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Abstract: Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have
come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize
DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA
topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance
developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a
spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically
blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved
residues on GyrB (and does not use the quinolone water–metal ion bridge to GyrA), suggesting it may
be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an
MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its
progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out
in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin,
is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria
in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial
drugs against other problematic Gram-negative bacteria.

Keywords: zoliflodacin; quinolones; DNA gyrase; topoisomerase IV; ESKAPE; antibiotic;
spiropyrimidinetrione; NBTI; gepotidacin; structure

1. Introduction

Zoliflodacin is an oral spiropyrimidinetrione antibiotic currently in a phase III clin-
ical trial for the treatment of gonorrhea, a sexually transmitted infection (STI) caused
by the Gram-negative bacteria Neisseria gonorrhoeae (N. gonorrhoeae) [1–4]. Zoliflodacin
(Figure 1a) was developed from QPT-1 (or PNU-286607), a compound discovered in Phar-
macia via whole-cell screening against Gram-negative (and Gram-positive) bacteria [5].
QPT-1 (Figure 1b), discovered for its antibacterial whole-cell activity, was found to inhibit
the bacterial type IIA topoisomerases, Escherichia coli (E. coli) DNA gyrase (IC50 9 µM) and
E. coli topo IV (IC50 30 µM) [5]. This method of discovery is reminiscent of the discovery of
quinolone and fluoroquinolone antibiotics, which were also initially discovered for whole-
cell activity and then found to be inhibitors of the bacterial type IIA topoisomerases [6].

Topoisomerases are essential enzymes needed to relieve topological problems when
the DNA double helix is unwound for both DNA replication and transcription [7]. Topoi-
somerases are divided into type I topoisomerases, which introduce single-stranded DNA
breaks to modify the DNA topology, and type II topoisomerases, which modify the topol-
ogy by introducing double-stranded DNA breaks [7–9]. Most bacteria possess two type
IIA topoisomerases, DNA gyrase and topo IV. While DNA gyrase can uniquely introduce
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negative supercoils into DNA, topo IV has good decatenase activity [9,10]. A mechanism
for topological changes introduced by DNA gyrase is shown in Figure 1.

The introduction of double-stranded breaks into DNA is potentially hazardous for the cell,
and the stabilization of DNA cleavage complexes by quinolones is often bactericidal [11,12].

Figure 1. Zoliflodacin, QPT-1, and Staphylococcus aureus (S. aureus) DNA gyrase DNA cleavage
complexes. (a) Chemical structure of zoliflodacin (oxygens shown in red, nitrogens in blue, fluorine
in green) and (b) chemical structure of QPT-1. (c) A schematic of the central eight base-pairs of
DNA, with two inhibitors (I) binding in the cleaved DNA and inhibiting DNA religation. Note that
DNA cleavage takes place between the −1 and +1 nucleotides on both the Watson and Crick strands.
(d) A schematic of the DNA cleavage complex with two zoliflodacins of S. aureus DNA gyrase and
DNA presented in this paper. (e) The S. aureus DNA gyraseCORE construct consists of residues B409
to B644 from GyrB, fused to A2 to A491 from GyrA. The small Greek key (GK) domain has been
deleted from GyrB [13]. (f) A simplified schematic of DNA gyrase, in which a G-DNA duplex (green)
is cleaved by the enzyme, and another DNA duplex (known as the T or transported DNA, red) is
moved through the enzyme. The Greek key domains are not involved in cleaving the gate (or G-)
DNA segment [10,13]. The C-terminal domains (CTD) are shown in pink (approximate positions as
in full-length E. coli structures [14]).

The proposal that Gram-negative bacteria evolved a second cell wall to protect them
from antibiotics produced by other micro-organisms [15] may partly explain the fail-
ure of new classes of antibiotics targeting Gram-negative bacteria to date in the 21st
century [16–18]. Perhaps for Gram-negative bacteria the hardest task is to get antibiotics
into the cells, and a whole-cell screening approach followed by the target identification
of proven targets is more likely to be successful [19,20]. Indeed, GlaxoSmithKline discov-
ered and developed the NBTI gepotidacin, another new class of DNA-gyrase-targeting
antibiotics currently in phase III clinical trials [21], from a hit compound active in a screen
for whole-cell antibacterial activity [13]. The chemical diversity of NBTIs such as gepoti-



Int. J. Mol. Sci. 2023, 24, 1634 3 of 17

dacin, which stabilize single-stranded DNA cleavage complexes with bacterial type IIA
topoisomerases, suggested that this class of compounds could not have a chemistry-based
name [13,22–27]. The name NBTI, although originally a pneumonic for novel bacterial
topoisomerase inhibitor [13], could also be taken to stand for non-DNA cleavage pocket
binding on the two-fold axis inhibitor (as this describes the binding mode of the chemically
diverse NBTIs [13,22–27]).

The occurrence of antimicrobial resistance in hospital-acquired ESKAPE pathogens
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) was a major cause for concern in 2009 [28].
New classes of antibiotics have now been developed for Gram-positive bacteria, such as
the tiacumicin Fidaxomicin for Clostridioides difficile [29]. However, Gram-negative bacteria
(the KAPE in ESKAPE) remain a major cause for concern. The popular quinolone and
fluoroquinolone antibacterial agents were discovered over sixty years ago from a whole-
cell screening approach against Gram-negative bacteria [6]. Since then, the field of chem-
istry has expanded the quinolone activity to include such agents as delafloxacin, approved
in 2017 for treating acute bacterial skin infections caused by the Gram-positive S. aureus.
Some thirteen out of thirty-eight new antibiotics introduced between 2000 and 2019 were
quinolones [16–18,30]. However, safety concerns about quinolone side effects have prompted
regulatory recommendations to limit the use of quinolones to patients who do not have other
treatment options in both Europe (https://www.ema.europa.eu/en/medicines/human/
referrals/quinolone-fluoroquinolone-containing-medicinal-products, accessed on 4 January
2023) and the USA (https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-
safety-communication-fda-advises-restricting-fluoroquinolone-antibiotic-use-certain, accessed
on 4 January 2023).

The determination of the specific DNA sequences cleaved by DNA gyrase or topo
IV [31,32] was important in determining the structures of quinolones in DNA cleavage
complexes. In particular, structural studies showed that quinolone antibiotics stabilize
double-stranded DNA cleavage complexes with the two bacterial topoisomerases, topo
IV [33] and DNA gyrase [34,35], by interacting with ParC or GyrA via a water–metal
ion bridge [12,33]. Although the original DNA sequences used in two papers describing
structures showing the water–metal ion bridge [33,35] were defined in 2005 [32] and were
initially used in structures with S. pneumoniae topo IV [36,37], they are asymmetric, and
in high enough resolution structures the DNA was clearly averaged around the two-fold
axis of the complex [35]. In this paper we used a two-fold symmetric 20-mer DNA duplex
to avoid such problems [34,38]. This 20-mer homoduplex DNA was previously used in
determining structures with the progenitor of zoliflodacin, QPT-1 [34].

Herein, we describe a 2.8 Å X-ray crystal structure of zoliflodacin in a DNA cleavage
complex with S. aureus DNA gyrase. The structure is compared with a structure with the
quinolone moxifloxacin, also in a DNA cleavage complex with S. aureus DNA gyrase. We
also show that zoliflodacin has reasonable activity against A. baumannii (MICs of 4 µg/mL;
the A in ESKAPE). In 2018, a World Health Organization (WHO) priority list [39] proposed
developing new drugs active against multidrug-resistant tuberculosis and Gram-negative
bacteria. While spiropyrimidinetriones related to zoliflodacin are being developed against
M. tuberculosis [40,41], the WHO critical priority, carbapenem-resistant A. baumannii [39],
still urgently requires the development of new antibiotics [42].

The DNA cleavage gate of bacterial type IIA topoisomerases, when complexed with
DNA and compounds, seems inherently flexible and usually gives low- or medium-low-
resolution data [13,14,37] (we define low (>3 Å), medium-low (2.5–2.99 Å), medium-high
(2.01–2.49 Å), and high (<2 Å) based on the confidence in determining the water struc-
tures around ligands and metal ions). Deleting the Greek key domain from a S. aureus
GyrBA fusion truncate allowed the resolution of a complex with GSK299423 and DNA
to be improved from 3.5Å to 2.1 Å [13], and this S. aureus DNA gyrase fusion truncate
(Figure 1e) construct (used in this paper) has given the only high-resolution structures of
DNA complexes of bacterial type IIA topoisomerases obtained to date [10].

https://www.ema.europa.eu/en/medicines/human/referrals/quinolone-fluoroquinolone-containing-medicinal-products
https://www.ema.europa.eu/en/medicines/human/referrals/quinolone-fluoroquinolone-containing-medicinal-products
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-advises-restricting-fluoroquinolone-antibiotic-use-certain
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-advises-restricting-fluoroquinolone-antibiotic-use-certain
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2. Results

2.1. A 2.8 Å Zoliflodacin DNA Cleavage Complex with S. aureus DNA Gyrase

Crystals of zoliflodacin in a complex with a 20-mer DNA homoduplex (20-447T) and
S. aureus DNA gyrase were grown by a microbatch crystallization method, and a 2.8 Å
dataset was collected on beamline I24 at Diamond Light Source (see Materials and Methods
for details). The data were phased using the 2.5 Å QPT-1 complex with the same 20-
447T DNA and S. aureus DNA gyrase in the same P61 space group (PDB code: 5CDM;
a = b = 93.9 Å, c = 412.5 Å) and then refined (see Materials and Methods for details and
Figure 2 below for electron density). The 20-447T DNA homoduplex contains 18 base-pairs
and a G-T mismatch at either end of the DNA.

Figure 2. Final Fo-Fc omit map (+3 sigma) for the two zoliflodacins: orthogonal (90◦) views. A
final Fo-Fc omit map was calculated by omitting the two zoliflodacins from the coordinates, which
was refined with refmac [43]. The initial omit maps calculated from 5cdm coordinates were of similar
quality but showed some additional density around the novel five-membered ring (top (a)). The
zoliflodacins are shown as sticks with orange carbon atoms; gyrA has cyan or grey carbons, gyrB
has magenta or grey carbons, and the DNA has green carbons (water molecules are not shown for
clarity). The pyrimidinetrione rings are clearly seen in the view in panel (b).
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The structure shows two zoliflodacins binding in the cleaved DNA, physically blocking
religation (Figure 3). The DNA has been cleaved by and is covalently attached to tyrosine
123A from the GyrA subunit (and to the symmetry related tyrosine 123A’, from the second
GyrA subunit in the complex). Catalytic metal ions (normally Mg2+ in bacteria) are required
for DNA cleavage, and in our structure we can see two Mn2+ ions occupying the ‘B-site’ in
the GyrB and GyrB’ subunits [10].

Figure 3. The 2.8 Å zoliflodacin crystal structure with S. aureus DNA gyrase. (a) View of the 2.8 Å
zoliflodacin crystal structure. The DNA (cartoon; green backbone and blue bases) has been cleaved
by S. aureus gyrase (shown as backbone trace with semi-transparent surface). Tyr 123 (and Tyr 123′)
have cleaved the DNA and are covalently attached. The compounds (Zoli: zoliflodacin) are shown as
solid spheres (carbons as orange, oxygens as red, nitrogens as blue). (b) An orthogonal (90◦) view of
the same complex. (c) An orthogonal (90◦) view looking down the two-fold axis of the complex. The
two ends of the DNA duplex adopt different conformations due to crystal packing. Figure produced
using ChimeraX [44,45].

2.2. Zoliflodacin Interacts with GyrB, Whereas Moxifloxacin Interacts with GyrA

Figure 4 compares the binding sites of compounds in our 2.8 Å zoliflodacin structure
with a 2.95 Å S. aureus DNA gyrase DNA cleavage complex with the widely used quinolone
antibiotic moxifloxacin (PDB code: 5CDQ [34]). Figure 4a shows the binding mode of
zoliflodacin with the pyrimidinetrione (or barbituric acid moiety) of the compound, making
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direct interactions with GyrB. In particular, the terminal oxygen of the pyrimidinetrione
makes a hydrogen bond with the main-chain NH of aspartic acid B437.

Figure 4. Equivalent views of zoliflodacin and moxifloxacin in S. aureus DNA gyrase DNA cleav-
age complexes. (a) A close-up view of a zoliflodacin (Zoli: orange carbons) binding site in the 2.8 Å
structure. The pyrimidinetrione moiety of zoliflodacin interacts directly and indirectly (via a water)
with Asp437 of GyrB (dotted green lines), in a similar manner to that described in the 2.5 Å QPT-1
structure. Y123′ has cleaved the DNA and formed a ‘phosphotyrosine’ type linkage with the cleaved
DNA. The DNA-backbone is shown with a fatter ‘stick’ representation, with the bases drawn in
thinner ‘line’ (base-pair H-bonds only shown for the +1, +4 base-pair). (b) In the 2.95 Å moxifloxacin
(Moxi: yellow carbons) structure, the quinolone-bound Mg2+ ion (green sphere) and coordinating
water molecules (red spheres) make hydrogen bonds (dotted red lines) to S84, E88, and the bases
either side of the DNA cleavage site (at the +1 and -1 positions; see panel d). (c,d) Orthogonal (90◦)
views of the compound binding sites in the zoliflodacin structure (c) and moxifloxacin structure (d).
(e) Superposition of (a,b). Figure produced using ChimeraX [44,45].

This contrasts with moxifloxacin, where the compound (Figure 4b,e) interacts with
S84A and E88A from the GyrA subunit via the now well-characterized water–metal ion
(Mg2+) bridge [12,33–35,46,47]. The lack of interactions with GyrA and the interactions with
GyrB account for the much of the activity of zoliflodacin against quinolone-resistant strains
of bacteria (e.g., Table 4 in [3]; target-mediated resistance is common in quinolone resistant
bacteria [11]). The interactions of the quinolones with the GyrA (or ParC) subunit via the
flexible water–metal ion bridge may account for some of the specificity of the quinolones
for DNA gyrase and topo IV (see sequence alignment in Figure 5) over the two human type
IIA topoisomerases, Top2α and Top2β.
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Figure 5. Sequence alignment highlighting residues contacting zoliflodacin, moxifloxacin, gepoti-
dacin, or etoposide. An alignment of the residues in the TOPRIM, Greek key, and WHD domains
of S. aureus GyrB/GyrA (SaGyrBA), M. tuberculosis GyrB/GyrA (TbGYRba), S. aureus ParE/ParC
(SaParEC), A. baumannii ParE/ParC (AbParEC), N. gonorrhoeae ParE/ParC (NgParEC), A. baumannii
GyrB/GyrA (AbGyrBA), N. gonorrhoeae GyrB/GyrA (NgGyrBA), E. coli GyrB/GyrA (EcGyrBA),
and human Top2B (HuTOP2B). Numbers in brackets (e.g., [180]) show numbers of residues not
included in the alignment; note the large insertion within the Greek key domain in Gram-negative
DNA gyrase sequences. The three N. gonorrhoeae GyrB residues whose mutations give low levels of
resistance are highlighted in red [48]. Amino acids are highlighted on sequences if they contact

(<3.8 Å) compounds in S. aureus DNA gyrase structures with compounds. Zoli. = contacts in the 2.8 Å
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zoliflodacin structure (pdb code: 8BP2). Moxi. = contacts from the 2.4 Å M. tuberculosis complex with
moxifloxacin (pdb code: 5bs8) or contacts from the 2.95 Å moxifloxacin complex (pdb code: 5cdq,
note for moxifloxacin, the Mg2+ ion and water molecules of the water–metal ion bridge are taken as
part of the compound; contacts in the 3.25 Å A. Baumannii topoIV moxifloxacin complex structure,
2XKK, are nearly identical to those shown). Gepo. = from the 2.37 Å gepotidacin with uncleaved
DNA (pdb code: 6qtp; note contacts in the 2.31 Å structure 6qtk and in the full-length E.coli cryoEM
gepotidacin structures, e.g., pdb code:6rks, are very similar). The contacts mapped onto the HuTOP2B
structure are from the 2.16 Å etoposide complex with human Top2β (pdb code: 3QX3; but are similar
in S. aureus crystal structures: 5cdp and 5cdn). The secondary structural elements in the 3.5 Å S. aureus
gyrase complex with DNA and GSK299423 (2xcr) are shown above the alignment; note deletion of the
Greek key domain gave a GSK299423 structure at 2.1 Å (2xcs). Note: * above the sequence alignment
indicates positions of catalytic residues (Glu B435, AspB508, Asp B510, Arg A122, and Tyr A123 in S.
aureus DNA gyrase). The quinolone-resistance-determining region (QRDR), defined as 426-447 in
E.coli GyrB 67-106 in E.coli GyrA, is underlined in italics on the EcGyrB/A sequences [11].

However, the residues on GyrB, which partly form the DNA gyrase–zoliflodacin
binding interactions, are conserved not only in the bacterial type IIA topoisomerases but
also in the human enzymes. As shown in the sequence alignment in Figure 5 and in
Figure 4a, zoliflodacin recognizes and interacts with the GD from the conserved EGDSA
motif and the RG from the PLRGK (or PLKGK in Gram-negative DNA gyrases). While
E435 at the start of the EGDSA motif is a catalytic residue, the other residues from the
EGDSA are not catalytic, neither are the PLRGK motif residues. In QPT-1, only the GD and
RG residues from GyrB contact the compound.

The specificity of spiropyrimidinetriones, such as zoliflodacin, towards bacterial type
IIA topoisomerases such as human topoisomerases was proposed to be because such
compounds can be squeezed out of the pocket when the DNA-gate closes in human
topoisomerases [34]. An alternative explanation could be because the DNA gate of DNA
gyrase acts like a pair of swing doors, closing automatically once the transport segment
has been pushed through [34]. This alternative explanation might account for the lower
activity seen against both human topo 2s (liabilities) and bacterial topo IVs, which tend to
only act on supercoiled DNA (DNA cross-overs).

Conformational flexibility in spiropyrimidinetrione ligands, such as QPT1 and zoliflo-
dacin, may be important in allowing ligands to maintain favorable interactions within the
binding sites as the DNA wriggles the protein [34,49,50]. In addition to the multiple tau-
tomeric forms that the pyrimidinetrione moiety can adopt (only one of which is chemically
called a ‘pyrimidinetrione’) and the conformational flexibility of the anilino-nitrogen [34],
methyl-oxazolidine-2-one may also be able to adopt more than one conformation. Multiple
high-resolution structures will be required to fully discern how the compound wriggles
(when its binding pocket changes shape) as the enzyme is moved around by its substrate
DNA [50]. However, from this initial 2.8 Å zoliflodacin structure, it is clear that the major
protein interactions made by zoliflodacin are clearly with the GD and the RG from the
highly conserved EGDSA and PLRGK motifs (Figures 4 and 5).

In the 2.1 Å crystal structure of the NBTI GSK299423 with the S. aureus gyraseCORE

and DNA (PDB code: 2XCS; [13]), a Y123F mutant was used so that the DNA could not
be cleaved. In this 2.1 Å GSK299423 structure, the +1:+4 base-pair (Figure 1c) occupies
a similar space to the inhibitors in the zoliflodacin and moxifloxacin structures. Some
reasons for the conservation of the EGDSA and PLRGK motifs (Figure 5) may be discerned
from this 2.1 Å structure. While the side-chain of E435 (the first residue of the EGDSA
motif) coordinates the catalytic metal (at the ‘A’ position, poised to cleave the DNA),
both the main-chain NH and side-chain hydroxyl of serine 438 are within the hydrogen-
bonding distance of the phosphate between nucleotides 1 and 2. The main-chain C = O
of Arg 458 and the main-chain NH of Lys 460 (from the PLRGK motif) accept and donate
hydrogen bonds to the -1 guanine base, helping to hold it firmly in place. NBTIs can
stabilize complexes with one strand cleaved or with no DNA cleavage [13,24,51]; however,
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experimental nucleotide preferences for NBTI cleavage have not yet, to the best of our
knowledge, been determined [52].

2.3. Target Mediated Resistance to Zoliflodacin in N. Gonorrhoeae

The binding of zoliflodacin to the conserved motifs on GyrB correlates well with
the low prevalence of target-mediated resistance; only one of some 12,493 N. gonorrhoeae
genomes from the PathogenWatch database has a predicted first-level resistance muta-
tion [53]. Assessing the probability of developing resistance is an important step in the
development of any new antibiotic. The development of zoliflodacin (AZD0914) for gon-
orrhea followed from a 2015 paper assessing the likelihood of developing resistance in
N. gonorrhoeae [48]. This paper showed that higher MIC resistance was associated with
target mutations in three amino acids in N. gonorrhoeae DNA gyrase, namely GyrB:D429N,
K450T, and S467N [48]. These mutations were identified via the in vitro selection of resis-
tance and can give a four-fold to sixteen-fold increase in the MIC of zoliflodacin [48,54].
Interestingly, these N. gonorrhoeae GyrB mutations correspond to D437, R458, and N475
in S. aureus DNA gyrase. The D429N mutation is associated with the slower growth of
bacteria [55]. All three regions are close to the compound (see Figure 4a). In the D437N
mutant (S. aureus DNA gyrase), the asparagine side chain may have its NH2 group point-
ing towards the compound (because if the sidechain was in the opposite orientation, the
hydrogens on the NH2 would clash with hydrogens on proline 56, i.e., the P in PLRGK).

Zoliflodacin has an extra methyl-oxazolidine-2-one ring, which QPT-1 does not possess
(Figure 1a,b), and this extra ring makes van der Waals contacts with residues N476 and
E477. While there is clear electron density for the both the additional fluorine and the extra
ring (which are not in the QPT-1 structure; Figure 6), the 2.8 Å electron density map is not
able to clearly define all water structures or totally unambiguously define the orientation of
the extra five-membered ring (see Figures 2 and 6). N475 is equivalent to the third mutated
residue in N. gonorrhoeae GyrB, Ser 467 [48]. The mutation of this residue, which is adjacent
to residues contacting the compound, presumably affects their conformations. A similar
effect is perhaps seen in the S. aureus ParC V67A, found in a strain of S. aureus resistant to
gepotidacin [56]. In high-resolution S. aureus DNA gyrase NBTI crystal structures, three
residues (A, G, and M) from the GyrA motif 68-ARIVGDVM-75 are within the van der
Waals distance of the compounds [13,22,24]. ParC V67A is the first V in the equivalent
S. aureus ParC sequence 64-AKTVGDVI-71, i.e., Val 67 is adjacent to an amino acid making
direct van der Waals contacts with the compounds.

Most bacteria (including N. gonorrhoeae) have two type IIA topoisomerases—DNA
gyrase and topo IV. The target-mediated resistance to dual targeting quinolones, which form
bactericidal DNA cleavage complexes with both DNA gyrase and topo IV, is only significant
after mutations have occurred in both DNA gyrase and topo IV [57]. The observation by
Alm et al. [48] of mutations only occurring in N. gonorrhoeae DNA gyrase when bacteria were
challenged with zoliflodacin (AZD0914) suggests the compound has limited activity against
N. gonorrhoeae topo IV. While third-generation cephalosporin-resistant, fluoroquinolone-
resistant N. gonorrhoeae was listed as a high-piority target in 2018 [39], A. baumanii was a
higher priority target.
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Figure 6. Difference in map densities from refined QPT-1 structure against zoliflodacin data.
(a) The Fo-Fc map from refined QPT-1 coordinates contoured at 3σ shows extra features in the
zoliflodacin structure not in the QPT-1 starting coordinates. The arrow points to extra density
modelled as water, which could be a metal ion (it is close to the oxygen of a phosphate from the DNA
backbone and also an oxygen from methyl-oxazolidine-2-one). (b) Refined QPT-1 coordinates are
also shown with yellow carbons.

2.4. Improved Activity of Zoliflodacin against A. baumannii Compared to QPT-1

A. baumannii was selected as a WHO critical priority AMR pathogen [39] to test for
susceptibility to zoliflodacin. The MIC of zoliflodacin against two carbapenem-resistant
outbreak strains of Acinetobacter baumannii [58] was determined (see Section 4 for details)
as 4 µg/mL (Table 1). The tested outbreak strains of A. baumannii (Table 1) possessed
imipenem and meropenem MICs in excess of 4 µg/mL, precluding their treatment with
these carbapenems [58]. The zoliflodacin MIC of 4 µg/mL suggested that although its
activity has been optimized against other Gram-negative bacteria, the potency of zoliflo-
dacin against A. baumannii is better than that of QPT-1, from which it was developed (the
activity of QPT-1 against A. baumannii is from Supplementary Table S4 in the paper by
Chan et al. [34]; note that QPT-1 is considerably more active against an efflux knock-out
strain, A. baumannii BM4454 (∆adeABC ∆adeIJK) [59]). As expected from previous test-
ing, the analysis of the S. aureus reference strains NCTC 12981 showed good zoliflodacin
susceptibility (<0.313 µg/mL).

Table 1. MICs of zoliflodacin for A. baumannii.

Compound Species MIC (µg/mL)

Zoliflodacin A. baumannii BCC 807 (UK OXA-23 clone) 4

Zoliflodacin A. baumannii BCC 810 (South East
OXA-23 clone) 4

QPT-1
QPT-1

A. baumannii BM4454A. baumannii
BM4454 (∆adeABC ∆adeIJK) *

16
0.125

* A. baumannii BM4454 (adeABC and adeIJK) is equivalent to BM4652 [59].

3. Discussion

Some Gram-negative bacteria are difficult to kill with antibiotics. Not only do they
have two cell walls but they also have export pumps that can rapidly pump antibiotics
out of the bacteria [59]. Such bacterial export pumps can play a role in antimicrobial
resistance [60]. There is much interest in compounds that can inhibit antibiotic efflux
pumps [61], as there is clearly a potential for combination therapies. If the MICs of a
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compound such as zoliflodacin could be lowered, the dose might be lowered and the
therapeutic window would be increased.

However, the success of whole-cell screening, including early counterscreening of
human cells for safety, seems to have been effective in discovering two new classes of
Gram-negative targeting antibiotics [5,13]. A similar approach, although starting with a
natural product, recently lead to the discovery of evybactin, a new M. tuberculosis DNA
gyrase-targeting compound [62]; this compound appears to work in a similar manner to
the thiophene inhibitors [63] that allosterically stabilize DNA cleavage complexes [64] by
binding to a ‘third site’—a hinge pocket [10].

Interestingly, two of the mutations in N. gonorrhoeae GyrB that give rise to resistance
to zoliflodacin (AZD0914) are Asp429Asn and Lys450Thr, which correspond in S. aureus
crystal structures to residues involved in making up the binding pocket of the compound
(Figure 4). Namely, Asp 437 (=Asp429) is the D from the conserved EGDSA motif and Arg
458 (=Lys450) is from the conserved PLRGK motif.

In a previous paper describing the crystals structures of QPT-1, moxifloxacin, and
etoposide in DNA cleavage complexes with S. aureus DNA gyrase [34], the DNA gate of
DNA gyrase was proposed to act like a pair of swing doors, through which the T-segment
could be pushed (Figure 1f) but that would then swing close. Such a model might partly
account for why in N. gonorrhoeae mutations are only seen in GyrB and not in ParE [48].
The swinging close of the DNA gate in DNA gyrase might be predicted to give slower ‘off’
rates for zoliflodacin compared to topo IV; it was also proposed that zoliflodacin would
be squeezed out of a slightly larger equivalent pocket in human topo2s [34]. Much work
remains to be done; for example, one current model suggests that before the C-gate (or exit
gate) can be opened, the small Greek key domain senses the presence of the T-DNA segment
(once it has passed through the G-gate) and then moves the catalytic metal away from
the active site (see the Supplementary Discussion and Supplementary Figures S12 and S13
in [34]). This model allows the DNA to be religated by the lysine residue from the highly
conserved YKGLG motif at the C-terminus of the Greek key domain (see Figure 5), while
not allowing DNA cleavage by the catalytic metal when the exit gate is opened and not
allowing exit gate opening while the gate DNA is cleaved. In this model, this is a ‘safety
feature’ of type IIA topoisomerases, allowing DNA religation by the YKGLG lysine but
inhibiting DNA cleavage by the catalytic metal. Interestingly, it has also been shown
that DNA gyrase can catalyze supercoiling by introducing a single nick in the DNA [65];
perhaps this mechanism is also a safe way of introducing negative supercoils into DNA
without opening the C-gate.

The safety and size of the therapeutic window are clearly important in antibacterial
drug discovery. It will be interesting to see if the new spiropyrimidinetrione class of com-
pounds, such as zoliflodacin, can be developed to be safer and more efficacious medicines
with less of a tendency for target-mediated antibiotic resistance than the quinolones.

4. Materials and Methods
4.1. Protein Purification and Crystallization of a Zoliflodacin DNA Cleavage Complex

The S. aureus DNA gyrase fusion truncate GyrB27:A56 (GKdel) (Mw 78,020) was
expressed in E. coli and purified based on the procedure used by Bax et al. [13], modified as
described [25]. The protein was purified (at 10 mg/mL = 0.128 mM) in 20 mM HEPES pH
7.0, 5 mM MnCl2, and 100 mM NaSO4. The DNA oligonucleotide used in crystallizations,
20-447T, was custom-ordered from Eurogentec (Seraing, Belgium). Received in lyophilized
form, the DNA was resuspended in nuclease-free water and annealed from 86 to 21◦C
over 45 min to give the duplex DNA at a concentration of 2 mM. The zoliflodacin was
purchased from MedChemExpress (South Brunswick Township, NJ, USA) as a solid and
was dissolved in 100% DMSO, forming a 100 mM stock solution.

Crystallization complexes were formed by mixing a protein, HEPES buffer, DNA,
and compound and incubating the mixture on ice for 1 h 15 min. Crystals of S. aureus
GyrB27:A56 (GKdel)-zoliflodacin-20-447T were grown using the microbatch under oil
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method [38], with streak seeding being implemented for subsequent plates after the first
plate gave crystals. Following established protocols, a crystallization screen consisting of
Bis-Tris buffer pH 6.3 to 6.0 (90, 150 mM) and PEG 5kMME (13–7%) was used. For a single
drop, 1 µL of complex mixture was mixed with 1 µL of crystallization buffer in a 72-well
Terasaki microbatch plate, prior to covering with paraffin oil. The plates were incubated
at 20 ◦C and crystal growth was observed between 5 and 30 days. A seed solution was
prepared by crushing several previously grown hexagonal rod-shaped S. aureus GyrB27:A56
(GKdel)-zoliflodacin-20-447T crystals in 20 µL of crystallization buffer. The crystal, which
gave a 2.8 Å dataset, was grown in a crystallization plate, where 1 µL of complex mixture
(0.066 mM GyrB27:A56 dimer, 0.171 mM 20-447T DNA duplex, 5.714 mM zoliflodacin,
2.571 mM MnCl2, and 342.9 mM HEPES pH 7.2) was mixed with 1 µL of crystallization
buffer (90 mM Bis-Tris pH 6.3, 9% PEG 5 kMME). A large single crystal was transferred to a
cryobuffer (15% glycerol, 19% PEG 5kMME, 1 mM zoliflodacin, 5% DMSO, 81 mM Bis-Tris
pH 6.3) before flash-cooling in liquid nitrogen for data collection.

4.2. Data Collection, Structural Determination, and Refinement

The data were collected (3600 x 0.l◦ degree images) on beamline I24 at Diamond Light
Source. The data were processed and merged with dials [66–68], as shown in Table 2. A
low-resolution cutoff of 25 Å was applied when manually reprocessing the data with dials
to avoid problems with the backstop shadow. The high-resolution cutoff was determined
by having a CC1/2 > 0.30 [69]. The structure was refined starting from the 2.5 Å complex
with the same DNA and the related compound QPT-1 (PDB code: 5CDM) [34,38]. The
data, which are not twinned and are in space group P61, were reindexed (H = k, K = h,
L = -l) to be in the same hand and of the same origin as other liganded structures in the
same space group (e.g., PDB codes: 2XCS, 4BUL, 5IWI, 5IWM, 5NPP, 6QTK, 6QX1, and
5CDM). The initial rigid body refinement of 5cdm-BA-x.pdb (P61 cell: a = b = 93.88 Å,
c = 412.48 Å) reduced the R-factor (R-free) from 0.3900 (0.3899) to 0.2684 (0.2743). Further
refinement with phenix.refine [70,71] and refmac [43,72] gave the final structure (Table 3),
which had a reasonable geometry. Restraints for zoliflodacin were generated in Acedrg [73].
As we were interested in structures with ligands and inhibitors, we used the standard
BA-x numbering scheme throughout [10] (the coordinates, 8bp2-BA-x.pdb, are available
from a table of structures from the ‘research’ tab of Ben Bax’s website at Cardiff (https:
//www.cardiff.ac.uk/people/view/1141625-bax-ben, accessed on 4 January 2023). This
means zoliflodacin inhibitors in sites 1 and 1’ have CHAINID I (for the inhibitor) and
residue numbers 1 and 201 (see Figure 3 in [10]). In this 2.8 Å zoliflodacin S. aureus
DNA gyrase structure, the chains are named as B (GyrB) and A (GyrA) from the first
fusion truncate subunit and D (GyrB) and C (GyrA) from the second subunit (the BA-
x nomenclature stands for GyrB/GyrA extended numbering). The DNA strands have
CHAINIDs E and F (see [10] for further details). The electron density maps for the inhibitors
are shown in Figure 2. The water structure near the inhibitors was based on that in the
2.5 Å structure with QPT-1 (PDB code: 5CDM). The water and glycerol structures were
based on the electron density maps and higher resolution structures (the 1.98 Å S. aureus
complex PDB code 5IWI, which contains over 940 water molecules, was superposed).

https://www.cardiff.ac.uk/people/view/1141625-bax-ben
https://www.cardiff.ac.uk/people/view/1141625-bax-ben
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Table 2. Data collection statistics.

ZOL-2.8

PDB code 8BP2
Diffraction source I24, DLS
Wavelength (Å) 0.9999

Resolution range (Å) 24.85–2.78 (2.83–2.78) *
Space group P61

Unit cell 94.54, 94.54, 417.13, 90, 90, 120
Total reflections 974,457 (46,716) *

Unique reflections 52,704 (2554) *
Multiplicity 18.5 (18.3) *

Completeness (%) 100.0 (100.0) *
Mean I/sigma(I) 5.9 (0.4) *

Wilson Bfactor 62.4
Rmerge 0.286 (3.872) *
Rmeas 0.294 (3.980) *
Rpim 0.067 (1.297) *

CC1/2 0.997 (0.318) *
* Numbers in brackets are in the outer (2.83–2.78) resolution shell.

Table 3. Refinement statistics.

ZOL-2.8

PDB code 8BP2
Resolution range (Å) 24.85–2.80 (2.87–2.80)

Completeness (%) 99.41 (94.60)
No. of reflections, working set 48,785 (3421)

No. of reflections, test set 2538 (185)
Final Rcryst 0.1957 (0.372)
Final Rfree 0.2375 (0.374)

Cruickshank DPI (Å) * 0.325
No. of non-H atoms (total) 11,713

Protein 10,574
DNA 801

Zoliflodacin 70
Other ligands (Mn, glycerol etc.) 42

Water molecules 226
RMS deviations

Bonds (Å) 0.009
Angles (◦) 1.569

Average B factors (Å2)
Protein 96.024
DNA 85.103

Zoliflodacin 84.491
Other ligands (Mn, glycerol etc.) 88.911

Waters ** 75.396
Ramachandran plot

Favored regions 96%
Additionally allowed 4%

Outliers 0%

* The Cruickshank DPI (Å) was calculated using the Online_DPI server [74] (Kumar et al., 2015). ** Water
molecules were placed where there were water molecules in higher resolution structures (e.g., 5CDM and 5IWI).

At each DNA cleavage site, a single catalytic Mn2+ ion is seen at the B-site [10]. The
electron density on His C 391 was interpreted as being due to a Mn2+ ion coordinated
by a Bis-Tris buffer molecule, which mediates a crystal contact with one end of the DNA.
This interpretation of the electron density was confirmed by re-refining the original 2.1 Å
structure of GSK299423 with the S. aureus gyraseCORE structure [13]; originally this electron
density had been misinterpreted as being due to the DNA. The new interpretation explains
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why both Bis-Tris and Mn2+ ions are needed in the crystallization buffer when growing P61
crystals of S. aureus gyraseCORE with ligands.

4.3. Structural Analysis

The van der Waals contacts with the ligands (defined as 3.8 Å or less) were calculated
with ‘contact’ from the CCP4 suite of programs [75]. The structures were superposed using
coot [76] or with limited sets of defined Cαs using LsqKab from the CCP4 suite [75].

4.4. Minimum Inhibitory Concentration Assay

The MICs of zoliflodacin against two carbapenem-resistant outbreak strains of A.
baumannii (BCC 807, BCC 810) [58] were determined in triplicate using the modified broth
microdilution reference method ISO 20776-1:2019 [77], as recommended by the EUCAST
(European Committee on Antimicrobial Susceptibility Testing) [78]. The concentration
range tested was between 40 and 0.313 µg/mL in two-fold serial dilutions. S. aureus
NCTC 12981 was used as a quality control strain, as the MICs for S. aureus have previously
been reported.
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