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Abstract
The paper emphasizes an effective quantification of hidden damage in composite structures
using ultrasonic guided wave (GW) propagation-based structural health monitoring (SHM) and
an artificial neural network (ANN) based active infrared thermography (IRT) analysis. In recent
years, there has been increased interest in using a global-local approach for damage localization
purposes. The global approach is mainly used in identifying the damage, while the local
approach is quantifying. This paper presents a proof-of-study to use such a global-local
approach in damage localization and quantification. The main novelties in this paper are the
implementation of an improved SHM GW algorithm to localize the damages, a new pixel-based
confusion matrix to quantify the size of the damage threshold, and a newly developed IRT-ANN
algorithm to validate the damage quantification. From the SHM methodology, it is realized that
only three sensors are sufficient to localize the damage, and an ANN- IRT imaging algorithm
with only five hidden neurons in quantifying the damage. The robust SHM methods effectively
identified, localized, and quantified the different damage dimensions against the non-destructive
testing-IRT method in different composite structures.
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1. Introduction

Composite materials are widely used in aerospace, auto-
motive, construction, and several other engineering fields.
Composite structures are preferred due to their lightweight
and corrosion resistance [1] but, on the other hand, are prone
to different damages. Impact damage occurs when a structure
undergoes collisions/hits leading to cracks (with repeated col-
lisions or hit with a high impact force) and finally a structural
collapse. Barely visible impact damages (BVID) are one type
of damage that is mostly not visible during the visual inspec-
tion and requires a touch-based inspection to examine fur-
ther. They are mostly caused due to a tool drop/placing heavy
loads leading to a small impact (dent) and are the initial cause
of impact damage cracks [2]. The initiation of cracks starts
on a micro-scale (not visible to the naked eye) wherein the
inside matrix, layers break and when prolonged causes hair-
line cracks (HLC) [1]. Rapid identification of such damages
is necessary as they reduce the strength of the structure and
compromise structural integrity [3].

Damage detection methods need to be formulated to
identify and quantify such small damages in composite struc-
tures. Various nondestructive testing (NDT) methods like tera-
hertz spectroscopy [4], digital image correlation [5], laser
Doppler vibrometer (LDV) [6], etc were proposed by research-
ers. However, the problem with these techniques is that the
equipment employed for them is difficult to transport, heavy,
and needs considerable time. Also, in most of the studies
conducted the main focus was on identifying such damages
and not on size/length/depth quantification-based parametric
analysis.

The guided waves (GW) based damage detection approach
using portable data acquisition transmitter and receiver
(DAQR) with piezoelectric lead zirconate titanate (PZT) trans-
ducers is rapidly increasing in many engineering fields. They
are lightweight, portable, and lesser time-consuming in gath-
ering data [7]. These setups are used or in the testing phase
by the industries for permanent, continuous online structural
health monitoring (SHM) [1]. GW has the advantage of cov-
ering a larger surface area of the structure in a short interval
of time. The understanding of transducer placements/optim-
ization, signal processing methods, PZT types [1], dispersion
curves [8], and material properties are essential in identify-
ing the damages [9] with GW techniques. The use of only
SHM-GW (global approach) in identification, localization,
and quantifying smaller damages is examined further in this
paper. The results are then supported by validating with the
developedNDT- infrared thermography (IRT)- artificial neural
network (ANN) scheme (local approach).

The damages studied in this research paper are BVID
and HLCs of various lengths. BVID and HLCs are con-
sidered for the SHM-NDT study, as they are the initial causes
of the strength reduction in the composite structures. Many
researchers analyzed the SHM GW-based amplitude values
drop changes at the impact regions in carbon fiber-reinforced
polymer (CFRP) structures for damage identification [10–25].
Boettcher et al used GW to evaluate the impact of energy
dissipation in structures [11]. CFRP structures subjected to

impact damages were analyzed using changes in wavelet
energy and velocity variations by Holst et al [12]. A delamin-
ation study in an aluminum-carbon fiber structure using GW-
based wavenumber mapping was performed by Lugovtsova
et al [13]. GW scattering and reflection in CFRP structure
with impact delamination [14] were analyzed byMunian et al.
Using the time of arrival method, numerical damage models
were compared against experimental results [15]. Segers et al
used a GW-based nonlinear filtering technique in the damage
localization of carbon fiber structures [16], and Sha et al ana-
lyzed damages in carbon composite structures using wavelet
analysis [17].
Hervin et al studied GW scattering and entrapment at the

impact damage crack zone [18]. Dafydd et al combined NDT
and SHM techniques in the damage identification analysis of
CFRP structure [19]. Multiple damages were localized using
an ellipse-based approach [20] in a composite structure. Azura
et al [21] utilized the reconstruction algorithm for probabilistic
inspection of damage (RAPID) in the damage localization of
CFRP structures. CFRP structures with damages were stud-
ied and localized using delay sum, signal differences, RAPID,
and Voronoi-based algorithms [22, 23]. In most of the liter-
ature on SHM methods, damage localization was done using
the entire actuator-sensor network. This increases the calcu-
lation time as it takes the entire coverage path of the sensors
to validate the damage. The proposed SHM-GWmethodology
helps in damage localization with a reduced number of sensors
with the help of a quick damage patch region identification
methodology.

It was observed that most of the GW-based research
works focus mainly on damage identification or localization
[9, 10, 14–18, 22–24] and very few works deal with damage
dimension estimation/quantification. The damage size meas-
urements are key to industrial engineering as small surface
impacts create HLC quickly in composite structures. A def-
inite knowledge of damage size is required to come up with a
decision on further using the structure or performing repairs.
The quantification of impact damages and cracks is essential
in estimating the structure’s remaining life (prognosis- SHM
level 4). Even though SHM analyses are promising, the cur-
rent industrial world mainly uses NDT applications to verify
structural integrity. So, the authors added a verificationmethod
using NDT-based IRT and also developed a new ANN ima-
ging algorithm to quantify the verified damage. The main
idea is to verify and compare the SHM results with the NDT
method in damage quantification analysis. IRT was chosen
among the several available NDT studies due to its quick
visualization of the results. IRT has proven to be effective in
material flaw identification analysis, crack identification, etc
[25–27].

The literature shows that damage quantification studies on
small cracks are rarely carried out. It was also observed that
there are limited works on such damage localization with
fewer sensors. The analysis with IRT generates huge data in
the form of dynamic time step thermograms which need to be
analyzed/classified quickly. An automated way of classifying
and quantifying the damages using IRT was also not studied
in detail in literature studies.
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To overcome all the mentioned drawbacks, novelties using
global-local SHM-NDT methodology are proposed in this
paper to identify, localize, and quantify the mentioned dam-
ages. A mean absolute error (MAE)-based set method (global)
is used to identify the damage paths and regions. To local-
ize the damages (global) an improved wavelet transform coef-
ficient (WTC) tomography-based approach is applied to the
regions with few sensors. To quantify the damages (global)
a new pixel-counting threshold-based confusion matrix ana-
lysis is applied to obtain the approximate dimensions of the
damage. An effective NDT study using IRT-ANN is presen-
ted to cross-verify (local) the obtained parameterized results
from SHM-GW and to classify the large data. The most sig-
nificant benefit of the newly developed ‘ANN-assisted IRT
imaging’ algorithm is the possibility of damage detection and
automation. Thus, the damages (BVID, HLCs) are identified,
localized, and quantified effectively using robust global-local-
based techniques.

2. Methodology

The methodological overview of the global-local process is
explained in the following steps;

• Study the dispersion characteristics of the specimen using a
Dispersion calculator [28].

• Perform the SHM-GW analysis of the pristine specimens
using DAQR.

• The next step is to perform an impact drop test on the pristine
specimens converting them into a damaged state and then re-
perform SHM-GW analysis using DAQR.

• Perform SHM-MAE study to identify damage paths
(global—damage identification step) andMAE patch region
study to approximate the area of damage. This is done using
the intersection of sets (IOS) method as shown in figure 1
and explained further in section 4.2.1.

• Select the optimum frequency and localize the damage using
SHM-GW techniques with the WTC tomography technique
(global-damage localization step).

• Threshold-based quantification of the damages using a con-
fusion matrix (global-damage quantification step).

• Implementing ANN-assisted IRT imaging algorithm to
verify the damages (local-damage verification step).

3. Experimental analysis

3.1. Experimental samples

Case 1: A CFRP structure of dimensions 50 × 50 × 0.3 cm3

and made up of 12 layered prepreg [0/90]3 s is taken as shown
in figure 2. The composite structure has a BVID of Ø 1.1 cm
and is made with an impact force of 25 J by dropping a steel
ball (impactor) joined with a steel bar from a certain height
guided via a pipe. The stiffener at the center is 0.4 cm thick and
is rigidly attached to the structure. PZT discs are attached to
the structure using cyanoacrylate glue, four on the left and four
on the right side of the stiffener, based on sensor placement

optimization (elaborately described in [29, 30]) to monitor
GW signals.

Case 2: figure 3 shows the CFRP structure of dimensions
20 × 25 × 0.5 cm3 and 16 layers arranged as [0 /90]4s. The
structure has an HLC defect caused by an impact of 33 J
(steel ball drop method which caused a deep dent on one
side and protruded as HLC on the other). The length of the
HLC initially made by the impact force is about 1 cm (sub-
case 1). Later, the crack is extended (1.5 cm—subcase 2 and
2 cm—subcase 3) with more impacts of the same energy.
PZTs are attached in a linear rectangular format [31] to mon-
itor the structure. The CFRP structures are procured from
G.ANGELONI [32].

The material properties of the specimens obtained from
the manufacturer are shown in table 1 and the global-local
methods used in studying the CFRP samples are tabulated in
table 2. IRT-NDT test was not performed for subcases 1, and 2
(table 2) as there is a high possibility of PZT detachment due to
impact force and reattaching PZTs changes the entire experi-
mental calculations. Thus, theNDT experimentwas conducted
after finishing the GW studies.

4. Global approach methodology, discussions, and
results

4.1. Dispersion calculation results

The theoretical dispersion curves were calculated using Dis-
persion Calculator from Deutsches Zentrum für Luft-und
Raumfahrt (DLR) and the obtained plots are shown in figure 4.
The GW modes from the obtained signals are distinguished
based on the standard velocity-distance relationship [1]. The
dispersion curves were obtained by keeping an assumption of
infinite plane wavefront and wave propagation in a direction
normal to the wavefront [28]. The fiber orientations are sym-
metric and thus there are no or fewer changes in the dispersion
curve plots for 0◦ and 90◦. The A0mode is selected as the GW
mode for further research in this work because it is noted that
it exhibits less variation at different angles (figures 4 and 5)
and that, thanks to its shorter wavelength, it can detect even
smaller defects [33]. The velocity values for the observed fun-
damental modes show very little variation up to a frequency
of 250 kHz. Additionally, the amplifier used in the studies is
only able to measure a maximum frequency of 250 kHz. As
a result, a frequency limit of 200 kHz is selected for further
testing.

As seen in figure 5, the group velocity values obtained from
theoretical calculations are plotted in a polar plot (exemplary
150 kHz). The A0 mode is nearly constant in both cases, and
S0 is stable at 0◦ and 90◦ but varies only at other angles. Sim-
ilarly, SH mode is constant at 0◦ and 90◦ but varies at other
angles.

4.2. SHM-GW studies using DAQR

DAQR setup is used to perform the GW analysis in cases 1
and 2. The experimental setup is shown in figure 6, which has
a multi-transmitter and receiver connected to PZTs via a series
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Figure 1. Global-local assessment process.

Figure 2. Case 1: CFRP specimen with BVID [X axis = length, Y axis = width].

of wires. The setup has 13 channels in total, out of which 12
can serve as acquisition channels and one as receiving chan-
nel at one moment [24]. The setup is connected via a univer-
sal serial bus (USB) cable to the personal computer (PC). The
excitation frequency, signal window, type, number of cycles,
and channels are all controlled by aMatlab code. In this DAQR

study, the PZT is used for excitation and sensing the GW. The
PZT disc (Ø 1 cm) is made up of SONOX P502 material and is
procured from CeramTec [34]. The CFRP structures are tested
with GW excitation frequencies of 50, 100, 150, and 200 kHz,
respectively. A 5-sine cycle Hanning windowed sine pulse is
used for the GW excitation.
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Figure 3. Case 2: CFRP specimen with HLCs of various lengths (subcases after impact).

Table 1. Material properties of the sample CFRP structures [‘ρ’ is the density, ‘E’ represents Young’s moduli, ‘G’ is the shear moduli and
‘Nu’ is the Poisson’s ratio].

Material ρ (kg m−3) E11 = E22 (GPa) E33 (GPa) G12 (GPa) G13 = G23 (GPa) Nu12 Nu13 = Nu23

CFRP 1568 75.89 10.0077 3.61 3.38 0.03 0.37
Adhesive 1150 4.052 4.052 1.447 1.447 0.40 0.40

Table 2. Damage cases, types, dimensions, and method of study.

Case Damage type Diameter/Length Studied with

Case 1 BVID 1.1 cm
diameter

GW-SHM and
IRT-NDT

Case 2-
Subcase 1

HLC 1 cm length GW-SHM

Case 2-
Subcase 2

HLC 1.5 cm length GW-SHM

Case 2-
Subcase 3

HLC 2 cm length GW-SHM and
IRT-NDT

4.2.1. MAE analysis using DAQR signals. The GW signals
obtained from DAQR are tested with MAE [1, 7] as shown in
equation (1) to identify the healthy and damage paths. Sensor
pair paths studied using MAE are shown in table 3. If any sig-
nal paths show higher MAE, then a line is drawn to connect
the signal paths (based on the exemplary IOS-figure 7) thereby
creating an area (patch). The method acts as a referential free
and helps to capture the region where higher MAE values are
obtained thereby assuming it as the region of damage (patch).
MAE is an effective damage index method and is used on sim-
ilar nonhomogeneous structures [35].

MAE (i, j) =
1
n

n∑
t=1

|(Si− Sj)| (1)

where: ‘t’ is the time starting from 1 till n, and Si and Sj are
the magnitude values of the signals.

4.2.2. Damage identification using MAE results. In the
MAE (equation 1 signal path analysis, it is found that specific
signal pair paths show higher MAE values. Such variation in
the MAE is due to variation of signal amplitude that occurred
due to damages when the signal paths are crossing the dam-
age or near the damage. An exemplary S5S3 and S6S4 signal
of 100 kHz (figure 8(a)) shows the incident and reflection due
to damage, and figure 8(b) with S5S9 and S4S10 signals also
show a similar trend of reflection due to damage. This proves
the reason for higher MAE values from such signal paths.

The signal paths S4S6 and S3S5 in case 1 (figure 9(a)) and
S4S10 and S5S9 (case 2- figure 9(b)) show a higher MAE val-
ues variation, confirming the disturbance in the signals due to
damage. Threshold values are made based on the mean value
(MV) of each frequency, and the signal path that crosses the
threshold limits is chosen as the damage path. In most cases,
150 kHz gave maximumMAE values and thus was selected as
a targeted/optimal frequency for WTC analysis. Similar MAE
step process results are obtained for cases 2: subcases 2 and 3,
respectively.

The IOS patch (figure 10) is created (yellow region) by con-
necting the signal paths with a high value ofMAE signals from
cases 1 and 2. The patch identifies the particular region where
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Figure 4. Theoretical dispersion curves: (a) case 1, (b) case 2.

Figure 5. Polar plots showing group velocity (m/s) at various angles in degrees (o).

further analyses needed to be studied using specific sensors,
thereby eliminating the calculation time for SHM-WTC and
human labor time for NDT-IRT analysis.

4.2.3. WTC analysis using DAQR signals. The implemen-
ted SHM algorithm uses the WTC of the registered GW sig-
nals (in the time domain) from the PZT networks assigned to
cases 1 and 2. The algorithm uses input GW signals obtained
from the sensors identified using the MAE patch region.

The localization algorithm calculates the differences in WTC
magnitudes at each PZT-to-PZT path in cases 1 and 2. The
experimental DAQR A0 mode velocity values, which are used
in the WTC algorithm, have good agreement with theoretical
calculations. The algorithm [36] is improved to study the iden-
tified patch regions with a limited number of sensors and for
centimeter range damages. The BVID index (BI) is calculated
based on the root-mean-square change in WTC magnitudes of
the GW signals from the selected sensor pairs, as shown in
equation (2).
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Figure 6. Schematic DAQR setup for an exemplary Case 2.

Table 3. Case 1, case 2: signal paths studied for 50 100 150, and
200 kHz.

Case 1 Case 2

Si Sj Si Sj

S2S4 S1S3 S4S10 S5S9
S4S6 S3S5 S3S6 S2S7
S6S8 S5S7 S1S8 S2S7
S1S7 S2S8 S3S7 S2S6

S2S8 S1S7

Figure 7. Intersect of set calculation (example).

BIij =

√√√√√
{
∫ t2t1(WTCi+WTCj)

2dt
}

{
∫ t2ti (WTCi)

2dt
} (2)

where: ‘t1′ and ‘t2′ are the selected limits of the transformed
input signals in the time domain, and ‘WTCi’ and ‘WTCj’ are
the amplitude areas of the WTC of any sensor pair: PZT#i,
PZT#j.

The BVID-source probability indicator, ‘BI’ for any pos-
ition (x, y) within the PZT network can be represented as a
linear summation of the obtained BIij(equation (3) from every
possible PZT pair, each of which has a spatial distribution as
in equation (4).

Figure 8. Comparison (a) case 1 signals, (b) case 2- subcase 1
signals.

BI (x,y) =
n−1∑
i=1

n∑
j=i+1

BIijαij (3)

Where: ‘αij’ is a non-negative and linearly-decreasing spatial
distribution function expressed as:

αij = [{ϕ−Lij (x,y)}/(ϕ− 1)] (4)

In equation (4), the scaling parameter controls the size of the
effective elliptical distribution area of each sensor-sensor pair.
In the spatial distribution function, Lij (x,y) it is expressed as-

Lij (x,y) = pij (x,y) , for pij (x,y)< ϕ
Lij (x,y) = ϕ, for pij (x,y)≥ ϕ

(5)

Where:

pij (x,y) =

[{(√
(x− xi)

2
+(y− yi)

2
)

+

(√
(x− xj)

2
+(y− yj)

2
)}

/sij

]
(6)
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Figure 9. MAE results for 50–200 kHz excitation: (a) case 1, (b) case 2—subcase 1.

Figure 10. Patch region obtained based on the IOS (a) case 1, (b) case 2.
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Figure 11. Damage-index maps: (a) case 1 contour map, (c, e, g) case 2 contour maps, (b) case 1 threshold map, (d), (f) and (h) case 2
threshold maps.
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‘Sij’ is the sensor-sensor distance, and ‘ϕ’ is a scaling para-
meter (empirically assumed to be 1.03 and tested for aniso-
tropic materials) that controls the size of the elliptical distri-
bution area of each sensing path. Artifacts will be introduced if
ϕ is too small, and resolution is lost if ϕ is too large. Generally,
if a defect occurs, a set of sensor pair signals will be affected.
As a result, in the defect distribution probability image, the
point where the defect is located will have a dominantly lar-
ger probability compared to the other points. Consequently,
by applying image processing techniques, such as judiciously
selecting a threshold (ϕ) to the defect estimation image, the
defect location can be estimated.

The SHM strategy is implemented in MATLAB that calcu-
lates an (8 × 8) matrix with 64 combination signals as inputs
from the assigned sensor network of 8 PZTs. In the process,
the combinations of sensor paths: S#1-1, ..„1–8; S#2-1, .., 2–
8; 3–1; S#3-1, .., 3–8; S#4-1, .., 4–8; S#5-1, .., 5–8; S#6-1, ..,
6–8; S#7-1, .., 7–8; S#8-1, .., 8–8; (refer to Case 1: figure 2(a))
are considered to image the predicted BVID regions. A sim-
ilar strategy is also applied to case 2: figure 2(b) which has
10 PZTs respectively.

The WTC algorithm was found to be effective in localizing
and even quantifying the damage (BVID, HLCs) in the invest-
igated composite structures. In past, the online monitoring
of CFRP structures using continuous wavelet transformation
[12] identified only the presence of damage. Damage quanti-
fication using local wavenumber mapping [13] did show the
size of the damage, but the method uses LDV which requires
full-area scanning. Similarly, the size of the damages was ana-
lyzed using 2D wavelets [17] and using GW scattering [18]
which were based on LDV measurements. SHM GW analysis
to predict the location of the BVID was shown in [19] using
an ellipse-based localization algorithm. The method possibly
may fail to detect if the damage is close to the actuator. Results
using the RAPID algorithm [21] andDelay Sum algorithm [22,
23] helped the researchers to localize the presence of damages
in CFRP structures but were not used for the quantification.

4.2.4. Damage localization using WTC results. The BVID
localization WTC maps generated for case 1 are presented in
figure 11(a), and similarly, HLC regions of case 2 subcase 1
in figures 11(c) and (e) subcase 2, and figure 11(g) subcase 3
respectively. The cases shown in figure 11 correspond to the
cases in table 2, respectively. For case 1, sensors S1, S3, and S5
are chosen for localization based on MAE patch results. Sim-
ilarly, for case 2, only 3 sensors S1, S2, and S7, are selected.
In case 1 (figure 9(a)) for example the highest MAE is found
for the S3S5 pair and the next highest is for the S1S7 pair. The
signals obtained for the S1S3 pair showed higher amplitude
variations than S5S7. So, based on this S1, S3 and S5 were
found to be the tradeoff choice for choosing the triangulation
sensors for WTC-based damage localization. The selection of
sensors is based on paths that showed higher MAE values. The
contour plots identified the damages based on higher values

Table 4. Calculation time for damage localization using the WTC
algorithm.

Case
Localization time
with all sensors (s)

Localization time
with few sensors after
the MAE process (s)

1-BVID 115 87
2- Subcase 1 HLC 147 34
2- Subcase 2 HLC 145 43
2- Subcase 3 HLC 139 54

of WTC magnitudes. Threshold pixel plots (figures 11(b), (d),
(f) and (h)) of the 85% threshold region (shown in the yellow
color of binary value = 1) helped to show the approximated
damage size and lengths against the original damage size (red
color circle, rectangle).

It can be seen from the results of threshold maps that the
shape of the damage is captured well (except in case 1) for the
chosen optimal threshold value. The results obtained proved
that such a low number of sensors are sufficient for damage
localization. The entire calculation was performed on an Intel
i5 processor 32GB RAM workstation. The calculation time
of the process is shown in table 4 with and without the MAE
process.

4.2.5. Damage quantification using the confusion matrix.
The optimal value for the damage quantification threshold
(85%) was selected using the pixel counting-based confusion
matrix metrics as shown in figures 12 and 13, and equation (7).
Some researchers mainly used confusion matrix accuracy for-
mulations in damage classification [37]. A confusion matrix-
based scheme is used in damage quantification in this research
work. The threshold percentage value tends to change based
on different structures and thus a quick run with the developed
confusion matrix scheme helps to identify the best quantifica-
tion percentage value for the calculation.

The confusion matrix is a popular way of seeing the per-
formance of the predicted values against the original values.
The confusion matrix consists of two classes, i.e. positive and
negative. The confusion matrix helps us understand the pre-
dicted model in a simple and better way. In this paper, confu-
sion matrix-based metrics are used to determine which per-
centage (threshold) the damage detection is better, thereby
showing the size and length of the detected damage cases.

The total number of mesh grid points (pixels) in each of the
case studies (table 5) is denoted by ‘M’, and the number of
pixels representing the original damage size is referred to as
‘DP’ (marked with a red color circle or rectangle in figures 11
and 13), and the number of pixels predicted after applying
threshold condition is ‘P’ (marked with yellow color pixels-
figure 13). It is also called growth truth or positive.

N=M−P; TP= DP−FN; FP= P−TP; TN= N−FN
(7)

10
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Figure 12. Pixel counting-based confusion matrix.

Figure 13. Damage quantification is based on pixel counting (e.g. case 2- subcase 3).

where: N is the total negative pixels present in the case study
specimen, TP refers to the number of pixels that are within the
DP excluding the FN, FN is the number of falsely predicted
pixels within the DP, FP is the number of false pixels that
are present outside the DP but within the calculated predicted
growth truth P, TN is the total number of negative pixels (N)
that are present in the whole case study specimen neglecting
the FN. These terms are then used to calculate the other con-
fusion matrix terms as shown in equation (8) and (9).

Percentage Index (PI)% =

(
TP
DP

)
× 100 (8)

Miss hits (MH) = FP + FN; Miss hit percentage (MHP)%

=

(
FN
P

)
× 100 (9)

Where: PI denotes the percentage of TP in DP, sensitivity
refers to the proportion of positive cases predicted, MH refers
to the total number of miss-hits (positive and negative) present
within N, and MHP is the FN percentage in P.

The threshold determination is shown in figure 14 for all
the cases with 75% –100% (in 5% steps) limits and based on
the threshold limits, the confusion metric factors are determ-
ined. The damage detection criteria kept are that mishits (MH)
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Table 5. Constant values used in the confusion matrix calculation [pixel numbers = px].

S.No Cases M (px) DP shape DP (px)

1 Case 1 250 001 Circle 177
2 Case 2-Subcase 1 117 425 Rectangle 64
3 Case 2-Subcase 2 117 425 Rectangle 88
4 Case 2-Subcase 3 117 425 Rectangle 120

pixels should be as low as possible, and the PI index should be
higher to indicate detected damage. In figure 14(a), the overall
mishits are mostly the same for cases 2, 3, and 4 and reduce
drastically for case 1 after the 90% threshold, but the PI per-
centage is lower (figure 14(b)). This shows that the size of the
damage is not clearly and correctly identified. Also, it can be
seen in figure 14(c) that the MHP values increase significantly
after 85%.

To arrive at a tradeoff value, the normalized values of FP
and FN are plotted against each other (figure 14(d)). An inter-
mediate region is obtained where both the curves meet, and
it lies mainly at 85%. It should be mentioned that 85% also
identify the approximate shape of all the mentioned damages
in a very desirable way. To put together, all the results obtained
(figures 11(b), (d), (f) and (h)) are tabulated in table 6, wherein
the pixel dimensions are 0.1mm (for both x and y axes) for case
1, and for case 2 is 0.05 mm (x-axis) and 0.08 mm (y-axis)
respectively for all the three subcases of case 2. The calcula-
tion of the area/diameter of the damage for case 1 is neglected
as the damage is not bound within the DP.

5. Local approach methodology, discussions, and
results

5.1. NDT studies using IRT-ANN

An active IRT experimental analysis of the composite struc-
tures is performed using FLIR SC6540 [38]. It measures the
temperature distribution and identifies patterns in the thermo-
grams for visualizing the presence of defects. The heat source
is the halogen lamp with a maximum power of 1.3 kW. The
halogen lamp (heat source) and IRT camera are then focused
only on the MAE patch region (figure 10 to perform the IRT
analysis. The CFRP specimens are heated for 10 s, and the
cooling process is registered for 15 s. Recorded sequences of
thermal images (thermograms) are processedwithAutomation
Technology GmbH IrNDT software [39]. A schematic setup
schema of impulse thermography is shown in figure 15.

During the laboratory measurements, the ambient temper-
ature was constant and stable. The surface of the test sample
was not exposed to sunlight, nor to flowing warm or cold air.
The influence of the initial temperature of the tested object,
being a consequence of the ambient temperature, was taken
into account at the stage of processing the recorded thermo-
grams. The sequence of maps, which were subjected to fur-
ther processing, was obtained as the difference between the
thermograms recorded in the subsequent moments and the first
thermogram recorded at the beginning of the measurement.

In the performed analysis, functions approximating the sig-
nal recorded in each pixel of the analyzed area are determined.

It made it possible to generate maps of any parameters of the
designated functions. In further analysis, maps of the value of
the second derivative at a selected time instant are used. The
choice of such a parameter resulted from the preliminary ana-
lysis of the recorded thermal responses. It is found that the
second derivative of the functions approximating the recorded
signals contains more information allowing to locate the dam-
aged site. The radiation of the sample is analyzed with digital
level as the unit to simplify the process [40].

5.1.1. ANN-IRT-based image reconstruction algorithm. The
main concept of the proposed ANN-IRT-based damage detec-
tion is shown in figure 16.

ANN studies [41] mostly deal with GW-based numerical
measurements as it is possible to obtain data in large num-
bers/large quantities [35, 42]. ANN is not the typical tool
used for the analysis of data obtained with IRT methods.
However, their ability for generalization and important fea-
ture extraction makes them suitable for the investigation of
huge databases collected during IRT examinations. There are
two ways for IRT thermal effect analysis-it is possible to ana-
lyze the separate step registered by the IR camera (presen-
ted in [43]) or the whole heating/cooling process (what is
presented here). The heating/cooling process can be approxim-
ated by the functions specified for each point of the observed
specimen.

In figure 17, the examples of maps for different parameters
obtained for the sequence of thermograms are presented. The
pictures in figures 17(a)–(f) are connected to the same speci-
men, the same measuring configuration, and the same point
of time (12th frame of the cooling process). The selection of
the right frame is determined by expert experience in the stage
of tool preparation. Different parameters are calculated based
on the same data for the whole cooling process. As can be
seen, obtainingmassive databases is relatively simple, but ana-
lyzing them is more troublesome and time-consuming when
more parameters are considered. The operator’s experience is
crucial.

The algorithm, shown in figure 16 can be mathematically
described as follows. For each pixel registered by the IR cam-
era, the heating/cooling process approximating function gi,j (t)
is established. The location of the pixel (measurement points)
is described on the surface by the number of its row (i) and
column (j). Then the nth derivative of the above-mentioned
function is calculated (equation (1)).

dgi,j =
dngi,j (t)
dtn

(10)
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Figure 14. (a) Threshold (vs): (a) MH, (b) MHP, (c) PI, (d) FN, FP.

where: t-time of observation, n-the optimal order of the deriv-
ative, selected arbitrarily based on previous experience consid-
ering the examined material and measurement configuration,
here n = 2.

Next, the time step and color scale are selected as shown in
equation (11):

dg(i, j) = s(dgi,j (t0)) (11)
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Table 6. Damage dimensions obtained using a confusion matrix [ADP = Approximated damage pixels, ADD = Actual Damage
Dimensions, add = approximate damage dimensions, Absolute Difference = AD].

Case DP (px) ADP (px) ADD (cm) Add (cm) AD |ADD-add| (cm)

1 177 504 Ø 1.1 1.8 × 4.9 –
2 -Subcase 1 64 81 1 × 0.1 1.2 × 0.11 0.2 × 0.01
2-Subcase 2 88 113 1.5 × 0.1 1.4 × 0.14 0.1 × 0.04
2 -Subcase 3 120 149 2 × 0.1 1.7 × 0.26 0.3 × 0.16

Figure 15. IRT schema of impulse thermography analysis.

Figure 16. The main concept of the presented new ANN-IRT algorithm.

Where: s is the color scale function, here the greyscale is
adopted, sodg(i, j) ∈ ⟨0 , 255⟩, t0 time step in the heating/-
cooling process selected arbitrarily by the operator; once
established t0, as well as s are constant for all measuring points.

The distribution of the dg(i,j) function above the specimen
surface ismade using artificial neural networks (equation (1)).

fANN (i, j) = ANN({i, j} ,w) (12)

where: ANN is a satisfactorily trained artificial neural network
with the network parameters collected in w vector. This vector
is established during the minimization of mean square normal-
ized error (MSE) between the network output and target value

for points selected in the learning data set. The learning set of
data consisted of patternsPk = {{ik, jk} ,dg(ik, jk)}, where k is
the number of patterns. In the analyzed task to learning, data
set the measuring points on the crossing of every 20th row and
20th column are selected. Finally, for each measuring point
the f (i,j) function is calculated as follows:

f(i, j) = dg(i, j)− fANN (i, j) (13)

and then the Alarm level (AL):

AL= f̄+PL ·
(
max( f)− f̄

)
(14)
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Figure 17. Examples of maps for different parameters: (a–f) obtained for the sequence of thermograms.

Where: f̄ is the MV of f (i,j) for all measuring points and PL is
the percentage level determined by the operator. All points, for
which the f(i, j)⩾ AL should be carefully checked, as poten-
tially damaged. The number or location of points satisfying the
above inequality for different measurements can be compared
with the aim of damage growth process observation.

As it is well known, the most important feature of ANN
is the ability to generalization [44]. The used ‘satisfactorily
trained artificial neural network’ formulation considered three
points of view: minimization of the objective function (MSE)
taking into account the network stop criteria, possibly high
generalization abilities, and rationalization of the number of
neurons in the hidden layer, which affects the time-consuming
nature of calculations. The selection of the best ANN archi-
tecture was made based on the author’s experience and data
shown in figure 18; any precise formula was not determined
in this aim.

In the presented paper, the shallow ANN is applied with
one hidden layer. ANN is trained according to the Levenberg-
Marquardt algorithm [45]. The minimized performance func-
tion was MSE and the additional stop criterion in the learning
process was worded as follows: maximum epochs: 1000; per-
formance goal: 0; minimum gradient: 1 × 10−7; maximum
validation checks: 6; training function parameter: 0.001 (with
its decrease ratio equals 0.1, increase ratio equals 10, and max-
imal value 1e10). As input data, the network uses the location
of the point in the thermogram (x and y coordinate, expressed
by the row and column number, where the pixel corresponding

Figure 18. MSE (vs) number of neurons in the hidden layer.

to the measuring point are localized), and the output data are
the value of the 2nd derivatives. So, the architecture of applied
ANN is 2-H-1, where H is the number of neurons in the hid-
den layer. A varying number of hidden neurons is tested, and
the best results are obtained for H = 5. The addition of hid-
den neurons did not significantly decrease the value MSE-
figure 18, however, the usage of a more complicated model
is also more time-consuming.

5.1.2. Damage verification using ANN-IRT results. In the
presented case, the best results are obtained to analyze the
second derivative of the thermal function (obtained from the
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Figure 19. Surfaces approximated by ANN with the number of neurons in the hidden layer equals (a) 1, (b) 19, and (c) 30.

Figure 20. (a) Data imported from thermogram, (b) the second derivatives function distribution approximated by neural networks,
(c) absolute value of the difference between (a) and (b), (d) the points showing the HLC damage considering the criterion given by the
operator.

thermograms). In ANN-assisted IRT imaging, the main part
of the control process can be made by machines. It can be
assumed that suitable hardware for IRT imaging is mounted
on the production line, which works continuously. Thanks to
the suitable ANN-based software, the alarm is made only if
some level of difference is exceeded. Then only this region
can be controlled by specialists. The process is less time and
cost-consuming.

From figure 17, even based on this function, the differences
between HLC and the other regions are difficult to identify.
The whole specimen is examined for precise indication of
the damage, but further image analysis is made, omitting the
regions where the PZT sensors are glued. ANN is one of the
soft computing methods and is widely implemented in solv-
ing different problems like the prediction of material/compon-
ent properties [37], optimization of the manufacturing process
[46], as well anomaly [47], and damage detection [48]. The
presented concept assumes the use of ANN for approximation
of the 2nd derivatives distribution function. In figure 19, some
examples of surfaces approximated by ANNs with different
numbers of hidden neurons are shown.

The picture obtained from the IRT analysis is imported into
theMATLAB environment. The colors of pixels on the picture
correspond to the value of the analyzed parameters. Due to the

greyscale, the values can vary at most from 0 to 255 for the
whole thermogram as described previously in equation (10).
The values for the region of interest are shown in figure 20(a).
The difficulties in the differentiation of damaged regions are
caused, e.g. by the heating process or structure of the material.
During the experiment, the heat source is localized nearer to
one side of the specimen than the others, so the points local-
ized on this side have bigger temperature changes compared
to the other points. It is visible on the diagram (figure 20(a)).
This phenomenon generates the problem of determining
the level of an analyzed parameter, which should raise the
alarm.

The 2nd derivatives distribution function approximated
by the ANN is shown in figure 20(b). Then the absolute
value from the differences measured and using ANN obtained
distribution is calculated, which is shown in figure 20(c).
This approach eliminated the problem of uneven heating,
but it is not enough. The differences between points are
observed, which can be conditioned by the material struc-
ture. However, the HLC has the highest values of the analyzed
function. To eliminate irrelevant changes, the alarm level is
established (in the analyzed case, it is equal to mean (f) +
40%{max(f)−mean(f)}); where f is the function presented
in figure 20(c)-equation (11) with user inputs.
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Figure 21. Case 2: (a) the second derivatives distribution image, (b) representation of pixels above alarm level, (c) thermogram after
elimination of insignificant disorders (here, the maximal size of insignificant disorders is 2 × 2 px).

Figure 22. Case 1: (a) the second derivatives distribution image, (b) representation of pixels above alarm level, (c) thermogram after
elimination of insignificant disorders (here, the maximal size of insignificant disorders is 2 × 2 px).

The AL has to be determined during the preparation of
the tool and its adjustment to the examined material. It is
necessary to observe the exemplary, well-known damage to
differentiate it from normal changes caused by thermal dis-
tribution in heterogeneous materials. After the determination
of the AL, it stays constant in further tests (e.g. with the
aim of observation of damage growth). The values above the
alarm level should be carefully examined. Some of them are
only separated points (compare figures 21(b) and 22(b)) and
should be omitted because they do not have the features of
the crack, which are represented by a set of pixels adjacent to
each other. The operator determines the size of areas for auto-
matic deletion (here, all areas consisting of one or two adja-
cent pixels above alarm level, but surrounded by pixels below
alarm level, are deleted; the result is shown in figures 20(d),
21(c) and 22(c)).

The main problem in automatic detection is differentiating
the damage and the material with proper structure. Using grid

averaging may decrease the difference, and from the literat-
ure and known fact considering single points cannot be the
damage, so they can be eliminated. The applied grid of points
is the result of the resolution determined during the examin-
ation with IRT. The contrast between damaged and healthy
zones could probably be bigger if the observed area is smal-
ler (assuming constant resolution). However, it also means the
necessity of more measurements for the same material area.

In figure 21, the consecutive steps in data processing
are presented, showing the results after an application oper-
ator’s determined parameters; from the 2nd derivative func-
tion (figure 21(a)) through the points considered potentially
damaged (difference in values above the alarm level, shown
in white color, figure 21(b) and finally after elimination of
the points, which do not have the features of the cracks
(figure 21(c)). A similar ANN process is also followed for
Case 1 to obtain the results, as shown in figure 22. The approx-
imate size of the damage is calculated by knowing the original
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Table 7. Approximate damage dimensions obtained from IRT-ANN calculations.

Case ADP (px) ADD (mm2) Add (mm2) AD (mm2)

1 7 × 9 Ø 11 Ø 5 Ø 6
2 -Subcase 3 43 × 4 20 × 10 20.6 × 1.9 0.6 × 0.9

size of the damage in pixels and comparing it against the
approximated values of pixels from the predicted damage, as
shown in figures 21(c) and 22(c). The approximate pixel mat-
rix dimensions (∆x,∆y) obtained are 0.35 mm for case 1 and
0.48 mm for case 2 subcase 3. In table 7, the approximate
dimensions of the estimated damages are presented and com-
pared against the actual dimensions.

For case 1, the area of the counted significant pixels is
26 px × 0.35 mm × 0.35 mm= 3.18 mm2 ∼= 3.2 mm2. The
shape of case 1 damage from the IRT image seems to be an
irregular circle (figure 22(c)). In this scenario of the irreg-
ular circle, the area of the damage (Dc) is calculated using
equation (15).

Dc = π× D2

4
= π× 2.5 mm2

4
= 4.9 mm2 ∼= 5 mm2 (15)

If a rectangular area is bound around the damage, theDc value
is 8 mm2 (2.5 mm × 3.2 mm). The accuracy in damage size
estimation of case 1 is relatively much lower than case 2-
subcase 3 because IRTmainly picked the impact hit zone depth
than the outer perimeter zone.

6. Conclusion

The following main findings are drawn from the analysis of
the results.

• The SHM strategy based on the improved WTC algorithm
is applied to the proposed MAE patch region, which effect-
ively predicted the BVID region in case 1, and HLCs in case
2. TheWTC algorithm effectively localized the damagewith
a few sensors.

• The newly implemented pixel counting-based confusion
matrix method is applied to get an approximate size of the
BVID and the length of HLC. The quantification results
identified the damage with an error difference as low as
0.1 cm.

• A robust filtering method is required to locate the damage
from the recorded thermograms as a heat source creates high
thermal energy. ANN-IRT imaging algorithm is presented
to differentiate the damaged shape from a high heat source.
The developed ANN analysis with hidden neurons H = 5
model gave better results with reduced computational time.
The ANN-IRT imaging algorithm quantified the approxim-
ate damage as close to an error difference as low as 0.6 cm.

• Overall, a robust SHM-NDT technique is implemented to
study the different damage scenarios and obtain their char-
acteristic shape and length, respectively.

Such global-local methods can be used in testing larger
system-level components wherein SHM with sensors can loc-
alize the damages and NDT methods like IRT can be used to
get more details about the damages. Further planned research
involves implementing similar techniques in identifying hid-
den debonding and temperature-bound studies in composite
structures.
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