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We develop a dimension reduction framework for data consisting of matrices of counts. Our model is 

based on the assumption of existence of a small amount of independent normal latent variables that 

drive the dependency structure of the observed data, and can be seen as the exact discrete analogue of a 

contaminated low-rank matrix normal model. We derive estimators for the model parameters and estab- 

lish their limiting normality. An extension of a recent proposal from the literature is used to estimate the 

latent dimension of the model. The method is shown to outperform both its vectorization-based com- 

petitors and matrix methods assuming the continuity of the data distribution in analysing simulated data 

and real world abundance data. 
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. Introduction 

Modern applications typically see data with structures going 

ignificantly beyond the traditional “n observations of p continuous 

ariables” framework. In this work, our focus is on data where the 

bservations X i = (x i, jk ) , i = 1 , . . . , n , j = 1 , . . . , p 1 , k = 1 , . . . , p 2 , are

p 1 × p 2 matrices of non-negative counts. Such data appear nat- 

rally, for example, in the analysis of publication data ( x i, jk de- 

cribes the word count of the jth word for the i th author at the

 th venue) [13] , abundance studies ( x i, jk describes the abundance 

f the i th species in the jth location at the k th time peroid) [9] and

n the analysis of dyadic events ( x i, jk describes the number of ac- 

ions initiated by the jth actor targeting the k th actor during the 

 th time period) [32] . A common aspect to all these applications is

hat the involved data sets are usually both large in size and inher- 

ntly complex. As such, a natural first step in their analysis is di- 

ension reduction, which both helps reduce their size and allows 

nterpreting the data through the discovered latent variables. The 

evelopment of a natural framework for the dimension reduction 

f matrix-valued count data is thus the objective of the current 

ork. 

In order for us to succeed in this task, the developed meth- 

ds have to naturally accommodate the two main features of the 
ata: the matrix structure and the discreteness of the observations. 

∗ Corresponding author. 
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gnoring the latter of these for a second, the recent decade has 

een an ever-increasing amount of standard multivariate statisti- 

al methods being generalized to allow for matrix-valued data. The 

ajority of these extensions uses the so-called Kronecker approach 

o modelling which we next exemplify in the simple context of a 

inear latent factor model. 

Given a p 1 × p 2 random matrix X , the “naive” approach to la- 

ent factor modeling would be to vectorize X to obtain the (p 1 p 2 ) -

imensional vector vec (X ) ( vec stacks the columns of its input to 

 long vector) and assume, for example, that 

ec (X ) = μ0 + U 0 z + ε 0 , (1) 

here μ0 ∈ R 

p 1 p 2 , U 0 ∈ R 

p 1 p 2 ×d are unknown parameters and the 

-dimensional random vector z and the (p 1 p 2 ) -dimensional ran- 

om vector ε 0 signify the latent signal and the noise, respectively. 

hereas, under the Kronecker approach, we would instead pre- 

erve the matrix structure of X and assume that, 

 = μ + U 1 ZU 2 
� + ε, (2) 

here μ ∈ R 

p 1 ×p 2 , U 1 ∈ R 

p 1 ×d 1 , U 2 ∈ R 

p 2 ×d 2 are unknown param-

ters and the random d 1 × d 2 matrix Z and the random p 1 × p 2 
atrix ε represent the latent signal and the noise, respectively. 

o understand the relationship between the two approaches, we 

pply vectorization vec to the model (2) and use the formula 

ec (AY B � ) = (B � A ) vec (Y ) to reveal that any X obeying the matrix

odel (2) also admits the vectorial form (1) with U 0 = U 2 � U 1 and

 = d 1 d 2 . Indeed, under the assumption of the Kronecker struc- 

ure U = U � U , the models (1) and (2) are exactly equivalent,
0 2 1 
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eaning that the collection of all matrix models of the form 

2) constitutes a strict subset of the collection of all vector mod- 

ls (1) (where U 0 is allowed to be arbitrary). 

From matrix form (2) we see that U 1 determines the depen- 

ency structure of the rows of X and U 2 governs the dependen- 

ies within the columns of X . Besides facilitating the previous 

atural intepretation, the structural assumption U 0 = U 2 � U 1 also 

orks as a form of regularization that helps avoid overfitting (see 

ection 4.3 for an example in the context of real world abundance 

ata). Indeed, the loading matrices U 1 , U 2 in model (2) have a total

f p 1 d 1 + p 2 d 2 parameters whereas the unstructured U 0 in the vec-

or model has p 1 p 2 d 1 d 2 parameters, a significantly larger amount 

lready for moderately large dimensions. 

The Kronecker approach has been used to great success in 

eveloping matrix versions of, e.g., principal component analysis 

PCA) [6,14,40] , independent component analysis [38] and suffi- 

ient dimension reduction [7,21] . Consequently, the Kronecker ap- 

roach will also be our tool of choice. Note that the same idea can 

lso be seen to underlie several tensor decompositions, such as the 

igher order singular value decomposition (HOSVD) and the Tucker 

ecomposition, see, e.g., [5,17] . 

Moving on to the count aspect of our data, the error ε in 

2) is typically Gaussian, implying that the model is not suitable 

or count data. Moreover, even if the error variable was taken to 

e discrete, some heavy constraints would need to be placed to the 

odel parameters to guarantee that X contains only non-negative 

ntegers, making the approach rather unnatural. As such, we will 

nstead derive a discrete analogy for (2) . Such discrete extensions 

f latent variable models have been intensively studied in the case 

f vector-valued data and the most popular approach is perhaps 

hat of exponential family PCA , where a latent variable model is as- 

umed for the canonical parameter of an exponential family distri- 

ution, see [4,19,22] for a general treatment and [33,34] for sparse 

xtensions. Another major framework for the modelling of count 

ata, and the one on which we base our extension of (2) , is the

oisson log-normal (PLN) distribution where the data are taken 

o be conditionally Poisson distributed with the mean parame- 

ers following the log-normal distribution. Introduced originally in 

1] (but without the dimension reduction context), the PLN model 

as since been studied from different viewpoints, see [3,11,15] , in 

articular from the perspective of variational inference. The model 

an also be seen as a special case of the compound Poisson factor 

odel studied in [39] . 

The primary contributions of this work are as follows: 

• We extend the PLN model to matrix-valued data using the Kro- 

necker approach, the obtained model retaining both the in- 

terpretability and the parsimonity of the Gaussian Kronecker 

model (2) . 
• We develop natural closed-form estimators for the model pa- 

rameters using the method of moments, studying also their 

asymptotic behavior. As far as we are aware, large-sample re- 

sults for PLN models have been proposed earlier only in [11] (in 

the vectorial case) and even then in a restrictive context requir- 

ing repeated measurements for each observational unit. 
• Using the parameter estimates we (i) form predictions for the 

latent variables and, (ii) derive an estimator for the latent 

model dimensionality, based on the recently proposed idea of 

predictor augmentation [24] . 
• We establish the practical superiority of the proposed method 

to several competitors, including the (vectorial) estimator of 

[3] based on variational infernce, in both simulations and an 

application to real world abundance data. 

Furthermore, we note that Bayesian models targeting the same 

ype of data (matrices of counts) have been earlier studied in the 
2 
iterature [13,23] but, as far as we are aware, ours is the first fre-

uentist approach. 

The manuscript is organized as follows. In Section 2 we dis- 

uss briefly some notation and recall the matrix normal distribu- 

ion that plays a key role in defining our model. Section 3 dis- 

usses our model along with the estimation of its parameters, the 

atent variables and the latent dimensions. In Section 4 we study 

he finite-sample properties of the parameter and dimension esti- 

ators using simulated data and, additionally, present an applica- 

ion to matrix-valued abundance data. In Section 5 , we finally close 

ith some discussion. 

. Notation and some preliminaries 

Throughout the manuscript, the subscripts 1 and 2 are used to 

efer to the left-hand and the right-hand sides of the model, re- 

pectively, as in (2) . The p 1 × p 2 matrix-variate normal distribution 

ith mean μ ∈ R 

p 1 ×p 2 and invertible left and right covariance ma- 

rices �1 ∈ R 

p 1 ×p 1 , �2 ∈ R 

p 2 ×p 2 is denoted by N p 1 ×p 2 (μ, �1 , �2 ) . 

hat is, if X ∼ N p 1 ×p 2 (μ, �1 , �2 ) then X has the density function 

f X : R 

p 1 ×p 2 → R defined as, 

f X (X ) = 

1 

(2 π) −p 1 p 2 / 2 | �1 | p 2 / 2 | �2 | p 1 / 2 
exp 

[ 
−1 

2 

tr 
{
�−1 

1 (X − μ)�−1 
2 (X − μ) � 

}] 
, 

ee, for example, [10] . In a notable special case where the covari- 

nce matrices �1 and �2 are diagonal matrices, the elements of 

are mutually independent and the variance of the ( j, k ) th el- 

ment equals the product σ1 , j j σ2 ,kk of the corresponding diago- 

al elements. Note also that the parameters �1 , �2 are defined 

nly up to the scaling (�1 , �2 ) �→ (t �1 , t 
−1 �2 ) for any t > 0 (we

et rid of this non-identifiability in the next section via a suitable 

eparametrization). 

Some of our results are more naturally formulated in terms of 

he (column) vectorizations of the related matrices. We use the 

onvention that the vectorization of the observed matrix X is de- 

oted using the lower case x := vec (X ) (and similarly for the la- 

ent matrix Z). A property we will repeatedly use without ex- 

licit mention is vec (AY B � ) = (B � A ) vec (Y ) , valid for all matrices

, B, Y with appropriate dimensions for the multiplication AY B � to 

e well-defined. 

. Matrix Poisson PCA 

.1. Low-rank normal and Poisson models 

To motivate our proposed model for the dimension reduction 

f matrix count data, we first briefly review the analogous low- 

ank model for Gaussian data. Namely, assume that the observed 

p 1 × p 2 random matrix X is generated as 

 = μ + U 1 ZU 2 
� + ε, (3) 

here μ ∈ R 

p 1 ×p 2 , Z ∼ N d 1 ×d 2 
(0 , τ�1 , τ�2 ) , τ > 0 , �1 ∈ R 

d 1 ×d 1 

nd �2 ∈ R 

d 2 ×d 2 are positive-definite diagonal matrices satisfying 

r (�1 ) = p 1 and tr (�2 ) = p 2 for some d 1 < p 1 , d 2 < p 2 , the error

 ∼ N p 1 ×p 2 (0 , σ I p 1 , σ I p 2 ) for some σ > 0 and I p denotes the p × p

dentity matrix. Furthermore, the random matrices Z and ε are as- 

umed to be mutually independent. Alternatively, the same model 

an be written by requiring that Z ∼ N d 1 ×d 2 
(0 , τ�1 , τ�2 ) and 

 | Z ∼ N p 1 ×p 2 (μ + U 1 ZU 2 
� , σ I p 1 , σ I p 2 ) (4) 

n practice, the objective underlying this model is, given a sample 

rom the distribution of X , to estimate the “loading matrices” U 1 

nd U along with the corresponding latent matrices Z, achieving 
2 
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imension reduction in the process. Naturally, the latent dimen- 

ions d 1 , d 2 are usually unknown in practice and have to be esti- 

ated as well. As is common in the dimension reduction literature 

e separate this problem from the estimation of the other param- 

ters and the latent components and assume, for now, that d 1 , d 2 
re known. Their estimation is then tackled later in Section 3.6 . Fi- 

ally, we note that the parameters U 1 , U 2 can, without loss of gen-

rality, be assumed to have orthonormal columns. This is because 

ny transformation of the form U 1 �→ U 1 A 1 can be absorbed to the

atent variables Z (similarly for U 2 ). This property of model (3) is 

n analogy to standard PCA where the loading matrix is also taken 

o be orthogonal. 

The mean matrix μ in (3) can be estimated through E(X ) 

nd the covariance parameters are standardly estimated using 

he higher-order singular value decomposition (HOSVD) [5] , also 

nown as 2D 

2 
PCA [40] , where the matrix U 1 is found through the

igenvectors of the left covariance matrix Cov 1 (X ) := (1 /p 2 )E[ { X −
(X ) }{ X − E(X ) } � ] . Namely, under model (3) , we have 

ov 1 (X ) = τ 2 U 1 �1 U 1 
� + σ 2 I p 1 , 

howing that the leading eigenvectors of Cov 1 (X ) serve as an es- 

imator for U 1 (or, in case of non-simple eigenvalues, for the cor- 

esponding subspace). The right-hand side matrix U 2 can be deter- 

ined similarly by first transposing the observations, after which 

n estimate for the latent variables is obtained as U 1 
� (X − μ) U 2 =

 + ε 0 where ε 0 ∼ N d 1 ×d 2 
(0 , σ I d 1 , σ I d 2 ) . Note that a noisy estimate

s indeed the best we can do since the original observations are 

hemselves contaminated with ε. 

We base our matrix count model on the above ideas, similarly 

ssuming the existence of a matrix of mutually independent nor- 

al latent variables Z ∼ N d 1 ×d 2 
(0 , τ�1 , τ�2 ) where the covariance 

arameters satisfy the trace constraints tr (�1 ) = p 1 and tr (�2 ) = 

p 2 . Conditional on Z the observed p 1 × p 2 matrix X of counts is 

ssumed to satisfy 

 | Z ∼ Po p 1 ×p 2 { exp (μ + U 1 ZU 2 
� ) } , (5) 

here the parameters μ, U 1 , U 2 are as in (4) , the exponential func-

ion is applied element-wise and the notation Po p 1 ×p 2 (M) , M ∈ 

 

p 1 ×p 2 , refers to a distribution on p 1 × p 2 matrices having in- 

ependent elements and whose ( j, k ) th component is Poisson- 

istributed with the mean m jk . Since the specification (5) is con- 

itional on Z, this leads to the elements of the observed matrix X

eing dependent, where the magnitude and exact type of the de- 

endency is controlled by the model parameters and the moments 

f Z. Comparison to (4) now reveals that the proposed model (5) is 

ndeed a straightforward count analogy of the Gaussian model 

here the exponential map plays the same role as the inverse link 

unction in log-linear models. The identical structure of the latent 

ariables μ + U 1 ZU 2 
� in models (4) and (5) also means that our 

arlier discussion about the orthonormality of U 1 , U 2 in the model 

4) applies in the Poisson model as well. 

For the remainder of this manuscript, we assume that we have 

bserved a random sample X 1 , . . . , X n from the model (5) . Our ob-

ectives are then three-fold: (i) We first derive root- n consistent 

stimates for the model parameters. Of these, especially of inter- 

st are the loading matrices U 1 , U 2 which describe how the ele- 

ents of the observations X i depend on the corresponding latent 

ariables in Z i . (ii) Given the parameter estimates, we establish es- 

imators for the latent dimensions d 1 , d 2 . The estimators are based 

n a recent idea for using predictor augmentation for rank estima- 

ion [24] . (iii) Finally, given the previous information, we estimate 

he latent matrices Z i themselves. Note that the estimates are again 

ecessarily noisy as error is introduced to model (5) through the 

oisson sampling. 

In the special case where p 2 = 1 (and our observations are vec- 

ors), model (5) reduces to a multivariate Poisson log-normal dis- 
3 
ribution (meaning that the observations are conditionally Poisson- 

ariate with log-normal mean parameters), that was first proposed 

n [1] for modelling multivariate count data. However, [1] did not 

onsider the model from the viewpoint of dimension reduction, 

eaning that our results on the estimation of the latent variables 

nd their dimension are novel also for the case p 2 = 1 . 

.2. Parameter estimation 

The model (5) has a total of six parameters to estimate, μ, U 1 ,

 2 , τ
2 , �1 and �2 . The model being fully parametric, a natural ap- 

roach to their estimation would be maximum likelihood, as was 

one with the vectorial version of the model in [1,11,15] . However, 

he marginal density of X in the model involves an integral lacking 

 closed-form solution which, besides complicating the parameter 

stimation, would also make studying the asymptotic properties of 

he estimators very difficult. Hence, we base our subsequent es- 

imators on the method of moments which, conveniently, yields 

nalytical solutions with tractable asymptotic behavior. In the vec- 

orial case, p 2 = 1 , our proposed method-of-moments estimators 

educe to known quantities that were used in [1,15] as initial val- 

es for an iterative maximum likelihood procedure for the fitting 

f a PLN model to vector data. 

For j, k = 1 , . . . , p 1 , j � = k , we define the following quantities 

 1 , jk : = 

1 

p 2 

p 2 ∑ 

� =1 

log 

{
E(x j� x k� ) 

E(x j� )E(x k� ) 

}
, 

s 1 , j j := 

1 

p 2 

p 2 ∑ 

� =1 

log 

[
E { x j� (x j� − 1) } 

{ E(x j� ) } 2 
]
, (6) 

long with their “right-hand side” variants, defined for j, k = 

 , . . . , p 2 , j � = k , 

 2 , jk : = 

1 

p 1 

p 1 ∑ 

� =1 

log 

{
E(x � j x �k ) 

E(x � j )E(x �k ) 

}
, 

s 2 , j j := 

1 

p 1 

p 1 ∑ 

� =1 

log 

[
E { x � j (x � j − 1) } 

{ E(x � j ) } 2 
]
. 

Let S 1 be the p 1 × p 1 matrix having the s 1 , jk as its elements 

nd analogously for S 2 . Note that in [1,15] , the matrix S 2 was not

eeded as in the vectorial case with p 2 = 1 the right-hand side 

odel parameters U 2 , �2 ∈ R 

1 ×1 can be absorbed to the left-hand 

ide of the model. Recall that τ > 0 denotes the joint scaling pa- 

ameter of the latent covariance matrices in the model (5) . Then 

he following holds. 

emma 1. Under model (5) , we have 

 1 = τ 2 U 1 �1 U 1 
� , S 2 = τ 2 U 2 �2 U 2 

� . 

Lemma 1 shows that tr (S 1 ) / (2 p 1 ) + tr (S 2 ) / (2 p 2 ) = τ 2 , allowing

he estimation of τ 2 through S 1 and S 2 . Consequently, matrices 

 1 and �1 can be estimated through the leading d 1 eigenvectors 

nd eigenvalues of S 1 /τ
2 , respectively (implying that S 1 plays the 

ole of the matrix Cov 1 (X ) in the Poisson model), and U 2 , �2 can 

e obtained similarly from S 2 . This leaves us just with the mean 

arameter μ which, while a nuisance parameter in the Gaussian 

odel (3) , may in the Poisson model be of independent interest, 

eing part of the latent variables μ + U 1 ZU 2 
� . To estimate it, we 

se the relationship 

jk = 2 log E(x jk ) −
1 

2 

log E { x jk (x jk − 1) } 
ollowing from the proof of Lemma 1 . 
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.3. Asymptotic normality of the estimators 

We next turn to the asymptotic properties of the es- 

imators. Given a random sample X 1 , . . . , X n from the 

odel (5) , let S n 1 denote the sample version of the ma- 

rix S 1 (that is, with elements as in (6) but with the ex- 

ected values replaced by sample means) and define S n 2 
nalogously. Finally, define t 2 n := tr (S n 1 ) / (2 p 1 ) + tr (S n 2 ) / (2 p 2 )

nd let the elements of the p 1 × p 2 matrix M n be m n, jk := 

 log { (1 /n ) 
∑ n 

i =1 x i, jk } − (1 / 2) log { (1 /n ) 
∑ n 

i =1 x i, jk (x i, jk − 1) } . As

ur main result of the section, we show that the concatena- 

ion ( vec (S n 1 ) , vec (S n 2 ) , t 
2 
n , vec (M n )) of the vectorizations of the

stimators converges in distribution to a multivariate normal 

istribution. We do this by deriving asymptotic linearizations for 

hem in terms of the first two moments of the sample, which we 

ather into the following expression: 

 n := 

1 √ 

n 

n ∑ 

i =1 

(
vec { X i � X i − E(X � X) } 

vec { X i − E(X ) } . 
)

(7) 

pplication of the standard CLT reveals that g n has a limiting 

ormal distribution and its limiting covariance matrix 	 can be 

traightforwardly (if tediously) derived by computing all pair-wise 

ovariances between the elements of vec (X � X ) and vec (X ) , in 

he same manner as carried out in Lemma 1 . However, our cal- 

ulations revealed that 	 has a particularly complicated form and 

ach of its elements essentially has to be computed individually. 

his is rather expected as our matrix PLN model does not enjoy 

ny form of invariance properties on the sample level, in the sense 

s possessed, e.g., by the matrix normal distribution. As such, we 

iew that presenting the full form of 	 here would carry no addi- 

ional insight, and we have refrained from including it in the pa- 

er, instead suggesting to approximate 	 numerically, if needed. 

his can be achieved by generating a large amount of replications 

f g n in (7) where the X i are taken to follow the model (5) , with

ither estimated or known true values for the parameters. To fur- 

her exemplify the complexity of 	, in Appendix A we have de- 

ived the asymptotic variance of S n 1 in the simple special case with 

p 1 = p 2 = 1 , demonstrating its rather unintuitive form. 

To avoid notational overload in Theorem 1 below, we give the 

inearizations explicitly only for S n 1 and M n . The equivalent expres- 

ion for S n 2 can be obtained by applying the formulas for S n 1 to the

ransposed sample X i 
� and for t 2 n = tr (S n 1 ) / (2 p 1 ) + tr (S n 2 ) / (2 p 2 )

y simply summing over the scaled diagonal elements of S n 1 and 

 n 2 . In Theorem 1 e j refers to the jth standard basis vector and

f jk := (e j � e k ) . 

heorem 1. 

i) (Off-diagonal elements of S n 1 ) For j � = k , we have, 
√ 

n (S n 1 − S 1 ) jk = h jk 
� g n + o p (1) , 

where, for j � = k , 

h � jk := 

( 

1 

p 2 

p 2 ∑ 

� =1 

( f �� � f k j ) 
� 

f � 
k j 

E(X � X ) f �� 
, − 1 

p 2 

p 2 ∑ 

� =1 

{
f � j 

e � 
j 

E(X ) e � 
+ 

f �k 

e � 
k 

E(X ) e � 

}� ) 

. 

ii) (Diagonal elements of S n 1 ) For j = k , we have, 
√ 

n (S n 1 − S 1 ) j j = h j j 
� g n + o p (1) , 

where, 

h 

� 
j j := 

( 

1 

p 2 

p 2 ∑ 

� =1 

( f �� � f j j ) 
� 

b j� 
, − 1 

p 2 

p 2 ∑ 

� =1 

{
1 

b j� 
+ 

2 

e � 
j 
E(X ) e � 

}
f � � j 

) 

, 

and b j� := f j j 
� E(X � X ) f �� − e j 

� E(X ) e � . 
4 
ii) (The elements of M n ) For all j, k , we have, 
√ 

n (M n − μ) jk = a jk 
� g n + o p (1) , 

where, 

a � jk := 

(
− ( f kk � f j j ) 

� 

2 b jk 
, 

{
1 

2 b jk 
+ 

2 

e j � E(X ) e k 

}
f � k j 

)
. 

Theorem 1 shows that each of the estimators has an asymp- 

otic expansion as a linear combination of the vector g n . Thus the 

ector ( vec (S n 1 ) , vec (S n 2 ) , t 
2 
n , vec (M n )) converges in distribution to

 multivariate normal distribution whose covariance matrix is of 

he form H 	H 

� where 	 is the limiting covariance matrix of g n 
nd H is the matrix containing the coefficients of the asymptotic 

inearizations from Theorem 1 . Equivalent results for the estima- 

ors of the eigenelements U 1 , U 2 , �1 �2 now follow with standard 

symptotic techniques [8,35] . 

.4. Interpretation of S 1 and S 2 

We conclude the section by providing interpretations for the 

atrices S 1 and S 2 . In the special case when p 2 = 1 (making the

bservation X simply a p 1 -variate vector x ), the matrix S 1 has 

ts ( j, k ) th off-diagonal element and its ( j, j) th diagonal element

qual to 

og 

{
E(x j x k ) 

E(x j )E(x k ) 

}
and log 

[
E { x j (x j − 1) } 

{ E(x j ) } 2 
]

(8) 

espectively, showing that S 1 may be viewed as a count data ana- 

ogue of the ordinary covariance matrix. That is, instead of additive 

entering by the mean, we conduct the multiplicative centering 

 j �→ x j / E(x j ) and, instead of raw moments, we use the factorial

oments. 

In the literature on elliptical distributions, a commonly used 

amily of alternatives to the covariance matrix are known as scatter 

unctionals, defined as any affine equivariant mappings F �→ S(F ) 

f a p-variate distribution F to the space of positive semi-definite 

atrices. By affine equivariance, it is meant that, for any invert- 

ble matrix A ∈ R 

p×p and any b ∈ R 

p , the scatter functional satisfies

(F A,b ) = AS(F ) A 

� where F A,b is the distribution of the random vec-

or Ax + b and x ∼ F , see, for example, [36] for examples and refer-

nces on scatter functionals in the context of dimension reduction. 

Now, being also an alternative of sorts to the covariance ma- 

rix, it is of interest to see whether the current matrix S 1 pos- 

esses any similar properties as scatter functionals. For a random 

p-variate count vector x , it is seen from (8) that the matrix S 1 is in-

ariant under the transformations x �→ Dx where D ∈ R 

p×p is an ar-

itrary diagonal matrix with positive diagonal elements. Hence, we 

bserve that S 1 does not actually measure the “scatter”, or scale, of 

 but rather some higher order property (“shape”). Inspection also 

eveals that if the jth and k th element of x are independent, the 

orresponding off-diagonal element of S 1 vanishes, which is known 

n the context of scatter functionals as the (element-wise) inde- 

endence property [28] . 

Take next the elements of x to be i.i.d. from various standard 

ount data distributions: If x 1 ∼ Po (λ) , we have s 1 , 11 = 0 (and, con-

equently, S 1 = 0) , showing that Poisson-distribution is viewed as 

eing pure noise by the matrix S 1 (this observation will be used in 

ection 3.6 to estimate the latent dimension d). If x 1 ∼ NegBin (r, p) 

the negative binomial with success probability p and stopping af- 

er the rth failure), then s 1 , 11 = log (1 + 1 /r) . If x ∼ Bin (n, p) , we get

 1 , 11 = log (1 − 1 /n ) , showing, in particular, that S 1 is not necessar-

ly positive semi-definite. A common thread behind the previous 

ases is that in all three the value of S 1 is independent of a subset

f the involved parameters (taken to the extreme with the Poisson- 

istribution). Additionally, the signs of the diagonal elements of S 
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orrespond in each case with the presence of overdispersion in the 

istributions (negative/positive sign being linked with underdisper- 

ion/overdispersion). Hence, instead of being a measure of scale, it 

eems more fitting to view the matrix S 1 as measuring the amount 

f overdispersion in the data. However, this analogy is not perfect, 

s, e.g., for the negative binomial distribution the severity of the 

verdispersion (in the classical sense) depends on the parameter 

p, to which S 1 is invariant. 

.5. Latent component estimation 

For convenience, the results of this section are formulated in 

erms of the column vectorizations x and z of the matrices X and Z. 

dditionally, we denote m := vec (μ) , � := �2 � �1 , U := U 2 � U 1 ,

p := p 1 p 2 and d := d 1 d 2 . Recall from Section 3.1 that in the ma-

rix normal model (4) , a natural estimator for the latent variables, 

r principal components (PCs), z is obtained straightforwardly as 

 

� (x − m ) . The simple, linear form of the estimator can be seen

o follow from the fact that the observed and the latent ma- 

rices belong to the same distributional family, a property that 

oes not hold for the Poisson model (5) . However, we can still 

raw an analogy with the normal model by observing that the 

inear estimate U 

� (x − m ) admits a characterization as the mode 

f the conditional distribution of the scaled latent components 

I d + σ 2 τ−2 �−1 ) z given the observation x . 

emma 2. Under the normal model (4) , we have 

I d + σ 2 τ−2 �−1 ) z | x ∼ N d { U 

� (x − m ) , σ 2 (I d + σ 2 τ−2 �−1 ) } . 

Guided by Lemma 2 , we estimate the principal components z in 

he Poisson model (5) analogously as the mode of the conditional 

istribution of z given x (we do not incorporate the scaling matrix 

 d + σ 2 τ−2 �−1 as σ 2 has no analogue in the Poisson model and, 

esides, scale is often anyway seen as a nuisance in dimension re- 

uction). Unlike in the normal model, the resulting conditional dis- 

ribution does not belong to any standard distributional family, but 

ts mode can still be estimated efficiently through numerical maxi- 

ization of a concave objective function, as shown in the next the- 

rem. Similar approaches have been used earlier for count data in 

16,22] . In the sequel, we denote by � (z| x ) := log f z| x (z| x ) the loga-

ithmic density function of the conditional distribution. 

heorem 2. The logarithmic conditional density � (z| x ) satisfies the 

ollowing. 

i) For a constant C not depending on z, 

� (z| x ) = C + x � Uz − 1 

� exp (m + Uz) − 1 

2 τ 2 
z � �−1 z, 

where 1 ∈ R 

p is a vector of ones and the exponential function is 

applied element-wise. 

ii) For all x ∈ R 

p , the function z �→ � (z| x ) is strictly concave and ad-

mits a unique maximum in R 

d . 

Denote the gradient and the Hessian matrix of the map z �→ 

 (z| x ) as g(z| x ) and H(z| x ) , respectively, the exact forms of which

re given in the proof of Theorem 2 in Appendix B . Furthermore, 

iven the estimates of the model parameters from Section 3.2 , de- 

ote by � n (z| x ) , g n (z| x ) and H n (z| x ) the logarithmic conditional

ensity, gradient and Hessian, respectively, with the parameter es- 

imates plugged in. The d-variate latent vector z i corresponding to 

 vectorized observation x i can now be estimated as the unique 

aximizer of z �→ � n (z| x i ) using the standard Newton-Raphson 

ethod, Theorem 2 guaranteeing its convergence. Recall finally 

hat the model (5) assumes the principal components to have zero 

ean. Hence, as the final step in their estimation, we still center 

he estimated sample PCs z , . . . , z n ∈ R 

d . 
1 

5 
We end the section with a collection of remarks: (i) If two or 

ore diagonal elements of �1 are equal then the related eigen- 

ectors in U 1 are not uniquely defined (even up to their signs). 

n such a case, also the corresponding principal components are 

on-uniquely defined, exhibiting rotational indeterminacy similar 

o what one encounters in classical factor models. However, we did 

ot find this an issue in practical scenarios where eigenvalues are 

ypically distinct enough up to some numerical precision. (ii) Inter- 

stingly, Theorem 2 reveals that the estimate of the latent variables 

 i depends on the observed data x i only through the projection 

 n 
� x i where U n := U n 2 � U n 1 and the p 1 × d 1 matrix U n 1 contains

ny first d 1 eigenvectors of S n 1 as its columns (and similarly for 

 n 2 ). This is somewhat surprising as, based on the formulation of 

he model (5) , one would expect the matrix U n to act linearly only 

ith Z, and not with X (to which it has a non-linear functional 

ependency). (iii) Finally, while we viewed the Gaussian estimate 

 

� (x − m ) above as the mode of the conditional normal distribu- 

ion in Lemma 2 , it is, naturally, also the mean of the same distri-

ution. Thus, an alternative strategy in the Poisson model would be 

o base the estimates of the latent components on the conditional 

eans of the random vector z given the observations x i . However, 

hile equally valid (and heuristic) as the taken viewpoint, relying 

n the mean would lead to an intractable integral requiring numer- 

cal approximation, leading us to favor the mode approach with its 

oncave optimization problem. 

.6. Dimension estimation 

We next develop an estimator for the latent dimension d 1 us- 

ng the recently proposed idea of predictor augmentation [24] . By 

he symmetry of model (5) , an estimator for d 2 is obtained exactly 

nalogously after the transposition of the observations. 

In predictor augmentation, artificially generated noise is con- 

atenated to the observations in order to reveal the cut-off point 

rom positive values to zero in the spectrum of the matrix of in- 

erest. More precisely, given a random sample X 1 , . . . , X n from the 

odel (5) , fix a positive integer r 1 ∈ N 

+ and let X ∗1 , . . . , X 
∗
n be the

ugmented sample where X ∗
i 

= (X i 
� , R i � ) � and the elements of the 

 1 × p 2 matrices R i are sampled i.i.d. from the Poisson distribution 

ith the rate parameter λ = 1 , i = 1 , . . . , n . Letting S ∗n 1 denote the

quivalent of the matrix S n 1 but computed from the augmented 

ample, techniques similar to the ones used in Lemma 1 and 

heorem 1 show that 

 

∗
n 1 = 

(
τ 2 U 1 �1 U 1 

� 0 

0 0 

)
+ O p (1 / 

√ 

n ) . (9) 

et now the r 1 -dimensional vectors βn 11 , . . . , βn 1(p 1 + r 1 ) contain the 

nal r 1 elements of any set of orthogonal eigenvectors of S ∗n 1 (that 

s, βn 11 contains the last r 1 entries of an eigenvector correspond- 

ng to the first eigenvalue of S ∗
n 1 

etc.) Now, for k ≤ d 1 , we ex-

ect the norms ‖ βn 1 k ‖ to be close to zero as the correspond- 

ng eigenspaces are, in the limit n → ∞ , concentrated fully on the 

ubspace spanned by the d 1 columns of the (p 1 + r 1 ) × d 1 matrix

U 1 
� , 0) � . On the other hand, for k > d 1 , there is no reason for

 βn 1 k ‖ to be small as the final p 1 + r 1 − d 1 eigenvalues of the lim-

ting matrix in (9) are all equal to zero and, hence, the correspond- 

ng eigenvectors should not favor any direction (in the null space). 

or a rigorous presentation of this concept, along with more details 

n the full procedure, see [24] . In predictor augmentation, this in- 

ormation provided by the eigenvectors is further supplemented by 

he eigenvalues λn 11 ≥ · · · ≥ λn 1(p 1 + r 1 ) of the matrix S ∗n 1 to define 

he objective function φn 1 : { 0 , . . . , p 1 } → R 

n 1 (k ) = 

k ∑ 

j=0 

‖ βn 1 j ‖ 

2 + 

λn 1(k +1) 

1 + 

∑ k +1 
j=1 λn 1 j 

, (10) 
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here we define ‖ βn 10 ‖ to be equal to zero. Note that the sec-

nd term of (10) corresponds essentially to a scaled version of the 

cree plot used commonly in PCA. By the earlier discussion, we 

xpect the first term of φn 1 (k ) to be small for k ≤ d 1 , whereas, the

econd term takes (for large enough n ) small values for k ≥ d 1 (i.e.,

t the indices corresponding to the zero limit eigenvalues). Conse- 

uently, we take as our estimate of d 1 the value k at which φn 1 is

inimized, 

 n 1 := argmin k ∈{ 0 , ... ,p} φn 1 (k ) . 

o increase the stability of the estimate for small n , [24] further 

dvocated independently carrying out the augmentation procedure 

 1 times and replacing ‖ βn 1 j ‖ 2 in (10) with its mean over the 

 1 replicates. Similarly, we also replace the eigenvalues λn 1 j with 

heir means over the replicates (although this was not done in 

24] ). The purpose of this modification is to reduce the variability 

n their estimation, even though experimentation (not shown here) 

eveals that the variability of individual eigenvalues over the repli- 

ates is typically much smaller than the variability between the 

ifferent eigenvalues corresponding to the signal and noise. The 

rocedure has two tuning parameters, r 1 and s 1 , the latter of which 

irectly reduces variation in the results and, hence, we suggest to 

se large values for it in practice. Discussion regarding the choice 

f the value of r 1 is given later in Section 4 . 

Our simulation results in Section 4 suggest that d n 1 could be a 

onsistent estimator of d 1 as n → ∞ , but proving this turned out 

o be less than straightforward. Namely, [24] give sufficient con- 

itions under which estimators such as d n 1 are consistent for the 

rue dimension. Our scenario is easily checked to satisfy these as- 

umptions apart from one, i.e., the requirement (12) in [24] that 

he sequence of augmented matrices S ∗
n 1 

is in a specific sense con- 

iguous to Lebesgue measure. Now, a standard way of showing this 

ould be to establish that 
√ 

n (S ∗n 1 − S ∗1 ) , where S ∗1 is the limit of

 

∗
n 1 

, converges in total variation to a non-singular normal distribu- 

ion. However, by the classical result of Prohorov, see, e.g., Theorem 

.2 in [2] , the convergence in total variation happens in the central 

imit theorem if and only if the corresponding sample estimators 

ave non-trivial absolutely continuous components. Naturally, this 

s not the case with our count data model, implying that alterna- 

ive strategies must be sought and, hence, we leave this question 

or future study. 

We next illustrate the dimension determination procedure in a 

imple special case of the model (5) with p 2 = 1 , meaning that the

bservations can be treated as p 1 -dimensional vectors and it is suf- 

cient to consider dimension estimation for the left-hand side of 

he model only (recall that our results are novel also in this spe- 

ial case). This, and all the examples to follow, were implemented 

n the language R [30] . The data set microbialdata in the R- 

ackage gllvm [26] consists of the abundances of 985 bacteria 

pecies measured at n = 56 soil sample sites located either in Aus- 

ria, Finland or Norway. For the purposes of this demonstration, 

e limit our attention to the subset of the p 1 = 20 most abun-

ant species, defined as the ones having the least proportions of 

ero counts over all 56 sites. We now apply the proposed dimen- 

ion determination procedure to this subset of the data with the 

hoices r 1 = � p 1 / 5 � = 4 and s 1 = 100 . The value of r 1 was chosen

or its good success in the simulation results of [24] and for s 1 
e chose a large enough value to increase the stability of the esti- 

ate in the presence of the rather low sample size. The resulting 

unction φ1 n is plotted in Fig. 1 and leads to the estimate d n 1 = 3 .

o assess whether the corresponding latent variables are meaning- 

ul, we estimate the model parameters, followed by the values of 

he first three latent variables for each of the n = 56 sites using

he method of Section 3.5 . For ease of presentation, we limit our- 

elves to the first two latent variables whose scatter plot is pre- 

ented in Fig. 2 (the colored plot markers), overlaid with the load- 
6 
ngs of the first two latent variables, i.e., the first two columns of 

 n 1 (the numbers connected with dashed lines to the origin). The 

umbering of the p 1 = 20 species corresponds to their indexing in 

 specific taxonomy. The sites of the three regions appear to be 

ather well-separated in the first two latent variables and, to ver- 

fy this finding, we fit a generalized linear Poisson latent variable 

odel [27] between the abundances and the region variable using 

he function gllvm in the R-package gllvm . Based on the coef- 

cients estimates of the model, the sites in Austria are the most 

the least) associated with the bacteria species 8, 4 (52, 184), the 

ites in Finland are the most (the least) associated with the species 

, 1 (4, 13) and the sites in Norway are the most (the least) associ-

ted with the species 64, 1242 (8, 70). Comparison of the previous 

ith Fig. 2 now reveals that the same pattern is indeed rather ac- 

urately reflected in the positioning of the loadings and the sites in 

ur “biplot”, showing that the latent variables managed to capture 

ssential biological information. Further illustration of the method- 

logy in the general case p 2 > 1 are given in Subsection 4.3 . 

. Examples 

.1. Dimension estimation in a simulation 

We next study the performance of the augmentation procedure 

n estimating the latent dimension. We take as our competitor the 

ame augmentation estimator but applied to the Gaussian model 

3) . This is essentially achieved by replacing the matrix S 1 in the 

ugmentation procedure with Cov 1 (X ) , see Section 3.1 , and simi- 

arly for S 2 . This estimator, which can be seen as a “naive” data 

ype ignoring approach to matrix-valued count data has been re- 

ently studied in the context of image data in [31] , see their work 

or more details. 

We use two different sam ple sizes, n = 10 0 , 50 0 , and two

ifferent observed dimensions, either (p 1 , p 2 ) = (10 , 5) (“Low 

imension”) or (p 1 , p 2 ) = (50 , 25) (“High dimension”). In each 

ase we take the mean μ to be the zero matrix of appropri- 

te size. Two different models for the covariance parameters 

re considered: In Model 1, the first dimension is of rank one, 

 1 = τ 2 U 1 �1 U 1 
� = 1 p 1 1 p 1 

� ( 1 p 1 is the p 1 -dimensional vector 

ith all elements equal to one), and the second dimension is of 

ank five, S 2 = τ 2 U 2 �2 U 2 
� = W E 5 W 

� , where W is a uniformly

andom p 2 × p 2 orthogonal matrix (drawn separately for every 

teration of the study) and E 5 ∈ R 

p 2 ×p 2 is a diagonal matrix with 

ts first five diagonal elements equal to one and the rest of 

hem zero. In Model 2, both dimensions are taken to have rank 

ve, with the covariance parameters being created analogously 

o that of the second dimension in Model 1. Data from every 

ombination of the parameters and models are simulated 200 

imes and for each replicate we estimate the two dimensions 

ith seven different approaches. These include our proposed aug- 

entation approach with the numbers of augmentations (r 1 , r 2 ) = 

p 1 , p 2 ) , (� p 1 / 2 � , � p 2 / 2 � ) , (� p 1 / 5 � , � p 2 / 5 � ) , (� p 1 / 10 � , � p 2 / 10 � ) , (1

denoted in the following by A1, A2, A3, A4, A5 respectively), 

here in each case we take the numbers of repetitions to be 

 1 = s 2 = 5 . In addition, we consider the Gaussian augmentation 

rocedure as described in [31] and implemented in the R-package 

ensorBSS [37] , and having either r = 1 or r = 5 augmentations

denoted in the following by G1, G2), with both cases using s = 5

epetitions. 

The rounded percentages of correctly estimated left and right 

imensions over the 200 replicates are shown in Table 1 where L 

nd R refer to the left-hand side dimension d 1 and the right-hand 

ide dimension d 2 , respectively. Comparison of the methods A1 –

5 shows that, overall, the best results are obtained with small 

mounts of augmentations (r 1 , r 2 ) . The differences occur mostly 

n the high-dimensional version of Model 2 whose dimensions 
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Fig. 1. Plot of the map k �→ φn 1 (k ) for the abundance data set. The minimum value is achieved at k = 3 . 

Fig. 2. Scatter plot of the first two latent components for the abundance data set (the colored plot markers), overlaid with the corresponding loadings (the numbers con- 

nected with dashed lines to the origin). The numbering of the species represents their indexing in a specific taxonomy. The percentages on the axes denote the corresponding 

explained proportions of variance (ratios of the individual eigenvalues of S n 1 to their sum). 

Table 1 

Results of the dimension estimation study. The numbers refer to the percentages of correctly estimated dimensions in the different 

combinations of models and parameters. The results for the left-hand side dimension d 1 are denoted by L whereas R signifies the 

estimates for the right-hand side dimension d 2 . 

G1 G2 A1 A2 A3 A4 A5 

Dim. Model n L R L R L R L R L R L R L R 

Low 1 100 98 96 100 83 100 76 100 95 100 100 100 100 100 100 

500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Low 2 100 26 0 0 0 64 76 100 99 100 100 98 100 100 100 

500 84 0 46 0 100 100 100 100 100 100 100 100 100 100 

High 1 100 87 23 100 86 100 100 100 100 100 100 100 100 100 99 

500 98 2 100 34 100 100 100 100 100 100 100 100 100 100 

High 2 100 10 35 8 0 0 0 0 0 0 0 0 0 38 8 

500 58 88 100 98 0 0 0 0 32 0 98 44 90 95 
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one of A1–A5 is able to consistently estimate for n = 100 , but,

fter increasing the sample size to n = 500 , A5 achieves there al-

ost perfect results, making it the most consistent of the methods. 

lso, interestingly, for n = 100 , the method A5 has more difficul- 

ies in estimating d 2 (R) than d 1 (L) even though we have p 1 > p 2 
nd d 1 = d 2 . Turning our attention to the Gaussian augmentations 

1, G2, we observe that they work very consistently under some 

ettings (low-dimensional Model 1) and badly underperform un- 

er some (low-dimensional Model 2). But most interestingly, G2 

chieves the best performance out of all seven methods in the 

igh-dimensional Model 2 with n = 500 . Thus, while the Gaussian 
7 
pproach appears to be too unreliable to be used in practical situ- 

tions of count data, it clearly does work extremely well in some 

pecific situations, warranting more research in the future. 

Recall that the augmentation procedure is based on appending 

ndependent Po (1) -variates to the original observed matrices. Nev- 

rtheless, there is nothing special in the rate parameter value λ = 1 

ince, as discussed in Section 3.4 , all Poisson-distributions Po (λ) , 

> 0 are seen as noise by our estimators and could be used in the

ugmentation in place of Po (1) . Indeed, the same zero-structure 

s obtained for the augmented S ∗
n 1 

in (9) in the limit for all val-

es of λ, meaning that the exact choice of λ is irrelevant on the 
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Table 2 

Results of the dimension estimation study when using Po(10) -distribution to augment. The numbers refer to the percentages of 

correctly estimated dimensions in the different combinations of models and parameters. The results for the left-hand side dimension 

d 1 are denoted by L whereas R signifies the estimates for the right-hand side dimension d 2 . 

G1 G2 A1 A2 A3 A4 A5 

Dim. Model n L R L R L R L R L R L R L R 

Low 1 100 98 97 100 82 100 100 100 100 100 100 98 100 98 100 

500 98 100 100 100 100 100 100 100 100 100 100 100 98 100 

Low 2 100 37 0 1 0 100 100 98 100 89 100 72 100 69 100 

500 88 0 51 0 100 100 100 100 97 100 82 100 84 100 

High 1 100 89 26 100 86 100 100 100 100 100 97 92 84 2 30 

500 99 2 100 36 100 100 100 100 100 99 98 97 38 66 

High 2 100 16 38 9 2 0 0 14 0 34 34 0 44 0 6 

500 55 86 100 99 100 80 100 100 69 84 12 54 0 4 
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opulation level. However, the choice of λ might still affect the 

nite-sample performance of the augmentation procedure and, to 

nvestigate this, we reran the current simulation by using Po (10) 

n place of Po (1) . 

The obtained results are shown in Table 2 and mostly coincide 

ith Table 1 , but with one interesting difference: The larger value 

= 10 seems to give overall better results when combined with a 

arger number of augmentations (A1, A2, A3) whereas the smaller 

alue λ = 1 works the best when coupled with a smaller number 

f augmentations (A4, A5). In most settings this effect is rather 

mall, but under the high-dimensional variant of Model 2 the dif- 

erences in estimation accuracy are actually quite drastic. Namely, 

2 with Po (10) -augmentation achieves there perfect accuracy for 

 = 500 , whereas Po (1) -augmentation completely fails in the same 

cenario. 

We conclude this subsection by discussing the impact of the 

uning parameters on the augmentation procedure, based on the 

revious sets of results. In low-dimensional scenarios where the 

ample size is much larger than the dimensionality (first four rows 

f Tables 1 and 2 ), it appears that the choice of (r 1 , r 2 ) (and the

ean λ of the augmentation distribution Po (λ) ) has little effect on 

he results. This observation is perfectly in line with the heuristic 

rguments in Section 3.6 , in which the exact values of the tun- 

ng parameters are (asymptotically) irrelevant. Moreover, the same 

onclusion was reached also in [24] in the context of augmenta- 

ion of vector data, see their Table 2. As such, for simplicity and 

n order to minimize computational time, we suggest using Po (1) - 

istribution with the number of augmentations r 1 = r 2 = 1 in low- 

imensional scenarios. 

The story is quite different in high-dimensional scenarios where 

he sample size and the dimensionality are of comparable magni- 

udes. As can be observed on the last four rows of Tables 1 and

 , in such cases the exact choices of the tuning parameters can 

ave much greater impact on the results. The underlying reason 

or this is that the asymptotic arguments in Section 3.6 are in 

eneral not valid in high-dimensional regimes. This phenomenon 

s analogous to the problem of consistently estimating the eigen- 

tructure of the covariance matrix which is notoriously compli- 

ated for high-dimensional data due to eigenvalue phase tran- 

ition and similar effects, see [18] for a review. A full solu- 

ion to the current problem would thus involve the theoretical 

tudy of the high-dimensional asymptotics of the augmentation 

stimator, which we leave for future work due to the compli- 

ated mathematics involved in it. In absence of such results, as 

 practical rule of thumb, we advise to conduct the augmenta- 

ion with several different values of the tuning parameters, in 

rder to assess the sensitivity of the results. Finally, we note 

hat the same instability of the augmentation procedure in the 

ontext of high-dimensional data is visible also in Table 3 in 

24] . 
8 
.2. Efficiency study 

Next we study the finite-sample behavior of the estimators 

 n 1 , S n 2 , M n of the model parameters. For this we generate 4 ×
 observations X 1 , . . . , X n from the model (5) either with S 1 =
2 U 1 �1 U 1 

� = I 4 , S 2 = τ 2 U 2 �2 U 2 
� = I 3 (the full rank model) or

ith U 1 �1 U 1 
� = 1 4 1 4 

� , U 2 �2 U 2 
� = 1 3 1 3 

� (the low-rank model)

here 1 p denotes the p-dimensional vector consisting solely of 

nes. In both cases we take μ = 1 4 1 3 
� . We consider a total of six

ifferent sam ple sizes, n = 50 0 , 10 0 0 , 20 0 0 , 40 0 0 , 80 0 0 , 160 0 0 , and

ndependently replicate each combination of the previous simula- 

ion settings 10 0 0 times. 

As competitors to the proposed method, we employ estima- 

ors of the vectorial version of the PLN model. This is fea- 

ible since, as discussed in Section 1 , our matrix PLN model 

5) reduces to the vector PLN model when vectorized, vec (X ) | 
ec (Z) ∼ Po p 1 p 2 [ exp { vec (μ) + (U 2 � U 1 ) vec (Z) } ] , where vec (Z) ∼
 d 1 d 2 

(0 , τ�2 � τ�1 ) . As such, any estimator of the vector PLN 

odel can be used to estimate the parameters of the matrix PLN 

odel also (but with a loss of information, see below). For ex- 

mple, letting S n be the equivalent of the method-of-moments 

stimator S n 1 in the vector PLN model, then, reasoning as in 

ection 3.3 , we observe that S n / tr (S n ) converges in the limit to the

atrix A := (U 2 �2 U 2 
� /p 2 ) � (U 1 �1 U 1 

� /p 1 ) . Besides the method-

f-moments estimator, we also include the variational inference 

VI) estimator of the vector PLN model implemented in the R- 

ackage PLNmodels [3] . To allow comparisons to our proposed 

stimators, we combine the matrix PLN estimators S n 1 and S n 2 to 

 S n 2 / tr (S n 2 ) � S n 1 / tr (S n 1 ) } which also estimates the quantity A . To

valuate the accuracy of the estimators, we compute for each the 

elative differences, e.g., ‖ S n / tr (S n ) − A ‖ F / ‖ A ‖ F , where ‖ · ‖ F de-

otes the Frobenius norm. For the mean parameter μ, we similarly 

ompute the relative differences between its estimators and true 

alue. 

As the estimators of the vector PLN model completely ignore 

he natural matricial covariance structure of the model, we expect 

hem to give worse results in the estimation of the combined co- 

ariance parameter A . One purpose of this study is then to quantify 

he severity of this loss in efficiency. 

The resulting average relative errors over 10 0 0 replications are 

hown as functions of the sample size in Fig. 3 . Note that in es-

imating the mean (left panel of the figure), both our proposed 

stimator (the red line with circles) and its vectorization-based 

ounterpart (the green line with triangles) have overlapping lines. 

his is because the two estimators are actually the same as the 

ronecker structure manifests only in the covariance part of the 

odel (5) . Based on Fig. 3 , we make the following observations: 

i) For the mean parameter estimation, the competing estimator 

ased on variational inference (VI, blue line with the squares) 

tarts off better but actually gets worse with increasing n , our pro- 
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Fig. 3. The average relative errors as a function of the sample size in the efficiency study. As described in the text, in the left panel the lines for “Matrix (MoM)” (red) and 

“Vector (MoM)” (green) are exactly overlapping.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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osed estimator eventually overtaking it. (ii) There is little differ- 

nce between the two models with respect to the mean estima- 

ion, which is not a surprise as the models differ only in their co- 

ariance structures (full rank vs. low rank). (iii) Regarding the co- 

ariance estimation in the full rank model, our proposed matrix 

ethod and the VI estimator have close to equal performance but 

or larger sample sizes the latter is slightly preferable. (iv) In the 

ow rank model, our proposed estimator has the best performance 

nd the VI estimator breaks down as n grows. Closer inspection 

not shown here) reveals that when the covariance matrix has a 

ow-rank structure the VI estimator suffers from a systematic and 

evere underestimation of the off-diagonal elements of the covari- 

nce matrix A , but estimates its diagonal elements very efficiently. 

onsequently, while this behavior can possibly be fixed with a suit- 

ble bias correction, in its current form the VI estimator cannot re- 

lly be recommended in dimension reduction scenarios where one 

ssumes the data to exhibit a low-rank structure. 

.3. Real data example 

Following in the spirit of our preliminary example in 

ection 3.6 , we next apply the proposed method to matrix-valued 

bundance data used earlier in [9] , and available in https://www. 

ithub.com/rfrelat/Multivariate2D3D . The data consists of the rela- 

ive abundances (rounded to nearest integer) of a total of n = 65 

sh species in seven different so-called roundfish areas (RA 1 –

A 7) in the North Sea, studied during the years 1985–2015 which 

e further divided into 6 time periods ( 1985 − 1989 , . . . , 2005 −
009 , 2010 − 2015 ). Thus, for the i th species, we have the 7 × 6

atrix X i whose ( j, k ) th element tells the relative abundance of 

hat particular species in the area RA j during the k th period. 

In [9] , six biologically meaningful clusters ( Southern, Northern, 

W Increasing, SE Increasing, Increasing and Decreasing ) were iden- 

ified among the 65 species in the data using the combination of 

rincipal tensor analysis [20] and hierarchical clustering. As one of 

he primary practical objectives of dimension reduction is the dis- 

overy of structure (such as groups) in data, it seems reasonable to 

equire that any successful method for reducing the dimension of 

he current data should be able to detect the previous six clusters, 

hat were indeed in [9] deemed biologically internally consistent. 

With the previous in mind, we next estimate our Poisson model 

or the data, starting with dimension estimation using the aug- 
9 
entation procedure of Section 3.6 . We used Po (1) -distribution 

o generate the augmentations along with the tuning parameter 

alues (r 1 , r 2 ) = (1 , 1) and (s 1 , s 2 ) = (100 , 100) , and experimenta-

ion (not shown here) revealed that the resulting estimates are not 

oo sensitive to these choices. The resulting augmentation curves 

re shown in Fig. 4 (the left panel corresponding to the areas 

nd the right panel to the time periods) and let us conclude that 

he latent dimension of the time periods is clearly one. For the 

reas, while the minimum of the curve is achieved at three di- 

ensions, also two seems to be a reasonable option. In order 

ot to lose any information, we retain a total of three princi- 

al components, z i, 11 , z i, 21 , z i, 31 , estimated with the algorithm in 

ection 3.5 (of which three observations failed to converge due to 

umerical overflow and are not shown in the subsequent plots). 

xamination of the corresponding loading vectors (the columns of 

 n 1 and U n 2 ) then reveals that in both modes the first loading vec- 

or has roughly constant elements, indicating that the correspond- 

ng PC z i, 11 simply measures the overall abundances of the species 

the absolute correlation between z i, 11 and the average abundances 

f the species in the 42 area-time combinations is 0.55). 

As our interests lie deeper than in the aggregate abundances, 

e next ignore the PC z i, 11 and plot the remaining two, z i, 21 

nd z i, 31 , in a bivariate scatter plot, depicted in Fig. 5 . The col-

ring/shapes in the plot correspond to the six clusters identified 

n [9] and we observe that they are indeed well-separated in the 

lot, with the exception of NW Increasing and Increasing [9] . actu- 

lly remark that the NW Increasing is a “very heterogeneous clus- 

er” and, by Fig. 3 in [9] , if their hierarchical clustering had been 

topped at five instead of six clusters, it is precisely the clusters 

W Increasing and Increasing that would have been joined next. 

hus, we conclude that the principal components in Fig. 5 have 

uite successfully managed to capture the group structure of the 

ata. Overlaid in Fig. 5 as dashed lines are also the correspond- 

ng area loadings (given by the second and third column of U n 1 ) 

or the seven roundfish areas. Comparison to Fig. 4 in [9] reveals 

hat these rather accurately capture the division of the clusters in 

he seven areas (for example, the Southern cluster is heavily con- 

entrated in RA 5, as suggested by the aligning of the correspond- 

ng group and dashed line in our Fig. 5 ). We also observe that the

oadings of the areas manage to capture some geographical infor- 

ation, as, after reflecting w.r.t. the x -axis and rotating clock-wise 

y 90 degrees, the loading map in Fig. 5 matches approximately 

https://www.github.com/rfrelat/Multivariate2D3D
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Fig. 4. The two augmentation estimator curves for the matrix-valued abundance data. The left panel corresponds to the area dimension and the right one to the time 

dimension. 

Fig. 5. The scatter plot of the principal components z i, 21 and z i, 31 for the matrix-valued abundance data. Overlaid as dashed lines are the corresponding loadings of the seven 

roundfish areas and the coloring corresponds to the clustering in [9] . 
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ith the actual map of the seven areas in the Northern sea, see 

ig. 1 in [9] . Note that we have not included the loadings of the

ime dimension in Fig. 5 as it is one-dimensional for the PCs (all 

f z i, 11 , z i, 21 , z i, 31 have the same column coordinate). Besides, the 

orresponding dimension was already earlier deemed as uninter- 

sting. 

Before concluding, we still briefly compare the obtained results 

o those of two natural competitors: our proposed Poisson PCA 

rocedure applied to vectorized observations (that is, each 7 × 6 

atrix X i is replaced with a 42-dimensional vector x i ) and the pop- 

lar (Gaussian) tensor decomposition known as higher order singu- 

ar value decomposition (HOSVD) [5] and implemented as the func- 

ion tPCA in the R-package tensorBSS [37] . The augmentation 

lot (not shown here) for the vectorial version of our proposed 

ethod reveals that the latent dimension is three. Similarly to the 

atrix model, the first PC has again almost constant loadings for 

ll 42 variables and in Fig. 6 we have visualized the second and 

he third PC. The plot clearly manages to separate the Southern and 

E Increasing clusters but the remaining four are left more or less 

verlapping. In addition, incorporation of any loading information 

o Fig. 6 would be difficult as we lost the distinction between the 

ow and column variables in the vectorization. Note also that, as 

escribed in the introduction, our proposed matrix-model is ac- 

ually a submodel of its vectorial counterpart and, thus, any PCs 

ound under the matrix model are also possible to discover under 
10 
he vector model. Hence, the fact that the matrix model actually 

erformed better than its more general vector version leads us to 

onclude that the “regularization” offered by the former was in- 

eed beneficial in practice. 

Finally, we applied HOSVD, i.e., the Gaussian alternative of 

ur proposed model, to the data. The corresponding Gaussian 

ugmentation plots [31] are shown in Fig. 7 and advocate us- 

ng either 2 or 3 area components and 1 or 2 time compo- 

ents. However, inspection of the resulting 6 latent components 

 i, 11 , z i, 21 , z i, 31 , z i, 12 , z i, 22 , z i, 32 reveals that each of them is heav-

ly dominated by a set of six outliers. As an example, we have 

hown the scatter plot of (z i, 11 , z i, 21 ) in Fig. 8 , demonstrating

his behavior. Closer examination reveals that these six species 

“Eutrigla gurnardus ”, “Hippoglossoides platessoides ”, “Limanda li- 

anda ”, “Melanogrammus aeglefinus ”, “Merlangius merlangus ” and 

Trisopterus esmarkii ”) are precisely those that have the largest av- 

rage abundances over the 42 area-time combinations. Moreover, 

hese six species also have the largest standard deviations of the 

bundances among all the species. This observation indicates that 

he Gaussian method, which assumes constant variation irrespec- 

ive of the mean, is unable to accommodate the dispersion of the 

ount data which typically increases with the observation size. 

ence, we refrain from interpreting the results of the Gaussian 

ethod further. We conclude with two remarks: (i) Our proposed 

oisson method does not consider the previous six species, which 
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Fig. 6. The scatter plot of the second and third PCs extracted from the vectorized matrix abundance data. The coloring corresponds to the clustering in [9] . 

Fig. 7. The two Gaussian augmentation estimator curves for the matrix-valued abundance data. The left panel corresponds to the area dimension and the right one to the 

time dimension. 
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ll belong to the cluster “NW Increasing”, as outliers, as can be 

een in Fig. 5 where no member of this cluster stands out par- 

icularly. (ii) Removing the six outlying species and rerunning the 

aussian HOSVD method is of no help as in that case a new small

et of observations again dominates the components. 

. Discussion 

In this work, we proposed a latent variable model for data 

here the observations are matrices of counts. We used the 

ethod of moments to obtain parameter estimators which, while 

nlikely to be the optimal choice (or equivalent to the intractable 

aximum likelihood estimators), are nevertheless natural and ad- 

it closed-form solutions, allowing fast computation. We esti- 

ated the latent principal components through their conditional 

odes via a concave maximization problem. Finally, we also pro- 

osed an efficient procedure for estimating the latent dimensions 

f the data. 

A natural continuation to the current work would be to ex- 

end the results to apply also to count-valued tensors (higher-order 
11 
ounterparts of matrices). Indeed, we expect that this could be 

ather straightforwardly carried out through the concept of ten- 

or flattening, see [38] , for a detailed derivation of a particular di- 

ension reduction procedure, first for matrices and then to gen- 

ral tensors through the use of flattening. However, in the current 

ork, we decided to limit ourselves to matrix data as: (i) examples 

f higher-order tensorial count data are still rather rare and, more 

mportantly, (ii) the presentation of the theory is considerably less 

otationally intensive in the matrix case (cf. the two approaches in 

38] ). 

As a second future extension, adding some kind of a zero- 

nflation mechanism to the model would be warranted since count 

ata often exhibit more zero observations than the standard dis- 

rete probability models predict. One possible approach would be 

o replace the Poisson distribution in model (5) with its zero- 

nflated counterpart such that the probability matrix of the zero- 

nflation has a low rank structure, see [25] for a similar idea in the 

ontext of missing data. 

Another possible direction would be to consider a binary equiv- 

lent of our proposed model, obtained by replacing the conditional 
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Fig. 8. The scatter plot of the principal components z i, 11 and z i, 21 for the matrix-valued abundance data extracted with the Gaussian HOSVD method. 
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istribution (5) with 

 | Z ∼ Ber p 1 ×p 2 { 
(μ + U 1 ZU 2 
� ) } , (11) 

here Ber denotes the Bernoulli distribution and the CDF 
 of the 

tandard normal distribution is used as a “link function”. Model 

11) would offer a natural approach to the dimension reduction 

f a sample of binary matrices. However, while analogous in form 

o our proposed Poisson model, a completely different set of es- 

imators would be required for the parameters of (11) . Moreover, 

ome preliminary investigation reveals that already the method of 

oments estimator for the parameters U 1 , U 2 , �1 , �2 of the binary 

odel (11) leads to rather intractable calculations involving Owen’s 

 -function [29] . The vectorial version, p 2 = 1 , of this model was

roposed and illustrated (but not studied further) in [12] . 

Finally, as observed in Section 4 , the Gaussian version of the 

ugmentation procedure turned out to perform remarkably well 

n dimension estimation under the Poisson model, even though it 

uite severely violates the model assumptions. This interesting fact 

hus also warrants more study. 
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12 
ppendix A. Limiting distribution of S 1 for p 1 = p 2 = 1 

For convenience, we introduce the following notation more 

uited to the current one-dimensional case: Let z ∼ N (0 , 1) 

nd let x | z ∼ Po { exp (μ + σ z) } . Moreover, with x 1 , . . . , x n denot-

ng a random sample from the previous model, we let m n 1 := 

1 /n ) 
∑ n 

i =1 x i , m n 2 := (1 /n ) 
∑ n 

i =1 x i (x i − 1) , m 1 := E(x ) and m 2 :=
{ x (x − 1) } . Consequently, our objective is to find the limiting dis-

ribution of 

 n := 

√ 

n 

{
log 

(
m n 2 

m 

2 
n 1 

)
− log 

(
m 2 

m 

2 
1 

)}
. 

y the CLT, the limiting distribution of 
√ 

n (m n 1 − m 1 , m n 2 − m 2 ) 
� 

s N 2 (0 , �) , where 

:= 

(
Var(x) Cov { x, x (x − 1) } 

Cov { x, x (x − 1) } Var { x (x − 1) } 
)

. 

rguing as in the proof of Lemma 1 and using the fact that the 

jth factorial moment of the Poisson distribution is equal to the jth 

ower of its mean, we find that the jth factorial moment m j := 

 { x (x − 1) · · · (x − j + 1) } of x satisfies m j = exp { jμ + (1 / 2) j 2 σ 2 } .
he first four factorial and regular moments t j := E(x j ) have the 

elationships t 1 = m 1 , t 2 = m 1 + m 2 , t 3 = m 1 + 3 m 2 + m 3 and t 4 =
 1 + 7 m 2 + 6 m 3 + m 4 , implying that 

= 

(
m 1 + m 2 − m 

2 
1 2 m 2 + m 3 − m 1 m 2 

2 m 2 + m 3 − m 1 m 2 2 m 2 + 4 m 3 + m 4 − m 

2 
2 

)
. 

s the gradient of the map (a 1 , a 2 ) �→ log (a 2 /a 2 
1 
) is (−2 /a 1 , 1 /a 2 ) ,

he delta method entails that the limiting distribution of h n is nor- 

al with zero mean and the variance 

−2 m 

−1 
1 , m 

−1 
2 )�(−2 m 

−1 
1 , m 

−1 
2 ) � = −4 m 

−1 
1 + 4 m 2 m 

−2 
1 

−4 m 3 m 

−1 
1 m 

−1 
2 + 2 m 

−1 
2 + 4 m 3 m 

−2 
2 + m 4 m 

−2 
2 − 1 . 

lugging in the values m j = exp { jμ + (1 / 2) j 2 σ 2 } now reveals that

he asymptotic variance does not indeed simplify any further. 
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ppendix B. Proofs 

roof of Lemma 1.. It is sufficient to show the claim for S 1 , as the

esult for S 2 follows instantly after transposition of the model. 

By the law of total expectation, 

(x j� ) = E { E(x j� | Z) } = E { exp (μ j� + u 1 , j 
� Zu 2 ,� ) } , 

here u a, j ∈ R 

d a denotes the jth row of U a , for a = 1 , 2 . The dis-

ribution of u 1 , j 
� Zu 2 ,� is N (0 , τ 2 u 1 , j 

� �1 u 1 , j u 2 ,� 
� �2 u 2 ,� ) , showing

hat 

(x j� ) = exp { μ j� + (1 / 2) τ 2 u 1 , j 
� �1 u 1 , j u 2 ,� 

� �2 u 2 ,� } . 
ne can similarly establish that 

 { x j� (x j� − 1) } = exp (2 μ j� + 2 τ 2 u 1 , j 
� �1 u 1 , j u 2 ,� 

� �2 u 2 ,� ) , 

nd that 

(x j� x k� ) = exp { μ j� + μk� + (1 / 2) τ 2 (u 1 , j + u 1 ,k ) 
� 

×�1 (u 1 , j + u 1 ,k ) u 2 ,� 
� �2 u 2 ,� } , 

here the latter result assumes j � = k and uses the conditional in-

ependence of x j� and x k� given Z. Plugging now in to the defini- 

ions of s 1 , jk and s 1 , j j in (6) gives 

 1 , jk = 

1 

p 2 

p 2 ∑ 

� =1 

τ 2 u 1 , j 
� �1 u 1 ,k u 2 ,� 

� �2 u 2 ,� 

= 

1 

p 2 
tr (U 2 �2 U 2 

� ) τ 2 u 1 , j 
� �1 u 1 ,k = τ 2 u 1 , j 

� �1 u 1 ,k , 

howing the claim for the off-diagonal elements s 1 , jk . A similar 

lug-in gives the analogous result also for the diagonal elements 

 1 , j j . �

roof of Theorem 1.. Fix j, � = 1 , . . . , p 2 . A first-order Taylor ex-

ansion around E(x j� ) shows that, 

√ 

n 

{ 

log 

( 

1 

n 

n ∑ 

i =1 

x i, j� 

) 

− log E(x j� ) 

} 

 

√ 

n 

e j � E(X ) e � 
e j 

� 

{ 

1 

n 

n ∑ 

i =1 

X i − E(X ) 

} 

e � + o p (1) 

 

1 

e j � E(X ) e � 
f � j 

� √ 

n ( m̄ − m ) + o p (1) , 

here we use the notation m̄ := (1 /n ) 
∑ n 

i =1 vec (X i ) and m := 

 { vec (X ) } . The same steps can be used to show that, 

√ 

n 

{ 

log 

( 

1 

n 

n ∑ 

i =1 

x i, j� x i,k� 

) 

− log E(x j� x k� ) 

} 

 

1 

f k j 
� E(X � X ) f �� 

( f �� � f k j ) 
� √ 

n ( ̄c − c) + o p (1) , 

here c̄ := (1 /n ) 
∑ n 

i =1 vec (X i � X i ) and c := E { vec (X � X ) } . Simi-

arly, we get that, 

√ 

n 

[ 

log 

{ 

1 

n 

n ∑ 

i =1 

x i, j� (x i, j� − 1) 

} 

− log E { x j� (x j� − 1) } 
] 

 

1 

b j� 
( f �� � f j j ) 

� √ 

n ( ̄c − c) − 1 

b j� 
f � j 

� √ 

n ( m̄ − m ) + o p (1) , 

here b j� is as in the statement of the theorem. 

We now observe that the elements of 
√ 

n (S n 1 − S 1 ) and 

 

n (M n − μ) are linear functions of the previous three lineariza- 

ions of the logarithmic first and second sample moments of X . 
13 
hus, all three claims of the theorem follow after collecting the co- 

fficients corresponding to 
√ 

n ( ̄c − c) and 

√ 

n ( ̄m − m ) into the vec- 

ors h jk , h j j and a jk . �

roof of Lemma 2.. The vectorization of the model (3) reads, 

 = m + Uz + vec (ε) , 

here z ∼ N d (0 , τ 2 �) is independent of vec (ε) ∼ N p (0 , σ 2 I p ) .

onsequently, the joint distribution of (z � , x � ) � is 

z 
x 

)
∼ N d+ p 

{(
0 

m 

)
, 

(
τ 2 � τ 2 �U 

� 

τ 2 U� τ 2 U �U 

� + σ 2 I p 

)}
. 

ow, (τ 2 �U 

� )(τ 2 U �U 

� + σ 2 I p ) −1 = τ 2 �(τ 2 � + σ 2 I d ) 
−1 U 

� , and

y the standard properties of Gaussian conditional distributions, 

 | x ∼ N d { a (x ) , B } , 
here a (x ) := τ 2 �(τ 2 � + σ 2 I d ) 

−1 U 

� (x − m ) and B := { I d −
2 �(τ 2 � + σ 2 I d ) 

−1 } τ 2 �. The result now follows. �

roof of Theorem 2.. The Bayes rule implies that, 

f z| x (z| x ) = C 0 f x | z (x | z) f z (z) , (B.1) 

or some positive constant C 0 not depending on z. Then, indexing 

he elements of x as x j , j = 1 , . . . , p, we have, 

og f x | z (x | z) = −
p ∑ 

j=1 

log x j ! + x � h (z) − 1 

� exp { h (z) } , 

here the exponential function is taken element-wise and we de- 

ote h (z) := m + Uz. Additionally, 

og f z (z) = −d 

2 

log 2 π − 1 

2 

τ 2 d log | �| − 1 

2 τ 2 
z � �−1 z. 

lugging the previous two formulas into (B.1) now yields result i) . 

To see ii) , we fix x and first establish the strict concavity by 

howing that the Hessian of z �→ � (z| x ) is negative definite. The

radient of the map is 

� (z| x ) = U 

� x − U 

� exp { h (z) } − τ−2 �−1 z, 

iving further the Hessian, 

 

2 � (z| x ) = −U 

� diag [ exp { h (z) } ] U − τ−2 �−1 . 

he diagonal matrices diag [ exp { h (z) } ] and �−1 have strictly pos- 

tive diagonal elements (and τ > 0 ), making the Hessian negative 

efinite and implying that � (z| x ) is indeed strictly concave in z, for

ll x . 

We next show that z �→ � (z| x ) is coercive in the sense that, for

ll sequences z n ∈ R 

d such that ‖ z n ‖ → ∞ , we have � (z n | x ) → −∞ .

ombined with the continuity of z �→ � (z| x ) , the coercivity will

hen imply that the function admits at least one global maximizer, 

nd strict concavity then guarantees that the maximizer is unique. 

Let thus z n ∈ R 

d be such that ‖ z n ‖ → ∞ and write αn :=
 z n ‖ → ∞ and u n := z n / ‖ z n ‖ . Then, 

 (z n | x ) = C + αn x 
� Uu n − 1 

� exp { h (αn u n ) } − α2 
n 

2 τ 2 
u n 

� �−1 u n 

≤ C + αn x 
� Uu n − α2 

n 

2 τ 2 
u n 

� �−1 u n 

≤ C + αn ‖ U 

� x ‖ − α2 
n 

2 τ 2 
φd (�

−1 ) , 

here φd (�
−1 ) > 0 denotes the smallest eigenvalue of the posi- 

ive definite matrix �−1 . The derived upper bound is dominated 

y the quadratic term, thus guaranteeing that � (z n | x ) → −∞ , as
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