica-

tion of the whitening matrix by a scalar. For simplicity and continuity, this adjustment

has been applied to all relevant examples that follow.

This adjustment to the constraint can also be used to detect the singularity of a matrix.

Consider first the case with d < N. If Σ is full rank, and k is chosen appropriately, the value

c∗k will be equal to (or very close to) 1, as the minimal-variance polynomial is aiming to

make trace(AkΣ) = d, which is correct in the case of full-rank Σ. If the matrix Σ is not

full-rank, c∗k will be less than 1.

To illustrate this, Table 5.1 gives two d < N examples. A d-dimensional dataset with N

observations is generated using a covariance matrix with rank R. Further details on how

these datasets were generated is available in Appendix C.3. The empirical covariance

matrix of a dataset has rank r = min(d, N, R), and is used to find the minimal-variance

whitening matrix with k = 10. Table 5.1 gives details of the dataset, as well as the con-

straint adjustment c∗10 from Equation (5.8). In dataset 1, the empirical matrix has full rank

r = d, so c∗10 = 1. In dataset 2, the ‘true’ covariance matrix has rank R = 50, d = 100

and N = 1000, therefore the empirical covariance matrix has rank r = min(d, N, R) = 50.

This produces a constraint adjustment value of c∗10 = 0.50 < 1, implying that the empirical

covariance matrix Σ is singular.

Three examples are used to consider datasets with d > N. Dataset 3 in Table 5.1 has

100 dimensions and only 50 observations. The ‘true’ covariance matrix used to gen-

erate this dataset is full-rank R = 100, but the empirical covariance matrix has rank

r = min(d, N, R) = 50. Therefore, the adjustment value is c∗10 = 0.50, indicating that this

dataset is degenerate. Dataset 4 also has d = 100, N = 50, and the ‘true’ covariance matrix

now has rank R = 50. The adjustment value is therefore less than 1: c∗10 = 0.50. The

final example considered here has d = 100, N = 50, but the ‘true’ covariance matrix has

rank R = 30. The empirical covariance matrix therefore has r =min(d, N, R) = 30, and the

adjustment value is c∗10 = 0.30. In all the examples with d > N, c∗10 < 1, as the empirical

covariance matrix Σ will never be full-rank in datasets with d > N.
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Dataset d N R r c∗10

1 100 1000 100 100 1.00

2 100 1000 50 50 0.50

3 100 50 100 50 0.50

4 100 50 50 50 0.50

5 100 50 30 30 0.30

Table 5.1: The adjustment value c∗10 for different configurations of the dimension d, num-

ber of observations N, rank of true population covariance matrix R and rank of sample

covariance matrix r.

The rank of a covariance matrix is not always obvious due to the presence of small eigen-

values, particularly in high dimensions. Section 5.5 discusses how the adjustment value

c∗k can be used to approximate the rank of the covariance matrix.

5.3 Applications of minimal-variance whitening

Data whitening is used in many applications across multivariate data analysis, as it has

been shown to improve both computation time and performance [112, 133]. In some

applications, data whitening is desirable as it has been shown to improve results [111], but

is not used due to the computational cost of whitening a dataset [118], or the inability to

whiten a dataset due to degeneracy [121]. In such cases, the minimal-variance whitening

method is extremely useful, as it is computationally inexpensive and can be used to whiten

degenerate datasets.

This section gives an overview of the performance of the minimal-variance whitening

method, with applications on datasets with both d < N and d ≥ N. The method is com-

pared to other popular whitening methods in Section 5.3.2, and several considerations as

to how to apply the method to extremely high dimensional data are given in Section 5.3.3.

Sections 5.3.4 and 5.3.5 compare minimal-variance whitening to other pre-processing

methods in the context of outlier detection and principal component analysis, respec-

tively.
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5.3.1 Whitening data using minimal-variance polynomials

The first set of numerical examples illustrate the performance of minimal-variance whiten-

ing on several synthetic and real datasets. Datasets with d < N will be considered first,

followed by examples using datasets with dimension greater than the number of observa-

tions.

Data with d < N

Table 5.2 gives the details of eight datasets with d < N, four of which are real datasets

and the other four have been generated synthetically. The four synthetic datasets (D1,

D2, D3, D4) are sampled from a Gaussian distribution Nd(0,Σ) with N = 5× d observa-

tions, where the covariance matrices Σ are produced as follows. Generate d eigenvalues

Λ = {λ1, λ2, . . . , λd} from the Wishart distribution and produce a random d×d orthogonal

matrix Q. Let L be the matrix with the eigenvaluesΛ on the diagonal and zeros elsewhere,

then Σ = Q⊤LQ. See Appendix C.1 for more information.

The first three real datasets ‘Digits’, ‘Musk’ and ‘HAR’ (Human Activity Recognition)

[18] were obtained from the UCI Machine Learning repository [68]. The ‘MNIST’ dataset

[144] was obtained from the OpenML database [237].

Dataset d N

D1 50 250

D2 100 500

D3 500 2500

D4 1000 5000

Digits 64 1797

Musk 168 6598

HAR 561 10299

MNIST 784 70000

Table 5.2: Datasets used in Section 5.3.1 with d < N, their dimension d and number

of observations N. The distribution of eigenvalues for each dataset is available in Ap-

pendix C.3.
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The heatmaps in Figure 5.5 show the covariance matrices of the datasets, and the dis-

tribution of the eigenvalues of these covariance matrices are given in Appendix C.3. As

Figure 5.5 shows, most of these datasets are highly correlated, with densely populated

off-diagonal entries. In some cases, it can be beneficial to rescale the data so that each

variable has zero mean and unit variance, before finding the minimal-variance polynomial

matrix. If rescaling the data provides less extreme eigenvalues in the covariance matrix,

this scaling is likely to improve the performance of the polynomial whitening. If a dataset

has been rescaled, this is noted in the caption of Figure 5.5.

(a) D1 (b) D2 (c) D3 (d) D4

(e) Digits (f) Musk (g) HAR (h) MNIST

Figure 5.5: Heatmaps of the covariance matrix of each dataset detailed in Table 5.2 before

minimal-variance polynomial whitening. Datasets corresponding to Figures (a), (e), (f)

and (h) are scaled to have unit variance, to improve performance of polynomial whitening.

The heatmaps show the covariance matrix after this scaling.

The proximity of the transformed data XAk ∼Nd(0,S) to the standard normal distribution

Nd(0, I) can be measured using the Wasserstein metric [86]:

W(XAk) =
(
d+ trace(S)−2trace

(
S1/2

))
/d, (5.9)

where the division by d accounts for the difference in the dimensions of each dataset.

The heatmaps in Figure 5.6 show the covariance matries of each dataset after whitening

XAk = Ak (X−µ), illustrating that the correlations between variables have been approxi-

mately whitened. The value of k used in these heatmaps is chosen as the value of k which

gives the lowest of the Wasserstein scores, which are given in Table 5.3.
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(a) D1, k = 8 (b) D2, k = 8 (c) D3, k = 9 (d) D4, k = 9

(e) Digits, k = 7 (f) Musk, k = 5 (g) HAR, k = 5 (h) MNIST, k = 5

Figure 5.6: Heatmaps of the covariance matrix of the datasets in Table 5.2 after minimal-

variance polynomial whitening. The value of k used in constructing the minimal-

variance polynomial is given in the caption for each dataset.

The Wasserstein scores in Table 5.3 show that, in general, as the value of k increases, the

transformed data is closer to the standard normal distribution, as desired. In some cases,

such as the Musk dataset, higher values of k begin to show an increase in the Wasserstein

score, indicating the decorrelation is less successful than when using lower values of k.

This is due to numerical instability, as the minimal-variance polynomial aims to fit itself

to extremely small eigenvalues, causing erratic behaviour in the polynomial. As such,

it is recommended to use lower values of k which provide a more reliable alternative to

the inverse square root of the covariance matrix, or to compute several minimal-variance

polynomial matrices for different k and use the one that best satisfies some metric, such

as the Wasserstein score.

The Wasserstein metric concerns itself only with the diagonal values of the covariance

matrix, as it is calculated using traces. It can be considered as a measure of standardiza-

tion, rather than whitening. A measure is therefore needed to evaluate the extent to which

the data has been decorrelated. The heatmaps in Figure 5.6 show that the off diagonals of

the covariance matrix of the transformed data are close to zero, indicating good decorre-

lation. Another way decorrelation can be measured is by considering the sum of squares

of the off-diagonal entries of the covariance matrix (SSOD score) of the transformed data.

In Table 5.4, let SAkX be the SSOD score of the whitened dataset Ak (X−µ).
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Dataset WX WA3X WA4X WA5X WA6X WA7X WA8X WA9X WA10X

D1 0.455 0.179 0.119 0.090 0.075 0.060 0.057 0.071 0.139

D2 0.634 0.358 0.301 0.246 0.220 0.181 0.160 0.200 0.225

D3 0.866 0.718 0.678 0.631 0.601 0.578 0.544 0.520 0.552

D4 0.812 0.585 0.524 0.465 0.425 0.393 0.360 0.336 0.365

Digits 0.361 0.137 0.101 0.073 0.066 0.058 0.071 0.107 0.381

Musk 0.949 0.574 0.450 0.373 1.123 2.022 0.989 0.990 0.991

HAR 0.885 0.772 0.794 0.586 3.892 0.998 0.998 0.998 0.998

MNIST 0.612 0.405 0.341 0.296 0.597 1.077 1.039 1.566 4.563

Table 5.3: The Wasserstein scores (5.9), denoted WAkX, which measure the distance be-

tween the polynomial-whitened dataset Ak (X−µ) and the standard normal distribution

N(0, I) for each dataset in Table 5.2. Values in bold indicate the lowest Wasserstein score

WAkX over all k for a given dataset.

Dataset SX SA3X SA4X SA5X SA6X SA7X SA8X SA9X SA10X

D1 10.10 2.89 2.80 2.44 2.12 2.10 1.74 1.85 2.97

D2 10.88 6.96 5.87 5.83 5.12 5.09 5.05 4.72 5.78

D3 20.04 19.69 18.55 18.44 16.14 15.76 15.65 15.39 16.44

D4 31.88 21.60 21.38 21.09 20.89 20.24 20.46 19.97 19.24

Digits 11.10 2.64 2.12 1.96 1.47 1.18 1.67 1.88 4.00

Musk 58.27 5.03 6.97 6.64 31.33 127.56 0.64 0.51 0.41

HAR 33.84 3.10 1.35 1.44 20.43 1.39 1.46 1.53 1.61

MNIST 74.75 11.02 11.02 10.61 13.61 58.67 38.45 280.83 1661.62

Table 5.4: The SSOD score, denoted SAkX, of the polynomial-whitened dataset AkX for

each dataset in Table 5.2. Values in bold indicate the lowest value of SAkX over all k for

a given dataset.
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The sum of squares values in Table 5.4 decrease as k increases, until a certain value of k,

much like the Wasserstein scores. The value of k that gives the optimum (smallest) SSOD

score for each dataset is close to value of k that gives the optimum Wasserstein score for

each dataset. Therefore, when the data has been successfully standardized, it has also

been decorrelated well. Between the Wasserstein scores in Table 5.3, the SSOD scores in

Table 5.4 and the heatmaps in Figure 5.6, it is evident that the minimal-variance method is

able to produce an effective alternative to the inverse square root of the covariance matrix

using a polynomial of degree significantly lower than the dimension of the dataset.

Table C.4 in Appendix C.3 shows the average time taken to produce the minimal-variance

polynomial matrices for each dataset for each value of k considered, over 100 runs. The

time taken increases as the dimensionality d of the dataset and the parameter k increase,

but this only ever takes a matter of seconds, even for 1000-dimensional datasets.

Data with d > N

As discussed in the literature review, it is increasingly common for data to have higher

dimensionality than number of observations in many fields, such as genetic microarrays,

medical imaging and chemometrics [95]. Data with d > N is clearly rank-deficient, with

rank r ≤ N < d, and thus the sample covariance matrix of such data is always singular,

rendering many multivariate data analysis methods unusable, including data whitening.

Minimal-variance polynomial whitening is applicable in such cases, as illustrated by the

following examples.

Four synthetically generated datasets and four real datasets are given in Table 5.5. The

first two synthetic datasets, E1 and E2, are sampled from a Gaussian distributionNd(0,Σ),

where the covariance matrices Σ are produced in the same way as detailed in Section 5.3.1.

The third synthetic dataset, E3, is generated to copy the example in [244]: a multivari-

ate Gaussian is generated using a population covariance matrix with diagonal entries

[50,20,10]+ [1] ∗ 47. This creates a spiked eigenvalue model, which is of interest in

‘high dimensional low sample size’ (HDLSS) datasets [19]. The fourth dataset uses a co-

variance matrix with eigenvalues generated from a random uniform distribution between

0 and 1, to produce a non-sparse set of eigenvalues.

The madelon dataset was obtained from the UCI Machine Learning Repository [68]. The
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Dataset d N

E1 500 50

E2 1000 50

E3 500 50

E4 1000 500

Madelon† 500 250

Yeast 2884 17

Colon 2000 40

DB-emails 242 64

Table 5.5: Datasets used in Section 5.3.1, their dimension d and number of observations

N. The madelon† dataset is a subsample of the true madelon dataset, with only the first

250 observations considered.

raw madelon dataset has 4400 observations, greater than the 500 features, so only the first

250 observations are used to create the madelon† dataset with d > N. The yeast dataset

is a real genomic dataset with 2284 features and 17 observations [229, 237]. The third

real dataset is another genomic dataset on colon cancer data [11], used by [263] as an

example of a spiked eigenvalue model. This dataset includes two clusters which represent

tumorous and non-tumorous colons; only the former cluster is considered here. The DB-

emails dataset is a ‘bag-of-words’ representation of a collection of emails [76]. Note

that the madelon† , yeast and colon datasets have been scaled to have unit variance. The

empirical eigenvalues of all datasets are given in Appendix C.3.

Successful whitening of these datasets would result in a covariance matrix with r eigen-

values equal to 1, and d− r eigenvalues equal to 0. Moore-Penrose Mahalanobis (MPM)

whitening is performed on the four datasets in Table 5.5 by pre-multiplying the data by the

square root of the Moore-Penrose pseudoinverse of the covariance matrix. The datasets

are then whitened using the minimal-variance method as described in Section 5.2.1.

Figure 5.7 compares the distribution of the eigenvalues of the covariance matrices after

MPM whitening and minimal-variance polynomial whitening. The eigenvalues are scaled

such that the maximum eigenvalue is equal to 1. The first three synthetic datasets show

that using minimal-variance whitening returns a dataset with eigenvalues only equal to 0
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(a) E1 (b) E2
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Figure 5.7: Log-scale histograms, showing the eigenvalues of the covariance matrix after

the data has been whitened by Moore-Penrose (MP) Mahalanobis whitening (orange his-

togram), and minimal-variance polynomial (MV) whitening with k = 9 (green histogram),

for each of the datasets given in Table 5.5.

and 1, whereas using MPM whitening gives a dataset with a spread of eigenvalues be-

tween 0 and 1. Figure 5.7d shows that minimal-variance whitening may not achieve per-

fect whitening, but that it is still more successful than the MPM whitening method.

Figure 5.7f considers the yeast dataset, and shows that the MPM whitening method does

not perfectly whiten the data, while minimal-variance whitening returns only eigenvalues

of value 0 or 1. The madelon† , colon and DB-emails datasets are not whitened perfectly

by either method, but the eigenvalues are much more dispersed when using MPM whiten-

ing compared to minimal-variance whitening, whereas the eigenvalues should only be

valued at 0 and 1, ideally. In all examples considered, the minimal-variance whitening

method outperforms Moore-Penrose Mahalanobis whitening, even if it does not whiten

the dataset perfectly.

In Section 5.4.2, the real datasets used here will again be considered to show that some

of the above performances can be improved upon further by using an iterative minimal-

variance whitening method.



136 CHAPTER 5. MINIMAL-VARIANCE WHITENING

5.3.2 Comparison to other whitening methods

Due to rotational freedom, there are infinitely many whitening matrices of the form

W = QΣ−1/2, where Q is orthogonal and satisfies Q⊤Q = I [130]. In the following ex-

amples, some of these different whitening matrices are compared to the minimal-variance

whitening matrix.

There are many possible decompositions of the covariance matrix Σ, including the fol-

lowing:

• Σ = V1/2PV1/2, where V is the diagonal variance matrix and P is the correlation

matrix,

• Σ = U∆U⊤, the eigendecomposition of the covariance matrix, with U the matrix of

eigenvectors and ∆ the diagonal matrix of eigenvalues.

Analogously, define the eigendecomposition P =GOG⊤ of the correlation matrix, where

G is the matrix of eigenvectors of P and O is the diagonal matrix of eigenvalues. The

Cholesky decomposition of the inverse covariance matrix is also defined as LL⊤ = Σ−1,

when Σ−1 exists.

Five whitening procedures are given by Kessy et al. [130] to be unique in fulfilling dif-

ferent objective functions. Let W be a whitening matrix, and therefore let XW =W (X−µ)

be the transformed data. Most of the objective functions identified in the paper [130] are

based on the cross-covariance matrix Φ and the cross-correlation matrix Ψ between the

original data X with covariance Σ and the whitened data XW :

Φ = cov(XW ,X) =WΣ,

Ψ = corr(XW ,X) = ΦV−1/2.

In the following example, minimal-variance whitening is compared to three of these

whitening procedures. The so-called ‘PCA’ and ‘PCA-cor’ whitening methods detailed

in [130] are not considered, as these methods aim to maximize compression of variance

into the first few variables of the whitened data. Although minimal-variance whitening

performed relatively well in these scenarios, this is not the aim of the method. The three

types of whitening considered alongside polynomial whitening are given below.
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Mahalanobis whitening (MW): WWW === ΣΣΣ−1/2. Mahalanobis whitening is found to be the

unique whitening procedure which maximizes trace(Φ), the average cross-covariance be-

tween each variable of the original and the newly transformed data. This is equivalent to

minimizing the total squared distance between the original data X and the whitened data

XW , ensuring the whitened data is as similar as possible to the original data.

Mahalanobis-cor whitening (MCW): WWW === PPP−1/2VVV−1/2. Mahalanobis whitening can

be affected by the different scales of the variables, so to avoid this issue the scale-invariant

version can be used, known as Mahalanobis-correlation whitening. Mahalanobis-correlation

whitening maximizes the cross-correlation trace(Ψ) between each variable of the stan-

dardized original data V−1/2X and the whitened data XW . Doing this is shown to be

equivalent to minimizing the squared distance between V−1/2X and XW .

Cholesky whitening (CW): WWW === LLL⊤. Cholesky whitening is the only whitening pro-

cedure fulfilling the constraint of producing lower-triangular cross-covariance and cross-

correlation matrices with positive diagonal entries. It does not result from fulfilling an

objective function like the above methods, but rather from satisfying this constraint.

The performance of these different whitening procedures is evaluated by applying them

to a dataset and considering the different objective functions in Φ and Ψ. First, as in

[130], the whitening methods are applied to the 4-dimensional Iris dataset [79] in Ta-

ble 5.6. Given the dataset’s low dimension and well-conditioned covariance matrix,

minimal-variance polynomial whitening (MVW in the table) with k = d = 4 produces

exactly the same results as Mahalanobis whitening. Minimal-variance-cor whitening

(MVCW) is also performed, where the data is standardized and minimal-variance poly-

nomial whitening is performed using the correlation matrix P. This produces the same

results as Mahalanobis-cor whitening.

The minimal-variance whitening method is more effectively used when applied to higher

dimensional datasets with singular or near-singular covariance matrices. As such, the

above exercise is repeated with a different dataset. For the purposes of this example, it is

not possible to use a dataset which has a singular covariance matrix, as the Mahalanobis

and Cholesky whitening methods are not usable in this case. The Wisconsin Breast Cancer

dataset [253] is used, and has been pre-standardized to give improved results from all
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MW MCW CW MVW k = 4 MVCW k = 4

tr(ϕ̂) 2.9829 2.8495 1.9369 2.9829 2.8495

tr(ψ̂) 3.0742 3.1914 2.5331 3.0742 3.1914

Table 5.6: A comparison of different whitening methods applied to the Iris dataset, using

metrics identified in [130]. Bold entries identify the best result for each metric.

MW MCW CW MVW k = 6 MVCW k = 6

tr(ϕ̂) 21.0193 21.1282 14.5409 24.8036 23.1984

tr(ψ̂) 20.9651 21.0737 14.5034 21.7396 24.7396

Table 5.7: A comparison of different whitening methods applied to the Wisconsin Breast

Cancer dataset, using metrics identified in [130]. Bold entries identify the best result for

each metric.

methods. This dataset has dimension d = 32 and has a covariance matrix which could be

considered ill-conditioned (see Appendix C.3 for details on the eigenvalues). Table 5.7

shows that minimal-variance whitening outperforms Mahalanobis whitening, using both

the covariance and correlation matrix.

The minimal-variance polynomial method is therefore a good alternative to the aforemen-

tioned established whitening methods, particularly when the dataset is near-degeneracy.

If the dataset has a singular covariance matrix, the other methods are not usable. Sec-

tion 5.3.1 has already shown that minimal-variance polynomial whitening often performs

better than Moore-Penrose Mahalanobis whitening, so the minimal-variance polynomial

whitening method would be recommended in such cases.

5.3.3 Applications to extremely high dimensional data

Given a dataset X with extremely high dimension d, say d = 1,000,000, finding the

minimal-variance polynomial matrix can be too costly and time-intensive. Typical di-

mension reduction methods such as principal component analysis are also prohibitively

expensive in high dimensions. Instead, some other methods are suggested here to allow

application of the minimal-variance polynomial in very high dimensional data.



5.3. APPLICATIONS OF MINIMAL-VARIANCE WHITENING 139

Sampling variables

A simple method to reduce computational time is to sample some variables from X to

produce a ‘representative’ dataset X̃ in a much smaller dimension d̃. This representative

dataset can be found through random samples of the variables in X, or projection to a

lower dimensional space [36, 38]. The covariance matrix Σ̃ of X̃ can be found and used

to produce the minimal-variance polynomial alternative to Σ̃−1/2:

Ãk = θ0I+ θ1Σ̃+ . . .+ θk−1Σ̃
k−1 . (5.10)

The d̃-dimensional matrix Σ̃ in Equation (5.10) can then be replaced with the d-dimensional

covariance matrix Σ to obtain the minimal-variance polynomial matrix Ak, using the co-

efficients obtained to find Ãk. This can be used to whiten the original high dimensional

dataset X, and is much cheaper than finding the minimal-variance matrix directly.

Random projection

Alternatively, random projections of the dataset can be used while largely preserving pair-

wise distances between points. Let f : Rd → Rp be a projection where p < d. Choose

p Gaussian vectors {u1, u2, . . . , up} ∈ R
d with unit-variance coordinates. For any vector

x ∈ X, define the projection

f (x) =
(
u1 · x, u2 · x, . . . , up · x

)
.

It can be shown that ∥ f (x)∥2 ≈
√

p∥x∥2 [38], where ∥x∥2 is the ℓ2-norm of the vec-

tor x.

The Johnson-Lindenstrauss lemma states that any high dimensional dataset can be ran-

domly projected using the above method while controlling the distortion in the pairwise

distances between points. That is, for two points x1, x2 ∈ X and a user-defined maximum

distortion rate of ϵ ∈ (0,1):

(1− ϵ)∥x1− x2∥
2 < ∥ f (x1)− f (x2)∥2 < (1+ ϵ)∥x1− x2∥

2.

The minimum number of dimensions p needed to guarantee a maximum distortion of ϵ is

based only on the number of observations N, and is given by [61]:

p ≥
4ln(N)

(ϵ2/2)− (ϵ3/3)
.
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Figure 5.8: The CDFs and histograms of the distances produced between all points in the

Micro-Mass dataset before and after random projection. Figures (a) and (b) consider only

the Euclidean distance, Figures (c) and (d) consider the Euclidean distance after minimal-

variance whitening has been applied.

An example is given which illustrates that random projection has minimal effect on the

distribution of the Euclidean distances produced when using minimal-variance whitening.

The dataset used is called ‘Micro-Mass’ [164] and represents different strains of bacteria.

This dataset has 1300 dimensions and 360 observations. Although this dataset does not

have a huge number of dimensions, it allows for computations of the minimal-variance

whitening matrix before and after random projection for the sake of comparison.

Let ϵ = 0.3, giving a minimum projection dimension p = 654. The dataset is projected

from d = 1300 to p = 654 using the Python function GaussianRandomProjection from

the random_projection package of Scikit-Learn [185]. All pairwise Euclidean dis-

tances are found before and after this projection, and the cumulative distribution func-

tions (CDFs) of these distances is given in Figure 5.8a, showing the distances produced

are very similar. Figure 5.8b also shows this, giving the histograms of the distances before

and after the projection.
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The blue line plotted in Figure 5.8c shows the CDF of the Euclidean distances found after

performing minimal-variance whitening on the original 1300-dimensional Micro-Mass

dataset. To test if random projection performs well with minimal-variance whitening,

the data is first projected to p = 654. Minimal-variance whitening is then applied to the

654-dimensional dataset, and the Euclidean distances are found after this. The CDF of

these distances is plotted in orange in Figure 5.8c, and shows very little difference to

the non-projected distances. The comparison of distances when using minimal-variance

whitening is also shown by the histogram in Figure 5.8d.

Approximating the distribution of eigenvalues

For large datasets, it may be that the eigenvalues of the covariance matrix are not known

exactly, but their distribution can be approximated. If this is the case, d eigenvalues can

be sampled from this distribution using the inverse cumulative distribution function and

used to form an estimation of the covariance matrix. This is illustrated in Figure 5.9 using

the Marchenko-Pastur distribution, as this distribution is known to model the eigenvalues

of the sample covariance matrix of a random matrix as d,N →∞ and d
N < 1. Figure 5.9

considers an example with d = 10,000 and N = 15,000, and the probability density func-

tion (PDF) of the Marchenko-Pastur distribution with these parameters is shown by the

red line. The histogram represents a random sample of 300 eigenvalues, and shows such

a sample models the distribution well.
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Figure 5.9: Sampling of eigenvalues from the Marchenko-Pastur distribution. The red line

indicates the Marchenko-Pastur PDF, when d = 10,000 and N = 15,000. The histogram

shows the spread of the 300 sampled values from this distribution.
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Approximation of traces

One of the more time-consuming parts of computing the minimal-variance polynomial

for high dimensional data is the need to compute the S j = trace
(
Σ j

)
values, which are

used to compute the coefficient vector of the polynomial.

The S j values can be approximated using a range of methods to reduce computation time,

including stochastic trace estimators [114], methods estimating Gauss-type quadrature

formulas through Lanczos approximation process [89, 233] and a Chebyshev kernel poly-

nomial method [21]. Further information and references on methods of approximating

traces of functions of matrices can be found in [234].

5.3.4 The effect of different pre-processing methods on outlier detec-

tion algorithms

Outlier detection algorithms often require data to be pre-processed before the algorithm

can be applied. It has been shown by Campos et al. [51] that the normalization of datasets

will often lead to a better performance of outlier detection algorithms.

In this section, a study described in [127] is replicated. The authors produced a collection

of labelled benchmark datasets to be used for evaluating outlier detection algorithm per-

formance. They evaluated the performance of various algorithms when used after apply-

ing different normalization methods to these datasets. Performance of an algorithm was

measured using the area under the receiver operator characteristic curve (AUC), which

compares the labels of an observation (‘inlier’ or ‘outlier’) produced by the algorithm to

the ‘true’ labels. They found that two types of normalization method performed differ-

ently (dependent on data set and outlier detection method):

‘Min-Max’ normalization: Each variable v of a dataset is normalized to only have

values in the range [0, 1]: v−min(v)
max(v)−min(v) , where min(v) and max(v) are the minimum and

maximum values of the variable v, respectively.

‘Median-IQR’ normalization: Each variable v is transformed to v−median(v)
IQR(v) , where

median(v) and IQR(v) are the median and inter-quartile range of the variable v, respec-

tively.
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The following four different outlier detection methods from the Python package PyOD

[271] are considered here:

1. KNN: K-Nearest Neighbours

2. LOF: Local Outlier Factor

3. COF: Connectivity-based Outlier Factor

4. FastABOD: Fast Angle Based Outlier Detection

Further details of each of these algorithms are provided in [51]. All of the above methods

require a parameter choice K (different to the polynomial degree parameter k referred

to throughout this paper) to set the so-called neighbourhood size, and a contamination

value C to indicate how many observations the algorithm should label as outliers. Let

K = 0.1×N, where N is the number of observations in the dataset D. The parameter C is

equal to the number of outliers given by the ‘true’ labels.

For a dataset D, an outlier detection method o and a pre-processing method z, denote the

area under the receiver operating characteristic curve (AUC) as AUC(D,o,z). A receiver

operating characteristic curve is a graph used to show the performance of a classification

model; the higher the AUC score, the better the classifier has performed [106]. For each

outlier detection method o listed above, it is said a dataset D ‘prefers’ a pre-processing

method z if AUC(D,o,z)≥ AUC(D,o,y) for all other pre-processing methods y. The AUC

score is evaluated for transformations AkD using Equation (5.3) by taking the maximum

AUC score over all values of k considered.

Outlier Detection Method Min-Var Min-Max Median-IQR

KNN 40.12% 30.70% 29.17%

LOF 41.29% 30.09% 28.61%

COF 42.26% 29.39% 28.34%

FastABOD 39.17% 31.16% 29.67%

Table 5.8: The percentage of the 7667 datasets considered that give higher AUC scores

for the pre-processing technique (given in the column), by outlier detection method (given

in the row).
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The outlier detection methods are tested with each pre-processing method on 7667 real

datasets, as used in [127]. The datasets range from dimension 3 to dimension 359, and

the number of observations in a dataset ranged from 44 to 5396. Table 5.8 shows the

percentage of datasets that prefer each pre-processing method for each of the given outlier

detection algorithms. The results in this table indicate that the polynomial whitening

method outperforms the two normalization methods.

The scatter graphs in Figure 5.10 compare the minimal-variance polynomial whitening to

the normalization methods considered individually. Each point represents a dataset, and

the diagonal line indicates those datasets where the two methods give equal AUC scores.

Points below this line, in red, indicate that the minimal-variance whitening method out-

performed the other method considered. A numerical breakdown of these scatter graphs

is given in Table 5.9.

Min-Var vs Min-Max Min-Var vs Med-IQR

Min-Var Min-Max Equal Min-Var Med-IQR Equal

KNN 34.4% 15.9% 49.7% 35.8% 14.0% 50.1%

LOF 37.3% 14.1% 48.6% 38.1% 12.8% 49.2%

COF 40.6% 16.1% 43.3% 41.8% 14.8% 43.4%

FastABOD 32.2% 15.1% 52.7% 33.8% 12.8% 53.4%

Table 5.9: The percentage of datasets for which the given pre-processing method produces

AUC scores better than the alternative method in the column, for different outlier detection

methods (given in the row). In particular, 34.4% of datasets produced higher AUC scores

when using Min-Var than when using Min-Max, for the KNN outlier detection method.

Table 5.9 highlights that, for a lot of datasets, the pre-processing methods considered here

often produce equal AUC scores. Table 5.10 shows the amount of datasets out of the total

7667 (and the percentage) for which the pre-processing methods produce strictly better

results, for each outlier detection method. It is clear that the minimal-variance method

performs as well as (and often better than) the techniques often used to preprocess datasets

before applying common outlier detection methods.
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(a) KNN: Min-Var vs Min-Max (b) KNN: Min-Var vs Med-IQR

(c) LOF: Min-Var vs Min-Max (d) LOF: Min-Var vs Med-IQR

(e) COF: Min-Var vs Min-Max (f) COF: Min-Var vs Med-IQR

(g) FastABOD: Min-Var vs Min-Max (h) FastABOD: Min-Var vs Med-IQR

Figure 5.10: Scatter graphs plotting the AUC scores of outlier detection algorithms when

performed using the minimal-variance polynomial whitening ‘Min-Var’ on the horizontal

axis, and the AUC scores when using (a)-(d) ‘Min-Max’ or (e)-(h) ‘Med-IQR’ normaliza-

tions on the vertical axis. Points in red indicate a dataset where using Min-Var produced a

better score than the alternative method, and points in blue indicate a dataset where using

the alternative method produced a better score.
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Min-Var Min-Max Med-IQR

KNN 2195 (29%) 742 (10%) 632 (8%)

LOF 2338 (30%) 772 (10%) 604 (8%)

COF 2460 (32%) 811 (11%) 689 (9%)

FastABOD 1950 (25%) 705 (9%) 519 (7%)

Table 5.10: The number (and percentage) of datasets for which the given pre-processing

method (in the column) produces AUC scores strictly better than the other methods, for

each outlier detection method (in the row).

5.3.5 Principal component analysis

Principal component analysis (PCA) is a popular dimension-reduction technique, as it

reduces a dataset to a chosen dimension p while retaining the greatest amount of variance

(and therefore information) from the original dataset as possible. PCA finds p linear

combinations of the variables of the dataset, giving p new compressed variables with

maximal variance. As such, it is highly sensitive to the variances of the variables in the

dataset. If one variable is measured on a much larger scale than the others, this variable

will likely have much greater variance, and therefore be given much more weight in a

linear combination than the other variables [126]. To prevent this, variables are often

standardized to ensure they are all measured on the same scale.

Two methods of standardization are compared prior to performing PCA: Mahalanobis

standardization, which is most commonly used before PCA, and minimal-variance stan-

dardization. Let the variable vi ∈ X have mean µi and standard deviation σi. The dataset

transformed by Mahalanobis standardization is made up of the variables

zi =
(vi−µi)
σi

for i ∈ {1, . . . ,d}. To apply minimal-variance standardization, find the minimal-variance

polynomial matrix Ak and use the values on the diagonal of Ak in place of σi (the choice

of the parameter k will be discussed shortly):

wi =
(vi−µi)
(Ak)i,i

.
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Note that this is different to minimal-variance whitening, in that only the diagonal of the

minimal-variance polynomial matrix is used to perform the transformation. This is to

align the minimal-variance method with the Mahalanobis standardization method.

First PCA example, data with d < N

In the first of the PCA examples, 1000 datasets are generated using the Python function

datasets.make_classification from the Scikit-Learn package [185]. This function

creates datasets with a chosen number of clusters, and a given number of ‘informative’

features, ‘redundant’ features (which are linear combinations of the informative features)

and ‘repeated’ features (which are random duplicates of the informative features). The

datasets used in this example have dimension d ranging from 10 to 26, with a random

number of these being ‘redundant’ and ‘repeated’ features. Each dataset has N observa-

tions, with N between 100 to 300, and has between 2 and 5 clusters.

In these examples, parameter choices are made based on the relative size of the eigenval-

ues of the covariance matrix compared to the maximum eigenvalue. Let Λ = {λ1, . . . ,λd}

be the set of eigenvalues of the covariance matrix of a dataset, let λmax be the largest eigen-

value in Λ, and let λ̄ be the mean of the eigenvalues in Λ. Let p = p(Λ) be the desired

number of principal components to be found (that is, the dimensionality of the dataset

after applying PCA). The parameter p(Λ) is chosen to be the number of eigenvalues Λ

greater than the mean eigenvalue for that dataset, i.e:

p(Λ) =
d∑

i=1

1λi>λ̄
,

as commonly used in practice [2].

The parameter k = k(Λ) to be used in the minimal-variance polynomial is chosen based

on the number of scaled eigenvalues πi = λi/λmax that are bigger than a given thresh-

old t:

k(Λ) =
d∑

i=1

1πi>t.

The thresholds t ∈ {0.1, 0.01, 0.001, 0.0001} are used in Figure 5.11.

To evaluate the impact of the standardization methods on PCA, the total cumulative ex-

plained variance (CEV) of the transformed data is considered. That is, the amount of
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variance from the original dataset that is still present after having implemented PCA. Fig-

ure 5.11 shows that using minimal-variance standardization gives much higher CEV than

Mahalanobis whitening. Even for (relatively) low values of k (when t = 0.1) better results

are achieved, and these continue to increase as t decreases (and therefore the value of k

increases).

Figure 5.11: Boxplots of the CEV given by the PCA after different standardization meth-

ods for 1000 datasets. ‘Mahal’ denotes Mahalanobis standardization, and ‘MV’ denotes

minimal-variance standardization. The number after MV indicates the threshold t used to

choose the value of the parameter k.

PCA with K-means, data with d < N

In this example, 1000 new datasets are generated. For each of the 1000 datasets, 3 clus-

ters are generated from multivariate Gaussian distributions X(i), i = {1,2,3} with dimen-

sion d = 100, where the parameters µ(i), Σ(i) and N(i) denote the mean, covariance matrix

and number of observations in cluster X(i). The details of these parameters are given in

Table 5.11. The eigenvalues of each Σ(i) taper off towards zero gradually. This creates a

degenerate dataset with a rank that is hard to identify, a situation which the Moore-Penrose

inverse struggles to deal with well.

The parameters p (the number of principal components) and k (the degree of the minimal-

variance polynomial) will be set as they were in the previous example. In this section, the

threshold used to set k is t = 0.1.

The K-means clustering algorithm, outlined previously in Section 3.5.2, aims to assign

each point within a dataset to a cluster, by estimating the distances from each point to the

estimated centre-point of a cluster of points. These examples compare the effect of dif-
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i µ(i) Eigenvalues of Σ(i) N(i)

1 [0, . . . ,0] [100,50,0.91,0.92,0.93, . . . ] 166

2 [1, . . . ,1] [100,50,0.81,0.82,0.83, . . . ] 166

3 [0]∗33+ [1]∗64 [100,50,0.81,0.82,0.83 . . . ] 168

Table 5.11: Details of clusters of datasets used for the d < N PCA and K-means examples

in Section 5.3.5. All datasets have dimension d = 100.

ferent standardization methods on the K-means clustering algorithm after applying PCA.

The adjusted rand (AR) score [113, 220] is used to judge how well the algorithm has

found the correct clusterings. An AR score of 0 indicates random labellings, and an AR

score of 1 means the clusters were perfectly labelled by the algorithm. More information

on the AR score is given in Appendix D.1.

The silhouette scores [203] are also used to compare the clusterings depending on the

standardization methods. The silhouette score of a clustering indicates how well sepa-

rated the clusters are. A score of 1 indicates well-distinguished clusters, whereas a score

of −1 means that clusters have been incorrectly assigned. A higher silhouette score sug-

gests that the standardization method and PCA have retained cluster structure well. More

information on the silhouette score is available in Appendix D.3.

(a) AR Score (b) Silhouette Score

Figure 5.12: (a) Adjusted rand (AR) scores and (b) silhouette scores of the labellings

made by the K-means algorithm after PCA, which was applied to 1000 d < N datasets

with: no standardization (Original); Moore-Penrose Mahalanobis (MPM) standardiza-

tion; minimal-variance (MV) standardization.
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Figure 5.12 shows that using Mahalanobis standardization with the Moore-Penrose pseu-

doinverse (denoted MPM here) gives a slight improvement on using no standardization.

However, using minimal-variance standardization before applying PCA and K-means

clustering results in vastly better AR scores, as well as better silhouette scores, likely

due to the tapering of the eigenvalues towards zero.

PCA with K-means, data with d > N

As in Section 5.3.5, 1000 different datasets are generated, each with dimension d = 1000

and number of observations N = 430. Each dataset is generated as a mixture of four mul-

tivariate Gaussian distributions Xi ∼ Nd (µi,Σi), i = {1,2,3,4}. The population parameters

of each cluster are given in Table 5.12.

i µ(i) Eigenvalues of Σ(i) N(i)

1 [0, . . . ,0] [100,50,0.91,0.92,0.93, . . . ] 133

2 [1, . . . ,1] [100,50,0.81,0.82,0.83, . . . ] 133

3 [0]∗333+ [1]∗667 [100,50,0.81,0.82,0.83 . . . ] 134

4 [1, . . . ,1] [100,50,0.11,0.12,0.13 . . . ] 30

Table 5.12: Details of clusters of datasets used for the d > N PCA and K-means examples

in Section 5.3.5. The datasets have d = 1000 and N = 430.

Figure 5.13 shows boxplots of the AR scores and silhouette scores of the labels given

by K-means clustering, after applying one of the standardization methods and PCA. It

is clear that MPM standardization gives very similar results to the datasets with no stan-

dardization. The combination of MV standardization and PCA clearly performs better, as

indicated by the boxplots of AR and silhouette scores in Figures 5.13.

The minimal-variance standardization method is clearly very useful in those cases where

standardization would improve dimension reduction algorithms (or other multivariate data

analysis methods), as it behaves similarly to the Moore-Penrose Mahalanobis standard-

ization method, but does not struggle in cases where the datasets are degenerate, near-

degeneracy or have unclear rank.
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(a) AR Score (b) Silhouette Score

Figure 5.13: (a) Adjusted rand (AR) scores and (b) silhouette scores of the labellings made

by the K-means algorithm after PCA is applied to 1000 d > N datasets with: no stan-

dardization (Original); Moore-Penrose Mahalanobis (MPM) standardization; minimal-

variance (MV) standardization.

5.4 Iterative minimal-variance whitening

In this section, an extension to the minimal-variance whitening method is presented. As

demonstrated in [101] and Section 4.2.4, producing a polynomial with a high degree can

lead to numerical instability, particularly when applied to large dimensional matrices.

This causes the breakdown seen in previous examples, like those given in Section 5.3.1

as k increases. Iterative procedures are known to be more robust and less vulnerable

to numerical errors when used with high dimensional matrices [94]. To take advantage

of this, lower degree polynomials can be applied iteratively to find an approximation to

the inverse square root of the covariance matrix. This method is known as the ‘iterative

minimal-variance whitening’ method. Section 5.4.1 will outline how the iterative method

is applied, and Section 5.4.2 will give some examples of the method being used.

5.4.1 Constructing iterative minimal-variance whitening

If X(0) is the original dataset to be whitened, let X(1) be the dataset output by the minimal-

variance whitening method. Perform minimal-variance whitening on the dataset X(1) to

produce the dataset X(2), and repeat until the optimal or required results are found. Using

this iterative procedure allows for a lower (and perhaps changing) value of k to be used,

making the method less computationally-intensive and more stable.
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The iterative algorithm converges to give a whitened dataset with identity covariance ma-

trix, if the starting dataset is full rank. If the starting dataset is not full rank, the covariance

matrix of the final whitened dataset aims to be approximately equal to a multiple of the

identity matrix, with d− r of the diagonal entries set to zero. Therefore, the eigenvalues

of the covariance matrix of the transformed dataset will be (approximately) distributed at

either one or two points: either all ones (in the nonsingular case) or a scalar value and

zeros (in the singular case). Theorem 5 produces a moment condition to detect if the

eigenvalues of a matrix are distributed at exactly one or two points.

Theorem 5. Let Σ be a d×d matrix, and let S i = trace(Σi). Define the following moment

condition:

Ψ(Σ) = S1S3−S 2
2 . (5.11)

If all eigenvalues of Σ are distributed at either one or two points exactly, Ψ(Σ) = 0.

Proof. Define Λ = {0,λ,1} to be the support of the set of eigenvalues of Σ, with rela-

tive probabilities P = {1− p1 − p2, p1, p2}, p1, p2 > 0. Define the non-central moments

µi =
∑3

j=1 PiΛ
j
i , specifically:

µ0 = 1, µ1 = p1λ+ p2, µ2 = p1λ
2+ p2, µ3 = p1λ

3+ p2, µ4 = p1λ
4+ p2.

If the values of the first three non-central moments are found empirically to be µ1 = m1,

µ2 = m2, µ3 = m3, the simultaneous equations

p1λ+ p2 = m1

p1λ
2+ p2 = m2

p2λ
3+ p2 = m3

can be solved to find the variables p1, p2 and λ in terms of m1, m2 and m3:

p1 =
(m1−m2)3

(m2−m3)(−2m2+m3+m1)

p2 =
m1m3−m2

2

−2m2+m3+m1

p3 =
m2−m3

m1−m2
.
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Define the moment matrix

M =


1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

 =


1 p1λ+ p2 p1λ
2+ p2

p1λ+ p2 p1λ
2+ p2 p1λ

3+ p2

p1λ
2+ p2 p1λ

3+ p2 p1λ
4+ p2

 .
The determinant ofM can be found to be:

det(M) = p1 p2λ
2
(
−p1λ

2+2p1λ− p1− p2λ
2+2p2λ− p2+λ

2−2λ+1
)

= −

(
m2

1−m1m2−m1m3+m2
2−m2+m3

) (
m1m3−m2

2

)
m1−m2

. (5.12)

If det(M) = 0, the distribution of eigenvalues has at most two points of support [158].

Re-write the first bracket on the numerator of (5.12) in terms of p1, p2 and λ:

m2
1−m1m2−m1m3+m2

2−m2+m3 = −p1λ
2(λ−1)(p1+ p2−1). (5.13)

If the distribution is supported at three points, the value of Equation (5.13) is nonzero.

However, if the distribution is supported at exactly two points, Equation (5.13) will equal

zero.

Consider the second bracket on the numerator of (5.12) in terms of p1, p2 and λ:

m1m3−m2
2 = p1 p2λ(λ−1)2. (5.14)

If Equation (5.14) equals zero, then λ = 0 or λ = 1, so the support of the eigenvalues of

Σ can only consist of two points. Note that the values 0 and 1 in the support X can be

changed to any values, so this theorem generalizes to any two eigenvalues.

□

Using the results of Theorem 5, when the data has been fully whitened, Ψ(Σ) = 0. If the

data whitening needs only to be approximate, a tolerance t can be set, and iterations can

be halted when Ψ(Σ) ≤ t. Otherwise, iterations are performed until Ψ(Σ) = 0 or Ψ(Σ) con-

verges. The iterative minimal-variance whitening procedure is outlined in Algorithm 3.

There are many alternative methods that could be used to terminate the iterations. Firstly,

different conditions can be used in place of the moment condition in (5.11). If decorrela-

tion is more important than whitening, for example, the sum of squares of the off-diagonal
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Algorithm 3: Iterative minimal-variance whitening algorithm
Input: X(0): data; k: degree of polynomials; t: tolerance of moment condition;

µ: mean of X; Σ: covariance matrix of X

Output: XAk : transformed data

Set i = 0, m =∞;

while m > t do

X(i+1) = MV(X(i),k) ; Apply MV whitening, Algorithm 2

µ(i) = 1
N
∑d

j=0 x(i)
j ;

Σ(i) = 1
N (X(i)−µ(i))(X(i)−µ(i))⊤;

m = Ψ(Σ(i)) ; Moment condition, Equation (5.11)

i = i+1
end

XAk = X(i−1)

entries of the covariance matrix could be used instead. The Wasserstein metric between

the whitened dataset XAk and the standard normal distribution could also be used, as de-

fined in Equation (5.9). However, the Wasserstein metric is only equal to zero if the two

distributions being compared are equal, so if XAk is not full rank this metric will never

reach zero. Section 4.9.2 of [101] describes several methods of termination criteria for

iterative procedures, including introducing a threshold on the relative difference of the

norms between two successive iterates.

It may be of interest to recover the matrix Ak which transforms the original data X(0)

to the final whitened data XAk . Let A(i)
k be the minimal-variance whitening matrix on

the ith iteration of Algorithm 3, and let I be the total number of iterations performed.

Then find the matrix Ak = Π
I
i=0A(I−i)

k . That is, Ak = A(I)
k A(I−1)

k . . .A(1)
k A(0)

k and XAk =

A(I)
k A(I−1)

k . . .A(1)
k A(0)

k X(0).

5.4.2 Whitening data using iterative minimal-variance polynomials

The performance of the iterative minimal-variance whitening method will be evaluated

here by applying Algorithm 3 to real datasets. This section begins by considering data

with d < N, and will later give examples using examples with d ≥ N.
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Data with d < N

The real datasets used in Section 5.3.1 are considered again here (see Table 5.2 for details

of the datasets). Looking first at the Digits dataset, iterative whitening is applied using

k = 2 in each iteration. Figure 5.14 shows that applying minimal-variance whitening with

k = 2 once does not result in a whitened covariance matrix. However, after 5 iterations the

dataset is approximately whitened, and after 10 iterations it is exactly whitened (that is, the

covariance matrix is equal to the identity matrix with the exception of d− r entries on the

diagonal). This is an improvement on the minimal-variance whitening when performed

without iterations with a higher value of k (see Figure 5.6e).

(a) Iteration 1 (b) Iteration 2 (c) Iteration 5 (d) Iteration 10

Figure 5.14: Heatmaps of the covariance matrix of the Digits dataset when using iterative

whitening with k = 2.

(a) Moment condition (b) Wasserstein score (c) SSOD score

Figure 5.15: The (a) moment condition values (b) Wasserstein scores (c) SSOD score of

the Digits dataset for each iteration of iterative whitening, using k = 2 (solid line with

circles), k = 3 (dotted line with triangles) and k = 4 (dashed line with squares).

Figure 5.15 shows the progression of three metrics during the whitening iterations: the

moment condition (Equation (5.11)), the Wasserstein score (Equation (5.9)) and the sum

of squares of the off-diagonals of the covariance matrix (SSOD score). These metrics

are considered for minimal-variance iterative whitening with k = 2, k = 3 and k = 4. As

expected, higher values of k converge to a whitened dataset faster than lower values.
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Recall that using the parameter k results in a (k − 1)-degree polynomial. Using k = 2

requires 10 iterations to converge for the Digits example, which is equivalent to producing

a polynomial of degree 10. Using k = 3 requires 7 iterations, equivalent to a polynomial

of degree 14, and using k = 4 requires 5 iterations, equivalent to a polynomial of degree

15. Thus, despite requiring less iterations, using higher values of k can result in higher

computational effort and more complex polynomials.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 4 (d) Iteration 10

Figure 5.16: Heatmaps of the covariance matrix of the Musk dataset when using iterative

whitening with k = 2.

(a) Moment condition (b) Wasserstein score (c) SSOD score

Figure 5.17: The (a) moment condition values (b) Wasserstein scores (c) SSOD score

of the Musk dataset for each iteration of iterative whitening, using k = 2 (solid line with

circles), k = 3 (dotted line with triangles) and k = 4 (dashed line with squares).

A similar gradual convergence to a whitened dataset is seen with the Musk dataset in

Figure 5.16 with k = 2, and with higher values of k in Figure 5.17. For k = 2, 10 iterations

are used, equivalent to a 10-degree polynomial. For k = 3, 6 iterations are used, equivalent

to a 12-degree polynomial. For k = 4, 4 iterations are used, again equivalent to a 12-degree

polynomial.

The HAR dataset requires more iterations than the datasets previously considered, as can

be seen by Figure 5.18. Figure 5.19 shows that when k = 2, the dataset is whitened after

22 iterations (equivalent to a polynomial of degree 22). When k = 3, 14 iterations are
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required (equivalent to a 28 degree polynomial) and when k = 4, 10 iterations are required

(equivalent to a 30 degree polynomial). If this dataset was not singular, the ‘true’ square

root inverse covariance matrix of this dataset would be a d−1 = 560 degree polynomial,

so the minimal-variance whitening polynomials are comparatively of very low degree.

(a) Iteration 1 (b) Iteration 3 (c) Iteration 10 (d) Iteration 22

Figure 5.18: Heatmaps of the covariance matrix of the HAR dataset when using iterative

whitening with k = 2.

(a) Moment condition (b) Wasserstein score (c) SSOD score

Figure 5.19: The (a) moment condition values (b) Wasserstein scores (c) SSOD score

of the HAR dataset for each iteration of iterative whitening, using k = 2 (solid line with

circles), k = 3 (dotted line with triangles) and k = 4 (dashed line with squares).

MNIST is a 784-dimensional dataset, with iterative whitening applied using k = 2 in Fig-

ure 5.20. For this example, only k = 2 and k = 3 are considered in Figure 5.21 as using

k = 4 is too computationally intensive to use iteratively. For k = 2, 47 iterations are re-

quired for perfect whitening, equivalent to a 47-degree polynomial. For k = 3, the algo-

rithm does not converge to a perfectly whitened dataset. However, it does get close to a

perfectly whitened dataset within 20 iterations. Similarly, depending on the need for per-

fectly whitened data, the iterative procedure with k = 2 could be terminated earlier than

47 iterations, and a nearly-whitened dataset could be used, if this is satisfactory.
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 10 (d) Iteration 47

Figure 5.20: Heatmaps of the covariance matrix of the MNIST dataset when using itera-

tive whitening with k = 2.

(a) Moment condition (b) Wasserstein score (c) SSOD score

Figure 5.21: The (a) moment condition values (b) Wasserstein scores (c) SSOD score of

the MNIST dataset for each iteration of iterative whitening, using k = 2 (solid line with

circles), k = 3 (dotted line with triangles).

Different values of k can be used interchangeably throughout minimal-variance iterative

whitening, but experiments have shown that using k = 2 is as effective as using higher

values of k, and takes away the need to choose parameter values.

Data with d > N

The real datasets from Section 5.3.1 with d > N (detailed in Table 5.5) are now used to

show how iterative whitening works with high dimension low sample size data. Figure 5.7

showed that the non-iterative minimal-variance whitening method provides an advance-

ment over the Moore-Penrose Mahalanobis whitening method, but does not always result

in perfect whitening.

For each of the datasets considered, iterative minimal-variance whitening with parameter

k = 2 perfectly whitens the data. Figure 5.22 demonstrates this by displaying the eigen-

values of the covariance matrices of the whitened datasets. Iterative minimal-variance

whitening produces eigenvalues only equal to zero or one, exactly.
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Figure 5.22: Log-scale histograms, showing the eigenvalues of the covariance matrix

after the data has been whitened by Moore-Penrose (MP) whitening (orange histogram)

and iterative minimal-variance (IMV) whitening with k = 2 (green histogram), for each of

the real datasets considered in Table 5.5.

Furthermore, the correct rank of the datasets is retained using iterative minimal-variance

whitening. The madelon† dataset has rank r = 249, the yeast dataset has rank r = 16, the

colon dataset has rank r = 39 and the DB-emails dataset has rank r = 62.
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Figure 5.23: The moment condition values (5.11) for each iteration of iterative whitening,

using (where possible) k = 2 (solid line with circles), k = 3 (dotted line with triangles) and

k = 4 (dashed line with squares), for each of the four datasets given in Table 5.5.

Figure 5.22 shows the moment condition values for each iteration of minimal-variance

whitening. The yeast and colon datasets only show moment values for k = 2 as higher

values of k caused instability in these datasets. The madelon† and DB-emails datasets

show that using k = 2 does not require many more iterations than using higher values of

k, often making it less computationally expensive than using the higher values of k. This,

combined with the lower risk of instability and the good results produced, makes using

k = 2 in iterative minimal-variance whitening an attractive parameter choice.

Overall, it is clear that iterative minimal-variance whitening is an effective way to whiten

both d < N and d ≥ N datasets, even when other methods like the Moore-Penrose Maha-

lanobis method cannot.
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5.5 Matrix rank estimation

For rank-deficient matrices, it can often be hard to identify the true rank of the matrix due

to the presence of gradually decreasing eigenvalues. In this section, a method using the

constraint adjustment value (introduced in Section 5.2.3) will be used to detect the rank

of a matrix. This will then be followed by a rank-detection method that combines the

constraint adjustment value and the iterative minimal-variance whitening method.

5.5.1 Fuzzy minimal-variance rank estimation

Consider the minimal-variance whitening polynomial with α = 1/2. As discussed in Sec-

tion 5.2.3, the constraint would ideally be

trace
(
AkΣ

1/2
)
= r, (5.15)

where r is the rank of Σ, so that Ak behaves similarly to Σ−1/2 or the square root of the

Moore-Penrose pseudoinverse. However, Section 5.2.3 shows that using α = 1/2 actually

enforces the constraint trace
(
AkΣ

1/2
)
= d. Section 5.2.3 discusses a method to alleviate

this issue, by finding a value c∗k (Equation 5.8) that adjusts Ak such that Equation (5.15)

holds.

If trace
(
AkΣ

1/2
)

is exactly equal to d, then c∗k = r/d. However, the rank r of Σ may

not always be known and can be hard to find; increasingly small eigenvalues can make

distinguishing between non-zero and zero eigenvalues a difficult task. It is possible to use

the constraint adjustment method to estimate the rank r, however, using r̃k = c∗k×d, where

c∗k is the adjustment value given by Equation (5.8) when using degree parameter k. Let r̃k

be called the fuzzy minimal-variance rank estimate (or fuzzy-MV rank).

Two examples of fuzzy-MV rank are given, with covariance matrices defined as Σ1 and Σ2.

Let Λ1 and Λ2 be the eigenvalues of the two covariance matrices, respectively. Let Λ(r)
i be

the first r eigenvalues of covariance matrix Σi. The eigenvalues are generated as follows:

Λ1 = [5, 4, 3, 2, 1] + [0.01 ** i for i in range(11, 21)] + [0] * 5,

Λ2 = [5, 4, 3, 2, 1] + [0.01 ** i for i in range(11, 21)] + [0] * 85,

using Python notation. Clearly, it would be expected for these two datasets to have the

same rank, given they have equal eigenvalues except for some additional zeros in Λ2.

In Table 5.13, the rank r of each covariance matrix Σi is calculated using the function
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numpy.linalg.matrix_rank in Python. This function returns the matrix rank of an

array by identifying singular values less than a given threshold t. The default threshold

(which is used here) is calculated using the SVD method. For more information on this

method, see the numpy package documentation [98] or see [191] for a more thorough ex-

planation. Table 5.13 shows that this method identifies different ranks for the two datasets,

where equal ranks would be expected.

Λi r Λ
(r)
i

Σ1 [5, 4, 3, 2, 1, 1e-11, 1e-12, 1e-13,

1e-14, 1e-15, 1e-16, 1e-17, 1e-18,

1e-19, 1e-20] + [0]*5

8 [5, 4, 3, 2, 1, 1e-11, 1e-12, 1e-13]

Σ2 [5, 4, 3, 2, 1, 1e-11, 1e-12, 1e-13,

1e-14, 1e-15, 1e-16, 1e-17, 1e-18,

1e-19, 1e-20] + [0]*85

7 [5, 4, 3, 2, 1, 1e-11, 1e-12]

Table 5.13: The eigenvalues Λi and ranks r of the two matrices Σ1 and Σ2, using the SVD

method to compute ranks. Λ(r)
i denotes the r eigenvalues detected as nonzero by the rank

identified.

r̃2 r̃3 r̃4 r̃5 r̃6 r̃7

Σ1 4.959 4.995 5.000 5.000 5.000 5.000

Σ2 4.959 4.995 5.000 5.000 5.000 5.000

Table 5.14: The ranks of two matrices Σ1 and Σ2 using the fuzzy-MV rank method for

different values of k.

Table 5.14 shows the fuzzy minimal-variance rank estimations for Σ1 and Σ2, for different

values of k in the minimal-variance estimation. The rank values r̃k tend towards a value

as k increases, and estimate that Σ1 and Σ2 have the same rank, as desired.

The rank estimator is named ‘fuzzy’ as the rank r̃k is not necessarily an integer. Con-

sider a matrix Σ3 with eigenvalues Λ3 = [5, 4, 3, 2, 1] + [0.01**i for i in

range(1, 26)]. Whereas the SVD method used in Table 5.13 can be affected by choice

of threshold, the fuzzy-MV rank estimation method has no tolerance to be set. The only
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variables to be considered are the degree parameter k and the weighting function in Equa-

tion (5.8). Much like the results shown in Table 5.3 and Table 5.4, Table 5.15 shows that

as k increases there is a tendency towards a given rank value (shown in bold), until nu-

merical instability starts to cause a decrease. The fuzzy-MV rank estimation is taken to

be the maximum value of all r̃k values, before the values begin to decrease. This also pro-

vides a strong indication for the maximum value of k to be used in the minimal-variance

polynomial before instability occurs.

w(λ) r̃2 r̃3 r̃4 r̃5 r̃6 r̃7 r̃8 r̃9

λ 5.168 5.288 5.423 5.807 6.227 6.225 6.224 6.223

λ2 5.083 5.240 5.341 5.620 6.226 6.225 6.224 6.224

λ3 5.168 5.267 5.375 5.682 6.227 6.225 6.224 6.224

Table 5.15: The ranks of the matrix Σ3 using the fuzzy-MV rank method for different

values of k, and using different weight functions w(λ) in calculating the adjustment value

c∗k. The bold values indicates the fuzzy-MV rank estimation for that weight function.

Regarding the weight function in Equation (5.8), using w(λ)= λ j for any value j≥ 1 seems

to have little difference on the fuzzy-MV rank estimation, as illustrated in Table 5.15. The

weight function w(λ) = λ is recommended to be used by default.

5.5.2 Iterative fuzzy minimal-variance rank estimation

As seen in Section 5.3.1, the minimal-variance whitening polynomial does not always

perfectly whiten a dataset. However, using the minimal-variance polynomial iteratively,

as described in Section 5.4, can produce more successful results. To the same end, the

iterative minimal-variance method can be used to provide a better estimation of the fuzzy-

MV rank.

Recall that X(i) denotes the dataset during the ith iteration of the iterative minimal-variance

algorithm (Algorithm 3), and that Σ(i) is the covariance matrix of X(i). Then for each

iteration i, a new polynomial Ak is found to fit the inverse square-root eigenvalues of

Σ(i). If Σ(i) has any zero-valued eigenvalues, this polynomial Ak will need to use the

constraint adjustment (5.8). As an example, consider a dataset X, generated from a zero-

mean multivariate Gaussian distribution using a diagonal covariance matrix Σwith entries
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[5, 4, 3, 2, 1] + [0.5 ** i for i in range(11, 21)] + [0] * 5, again in

Python notation. Figure 5.24a shows iteration 1 of the iterative minimal-variance whiten-

ing method. Using the notation defined in Section 5.4, the (largest) eigenvalues of the

empirical covariance matrix Σ(0) are plotted in blue dots against the inverse square root

eigenvalues. The dashed orange line shows the minimal-variance polynomial with k = 3

(that is, a polynomial of degree 2) for Σ(0), with the adjusted polynomial plotted by the

solid purple line. Figure 5.24b depicts iteration 2, showing the eigenvalues of Σ(1) and

the associated minimal-variance polynomials, and so forth for the rest of the subfigures in

Figure 5.24.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6 (g) Iteration 7

Figure 5.24: Behaviour of the minimal-variance polynomials when used in iterative

whitening. Blue dots: eigenvalues against inverse square root eigenvalues. Orange dashed

line: minimal-variance polynomial using k = 3 for the given iteration. Purple solid line:

adjusted polynomial using methods described in Section 5.2.3.

The notation for the constraint adjustment value c∗k is adjusted to apply to iterative whiten-

ing. Let c∗k,i be the constraint adjustment value for iteration i. Let Λ̃i be the nonzero

eigenvalues of Σ(i). Then the adjustment value is:

c∗k,i =

∑
λ∈Λ̃i

w(λ)λ−0.5 pk(λ)∑
λ∈Λ̃i

w(λ)pk(λ)2 .

For each iteration i, the iterative fuzzy-MV rank estimation is found to be r̃k,i = c∗k,i × d.

Table 5.16 gives the values of r̃k,i for k ∈ {2, . . . ,6}, i = {1, . . . ,12}. For all values of k

considered, the rank estimation converges towards the same value.
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@
@
@
@@

i

k
2 3 4 5 6

1 5.259 9.854 10.384 10.501 14.467

2 5.596 12.768 13.776 14.188 15.000

3 6.401 14.628 14.964 14.998 15.000

4 8.053 14.995 15.000 15.000 15.000

5 10.291 15.000 15.000 15.000 15.000

6 12.089 15.000 15.000 15.000 15.000

7 13.579 15.000 15.000 15.000 15.000

8 14.554 15.000 15.000 15.000 15.000

9 14.932 15.000 15.000 15.000 15.000

10 14.998 15.000 15.000 15.000 15.000

11 15.000 15.000 15.000 15.000 15.000

12 15.000 15.000 15.000 15.000 15.000

Table 5.16: Ranks r̃k,i for a given matrix, given by iterative fuzzy-MV rank estimation,

for polynomial degree parameter k and iteration i.

Further work on the iterative fuzzy-MV rank estimation is needed to assess the stability

of the method, as well as more empirical investigations on different data distributions.

However, the method clearly performs well and in a stable manner for Gaussian data with

an unclear rank.

5.6 Alternative minimal-variance polynomial methods

Thus far, only polynomials in the form of Equation (5.1) have been considered, that is:

Ak =

k−1∑
i=0

θiΣ
i = θ0I+ θ1Σ+ θ2Σ

2+ . . . . (5.16)

However, polynomials of different forms can also be considered alongside this. Given

that the aim is to approximate (or replace) Σ−1/2, it perhaps makes sense to make use of

the square root of the covariance matrix by creating a polynomial of the form:

Bk =

k−1∑
i=0

θiΣ
i/2 = θ0I+ θ1Σ

1/2+ θ2Σ+ . . . . (5.17)
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Furthermore, the use of the identity matrix in Equations (5.16) and (5.17) can be seen as

a regularization on the minimal-variance polynomial. Although regularization has many

benefits (particularly when working with close-to-degenerate data), it could sometimes be

useful to consider a non-regularized polynomial:

Ck =

k−1∑
i=1

θiΣ
i = θ1Σ+ θ2Σ

2+ . . . .

For completeness, consider the non-regularized polynomial using the square root of the

covariance matrix:

Dk =

k−1∑
i=1

θiΣ
i/2 = θ1Σ

1/2+ θ2Σ+ . . .

Forming the minimal-variance polynomial matrix using these alternative polynomials is

very similar to the method outlined in Theorem 4, with some slight alterations. Table 5.17

gives the formulae for the different coefficient vectors for each of the alternative polyno-

mial methods. Note that α = 1/2 is used by default in the definition of the constraint

(5.2) as experiments show this parameter value gives the most desirable results. See Ap-

pendix B.2 for the full details on calculating the coefficient vectors in Table 5.17.

Section 5.2.1 defines the notation S j = trace(Σ j) and S(i,k) = (S i,S i+1, . . . ,S i+k−1). It is

necessary to slightly alter the latter definition to include a new parameter γ:

S(i,k,γ) =
(
S i, S i+γ, S i+2γ, . . . ,S i+k−γ

)
. (5.18)

As explored in Section 5.2.3, the polynomials require a small adjustment if the rank of

the dataset is less than d. This adjustment value is the same as c∗k from Equation (5.8), but

replaces the polynomial pk(λ) with the corresponding polynomial from Table 5.17.

One key difference between the different polynomials in Table 5.17 is the rank of the

minimal-variance polynomial matrix. The rank of the whitening matrices Ak and Bk will

always be equal to d, the dimension of the dataset, thanks to the presence of the identity

matrix I in the polynomial. On the other hand, Ck and Dk will (likely) have equal rank to

the covariance matrix Σ.

As shown in Table 5.18, polynomials Ak and Bk have k terms, whereas polynomials Ck

and Dk have k− 1 terms. Therefore, for a fair comparison in the examples that follow,

the polynomials Ak and Bk use degree parameter k, and the polynomials Ck and Dk use

degree parameter k+1.
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Polynomial Coefficient vector θ Matrix M(k)

Ak =
∑k−1

i=0 θiΣ
i θA =

S 0
S⊤( 1

2 ,k,1
)M−1

(k)S ( 1
2 ,k,1

) M−1
(k)S

(
1
2 ,k,1

) M(k) =


S 1 S 2 ··· S k
S 2 S 3 ··· S k+1
...

...
. . .

...
S k S k+1 ··· S 2k−1


Bk =

∑k−1
i=0 θiΣ

i/2 θB =
S 0

S⊤(
1
2 ,

k
2 ,

1
2

)M−1
(k)S (

1
2 ,

k
2 ,

1
2

) M−1
(k)S

(
1
2 ,

k
2 ,

1
2

) M(k) =


S 1 S 3/2 ··· S (k+1)/2

S 3/2 S 2 ··· S (k+2)/2
...

...
. . .

...
S (k+1)/2 S (k+2)/2 ··· S k


Ck =

∑k−1
i=1 θiΣ

i θC =
S 0

S⊤( 3
2 ,k−1,1

)M−1
(k)S ( 3

2 ,k−1,1
) M−1

(k)S
(

3
2 ,k−1,1

) M(k) =


S 3 S 4 ··· S k+1
S 4 S 5 ··· S k+2
...

...
. . .

...
S k+1 S k+2 ··· S 2k−1


Dk =

∑k−1
i=1 θiΣ

i/2 θD =
S 0

S⊤(
1, k−1

2 , 1
2

)M−1
(k)S (

1, k−1
2 , 1

2

) M−1
(k)S

(
1, k−1

2 , 1
2

) M(k) =


S 2 S 5/2 ··· S (k+2)/2

S 5/2 S 3 ··· S (k+3)/2
...

...
. . .

...
S (k+2)/2 S (k+3)/2 ··· S k


Table 5.17: Details to compute the four different minimal-variance polynomial matrices

discussed in Section 5.6. Note the altered definition of S(i,k,γ) given by Equation (5.18).

Derivations are detailed in Appendix B.2.

Polynomial Number of terms Degree of polynomial

Ak k k−1

Bk k (k−1)/2

Ck k−1 k−1

Dk k−1 (k−1)/2

Table 5.18: The number of terms in the polynomial and the degree of the polynomial for

each minimal-variance polynomial with degree parameter k.

Synthetic data examples

The first set of examples illustrating the differences between the original minimal-variance

polynomial and the three new polynomials will use synthetically generated datasets.

Dataset 1 Let dataset 1 have d = 50 and r = 30, and produce a covariance matrix with di-

agonal entries [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] + [numpy.random.rand() for

_ in range(10)] + [0.8 ** i for i in range(1, 11)] + [0] * 20. This co-

variance matrix is used to produce a normally distributed dataset using the Python func-

tion numpy.random.multivariate_normalwith mean zero and 1000 observations.
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Figure 5.25 shows the heatmaps of the covariance matrices of the data after having been

whitened by the four minimal-variance polynomial matrices. The heatmaps show polyno-

mial B10 performs best, given it looks closest to the rank-deficient identity matrix.

(a) Polynomial A10 (b) Polynomial B10 (c) Polynomial C11 (d) Polynomial D11

Figure 5.25: Heatmaps of the covariance matrix of dataset 1 after being whitened by

the minimal-variance polynomial whitening method, using the four different polynomials

detailed in Table 5.17.

Figure 5.26 gives plots of the polynomials, comparing them to the inverse square root

of the nonzero eigenvalues. The polynomials using Σ1/2 (polynomials Bk and Dk) are

smoother, possibly because they are of lower degree than polynomials Ak and Ck (see

Table 5.18). The polynomials have been adjusted, following the methodology of Sec-

tion 5.2.3 as discussed previously.

(a) Polynomial A10 (b) Polynomial B10 (c) Polynomial C11 (d) Polynomial D11

Figure 5.26: Plots of the polynomials fit to the inverse square root eigenvalues of the

covariance matrix of dataset 1, using the four different polynomials detailed in Table 5.17.

Polynomial Ck performs worst out of the polynomials considered. Figure 5.27 shows the

eigenvalues of the covariance matrix of the transformed dataset through both a scatter plot

and boxplots, and shows that polynomial Ck has a wide range of nonzero eigenvalues.

The other polynomials perform relatively well, although polynomial Bk is clearly the

most successful in whitening this dataset as the nonzero eigenvalues are closely centered

around 1.
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(a) All eigenvalues (b) Nonzero eigenvalues

Figure 5.27: Eigenvalues of the covariance matrix of dataset 1 after being transformed by

a minimal-variance polynomial matrix. Figure (a) shows a plot of all eigenvalues in order,

including zero eigenvalues. Figure (b) shows boxplots of the nonzero eigenvalues.

Dataset 1 Rotated Consider the same eigenvalues as dataset 1, but here introduce some

rotation into the covariance matrix (see Appendix C.1 for the method used). There is no

change in the behaviour of the polynomials or the value of the eigenvalues (see Figure 5.29

and Figure 5.30).

However, the rotation is not always removed easily when data is degenerate. This is il-

lustrated by Figures 5.28a-5.28d, where the off-diagonals of the covariance matrix have

nonzero values. However, this is also the case when using the Moore-Penrose pseudoin-

verse, as shown in Figure 5.28e. It would be recommended to apply iterative minimal-

variance whitening in this case, as Section 5.4 has shown that this method is often more

successful at decorrelating data.

(a) Polynomial A10 (b) Polynomial B10 (c) Polynomial C11 (d) Polynomial D11 (e) MP Pseudoinverse

Figure 5.28: Heatmaps of the covariance matrix of dataset 1 with rotations (a)-(d) after

being whitened by the minimal-variance polynomial whitening method, using the four

different polynomials detailed in Table 5.17; (e) after being whitened by the square root

of the Moore-Penrose pseudoinverse.
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(a) Polynomial A10 (b) Polynomial B10 (c) Polynomial C11 (d) Polynomial D11

Figure 5.29: Plots of the minimal-variance polynomials using the four different polyno-

mials detailed in Table 5.17. The eigenvalues of the covariance matrix of dataset 1 with

rotations are plotted against their reciprocal square root values.

(a) All eigenvalues (b) Nonzero eigenvalues

Figure 5.30: Eigenvalues of the covariance matrix of the dataset 1 with rotations after

being transformed by a minimal-variance polynomial matrix. Figure (a) shows a plot of

all eigenvalues in order, including zero eigenvalues. Figure (b) shows boxplots of the

nonzero eigenvalues.

Dataset 2 Dataset 2 has been generated to have correlations, rather than introducing

correlations later. Again, the numpy.random.multivariate_normal Python function

is used, with mean equal to zero and number of observations equal to 1000. The co-

variance matrix for this example is computed using the code given in Snippet C.4 in

Appendix C.3, and is illustrated by the heatmap in Figure 5.31. The final 20 dimensions

of the covariance matrix are multiplied by increasingly smaller values to introduce de-

generacy steadily. The eigenvalues of the empirical covariance matrix of this dataset are

[260.96, 9.22, 7.8, 7.51, 6.26, 5.48, 5.16, 4.73, 4.45, 3.95, 3.31, 2.8, 2.72, 2.26, 2.03,

1.66, 1.55, 1.38, 1.29, 1.09, 0.87, 0.71, 0.47, 0.43, 0.33, 0.2, 0.13, 0.11, 0.08, 0.05, 0.01]

+ [0] * 19. This is a realistic scenario for a high dimensional dataset, as high dimensional

datasets often have one large eigenvalue, and the rest much smaller [19].
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Figure 5.31: Heatmap of the empirical covariance matrix of dataset 2.

(a) Polynomial A9 (b) Polynomial B9 (c) Polynomial C10 (d) Polynomial D10

Figure 5.32: Heatmaps of the covariance matrix of dataset 2 after being whitened by

the minimal-variance polynomial whitening method, using the four different polynomials

detailed in Table 5.17.

(a) Polynomial A9 (b) Polynomial B9 (c) Polynomial C10 (d) Polynomial D10

Figure 5.33: Plots of the minimal-variance polynomials using the four different polyno-

mials detailed in Table 5.17. The eigenvalues of the covariance matrix of dataset 2 are

plotted against their reciprocal square root values.

Figure 5.32 shows that the minimal-variance whitening polynomials remove most of the

correlations seen in the original covariance matrix (Figure 5.31), but do not whiten the

dataset perfectly. Polynomial B9 performs best according to the heatmaps and the fit of the

polynomial B in Figure 5.33. The spread of eigenvalues in Figure 5.34 also corroborates

this, although shows that there is improvement to be made. Improvements can be made

on the whitening performance by using iterative whitening, as in Section 5.4, with the

different polynomials.
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(a) All eigenvalues (b) Nonzero eigenvalues

Figure 5.34: Eigenvalues of the covariance matrix of dataset 2 after being transformed by

a minimal-variance polynomial matrix. Figure (a) shows a plot of all eigenvalues in order,

including zero eigenvalues. Figure (b) shows boxplots of the nonzero eigenvalues.

Dataset 2 with iterative whitening The parameter k = 2 is used for polynomials A

and B, and k = 3 for polynomials C and D, to ensure the polynomials have 2 terms in

each iteration (see Table 5.18). Figure 5.36 shows that polynomials A and B whiten the

dataset well when used with iterative whitening, but polynomials C and D struggle to re-

move correlations due to the lack of a regularizing term (the identity matrix). Figure 5.35

shows a large improvement in the resulting eigenvalues of the whitened dataset when

using polynomials A, B and D when compared with Figure 5.34. Polynomial D does

particularly well in retrieving the desired eigenvalues, but does not remove correlations

as well as polynomials A and B, so one of the regularized polynomials would likely be

recommended for this example.

(a) All eigenvalues (b) Nonzero eigenvalues

Figure 5.35: Eigenvalues of the covariance matrix of dataset 2 after being transformed by

iterative whitening with the four different minimal-variance polynomial matrices. Figure

(a) shows a plot of all eigenvalues in order, including nonzero eigenvalues. Figure (b)

shows boxplots of the nonzero eigenvalues.
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(a) A2 iter 3 (b) B2 iter 3 (c) C3 iter 3 (d) D3 iter 3

(e) A2 iter 6 (f) B2 iter 4 (g) C3 iter 6 (h) D3 iter 6

(i) A2 iter 10 (j) B2 iter 6 (k) C3 iter 10 (l) D3 iter 10

Figure 5.36: Iterative whitening on dataset 2 with the four minimal-variance polynomials

given in Table 5.17.

Real data examples

Two of the real datasets introduced in Table 5.2 will now be considered with the new

polynomial methods, using both non-iterative and iterative whitening methods.

Digits The Digits dataset is whitened with the four different polynomials, and the heatmaps

of the resulting covariance matrices are shown in Figure 5.37. Polynomials A, B and D

provide approximate whitening, whereas polynomial C doesn’t perform as well.

All polynomials have a good fit to the larger eigenvalues (mostly eigenvalues greater

than 1), as shown in Figure 5.38. Polynomial C11 sees more oscillation than the other

polynomials, suggesting it may be slightly less stable than the others. Polynomial B10

performs best in approximating the majority of the eigenvalues well.

Regarding the eigenvalues of the covariance matrix of the transformed data, Figure 5.39a

shows there is a steady decline to the zero eigenvalues for all four methods. Figure 5.39b
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shows the distribution of the nonzero eigenvalues for each method considered. Polyno-

mial B has nonzero eigenvalues largely concentrated around 1, whereas the other poly-

nomials see a much larger spread. In this case, polynomial B performs best. However,

iterative whitening may be able to improve this whitening.

(a) Polynomial A10 (b) Polynomial B10 (c) Polynomial C11 (d) Polynomial D11

Figure 5.37: Heatmaps of the covariance matrix of the Digits dataset after being whitened

by the minimal-variance polynomial whitening method, using the four different polyno-

mials detailed in Table 5.17.

(a) Polynomial A10 (b) Polynomial B10 (c) Polynomial C11 (d) Polynomial D11

Figure 5.38: Plots of the polynomials fit to the inverse square root eigenvalues of the

covariance matrix of the Digits dataset, using the four different polynomials detailed in

Table 5.17.

(a) All eigenvalues (b) Nonzero eigenvalues

Figure 5.39: Eigenvalues of the covariance matrix of the Digits dataset after being trans-

formed by a minimal-variance polynomial matrix. Figure (a) shows a plot of all eigen-

values in order, including zero eigenvalues. Figure (b) shows boxplots of the nonzero

eigenvalues.
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Digits with iterative whitening Minimal-variance whitening can now be compared

with iterative minimal-variance whitening on the Digits dataset. The degree parameter

k = 2 is used for polynomials A and B, and k = 3 for polynomials C and D. Polynomials A

and B whiten the data perfectly after several iterations, as seen in Figure 5.40. Polynomial

C does not see much of an improvement using iterative whitening. The heatmap relating

to polynomial D indicates a good whitening transformation after several iterations. How-

ever, the rank of the dataset has been changed when using this method.

(a) A2 iter 2 (b) B2 iter 2 (c) C3 iter 2 (d) D3 iter 2

(e) A2 iter 4 (f) B2 iter 5 (g) C3 iter 5 (h) D3 iter 5

(i) A2 iter 9 (j) B2 iter 8 (k) C3 iter 9 (l) D3 iter 10

Figure 5.40: Iterative whitening on the Digits dataset with the four minimal-variance

polynomials given in Table 5.17.

Figure 5.41b shows that when using each polynomial, the eigenvalues are all zeros and

ones. However, Figure 5.41a also shows that there are different amounts of zeros and ones

depending on which polynomial is used, and this is illustrated more clearly in the bar chart

given in Figure 5.41c. Therefore, despite polynomial D’s seemingly good performance

in the heatmaps and boxplots, it does not perform as well as polynomials A and B due to

lack of regularization.
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(a) All eigenvalues (b) Nonzero eigenvalues (c) Count of nonzero eigenvalues

Figure 5.41: Eigenvalues of the covariance matrix of the Digits dataset after being trans-

formed by iterative whitening with the four different minimal-variance polynomial matri-

ces. Figure (a) shows a plot of all eigenvalues in order, including nonzero eigenvalues.

Figure (b) shows boxplots of the nonzero eigenvalues. Figure (c) shows the number of

nonzero eigenvalues of the covariance matrix after iterative whitening using each polyno-

mial.

Musk The above exercise is repeated on the Musk dataset. Clearly, considering the

heatmaps in Figure 5.42, polynomial B9 performs the best at removing correlations (see

Figure 5.5f for the heatmap of the original covariance matrix).

(a) Polynomial A9 (b) Polynomial B9 (c) Polynomial C10 (d) Polynomial D10

Figure 5.42: Heatmaps of the covariance matrix of the Musk dataset after being whitened

by the minimal-variance polynomial whitening method, using the four different polyno-

mials detailed in Table 5.17.

Polynomial B9 also provides the best polynomial fit in Figure 5.43, as the other polynomi-

als do not fit the eigenvalues between 0 and 10 very closely. However, Figure 5.44 shows

that none of the polynomials perform particularly well when considering the eigenvalues

of the transformed data. As with the other examples, iterative whitening can be used to

improve these results.
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(a) Polynomial A9 (b) Polynomial B9 (c) Polynomial C10 (d) Polynomial D10

Figure 5.43: Plots of the polynomials fit to the inverse square root eigenvalues of the

covariance matrix of the Musk dataset, using the four different polynomials detailed in

Table 5.17.

(a) All eigenvalues (b) Nonzero eigenvalues

Figure 5.44: Eigenvalues of the covariance matrix of the Musk dataset after being trans-

formed by a minimal-variance polynomial matrix. Figure (a) shows a plot of all eigen-

values in order, including zero eigenvalues. Figure (b) shows boxplots of the nonzero

eigenvalues.

Musk with iterative whitening As in previous examples, k = 2 is used for polynomials

A and B, and k = 3 for polynomials C and D. Polynomials A and B clearly perform

well in Figure 5.45. Polynomials C and D retain some correlations after the iterative-

whitening transformation. Like the Digits dataset, the eigenvalues for all polynomials

become exclusively zeros and ones, but polynomials C and D have the incorrect rank

(Figure 5.46). Thus, polynomials A and B should be used with iterative whitening.

The overriding message is that polynomials A and B seems to work most consistently in

whitening data successfully, particularly when combined with iterative whitening. Poly-

nomials C and D do not behave as hoped in theory, particularly when combined with

iterative whitening. This suggests that regularization by the identity matrix is important

for minimal-variance whitening polynomials.
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(a) A2 iter 2 (b) B2 iter 2 (c) C3 iter 2 (d) D3 iter 2

(e) A2 iter 5 (f) B2 iter 4 (g) C3 iter 5 (h) D3 iter 5

(i) A2 iter 8 (j) B2 iter 6 (k) C3 iter 9 (l) D3 iter 10

Figure 5.45: Iterative whitening on the Musk dataset with the four minimal-variance poly-

nomials given in Table 5.17.

(a) All eigenvalues (b) Nonzero eigenvalues (c) Count of nonzero eigenvalues

Figure 5.46: Eigenvalues of the covariance matrix of the Musk dataset after being trans-

formed by iterative whitening with the four different minimal-variance polynomial matri-

ces. Figure (a) shows a plot of all eigenvalues in order, including nonzero eigenvalues.

Figure (b) shows boxplots of the nonzero eigenvalues. Figure (c) shows the number of

nonzero eigenvalues of the covariance matrix after iterative whitening using each polyno-

mial.
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5.7 Squaring the polynomial to produce an alternative to

Σ−1

In Chapter 4, a minimal-variance polynomial approximation to Σ−1 is constructed and

used to find the minimal-variance distances. For this section, denote this approximation

to Σ−1 as Ak. An alternative method to finding such an approximation is to square the

minimal-variance polynomial approximation to Σ−1/2 that has been discussed in Chap-

ter 5. For this section, denote the approximation to Σ−1/2 as Bk, such that the approxima-

tion to Σ−1 using this method will be given by B2
k . If the approximation Bk to Σ−1/2 is a

good one, the approximation B2
k to Σ−1 should also be good.

Using this method has a few potential benefits. Firstly, positive-definiteness of the ap-

proximation B2
k is guaranteed as it is the square of a matrix. Secondly, there is an iterative

method of finding an approximation to Σ−1/2 as detailed in Section 5.4, which often pro-

duces a more effective approximation than the standard minimal-variance polynomial.

An equivalent iterative method for an approximation to Σ−1 has not been constructed, so

using the iterative method for Σ−1/2 and then squaring the approximation may be more

effective.

Furthermore, finding Bk requires calculating a (k − 1)-degree polynomial, and B2
k will

therefore be a 2(k− 1)-degree polynomial. In theory, this should therefore be equivalent

to calculating A2k−1 (since A2k−1 will be a 2k−2 degree polynomial), but with much less

computational cost and threat of instability. The comparisons are therefore between A2k−1

and B2
k in the examples that follow.

A simple example will be used first to explore this method. Let Σ be a diagonal matrix

with eigenvalues [3, 2, 1, 1/2, 1/5, 1/10, 1/20, 1/30, 1/40, 1/50]. A dataset X is generated

from a multivariate Gaussian distribution with zero mean, covariance matrix Σ and 1000

observations. In Figure 5.47, the eigenvalues are plotted against the inverse eigenvalues.

The Ak polynomials are a closer fit to the inverse eigenvalues, but have higher oscillation.

The B2
k polynomials provide a close fit, with a more simple polynomial shape. Table 5.19

shows the variances of the quadratic forms, using the formula from (4.1). In this example,

a lower variance can be found using B2
k , along with the guarantee of a positive-definite

approximation to Σ−1.
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(a) A7, B2
4 (b) A9, B2

5

Figure 5.47: Plot of polynomials, where Ak (orange, solid line) approximates Σ−1, and

B2
k (pink dashed line) approximates

(
Σ−1/2

)2
. The blue dots are the eigenvalues plotted

against their reciprocals.

Deg A2k−1 var
(
y⊤A2k−1y

)
B2

k var
(
y⊤B2

ky
)

4 A5 23.851 B2
3 42.243

6 A7 20.223 B2
4 30.122

8 A9 21.335 B2
5 24.148

10 A11 22.241 B2
6 20.972

12 A13 33.014 B2
7 20.198

14 A15 90.387 B2
8 20.213

16 A17 28.150 B2
9 21.289

Table 5.19: Variances of the quadratic forms y⊤A2k−1y and y⊤B2
ky for different values of

k, where y = x−µ, for a 10-dimensional dataset. The ‘Deg’ column denotes the degree of

the polynomial.

The iterated minimal-variance approximation to Σ−1/2 is detailed in Section 5.4. Use this

iterative method to find the approximation to Σ−1/2 and square this to find the approxima-

tion to Σ−1. The variance when using this method with k = 2 and 6 iterations is 20.000002,

which is lower than any values in Table 5.19.

A second dataset is generated as above, with eigenvalues [2, 1.7, 1.5, 1.2, 1] +

[0.9 ** i for i in range(1, 46)]. Figure 5.48 shows the fit of the polynomials

A2k−1 and B2
k for k = 4 and k = 7. As the eigenvalues degenerate consistently, the polyno-

mial fit of B2
k is very good, particularly for k = 7.
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(a) A7, B2
4 (b) A13, B2

7

Figure 5.48: Plot of polynomials, where Ak (orange, solid line) approximates Σ−1, and

B2
k (pink dashed line) approximates

(
Σ−1/2

)2
. The blue dots are the eigenvalues plotted

against their reciprocals.

Deg A2k−1 var
(
y⊤A2k−1y

)
B2

k var
(
y⊤B2

ky
)

4 A5 128.543 B2
3 191.548

6 A7 114.937 B2
4 154.558

8 A9 108.711 B2
5 132.676

10 A11 109.746 B2
6 121.473

12 A13 105.532 B2
7 114.404

14 A15 127.455 B2
8 109.997

16 A17 152.759 B2
9 106.843

18 A19 426.547 B2
10 104.546

20 A21 727.745 B2
11 105.415

Table 5.20: Variances of the quadratic forms y⊤A2k−1y and y⊤B2
ky for different values of

k, where y = x−µ, for a 50-dimensional dataset. The ‘Deg’ column denotes the degree of

the polynomial.

Table 5.20 gives the variance of the quadratic forms using A2k−1 and B2
k for different values

of k. A lower variance is achieved when using B2
k . Using the iterative minimal-variance

whitening method with k = 2 gives a variance of exactly 100, a further improvement on

the two non-iterative methods.

These examples suggest that it may often be beneficial to use the minimal-variance poly-

nomial approximation to Σ−1/2 squared to find an approximation to Σ−1, particularly by

using the iterative minimal-variance polynomial method.
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5.8 Chapter summary

This chapter has introduced the concept of minimal-variance whitening, a polynomial-

based method intended to decorrelate and standardize datasets. The method was first

introduced in a paper published by my supervisors and I [85]. The stand-out benefits of

using the minimal-variance whitening method include:

• The ability to whiten datasets that have singular covariance matrices. This is not

possible using many classical whitening methods, such as Mahalanobis whitening

and Cholesky whitening;

• The improvement in whitening for degenerate and near-degenerate datasets us-

ing this method when compared to the Mahalanobis whitening method using the

Moore-Penrose pseudoinverse;

• The adjustability offered by the method, thanks to different parameter settings, in-

cluding the degree parameter k. There are many other avenues for flexibility, such

as different constraints, different polynomial forms and different weightings in the

constraint adjustment method;

• The improvement offered to the method by the iterative minimal-variance whitening

methods;

• The potential improvement for minimal-variance distances by using whitening and

the Euclidean distance, or the squared approximation to Σ−1 given in Section 5.7.

Some of the limitations of this method include:

• The potential for instability if k is chosen too high, as is the case with most polynomial-

based methods. The iterative method introduced in Section 5.4 reduces this issue

greatly;

• Perfect whitening is not always achieved, but again this is improved greatly by the

iterative whitening method;

• The computational expense of calculating powers and traces of powers of matrices

is high, particularly in high dimensions. Some techniques to alleviate this cost are

given in Section 5.3.3.
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Section 5.2 constructs the minimal-variance polynomial through Lagrangian methods,

and has a thorough discussion of how to set the different parameters used in the minimal-

variance polynomial. It is concluded that low values of the parameter k should be used to

provide more stable and low-cost outputs by producing lower degree polynomials. The

best value for the parameter α is seen to be α = 1/2, as it produces an unbiased estimator

and good empirical results. However, using this parameter enforces a need to adjust the

constraint when whitening rank-deficient data. Recommendations for such an adjustment

are given, and are shown to help identify whether a matrix is singular or not.

Several numerical examples of the minimal-variance whitening method are given in Sec-

tion 5.3. It is shown that the method is useful in settings where d < N and d ≥ N for a

range of applicatons, including outlier detection and dimension reduction. The method is

compared to a number of different whitening methods, including Mahalanobis whitening,

Mahalanobis whitening using the Moore-Penrose pseudoinverse and other pre-processing

methods. Several methods are suggested in this section to make the minimal-variance

whitening method accessible when using extremely high dimensional datasets, including

sampling, random projection and trace approximation methods. Overall, this section il-

lustrates the varied applicability and good empirical performance of the minimal-variance

whitening method, and that it can often outperform established whitening methods.

Section 5.4 introduces an extension to minimal-variance whitening called the ‘iterative

minimal-variance whitening’ method. The foundations of this method are to repeatedly

whiten the output of the minimal-variance whitening procedure, until some stopping cri-

terion or convergence is reached. Several real datasets are used to illustrate the success

of this method, and vast improvements are made on both the original minimal-variance

and Moore-Penrose Mahalanobis whitening methods. Through these empirical investiga-

tions, it is noted that the iterative minimal-variance whitening method should be applied

using the parameter k = 2, for the sake of simplicity, stability and performance. However,

different values of k can be used interchangeably should the user want.

Section 5.5 illustrates how the constraint adjustment introduced in Section 5.2.3 can be

used to estimate the rank of a singular matrix, using the original minimal-variance whiten-

ing method or the iterative version. This method of rank estimation is shown to be more

consistent than other methods, such as eigenvalue thresholding.
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Different forms of the minimal-variance polynomial are explored in Section 5.6 for whiten-

ing. Polynomials that capitalize on the need to calculate Σ1/2 are used, and some non-

regularized polynomials are experimented with. It is shown that the original minimal-

variance polynomial and a regularized polynomial using Σ1/2 both perform well, but that

the non-regularized methods struggle, particularly with degenerate data and when applied

in iterative whitening.

In the final section of this chapter, comparisons are made between the approximation

to Σ−1 given in Chapter 4 and using the square of the approximation to Σ−1/2 given in

Chapter 5 to approximate Σ−1. Using an iterative method to approximate Σ−1/2 means

more accurate results are often found, and as such an improvement can be made in ap-

proximating the inverse of the covariance matrix. This method also ensures that such an

approximation to Σ−1 is positive-definite, which may not otherwise be guaranteed.

Overall, the minimal-variance polynomial approximation to Σ−1/2 is highly adjustable

and provides good data whitening capabilities, which are needed for a wide range of ap-

plications. It is available for use in the case of degeneracy, unlike the popular methods

of whitening outlined in [130]. Minimal-variance whitening often outperforms these es-

tablished methods when they are available, especially when it is used iteratively. The

method has other applications outside of data whitening, such as estimation of the rank of

a matrix and approximating the inverse of a covariance matrix. There are many possible

avenues for further research into the methods and applications of the minimal-variance

polynomials, which will be explored in Section 6.2.
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Chapter 6

Conclusion

This chapter provides a overview of the research reported in this thesis. An in-depth con-

clusion can be found at the end of each chapter, so Section 6.1 is made up of summaries

which repeat the key points of these conclusions. Potential avenues for future research

related to the topics in this thesis are then provided in Section 6.2.

6.1 Summary of research contributions

In this section, an outline of the novel contributions of this thesis is given. Chapter 1

provides an introduction to the topics considered, and gives an overview of the structure

of the thesis. Chapter 2 is a review of the literature related to the topics discussed in this

thesis. The reliance on distance measures in multivariate analysis is highlighted, as well

as the need for methods of data whitening across many fields and applications. The im-

plications of working with high dimensional data for distance measures are also explored.

A discussion of estimators for the covariance and inverse covariance matrix is given, il-

lustrating the reliance on structural assumptions for such estimators. This highlights the

need for new methodology to produce multivariate distance measures and methods of data

whitening in high dimensions, with no such structural assumptions.

The following paragraphs explore Chapters 3-5, as these chapters contain the novel con-

tributions of the thesis.
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Chapter 3: Simplicial distances Chapter 3 considers the simplicial distances, which

were first proposed by Pronzato et al. [192] but have been extended in [85] and in this

thesis. The distance from a point x to a set of points X is found by calculating the av-

erage volume of all k-dimensional simplices formed by x and points in X. As such, the

simplicial distances are free from the assumptions and limitations imposed by estimations

of the covariance matrix, and can be used in the case of degenerate data by choosing the

parameter k to be less than the rank of the data.

The parameter δ controls the behaviour of the distances, with comparisons drawn to the ℓδ

distances for different parameter choices. The parameter k controls the dimension of the

simplices used. It is shown that distances proportional to the Euclidean distance and the

Mahalanobis distance can be found using k = 1 and k = d respectively. All other values of

k form a spectrum of distances that fall between these two measures in the sense of both

behaviour and variances.

Computing the distances directly through simplex volumes can be computationally ex-

pensive, so alternative methods of computation are suggested to improve speed through

elementary symmetric functions with polynomials and subsampling of simplices. It is

shown that there is some instability in the elementary symmetric functional method, but

only when the degree parameter k is chosen too high, which is not a recommended pa-

rameter choice for most polynomial methods.

The distances account for interactions between variables and varying scales, while also

being well defined in the case of degenerate data, unlike the Mahalanobis distance. Through

empirical examples, it is shown that the simplicial distances are robust and can outper-

form the Mahalanobis and Euclidean distances in circumstances with correlated, high

dimensional data.

Chapter 4: Minimal-variance distances The family of minimal-variance distance mea-

sures were discussed in Chapter 4, having first been proposed in [85]. The minimal-

variance matrix Ak is derived by finding a set of coefficients for a degree-(k − 1) poly-

nomial in the covariance matrix Σ, where k is a user-defined parameter. The polynomial

seeks to minimize the variance of the distances produced when using Ak in a quadratic

form, subject to a constraint which ensures that Ak behaves like a (pseudo)inverse of Σ.
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The method of finding the coefficients of this polynomial is approached from two direc-

tions: constrained polynomial approximation and weighted linear regression. The param-

eter α controls the constraint imposed on the minimal-variance matrix, and can alter the

variance-bias trade-off of the estimator. It is shown that using α = 1 produces an unbiased

estimator. The chapter illustrates that the method is highly amenable, with comparisons

between the constraint used throughout Chapter 4 and two other constraints, all of which

have various benefits and drawbacks.

Much like the simplicial distances, it is recommended to use a lower value of the pa-

rameter k to avoid instability and to achieve practically good results. Through numerical

examples, the minimal-variance distances are shown to be more efficient than the simpli-

cial distances at reducing variance (and therefore behaving similarly to the Mahalanobis

distance). Further numerical examples show that the minimal-variance distances perform

well when applied to a variety of applications compared to the Euclidean, Mahalanobis

and simplicial distances. The minimal-variance distances are shown to be a good alterna-

tive to the Mahalanobis distance, with the key advantage of being well-defined when the

data considered is degenerate.

Chapter 5: Minimal-variance whitening Minimal-variance whitening was first intro-

duced in [84]. The method was inspired by the results of the minimal-variance distances,

and the desire to use Mahalanobis whitening in the case of degenerate data, which is not

possible due to the non-existence of the inverse covariance matrix. A (k−1)-degree matrix

polynomial Ak is constructed in Σ, with the coefficients found such that the total variation

of the data transformed by this matrix Ak would be minimized. A constraint is imposed to

ensure Ak behaves similarly to the inverse square root of the covariance matrix Σ, where it

exists. The coefficients of the minimal-variance whitening polynomial are produced using

a Lagrangian minimization method.

There are two (main) parameters for the minimal-variance whitening matrix Ak. The pa-

rameter α controls the behaviour of the constraint imposed, and it is shown that α = 1/2 is

the best choice for this parameter. The parameter k specifies the degree of the polynomial

to be calculated. As k increases, so does the potential for more accurate results. How-

ever, as with many polynomial methods, the opportunity for instability also rises with k,

meaning lower choices of k are recommended.
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An iterative method is introduced, which can vastly improve the results and stability of

minimal-variance whitening. Using a low value of k (often k = 2) the minimal-variance

whitening method is applied repeatedly, until convergence or a stopping criterion is reached.

Empirical results show this method is highly successful, and can improve on the results

produced by the Mahalanobis whitening method with the Moore-Penrose inverse, partic-

ularly for datasets with d > N.

The minimal-variance whitening method is highly flexible. The constraint can be mod-

ified, the polynomial can take a different form, and a varying number of iterations with

different values of k can be applied. This makes the method adaptable for different ap-

plications. Many applications of the minimal-variance whitening method other than data

whitening are given in Chapter 5, including singularity detection, rank estimation and im-

proved estimation of Σ−1. The minimal-variance whitening method is therefore a usable

and adaptive substitute for the inverse square root covariance matrix when working with

singular data.

6.2 Future research directions

The potential for future avenues of research related to the contributions of this thesis is

great. First and foremost, fully-tested software packages could be produced to allow for

easy implementations of the methods. All methods could also benefit from more precise

floating point computation to improve stablility with high values of k, but this is likely

to be unrealistic for widespread implementations of the methods. Further applications of

all methods can also be considered. For the two distance measures, more research could

be done considering the interaction of these new distance measures with various data

analysis methods, including density-based clustering, distance-based clustering, support

vector machines and more. Regarding minimal-variance whitening, there is a huge range

of applications to be experimented with, including approximate Bayesian computation,

neural networks and image recognition.

The rest of this section considers more specific research directions for each of the novel

methods presented in this thesis.
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Chapter 3: Simplicial distances The potential for computational speed improvement

in finding the simplicial distances is great. Implementations of this distance measure

could make use of parallel processing methods, particularly when computing the distance

directly through simplex volumes. The volumes of simplices could be computed asyn-

chronously, or the distances between points could be found using a synchronous process.

Furthermore, more research could be done on the distance measure with δ = 1 in high

dimensions, as the literature implies that ℓ1 distances are more effective than ℓ2 distances

in such cases.

Chapter 4: Minimal-variance distances One of the possible limitations of the minimal-

variance distances is the reliance on the sample covariance matrix, particularly for HDLSS

data. A potential avenue of future research is therefore the application of minimal-

variance distances using an alternative estimator to the covariance matrix. However, as

touched upon in Section 2.5, one must be mindful of the assumptions imposed on the data

by many covariance estimators.

Chapter 5: Minimal-variance whitening It is evident that using a different polynomial

form could provide improvements in performance. Polynomial B presented in Section 5.6

appears to be stable and have good performance, so further research into this particular

polynomial is suggested. Much like the minimal-variance distances, the minimal-variance

whitening method could also be considered with estimators other than the sample co-

variance matrix. Furthermore, it has been shown that the minimal-variance whitening

matrix can be squared to approximate Σ−1 well. As such, more comparisons to the Ma-

halanobis distance and the minimal-variance distances could be performed, particularly

using the polynomial B from Section 5.6 and the iterative minimal-variance whitening

method.
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Appendix A

Moments and Distributions of

Distances

A.1 Moments of quadratic forms

From Lemma 6.1 of [162], let y be a random vector with mean 0 and covariance matrix

Σ, and let A be a symmetric matrix. The expectation of the quadratic form y⊤Ay is given

by

E
(
y⊤Ay

)
= trace(AΣ).

If y is normally distributed with sample mean 0 and sample covariance matrix Σ, then the

variance of the quadratic form is given by

Var
(
y⊤Ay

)
= 2trace

(
[AΣ]2

)
.

If the above conditions hold, the skewness and kurtosis of the quadratic form can also be

defined respectively as:

Skew
(
y⊤Ay

)
= 2
√

2trace
(
[AΣ]3

) {
trace

(
[AΣ]2

)}−3/2
,

Kurt
(
y⊤Ay

)
= 12trace

(
[AΣ]4

) {
trace

(
[AΣ]2

)}−2
.

The distances considered in this thesis are generalized squared distances of the form

ρ2
A(x,X) = (x−µ)⊤A(x−µ),
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where x is assumed to be normally distributed with sample mean µ and sample covariance

matrix Σ. Therefore y is replaced by (x− µ), which is normally distributed with zero

mean. Throughout this thesis, the matrix A is often defined to be a weighted sum of the

covariance matrix Σ, so is a symmetric matrix by definition. Therefore, the distances

satisfy the conditions for the moments above to hold.

If the covariance matrix Σ is of full-rank, Corollary 3.2a.1 of [171] states that the moment

generating function (MGF) of the quadratic form ρ2
A(x,X) (where (x−µ) ∼ N(0,Σ)) is

given by

Mρ2
A(x,X)(t) = det (I−2tAΣ)−1/2 ,

where I is the d×d covariance matrix and d is the dimensionality of the dataset.

If the covariance matrix is singular with rank r < d, the MGF needs to be adapted. Con-

sider the rank decomposition Σ= BB⊤, where B is a d×r matrix of rank r. Corollary 3.2a.2

of [171] states that, if B⊤AB is not singular, the MGF of the quadratic form ρ2
A(x,X) is

given by

Mρ2
A(x,X)(t) = det

(
I−2tB⊤AB

)−1/2
.

A.2 Moments of the simplicial distances with δ = 2

For a point x ∈ X, where X is normally distributed with sample mean µ and sample covari-

ance matrix Σ, consider ρ2
k,2(x,X) = (x−µ)⊤ S k

k (x−µ), i.e. the k-simplicial distance from

the sample mean µ to a point x with δ = 2. Replace the matrix A in the moment conditions

above with the matrix Sk/k to retrieve the following formulae:

E
(
ρ2

k,2(x,X)
)
=

1
k

trace(SkΣ)

Var
(
ρ2

k,2(x,X)
)
=

2
k2 trace

(
[SkΣ]2

)
Skew

(
ρ2

k,2(x,X)
)
= 2
√

2trace
(
[SkΣ]3

) {
trace

(
[SkΣ]2

)}−3/2

Kurt
(
ρ2

k,2(x,X)
)
= 12trace

(
[SkΣ]4

) {
trace

(
[SkΣ]2

)}−2
.

(A.1)

Note that for the third and fourth standardized moments, the scalar value 1/k cancels

out.
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A.3 Moments of the squared Euclidean distances

The formulae for the moments of quadratic forms given in Section A.1 is applied to the

squared Euclidean distance. The squared Euclidean distance is divided by trace(Σ) here,

to make it equivalent to the simplicial distance with δ = 2, k = 1. Let λi, i ∈ {1,2, . . . ,d} be

the eigenvalues of Σ, and let A = I
trace(Σ) . The moments of ρ2

1,2(x,X) are as followed:

E
(
ρ2

1,2(x,X)
)
= trace

(
Σ

trace(Σ)

)
=

trace(Σ)
trace(Σ)

= 1

Var
(
ρ2

1,2(x,X)
)
= 2trace

(
Σ2

trace(Σ)2

)
=

2trace(Σ2)
trace(Σ)2 =

2
∑d

i=1λ
2
i

(
∑d

i=1λi)2

Skew
(
ρ2

1,2(x,X)
)
= 2
√

2trace
(
Σ3

trace(Σ)3

){
trace

(
Σ2

trace(Σ)2

)}−3/2

=
2
√

2
∑d

i=1λ
3
i(∑d

i=1λ
2
i

)3/2

Kurt
(
ρ2

1,2(x,X)
)
= 12trace

(
Σ4

trace(Σ)4

){
trace

(
Σ2

trace(Σ)2

)}−2

=
12

∑d
i=1λ

4
i(∑d

i=1λ
2
i

)2

(A.2)

A.4 Moments of the squared Mahalanobis distances

For a full-rank d-dimensional dataset, choosing δ = 2 and k = d in the simplicial distances

produces values equal to the squared Mahalanobis distance divided by d. As such, this

section provides details of the moments of the squared Mahalanobis distance divided by d.

The distribution of the Mahalanobis distance is dependent on whether population statistics

are used, or sample estimates of the statistics are used.

Using true Σ and µ

Let X be a d-dimensional dataset with population mean µ and population covariance ma-

trix Σ. The Mahalanobis distances from all points x ∈ X to the population mean µ are

known to follow a chi-square distribution with d degrees of freedom [168]. When the

distances are divided by the scalar d for compatibility with the simplicial distances, the

distribution of the distances is:

ρ2
d,2(x,X) ∼

1
d
χ2.
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This produces the following moments:

E
(
ρ2

d,2(x,X)
)
=

d
d
= 1

Var
(
ρ2

d,2(x,X)
)
=

2d
d
=

2
d

Skew
(
ρ2

d,2(x,X)
)
=

1
d

√
8
d
=

√
8
d3

Kurt
(
ρ2

d,2(x,X)
)
=

1
d

12
d
=

12
d2

Using sample Σ̃ and µ̃

Consider now the sample mean µ̃ and sample covariance matrix Σ̃ of the d-dimensional

dataset X with N observations. Note that the biased sample covariance matrix is used,

defined Σ̃ = 1
N
∑N

i=1(xi− µ̃)(xi− µ̃)⊤, as in (3.1). Define the squared Mahalanobis distance

with these sample parameters as d×ρ2
d,2(x,X), as the simplicial distance with k = d, δ = 2

is equal to the squared Mahalanobis distance divided by d. This distance follows a scaled

Beta distribution with parameters α = d/2, β = (N −d−1)/2 [88, 240]:

d
(N −1)

ρ2
d,2(x,X) ∼ Beta

(
d
2
,
N −d−1

2

)

If the squared Mahalanobis distance is divided by d for compatibility with the simpli-

cial distances, the following moments are produced using the sample mean and sample

covariance matrix:

E
(
ρ2

d,2(x,X)
)
=

N −1
d

α

α+β
=

N −1
d

d
2

1
d
2 +

N−d−1
2

= 1

Var
(
ρ2

d,2(x,X)
)
=

(N −1)2

d2
αβ

(α+β)2(α+β+1)
=

2(N −d−1)
d(N +1)

Skew
(
ρ2

d,2(x,X)
)
=

2(β−α)
√
α+β+1

(α+β+2)
√
αβ

=
2
√

2(N −2d−1)
√

N +1
(N +3)

√
d(N −d−1)

Kurt
(
ρ2

d,2(x,X)
)
=

6
[
(α−β)2(α+β+1)−αβ(α+β+2)

]
αβ(α+β+2)(α+β+3)

=
12

[
(N +1)(2d−N +1)2−d(N +3)(N −d−1)

]
d(N −d−1)(N +3)(N +5)
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A.5 Moments of the minimal-variance distances

The minimal-variance distances with parameter k are found using the quadratic form

ρ2
Ak

(x,X) = (x−µ)⊤Ak(x−µ), where Ak =
∑k−1

i=0 θiΣ
i. Following the equations given in

Section A.1, the expectation of the minimal-variance distances with parameter k is given

by

E
(
ρ2

Ak
(x,X)

)
=

k−1∑
i=0

θitrace
(
Σi+1

)
= θ⊤αS (1,k),

where the vectors θα and S(1,k) are as defined in Section 4.2. Let V be the Vandermonde

matrix defined by Equation (4.4). Then, by the formulae in Section A.1, as well as the

justification in Section 4.2,

Var
(
ρ2

Ak
(x,X)

)
=

k−1∑
i=0

k−1∑
j=0

θiθ jtrace
(
Σi+ j+1

)
= θ⊤αV⊤Vθα.

The skewness and kurtosis of the minimal-variance distances are respectively given as:

Skew
(
ρ2

Ak
(x,X)

)
=

2
√

2
∑k−1

i=0
∑k−1

j=0
∑k−1

l=0 θiθ jθktrace
(
Σi+ j+l+1

)
(∑k−1

i=0
∑k−1

j=0 θiθ jtrace
(
Σi+ j+1))3/2

=
2
√

2
∑k−1

i=0
∑k−1

j=0
∑k−1

l=0 θiθ jθktrace
(
Σi+ j+l+1

)
(
θ⊤αV⊤Vθα

)3/2 ,

Kurt
(
ρ2

Ak
(x,X)

)
=

12
∑k−1

i=0
∑k−1

j=0
∑k−1

l=0
∑k−1

m=0 θiθ jθlθmtrace
(
Σi+ j+l+m+1

)
(∑k−1

i=0
∑k−1

j=0 θiθ jtrace
(
Σi+ j+1))2

=
12

∑k−1
i=0

∑k−1
j=0

∑k−1
l=0

∑k−1
m=0 θiθ jθlθmtrace

(
Σi+ j+l+m+1

)
(
θ⊤αV⊤Vθα

)2 .
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Appendix B

Alternative Minimal-Variance

Whitening Polynomials

B.1 Minimal-variance whitening constraint with α= 1

In Section 5.2.2, the choice of α in the constraint θ⊤αS(α,k) = Sα−1/2 is discussed. Although

using α = 1 is beneficial in the sense that polynomials do not require adjustment in rank-

deficient cases (see Section 5.2.3), using α = 1 has some downfalls which prevent it from

being the default parameter choice. It is shown in Section 5.2.2 that a high value of k

is needed to achieve good results from the polynomial with α = 1. When k is not high,

the coefficient vector will often be of the form θ1 =
(S 1/2

S 1
,0, . . . ,0

)⊤
, which makes the

polynomial equal to a scaled version of the identity matrix.

As an example, consider the minimal-variance whitening polynomial with α= 1 and k = 2.

Using these parameters, the equation for the coefficient vector θα is

θ1 =
S1/2

S⊤(1,2)M
−1
(2)S(1,2)

M−1
(2)S(1,2). (B.1)
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Considering only M−1
(2)S(1,2):

M−1
(2)S(1,2) =

1
S 1S 3−S 2

2

 S 3 −S 2

−S 2 S 1


S 1

S 2


=

1
S 1S 3−S 2

2

 S 1S 3−S 2
2

−S 1S 2+S 1S 2


=

10


The denominator of the fraction in Equation (B.1) is then

S⊤(1,2)M
−1
(2)S(1,2) =

(
S 1 S 2

)10
 = S 1,

which makes the fraction in Equation (B.1) equal S1/2/S 1. The coefficient vector for the

minimal-variance whitening polynomial is therefore

θ1 =

(
S1/2/S 1 0

)⊤
,

producing the matrix A2 =
S1/2
S 1

I. It can be shown using the same method that this holds

for other low values of k too.

B.2 Alternative minimal-variance polynomial methods

In Section 5.6, three alternative polynomials are derived for use in the construction of

minimal-variance whitening. The coefficient vectors of these alternative polynomials are

given in Table 5.17, along with the different definitions needed for the matrix M(k) in each

polynomial method. Here, the derivations of these coefficient vectors are given. For all of

these polynomials, the constraint (5.2) is used with α = 1/2.

Polynomial Ak =
∑k−1

i=0 θiΣ
i

This is the original polynomial used throughout the minimal-variance whitening methods

of this thesis. The details of this method are given in Theorem 4 in Section 5.2.1, but here

the steps are broken down further.
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Begin by considering k = 2. Consider the function to be minimize:

trace
(
D(XA2)

)
= trace

(
A⊤2 Σ

1/2A2
)

= trace

 1∑
i=0

θiΣ
iΣ1/2

1∑
j=0

θ jΣ
j


= trace

(
θ2

0Σ+2θ0θ1Σ
2+ θ2

1Σ
3
)

= θ2
0S 1+2θ0θ1S 2+ θ

2
1S 3

=

(
θ0 θ1

)S 1 S 2

S 2 S 3


θ0

θ1


= θT

1/2M(2)θ1/2,

where θ⊤1/2 = (θ0, θ1) and M(2) =

S 1 S 2

S 2 S 3

. For general values of k in the polynomial Ak,

the coefficient vector is θ⊤1/2 = (θ0, θ1, . . . , θk−1) and

M(k) =



S 1 S 2 · · · S k

S 2 S 3 · · · S k+1
...

...
. . .

...

S k S k+1 · · · S 2k−1


.

The constraint with α = 1/2 is trace
(
AkΣ

1/2
)
= trace

(
Σ0

)
. The left side of this constraint

can be rewritten as follows:

trace
(
AkΣ

1/2
)
= trace

k−1∑
i=0

θiΣ
iΣ1/2


=

k−1∑
i=0

θiS i+1/2

= (θ0, θ1, . . . , θk−1)
(
S 1/2, S 3/2, . . . , S 1/2+k−1

)⊤
= θ⊤1/2S(

1
2 ,k,1

),
recalling from (5.18) that S(i,k,γ) =

(
S i, S i+γ, S i+2γ, . . . , S i+k−γ

)
.

Thus, a value of θ1/2 that minimizes θT
1/2M(k)θ1/2 while the constraint θ⊤1/2S (

1
2 ,k,1

) = S 0

holds is sought after. Theorem 4 details how to find this value of θα using the Lagrange

function for general values of α.
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Polynomial Bk =
∑k−1

i=0 θiΣ
i/2

This polynomial takes advantage of the square root of the covariance matrix, given that

the inverse of the square root is the matrix being approximated. To begin, consider

k = 2.

trace
(
D(XB2)

)
= trace

(
B⊤2 Σ

1/2B2
)

= trace

 1∑
i=0

θiΣ
i/2Σ1/2

1∑
j=0

θ jΣ
j/2


= trace

(
θ2

0Σ+2θ0θ1Σ
3/2+ θ2

1Σ
2
)

= θ2
0S 1+2θ0θ1S 3/2+ θ

2
1S 2

=

(
θ0 θ1

) S 1 S 3/2

S 3/2 S 2


θ0

θ1


= θ⊤1/2M(2)θ1/2,

where θ⊤1/2 = (θ0, θ1) and M(2) =

 S 1 S 3/2

S 3/2 S 2

. For general k in polynomial Bk, the coef-

ficient vector is θ⊤1/2 = (θ0, θ1, . . . , θk−1) and

M(k) =



S 1 S 3/2 · · · S (k+1)/2

S 3/2 S 2 · · · S (k+2)/2
...

...
. . .

...

S (k+1)/2 S (k+2)/2 · · · S k


.

The left side of the constraint trace
(
BkΣ

1/2
)
= trace

(
Σ0

)
can be written as:

trace
(
BkΣ

1/2
)
= trace

k−1∑
i=0

θiΣ
i/2Σ1/2


=

k−1∑
i=0

θiS (i+1)/2

= (θ0, θ1, . . . , θk−1)
(
S 1/2, S 1, . . . , S k/2

)⊤
= θ⊤1/2S ( 1

2 ,
k
2 ,

1
2 ).

The optimal value of θ1/2 is therefore the one that minimizes θ⊤1/2M(k)θ1/2, while the

constraint θ⊤1/2S ( 1
2 ,

k
2 ,

1
2 ) = S0 holds. The same steps as those used for polynomial A in

Theorem 4 (using the Lagrangian) are followed to find the values of the coefficient vector

θ1/2, given in Table 5.17.
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Polynomial Ck =
∑k−1

i=1 θiΣ
i

This polynomial aims to be a non-regularized version of polynomial Ak. Whereas the pre-

vious polynomials have k coefficients, this polynomial has k−1 thanks to the summation

index starting at 1. Therefore, the empirical calculation using k = 3 is considered for this

polynomial.

trace
(
D(XC3)

)
= trace

(
C⊤3 Σ

1/2C3
)

= trace

 2∑
i=1

θiΣ
iΣ1/2

2∑
j=1

θ jΣ
j


= trace

(
θ2

1Σ
3+2θ1θ2Σ

4+ θ2
2Σ

5
)

= θ2
1S 3+2θ1θ2S 4+ θ

2
2S 5

=

(
θ1 θ2

)S 3 S 4

S 4 S 5


θ1

θ2


= θ⊤1/2M(3)θ1/2,

where θ⊤1/2 = (θ1, θ2) and M(3) =

S 3 S 4

S 4 S 5

. For general k in polynomial Ck, the coefficient

vector is θ⊤1/2 = (θ1, θ2, . . . , θk−1) and

M(k) =



S 3 S 4 · · · S k+1

S 4 S 5 · · · S k+2
...

...
. . .

...

S k+1 S k+2 · · · S 2k−1


.

The left side of the constraint trace
(
CkΣ

1/2
)
= trace

(
Σ0

)
can be written as:

trace
(
CkΣ

1/2
)
= trace

k−1∑
i=1

θiΣ
iΣ1/2


=

k−1∑
i=1

θiS i+1/2

= (θ1, θ2, . . . , θk−1)⊤
(
S 3/2, S 5/2, . . . , S (k−1)/2

)
= θ⊤1/2S (

3
2 ,k−1,1

).
Then following the steps of Theorem 4 finds the coefficient vector θ which minimizes

θ⊤1/2M(k)θ1/2, while θ⊤1/2S ( 3
2 ,k−1,1) = S0 holds. The formula of the coefficient vector θ is

given in Table 5.17.
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Polynomial Dk =
∑k−1

i=1 θiΣ
i/2

This is the non-regularized polynomial that makes use of the square root of the covariance

matrix. Like the previous polynomial, Dk requires k− 1 coefficients, so k = 3 is used in

the following example.

trace
(
D(XD3)

)
= trace

(
D⊤3 Σ

1/2D3
)

= trace

 2∑
i=1

θiΣ
i/2Σ1/2

2∑
j=1

θ jΣ
j/2


= trace

(
θ2

1Σ
2+2θ1θ2Σ

5/2+ θ2
2Σ

3
)

= θ2
1S 2+2θ1θ2S 5/2+ θ

2
2S 3

=

(
θ1 θ2

) S 2 S 5/2

S 5/2 S 3


θ1

θ2


= θ1/2M(3)θ1/2,

where θ⊤1/2 = (θ0, θ1) and M(3) =

 S 2 S 5/2

S 5/2 S 3

. For general k in polynomial Dk, the coef-

ficient vector is θ⊤1/2 = (θ1, θ2, . . . , θk−1) and

M(k) =



S 2 S 5/2 · · · S (k+2)/2

S 5/2 S 3 · · · S (k+3)/2
...

...
. . .

...

S (k+2)/2 S (k+3)/2 · · · S k


.

The left side of the constraint trace
(
DkΣ

1/2
)
= trace

(
Σ0

)
can be written as:

trace
(
DkΣ

1/2
)
= trace

k−1∑
i=1

θiΣ
i/2Σ1/2


=

k−1∑
i=1

θiS(i+1)/2

= (θ1, θ2, . . . , θk−1)⊤
(
S 1, S 3/2, . . . , S k/2

)
= θ⊤1/2S (

1, k−1
2 , 12

).
As with the previous polynomials, follow the method using in Theorem 4 to compute the

value of the vector θ1/2 which minimizes θ⊤1/2M(k)θ1/2 while trace
(
DkΣ

1/2
)
= trace

(
Σ0

)
holds.



Appendix C

Details of Datasets

C.1 Rotating a matrix

When producing synthetic datasets, it is often useful to rotate the covariance matrix before

using it to create a multivariate normal distribution, to ensure there are correlations in the

data as desired. A rotation matrix is defined to be a square orthonormal matrix with

determinant equal to ±1 [77]. To find such a matrix, a random matrix of size d × d is

generated, and the QR decomposition of this matrix is found. The matrix to be rotated is

then pre- and post-multiplied by the rotation matrix, as seen in Snippet C.1.

1 import numpy as np

2 from scipy.linalg import qr

3

4 def rotation_matrix(d):

5 """Produce a rotation matrix of size d by d, using the QR

decomposition"""

6 M = np.random.rand(d, d)

7 Q, _ = qr(M)

8 return Q

9

10 #let unrotated_matrix be a pre-defined d by d matrix to be

rotated

11 d = unrotated_matrix.shape[0]

12 Q = rotation_matrix(d)

13 rotated_matrix = Q.T @ unrotated_matrix @ Q

Snippet C.1: Producing a rotation matrix and using it to rotate a matrix.
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C.2 Datasets used in Chapter 4

The datasets used in Section 4.5.1 and Section 4.5.2 are detailed in Table C.1 and Ta-

ble C.2, respectively.

Dataset Original eigenvalues Normalized eigenvalues

Iris 4.2, 0.24, 0.08, 0.02 0.0431 0.0012 0.0004 0.0001

Wine 99201.8, 172.5, 9.4, 5.0, 1.2, 0.84, 0.28, 0.15, 0.11,

0.07, 0.04, 0.02, 0.008

3.25e-03, 4.47e-05, 1.51e-05, 5.36e-06, 4.24e-06,

3.06e-06, 2.10e-06, 3.98e-07, 2.96e-07, 2.16e-07,

1.05e-07, 7.55e-08, 2.87e-08

Image Seg. 11393.8, 9183.6, 5479.5, 2300.1, 217.2, 161.7, 55.7,

14.4, 3.6, 1.2, 0.2, 0.02, 0.001, 0.001, 0, 0, 0, 0, 0

0.135, 0.0869, 0.0178, 0.00683, 0.0034, 0.00155,

0.00146, 0.000351, 0.000105, 6.21e-05, 2.97e-05,

3.78e-06, 5.03e-07, 2.37e-08, 0, 0, 0, 0, 0

Digits 179.0, 163.7, 141.8, 101.1, 69.5, 59.1, 51.9, 44.0,

40.3, 37.0, 28.5, 27.3, 21.9, 21.3, 17.6, 16.9, 15.9,

15.0, 12.2, 10.9, 10.7, 9.6, 9.2, 8.7, 8.4, 7.2, 6.9,

6.2, 5.9, 5.2, 4.5, 4.2, 4.0, 3.9, 3.7, 3.5, 3.1, 2.7, 2.7,

2.5, 2.3, 1.9, 1.8, 1.7, 1.4, 1.3, 1.3, 0.93, 0.67, 0.49,

0.25, 0.09, 0.06, 0.06, 0.04, 0.02, 0.008, 0.004, 0.001,

0.001, 0, 0, 0, 0

0.0473, 0.044, 0.037, 0.0266, 0.0184, 0.0153, 0.0134,

0.0115, 0.0107, 0.00796, 0.00741, 0.00678, 0.0058,

0.00514, 0.00452, 0.00437, 0.00407, 0.00333,

0.0032, 0.00286, 0.00258, 0.00248, 0.00234,

0.00225, 0.00195, 0.00184, 0.00168, 0.00159,

0.00139, 0.00121, 0.00116, 0.0011, 0.00106,

0.000988, 0.000951, 0.000844, 0.000809, 0.000732,

0.00071, 0.000649, 0.000608, 0.000499, 0.00047,

0.000445, 0.000367, 0.00034, 0.000305, 0.000239,

0.000171, 0.000122, 6.35e-05, 2.59e-05, 1.6e-05,

1.49e-05, 9.08e-06, 3.55e-06, 1.99e-06, 1.01e-06,

3.15e-07, 1.63e-07, 1.04e-07, 0, 0, 0

Protein 2.59, 1.44, 0.604, 0.223, 0.136, 0.107, 0.074, 0.0661,

0.05, 0.0412, 0.0302, 0.0261, 0.023, 0.0187, 0.0136,

0.0108, 0.00858, 0.00818, 0.00549, 0.00427, 0.0041,

0.00386, 0.00327, 0.00301, 0.00259, 0.00247,

0.00173, 0.00159, 0.00131, 0.00114, 0.00105,

0.000993, 0.000869, 0.000761, 0.000726, 0.000682,

0.0006, 0.000527, 0.000468, 0.000419, 0.000397,

0.00029, 0.000283, 0.00025, 0.000239, 0.000209,

0.000202, 0.000182, 0.000168, 0.000159, 0.000143,

0.000133, 0.000127, 0.000118, 0.000109, 0.000106,

9.27e-05, 8.78e-05, 8.6e-05, 7.72e-05, 7.42e-05,

6.57e-05, 6.37e-05, 5.81e-05, 5.73e-05, 5.41e-05,

5.11e-05, 4.64e-05, 4.22e-05, 3.92e-05, 3.56e-05,

3.35e-05, 2.97e-05, 2.59e-05, 2.15e-05, 1.74e-05, 0

0.0169, 0.00896, 0.00488, 0.00269, 0.00149,

0.00124, 0.00084, 0.00069, 0.000541, 0.000514,

0.00032, 0.000285, 0.000232, 0.000171, 0.000142,

0.000116, 0.00011, 9.47e-05, 6.49e-05, 6.17e-05,

5.42e-05, 4.89e-05, 4.67e-05, 3.56e-05, 3.26e-05,

2.78e-05, 2.02e-05, 1.79e-05, 1.65e-05, 1.37e-05,

1.32e-05, 1.25e-05, 1.1e-05, 1.08e-05, 9.03e-06,

8.59e-06, 7.64e-06, 7.29e-06, 6.03e-06, 5.6e-06,

5.09e-06, 4.12e-06, 3.55e-06, 3.47e-06, 3.2e-06,

2.85e-06, 2.56e-06, 2.37e-06, 2.2e-06, 2.05e-06,

1.91e-06, 1.82e-06, 1.63e-06, 1.57e-06, 1.45e-06,

1.41e-06, 1.25e-06, 1.19e-06, 1.13e-06, 1.06e-06,

9.65e-07, 9.4e-07, 8.73e-07, 7.73e-07, 7.34e-07,

7.22e-07, 6.84e-07, 6.21e-07, 5.48e-07, 5.23e-07,

4.97e-07, 4.47e-07, 3.9e-07, 3.48e-07, 2.85e-07,

2.4e-07, 0

Table C.1: Eigenvalues of the datasets given in Table 4.11, used in the K-Means clustering

examples in Section 4.5.1. Eigenvalues of the raw and normalized datasets are given.
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Dataset d N #outliers (%)

Lympho 18 148 6 (4.1%)

WBC 30 278 21 (5.6%)

Glass 9 214 9 (4.2%)

Vowels 12 1456 50 (3.4%)

Cardio 21 1831 176 (9.6%)

Thyroid 6 3772 93 (2.5%)

Musk 166 3062 97 (3.2%)

Satimage-2 36 5803 71 (1.2%)

Letter 32 1600 100 (6.25%)

Speech 400 3686 61 (1.65%)

Pima 8 768 268 (35%)

Satellite 36 6435 2036 (32%)

Shuttle 9 49097 3511 (7%)

BreastW 9 683 239 (35%)

Arrhythmia 274 452 66 (15%)

Ionosphere 33 351 126 (36%)

MNIST 100 7603 700 (9.2%)

Optdigits 64 5216 150 (3%)

ForestCover 10 286048 2747 (0.9%)

Mammography 6 11183 260 (2.32%)

Annthyroid 6 7200 534 (7.42%)

Pendigits 16 6870 156 (2.27%)

Wine 13 129 10 (7.7%)

Table C.2: Details of the datasets used in the outlier labelling example in Section 4.5.2,

given in Table 4.15.
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C.3 Datasets used in Chapter 5

Datasets used in Section 5.2.2

The purpose of the middle set of eigenvalues in each dataset is to create a slow ta-

per towards the zero eigenvalue(s). The eigenvalues used to generate the datasets in

Section 5.2.2 (specifically, Figure 5.2 and Figure 5.3) are given below, in Python nota-

tion. The data is formed using a multivariate Gaussian distribution (the Python function

numpy.random.multivariate_normal), with zero mean and 5× d observations. The

covariance matrices used to generate the data have the following values on the diagonal,

and all other entries zero.

d Eigenvalues

10 [5, 4, 3, 2, 1] + [numpy.random.rand() ** i for i in range(4)]

+ [0]

50 [5, 4, 3, 2, 1] + [numpy.random.rand() ** i for i in range(30)]

+ [0] * 15

150 [5, 4, 3, 2, 1] + [numpy.random.rand() ** (i/2) for i in

range(100)] + [0] * 45

Table C.3: Eigenvalues used to generate the three datasets used in examples in Sec-

tion 5.2.2. The eigenvalues are given in Python notation.

Datasets used in Section 5.2.3

The datasets used in Figure 5.4 are the same as those given in Table C.3, for d = 50 and

d = 150.

The datasets used in Table 5.1 were generated using the following Python code:

true_sigma = numpy.diag([numpy.random.rand() for _ in range(R)] +

[0] * (d - R))

X = numpy.random.multivariate_normal(np.zeros(d), true_sigma, N).T

The empirical covariance matrix can then be found using the numpy.cov function.
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Datasets used in Section 5.3.1, d < N

The histograms in Figure C.2 give the distributions of the eigenvalues of the datasets with

d < N used in Section 5.3.1. Summary information about the datasets is given in Table 5.2.

(a) D1* (b) D2 (c) D3 (d) D4

(e) Digits* (f) Musk* (g) HAR (h) MNIST*

Figure C.2: Eigenvalues of the datasets used in Section 5.3.1 with d < N. Datasets marked

with * in the caption have been rescaled such that each variable has zero mean and unit

variance, and the eigenvalues are taken after this rescaling.

Computation time of examples in Section 5.3.1, d < N

Table C.4 gives the average time taken to calculate the minimal-variance polynomial (in

seconds) over 100 runs, for each dataset used in Section 5.3.1 for data with d < N, for

each different value of k.

Dataset k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

D1 0.04 0.04 0.05 0.04 0.04 0.06 0.04 0.05

D2 0.25 0.23 0.23 0.21 0.20 0.23 0.26 0.27

D3 1.35 1.43 1.72 2.08 1.98 2.00 2.59 3.11

D4 4.16 4.73 5.91 6.62 8.47 9.77 12.02 14.36

Digits 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Musk 0.21 0.22 0.22 0.23 0.25 0.26 0.29 0.31

HAR 1.98 2.15 2.34 2.62 3.81 3.54 3.83 4.42

MNIST 6.24 6.55 7.24 8.20 10.11 12.29 12.71 14.35

Table C.4: Time taken to calculate Ak in seconds for each dataset in Section 5.3.1 with

d < N (average over 100 runs).
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Datasets used in Section 5.3.1, d > N

The histograms in Figure C.3 give the distributions of the eigenvalues of the datasets with

d > N used in Section 5.3.1. Summary information about the datasets is given in Table 5.5.

(a) E1 (b) E2
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Figure C.3: Eigenvalues of the datasets used in Section 5.3.1 with d > N. Datasets marked

with * in the caption have been rescaled such that each variable has zero mean and unit

variance, and the eigenvalues are taken after this rescaling.

Datasets used in Section 5.3.2

In Section 5.3.2, different whitening methods are compared with the minimal-variance

polynomial whitening method by applying them to the Iris dataset and the Wisconsin

breast cancer dataset (the latter of which has been scaled to improve performance). The

eigenvalues of these datasets are given below:

Eigenvalues of Iris: [4.2282, 0.2427, 0.0782, 0.0238]

Eigenvalues of Wisconsin Breast Cancer: [9.8005, 8.2868, 3.3664, 2.2588, 1.5496, 1.4151,

1.1688, 0.9771, 0.5900, 0.5073, 0.4427, 0.3733, 0.3303, 0.2486, 0.2024, 0.1211, 0.1064,

0.0798, 0.0737, 0.0519, 0.0452, 0.0369, 0.0302, 0.0250, 0.0226, 0.0186, 0.0144, 0.0125,

0.0058, 0.0026, 0.0010, 0.0004]
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Producing correlated degenerate data in Section 5.6

In Snippet C.4, a method of finding a randomly generated degenerate and correlated co-

variance matrix with d = 50 is given. The last 20 dimensions are gradually multiplied

by smaller values to force a gradual taper towards degeneracy, making the rank of the

covariance matrix unclear. This method is used to find dataset 2 in Section 5.6.

1 import numpy as np

2

3 np.random.seed(0)

4 d = 50

5 sigma = np.random.rand(d, d)

6 for i in range(20):

7 sigma[-(20-i):] *= 0.4**i

8 sigma[:, -(20-i):] *= 0.4**i

9

10 sigma = sigma @ sigma.T

Snippet C.4: Code to produce the correlated degenerate covariance matrix used to gener-

ate dataset 2 in Section 5.6.
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Appendix D

Clustering Metrics

D.1 Adjusted rand score

Let LT be the vector of true labels, and let LP be the labels assigned by the K-Means

clustering. Define a as the number of pairs of points in the same set in LT and in the same

set in LP, i.e. the number of points whose labels are the same in LT and LP. Define b as

the number of pairs of points in different sets in LT and in different sets in LP, i.e. the

number of points whose labels are different in LT and LP. The unadjusted rand score is

given by

R =
a+b
ν

,

where ν is the total number of possible pairs in the dataset, without ordering. The unad-

justed rand score does not account for the possibility that random label assignments can

perform well, so the expected rand score E[R] of random labelings is removed by defining

the adjusted rand score as

AR =
R−E[R]

max(R)−E[R]
,

where the distribution of R is taken to be hypergeometric [113]. The adjusted rand score

takes values in [-1, 1], where 1 indicates a perfect matching between LT and LP.

D.2 Purity score

The purity score is found as follows: let T = {t1, t2, . . . , tm} be the set of ‘true’ clusters

in the data, and let P = {p1, p2, . . . , pK} be the set of predicted clusters. The purity score

211



212 APPENDIX D. CLUSTERING METRICS

measures the extent to which a predicted cluster pi only contains points from a single

‘true’ cluster t j:

P(T,P) =
1
N

K∑
i=1

max
j
|pi∩ t j|,

where N is the total number of points. That is, for each predicted cluster pi, count the

highest number of points from a single true cluster t j predicted to be in pi. These counts

are summed and divided by the total number of observations. The purity score takes

values in [0, 1], with 1 being a perfect clustering.

D.3 Silhouette score

The silhouette score is used to assess how well separated a set of clusters are. Let there

be K clusters, denoted C1,C2, . . . ,CK .

For a point i ∈CI , let a(i) be the mean distance between i and all other points in the same

cluster:

a(i) =
1

|CI −1|

∑
j∈CI , i, j

d(i, j)

where d is the chosen distance measure (often chosen to be the Euclidean distance). The

value a(i) is a measure of how similar the point i is to all other points in its cluster (a small

value indicates the point fits into the cluster well).

The mean dissimilarity of a point i to another cluster CJ , J , I, is defined as the mean

distance from all points in i to all points in CJ . Define

b(i) =min
J,I

∑
j∈CJ

d(i, j)

to be the smallest mean distance from i to all points in any cluster other than CJ .

The silhouette value of one point i is then defined to be

si =
b(i)−a(i)

max(a(i),b(i))
.

The silhouette score of the total clustering is then the mean of all silhouette values si. The

silhouette score takes values between [−1,1], where a value of 1 indicates all values have

been assigned to a cluster well. Values near 0 indicate overlapping clusters, and negative

values indicate more points have been assigned to the incorrect cluster than the correct

cluster.
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[173] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection

with the lasso. The Annals of Statistics, 34(3):1436–1462, 2006.

[174] I. Melnykov and V. Melnykov. On K-means algorithm with the use of Mahalanobis

distances. Statistics & Probability Letters, 84:88 – 95, 2014.

[175] E. M. Mirkes, J. Allohibi, and A. Gorban. Fractional norms and quasinorms do not

help to overcome the curse of dimensionality. Entropy, 22(10):1105, 2020.

[176] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the

American Mathematical Society, 26:394–395, 1920.

[177] M. Mudrova and A. Procházka. Principal component analysis in image processing.

In Proceedings of the MATLAB Technical Computing Conference, Prague, 2005.

[178] N. Najat and A. M. Abdulazeez. Gene clustering with partition around mediods al-

gorithm based on weighted and normalized Mahalanobis distance. In 2017 Interna-

tional Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS),

pages 140–145. IEEE, 2017.

[179] H. Oja. Descriptive statistics for multivariate distributions. Statistics & Probability

Letters, 1(6):327–332, 1983.

[180] Y. Pan, Z. Pan, Y. Wang, and W. Wang. A new fast search algorithm for ex-

act k-nearest neighbors based on optimal triangle-inequality-based check strategy.

Knowledge-Based Systems, 189:105088, 2020.



229

[181] C. Park and H. Park. A fast dimension reduction algorithm with applications on

face recognition and text classification. Retrieved from the University of Minnesota

Digital Conservancy, 2003.

[182] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:

a review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, 2004.

[183] B. K. Patra. Using the triangle inequality to accelerate density based outlier detec-

tion method. Procedia Technology, 6:469–474, 2012.

[184] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked co-

variance model. Statistica Sinica, pages 1617–1642, 2007.

[185] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine learning in

Python. The Journal of Machine Learning Research, 12:2825–2830, 2011.

[186] R. Penrose. A generalized inverse for matrices. In Mathematical Proceedings

of the Cambridge Philosophical Society, volume 51, pages 406–413. Cambridge

University Press, 1955.

[187] V. Perlibakas. Distance measures for PCA-based face recognition. Pattern Recog-

nition Letters, 25(6):711–724, 2004.

[188] M. D. Petković and P. S. Stanimirović. Iterative method for computing the Moore–

Penrose inverse based on Penrose equations. Journal of Computational and Ap-

plied Mathematics, 235(6):1604–1613, 2011.

[189] M. Pourahmadi. High-dimensional covariance estimation: with high-dimensional

data, volume 882. John Wiley & Sons, 2013.

[190] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimen-

sionality, volume 703. John Wiley & Sons, 2007.

[191] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

recipes 3rd edition: The art of scientific computing. Cambridge University Press,

2007.

[192] L. Pronzato, H. Wynn, and A. Zhigljavsky. Simplicial variances, potentials and

Mahalanobis distances. Journal of Multivariate Analysis, pages 276–289, 2018.



230 BIBLIOGRAPHY

[193] S. Prykhodko, N. Prykhodko, L. Makarova, and A. Pukhalevych. Application

of the squared Mahalanobis distance for detecting outliers in multivariate non-

Gaussian data. In 2018 14th International Conference on Advanced Trends in Ra-

dioelecrtronics, Telecommunications and Computer Engineering (TCSET), pages

962–965. IEEE, 2018.

[194] H. Qi and D. Sun. An augmented Lagrangian dual approach for the H-

weighted nearest correlation matrix problem. IMA Journal of Numerical Analysis,

31(2):491–511, 2011.

[195] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers

from large data sets. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, pages 427–438, 2000.

[196] S. Raudys and R. P. Duin. Expected classification error of the Fisher linear classifier

with pseudo-inverse covariance matrix. Pattern Recognition Letters, 19(5-6):385–

392, 1998.

[197] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional co-

variance estimation by minimizing ℓ1-penalized log-determinant divergence. Elec-

tronic Journal of Statistics, 5:935–980, 2011.

[198] S. Rayana. ODDS library, 2016. URL: http://odds.cs.stonybrook.edu.

[199] A. C. Rencher and G. B. Schaalje. Linear Models in Statistics (2nd ed.). Wiley-

Intersci., 2008.

[200] M. Roser and H. Ritchie. Technological change. Our World in Data, 2013. URL:

https://ourworldindata.org/technological-change.

[201] A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant

covariance estimation. Electronic Journal of Statistics, 2:494–515, 2008.

[202] A. J. Rothman, E. Levina, and J. Zhu. Generalized thresholding of large covari-

ance matrices. Journal of the American Statistical Association, 104(485):177–186,

2009.

[203] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of

http://odds.cs.stonybrook.edu
https://ourworldindata.org/technological-change


231

cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,

1987.

[204] S. Sarkar and A. K. Ghosh. On perfect clustering of high dimension, low sam-

ple size data. IEEE Transactions on Pattern Analysis and Machine Intelligence,

42(9):2257–2272, 2019.
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