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A B S T R A C T

Type 1 Diabetes (T1D) self-management requires hundreds of daily decisions. Diabetes technologies that use
machine learning have significant potential to simplify this process and provide better decision support, but
often rely on cumbersome data logging and cognitively demanding reflection on collected data. We set out to
use co-design to identify opportunities for machine learning to support diabetes self-management in everyday
settings. However, over nine months of interviews and design workshops with 15 people with T1D, we
had to re-assess our assumptions about user needs. Our participants reported confidence in their personal
knowledge and rejected machine learning based decision support when coping with routine situations, but
highlighted the need for technological support in the context of unfamiliar or unexpected situations (holidays,
illness, etc.). However, these are the situations where prior data are often lacking and drawing data-driven
conclusions is challenging. Reflecting this challenge, we provide suggestions on how machine learning and
other artificial intelligence approaches, e.g., expert systems, could enable decision-making support in both
routine and unexpected situations.
1. Introduction

Among major health conditions, diabetes is one of the most com-
mon, affecting over 400 million people worldwide (International Dia-
betes Federation, 2017). Type 1 diabetes (T1D), which affects 5%–10%
of those with diabetes, is an autoimmune condition requiring frequent
injections of insulin to maintain blood glucose (BG) levels within a safe
range. Elevated levels (hyperglycaemia) can lead to long-term com-
plications, such as blindness, kidney failure, or nerve damage, while
severely low BG levels (hypoglycaemia) can lead to unconsciousness,
seizure, coma, and – in rare cases – death (McGill and Ahmann, 2017).
While clinicians can play an important role in supporting diabetes
care, effective daily management relies primarily on an individual’s
habits and management decisions (Funnell and Anderson, 2004). Self-
managing diabetes typically involves self-monitoring BG levels and
lifestyle factors such as food and physical activity multiple times per
day, analysing this information, and dynamically adjusting numerous
factors accordingly (Klonoff, 2012). However, maintaining this balance
with the demands of daily life is challenging, resulting in many in-
dividuals failing to meet clinical guidelines (Miller et al., 2015). It is
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therefore important to find new approaches that will help individu-
als with diabetes make better informed decisions while reducing the
burden of care.

Currently, people with diabetes have access to several types of tech-
nologies, including continuous glucose meters (CGM), insulin pumps,
smartphone apps and, more recently, hybrid-closed loop systems which
integrate these systems (National Institute for Health and Excellence,
2023). However, with the complex and personal nature of the condi-
tion (Mol, 2008; O’Kane et al., 2016a,b; Storni, 2011), existing support
systems still offer limited assistance. They fail to build personalised
models that can account for the range of factors that influence BG
levels (Woldaregay et al., 2019), such as stress, illness, protein, fat,
caffeine intake, alcohol consumption, insulin injection site, menstrual
cycle, dehydration, pain, other medications, and many more. Moreover,
while some smartphone apps enable recording, tagging, or photograph-
ing contextual data, they still rely on manual data logging, which is
challenging to sustain (Cordeiro et al., 2015; Harrison et al., 2015).
Current advances in artificial intelligence (AI) and machine learning
(ML) offer the potential to develop decision support tools that could
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help users make sense of their data. This has often been approached by
seeking to provide personalised suggestions about appropriate insulin
doses based on a range of manually logged variables such as exercise
levels, alcohol consumption and time of meal (e.g. Pesl et al., 2017),
or by bringing attention to correlations between physical location
and glucose stability (Sebillo et al., 2015). However, existing decision
support systems still require burdensome logging, often lack explicit
actionable suggestions (Ohlin and Olsson, 2015) and are far too often
developed without end-user input (Gillespie and Seaver, 2016; Inkpen
et al., 2019).

While HCI and AI research have previously been characterised as
having distinct views of the relationship between humans and tech-
nology (Winograd, 2006; Grudin, 2009), recent work has sought to
integrate human-centred design methodologies and AI approaches (Ab-
dul et al., 2018; Katan et al., 2015; Yang et al., 2020). There is a
clear opportunity for reducing the burden of T1D through AI and
ML enhanced technologies; however, the integration of these solutions
into people’s everyday lives is not straightforward. Self-care involves
planning, coping with adversity and reflection—both in the long and
short term. As such, accounting for lived experience is paramount to
the design of any human-centred ML-enhanced intervention. Despite
theoretical promises of reduced care burden through the introduction
of ML/AI for health care, the lack of domain knowledge, inadequate
datasets, and the complexities of everyday life have scuppered many of
these innovations from achieving real-world viability (Konam, 2022).

Given the lack of interest in long-term manual tracking (Wu et al.,
2017; Gouveia et al., 2016; Arsand et al., 2007) and users’ difficulties
in engaging with reflection and sense-making (Katz et al., 2018a;
Mamykina et al., 2015; Mamykina and Mynatt, 2007), our goal was to
explore how these issues could be addressed with AI/ML. In this paper,
we describe the outcomes of a series of interviews and six co-design
workshops conducted over nine months with 15 people with T1D
to identify opportunities for using machine learning within diabetes
decision support systems that people with T1D would want to use.
As research on chronic conditions within HCI focuses on tracking,
reflection and sense-making with mobile technologies (Epstein et al.,
2020; Desai et al., 2019; Kim et al., 2017; Raj et al., 2019a; Schroeder
et al., 2019), it influenced our thinking on the design of this study.
However, despite initially framing the co-design workshops around
everyday self-tracking needs, we had to shift their focus away from
technologies for everyday use. Our participants stated that they did
not wish to use additional technology in routine situations, instead
preferring to rely on personal ‘diabetes rules’: heuristics developed
hrough their own lived experiences. The context-dependent nature of
hese heuristics meant that they were often inadequate in unexpected
ituations such as illness or holidays where participants might benefit
ore from technological support. In the ML/AI context, this highlights
tension between conventional approaches to machine learning which

ely on statistical analysis of large data sets, and people’s desire to
nly engage with these systems within atypical contexts for which
here is therefore little retrospective data. Moreover, it suggests that
he current dominance in research and industry of approaches focusing
n constant self-tracking for ML-enabled T1D decision support may
e unwarranted. Our work extends and supports existing research on
1D self-management. It confirms the use of personal heuristics and
he unwillingness to engage in self-tracking, and highlights the need
o support non-routine situations. Furthermore, it contributes to recent
nterdisciplinary Human-Centred ML discussions in HCI (Gillies et al.,
016; Jiang et al., 2021) by examining the distinguishing characteris-
ics of different types of situations (routine vs non-routine, expected
s unexpected) and their specific challenges, and pointing towards
ppropriate solutions: from ensemble methods and expert systems, to
2

nomaly detection and context-aware reminders.
2. Background

2.1. Self-tracking and diabetes self-management

Self-tracking is a key practice in self-managing personal health and
wellbeing. Prior work has documented self-tracking in a wide range of
cases, including diabetes (Danesi et al., 2018; Kooiman et al., 2018;
Mamykina et al., 2008), migraine (Schroeder et al., 2019), irritable
bowel syndrome (Karkar et al., 2017), Parkinson’s disease (Mishra
et al., 2019), and multiple sclerosis (Ayobi et al., 2017). People with
chronic health and wellbeing conditions typically intertwine documen-
tary, goal-directed, and diagnostic self-tracking styles over time (Karkar
et al., 2017; Schroeder et al., 2019) and develop personally meaning-
ful self-care ecologies in creative ways, from using traditional tools,
such as pencil and paper (Ayobi et al., 2018), to hacking emerging
consumer health technologies (O’Kane et al., 2016c). However, people
who engage in self-tracking report not only perceived benefits, such
as self-awareness and a sense of control (Ayobi et al., 2020), but also
describe adverse effects, experiencing ‘‘pointless pressure’’ (Ayobi et al.,
2017, p.6) and questioning the purpose of self-tracking tools (Ng et al.,
2018). These findings highlight the importance of human-centred and
participatory approaches to designing data-driven technology.

People with T1D use a wide range of self-tracking (or self-
monitoring) technologies. Since the early 1980s, portable blood glucose
meters have supported T1D management through self-measurement
of blood glucose, thereby facilitating real-time decisions on insulin
dosages, hypoglycaemia treatment, dietary choices, exercise, and other
lifestyle factors (Klonoff, 2012). Use and frequency of such monitoring
has been correlated with decreased A1c (a measure of BG levels over
time) and improved clinical outcomes (Klonoff, 2007). More recently,
continuous glucose monitors (CGM) are being increasingly adopted for
T1D management, offering alerts, a glanceable record of frequently
sampled measurements, as well as predictions of the direction and
rate of change (Pettus and Edelman, 2016). Another widely adopted
technology is the insulin pump, which better simulates the body’s
natural production of insulin through near-continuous infusion. CGMs
and pumps have demonstrated clinical benefits, including improved
glycaemic management and reduction of hypoglycaemic events. How-
ever, they require motivated individuals who can maintain the device’s
operating requirements, interpret data and calculate insulin dosages
for meals and corrections based on multiple factors (Pickup and Keen,
2002; Rodbard, 2016; Sun and Costello, 2017). More recently these
devices have been combined into the closed-loop artificial pancreas,
which offers users significant increases in time in range without increas-
ing hyperglycaemia (Usoh et al., 2022). However, such systems are
expensive and still require frequent user input and adjustment for com-
plex lifestyle factors, with benefits mostly occurring during the night
when such factors play a smaller role in glycaemic management (Brown
et al., 2019).

Given the complexity of diabetes and associated data-driven deci-
sion making, diabetes apps are increasingly being developed to support
personal care. Common features include tracking and visualising di-
verse data, contextual tags, digital photographs of meals, self-reflection
and identification of trends, communication with a support team, re-
mote monitoring, peer support, and integration with sensors to au-
tomate tracking (Klasnja and Pratt, 2012; O’Murchu and Sigfridsson,
2010; Owen et al., 2015; Smith et al., 2007). However, despite the
myriad options for tracking and visualising, such apps are primarily
tools for reflection and the user is left to make sense of their disparate
data (Katz et al., 2018a; Raj et al., 2019b). This focus on tracking
and reflection is a common approach in health and behaviour change
apps (e.g. Ayobi et al., 2017, 2020; Stawarz et al., 2014, 2015), and
in the context of diabetes assumes that supporting users in collecting
diverse data will translate to improved diabetes management. Yet, the
efficacy of this approach, especially without additional clinical support,

remains unclear. Encouraging longer-term adoption of apps remains
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challenging (Maniam and Dhillon, 2015) and studies of existing T1D
apps have shown only modest clinical benefits (Wu et al., 2017). In
addition, such apps rely on motivation for continued engagement in
intensive data collection, identification of patterns, and intentional
modification of behaviours (Gouveia et al., 2016)—even though it is
difficult to maintain regular long-term logging practices (Arsand et al.,
2007) and interpreting such multivariate data is often challenging (Katz
et al., 2018a; Mamykina et al., 2015). Therefore, further research is
required to design methods that will better support users in their
diabetes decision-making.

2.2. Personal nature of diabetes management

While monitoring is an essential aspect of diabetes management, its
main benefit is the potential of the resulting data to inform and bring
about better treatment decisions (Klonoff, 2007). However, personal
diabetes data can be complex and challenging for people with diabetes
to interpret and apply (Mamykina and Mynatt, 2007). Mamykina et al.
(2015) have devised the Sensemaking theoretical framework, which
proposes a dynamic interaction between two modes of daily diabetes
management: habitual and sensemaking. Their framework also presents
three key stages of feedback loop decision-making that occurs in both
modes: perceiving new information related to the condition, under-
standing this information, and acting based upon this information.
Sensemaking behaviours are typically triggered when the individual
notes a ‘gap’, for instance, an unexplained out-of-range BG level. As a
result, the new information does not fit into established self-care mental
models (or heuristics) and the individual must engage in effortful
thinking and then experiment with new behaviours (sensemaking). The
sensemaking framework (Mamykina et al., 2015) asserts that these
modes are complementary and interdependent: the ability to oper-
ate predominantly in the habitual mode is important for sustainable
self-care, while cognitively demanding sensemaking is essential for
learning the cause and effect relationships which form the basis for new
heuristics that support effective habitual action.

Yet, while effective decision-making is essential for diabetes man-
agement, the relatively small number of people who meet clinical
recommendations (Miller et al., 2015) suggests that individuals face
significant barriers in establishing and applying practical and effec-
tive care heuristics. Among the challenges is the need to account for
shifting contexts (O’Kane et al., 2015) and hard to predict biolog-
ical responses related to factors such as exercise, illness or delays
in insulin absorption (Peyser et al., 2014). In addition, diabetes is
not a static condition, as disease needs are constantly changing and
evolving over time (Klasnja et al., 2015), influencing self-management
practices (O’Kane et al., 2013). Furthermore, presentations of data can
reinforce biases rather than leading to actual insights (Mamykina and
Mynatt, 2007). Therefore, while there has been significant progress
in diabetes technologies, there is still need for further development,
especially for decision support systems that can assist in reducing the
cognitive effort of sensemaking such as pattern recognition and non-
obvious correlation discovery (Katz et al., 2018a; Mamykina et al.,
2015) in a manner that is compatible within the lived experience and
stresses of daily life.

2.3. Challenges in developing human-centred AI/ML decision support sys-
tems

Artificial intelligence (AI) approaches have become increasingly
popular for automated, scalable and affordable knowledge discovery
and reasoning. Machine learning is the area of AI that involves the
use of algorithms that improve (or learn) through data (or experi-
ences) (Flach, 2012). Machine learning tasks are typically categorised
as regression, classification and clustering, which fall under the main
paradigms of machine learning techniques: supervised learning, where
3

training data consisting of labelled pairs of input and desired output
is used to build a predictive model; unsupervised learning, where the
ystem seeks to discover emergent patterns from unlabelled training
ata; and reinforcement learning where an agent acts autonomously
pon the environment through trial and error while attempting to max-
mise a reward. Expert systems are an alternative approach for decision
upport systems. Unlike machine learning, they primarily consist of
redefined if-then rules derived from domain knowledge rather than
earning models from data sets. Expert systems offer the advantage of
ncreasing explainability—the ability for a human to understand how
ecisions have been made, which is an ongoing challenge for ‘black
ox’ ML applications (Rudin, 2019).

AI techniques have frequently been applied in healthcare, including
iverse diabetes-specific tasks such as blood glucose prediction, hypo-
hyperglycaemia prediction, BG variability detection, controllers for
nsulin-based diabetes therapy, and lifestyle support (Donsa et al.,
015; Sowah et al., 2020; Tyler and Jacobs, 2020). Other work has
ocused on developing models for predicting hypoglycaemia (Plis et al.,
014) and using reinforcement learning for BG prediction (Yamagata
t al., 2020). There has also been more exploratory work derived
rom qualitative research looking at how AI methods could provide
ersonal diabetes decision support. For example, Mamykina et al.
2017) proposed a framework for personal discovery of cause-and-
ffect relationships in diabetes self-management, suggesting automated
pproaches for supporting feature selection, hypothesis formulation,
ypothesis evaluation, and goal specification. However, despite promis-
ng attempts to expand AI techniques to support diabetes management,
here are few research prototypes and commercial products that use ML
o support T1D self-management (Forlenza, 2019), with little evidence
f their usefulness and usability.

It is important to note that the dynamic, idiosyncratic, and po-
entially fatal implications of faulty diabetes decision-making provide
ignificant challenges to automating diabetes decision support. Firstly,
ot infringing on user autonomy is an important principle of medical
thics (Beauchamp et al., 2001) and should therefore be considered
crucial element of decision support systems (Meredith and Arnott,

003). Respecting user autonomy implies that people should be capable
f not only using such systems, but also coping when they fail, either
echnically or because the situation is novel and there is insufficient
ata to make a recommendation. This requires methods for both en-
uring that this transition can be handled smoothly, and that the user
oes not lose the ability to self-manage during such events. Secondly,
ystems can also function as designed and still provide incorrect recom-
endations. For example, machine learning depends on training data,
hich can reflect or contain biases and missing data or incomplete
ata resulting from unequal access to care and technology can reinforce
ocio-economic disparities (Gianfrancesco et al., 2018). Given that
ecision support systems should accurately reflect the personal values
f the user (Ariail et al., 2015), unknown system biases pose further
nresolved barriers. Finally, such systems rely on personal data which
epends on user engagement. A recent paper on the use of decision
upport systems for insulin dose suggestions noted an important caveat:
hat these systems were reliant on continual app-based data entry,
hich is uncommon outside research settings (Forlenza, 2019). This
oses significant challenges as frequent engagement with personal data
s needed to inform actions, although the stressful nature of such
nteractions can lead to disengagement. For example, such data entry
an challenge established beliefs, demand undesired actions, reveal un-
atisfactory progress, or bring about negative emotional effects (Chang
t al., 2017a). It can also be boring and burdensome (Arsand et al.,
007). These human–computer interaction challenges in developing
iabetes decision support systems demonstrate the need to develop
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comprehensive human-centred approaches for the integration of AI
methods into pervasive digital health systems.

2.4. Towards co-designing AI/ML decision support systems with people with
T1D

The importance of involving end-users in the development of AI/ML
decision support systems is well supported among the HCI community.
In order to build systems that people can use effectively, it is critical to
understand how they wish to interact with such systems, identify key
obstacles, and challenge designer assumptions (Amershi et al., 2014).
Diverse user-centred design methodologies have often been applied to
diabetes technologies, with researchers reporting that they helped to
answer research questions and understand users’ mental models (LeR-
ouge and Wickramasinghe, 2013). For example, Kanstrup et al. (2010)
used interviews, workshops and explorations to develop software and
services to support living with diabetes. The resulting prototype was
significantly different from the researchers’ initial concept of an AI
‘‘GPS-style’’ navigation system. Participants made it clear that they did
not want a system that would tell them what to do, but rather a way
of making better informed decisions. Arsand et al. (2012) also applied
participatory design techniques to develop a mobile phone app that
essentially acted as a diabetes diary. Lessons learned from participants
included the importance of automating data entry, integration with
additional sensors, and contextual sensitivity. Finally, McCarthy et al.
(2017) used participatory design techniques in a workshop with people
with T1D, who were teamed with designers to explore how BG moni-
toring devices could be re-designed to address stigma related to public
use. Strategies such as disguising monitors to look like non-medical
items, increasing brand identity, and personalisation were explored to
gain insights into such potential approaches. Overall, engaging users
is essential, as it can help to develop solutions that go beyond sim-
ply reinforcing existing hierarchical compliance-based relationships in
healthcare by allowing the users to adapt technologies to their own
needs (Jones et al., 2017). However, while people with T1D have been
involved in developing technologies (e.g. McCarthy et al., 2017), the
research on their involvement in the creation of ML/AI based solutions
is limited.

While the initial research streams tended to focus on the feasi-
bility and optimisation of ML models (Maniruzzaman et al., 2018),
recent work has demonstrated the potential of human-centred ML
systems (Mitchell et al., 2022). It has become clear that a detailed un-
derstanding of people’s data collection and prediction needs is crucial
in informing the design of ML systems: a lack of domain knowledge and
end-user needs can cause cascading data issues and amplify potential
harmful effects right from the onset and throughout ML development
lifecycles (Sambasivan et al., 2021). Participatory research methods
have been highlighted as particularly promising in informing the design
of ML-based systems (Loi et al., 2018), as these inherently human-
centred approaches can help embody key principles, such as gaining
empathy and fostering shared decision making, mutual learning, and
collective creativity. For example, co-design research on ML/AI outside
of the diabetes context has successfully investigated concepts such as
explainability and trust (e.g. Wang et al., 2019; Zicari et al., 2021).
Therefore, through a series of interviews and co-design workshops,
we contribute a human-centred and collaboratively-constructed un-
derstanding of people’s decision support needs in diabetes care and
implications for the design of AI/ML-based technologies.

3. Methods

The overall aim of our project was to involve people with T1D
in design of decision support systems to better understand their data
needs. While we were interested in participants’ thoughts about ML-
based systems, our main goal was to understand their needs first and
let them drive the design of a potential decision-support system. As
4

such, we used co-design as this is an approach to designing with–not
for–the participants (McKercher, 2020). This is a practice where people
collaborate to connect their knowledge, skills and resources to create
potential solutions together (Zamenopoulos and Alexiou, 2018). Design
workshops and reflecting on own experiences are a common approach
(e.g. Harrington et al., 2018; Marent et al., 2018) to facilitating this
co-creation.

Furthermore, we decided to focus on self-tracking as a starting
point as this is an approach known and often used by people with
T1D (Danesi et al., 2018; Kooiman et al., 2018; Mamykina et al.,
2008). Self-tracking is an inherently data-driven practice and provides
significant potential in leveraging AI-based approaches, as Mamykina
et al. (2022)’s recent work on personal informatics and AI suggests.
Based on this understanding, our objective was to develop a detailed
understanding of people’s self-tracking practices and preferences to col-
laboratively inform the design of desirable ML-based decision support
systems.

3.1. Participants

Fifteen UK participants with T1D interested in diabetes technology
were recruited using social media, word-of-mouth and leaflets in gro-
cery stores, cafes, libraries and other public spaces that allowed us to
reach a wide range of potential participants. Inclusion criteria were as
follows: using blood glucose meters, being on Multiple Daily Injections
(MDI) therapy, regularly self-adjusting analogue insulin dosages for
different situations, using one of the common brands of insulin (Huma-
log, NovoRapid, Apidra, Lantus, Levemir, Tresiba or Fiasp), not taking
any other blood glucose-lowering medication, and having iPhone 5S
or later. Participants were 24–69 years old (average = 36.4 years, SD
= 11.4), 11 were men. They had been living with T1D for 3–34 years
(average = 17.3 years, SD = 9). See Table 1 for more details.

3.2. Procedures

Each participant attended the initial interview and later participated
in a series of monthly design workshops (or telephone interviews if they
could not attend). Similar to Marent et al. (2018), we combined semi-
structured interviews with co-design activities to support participants
in sharing their personal views, experiences, and needs throughout this
research project. The study received ethical approval from the Faculty’s
Ethics Committee at the last author’s institution.

3.2.1. Initial interview
To help build rapport and gather background information that

would help us inform the activities in the first workshop, each partic-
ipant attended a one-to-one interview at the beginning of the study.
The interviews took place at the University and lasted 60–90 min. The
session started with an overview of the study and participants were
able to ask any questions, after which we collected their consent. Next,
participants were interviewed about their experience with diabetes,
their daily routines, any health tracking and diabetes technologies they
used, as well as their attitudes towards and perceptions of the use of
artificial intelligence and machine learning for diabetes support. After
the interview, a researcher walked the participant through the Dexcom
sign up process to ensure they had access to a CGM during the study.
The participant then received an Apple Watch and signed the lease
document that stated they would be able to keep it if they completed
the study. Finally, the researcher guided the participant through the
registration process for our industry partner’s app. Participants were
asked to use the Apple Watch and the app as much or as little as they
wanted, but to at least try out some of their features as it would inform
co-design activities (Harrington et al., 2018).
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Table 1
Participant details.

ID Age Gender Years since
diagnosis

Occupation Diabetes tech
experience

Workshop
attendancea

P1 33 M 19 Freelancer, gig worker CGM 1/6
P2 46 M 3 Database developer CGM 6/6
P3 45 F 6 Software tester none 6/6
P4 26 F 9 Student, trainee nurse CGM 3/6
P5 31 M 3 Graphic designer none 6/6
P6 26 M 16 Art worker, print finisher CGM 2/6
P7 69 F 29 Retired none 6/6
P8 32 M 22 Chef none 4/6
P9 28 M 26 Coach none 1/5b

P10 31 M 17 Restaurant owner CGM 1/5b

P11 24 F 12 Nurse CGM 4/5b

P12 41 M 22 Woodworking workshop manager none 3/5b

P13 28 M 18 Quantity surveyor none 3/5b

P14 44 M 34 Structural engineer Pump, CGM 3/5b

P15 42 M 24 Conference organiser none 3/5b

aIf participants were unable to attend a workshop, they were invited to participate in a phone interview instead. Phone interviews are included in attendance
numbers.
bSeven participants missed the first workshop as they joined the study just before or soon after it took place. The topics covered during the first workshop were
included in their initial interview to ensure all participants contributed.
Fig. 1. Example workshop outputs. Left and upper-right: examples of interface designs showing key factors participants would like to track. Lower-right: a storyboard presenting
a typical day of a person with Type 1 diabetes.
3.2.2. Design workshops
In total, we conducted six workshops between August 2019 and

February 2020. There were four 2-hour evening workshops and two
4-hour weekend workshops. Participants were asked to attend as many
as possible and the workshop dates were provided in advance and
were printed on the information sheet. Participants unable to attend a
workshop were contacted over the phone to discuss the topics planned
for that session; phone interviews lasted 15–30 minutes.

As we wanted the participants to drive the co-design process, we
decided to start with a familiar topic to make it easier for them to
engage with the workshops. Therefore, the first workshop (W1) focused
on participants’ current use of technology for supporting diabetes self-
management, related challenges and their data needs, and generating
ideas to deal with these challenges. The content of the later workshops
(W2–W6) was determined by findings from earlier workshops. As a
result, we ended up discussing participants’ experiences with self-
tracking apps (to encourage participants to think about different types
of data and ways of representing it), identifying specific heuristics
and situations in which they may not work, and designing decision-
making apps. In particular, the two weekend workshops (W3 and W6)
focused on hands-on activities and creating paper prototypes. The final
workshop focused on dealing with non-routine situations—a topic that
5

was purely driven by our co-designers who in earlier workshops flagged
its importance. Table 2 summarises all research activities; examples of
participants’ outputs are shown in Fig. 1.

In addition, Workshop 5 included a presentation from a machine
learning expert (one of the co-authors), who then facilitated a brain-
storming session on supporting decision-making with algorithms. We
planned from the start to cover ML, but did not know which work-
shop would focus on it; however, we wanted to run this session after
participants design their own decision-support systems to gain a better
understanding of their needs and their understanding of what technol-
ogy could do. The ML presentation covered an overview of machine
learning algorithms and how they are currently used to predict BG
levels, and an introduction to reinforcement learning and examples of
how it is used in games to support decision-making. Reflections on our
process and the ML session are available in Ayobi et al. (2021a,b).

We developed this series of co-design workshops according to best
practice guidance on participatory research and co-design. For exam-
ple, Harrington et al. (2018) demonstrated the benefits of experience-
based co-design approaches: encouraging older adults to use digital
technology helped elicit detailed feedback and inform the design of
novel features. In this vein, we provided a set of digital tools to support
participants in developing shared experiences and in articulating their
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Table 2
Workshop details, including topics, activities and outputs.

Workshop Type Attendees Details

W1 Evening
workshop,
2 h

7 attendees Theme: Identifying meaningful factors that influence
diabetes.
Discussion topics: Current use of technology for supporting
diabetes self-management, related challenges, participants’
data needs.
Activities: Group discussions, brainstorming.
Outputs: List of factors that influence participants’
self-management, sketches of an app for tracking them (see
Fig. 1).

W2 Evening
workshop,
2 h

8 attendees
6 phone
interviewsa

Theme: Impact of technology on diabetes management.
Discussion topics: Using technology to support
self-management, automated tracking and trade-offs of data
capture.
Activities: Group discussions, identifying situations where
tracking is or is not useful, commenting on hypothetical
scenarios.
Outputs: A list of situations that would benefit from
decision-support, types of data that could be shared.

W3 Weekend
workshop,
4 h

10 attendees Theme: Designing a personalised decision support app.
Discussion topics: Ideal functionality, trustworthiness of
recommendations provided by diabetes apps.
Activities: Creating usage scenarios, designing an ‘‘ideal
diabetes app’’, group discussions.
Outputs: Sketches, storyboards, list of requirements for a
diabetes decision support app.

W4 Evening
workshop,
2 h

3 attendees
3 phone
interviewsa

Theme: Understanding the decision-making process.
Discussion topics: Everyday decisions, understanding and
visualising tracked data.
Activities: Discussing diabetes decisions in hypothetical
scenarios, commenting on visualisations of data collected by
participants.
Outputs: List of general ‘‘diabetes rules’’ to help deal with
common situations.

W5 Evening
workshop,
2 h

10 attendees
1 phone
interviewa

Theme: Exploring diabetes rules, routine/non-routine
situations.
Discussion topics: Diabetes management rules, non-routine
situations, what if something goes wrong or routines change.
Activities: Reviewing the list of diabetes rules created in
W4, presentation on machine learning, translating diabetes
rules into specific app features.
Outputs: List of desirable features for decision-support
systems.

W6 Weekend
workshop,
4 h

7 attendees Theme: Understanding the role of context and tracking
non-routine situations.
Discussion topics: Dealing with non-routine situations,
identifying functionality that could support decision-making
in such situations.
Activities: Group discussions, brainstorming, sketching.
Outputs: Requirements for an app that supports non-routine
situations.

aParticipants who were unable to attend workshops were invited to telephone interviews to discuss the topics covered at the sessions. We did
not schedule phone calls after the hands-on weekend workshops (W3 and W6).
personal needs as part of co-design activities. For example, participants
received a 12-month Dexcom G6 CGM sensor subscription, which was
not covered by the UK’s National Health Service (NHS) at the time of
the study. While their active involvement lasted about nine months in
total, they were able to use the full Dexcom subscription. In addition,
we leased each of them an Apple Watch so that they could monitor
in one place their Dexcom data, physical activity, heart rate, sleep,
location, and step count during the study period. Participants who
completed the study were able to keep the smartwatch. Throughout the
study, participants actively and autonomously used both devices, which
informed the brainstorming sessions and their designs, but neither
was part of the formal data collection. They also used our industry
partner’s app for a few days to prepare for the first two workshops, but
none found it personally useful, although they did refer to it and its
functionality throughout the study. The app was used as an example of
a decision support tool, although at the time it was an early prototype
and did not offer any ML-supported functionality; participants were
aware of these limitations. Furthermore, in preparation for Workshop 4,
6

we asked participants to use Trackly (Ayobi et al., 2020), an app
inspired by paper journaling practices that enables users to design their
own trackers, for at least a week to help them identify things they
would like to track and how (Harrington et al., 2018). We used the
data shared by participants to create charts (see Fig. 2) that helped to
visualise their data using labels and categories they defined. The charts
were used as props during the discussion on decision-making and their
data needs.

3.3. Analysis

The interviews were audio recorded and workshops were video
recorded to aid transcription. Any design outputs (e.g. sketches, paper
prototypes) produced during the workshops were photographed and
archived. They were not analysed per se, but served as starting points
for group discussions at the end of each session and were referred back
to at later workshops; these discussions were included in the analysed
transcripts. Participants’ personal information was anonymised in the
transcripts used for the analysis. We did not analyse the Dexcom or
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Fig. 2. A set of charts representing data collected by participants. Participants selected their own labels and parameters to track. Their tracked data included: fatigue (top left),
caffeine intake (top right), sleep length (bottom left), and hypos and hypers (bottom right).
Apple Watch data; these tools were meant to encourage participants to
think about their data and how they use it, but were not part of data
collection.

Interviews and workshop group discussions were transcribed ver-
batim for analysis. We conducted reflexive thematic analysis (RTA)
following the guidance from Braun and Clarke (2006) and Clarke and
Braun (2021), with a primary coder and ongoing discussions within
the research team (c.f. McDonald et al., 2019) and acknowledging
the subjective and interpretative role of the researcher in this type of
the analysis (Clarke and Braun, 2021; Gough and Madill, 2012). We
focused on an inductive approach, although kept in mind the overall
goal of the study.

Initial interviews and workshops (with their related phone inter-
views) were analysed separately but followed similar procedures. While
there were specific topics we were interested in, like personal heuris-
tics, we did not use a predefined code book. Instead, we followed a
bottom-up approach, with the first author reading all transcripts as
they became available and creating memos. The research team met
once a week for the duration of the project and the findings from the
interviews, workshops and reading of the transcripts were regularly
discussed. The transcripts were read by the first author who then
outlined the provisional coding guide for the initial interviews and
a separate one for the workshops and telephone interviews to help
build the understanding of the data and support the development of
themes. These initial codes were discussed with the rest of the research
team and amended where necessary. Then, the first author coded all
transcripts in NVivo software using the guides as the starting point,
while still being open to identifying new codes. Finally, the content
of each code was summarised and once again discussed and iterated
on by the team, which lead to the identification of three major themes:
personal heuristics in a changing context (focused on everyday diabetes
management), coping with unexpected situations (focused on issues
and strategies our participants developed), and collaboration with a
decision support system (focused on participants’ suggestions on how
technology could help them in different contexts). The flexibility of
RTA as our chosen approach meant that we were then able to explore
further the intricacies of varying information needs after these themes
were defined. Given that participants as co-designers emphasised the
importance of routine and non-routine situations (which led to this
being the main topic of the final workshop), and talked about expected
and unexpected situations, these distinctions were visible within the
initial themes. Therefore, we decided to use this lens to reflect on the
themes, especially in the context of potential ML-based decision support
7

systems. Further discussions within the research team led to outlining
four key types of situations people with T1D deal with that highlight
different challenges and require a different technological approach.

4. Findings

Although the initial co-design focus was on using personal data for
ML-enhanced technologies, it was clear that everyday T1D self-care
practices did not need to have a heavy technology intervention. Instead,
the workshops confirmed that the personal nature of diabetes self-
management and different information needs lead to the development
of personal heuristics (Mamykina et al., 2015), and because of changing
and complex contexts, these heuristics can be inadequate for guiding
situated actions. These findings provided context in which participants
co-designed their solutions and discussed opportunities for decision-
support systems. Together with our participants we identified four
broad types of situations that require a distinct approach:

• Unexpected routine situations—situations familiar to the partici-
pant that happen unexpectedly and were not anticipated, e.g. late
lunch;

• Unexpected non-routine situations—unfamiliar and unexpected sit-
uations that cannot be addressed by known, routine approaches,
e.g. illness;

• Expected non-routine situations—situations that are unusual or un-
familiar, but were anticipated, e.g. travel;

• Expected routine situations—everyday routine situations partici-
pants are familiar with.

This classification is neither exhaustive nor prescriptive given peo-
ple’s unique lived experience in daily life and their prior experience.
However, it offers a useful lens as the different types of situations
highlight a range of specific challenges that need to be considered in
the context of potential AI/ML decision support system. Each would
require a different level of technological support, including no need
for everyday decision support technologies when dealing with expected
routine situations. In the following sections we describe these situations
together with participants’ current strategies and design ideas. They are
also summarised in Fig. 3.

4.1. Decision-making in unexpected routine situations

Our participants identified two types of unexpected situations:

changes to the routine that led to familiar events taking place at a
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Fig. 3. Different types of situations and their characteristics, including personal heuristics, types of events and need for technology.
wrong time or in the wrong order (e.g. having to take car to work
instead of cycling, eating lunch at a different time), and unexpected
events that were new (e.g. illness; described in the next section).
Addressing such situations was seen as an opportunity for technology
to provide unique support that is currently not available.

When brainstorming ideas for future decision-support systems, par-
ticipants agreed that the most useful solution would be a smart and
collaborative system that would help them cope with unexpected situ-
ations. While they generally agreed that manual tracking was cumber-
some (which was to be expected as people rarely engage in long-term
data tracking Arsand et al., 2007), they still expressed willingness to
track data periodically. They believed that this way they could teach
a potential app about their personal heuristics so it could be applied
to similar unexpected situations in the future, providing value for their
effort.

Participants also reported that with no technological support, they
developed coping strategies. Literature on resilient strategies (Furniss
et al., 2011, 2012, 2014) distinguishes several such strategies, includ-
ing contingency planning and routine adjustments. Our participants
reported such mechanisms, e.g. making sure to have snacks at hand
in case they are unable to eat lunch at a usual time:

Where I work, we get to take our lunches at a convenient time. So, one
day I might take my lunch [...] at 1 o’clock, other days if we’re rushing
to get work done and out the door for a deadline, I might not take lunch
until 2 o’clock. Obviously because I’ve dosed accordingly in the morning
envisaging a 1 o’clock lunch, sometimes [...] I do find myself becoming
low at around the time when I would be eating lunch. So, it’s just a case,
I’m trying to snack and keep my levels up as I’m working until I can take
a lunch break. – P6, phone interview in lieu of W5

Another way of coping with unexpected situations was limiting the
variation and trying to make things as similar as possible. For example,
participants reported eating the same foods at the same times to avoid
dealing with unknown menus, limiting their workouts to the same types
of exercises every day to make insulin calculations easier and to avoid
surprises in case they accidentally overexert themselves, and so on. One
participant reported significant advance planning:

I spend an hour every night 9 o’clock to 10 o’clock [preparing food].
Breakfast, lunch, two lunches, three snacks and my meal for the next
night as well, carry them all in Tupperware and then I will have them at
the same time every day and plan it all so that I know what’s going in
and don’t have to worry about nipping out for a sandwich, not having
food in the office. I think that’s the main plan. [I] plan what exercise I
am gonna’ do for the week as well, so I know roughly what insulin I am
gonna be taking. – P13, initial interview
8

However, participants were not always able to prepare for the
uncertainties of everyday life. Eating out was mentioned as an example
of a situation where things could go differently than expected. For
example, participants reported that it was sometimes difficult to time
their pre-meal insulin doses due to variable meal waiting times. They
also found it hard to assess the amount of carbs in meals or sugar in
drinks, with the latter being potentially dangerous:

Different coffee shops have different effects on my levels, that sounds
crazy, but I know that when I get a coffee from Starbucks I know that I
can drink it, but I always feel I have to say to Costa ‘‘don’t put anything
in my drink’’, because then afterwards I am always paranoid that they
have put some sugar in my drink, but you know straight away. [...] And
restaurants giving me full sugar drinks instead of diet drinks. It’s nothing
to them, they don’t think ‘‘actually, that could send her into..., like, make
her poorly’’. – P4, initial interview

Participants’ accounts highlighted above suggest that heuristics on
which they rely in unexpected routine situations are weak, although
individuals can draw from their regular experience to navigate through
the situation, e.g. by having a backup snack. One challenge for AI/ML
systems in this context is the fact that as these situations are consid-
ered routine, users might lack motivation and awareness to document
such events, which could lead to limited data on which to base any
predictions. They may also not have the time during the event itself
to collect data needed to train the decision support algorithms. How-
ever, supporting decision-making is even more complex in unexpected
non-routine situations.

4.2. Decision-making in unexpected non-routine situations

A separate type of unexpected situation includes one-off occur-
rences, errors or mistakes. These non-routine situations are defined
by encountering unexpected adversity within novel contexts and may
require immediate action. For example, P2 reported going on a trip
and forgetting his insulin kit at home, which meant he had to avoid
carbohydrate consumption all day. While in the reported case the error
led only to annoyance and disappointment (‘‘I was planning on having
chips and ice cream’’), such situations can be potentially dangerous. For
example, he also reported confusing the dosage when injecting insulin,
which can have serious consequences:

I needed to take some NovoRapid [fast acting insulin] for the meal,
and I was probably just going to have 3 or 5 [units] or something like
that, but I [...] gave myself 15 and I got very confused but it’s easy to do
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that and then I just realised that I couldn’t leave the house as planned, I
was just going to have to eat lots of sweets and orange juice and things
like that and just wait for it to sort itself out. – P2, W4

Being ill was frequently mentioned as a unique and hard to cope
ith situation. Participants agreed that illness was unpredictable—

here were usually too many factors involved to make sense of them.
or example, common cold or flu can result with different symptoms
ach time, which they said influenced their blood sugar levels to a
ifferent extent each time. While seasonal illness could be predictable,
ts specific effects are unpredictable. As a result, some participants
ould not manage their BG levels when ill; their situational coping
echanism was avoidance:

When I’m ill with a cold my blood glucose level is higher than usual
and, as I was saying, you just kind of... I don’t... I’m not so hot about
keeping on top of my blood glucose level because I spend those three
weeks thinking ‘oh, it’s a bit high but when I’m better I’ll get back on top
of things’. –P2, W5

Another participant reported ignoring their regular rules during ill-
ess. The unpredictable nature of an illness not only made it difficult to
ct in accordance with their routine heuristics, but could also adversely
mpact self-management, as this behaviour could influence health even
nce the illness had passed:

If it’s a prolonged illness [you’d change] your background insulin or
even being a bit more lax with your rules, like letting your rules kind of
just slide a little bit because you’re poorly. [...] I’ve had a cold for three
weeks, like two or three weeks, so my new background insulin is like the
norm now, but then as I get better [...] I’ll start having hypos because
I’m having too much background [insulin]. – P4, W5

Participants stated that the most useful decision support technology
would help them cope with such unexpected situations. For example,
Fig. 4 shows that in case of illness, participants would be keen to report
data retrospectively to teach the app how their data looks like when
they are unwell, with the hope that it would be useful in the future.
They also asserted that technology would have to distinguish between
data collected in routine vs non-routine situations, to ensure that they
received relevant support. The quote below describes how one group
of participants envisaged such a system:

Looking at the specific scenarios, say, illness, you’d be at work, you’d
start to feel ill but you’re not really sure whether you are getting ill,
you won’t know until the next morning usually, and then you get to the
next morning and you wake up and then yes, you’re definitely ill now.
Then you would tell the app you’re ill, and then you can work back
in retrospect, so you can tell it when you started feeling ill and then it
would segment that data separately to your regular data, so then it’s not
collecting that data as a whole, it’s collecting it like, ‘This is your illness
data’, ‘This is your holiday data’, so it won’t work the same as your basic
data, so it’s not drawing information based on when you’re ill, and the
algorithm learning from that, you’re giving it different contexts so it deals
with it differently. – P5, W6

Surprisingly, participants also accepted that the technology might
offer faulty recommendations when confronted with novel situations.
For example, in one of their storyboards (see Fig. 5) presented during
Workshop 3, they described a scenario in which such a mistake took
place:

P5: So, for this [scenario] you get up in the morning, eat your breakfast.
Chuck it in the app and take insulin based on that, and you’ve already
planned to go to the gym. So, then you’ve cycled to the gym. Then
9

as you’re cycling you get an alarm – you get hypo and then you
have to re-adjust [because the app gave you a wrong insulin dose
suggestion].

P13: It could be seen as not working but working because if this is
happening when the app is kind of getting to know you, then it could be
taking on this information and if you go through the same scenario again
at a later date, then it’s kind of learnt and can maybe make suggestions
about how many carbs you might want to think about taking before going
to the gym to avoid having a hypo. Part of the learning process.

During the same workshop (W3), participants agreed that such
learning would be necessary to improve the algorithms and help to
build trust:

P13: I guess you’ve gotta build a bit of trust and confidence in it all the
time.

Researcher: So, how would you go about doing this?

P3: Some of that’s to do with the data you put in, isn’t it? So, if you
know you’ve skipped things you might not trust it whereas if you know
that you’ve put in – you can trust your data but then there’s the data
just to test so, I guess it’s building trust in that data.

P14: Keep doing it until you trust it.

P3: And I suppose you’d have a gut feeling as well. If what it’s telling
you seems completely wrong you probably wouldn’t go with it. Whereas
if it seems... if you think it’s... well, you’d probably be more likely to.

The learning process could also be seen as a collaboration, where the
user would input some information along with automatically collected
data, and when the technology provided suggestions, the user would be
able to approve or reject them, which could address the lack of regular
data input and be useful in unexpected or non-routine situations.
Similar to participants from the study by Kanstrup et al. (2010), our
participants did not want to be simply told what to do. Instead, they
believed that this type of a dialogue would be more useful as it could
also help to verify advice, further build trust, and provide additional
information related to unexpected situations:

It might be suggesting doing something and you’re saying, ‘No because
I’m on holiday and I’m going to eat something completely different’. Or,
‘No, I’m in a different time zone so things are changing’. There might
be more reasons. Or, ‘No, because I’m ill, so I’m actually going to do
this differently instead. My background insulin is going up because I’m
ill and I need more’. You might use the ‘no’ reasons more than that, I
guess. I guess that could then build a profile based on whether you’re ill,
or on holiday. – P3, W6

As a result, most participants agreed that they would be willing to
go through an intensive ‘getting to know you’ phase where they would
be asked to manually track various factors to provide a reliable baseline
for the technology, particularly with classifying unexpected situations.
However, during a W5 discussion, they acknowledged that there would
inevitably be some missing data and therefore the ability to respond to
suggestions and agree/disagree with them was key:

P5: But it’s like if you’re eating a snack but you don’t tell it you’re eating
a snack and then it recognises an anomaly then could it just pop up and
say...

P11: ‘Did you eat a snack?’ [General laughter]

P4: Because then it could say like, as you said, ‘did you have a snack?’
and you said ‘no, I didn’t have a snack’ it could be like you’re getting
poorly or you’re really stressed or you don’t know.

P3: Often it’s the little things that you don’t put in for whatever reason,
isn’t it? [General agreement]
P4: Yeah, then that would learn that like that happens.
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Fig. 4. Two story boards presenting how someone could use a diabetes app that supports both types of unexpected situations. Top: reporting illness-related data retrospectively
once the user starts to feel better. Bottom: context-aware reminders recognising a person is travelling based on their location and the local time zone.
Fig. 5. A storyboard created by participants showing a situation where the app provided a wrong insulin dose suggestion, which resulted in the person getting a hypo while
exercising at the gym (Workshop 3). Text on the panels reads: 1. Eating loads of carbs. 2. Cycling to Gym. 3. Having a hypo—using app. 4. Eating Mars bar. 5. Working out at
Gym.
P3: Yeah, so the quality of the data you put in. But again, I think at
the end of the day almost you could almost sort of say ‘oh, I was a bit
rubbish today, I didn’t tell you much today’ or ‘I’ve been really good,
I’ve told you everything today’. It’s almost like... so you could almost
say ‘oh, yeah, this day isn’t very good to use as an example’ or ‘this day
is a pretty good day’, so you can almost just like say ‘just forget about
some data’ maybe.

Unexpected situations are potentially stressful and in some cases
hazardous. This is especially true when the user is unaware that such
an event has occurred. As a result, the individual has limited or no
experience to call upon, and the urgency of the situation limits the
ability to learn through trial and error. The stress of the situation might
also impair rational analysis. As such, these situations pose challenges
to the application of stage-based frameworks for self-discovery in data
(e.g. Li et al., 2010), or the ability to rationally reflect and then
construct and apply hypothesis (Mamykina et al., 2015). In addition,
the novelty of the situation suggests that ML methods will be limited
by paucity of personal data to use as a reference or use for algorithmic
analysis.
10
4.3. Decision-making in expected non-routine situations

Participants distinguished between everyday routines (which we
discuss in the next section) and less frequent but expected/planned
events, e.g. weekend routines, visiting parents or holidays. Travel was
a unique case as it was often planned and anticipated, but at the same
time also a source of significant disruption—especially when going
to a new destination. Travelling with a chronic illness is challeng-
ing (Ramanayake et al., 2019) and indeed, participants agreed that
even when routinely going to the same location, changes in time zone,
cuisine, access to shops, medical supplies, and weather could impact
BG levels, requiring changes in insulin doses and timing. However, as
they broadly knew what to expect, they had mental models in place to
help them deal with these situations.

[On holidays] I usually tend to make sure that I’m eating the right things
which will keep my blood sugar stable. Always making sure that I have
bits of food on me that I can eat at any time really. Also maybe adjusting
doses of background insulin, if I’m going to be out and about exploring,
because I don’t tend to go on many holidays where I just sit at the pool
or the beach. – P6, phone interview in lieu of W5
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In general, participants agreed that while some types of situations
were expected and in principle familiar, they could still result in sur-
prises. This included situations where they could anticipate and prepare
for variations to their routines, for example planning for travelling
abroad, especially to a country with a significant time zone difference
and unfamiliar foods. Their sketches and designs reflected the need
for context-relevant advice or timely notifications in such cases. For
example, when discussing travel, participants thought that location ser-
vices could be used to automatically recognise if they are in an airport
(see Fig. 4) or whether their time zone has changed, which could then
adjust any other decision-support features. Events such as Christmas
or visiting family were also mentioned as examples of situations that
could have unexpected results—often caused by irregular scheduling,
unusually large meals, and other activities that might impact diabetes
management.

A lot of the stuff you eat [during Christmas] tends to be quite sugary.
You’re not doing much exercise, you’re usually sat down for a large
amount of the holidays. So, the way you’re talking about routine,
Christmas is a bit of a blip in a routine really. For me anyway, it’s still
trying to look at labels and just dose accordingly and sometimes you get
it wrong because there’s other things at play like not being active is going
to have an effect as well. – P6, phone interview in lieu of W5

Such expected non-routine situations are by definition infrequent.
hile an individual might know they are coming, they have limited

ecent experience to guide their actions and therefore will need to
evelop new heuristics. This infrequency also results in scarce recent
etrospective personal data to be analysed.

Furthermore, participants reported habitual processes where they
ere unable to specify what justified their behaviour or decision-
aking, and therefore were not sure if technology could help in any
ay at all. These habits often manifested in situations where partic-

pants admitted actions that they knew were not good for them. For
xample, P11 admitted being ‘‘a chronic over-corrector’’ and ‘‘always’’
aving ‘‘hypo[s] from over-correcting’’, which highlighted a specific
attern in her behaviour: eating carbs straight away to increase BG
evels, but then realising she had overeaten, which required a reduction
ith an additional insulin injection, which led to hypoglycaemia. This
abitual over-correction frequently led to a ‘yo-yo’ effect where BG
evels repeatedly went up and down. This pattern contrasted with P8
ho reported not immediately correcting, waiting to see what would
appen, and then acting later. In both cases, participants reported ha-
itual behaviours despite recognising their counter-productive aspects.
ystems that are able to recognise such repetitive patterns in adverse
abitual behaviours could not only foster constructive self-reflection,
ut also potentially recommend strategies for behaviour change.

In addition, while participants reported that they had specific ‘di-
betes rules’ they followed (e.g. ‘‘if sugar level high, take insulin’’,
‘if sugar level low, eat carbs’’, ‘‘if drinking alcohol, eat in advance’’,
‘if returning home late, always eat before bed, especially if you were
rinking’’; see Fig. 6), when probed further at the subsequent workshop
t became apparent that these rules and routines were heavily context-
ependent. Furthermore, there were always exceptions, showing that
heir rules were not always true or adequate, as they were dependent
n multiple factors:

I think the if-then statements [i.e. the personal rules] would be more
complex maybe like ‘if this, this and this’. Rather than ‘it will only do
this’ it might be... well, that’s maybe not a good example, but if planning
exercise it might be ‘and you’re at this level and your levels are going
this way or that way’ then, yeah, I just think it could be more complex.
11

– P3, W5 G
This showed that while in general participants knew what to expect,
ometimes the factors to account for were too many to handle, and
o the rules had to be simplified. However, participants were still
damant that they would not want technology to help with such routine
vents. Their attitude was similar in the context of expected non-
outine situations. However, as these situations are expected, there are
pportunities for expert systems to help with planning. Although there
ay not be data for traditional approaches to machine learning, recom-
ender systems that could be used by people to plan self-management

ctivities, for instance for a big trip or a big holiday, might still be
seful albeit not as a real-time intervention.

.4. Decision-making in expected routine situations

Finally, when talking about potential decision support systems,
articipants made it clear that they did not need technology to help
ith routine everyday decisions. They already had clear rules (see
ig. 6) and established routines to guide their behaviour in familiar
ituations, e.g. calculating insulin dosage for the same breakfast every
ay, knowing how high their BG level must be before commuting to
ork or going about their usual day at work.

I don’t do anything at work, I literally sit down at a computer for eight
hours, very little movement and so I have my lunch, I have a salad for
lunch, no carbs in that anyway, so generally don’t do an injection with
that, so work is pretty simple to control, it’s just every other bit of living
is awkward. – P14, initial interview

This was particularly true for participants who had lived with T1D
or a while, as shown by this exchange from Workshop 6:

P14: I probably wouldn’t use [a decision support app] in everyday life,
because I’ve been diabetic for 35 years so there’s not much I would need
to be told how to do it. But things like going on holiday, different time
zones, exercises, that would be useful. I’d find it really useful.

P7: Yes, and I think it does depend on where you are, how long you’ve
had diabetes. For people who are only recently diagnosed, I think this
can be very, very helpful, but as you say, I’ve been insulin-dependent for
30 years, and I know what I’m doing most of the time.

Participants generally dismissed more explicit technology-based de-
ision support and from the very first workshop (see Fig. 7) expressed
heir lack of interest in regular, manual tracking of complex contextual
ata. From the technology perspective, this would make it difficult to
dentify trends within diabetes data as with scarce data even expert
nalysis is not always reliable (Mamykina et al., 2016).

Overall, given the presence of specific and trusted heuristics that
llowed them to manage their diabetes in most everyday situations,
ur participants were generally indifferent towards new technologies
n the context of expected or routine situations. However, they did
xpress interest in systems that could collaboratively support them in
he unexpected situations where they might lack proven heuristics. This
ighlights new opportunities for diabetes technologies as it suggests
he need to shift the focus away from continuous tracking and en-
agement with a decision support system, which has been the focus
f many commercial ventures. We discuss these results and highlight
he opportunities for ML and AI systems in the next section.

. Discussion

This research investigated how diabetes decision support systems
ould use AI and machine learning to better support the unmet needs
f people with diabetes. To this end, we conducted a series of co-
esign workshops to understand users’ decision-making practices, their
nformational needs, and expectations from decision support systems.

iven the number of T1D relevant data streams potentially available
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Fig. 6. Example ‘diabetes rules’ reported by participants during Workshop 4.
Fig. 7. Examples of potentially useful information, collected during Workshop 1. Two bottom sheets show that two participants would be interested in tracking exercise, sleep
temperature, travel and location—but only if these factors could be reliably tracked automatically.
and the high cognitive burden of self-care (Klonoff, 2007; Mamykina
and Mynatt, 2007), we sought to co-design machine learning enhanced
technologies to support tracking and interpreting self-management, as
per Choe et al. findings on its possible use in reducing burden (Choe
et al., 2017). These kinds of advances have been seen in DIY approaches
to T1D innovation (Kaziunas et al., 2018; O’Kane et al., 2016c), as
medical device regulation and commercial innovation failed to keep
up with user needs and expectations (Vincent et al., 2015). However,
despite potential opportunities identified for using ML for decision
support (e.g. Donsa et al., 2015), our focus on routine everyday care as
a central point for an ML-based intervention turned out to be misplaced.

The results confirm and expand the current research on T1D self-
management. Our participants already had specific and trusted heuris-
tics that allowed them to manage their diabetes in most situations
and, similar to Katz et al. (2018b), we found that many of these rules
were complex, flexible, and context dependent. These participants were
generally indifferent towards new technologies to support routine deci-
sion making, trusting their established heuristics and habits to provide
adequate self-management. In contrast, they did express interest in
decision support systems that could collaboratively support them in
unexpected situations where they might lack proven heuristics. This
has similarities to work by James et al. on how life transitions can
impact self-management of T1D, causing difficulties for AI and ML
innovations that rely on constant data streams (James et al., 2023).
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Therefore, it appears our participants were not interested in continuous
engagement with a decision support system, but rather only within
specific contexts. This echoes prior research that highlighted the need
for diabetes technologies to account for shifting contexts and environ-
mental factors (O’Kane et al., 2015). With this in mind, we use our
findings to analyse the potential of ML to support self-care outside the
routine everyday care context.

5.1. Machine learning for diabetes

Machine learning is an exciting technology for its ability to extract
knowledge from complex data and researchers have been exploring
its potential in supporting diabetes, e.g. Donsa et al. (2015), Forlenza
(2019), Mamykina et al. (2017), Plis et al. (2014), Sowah et al. (2020),
Tyler and Jacobs (2020), Woldaregay et al. (2019) and Yamagata et al.
(2020). However, many of the most successful ML techniques rely on
large and accurate data sets to extract statistical inferences, which
might impede successful implementation in the context of personalised
diabetes care. Our participants were resistant to continuous manual
data logging, and the opportunity for everyday decision support did
not appear to provide a sufficient reward to overcome this barrier. This
attitude is not unique (Arsand et al., 2012; Kristensen and Rucken-
stein, 2018) and suggests considerable barriers to building sufficient
data sets, given that automating data collection, e.g. carbohydrate
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Table 3
An overview of different types of situations with information about people’s heuristics based on their prior experience, related challenges for decision-support
systems, and examples of AI approaches that could provide support in each context.

Situation Example Heuristics Challenges Potential directions

Unexpected
Routine

Unexpected changes to
otherwise routine or
planned schedule, e.g.
unplanned events

Weaker heuristics Limited data Simple methods (linear classifiers,
shallow decision trees), ensemble
methods (e.g. random forests),
Bayesian methods; anomaly
detection

Unexpected
Non-Routine

Unknown situation (e.g.
illness), often a result of a
mistake or error, e.g.
injecting a wrong dose,
misplacing insulin

No or minimal
heuristics

Limited or no prior
data

Context-aware reminders
(prevention), comparisons to
baseline and alerts (assistance
after the situation has occurred)

Expected
Non-Routine

Change expected, e.g.
travel, holidays

Anticipated need for
new heuristics

Limited recent
retrospective personal
data

Combining multiple data sources
and methods, expert systems

Expected
Routine

Everyday routines, e.g.
regular work days, planned
weekend activities

Strong personal
heuristics

Low user engagement
as technology
considered not needed

Outlier detection, guided heuristic
optimisation through reflection
and hypothesis testing
s
m
t
u
d
w

intake, remains impractical (Anthimopoulos et al., 2015). Furthermore,
even personal data that can be collected is dependent on problem-
atic long-term adoption of wearable tracking devices (Harrison et al.,
2015). Research in other domains (e.g. home resource tracking) shows
that algorithmic predictions in real-world context can be difficult due
to routine changes or sporadic events (Fuentes et al., 2019). There-
fore, designing usable diabetes decision support systems requires a
nuanced approach that accounts for non-continuous use and contextual
requirements.

Like many commercial ventures and large research projects in this
domain, e.g. IBM (Latts, 2019; O’Leary, 2022), we made some initial
assumptions about the needs of the participants in the set-up of the
co-design sessions. In particular, we had assumed their motivation for
everyday assistance could potentially overcome manual tracking issues
and lead to new insights for everyday engagements with ML-enhanced
self-care technologies. The immediate and consistent push-back from
the participants meant we had to think about addressing their real
needs, i.e. identifying the potential of technological support in unex-
pected and non-routine situations without the need for constant data
collection. It also showed the limitations of focusing on an exclu-
sively ML-based approach to innovation for self-management of T1D.
Therefore, we had to think more widely about what a self-care system
might mean for people with T1D, and indeed think about less high-
tech approaches to deal with people’s lived experiences and their real
technology needs. We discuss these considerations below.

5.2. Opportunities for artificial intelligence and machine learning

Prior work investigating the use of AI/ML in diabetes self
-management has focused primarily on algorithms and technical as-
pects of predicting and detecting various factors, e.g. BG variability or
hypo-/hyperglycaemia (Donsa et al., 2015; Sowah et al., 2020; Tyler
and Jacobs, 2020; Woldaregay et al., 2019; Yamagata et al., 2020).
With the growing focus on human-centred AI (Grudin, 2009; Inkpen
et al., 2019; Winograd, 2006; Yang et al., 2020), HCI researchers have
also explored how ML could be used to provide personalised predic-
tions (Desai et al., 2019) or support sensemaking based on self-tracking
insights (Mamykina et al., 2017). We extend this work by outlining the
opportunities for using AI/ML approaches as part of diabetes decision
support systems. We focus on potential solutions that could address
user needs identified by our participants while taking into account
issues with scarce data and aversion to tracking (Arsand et al., 2012;
Kristensen and Ruckenstein, 2018). Below we point towards alternative
AI approaches to offer specific directions for future research. We argue
that rather than trying to change users’ behaviour and encourage
systematic tracking and engagement with technology, a comprehensive
diabetes decision support system needs to account for different types of
13
situations and should thus rely on a mixture of AI approaches that can
provide assistance even with scarce data. We use the types of situations
identified in our results to structure the discussion. The main points are
summarised in Table 3 and described in more detail below.

5.2.1. Supporting unexpected routine situations
Our results suggest that focusing on unexpected situations would

provide the most benefits to people with Type 1 Diabetes. The lim-
ited data caused by general dislike to prolonged tracking is a known
issue (Arsand et al., 2012; Harrison et al., 2015; Kristensen and Ruck-
enstein, 2018), and introduces several difficulties as ML models trained
with such data may lead to less accurate predictions. The issue of
limited data could be mitigated by the use of simple methods such
as linear classifiers or shallow decision trees, or ensembles of
uch models, e.g. random forests. Ensemble methods train multiple
odels and aggregate predictions from them, which helps to assess

he uncertainty in the aggregate prediction (Flach, 2012). A chatbot
sing ensemble methods have been developed to support diabetes
iagnosis (Bali et al., 2019) and a similar solution could potentially
ork for decision support. Another option is using Bayesian methods

which combine prior assumptions about average instances with training
data from a target instance to obtain posterior distributions of the
model parameters better representing that instance (Flach, 2012). With
the right prior parameters such methods perform well even with small
amounts of training data. In the case of diabetes, the prior can be
obtained from a small population of people to train a personalised
model with the target individual’s data. These approaches can estimate
the uncertainty associated with the prediction, which is a key factor
when making a decision. For example, our participants suggested that
they would be willing to spend some time collecting data to initially
train the algorithm; such willingness is not unique to the diabetes
context and prior research shows that patients are willing to engage in
self-tracking if they see benefits of this behaviour (Ayobi et al., 2020;
Rooksby and Rost, 2014). Even though people in general abandon self-
tracking (Harrison et al., 2015), this initial data could still be used
by Bayesian methods to provide initial suggestions. If more data was
collected with time, we could then move away from these models
towards more complex solutions (e.g. deep neural networks) to get
more accurate predictions.

As the unexpected routine situations have previous analogous oc-
currences, the technology could also highlight situations where data
looks anomalous. Given that these situations are familiar and may
be just happening at a different time or in a different order, simple
notifications when an anomaly is detected could be enough, as the
user would then know what to do. For example, a review of ML
solutions for diabetes (Woldaregay et al., 2019) shows that anomaly
detection is already frequently used, albeit mainly with the intention
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to supporting BG predictions. However, these solutions rely on large
amounts of data and suffer from variability of data that is collected.
Therefore, simply notifying people about anomalies, without trying
to predict the outcomes, could be a good solution for situations with
scarce data.

Furthermore, notifications triggered by anomaly detection algo-
rithms could also serve as a starting point for a collaboration between
the user and technology. For example, our participants suggested an
app that notifies them when it detects a sudden spike in BG level that
does not correlate with registered activity or other data. As participants
noted that they would be willing to engage in time-limited data col-
lection, such notifications could initiate the capture of retrospective
data. Therefore, a diabetes support system could initiate a period of
collecting such data and take the user through a systematic procedure
of documentation, cause-and-effect modelling, and finally heuristic
building (Mamykina et al., 2017). Such heuristics could then be drawn
upon in future analogous situations.

5.2.2. Supporting unexpected non-routine situations
Unexpected non-routine situations are even trickier to address with

ML/AI approaches as by definition there is no prior data. However,
rather than trying to predict unpredictable, diabetes decision support
systems could focus on prevention instead. HCI research on context-
aware reminders provides a good template on how such situations
could be supported (e.g. Brewer et al., 2017). For example, researchers
developed medication adherence systems that used context-aware re-
minders to warn users when they were about to leave without taking
their medications or when they were past their normal medication-
taking time (Asai et al., 2011; Singh and Varshney, 2014; Varshney,
2013). A similar approach could be applied to diabetes and potentially
notify users when they leave at a different time or do not have their
insulin kit with them. For example, this could be achieved through
the use of interactive stickers attached to the kit (Williams, 2020) that
would trigger an alert when users’ phone is away from the insulin.
Furthermore, a combination of calendar access and location data could
trigger notifications to remind users to pack their insulin kit and
carb-rich snacks, although this could be perceived as potentially too
intrusive. Similar approaches have been explored in the context of
supporting physical activity (Haghbin and Kersten-Oertel, 2021) and
used a combination of location data and activity levels to ensure the
notifications were actionable.

In addition to prevention, the system could provide assistance after
an unexpected non-routine situation occurred. If a user is in need
of finding emergency snacks of insulin, the system could correlate the
GPS data and food databases like MyFitnessPal to help locate nearest
health centres, chemists, or grocery shops as well as providing store
hours and telephone numbers to reduce the effort of attaining supplies.
Furthermore, if there is some baseline data to serve as a reference point,
mentioned earlier anomaly or novelty detection (Simeone et al., 2017)
could be used to notify the user when the data significantly differs from
the norm. Even with limited data, this could be enough to alert the
user. When a person detects such a situation, regardless of whether
they noticed it themselves or were notified by technology, they may
panic or worry. A simple checklist could help here. For example, some
mental health apps allow users to create a safety plan to refer to in crisis
situations or save contact details of trusted individuals (O’Grady et al.,
2020). In the case of diabetes, the checklist could provide a simple step-
by-step guide (‘‘Stay Calm. Check your current blood sugar level. Check
how much insulin you have with you’’, and so on). It could also be
an expert system that is a de facto risk assessment tool: by asking a
series of questions (e.g. What is your sugar level? Do you have insulin
with you? Do you have your snacks? Is there a grocery store nearby?),
it could calculate a risk score and provide relevant suggestions whilst
helping the user to calm down. Such a system could attempt to reduce
the cognitive effort involved in sensemaking, and, given the potential
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urgency, emphasise solution-finding over learning processes.
It is also worth considering that not every unexpected non-routine
situation is entirely novel. Except for those with a new diagnosis, people
with T1D often have at least some experience dealing with similar sit-
uations (Mamykina et al., 2015; Mamykina and Mynatt, 2007; O’Kane,
2016), so technology could help them draw from these experiences. As
such, after recovering from an unexpected non-routine situation, the
system could encourage reflection on what happened and the actions
the individual decided to take. Kocielnik et al. (2018) developed a
system that used a conversational user interface to support reflec-
tion over one’s physical activity. Using similar ‘mini-dialogues’, the
diabetes support system could help to classify non-routine situations,
match them with similar events, and recommend other approaches or
heuristics that had proven successful in parallel situations.

Such recommendation could also potentially access heuristics mined
from social networks or message boards. When there is no medical
urgency, tools for supporting structured guidance through the sense-
making process (Mamykina et al., 2016) could be a promising ap-
proach. Another option would be a collaborative system that anticipates
problems, suggests potential interventions, and then asks for feedback
to build models of efficacy (Pejovic and Musolesi, 2015). Moreover,
by combining the approaches discussed above, we could create an
anticipatory system that uses automatically collected data (e.g. from
mobile phone or a CGM) to facilitate sensemaking and reflection which
could help people manage unexpected situations.

Finally, illness is another example of a situation mentioned by
our participants where ML algorithms may not be the right solution.
Even if someone catches a cold or flu every year, which can make
it seem like a routine occurrence, the symptoms and body’s reactions
differ as different strains of flu are active every year (NHS Choices,
2019). This can get further complicated with novel viruses that have
similar symptoms to flu: several studies conducted during the COVID-
19 pandemic have suggested people with diabetes have increased risks
of more severe outcomes, including death (Barron et al., 2020; Petrilli
et al., 2020). As a result, there may not be enough data to support ML
algorithms. We discuss in the next section how crowdsourcing could
be used for non-routine situations where data is lacking, but illness
is too personal and heavily context-dependent, and thus there could
be too much variability in the data to extract meaningful conclusions.
However, community support may still be useful—not for generating
data to feed algorithms, but for providing advice and learning from
others’ experiences. There might be therefore a potential for a Q&A
system using language models like GPT-3 (Brown, 2012) that could be
trained on health advice and community content to provide answers,
although reliability could be an issue as, in the context of chronic
conditions, wrong advice can be dangerous.

5.2.3. Supporting expected non-routine situations
Both our results as well as existing literature show that people

with T1D are generally able to cope with expected non-routine situ-
ations (Mamykina et al., 2015; Mamykina and Mynatt, 2007; O’Kane,
2016), such as planned travel, although they would still benefit from
decision-making support. However, given a lack of personal data, this is
difficult to implement. One approach to address it would be to combine
a personalised model with contextual and crowdsourced data. A
personalised model based on user’s patterns could be collected before
the trip to establish a baseline for standard Physiologic Model-Based
Algorithms, i.e. algorithms that learn glucose and insulin metabolism
dynamics with parameters (Yamagata et al., 2020). This could then be
combined with crowdsourced data, which could be mined for trends
and clustered to identify similar profiles. For example, the non-profit
group Tidepool (Tidepool Project, 2020) has been assembling large
multi-feature personal data sets. However, Tidepool data is not an-
notated. Therefore, another option would be a creation of publicly
available annotation tools that would enable the labelling of crowd-
sourced data, which would expand the opportunity for the application

of machine learning techniques.
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A second approach would be to move away from machine learning
approaches and towards expert systems (Rudin, 2019). Rather than
aiming to provide specific suggestions, such a system could instead
support preparation and reflection. Taking the travel example, people
often engage in preparation and data gathering beforehand, e.g. by
consulting online reviews on destinations (Brown, 2012). This enables
them to find specific information, learn about experiences of others,
and even make comparisons with their previous experiences in the
same or similar place. An expert system aimed at people with diabetes
could support such research by offering suggestions of articles that
match the context, checklists to help with planning, asking specific
questions (e.g. what leisure activities are you planning?), or enabling
a modelling tool to explore different what-if scenarios and develop
resilience strategies.

Both approaches are based on the premise that people are averse
to habitual manual tracking and data labelling. However, there is
evidence that some people do engage in tracking (Rooksby and Rost,
2014), and indeed a couple of our participants reported tracking meals
in detail. A decision support system aimed at people with diabetes
could take advantage of existing habits of such trackers, as their data
could contribute to crowdsourced models and data sets that could
be used by ML and other AI approaches. Crowdsourcing has already
been used to support annotations for machine learning, e.g. in the
context of privacy policies (Wilson et al., 2016) and tools supporting
such annotation acquisition exist, e.g. Revolt (Chang et al., 2017b). In
addition, passive data sharing of anonymised automatically collected
data such as location, activity, BG levels, weather, etc. could also feed
into such systems.

5.2.4. Supporting expected routine situations
Finally, participants were clear they did not need or want a decision-

making support for everyday situations. Such everyday management
has been studied in HCI in detail (e.g. Danesi et al., 2018; Mamykina
et al., 2008; Owen et al., 2015; Raj et al., 2019b; O’Kane, 2016;
Mamykina and Mynatt, 2007), and highlights the expertise of people
with T1D and the role of their lived experiences in informing their
decisions. In line with this research, our participants reported relying
on specific rules and heuristics for certain routine situations (Raj et al.,
2019b). However, similar to Katz et al. (2018b), we found that many of
these rules were complex and flexible, and did not always apply in real-
world situations. Therefore, there is a potential for a decision support
system to intervene in situations that may not be as well-known as one
thinks. Such systems could help to detect situations which deviate from
recommended or customised thresholds not only on BG levels but also
behaviours correlated with improved outcomes. This could be done by
collecting sensor data to provide tailored insights and alerts, which
ould evidence a need to challenge assumptions—akin to the potential
nticipatory system outlined earlier in Section 5.2.2.

Systems could also seek to improve existing heuristics and routines
y supporting users in documenting them and guiding reflection, hy-
othesis testing, and iterative refinement. O’Murchu and Sigfridsson
xplored the use of a similar system (O’Murchu and Sigfridsson, 2010).
hey developed an app that allows users to collect data that they
ind meaningful (e.g. BG levels, insulin injections, diet, medications,
hysical activity) and create their own categories (‘tags’) for data to
elp make associations between then. By allowing users to define
he categories, such a system can not only support agency, but also
acilitate engagement, which leads to improved sensemaking in the
uture (Ayobi et al., 2020). As such, it could support hypothesis testing
nd heuristic refinements.

.3. Limitations and future work

Our participants reported being diagnosed with T1D between 3 and
0+ years ago, including two participants who still suspected being in
he ‘‘honeymoon period’’ (i.e. when the pancreas still produces some
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t

nsulin) and no participants were newly diagnosed. Therefore, our
indings may not reflect these early experiences, although during the
orkshops our participants reflected on how their information needs

hanged over time and shared their early experiences. Moreover, the
lexibility of solutions proposed during workshops means that they
ould be adapted to the needs of people with differing diabetes experi-
nce. Similarly, despite having a mix of people of differing professions,
ur self-selection recruitment process resulted in a disproportionately
ale, white, and experienced participant group. While this may have

esulted in biasing results, mitigating factors include the lack of corre-
ation between age, gender and self-described diabetes decision-making
rocesses (Katz et al., 2018b) and the fact that while learning the basics
f self-care is essential, it is also generally a short part of a lifetime
iving with diabetes (Klasnja et al., 2015). Nevertheless, their needs
ay still differ from those of people from different socio-economic

ackgrounds and/or those less comfortable with using technology, and
uture work needs to recruit a more diverse pool of participants.

The format of the study and the fact that our participants could
nteract with peers might have influenced the results. They often
xchanged ideas and discussed their experiences, which sometimes
hifted everyone’s attention away from tasks at hand or could have
ed to groupthink. In addition, we did not build anything tangible
s, similar to Jiang et al. (2021), our goal was to identify specific
pportunities for Human-Centred Machine Learning and highlight po-
ential directions for future research in the area of diabetes decision
upport, and thus the focus of the workshops was on idea generation
nd discussions to understand how they would affect people’s lives.
detailed account of lessons learned from our approach is published

lsewhere (Ayobi et al., 2021a).
Finally, we have focused only on people with T1D, but diabetes

are also involves others, including family members and healthcare
rofessionals. Future work should include their perspectives to ensure
ore comprehensive care, especially that their input and support could

e valuable when dealing with unexpected situations.

. Conclusions

Diabetes self-management requires making sense of myriad factors
n order to manage blood glucose levels and thereby minimise risks.
achine learning has generated interest as a promising method to

mprove diabetes management. However, popular machine learning
pproaches often rely on the availability of large multi-featured sets
o identify meaningful patterns based on frequently occurring events.
lthough our project team initially focused on ML-enhanced technol-
gy possibilities to support everyday self-management practices with
ersonal data, this context of use was not wanted by our participants.
ur results suggest that support for familiar, everyday situations – that
ould be the source of rich data – is needed the least, as people with
iabetes already know what to do based on their lived experience.
nfortunately, it is the unexpected and unfamiliar situations where
ecision support would be most useful, and in these situations train-
ng data sets would typically be small and therefore noise would be
roblematic. We argue that the socio-technical challenges to each type
f situation are unique, and systems to support such situations need
o be flexible, accounting for different types of situations and contexts.
oreover, technological innovations that assist these situations, in par-

icularly during non-routine times where automated decision support
ould be most useful, might have to rely on more traditional and
ess data intensive approaches to artificial intelligence such as expert
ystems, not just current trendy machine learning applications.

RediT authorship contribution statement

Katarzyna Stawarz: Methodology, Formal analysis, Investigation,
riting – original draft, Writing – review & editing, Project administra-

ion. Dmitri Katz: Writing – original draft, Writing – review & editing.



International Journal of Human - Computer Studies 173 (2023) 103003K. Stawarz et al.

P

Amid Ayobi: Writing – original draft, Writing – review & editing,
roject administration. Paul Marshall: Conceptualization, Method-

ology, Formal analysis, Investigation, Resources, Writing — original
draft, Supervision, Funding acquisition. Taku Yamagata: Investigation,
Resources, Writing – review & editing. Raul Santos-Rodriguez: Con-
ceptualization, Methodology, Writing – review & editing. Peter Flach:
Conceptualization, Methodology, Writing – review & editing, Funding
acquisition. Aisling Ann O’Kane: Conceptualization, Methodology,
Formal analysis, Investigation, Resources, Writing — original draft,
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data underpinning the result presented here is not available as a
result of ethical considerations.

Acknowledgements

This project was funded by an Innovate UK Digital Catalyst Award
- Digital Health. RSR was partially funded by the UKRI Turing AI
Fellowship EP/V024817/1. We would like to thank our participants for
their invaluable input.

References

Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M., 2018. Trends and
trajectories for explainable, accountable and intelligible systems: an HCI research
agenda. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. CHI ’18, Association for Computing Machinery, New York,
NY, USA, pp. 1–18. http://dx.doi.org/10.1145/3173574.3174156.

Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T., 2014. Power to the people: The
role of humans in interactive machine learning. AI Mag. 35 (4), 105–120. http:
//dx.doi.org/10.1609/aimag.v35i4.2513.

Anthimopoulos, M., Dehais, J., Shevchik, S., Ransford, B.H., Duke, D., Diem, P.,
Mougiakakou, S., 2015. Computer vision-based carbohydrate estimation for type 1
patients with diabetes using smartphones. J. Diabetes Sci. Technol. 9 (3), 507–515.

Ariail, D.L., Aronson, J.E., Aukerman, R., Khayati, A., 2015. Support for the inclusion
of personal value preferences in decision support systems. J. Manag. Inf. Decis. Sci.
18 (1), 123.

Arsand, E., Frøisland, D.H., Skrøvseth, S.O., Chomutare, T., Tatara, N., Hartvigsen, G.,
Tufano, J.T., 2012. Mobile health applications to assist patients with diabetes:
lessons learned and design implications. J. Diabetes Sci. Technol. 6 (5), 1197–1206.

Arsand, E., Varmedal, R., Hartvigsen, G., 2007. Usability of a mobile self-help tool for
people with diabetes: the easy health diary. In: IEEE International Conferenceon
on Automation Science and Engineering, 2007. CASE 2007, IEEE, pp. 863–868.

Asai, D., Orszulak, J., Myrick, R., Lee, C., Coughlin, J.F., de Weck, O.L., 2011.
Context-aware reminder system to support medication compliance. In: 2011 IEEE
International Conference on Systems, Man, and Cybernetics. pp. 3213–3218.

Ayobi, A., Marshall, P., Cox, A.L., 2020. Trackly: a customisable and pictorial self-
tracking app to support agency in multiple sclerosis self-care. In: Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems. pp. 1–15.

Ayobi, A., Marshall, P., Cox, A.L., Chen, Y., 2017. Quantifying the body and caring
for the mind: self-tracking in multiple sclerosis. In: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems - CHI ’17. ACM Press,
New York, New York, USA, pp. 6889–6901. http://dx.doi.org/10.1145/3025453.
3025869.

Ayobi, A., Sonne, T., Marshall, P., Cox, A.L., 2018. Flexible and mindful self-tracking:
design implications from paper bullet journals. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18, Association for
Computing Machinery, New York, NY, USA, pp. 1–14. http://dx.doi.org/10.1145/
3173574.3173602.

Ayobi, A., Stawarz, K., Katz, D., Marshall, P., Yamagata, T., Santos-Rodriguez, R.,
Flach, P., O’Kane, A.A., 2021a. Co-designing personal health? Multidisciplinary
benefits and challenges in informing diabetes self-care technologies. Proc. ACM
16

Hum.-Comput. Interact. 5 (CSCW2), http://dx.doi.org/10.1145/3479601.
Ayobi, A., Stawarz, K., Katz, D., Marshall, P., Yamagata, T., Santos-Rodríguez, R.,
Flach, P., O’Kane, A.A., 2021b. Machine learning explanations as boundary objects:
how AI researchers explain and non-experts perceive machine learning. In: 2021
Joint ACM Conference on Intelligent User Interfaces Workshops. ACMIUI-WS.

Bali, M., Mohanty, S., Chatterjee, S., Sarma, M., Puravankara, R., 2019. Diabot: a
predictive medical chatbot using ensemble learning. Int. J. Recent Technol. Eng.
2277–3878.

Barron, E., Bakhai, C., Kar, P., Weaver, A., Bradley, D., Ismail, H., Knighton, P.,
Holman, N., Khunti, K., Sattar, N., et al., 2020. Associations of type 1 and type
2 diabetes with COVID-19-related mortality in England: a whole-population study.
Lancet Diabetes Endocrinol.

Beauchamp, T.L., Childress, J.F., et al., 2001. Principles of Biomedical Ethics. Oxford
University Press, USA.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res. Psychol.
3 (2), 77–101. http://dx.doi.org/10.1191/1478088706qp063oa.

Brewer, R., Morris, M.R., Lindley, S.E., 2017. How to remember what to remember:
exploring possibilities for digital reminder systems. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 1 (3), 1–20.

Brown, B., 2012. Beyond recommendations: Local review web sites and their impact.
ACM Trans. Comput.-Hum. Interact. 19 (4), 1–24.

Brown, S.A., Kovatchev, B.P., Raghinaru, D., Lum, J.W., Buckingham, B.A., Kudva, Y.C.,
Laffel, L.M., Levy, C.J., Pinsker, J.E., Wadwa, R.P., et al., 2019. Six-month
randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl.
J. Med. 381 (18), 1707–1717.

Chang, J.C., Amershi, S., Kamar, E., 2017b. Revolt: collaborative crowdsourcing for
labeling machine learning datasets. In: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. CHI ’17, Association for Computing Ma-
chinery, New York, NY, USA, pp. 2334–2346. http://dx.doi.org/10.1145/3025453.
3026044.

Chang, B.P.I., Webb, T.L., Benn, Y., 2017a. Why do people act like the proverbial
ostrich? Investigating the reasons that people provide for not monitoring their goal
progress. Front. Psychol. 8, http://dx.doi.org/10.3389/fpsyg.2017.00152.

Choe, E.K., Abdullah, S., Rabbi, M., Thomaz, E., Epstein, D.A., Cordeiro, F., Kay, M.,
Abowd, G.D., Choudhury, T., Fogarty, J., et al., 2017. Semi-automated tracking:
a balanced approach for self-monitoring applications. IEEE Pervasive Comput. 16
(1), 74–84.

Clarke, V., Braun, V., 2021. Thematic analysis: a practical guide. Them. Anal. 1–100.
Cordeiro, F., Epstein, D.A., Thomaz, E., Bales, E., Jagannathan, A.K., Abowd, G.D.,

Fogarty, J., 2015. Barriers and negative nudges: Exploring challenges in food
journaling. In: Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. pp. 1159–1162.

Danesi, G., Pralong, M., Pidoux, V., 2018. Embodiment and agency through self-tracking
practices of people living with diabetes. In: Metric Culture. Emerald Publishing
Limited.

Desai, P.M., Mitchell, E.G., Hwang, M.L., Levine, M.E., Albers, D.J., Mamykina, L.,
2019. Personal health oracle: explorations of personalized predictions in diabetes
self-management. In: Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. CHI ’19, Association for Computing Machinery, New York,
NY, USA, pp. 1–13. http://dx.doi.org/10.1145/3290605.3300600.

Donsa, K., Spat, S., Beck, P., Pieber, T.R., Holzinger, A., 2015. Towards personalization
of diabetes therapy using computerized decision support and machine learning:
some open problems and challenges. Smart Health 237–260.

Epstein, D.A., Caldeira, C., Figueiredo, M.C., Lu, X., Silva, L.M., Williams, L., Lee, J.H.,
Li, Q., Ahuja, S., Chen, Q., Dowlatyari, P., Hilby, C., Sultana, S., Eikey, E.V.,
Chen, Y., 2020. Mapping and taking stock of the personal informatics literature.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4 (4), http://dx.doi.org/
10.1145/3432231, URL https://doi-org.abc.cardiff.ac.uk/10.1145/3432231.

Flach, P., 2012. Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press.

Forlenza, G.P., 2019. Use of artificial intelligence to improve diabetes outcomes in
patients using multiple daily injections therapy. Diabetes Technol. Therapeutics 21
(S2), S2–4–S2–8. http://dx.doi.org/10.1089/dia.2019.0077.

Fuentes, C., Porcheron, M., Fischer, J.E., Costanza, E., Malilk, O., Ramchurn, S.D., 2019.
Tracking the consumption of home essentials. In: Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, pp. 1–13.

Funnell, M.M., Anderson, R.M., 2004. Empowerment and self-management of diabetes.
Clin. Diabetes 22 (3), 123–127.

Furniss, D., Back, J., Blandford, A., 2012. Cognitive resilience: Can we use Twitter to
make strategies more tangible? In: Proceedings of the 30th European Conference
on Cognitive Ergonomics - ECCE ’12. ACM Press, New York, New York, USA, p.
96. http://dx.doi.org/10.1145/2448136.2448156.

Furniss, D., Back, J., Blandford, A., Hildebrandt, M., Broberg, H., 2011. A resilience
markers framework for small teams. Reliab. Eng. Syst. Saf. 96 (1), 2–10. http:
//dx.doi.org/10.1016/j.ress.2010.06.025.

Furniss, D., Barber, N., Lyons, I., Eliasson, L., Blandford, A., 2014. Unintentional non-
adherence: can a spoon full of resilience help the medicine go down? BMJ Qual.
Saf. 23, 95–98. http://dx.doi.org/10.1136/bmjqs-2013-002276.

Gianfrancesco, M.A., Tamang, S., Yazdany, J., Schmajuk, G., 2018. Potential biases in
machine learning algorithms using electronic health record data. JAMA Internal
Med. 178 (11), 1544. http://dx.doi.org/10.1001/jamainternmed.2018.3763.

http://dx.doi.org/10.1145/3173574.3174156
http://dx.doi.org/10.1609/aimag.v35i4.2513
http://dx.doi.org/10.1609/aimag.v35i4.2513
http://dx.doi.org/10.1609/aimag.v35i4.2513
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb3
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb3
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb3
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb3
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb3
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb4
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb4
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb4
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb4
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb4
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb5
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb5
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb5
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb5
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb5
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb6
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb6
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb6
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb6
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb6
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb7
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb7
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb7
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb7
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb7
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb8
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb8
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb8
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb8
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb8
http://dx.doi.org/10.1145/3025453.3025869
http://dx.doi.org/10.1145/3025453.3025869
http://dx.doi.org/10.1145/3025453.3025869
http://dx.doi.org/10.1145/3173574.3173602
http://dx.doi.org/10.1145/3173574.3173602
http://dx.doi.org/10.1145/3173574.3173602
http://dx.doi.org/10.1145/3479601
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb12
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb13
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb13
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb13
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb13
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb13
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb14
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb15
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb15
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb15
http://dx.doi.org/10.1191/1478088706qp063oa
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb17
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb17
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb17
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb17
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb17
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb18
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb18
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb18
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb19
http://dx.doi.org/10.1145/3025453.3026044
http://dx.doi.org/10.1145/3025453.3026044
http://dx.doi.org/10.1145/3025453.3026044
http://dx.doi.org/10.3389/fpsyg.2017.00152
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb22
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb23
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb24
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb25
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb25
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb25
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb25
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb25
http://dx.doi.org/10.1145/3290605.3300600
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb27
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb27
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb27
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb27
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb27
http://dx.doi.org/10.1145/3432231
http://dx.doi.org/10.1145/3432231
http://dx.doi.org/10.1145/3432231
https://doi-org.abc.cardiff.ac.uk/10.1145/3432231
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb29
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb29
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb29
http://dx.doi.org/10.1089/dia.2019.0077
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb31
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb32
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb32
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb32
http://dx.doi.org/10.1145/2448136.2448156
http://dx.doi.org/10.1016/j.ress.2010.06.025
http://dx.doi.org/10.1016/j.ress.2010.06.025
http://dx.doi.org/10.1016/j.ress.2010.06.025
http://dx.doi.org/10.1136/bmjqs-2013-002276
http://dx.doi.org/10.1001/jamainternmed.2018.3763


International Journal of Human - Computer Studies 173 (2023) 103003K. Stawarz et al.
Gillespie, T., Seaver, N., 2016. Critical algorithm studies: A reading list. Soc. Media
Collect.

Gillies, M., Fiebrink, R., Tanaka, A., Garcia, J., Bevilacqua, F., Heloir, A., Nunnari, F.,
Mackay, W., Amershi, S., Lee, B., d’Alessandro, N., Tilmanne, J., Kulesza, T.,
Caramiaux, B., 2016. Human-centred machine learning. In: Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing Systems. CHI
EA ’16, Association for Computing Machinery, New York, NY, USA, pp. 3558–3565.
http://dx.doi.org/10.1145/2851581.2856492.

Gough, B., Madill, A., 2012. Subjectivity in psychological science: From problem to
prospect. Psychol. Methods 17 (3), 374.

Gouveia, R., Pereira, F., Karapanos, E., Munson, S., Hassenzahl, M., 2016. Exploring the
design space of glanceable feedback for physical activity trackers. In: Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing.

Grudin, J., 2009. AI and HCI: Two fields divided by a common focus. AI Mag. 30
(4), 48–57. http://dx.doi.org/10.1609/aimag.v30i4.2271, URL https://ojs.aaai.org/
index.php/aimagazine/article/view/2271.

Haghbin, N., Kersten-Oertel, M., 2021. On the impact of context-aware notifications on
exercising. In: 22nd International Conference on Human-Computer Interaction with
Mobile Devices and Services. MobileHCI ’20, Association for Computing Machinery,
New York, NY, USA, http://dx.doi.org/10.1145/3406324.3417145.

Harrington, C.N., Wilcox, L., Connelly, K., Rogers, W., Sanford, J., 2018. Designing
health and fitness apps with older adults: Examining the value of experience-based
co-design. In: ACM International Conference Proceeding Series. ACM, New York,
NY, USA, pp. 15–24. http://dx.doi.org/10.1145/3240925.3240929.

Harrison, D., Marshall, P., Bianchi-Berthouze, N., Bird, J., 2015. Activity tracking: barri-
ers, workarounds and customisation. In: Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. pp. 617–621.

Inkpen, K., Chancellor, S., De Choudhury, M., Veale, M., Baumer, E.P., 2019. Where is
the human? Bridging the gap between AI and HCI. In: Extended Abstracts of the
2019 CHI Conference on Human Factors in Computing Systems. pp. 1–9.

International Diabetes Federation, 2017. IDF diabetes atlas 8th edition.
James, S., Armstrong, M., Abdallah, Z., O’Kane, A.A., 2023. Chronic care in a life

transition: challenges and opportunities for artificial intelligence to support young
adults with type 1 diabetes moving to university. In: Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. Association for Computing
Machinery. ACM, New York, NY, USA.

Jiang, J.A., Wade, K., Fiesler, C., Brubaker, J.R., 2021. Supporting serendipity:
opportunities and challenges for human-AI collaboration in qualitative analysis.
Proc. ACM Hum.-Comput. Interact. 5 (CSCW1), 1–23.

Jones, J., Gouge, C., Crilley, M., 2017. Design principles for health wearables. Commun.
Des. Q. Rev. 5 (2), 40–50.

Kanstrup, A.M., Glasemann, M., Nielsby, O., 2010. IT-services for everyday life with
diabetes: learning design, community design, inclusive design. In: Proceedings of
the 8th ACM Conference on Designing Interactive Systems. ACM, pp. 404–407.

Karkar, R., Schroeder, J., Epstein, D.A., Pina, L.R., Scofield, J., Fogarty, J., Kientz, J.A.,
Munson, S.A., Vilardaga, R., Zia, J., 2017. TummyTrials: a feasibility study of
using self-experimentation to detect individualized food triggers. In: Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. CHI ’17,
Association for Computing Machinery, New York, NY, USA, pp. 6850–6863. http:
//dx.doi.org/10.1145/3025453.3025480.

Katan, S., Grierson, M., Fiebrink, R., 2015. Using interactive machine learning to
support interface development through workshops with disabled people. In: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. CHI ’15, Association for Computing Machinery, New York, NY, USA, pp.
251–254. http://dx.doi.org/10.1145/2702123.2702474.

Katz, D.S., Price, B.A., Holland, S., Dalton, N.S., 2018a. Data, Data Everywhere, and
Still Too Hard to Link: Insights from User Interactions with Diabetes Apps. In:
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
- CHI ’18. ACM Press, New York, New York, USA, pp. 1–12. http://dx.doi.org/10.
1145/3173574.3174077.

Katz, D.S., Price, B.A., Holland, S., Dalton, N.S., 2018b. Designing for diabetes decision
support systems with fluid contextual reasoning. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. pp. 1–12.

Kaziunas, E., Lindtner, S., Ackerman, M.S., Lee, J.M., 2018. Lived data: tinkering with
bodies, code, and care work. Hum.–Comput. Interact. 33 (1), 49–92.

Kim, Y.-H., Jeon, J.H., Lee, B., Choe, E.K., Seo, J., 2017. OmniTrack: a flexible self-
tracking approach leveraging semi-automated tracking. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 1 (3), http://dx.doi.org/10.1145/3130930.

Klasnja, P., Kendall, L., Pratt, W., Blondon, K., 2015. Long-term engagement with
health-management technology: a dynamic process in diabetes. In: AMIA Annual
Symposium Proceedings. Vol. 2015, American Medical Informatics Association, p.
756.

Klasnja, P., Pratt, W., 2012. Healthcare in the pocket: mapping the space of mobile-
phone health interventions. J. Biomed. Inform. 45 (1), 184–198. http://dx.doi.org/
10.1016/j.jbi.2011.08.017.

Klonoff, D.C., 2007. Benefits and limitations of self-monitoring of blood glucose. J.
Diabetes Sci. Technol. 1 (1), 130–132.

Klonoff, D.C., 2012. Improved outcomes from diabetes monitoring: the benefits of better
adherence, therapy adjustments, patient education, and telemedicine support. J.
Diabetes Sci. Technol. 6 (3), 486–490.
17
Kocielnik, R., Xiao, L., Avrahami, D., Hsieh, G., 2018. Reflection companion: a
conversational system for engaging users in reflection on physical activity. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (2), http://dx.doi.org/10.
1145/3214273.

Konam, S., 2022. Where did IBM go wrong with Watson Health? In: QZ. URL https:
//qz.com/2129025/where-did-ibm-go-wrong-with-watson-health.

Kooiman, T.J., De Groot, M., Hoogenberg, K., Krijnen, W.P., Van Der Schans, C.P.,
Kooy, A., 2018. Self-tracking of physical activity in people with type 2 diabetes: a
randomized controlled trial. CIN: Comput. Inform. Nurs. 36 (7), 340–349.

Kristensen, D.B., Ruckenstein, M., 2018. Co-evolving with self-tracking technologies.
New Media & Society 20 (10), 3624–3640.

Latts, L., 2019. IBM think blog. Alleviating the burden of diabetes with AI. URL https://
www.ibm.com/blogs/think/2019/01/alleviating-the-burden-of-diabetes-with-ai/.

LeRouge, C., Wickramasinghe, N., 2013. A review of user-centered design for diabetes-
related consumer health informatics technologies. J. Diabetes Sci. Technol. 7 (4),
1039–1056.

Li, I., Dey, A., Forlizzi, J., 2010. A stage-based model of personal informatics systems.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, pp. 557–566.

Loi, D., Lodato, T., Wolf, C.T., Arar, R., Blomberg, J., 2018. PD manifesto for AI futures.
In: Proceedings of the 15th Participatory Design Conference: Short Papers, Situated
Actions, Workshops and Tutorial - Volume 2. PDC ’18, Association for Computing
Machinery, New York, NY, USA, http://dx.doi.org/10.1145/3210604.3210614.

Mamykina, L., Epstein, D.A., Klasnja, P., Sprujt-Metz, D., Meyer, J., Czerwinski, M.,
Althoff, T., Choe, E.K., De Choudhury, M., Lim, B., 2022. Grand challenges for
personal informatics and AI. In: Extended Abstracts of the 2022 CHI Conference
on Human Factors in Computing Systems. CHI EA ’22, Association for Computing
Machinery, New York, NY, USA, http://dx.doi.org/10.1145/3491101.3503718.

Mamykina, L., Heitkemper, E.M., Smaldone, A.M., Kukafka, R., Cole-Lewis, H.J.,
Davidson, P.G., Mynatt, E.D., Cassells, A., Tobin, J.N., Hripcsak, G., 2017. Personal
discovery in diabetes self-management: Discovering cause and effect using self-
monitoring data. J. Biomed. Inform. 76, 1–8. http://dx.doi.org/10.1016/j.jbi.2017.
09.013.

Mamykina, L., Heitkemper, E.M., Smaldone, A.M., Kukafka, R., Cole-Lewis, H., David-
son, P.G., Mynatt, E.D., Tobin, J.N., Cassells, A., Goodman, C., Hripcsak, G.,
2016. Structured scaffolding for reflection and problem solving in diabetes self-
management: qualitative study of mobile diabetes detective. J. Amer. Med. Inf.
Assoc. 23 (1), 129–136. http://dx.doi.org/10.1093/jamia/ocv169.

Mamykina, L., Mynatt, E.D., 2007. Investigating and supporting health management
practices of individuals with diabetes. In: Proceedings of the 1st ACM SIGMOBILE
International Workshop on Systems and Networking Support for Healthcare and
Assisted Living Environments. ACM, New York, NY, USA, pp. 49–54. http://dx.doi.
org/10.1145/1248054.1248068.

Mamykina, L., Mynatt, E., Davidson, P., Greenblatt, D., 2008. MAHI: investigation of
social scaffolding for reflective thinking in diabetes management. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’08,
Association for Computing Machinery, New York, NY, USA, pp. 477–486. http:
//dx.doi.org/10.1145/1357054.1357131.

Mamykina, L., Smaldone, A.M., Bakken, S.R., 2015. Adopting the sensemaking per-
spective for chronic disease self-management. J. Biomed. Inform. 56, 406–417.
http://dx.doi.org/10.1016/j.jbi.2015.06.006.

Maniam, A., Dhillon, J.S., 2015. Barriers to the Effective Use of Diabetes Self-
Management applications. In: Proceedings of the 3rd National Graduate Conference.
Universiti Tenaga Nasional, Malaysia, pp. 315–320.

Maniruzzaman, M., Rahman, M., Al-MehediHasan, M., Suri, H.S., Abedin, M., El-Baz, A.,
Suri, J.S., et al., 2018. Accurate diabetes risk stratification using machine learning:
role of missing value and outliers. J. Med. Syst. 42 (5), 1–17.

Marent, B., Henwood, F., Darking, M., Consortium, E., et al., 2018. Development of
an mhealth platform for HIV care: gathering user perspectives through co-design
workshops and interviews. JMIR MHealth UHealth 6 (10), e9856.

McCarthy, G.M., Rodriguez Ramírez, E.R., Robinson, B.J., 2017. Participatory design to
address stigma with adolescents with type 1 diabetes. In: Proceedings of the 2017
Conference on Designing Interactive Systems. pp. 83–94.

McDonald, N., Schoenebeck, S., Forte, A., 2019. Reliability and inter-rater reliability in
qualitative research: norms and guidelines for CSCW and HCI practice. Proc. ACM
Hum.-Comput. Interact. 3 (CSCW), http://dx.doi.org/10.1145/3359174.

McGill, J.B., Ahmann, A., 2017. Continuous glucose monitoring with multiple daily
insulin treatment: outcome studies. Diabetes Technol. Ther. 19 (S3), S–3.

McKercher, K.A., 2020. Beyond sticky notes. In: Doing Co-Design for Real: Mindsets,
Methods, and Movements, first ed. Sydney, NSW, Beyond Sticky Notes.

Meredith, R., Arnott, D., 2003. On ethics and decision support systems development.
In: PACIS 2003 Proceedings. p. 106.

Miller, K.M., Foster, N.C., Beck, R.W., Bergenstal, R.M., DuBose, S.N., DiMeglio, L.A.,
Maahs, D.M., Tamborlane, W.V., 2015. Current state of type 1 diabetes treatment
in the U.S.: updated data from the T1D exchange clinic registry. Diabetes Care 38
(6), 971–978. http://dx.doi.org/10.2337/dc15-0078.

Mishra, S.R., Klasnja, P., MacDuffie Woodburn, J., Hekler, E.B., Omberg, L., Kellen, M.,
Mangravite, L., 2019. Supporting coping with parkinson’s disease through self
tracking. In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. pp. 1–16.

http://refhub.elsevier.com/S1071-5819(23)00009-5/sb37
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb37
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb37
http://dx.doi.org/10.1145/2851581.2856492
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb39
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb39
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb39
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb40
http://dx.doi.org/10.1609/aimag.v30i4.2271
https://ojs.aaai.org/index.php/aimagazine/article/view/2271
https://ojs.aaai.org/index.php/aimagazine/article/view/2271
https://ojs.aaai.org/index.php/aimagazine/article/view/2271
http://dx.doi.org/10.1145/3406324.3417145
http://dx.doi.org/10.1145/3240925.3240929
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb44
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb44
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb44
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb44
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb44
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb45
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb45
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb45
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb45
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb45
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb46
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb47
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb48
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb48
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb48
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb48
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb48
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb49
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb49
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb49
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb50
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb50
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb50
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb50
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb50
http://dx.doi.org/10.1145/3025453.3025480
http://dx.doi.org/10.1145/3025453.3025480
http://dx.doi.org/10.1145/3025453.3025480
http://dx.doi.org/10.1145/2702123.2702474
http://dx.doi.org/10.1145/3173574.3174077
http://dx.doi.org/10.1145/3173574.3174077
http://dx.doi.org/10.1145/3173574.3174077
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb54
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb54
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb54
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb54
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb54
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb55
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb55
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb55
http://dx.doi.org/10.1145/3130930
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb57
http://dx.doi.org/10.1016/j.jbi.2011.08.017
http://dx.doi.org/10.1016/j.jbi.2011.08.017
http://dx.doi.org/10.1016/j.jbi.2011.08.017
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb59
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb59
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb59
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb60
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb60
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb60
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb60
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb60
http://dx.doi.org/10.1145/3214273
http://dx.doi.org/10.1145/3214273
http://dx.doi.org/10.1145/3214273
https://qz.com/2129025/where-did-ibm-go-wrong-with-watson-health
https://qz.com/2129025/where-did-ibm-go-wrong-with-watson-health
https://qz.com/2129025/where-did-ibm-go-wrong-with-watson-health
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb63
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb63
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb63
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb63
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb63
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb64
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb64
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb64
https://www.ibm.com/blogs/think/2019/01/alleviating-the-burden-of-diabetes-with-ai/
https://www.ibm.com/blogs/think/2019/01/alleviating-the-burden-of-diabetes-with-ai/
https://www.ibm.com/blogs/think/2019/01/alleviating-the-burden-of-diabetes-with-ai/
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb66
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb66
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb66
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb66
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb66
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb67
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb67
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb67
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb67
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb67
http://dx.doi.org/10.1145/3210604.3210614
http://dx.doi.org/10.1145/3491101.3503718
http://dx.doi.org/10.1016/j.jbi.2017.09.013
http://dx.doi.org/10.1016/j.jbi.2017.09.013
http://dx.doi.org/10.1016/j.jbi.2017.09.013
http://dx.doi.org/10.1093/jamia/ocv169
http://dx.doi.org/10.1145/1248054.1248068
http://dx.doi.org/10.1145/1248054.1248068
http://dx.doi.org/10.1145/1248054.1248068
http://dx.doi.org/10.1145/1357054.1357131
http://dx.doi.org/10.1145/1357054.1357131
http://dx.doi.org/10.1145/1357054.1357131
http://dx.doi.org/10.1016/j.jbi.2015.06.006
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb75
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb75
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb75
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb75
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb75
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb76
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb76
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb76
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb76
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb76
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb77
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb77
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb77
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb77
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb77
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb78
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb78
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb78
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb78
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb78
http://dx.doi.org/10.1145/3359174
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb80
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb80
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb80
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb81
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb81
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb81
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb82
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb82
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb82
http://dx.doi.org/10.2337/dc15-0078
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb84


International Journal of Human - Computer Studies 173 (2023) 103003K. Stawarz et al.
Mitchell, E., Elhadad, N., Mamykina, L., 2022. Examining AI methods for micro-
coaching dialogs. In: Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems. CHI ’22, Association for Computing Machinery, New York,
NY, USA, http://dx.doi.org/10.1145/3491102.3501886.

Mol, A., 2008. The Logic of Care: Health and the Problem of Patient Choice. Routledge.
National Institute for Health and Excellence, 2023. New "artificial pancreas" technology

set to change the lives of people having difficulty managing their type 1
diabetes. In: Nice.Org.Uk. URL https://www.nice.org.uk/news/article/new-
artificial-pancreas-technology-set-to-change-the-lives-of-people-having-difficulty-
managing-their-type-1-diabetes.

Ng, A., Reddy, M., Zalta, A.K., Schueller, S.M., et al., 2018. Veterans’ perspectives on
fitbit use in treatment for post-traumatic stress disorder: an interview study. JMIR
Ment. Health 5 (2), e10415.

NHS Choices, 2019. How flu vaccine works. NHS choices. URL https://www.nhs.uk/
conditions/vaccinations/how-flu-vaccine-works/.

O’Grady, C., Melia, R., Bogue, J., O’Sullivan, M., Young, K., Duggan, J., 2020. A mobile
health approach for improving outcomes in suicide prevention (SafePlan). J. Med.
Internet Res. 22 (7), e17481.

Ohlin, F., Olsson, C.M., 2015. Intelligent computing in personal informatics: key design
considerations. In: Proceedings of the 20th International Conference on Intelligent
User Interfaces. ACM, pp. 263–274.

O’Kane, A.A., 2016. Individual Differences and Contextual Factors Influence the
Experience and Practice of Self-Care with Type 1 Diabetes Technologies (Ph.D.
thesis). UCL (University College London).

O’Kane, A.A., Han, Y., Arriaga, R.I., 2016a. Varied & bespoke caregiver needs:
organizing and communicating diabetes care for children in the DIY era. In:
Proceedings of the 10th EAI International Conference on Pervasive Computing
Technologies for Healthcare. pp. 9–12.

O’Kane, A.A., Hurst, A., Niezen, G., Marquardt, N., Bird, J., Abowd, G., 2016c. Advances
in DIY health and wellbeing. In: Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. CHI EA ’16, Association for
Computing Machinery, New York, NY, USA, pp. 3453–3460. http://dx.doi.org/10.
1145/2851581.2856467.

O’Kane, A.A., Mentis, H.M., Thereska, E., 2013. Non-static nature of patient consent:
shifting privacy perspectives in health information sharing. In: Proceedings of the
2013 Conference on Computer Supported Cooperative Work. pp. 553–562.

O’Kane, A.A., Park, S.Y., Mentis, H., Blandford, A., Chen, Y., 2016b. Turning to peers:
integrating understanding of the self, the condition, and others’ experiences in
making sense of complex chronic conditions. Comput. Support. Coop. Work 25 (6),
477–501.

O’Kane, A.A., Rogers, Y., Blandford, A.E., 2015. Concealing or revealing mobile
medical devices? Designing for onstage and offstage presentation. In: Conference on
Human Factors in Computing Systems - Proceedings. Vol. 2015-April, ACM Press,
New York, New York, USA, pp. 1689–1698. http://dx.doi.org/10.1145/2702123.
2702453.

O’Leary, L., 2022. Slate. How IBM’s watson went from the future of health care to sold
off for parts. In: Slate. URL https://slate.com/technology/2022/01/ibm-watson-
health-failure-artificial-intelligence.html.

O’Murchu, N., Sigfridsson, A., 2010. TiY (tag-it-yourself). In: Proceedings of the 8th
ACM Conference on Designing Interactive Systems. pp. 57–60.

Owen, T., Pearson, J., Thimbleby, H., Buchanan, G., 2015. ConCap: Designing to
empower individual reflection on chronic conditions using mobile apps. In: Pro-
ceedings of the 17th International Conference on Human-Computer Interaction with
Mobile Devices and Services. pp. 105–114.

Pejovic, V., Musolesi, M., 2015. Anticipatory mobile computing: a survey of the
state of the art and reearch challenges. ACM Comput. Surv. 47 (3), 1–29. http:
//dx.doi.org/10.1145/2693843.

Pesl, P., Herrero, P., Reddy, M., Oliver, N., Johnston, D.G., Toumazou, C., Georgiou, P.,
2017. Case-based reasoning for insulin Bolus Advice: evaluation of case parameters
in a six-week pilot study. J. Diabetes Sci. Technol. 11 (1), 37–42.

Petrilli, C.M., Jones, S.A., Yang, J., Rajagopalan, H., O’Donnell, L., Chernyak, Y.,
Tobin, K.A., Cerfolio, R.J., Francois, F., Horwitz, L.I., 2020. Factors associated with
hospital admission and critical illness among 5279 people with coronavirus disease
2019 in New York City: prospective cohort study. BMJ 369.

Pettus, J., Edelman, S.V., 2016. Recommendations for using real-time continuous
glucose monitoring (rtCGM) data for insulin adjustments in type 1 diabetes. J.
Diabetes Sci. Technol. 1932296816663747.

Peyser, T., Dassau, E., Breton, M., Skyler, J.S., 2014. The artificial pancreas: current
status and future prospects in the management of diabetes: Artificial pancreas
review. Ann. New York Acad. Sci. 1311 (1), 102–123. http://dx.doi.org/10.1111/
nyas.12431.

Pickup, J., Keen, H., 2002. Continuous subcutaneous insulin infusion at 25 years:
evidence base for the expanding use of insulin pump therapy in type 1 diabetes.
Diabetes Care 25 (3), 593–598.

Plis, K., Bunescu, R., Marling, C., Shubrook, J., Schwartz, F., 2014. A machine learning
approach to predicting blood glucose levels for diabetes management. In: Modern
Artificial Intelligence for Health Analytics. Papers from the AAAI-14.

Raj, S., Lee, J.M., Garrity, A., Newman, M.W., 2019a. Clinical data in context: towards
sensemaking tools for interpreting personal health data. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 3 (1), http://dx.doi.org/10.1145/3314409.
18
Raj, S., Toporski, K., Garrity, A., Lee, J.M., Newman, M.W., 2019b. "My blood sugar is
higher on the weekends": Finding a Role for Context and Context-Awareness in the
Design of Health Self-Management Technology. In: Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems - CHI ’19. ACM Press, New
York, New York, USA, pp. 1–13. http://dx.doi.org/10.1145/3290605.3300349, URL
http://dl.acm.org/citation.cfm?doid=3290605.3300349.

Ramanayake, U., Cockburn-Wootten, C., McIntosh, A.J., 2019. The ‘MeBox’method and
the emotional effects of chronic illness on travel. Tourism Geogr. 1–23.

Rodbard, D., 2016. Continuous glucose monitoring: review of successes, challenges,
and opportunities. Diabetes Technol. Ther. 18 (S2), http://dx.doi.org/10.1089/dia.
2015.0417.

Rooksby, J., Rost, M., 2014. Personal tracking as lived informatics. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems - CHI’14. pp.
1163–1172. http://dx.doi.org/10.1145/2556288.2557039.

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1 (5), 206–215.
http://dx.doi.org/10.1038/s42256-019-0048-x.

Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P., Aroyo, L.M., 2021.
‘‘Everyone wants to do the model work, not the data work’’: data cascades in
high-stakes AI. In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. CHI ’21, Association for Computing Machinery, New York, NY,
USA, http://dx.doi.org/10.1145/3411764.3445518.

Schroeder, J., Karkar, R., Murinova, N., Fogarty, J., Munson, S.A., 2019. Examining
opportunities for goal-directed self-tracking to support chronic condition man-
agement. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3 (4), http:
//dx.doi.org/10.1145/3369809.

Sebillo, M., Tortora, G., Tucci, M., Vitiello, G., Ginige, A., Di Giovanni, P., 2015. Com-
bining personal diaries with territorial intelligence to empower diabetic patients.
J. Vis. Lang. Comput. 29, 1–14. http://dx.doi.org/10.1016/j.jvlc.2015.03.002.

Simeone, P., Santos-Rodríguez, R., McVicar, M., Lijffijt, J., De Bie, T., 2017. Hierarchical
novelty detection. In: Advances in Intelligent Data Analysis XVI. Springer Verlag,
Germany, pp. 310–321. http://dx.doi.org/10.1007/978-3-319-68765-0_26.

Singh, N., Varshney, U., 2014. Patterns of effective medication adherence: The role
of wireless interventions. In: Wireless Telecommunications Symposium. IEEE, pp.
1–10. http://dx.doi.org/10.1109/WTS.2014.6835015.

Smith, B.K., Frost, J., Albayrak, M., Sudhakar, R., 2007. Integrating glucometers and
digital photography as experience capture tools to enhance patient understand-
ing and communication of diabetes self-management practices. Pers. Ubiquitous
Comput. 11 (4), 273–286. http://dx.doi.org/10.1007/s00779-006-0087-2.

Sowah, R.A., Bampoe-Addo, A.A., Armoo, S.K., Saalia, F.K., Gatsi, F., Sarkodie-
Mensah, B., 2020. Design and development of diabetes management system using
machine learning. Int. J. Telemed. Appl. 2020, 8870141. http://dx.doi.org/10.
1155/2020/8870141.

Stawarz, K., Cox, A.L., Blandford, A., 2014. Don’t forget your pill! Designing Effective
Medication Reminder Apps That Support Users’ Daily Routines. In: Proceedings of
the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI
’14. ACM Press, New York, New York, USA, pp. 2269–2278. http://dx.doi.org/10.
1145/2556288.2557079.

Stawarz, K., Cox, A.L., Blandford, A., 2015. Beyond self-tracking and reminders:
designing smartphone apps that support habit formation. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15.
ACM Press, New York, New York, USA, pp. 2653–2662. http://dx.doi.org/10.1145/
2702123.2702230.

Storni, C., 2011. Complexity in an uncertain and cosmopolitan world. Rethinking
personal health technology in diabetes with the Tag-it-Yourself. PsychNol. J. 9
(2).

Sun, S., Costello, K.L., 2017. Designing decision-support technologies for patient-
generated data in type 1 diabetes. In: AMIA Annual Symposium Proceedings. 2017,
American Medical Informatics Association, p. 1645.

Tidepool Project, 2020. Tidepool. URL https://www.tidepool.org.
Tyler, N.S., Jacobs, P.G., 2020. Artificial intelligence in decision support systems for

type 1 diabetes. Sensors 20 (11), 3214.
Usoh, C.O., Johnson, C.P., Speiser, J.L., Bundy, R., Dharod, A., Aloi, J.A., 2022. Real-

world efficacy of the hybrid closed-loop system. J. Diabetes Sci. Technol. 16 (3),
659–662.

Varshney, U., 2013. Smart medication management system and multiple interventions
for medication adherence. Decis. Support Syst. 55 (2), 538–551. http://dx.doi.org/
10.1016/j.dss.2012.10.011.

Vincent, C.J., Niezen, G., O’Kane, A.A., Stawarz, K., 2015. Can standards and
regulations keep up with health technology? JMIR MHealth UHealth 3 (2), e3918.

Wang, D., Yang, Q., Abdul, A., Lim, B.Y., 2019. Designing theory-driven user-centric
explainable AI. In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
pp. 1–15.

Williams, K., 2020. IoT stickers: enabling lightweight modification of everyday objects.
In: Adjunct Publication of the 33rd Annual ACM Symposium on User Interface
Software and Technology. UIST ’20 Adjunct, Association for Computing Machinery,
New York, NY, USA, pp. 183–188. http://dx.doi.org/10.1145/3379350.3415807.

http://dx.doi.org/10.1145/3491102.3501886
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb86
https://www.nice.org.uk/news/article/new-artificial-pancreas-technology-set-to-change-the-lives-of-people-having-difficulty-managing-their-type-1-diabetes
https://www.nice.org.uk/news/article/new-artificial-pancreas-technology-set-to-change-the-lives-of-people-having-difficulty-managing-their-type-1-diabetes
https://www.nice.org.uk/news/article/new-artificial-pancreas-technology-set-to-change-the-lives-of-people-having-difficulty-managing-their-type-1-diabetes
https://www.nice.org.uk/news/article/new-artificial-pancreas-technology-set-to-change-the-lives-of-people-having-difficulty-managing-their-type-1-diabetes
https://www.nice.org.uk/news/article/new-artificial-pancreas-technology-set-to-change-the-lives-of-people-having-difficulty-managing-their-type-1-diabetes
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb88
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb88
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb88
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb88
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb88
https://www.nhs.uk/conditions/vaccinations/how-flu-vaccine-works/
https://www.nhs.uk/conditions/vaccinations/how-flu-vaccine-works/
https://www.nhs.uk/conditions/vaccinations/how-flu-vaccine-works/
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb90
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb90
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb90
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb90
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb90
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb91
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb91
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb91
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb91
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb91
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb92
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb92
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb92
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb92
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb92
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb93
http://dx.doi.org/10.1145/2851581.2856467
http://dx.doi.org/10.1145/2851581.2856467
http://dx.doi.org/10.1145/2851581.2856467
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb95
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb95
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb95
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb95
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb95
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb96
http://dx.doi.org/10.1145/2702123.2702453
http://dx.doi.org/10.1145/2702123.2702453
http://dx.doi.org/10.1145/2702123.2702453
https://slate.com/technology/2022/01/ibm-watson-health-failure-artificial-intelligence.html
https://slate.com/technology/2022/01/ibm-watson-health-failure-artificial-intelligence.html
https://slate.com/technology/2022/01/ibm-watson-health-failure-artificial-intelligence.html
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb99
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb99
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb99
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb100
http://dx.doi.org/10.1145/2693843
http://dx.doi.org/10.1145/2693843
http://dx.doi.org/10.1145/2693843
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb102
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb102
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb102
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb102
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb102
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb103
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb104
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb104
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb104
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb104
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb104
http://dx.doi.org/10.1111/nyas.12431
http://dx.doi.org/10.1111/nyas.12431
http://dx.doi.org/10.1111/nyas.12431
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb106
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb106
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb106
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb106
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb106
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb107
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb107
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb107
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb107
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb107
http://dx.doi.org/10.1145/3314409
http://dx.doi.org/10.1145/3290605.3300349
http://dl.acm.org/citation.cfm?doid=3290605.3300349
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb110
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb110
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb110
http://dx.doi.org/10.1089/dia.2015.0417
http://dx.doi.org/10.1089/dia.2015.0417
http://dx.doi.org/10.1089/dia.2015.0417
http://dx.doi.org/10.1145/2556288.2557039
http://dx.doi.org/10.1038/s42256-019-0048-x
http://dx.doi.org/10.1145/3411764.3445518
http://dx.doi.org/10.1145/3369809
http://dx.doi.org/10.1145/3369809
http://dx.doi.org/10.1145/3369809
http://dx.doi.org/10.1016/j.jvlc.2015.03.002
http://dx.doi.org/10.1007/978-3-319-68765-0_26
http://dx.doi.org/10.1109/WTS.2014.6835015
http://dx.doi.org/10.1007/s00779-006-0087-2
http://dx.doi.org/10.1155/2020/8870141
http://dx.doi.org/10.1155/2020/8870141
http://dx.doi.org/10.1155/2020/8870141
http://dx.doi.org/10.1145/2556288.2557079
http://dx.doi.org/10.1145/2556288.2557079
http://dx.doi.org/10.1145/2556288.2557079
http://dx.doi.org/10.1145/2702123.2702230
http://dx.doi.org/10.1145/2702123.2702230
http://dx.doi.org/10.1145/2702123.2702230
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb123
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb123
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb123
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb123
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb123
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb124
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb124
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb124
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb124
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb124
https://www.tidepool.org
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb126
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb126
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb126
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb127
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb127
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb127
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb127
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb127
http://dx.doi.org/10.1016/j.dss.2012.10.011
http://dx.doi.org/10.1016/j.dss.2012.10.011
http://dx.doi.org/10.1016/j.dss.2012.10.011
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb129
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb129
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb129
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb130
http://dx.doi.org/10.1145/3379350.3415807


International Journal of Human - Computer Studies 173 (2023) 103003K. Stawarz et al.
Wilson, S., Schaub, F., Ramanath, R., Sadeh, N., Liu, F., Smith, N.A., Liu, F., 2016.
Crowdsourcing annotations for websites’ privacy policies: can it really work? In:
Proceedings of the 25th International Conference on World Wide Web. WWW
’16, International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, CHE, pp. 133–143. http://dx.doi.org/10.1145/2872427.
2883035.

Winograd, T., 2006. Shifting viewpoints: Artificial intelligence and human–computer
interaction. Artificial Intelligence 170 (18), 1256–1258. http://dx.doi.org/10.1016/
j.artint.2006.10.011.

Woldaregay, A.Z., Årsand, E., Botsis, T., Albers, D., Mamykina, L., Hartvigsen, G.,
2019. Data-driven blood glucose pattern classification and anomalies detection:
machine-learning applications in type 1 diabetes. J. Med. Internet Res. 21 (5),
e11030.

Wu, Y., Yao, X., Vespasiani, G., Nicolucci, A., Dong, Y., Kwong, J., Li, L., Sun, X.,
Tian, H., Li, S., 2017. Mobile app-baswed interventions to support diabetes self-
management: a systematic review of randomized controlled trials to identify
functions associated with glycemic efficacy. JMIR MHealth UHealth 5 (3), e35.
http://dx.doi.org/10.2196/mhealth.6522.
19
Yamagata, T., Ayobi, A., O’Kane, A., Katz, D., Stawarz, K., Marshall, P., Flach, P.,
Santos-Rodriguez, R., 2020. Model-based reinforcement learning for type 1 diabetes
blood glucose control. In: Singular Problems for Healthcare Workshop at ECAI
2020.

Yang, Q., Steinfeld, A., Rosé, C., Zimmerman, J., 2020. Re-examining whether, why,
and how human-AI interaction is uniquely difficult to design. In: Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20,
Association for Computing Machinery, New York, NY, USA, pp. 1–13. http://dx.
doi.org/10.1145/3313831.3376301.

Zamenopoulos, T., Alexiou, K., 2018. Co-Design as Collaborative Research. Bristol
University/AHRC Connected Communities Programme.

Zicari, R.V., Ahmed, S., Amann, J., Braun, S.A., Brodersen, J., Bruneault, F.,
Brusseau, J., Campano, E., Coffee, M., Dengel, A., Düdder, B., Gallucci, A.,
Gilbert, T.K., Gottfrois, P., Goffi, E., Haase, C.B., Hagendorff, T., Hickman, E.,
Hildt, E., Holm, S., Kringen, P., Kühne, U., Lucieri, A., Madai, V.I., Moreno-
Sánchez, P.A., Medlicott, O., Ozols, M., Schnebel, E., Spezzatti, A., Tithi, J.J.,
Umbrello, S., Vetter, D., Volland, H., Westerlund, M., Wurth, R., 2021. Co-design
of a trustworthy AI system in healthcare: deep learning based skin lesion classifier.
Front. Hum. Dyn. 3, 40. http://dx.doi.org/10.3389/fhumd.2021.688152, URL https:
//www.frontiersin.org/article/10.3389/fhumd.2021.688152.

http://dx.doi.org/10.1145/2872427.2883035
http://dx.doi.org/10.1145/2872427.2883035
http://dx.doi.org/10.1145/2872427.2883035
http://dx.doi.org/10.1016/j.artint.2006.10.011
http://dx.doi.org/10.1016/j.artint.2006.10.011
http://dx.doi.org/10.1016/j.artint.2006.10.011
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb134
http://dx.doi.org/10.2196/mhealth.6522
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb136
http://dx.doi.org/10.1145/3313831.3376301
http://dx.doi.org/10.1145/3313831.3376301
http://dx.doi.org/10.1145/3313831.3376301
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb138
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb138
http://refhub.elsevier.com/S1071-5819(23)00009-5/sb138
http://dx.doi.org/10.3389/fhumd.2021.688152
https://www.frontiersin.org/article/10.3389/fhumd.2021.688152
https://www.frontiersin.org/article/10.3389/fhumd.2021.688152
https://www.frontiersin.org/article/10.3389/fhumd.2021.688152

	Co-designing opportunities for Human-Centred Machine Learning in supporting Type 1 diabetes decision-making
	Introduction
	Background
	Self-Tracking and Diabetes Self-Management
	Personal Nature of Diabetes Management
	Challenges in Developing Human-Centred AI/ML Decision Support Systems
	Towards Co-Designing AI/ML Decision Support Systems with People with T1D

	Methods
	Participants
	Procedures
	Initial Interview
	Design Workshops

	Analysis

	Findings
	Decision-Making in Unexpected Routine Situations
	Decision-Making in Unexpected Non-Routine Situations
	Decision-Making in Expected Non-Routine Situations
	Decision-making in Expected Routine Situations

	Discussion
	Machine Learning for Diabetes
	Opportunities for Artificial Intelligence and Machine Learning
	Supporting Unexpected Routine Situations
	Supporting Unexpected Non-Routine Situations
	Supporting Expected Non-Routine Situations
	Supporting Expected Routine Situations

	Limitations and Future Work

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


