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a b s t r a c t 

Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell’Acqua et al., proc. ISMRM 2019) 
which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or 
with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular 
the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisi- 
tions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous 
as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure 
and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time 
introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints 
and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical 
structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient 
duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long 
diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Ad- 
ditionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion 
gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the 
work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental 
data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a 
strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR 
has great potential and is a very promising alternative (or potentially complement) to model-based approaches 
for informing on pore sizes and restricted diffusion in general. 
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. Introduction 

Characterising neural tissue structure at the microscopic scale can
rovide important information regarding development, plasticity, age-
ng, as well as inform on the impact of various diseases that af-
ect the central and/or peripheral nervous systems ( Lawrence et al.,
021 ; Tian and Ma, 2017 ; Dubois et al., 2014 ; Sexton et al., 2014 ;
ebel et al., 2010 ). For example, axon diameter, along with myelin con-
ent, is an important property that influences the speed and efficiency
f neural communication ( Hursh, 1939 ). Mapping axon diameter can
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herefore provide insight into basic brain operation, with larger ax-
ns being linked to a faster nerve conduction velocity ( Hursh, 1939 ;
itchie, 1982 ), as well as insight into the progression of neuronal dis-
ases that alter axon diameter distribution, such as amyotrophic lat-
ral sclerosis ( Heads et al., 1991 ; Cluskey and Ramsden, 2001 ). On
he other hand, cell body (namely soma) sizes are of clinical inter-
st in a range of different conditions: for instance, a decrease in neu-
onal soma size has been reported in subjects with bipolar disorder
 Bezchlibnyk et al., 2007 ), an increase in motor neuron soma size is
resent in amyotrophic lateral sclerosis ( Dukkipati et al., 2018 ), while
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arge balloon cells are present in focal cortical dysplasia ( Taylor et al.,
971 ). 

Because of these relationships between tissue microstructure and
unction in the nervous system, techniques for mapping restricted diffu-
ion in the brain and the corresponding characteristic length-scales are
f high potential clinical significance. Non-invasive techniques for mea-
uring brain microstructure, such as those developed using diffusion-
eighted MRI (dMRI) are especially of interest, as they provide clini-

ally relevant information whilst obviating the need for invasive biopsy
nd associated risk. dMRI sensitises the signal to the displacement of
he water molecules in the tissue and thus provides indirect information
bout the microscopic tissue organisation ( Baliyan et al., 2016 ; Drake-
érez et al., 2018 ; Le Bihan and Iima, 2015 ) on a scale much smaller
han the voxel size. Since dMRI techniques can report on representa-
ions of diffusion, to enhance specificity, modelling strategies can be
mployed - under strict assumptions - to inform in a quantitative way
n the underlying microstructure. Towards this goal, several methods
ave been developed in the past to characterise restricted diffusion in
issue and to map cellular sizes, both in white matter (WM) and grey
atter (GM). 

In white matter, mapping axon diameter has been the focus of sev-
ral dMRI studies over the last decades ( Stanisz et al., 1997 ; Assaf et al.,
008 ; Alexander et al., 2010 ; Harkins et al., 2021 ; Veraart et al., 2020 ;
akkar et al., 2018 ; Huang et al., 2020 ; Duval et al., 2015 ; Grussu et al.,
019 ; Sepehrband et al., 2016 ; Fan et al., 2020 ; Barazany et al., 2009 ;
hang et al., 2011 ; Ong and Wehrli, 2010 ; Shemesh, 2018 ; Xu et al.,
014 ; Bar-Shir and Cohen, 2008 ; Shemesh et al., 2015 ). Some ap-
roaches employ biophysical models of the tissue, for example, rep-
esenting intra-axonal signal as diffusion restricted in infinitely-long
on-permeable cylinders, and extra-axonal signal as Gaussian hindered
iffusion ( Assaf et al., 2008 ; Alexander et al., 2010 ). Then, the tissue
odel is fitted to a rich dMRI acquisition, usually with several diffusion-
eighting amplitudes (‘shells’) and diffusion times for each shell, to

stimate summary statistics drawn from the apparent axon diameter
istributions. Another recently proposed approach is to use diffusion
easurements with ultra-high diffusion weighting (e.g. b > 6 ms/ 𝜇m 

2 )
o map axon diameter sizes based on the departure from the power
aw expected for diffusion inside cylinders with negligible diameters
i.e. ‘sticks’), however this approach requires at least one b-value much
reater than 10 ms/ 𝜇m 

2 , leading to lower resolution data on account
f longer TEs and the lower SNR at these high b-values ( Veraart et al.,
020 ). To improve sensitivity to axon diameter ( Drobnjak et al., 2016 ),
ther approaches go beyond the conventional single diffusion encoding
cquisitions and also use oscillating gradient waveforms that can ac-
ess much shorter diffusion times, either included in a modelling frame-
ork ( Kakkar et al., 2018 ; Siow et al. ) or used to contrast measure-
ents with different diffusion times and frequencies ( Harkins et al.,
021 ; Does et al., 2003 ; Wu et al., 2019 ). It has been shown in mul-
iple works ( Drobnjak et al., 2016 ; Nilsson et al., 2017 ; Paquette et al.,
021 ) that measurements of axon diameters and/or diameter distribu-
ions are extremely challenging, regardless of the dMRI sequence used,
specially when considering standard gradient amplitudes available on
linical scanners. The biggest challenge is the low inherent sensitivity
f the signal towards axons of small diameter, with the vast majority of
ontrast being produced by large axons from the tails of most biological
xonal distributions ( Drobnjak et al., 2016 ; Nilsson et al., 2017 ). 

In grey matter, mapping cell soma sizes is a more recent endeav-
ur in dMRI, with several studies showing the benefits of including
ell soma in microstructure models ( Palombo et al., 2020 ; Ianus et al.,
021 ; Schiavi et al., 2022 ; Afzali et al., 2020 ), suggesting mapping re-
tricted spaces such as cell soma is a good additional target for new
icrostructure imaging techniques. However, it has also been recently

hown that, compared to WM, GM may be characterised by faster
ulti-compartmental exchange of water molecules ( Jelescu et al., 2022 ;
lesen et al., 2022 ; Olesen et al., 2022 ), which represents an extra chal-
2 
enge for the biophysical modelling of dMRI measurements and the un-
iased estimation of restricted diffusion in GM. 

Furthermore, studying the time dependence of the diffusion signal,
s well as of estimated parameters such as diffusion and/or kurtosis ten-
ors, can provide additional information about the tissue characteristics
nd inform about the type of diffusion processes. For instance, measur-
ng the diffusion time dependence of the diffusion and kurtosis tensors
an help to differentiate between the effects of restricted diffusion and
nter-compartmental exchange ( Jelescu et al., 2022 ; Olesen et al., 2022 ;
lesen et al., 2022 ; Reynaud, 2017 ; Lampinen et al., 2021 ; Assaf et al.,
000 ; Jespersen et al., 2018 ; Lee et al., 2020 ; Aggarwal et al., 2020 ;
u et al., 2016 ), with various applications for brain and body imag-

ng. Although of great interest, characterising both the time dependence
nd b-value dependence (e.g. to estimate diffusion and kurtosis tensors)
equires many measurements and cannot currently be performed in a
ractical amount of time for clinical applications. 

A common feature of the vast majority of dMRI techniques devel-
ped for characterising both WM and GM microstructure is the use of
iophysical models to describe the relationship between the measured
MRI signals and the underpinning tissue microstructure. Imaging mark-
rs of histologically relevant features, such as axon diameter, are then
nferred by fitting such biophysical models. Although very successful
or many applications ( Alexander et al., 2019 ; Novikov et al., 2018 ), this
aradigm has some major limitations: e.g. it relies on strong assumptions
n the relevant features characterising the underlying tissue structure,
he models used are often overly simplistic, and it is prone to ambigui-
ies of results interpretation due to inherent model degeneracies. Other
esearch also exists, which aims to avoid modelling approaches and use
iffusion time dependence to characterise tissues while keeping other
iffusion parameters the same, such as the studies on diffusion disper-
ion rate ( Xu et al., 2016 ), ΔfADC ( Wu et al., 2014 ), ΔD ⊥ ( Harkins et al.,
021 ), and SSIFT ( Devan et al., 2022 ). However, these studies do not
se large b-values and hence the signal is sensitive to both restricted
nd non-restricted tissues making it hard to apply for mapping axon or
oma diameters. 

To bypass some of these limitations, Dell’Acqua et al. (2019) recently
n a preliminary study presented at ISMRM 2019, introduced the Tempo-
al Diffusion Ratio (TDR), a model-free dMRI approach to characterise
estricted diffusion inside large axons using two b-value shells with dif-
erent gradient timings. Specifically, TDR employs dMRI measurements
ith a very high b-value (above 7 ms/ 𝜇m 

2 ) to suppress fast and assum-
ngly extra-axonal diffusion, and contrasts the signal from two shells
t the same b-value obtained with different diffusion times and gradi-
nt settings. The advantages of TDR are that it employs standard PGSE
iffusion sequences widely accessible on commercially-available MRI
ystems without any specialist programming, that it does not make any
ssumptions on the underlying tissue structure, and that it does not re-
uire any model fitting, avoiding issues related to model degeneracy
 Paquette et al., 2021 ; Jelescu et al., 2016 ). 

In this paper we introduce and validate for the first time the unique
otential of the TDR contrast to inform on restriction in tissue, build-
ng on the preliminary work by Dell’Acqua et al. (2019) . We optimise
he TDR methodology and demonstrate it in a pre-clinical study. We ex-
end the TDR approach from characterising cylindrical restrictions (e.g.
xons, as it was originally introduced in Dell’Acqua et al. (2019) ), to in-
lude both cylindrical and spherical restrictions (e.g., neurites and cellu-
ar bodies), allowing us to understand the TDR values observed in a wide
ange of tissue types. We employ simulations to optimise the gradient
hapes to increase the TDR sensitivity to a wide range of axon diameter
istributions, modelled as cylinders, as well as cell body sizes, modelled
s spheres. We also investigate the effect of the Rician noise floor on
he TDR values and present a strategy for maximising TDR contrast by
sing a subset of the full gradient directions. Finally, we demonstrate
he optimised TDR strategies as well as the relationship between TDR
nd axon diameter using ex-vivo rat spinal cord data. 
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1Agja?dl = 0 
. Methods 

.1. TDR approach 

TDR is computed by contrasting two spherically-averaged dMRI sig-
als with the same b-value, each collected with a different set of diffu-
ion gradient parameters (e.g. diffusion time, gradient strength), follow-
ng the expression: 

 𝐷𝑅 = 

(
𝑆 2 − 𝑆 1 

)
∕ 𝑆 2 , 

here the sequence parameters used to generate S 1 and S 2 are cho-
en so that S 2 > S 1 for restricted diffusion. Note that, given that the
equences have the same b-value, Gaussian diffusion would result in
qual signal values and no TDR contrast, while in restricted diffusion
and any time dependent process) the specific values of S 1 and S 2 , as
ell as TDR contrast, depend on the pore size and diffusion time. In the
riginal implementation of TDR, the two shells are acquired using Sin-
le Diffusion Encoding (SDE) sequences, with fixed and equal gradient
ulse duration 𝛿, and different diffusion times Δ, one short and one long
 Dell’Acqua et al., 2019 ). Then, the normalised spherical mean diffusion
ignals, S mean , are calculated either averaging over gradient directions
niformly sampled over a sphere (e.g. using a HARDI acquisition), or
sing spherical harmonics keeping order zero. TDR contrast is then cal-
ulated based on the spherical mean data, to diminish the effect of fibre
rientation distribution: ( Callaghan et al., 1979 ) 

 𝐷𝑅 = 

𝑆 

𝑚𝑒𝑎𝑛 
2 − 𝑆 

𝑚𝑒𝑎𝑛 
1 

𝑆 

𝑚𝑒𝑎𝑛 
2 

. 

Here, we calculate the spherical mean signals S 1 
mean and S 2 

mean by
veraging across gradient directions, and hence get TDR as following: 

 𝐷𝑅 = 

∑𝑁 

𝑖 =1 𝑆 2 ,𝑖 − 

∑𝑁 

𝑖 =1 𝑆 1 ,𝑖 
∑𝑁 

𝑖 =1 𝑆 2 ,𝑖 
, 

here N is the total number of uniformly distributed gradient directions
n the HARDI acquisition, 𝑆 1 ,𝑖 is the signal acquired with the i th gradient
irection and gradient waveform used to create 𝑆 1 , while 𝑆 2 ,𝑖 is the
ignal acquired with the i th gradient direction and gradient waveform
sed to create 𝑆 2 . 

To illustrate the rationale behind the TDR contrast, originally pro-
osed for characterising white matter tissue, we consider a simple tissue
odel consisting of two compartments: intra-axonal signal is modelled

s restricted diffusion inside cylinders and contributes to TDR contrast,
nd extra-axonal signal is modelled as Gaussian diffusion ( Veraart et al.,
019 ; Skinner et al., 2015 ) and does not contribute to the TDR contrast.

Fig. 1 shows the signal attenuation and TDR values for spins re-
tricted inside a cylinder as a function of diameter when the diffusion
radients are perpendicular to the fibres. The signals S 1 and S 2 cor-
espond to sequences with the same b-value (large enough to attenuate
xtra-cylindrical diffusion) but different gradient waveforms, each yield-
ng a different attenuation for restricted diffusion. For the range of sizes
onsidered here, the difference between S 2 and S 1 , and thus the TDR
ontrast (right) increases with the cylinder diameter, here proxy for the
xon diameter. 

In reality, each white matter voxel contains a range of axon diame-
ers that contribute to the signals S 1 and S 2 . In this case the TDR contrast
s effectively the integral over the distribution of axon diameters. Hence,
iven that the difference between S 1 and S 2 increases with axon diame-
er, TDR contrast will be higher in voxels containing many large axons.
n other words, the TDR contrast is mostly sensitive to large axons and
herefore has the potential to map regions where there are larger axons.

In this study, we propose to optimise the dMRI gradient waveform to
aximise TDR contrast. The principle driving our optimization is that

he best contrast (i.e. maximum TDR value) is found for the smallest S 1 
nd largest S 2 values, for a given b value and restriction size. Hence, we
erform numerical simulations to find the actual optimal gradient wave-
orm that maximises TDR contrast given specific hardware constraints
3 
or different substrates. We also analyse the TDR contrast in spherical
ores, that have been included as a signal compartment when modelling
rey matter ( Palombo et al., 2020 ) as well as other tissue types, for in-
tance tumours ( Panagiotaki et al., 2014 ; Roberts et al., 2020 ) . 

.2. Simulations 

In this study we perform simulations to design optimised SDE acqui-
itions that maximise TDR contrast. In the first set of simulations we
ptimise the gradient waveform, then we explore the intensity and the
otential of TDR as an imaging contrast. 

Simulations are generated using the Microstructure Imaging Se-
uence Simulation Toolbox (MISST, version 0.93) ( Ianu ş et al.,
016 ), a diffusion MRI simulator that calculates the signal attenu-
tion for various restricted geometries and different gradient wave-
orms using the matrix formalism ( Callaghan, 1997 ; Drobnjak et al.,
010 ; Drobnjak et al., 2011 ). Code for MISST is available at
ttp://mig.cs.ucl.ac.uk/index.php? n = Tutorial.MISST . Code written by
he authors for the optimisation and analysis is also available and can
e found at the link in the footnote. 3 

.2.1. Simulation 1: optimising gradient waveforms for TDR 

In our first simulation, we optimise the gradient waveform for each
f the two SDE sequences to maximise TDR contrast. We consider sub-
trate configurations for two different geometries: (a) distributions of
arallel impermeable cylinders (mimicking axons), and (b) distribu-
ions of impermeable spheres (mimicking cell bodies), illustrated in
ig. 2 . For each of these two geometries, we consider two diame-
er distributions, one large and one small. For cylinders we use large
nd small gamma distributions to mimic axons typically found in the
pinal cord ( Grussu et al., 2019 ; Duval et al., 2019 ) (mean = 5.33 𝜇m,
td = 3.00 𝜇m) and corpus callosum ( Grussu et al., 2019 ; Aboitiz et al.,
992 ) (mean = 1.93 𝜇m, std = 0.81 𝜇m), respectively. For spheres we
se large ( Rajkowska et al., 1998 ; Palombo et al., 2021 ) (mean = 15 𝜇m,
td = 0.5 𝜇m) and small ( Palombo et al., 2021 ; Lackey et al., 2018 ;
ouston et al., 2017 ) (mean = 7 𝜇m, std = 0.5 𝜇m) normal distributions

o mimic cell somas typically found in mammalian brains. The intrinsic
iffusivity for all pores is set to 2 𝜇m 

2 /ms, a value typically used for
issue at 37 °C and close to the parallel diffusivity associated with the
ntra-axonal compartment in ex-vivo spinal cord ( Olesen et al., 2021 ).
he signal from extra-axonal space, as well as any exchange effects are
ssumed to be negligible for the TDR contrast. 

We assume the same b-value for both SDE sequences in order to en-
ure the diffusion contrast from Gaussian diffusion is the same. We set b
o a very high value, specifically b = 8 ms/ 𝜇m 

2 as in the initial work in-
roducing TDR ( Dell’Acqua et al., 2019 ), in order to eliminate the signal
hat comes from the extra-axonal space and free water. For comparison,
n the Supplementary Material, we additionally include results for opti-
isations performed at b = 20 ms/ 𝜇m 

2 ( Veraart et al., 2020 ), which
nsures an even higher signal attenuation in the extra-axonal space.
DR is calculated from normalised diffusion signals averaged over 60
radient directions uniformly sampled over a sphere as in the original
mplementation of TDR ( Dell’Acqua et al., 2019 ). 

Optimisation is done using a range of simulations performed with
ISST and spanning a large space of sequence parameters, for four

igh performance animal and human scanner hardware constraints: (1)
 < 600 mT/m and Δ+ 𝛿 < 45 ms corresponding to a typical pre-clinical
canner; (2) G < 2700 mT/m, Δ+ 𝛿 < 45 ms corresponding to a high-
radient pre-clinical system; (3) G < 300 mT/m, Δ+ 𝛿 < 80 ms corre-
ponding to the (human MRI) Connectom scanner (Siemens Healthi-
eers); 4) G < 80 mT/m, Δ+ 𝛿 < 80 ms corresponding to a high per-
ormance clinical scanner. Optimisation is automated using the interior
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Fig. 1. An illustration of the TDR contrast, as proposed in the original study ( Dell’Acqua et al., 2019 ). Both signals (left) are simulated at a b value of 8 ms/ 𝜇m 

2 , 
with Δ = 21 ms, 𝛿 = 9 ms, G = 276.8 mT/m for S 1 and Δ = 55 ms, 𝛿 = 9 ms, G = 162.9 mT/m for S 2 , respectively. The relative difference between the two signals 
produces the TDR contrast on the right, that is monotonically increasing with pore size for the range considered here. 

Fig. 2. An illustration of the substrate distributions used: two 
gamma distributions of parallel cylinders (small: mean = 1.93 𝜇m, 
std = 0.81 𝜇m; large: mean = 5.33 𝜇m, std = 3.00 𝜇m) and two 
normal distributions of spheres (small: mean = 7 𝜇m, std = 0.5 𝜇m; 
large: mean = 15 𝜇m, std = 0.5 𝜇m). 
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oint algorithm as implemented in the MATLAB fmincon function, with
, 𝛿 and G values for each of the two sequences as linked variables
nder investigation. The interdependence of these variables means we
re ultimately optimising over a 4-dimensional space [ Δ1 , 𝛿1 , Δ2 , 𝛿2 ]
ith Δ and 𝛿 for each of the two sequences determining the appropri-
te G-values. Note that to keep consistent with previous TDR work and
idely available pre-clinical and clinical settings, we only considered
DE waveforms (i.e. other waveforms such as double diffusion encoding,
scillating gradients or b-tensor encoding were not considered here).
oreover, the gradient slew rates are considered infinite, a good ap-

roximation for the preclinical scanner used in our experiments that has
4 
 fixed rise time of 0.1 ms (leading to slew rates up to 25,000 mT/ms).
ther gradient settings for clinical scanners, as well as the effect of a fi-
ite slew rate (set to 200 mT/m to account for physiological constraints)
re explored in Supplementary Material Sections S1 and S2. 

We then evaluate the performance of the optimised gradient wave-
orms against a set of gradients chosen according to the previously pub-
ished strategy for TDR ( Dell’Acqua et al., 2019 ), namely both sequences
ave the same, short gradient duration, and only the diffusion time is
aried: S 2 has a long diffusion time and S 1 has a short diffusion time.
he exact values of 𝛿, Δ and G were chosen according to the scanner con-
traints (1–3), with the minimum possible 𝛿 and Δ for S and maximum
1 
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ossible Δ for S 2 . As these sequences were not determined based on
ull scale optimisation, we will refer to them as “non-optimised ” wave-
orms/sequences. 

.2.2. Simulation 2: effect of restriction size on TDR 

In the second simulation we use optimised sequences obtained from
imulation 1 to evaluate the TDR contrast over a wide range of pore size
istributions. 

We consider both distributions of cylinders and spheres to model
estrictions in both white matter and grey matter, with size distribu-
ions commonly found in tissue ( Grussu et al., 2019 ; Palombo et al.,
020 ; Aboitiz et al., 1992 ; Rajkowska et al., 1998 ; Palombo et al., 2021 ;
ackey et al., 2018 ; Houston et al., 2017 ). Cylinder sizes follow a gamma
istribution ( Alexander et al., 2010 ; Grussu et al., 2019 ), whilst sphere
izes follow a normal distribution ( Rajkowska et al., 1998 ). For cylin-
ers, the gamma distributions are truncated at 20 𝜇m to match realis-
ic values from the tissue; thus, combinations of parameters where this
runcation changes the mean by more than 10% are not considered. For
ll substrates, intrinsic diffusivity is set to 2 𝜇m 

2 /ms and extra-cellular
pace is neglected. These simulations are run without noise to illustrate
he maximum potential of TDR as an imaging contrast. 

.2.3. Simulation 3: effect of gradient directions and noise on TDR 

In the third simulation, we investigate the effect of the Rician noise
oor on TDR values. To this end, we consider different fibre configu-
ations: one, two and three fibre bundles consisting of parallel cylin-
ers with the same diameter distributions (Gamma distribution with
ean = 5.33 𝜇m, std = 3.00 𝜇m) with separate fibre bundles crossing

t right angles (in the case of two and three fibres), as well as spherical
ores (Gaussian distribution with mean = 7 𝜇m, std = 0.5 𝜇m), and we
imulate the signals using the optimised sequences from simulation 1.
hen, for each measurement, we consider Rician noise at SNR levels of
0 and 50 in the non-diffusion weighted images, typical for clinical and
re-clinical acquisitions ( Tian et al., 2022 ; Ianu ş et al., 2022 ), as well as
oise free signals, i.e. SNR ∞. Finally, we explore different numbers of
radient directions (30 and 60). 

We also look at the effect of the orientation distribution of gradi-
nt directions included when calculating TDR. In the previous work
 Dell’Acqua et al., 2019 ) S 1 and S 2 are calculated as the signal aver-
ge over a set of uniformly distributed gradient directions. However, in
hite matter, due to the fast signal decay in certain directions (e.g. par-
llel to the fibres), the contribution to the direction-averaged signal of
hese measurements will carry little to no extra information about the
xon diameter and could potentially introduce bias to the TDR estima-
ion, due to the noise floor. Here we investigate this effect and its impact
n TDR. 

.3. Preclinical experiments 

All animal studies were approved by the competent institutional and
ational authorities, and performed according to European Directive
010/63. 

The preclinical experiments aim to investigate TDR contrasts in ex-
ivo rat spinal cord, to validate our optimisation, both in terms of gra-
ient waveforms as well as the number of HARDI directions employed,
nd the relationship between TDR and axon diameter in different WM
OIs. 

The data and code from the preclinical experiments is available at
ttps://github.com/andrada-ianus/TDR_study.git . 

.3.1. Data acquisition 

One rat spinal cord was extracted via transcardial perfusion with
% Paraformaldehyde (PFA). After extraction, the spinal cord was im-
ersed in a 4% PFA solution for 24 h, and then washed in a Phosphate-
uffered Saline (PBS) solution for 24 h. Two sections of cervical spinal
5 
ord were cut and placed separately in 5 mm NMR tubes filled with Flu-
rinert (Sigma Aldrich, Lisbon, PT). The samples were imaged on a 16.4
 Bruker Aeon Ascend scanner (Bruker, Karlsruhe, Germany) equipped
ith a 5 mm birdcage coil and gradients capable of producing up to 3
/m in all directions. 

.3.2. Imaging protocol 

Diffusion MRI datasets for TDR were acquired using a SDE-EPI se-
uence with the following parameters: TE = 50 ms, TR = 2 s, 16 aver-
ges, slice thickness = 0.5 mm, 5 slices, in plane resolution = 0.09 × 0.09
m 

2 , matrix = 60 × 46, FOV = 5.4 × 4.15 mm 

2 , Partial Fourier = 1.12.
he EPI acquisition bandwidth was 400 kHz and data was acquired in
 single shot using double sampling, with a total acquisition time of 1 h
0 m for each combination of G max and b-value. 

In terms of diffusion weighting, the TDR acquisition was performed
or two fixed b-values of 8 and 20 ms/ 𝜇m 

2 . The b-values were chosen
o be similar to those proposed by Dell’Acqua ( Dell’Acqua et al., 2019 )
or TDR and by Veraart et al. (2020) for axon diameter imaging, respec-
ively. For each b-value we consider two scenarios: (1) the sequence
arameters were chosen so that the maximum gradient strength was
imited to 600 mT/m, a value available on many preclinical systems,
nd (2) the maximum gradient strength was 2500 mT/m, close to the
aximum available on this gradient system. For each scenario, we con-

idered waveforms with the same gradient duration and different diffu-
ion times, as originally proposed in ( Dell’Acqua et al., 2019 ), referred
o as the non-optimised protocol, as well as the optimised waveforms
roposed in this study. Each shell was acquired with 10 b0 values and
0 diffusion directions each, and the specific timing parameters for the
on-optimised and optimised protocols are provided in Section 3.2 . 

The data was acquired with an in-house implementation of the se-
uence which loops through the different diffusion times in order to
void any potential signal differences caused by sequence adjustments.
he sequences implemented in PV6.0.1 are available upon request. 

.3.3. Data analysis 

Pre-processing: Complex data were denoised using the MP-PCA ap-
roach ( Veraart et al., 2016 ) following the steps described in ( Ianu ş
t al., 2022 ) to account for the effect of Partial Fourier acquisition in the
ata, and the magnitude was computed. Then the data was normalised
or each shell. 

.3.4. ROI analysis 

For selected WM tracts with different axonal properties (Vestibu-
ospinal (VST), Reticulospinal (ReST), Rubrospinal (RST), dorsal corti-
ospinal (dCST), Funiculus Cuneatus (FC) and Funiculus Gracilis (FG)),
he averaged TDR values were compared with axon diameters estimated
rom quantitative histology reported in the literature ( Dula et al., 2010 ).

.4. Effect of extra-axonal space and orientation dispersion 

To further explore different confounding factors that might affect
DR, we employ simulations to study the effect of extra-axonal space
nd fibre dispersion. 

.4.1. Extra-axonal space 

Monte Carlo simulations were performed in Camino ( Hall and
lexander, 2009 ) for the same sequences employed in the preclinical
xperiments and six substrates consisting of randomly packed cylinders
ith intra-axonal fraction of 0.6 and Gamma distributed diameters with

he same mean and standard deviation as reported for the spinal cord
OIs: 4.47 ± 0.51 𝜇m (VST), 2.22 ± 0.21 𝜇m (ReST), 3.39 ± 0.47 𝜇m
RST), 3.73 ± 0.36 𝜇m (FC), 1.16 ± 0.1 𝜇m (dCST), 1.80 ± 0.13 𝜇m (FG).
imulations were run with spins distributed either uniformly (200,000
pins) or only in the intra-axonal space (120,000 spins). We fix the diffu-
ivity to 2 𝜇m 

2 /ms according to the study from Olesen et al. (2021) who
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stimated a diffusivity value ∼2 𝜇m 

2 /ms associated with the intra-
xonal compartment in the ex-vivo spinal (following the same fixing
rocedure as ours). We also perform simulations in more realistic sub-
trates using the ConFIG framework ( Callaghan et al., 2020 ; Callaghan
t al., 2021 ) and report these results in the Supplementary Material Sec-
ion S5. 

.4.2. Fibre dispersion 

Numerical simulations using MISST were run for a model of dis-
ersed cylinders with a Gamma distribution of diameters and a Watson
istribution of orientations ( Watson, 1965 ; Zhang et al., 2012 ). The sim-
lations were performed for the same sequences and diameter distribu-
ions as above, and three different concentration parameters of the Wat-
on distribution: k = 1 yields highly dispersed orientations, k = 6 yields
n orientation dispersion that has been reported in WM, and k = 100
ields close to parallel cylinders. 

. Results 

.1. Simulations 

.1.1. Simulation 1: optimising gradient waveforms for TDR 

This section presents the optimisation results of the TDR contrast.
s described in Methods, both the first and the second shell of the “op-

imised protocol ” were optimised to maximise TDR contrast across the
hole space of possible waveform parameters such as gradient dura-

ion, diffusion time and gradient strength. The boundaries of the search
pace are fixed to pre-clinically achievable values and b-value is fixed.
he two shells of the “non-optimised protocol ” were adopted from the
reviously published preliminary work (Dell’Acqua et al., ISMRM 2019)
nd those were selected empirically and from theoretical intuition, but
ere not optimised. Here we evaluate which protocol provides stronger
DR contrast. 

For the optimised protocol, the space of parameters we explore is typ-
cal for pre-clinical scanners, namely G < 600 mT/m and Δ+ 𝛿 < 45 ms
 presented here. We also do optimisation for other scanner settings:
 < 2700 mT/m, Δ+ 𝛿 < 45 ms (corresponding to a high-gradient pre-
linical system), G < 300 mT/m, Δ+ 𝛿 < 80 ms, (corresponding to the
onnectome scanner), and G < 80 mT/m, Δ+ 𝛿 < 80 ms (corresponding
o a high performance clinical scanner) - presented in Supplementary
aterial, Section S1. We provide optimisation results for two different

-values: b = 8 ms/ 𝜇m 

2 (results presented in this section and Supple-
entary Material Section S1) and b = 20 ms/ 𝜇m 

2 (results presented
nd discussed in Supplementary Material, Section S3). 

Fig. 3 a illustrates diffusion weighted signal values averaged over
0 uniformly distributed gradient directions for G < 600 mT/m,
+ 𝛿 < 45 ms: and a range of different combinations of gradient du-

ations and diffusion times and a substrate consisting of small cylinders.
ignal values ranging from low (blue) to high (red) values are shown,
nd TDR is calculated for each pair. In order to find the combination
f diffusion sequence parameters that maximises TDR, the optimisa-
ion looks for values for S 1 and S 2 that are most different from one
nother. The corresponding, optimal, pair of gradient waveform param-
ters (squares) has one gradient waveform with short duration and diffu-
ion time and the other with long duration and diffusion time. The short
uration waveform is the same as the short diffusion time sequence in
he “non-optimised ” approach (circles), while the second optimal wave-
orm has much longer gradient duration than any sequence in the “non-
ptimised ” approach, where the diffusion duration is kept constant be-
ween the two waveforms and only diffusion time has changed ( Fig. 3 e).

Similar results are obtained for other substrates as well: large cylin-
ers Fig. 3 b, small spheres Fig. 3 c and large spheres Fig. 3 d - although for
pheres with large diameters the optimal duration of the long gradient
equence is slightly shorter. The exact values for all optimised waveform
arameters as determined through non-linear optimisation are: 
6 
• small cylinders: S 1 : Δ = 8.9 ms, 𝛿 = 6.9 ms; S 2o : Δ = 28.5 ms,
𝛿 = 16.5 ms 

• large cylinders: S 1 : Δ = 8.9 ms, 𝛿 = 6.9 ms; S 2o : Δ = 31 ms,
𝛿 = 14.1 ms 

• small spheres: S 1 : Δ = 8.9 ms, 𝛿 = 6.9 ms; S 2o : Δ = 29 ms, 𝛿 = 15 ms
• large spheres: S 1 : Δ = 8.9 ms, 𝛿 = 6.9 ms; S 2o : Δ = 35 ms, 𝛿 = 9.9 ms

In addition to the specific substrates shown in Fig. 3 , we have also
erformed the optimisation for other substrates, consisting of both cylin-
ers and spheres. Whilst distributions that include very large pores can
ave different optimal sequence shapes, in all cases considered, increas-
ng 𝛿 for the S 2o shell improves the contrast compared to the non-
ptimised version of TDR (data not shown). When we repeated the simu-
ations above for b = 20 ms/ 𝜇m 

2 , we found extremely similar optimised
equence patterns and TDR values for the different substrates as pre-
ented in Fig. S3 in Supplementary Material. 

Furthermore, we have done optimisation for a range of different
ardware constraints and got very similar optimised sequence patterns
Supplementary Material Section S1). The main difference we found for
ifferent hardware constraints is that the optimal diffusion time and
radient duration both reduce as the maximum gradient strength in-
reases, which is expected as the b-value is kept fixed at b = 8 ms/ 𝜇m 

2 .
urthermore, we found that the TDR values were drastically reduced as
he maximum gradient strength is reduced. This, in particularly affects
linical gradient strength values ( G < 80mT/m) for which TDR was very
ow of 0.106, and in particular the normalised signal difference itself,
 2 - S 1, was at maximum 0.02, in the same order or less as the noise lev-
ls. Connectome scanner constraints on the other hand produced much
arger TDR of 0.44 and signal difference S 2 - S 1 of 0.08. 

.1.2. Simulation 2: effect of restriction size on TDR 

This section explores the TDR contrast over a wide range of pore
ize distributions, to explore the types of structures visible through TDR.
ollowing the previous results which show that the optimised sequences
re very similar across a range of small and large cylinders and spheres,
n this simulation we chose the optimised parameters obtained for the
arge cylinder distribution, thus for S 1 we choose Δ = 8.9 ms, 𝛿 = 6.9 ms
nd for S 2 we choose Δ = 31 ms, 𝛿 = 14.08 ms. 

Fig. 4 a illustrates TDR values across substrates consisting of cylin-
er distribution with a wide range of parameters (mean along the x-axis
nd standard deviation along the y-axis), calculated based on the opti-
ised sequences above. The plot presents the overall link between the

xon distribution sizes and TDR and shows that distributions with the
ean below 3 𝜇m and standard deviation below 1 𝜇m - resolution limit

or this gradient strength - have TDR values close to zero, and hence
ould not be detectable in the images. On the other hand larger axons
ave sufficiently large TDRs (TDR = 1 is a maximum value) which the
pproach will pick up, and so will stand out in the TDR map images.
his plot shows where typical axon distributions found in the tissue
ould be: “small dist ” matches a previous model of callosal white mat-

er ( Grussu et al., 2019 ) which is undetectable with this approach (as
xpected based on the max gradient strength used ( Nilsson et al., 2017 ))
nd “large dist ” replicates the white matter structure in the spinal cord,
hich is within the sensitivity of the TDR approach. 

The isocolors in Fig. 4 a show existing ambiguities in associating
 specific TDR value to a single size distribution. Multiple size dis-
ributions can provide the same TDR value: e.g., all the distributions
haracterised by mean and standard deviation along the green area in
ig. 4 would all contribute to a TDR value of ∼0.4. This is expected to
e seen in the TDR approach whose main aim is to visualise areas with
arge, detectable restrictions rather than to map their exact size. 

Fig. 4 b) shows results for spherical substrates. These are much larger
s they represent the structures in the grey matter and their TDR values
re much higher and, depending on the SNR, would be detectable in the
DR maps for the hardware parameters selected. 
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Fig. 3. Optimisation results maximising TDR for G < 600 mT/m, 
Δ+ 𝛿 < 45 ms and b = 8 ms/ 𝜇m 

2 . (a-d) Maps showing the 
diffusion weighted signal averaged over the 60 uniformly dis- 
tributed directions for sequences with various 𝛿/ Δ combinations 
for the substrates illustrated in Fig. 2 . White markers indicate the 
non-optimised (circle) and optimised (square) sequences, respec- 
tively. The optimised sequences provide larger signal differences 
between S 1 and S 2o compared to between S 1 and S 2n , and higher 
TDR values. In each plot, colours are scaled so that a diffusion 
signal of 0 is blue, and the maximum diffusion signal obtained is 
red; the colour range displayed in each plot gives an idea of the 
maximum TDR possible. (e) Schematic representation of non- 
optimized and optimised gradient shapes. These figures show 

that optimised TDR maximises the difference between the signal 
from the two acquisitions, using sequences with different pulse 
shapes. Equivalent figure for b = 20 ms/ 𝜇m 

2 is Fig. S2 presented 
in Supplementary Material. 

7 
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Fig. 4. Noise-free TDR values calculated for sequences with b = 8 ms/ 𝜇m 

2 op- 
timised parameters for G max = 600 mT/m: S 1 : Δ = 8.9 ms, 𝛿 = 6.7 ms; S 2o : 
Δ = 30.9 ms, 𝛿 = 14.1 ms. The signal is simulated across a wide range of (a) 
cylinder and (b) spherical diameter distributions. For cylinders, we simulate 
Gamma distributions, and for spheres we simulate Gaussian distributions, which 
reflect the size distributions usually measured in the tissue. The typical large and 
small size distributions presented in Fig. 2 are shown using white markers. For 
cylinders, the gamma distributions are truncated at 20 𝜇m to match realistic 
values from the tissue; thus, combinations of parameters where this truncation 
changes the mean by more than 10% were not considered. Equivalent figure for 
b = 20 ms/ 𝜇m 

2 is Fig. S3 presented in Supplementary Material. 
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For b = 20 ms/ 𝜇m 

2 the TDR contrast is very similar to what we
iscussed above for b = 8 ms/ 𝜇m 

2 , with a difference that the TDR values
re in general larger for b = 20 ms/ 𝜇m 

2 - except for very large cylinders
hen they are somewhat smaller. Results are presented in Figure S3 in
upplementary Material. 

.1.3. Simulation 3: effect of gradient directions and noise on TDR 

It is well known that when imaging a single bundle of parallel fibres,
he intra-axonal signal obtained depends on the angle between the orien-
ation of the fibre bundle and the direction of the diffusion sensitising
radients: orthogonal gradients produce small signal attenuation (and
hus higher overall diffusion-weighted signal), whilst parallel gradients
reate stronger signal attenuation and return lower signal. This effect
enerally increases with b-value ( Drobnjak et al., 2016 ) and would be
trongly emphasised in the case of the TDR approach. A similar rationale
pplies to imaging more than one fibre bundle: the gradient directions
eturning the highest signals are those which are close to perpendicular
o one or more fibre bundles; meanwhile gradient directions which are
ot close to perpendicular to any of the fibre bundles show very low
ignal. This concept is represented in Fig. 5 , which shows signal mea-
urements for two crossing fibre bundles and 60 uniformly distributed
radient directions ( Fig. 5 a). Fig. 5 b shows all the 60 signal measure-
ents colour coded according to the angle between the plane of the
bres and the gradient direction shown in a) (e.g. red are gradient di-
8 
ections most perpendicular to the fibres). Fig. 5 c shows all 60 signal
easurements ordered from the highest to the lowest signal to empha-

ise the impact that gradient direction has on the signal itself. It can
e seen how the signal measurements are highly distributed from very
igh, through medium intensity and finally some measurements with
ery low signal. 

In order to investigate whether this effect affects TDR, we divide the
ignal measurements into subsets and evaluate TDR for each different
ubset. The idea is to explore whether using a subset of gradient di-
ections that creates the highest signal is more optimal (i.e. maximises
DR) compared to when using the full set of 60 uniformly distributed
irections which includes both the high and the low signals. Note that
he data are already measured for all 60 uniformly distributed gradient
irections, and this subset selection is happening at the post-processing
tage, once the signal intensities have been ordered. 

We use the definition of TDR outlined in Section 2.1 . and calculate
t for different subsets using the following equation: 

 𝐷𝑅 𝑀 

= 

∑𝑀 

𝑗=1 𝑆 2 ,𝑗 − 

∑𝑀 

𝑗=1 𝑆 1 ,𝑗 
∑𝑀 

𝑗=1 𝑆 2 ,𝑗 

here M is the number of gradient directions in the subset (N corre-
ponds to the full set of uniformly distributed directions and 1 ≤ M ≤ N )
nd j = 1..M is the index of the ordered signal measurements from the
ighest intensity to the lowest intensity (as shown in Fig. 5 c). The or-
ering is performed on the average of the two signals ( 𝑆 1 + 𝑆 2 )∕2 , in
rder to reduce the effect of noise on the sorting process. In our simula-
ions we used HARDI acquisitions of 60 uniformly distributed gradient
irections (determined by electrostatic repulsion), hence N = 60 and
 𝐷𝑅 60 is equivalent to the full original formulation of TDR (ie. signal
 1 and S 2 are averaged across all 60 gradient directions acquired). To
llustrate this further: 𝑇 𝐷𝑅 1 is calculated using only one gradient di-
ection - the one that provides maximum signal intensity; 𝑇 𝐷𝑅 2 uses
he two strongest signal measurements to calculate the average, the one
sed in 𝑇 𝐷𝑅 1 and another one in the ordering etc. 

The results for TDR calculated for every subset from 𝑇 𝐷𝑅 1 to 𝑇 𝐷𝑅 60 
re provided in Fig. 6 (a–d). Fig. 6 a shows the TDR values for a substrate
onsisting of one fibre bundle of parallel cylinders. Results are presented
oth for the noise-free scenario (blue circles) and the scenario where
ician noise (SNR = 20) has been added (orange error bars present the
tandard deviation over the noise instances). In the scenario without
oise, TDR remains equal to the ground truth regardless of how many
radient directions are used in the TDR calculation. However, once sim-
lated Rician noise is added to the signals, due to the Rician floor effect,
he results show a decrease in TDR and a reduction in the accuracy of
he calculated TDR value as the number of gradient directions included
n the calculation increases. In contrast, the precision of the calcula-
ion is improved with more measurements and hence for this substrate
ith one fibre bundle, using 𝑇 𝐷𝑅 12 which corresponds to the subset of
20% of ordered gradient directions that provide the highest signal val-
es, yields an optimal balance between accuracy and precision of TDR
stimates. 

Figs. 6 b and c show that similar effects occur for substrates consisting
f two and three fibre bundles (fibre bundles are mutually perpendicular
o allow for testing of the most extreme cases). The accuracy of estimated
DR lowers as the number of fibre bundles increases, however the trend
hat the accuracy reduces with increasing the size of the ordered subset
s equally present suggesting that optimisation in the presence of Rician
oise would be very beneficial and would provide higher TDR contrast.

For a substrate consisting of spheres ( Fig. 6 d) the results are very
ifferent. Accuracy is pretty stable regardless of the number of signal
easurements used for both the no-noise and noisy case. This is as ex-
ected since signal from spherical substrates is indifferent to gradient
irection as opposed to the fibres which are highly sensitive to it. Simi-
arly to the fibre simulations, the precision is improved with the number
f measurements and hence the optimal solution for spherical substrates
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Fig. 5. Effect of the gradient direction on the signal coming from two crossing bundles of parallel fibres. a) Gradient directions for an acquisition protocol with 
60 measurements. b) Signal attenuation for each diffusion direction simulated for a substrate consisting of two perpendicular fibres / bundles each with Gamma 
diameter distributions of mean = 5.33 𝜇m, std = 3.00 𝜇m (the same as used in the ‘large axon’ simulations). c) Signal attenuations sorted in descending order and 
examples of subsets with different numbers of measurements. 

i  

o  

p  

m  

r
 

o  

d  

fi  

a  

6  

f  

S  

q  

o  

o  

s  

t  

o  

m  

o  

t  

fi
 

o  

d  

r  

c  

e  

t  

h  

o  

t  

d  

c
 

a  

s  

e  

i  

t  

F

s that which maximises the number of measurements - i.e. the full set
f HARDI acquisitions ( 𝑇 𝐷𝑅 60 for our simulations). Hence, for isotropic
ores, as well as uniformly orientated fibres (data not shown), using
ore gradient directions is optimal, with TDR values remaining accu-

ate even when all directions are used. 
We also note that the estimated TDR values for the substrates with

ne, two or three fibre bundles should ideally be the same, as the size
istributions of the substrate cylinders are the same regardless of the
bre orientation distribution. When calculating the coefficient of vari-
tion of TDR values across the three substrates, for an SNR of 20 when
0 HARDI gradient directions have been acquired, we see a minimum
or subsets with 27/60 gradient directions, as illustrated in Figure S6 in
upplementary Information. For other SNR levels and numbers of ac-
uired gradient directions, the exact number of measurements in the
ptimal subsets might vary slightly, nevertheless, using a smaller subset
f gradient directions appears optimal, also for SNR = 50 and 30 mea-
ured gradient directions, as illustrated in Figures S5-S6 in Supplemen-
ary Information. Overall, in all fibre scenarios considered, using ∼50%
f the gradient directions acquired provides a more accurate TDR esti-
ate than when all gradient directions are used; in the SNR 50 scenarios

r when 60 HARDI gradient directions are acquired, using ∼33–50% of
9 
he directions also reduces the coefficient of variation between the three
bre scenarios compared to when all gradient directions are used. 

Figs. 6 e and f show 𝑇 𝐷𝑅 12 and 𝑇 𝐷𝑅 60 , respectively, in the presence
f noise, for the single fibre bundle scenario, across a wide range of
ifferent cylinder distributions. We can see that using all 60 directions
esults in the reduction of TDR compared to the ground truth (no-noise
ase, Fig. 4 a) for many large distributions: this also reduces the differ-
nce in TDR between large and small distributions, reducing the poten-
ial contrast of a TDR image. 𝑇 𝐷𝑅 12 is on the other hand considerably
igher and closer to the ground truth: for example for the distribution
f cylinders with a mean 5.33 𝜇m, 𝑇 𝐷𝑅 12 is 1.6% lower compared to
he ground truth while 𝑇 𝐷𝑅 60 , is 24.5% lower - a greater than 15 times
ifference in percentage error - which in the real-world scenario could
reate contrast that is not sufficiently detectable. 

For b = 20 ms/ 𝜇m 

2 the results are very similar to what we discussed
bove for b = 8 ms/ 𝜇m 

2 . The main difference is that for cylindrical
ubstrates, especially those with larger cylinders, decrease in accuracy is
ven more pronounced, and the optimal subset size for calculating TDR
s smaller. For spherical substrates the accuracy is the same however
he precision is, as expected, much improved. Results are presented in
igure S4 in Supplementary Material. 
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Fig. 6. TDR values for noise free (blue circles, SNR = inf) and noisy (orange crosses, Rician noise with SNR = 20) signals as a function of the number of gradient 
directions included in the analysis in different substrates: (a–c) bundles of cylinders with one, two or three fibre orientations crossing at 90°. All bundles have a 
Gamma distribution of sizes with mean = 5.33 𝜇m and std = 3.00 𝜇m; (d) a Gaussian distribution of spheres with mean = 7 𝜇m and std = 0.5 𝜇m. The orange error 
bars show 1 standard deviation of the estimated TDR over 100,000 noise instances. As illustrated in (a–c), for the different fibre configurations, TDR values estimated 
from noisy data are below the expected noise-free values. All simulations are performed using the optimised sequence parameters for large cylinders. Equivalent 
figure for b = 20 ms/ 𝜇m 

2 is Fig. S4 presented in Supplementary Material. 
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.2. Preclinical experiments 

.2.1. Optimised and non-optimised acquisition protocols 

Diffusion MRI measurements for TDR contrast in ex-vivo spinal cord
ere acquired following the non-optimised TDR approach, where the
iffusion time is varied between the two shells, as well the optimised
radient waveforms proposed in this work. The measurements were re-
eated for a maximum gradient strength of 600 mT/m, a value widely
10 
vailable on pre-clinical systems as well as 2500 mT/m that is avail-
ble on typical microimaging probes. The specific values for the non-
ptimised and optimised protocols are given below: 

Non-optimised protocol: 

• Shell 1 consists of waveforms with short gradient duration and short
diffusion time: 
○ b = 8 ms/ 𝜇m 

2 , G max = 600 mT/m: 𝛿 = 6.9 ms, Δ = 9 ms; 
○ b = 8 ms/ 𝜇m2, Gmax = 2500 mT/m: 𝛿 = 2.2 ms, Δ = 4.5 ms. 
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○ b = 20 ms/ 𝜇m2, Gmax = 600 mT/m: 𝛿 = 9.7 ms, Δ = 11.7 ms; 
○ b = 20 ms/ 𝜇m2, Gmax = 2500 mT/m: 𝛿 = 3.2 ms, Δ = 5.2 ms. 

• The optimal values from simulations were slightly adjusted to ac-
commodate scanner constraints such as finite slew rates. This shell
is used both for the original and the optimised TDR calculation, as
prescribed by the simulation results. 

• Shell 2n consists of waveforms with short gradient duration and long
diffusion time: 
○ b = 8 ms/ 𝜇m 

2 , G max = 600 mT/m: 𝛿 = 6.9 ms, Δ = 34.6 ms; 
○ b = 8 ms/ 𝜇m 

2 , G max = 2500 mT/m: 𝛿 = 2.2 ms, Δ = 39 ms. 
○ b = 20 ms/ 𝜇m 

2 , G max = 600 mT/m: 𝛿 = 9.7 ms, Δ = 32 ms; 
○ b = 20 ms/ 𝜇m 

2 , G max = 2500 mT/m: 𝛿 = 3.2 ms, Δ = 38.5 ms. 

The maximum diffusion time given the same echo time was chosen.
DR values computed from Shell 1 and Shell 2n are referred to as non-
ptimised. 

Optimised protocol: 

• Shell 1 is the same as for the non-optimised protocol. 
• Shell 2o consists of waveforms with long gradient duration and long

diffusion time: 
○ b = 8 ms/ 𝜇m2, Gmax = 600 mT/m: 𝛿 = 14 ms, Δ = 27.5 ms; 
○ b = 8 ms/ 𝜇m2, Gmax = 2500 mT/m: 𝛿 = 15 ms, Δ = 26.5 ms. 
○ b = 20 ms/ 𝜇m2, Gmax = 600 mT/m: 𝛿 = 15 ms, Δ = 26.5 ms; 
○ b = 20 ms/ 𝜇m2, Gmax = 2500 mT/m: 𝛿 = 15 ms, Δ = 26.5 ms. 

The timing parameters are adapted from the numerical optimization.
DR values computed from Shell 1 and Shell 2o are referred to as opti-
ised. 

The signal attenuation profiles for these gradient waveforms plotted
gainst axon diameter are presented in Fig. 7 , illustrating that indeed
he difference between Shell 2o and Shell 1 (optimised) is larger than
etween Shell 2n and Shell 1 (not-optimised). 

TDR contrast in spinal cord 

Fig. 8 a illustrates the data acquired in the ex-vivo rat spinal cord for
 = 8 ms/ 𝜇m 

2 , where WM and GM regions are outlined on the b0 image.
he normalised diffusion weighted maps are shown for the three differ-
nt waveforms when the gradient is either close to parallel or perpen-
icular to the spinal cord fibres. Indeed, there is a pronounced change
n contrast between the different shells. For the perpendicular direction,
he signal in white matter increases between shell 1 and shells 2n & 2o,
hile the signal in grey matter decreases. For the parallel direction, the

hange is less pronounced in white matter, nevertheless there is still a
ronounced decrease in grey matter. Estimated SNR values in white and
rey matter were 78 ± 28 and 148 ± 62, respectively. 

Fig. 8 b presents TDR maps calculated based on all gradient direc-
ions for the two scenarios with b = 8 ms/ 𝜇m 

2 G max = 600 mT/m as
ell as for G max = 2500 mT/m. In spinal cord white matter, TDR con-

rast is positive. For G max = 600 mT/m, optimised TDR values in WM
re between 0 and 0.4, matching a wide range of axonal distributions
resented in Fig. 4 a for the same gradient strength. On the other hand,
n grey matter, TDR values are negative, showing that a model of pure
estriction (either in cylinders and/or spheres) does not accurately rep-
esent the diffusion time dependence in the tissue. 

For both gradient strengths, we see that the TDR contrast provided
y the optimised pair of gradient waveforms (i.e. Shell 1 and Shell 2o)
s higher than the values from the non-optimised pair (Shell 1 and Shell
n). Moreover, TDR values obtained with stronger gradients are higher,
atching the simulation results presented in Supplementary Informa-

ion in Figure S1, as well as previous results regarding estimating axon
iameters ( Fan et al., 2020 ; Drobnjak et al., 2016 ; Nilsson et al., 2017 ).

Fig. 8 c illustrates the effect of using a subset of gradient directions
n the computation of TDR. To assess the effect of gradient direction
n the TDR estimate in the spinal cord, where white matter tracts are
ighly anisotropic, the gradient directions were voxelwise sorted based
n the average signal intensity in the three shells. Then, TDR was com-
uted from subsets of gradient orientations with an increasing number
11 
f directions, as detailed in Fig. 5 . We find that for WM, both the op-
imised and non-optimised TDR values decrease as more gradient di-
ections are included in the signal average. Including only ∼ 20% of
he data points (i.e. 12/60 directions) already provides a good balance
owards maximising TDR while minimising the effect of noise, corrobo-
ating the simulation results. In GM, there is also a dependence of TDR
n the number of measurements, likely due to the directionality of the
eurites ( Grussu et al., 2017 ), and we estimated negative TDR values.
imilar results are observed for the second spinal cord segment. 

Overall, for a given gradient strength and echo time, the highest TDR
ontrast in spinal cord white matter is obtained using the optimised
air of gradient waveforms and approx 12/60 directions from a fully
cquired HARDI shell. ( Dula et al., 2010 ) 

Figure S7 in the Supplementary Material shows equivalent results
ut for b = 20 ms/ 𝜇m 

2 . The TDR maps and the overall results are very
imilar between the two b-values in line with simulations presented in
ection 3.1 . There is a small difference in the effect of the number of gra-
ient directions - in WM for the larger b-value the accuracy decreases
aster as the number of gradient directions increases. This is also consis-
ent with simulation results presented in Section 3.1 . 

Fig. 9 compares TDR with axon diameter values previously reported
n 6 different WM ROIs . The TDR values are calculated voxelwise from
he optimised waveforms using a subset of 12 gradient directions, to
aximise the contrast. Then, the mean TDR value in each ROI is com-
uted. Strong correlations between mean TDR values and axon diameter
re observed for all the analysed sequences, both for G max = 600 mT/m,
ith a correlation coefficient of 0.85 ( p < 0.01) for both b-values, as well
s for G max = 2500 mT/m with a correlation coefficient of 0.9 ( p < 0.01)
or b = 8 ms/ 𝜇m 

2 and 0.87 ( p < 0.01) for b = 20 ms/ 𝜇m 

2 . The TDR val-
es are also similar for the two different b-values. Moreover, the TDR
alues for the two spinal cord segments, that were mounted and imaged
eparately, are highly consistent. 

.3. Effect of extra-axonal space and orientation dispersion 

Monte Carlo simulations with substrates consisting of parallel cylin-
ers with an intra-axonal fraction of 0.6 were employed to assess the
ffect of extra-axonal space. 

Fig. 10 a presents the signal contribution of the extra-axonal space,
.e. S total -S intra , as a function of mean axon diameter for the three wave-
orms and different combinations of b-value and maximum gradient
trength. The shown signal is the average over the first 12 directions,
hat will later be used to compute the optimised TDR. In most cases the
ignal contribution of the extra-axonal space is less than 0.01 (on a scale
rom 0 to 1). For sequences with short diffusion time, b = 8 ms/ 𝜇m 

2 and
 max = 2500 mT/m the differences are slightly larger, up to 0.03, for
iameters > 3 𝜇m. 

Fig. 10 b shows the effect of the extra-axonal signal propagated to
he TDR values calculated from 12 directions and the optimised wave-
orms. The TDR values calculated from simulations with a uniform dis-
ribution of spins (i.e. including both intra and extra-axonal space) are
ower than the values simulated only with an intra-axonal spin distri-
ution. The maximum differences for the various sequences are: 0.041
16%) and 0.053 (7.5%) for b = 8 ms/ 𝜇m 

2 with G max = 600 mT/m
nd 2500 mT/m, respectively, and 0.011 (3.8%) and 0.022 (2.4%) for
 = 20 ms/ 𝜇m 

2 with G max = 600 mT/m and 2500 mT/m, respectively.
imilarly to other results throughout the paper we see that the TDR
s higher for G max = 2500mT/m compared to 600mT/m. Finally, as ex-
ected from results presented in Fig. 4 and Figure S3, the TDR is slightly
ifferent between two different b-values. For the substrates considered
ere, TDR for b = 20 ms/ 𝜇m 

2 is slightly higher, with differences up to
.05 for G max = 600 mT/m and 0.017 for Gmax = 2500 mT/m, respec-
ively. 

Fig. 10 c illustrates the effect of fibre dispersion on the optimised
DR values (12 directions, optimised waveform) based on numerical
imulations performed in MISST for cylinders following a Watson dis-
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Fig. 7. Simulations for signal attenuation profiles as a function of cylinder diameter for the three shells used in the pre-clinical acquisition at b = 8 ms/ 𝜇m 

2 and 
b = 20 ms/ 𝜇m 

2 , both for G max = 600 mT/m (left) and G max = 2500 mT/m. The signals were simulated for single cylinders and diffusion gradients perpendicular to 
the fibre with intrinsic diffusivity of D = 2 𝜇m 

2 /ms. 
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ribution with different concentration parameters. Without noise, TDR
alues are similar for dispersed fibres, although in the presence of noise
rientation dispersion tends to slightly lower the TDR value, especially
or sequences with b = 20 ms/ 𝜇m 

2 and the stronger maximum gradient
data not shown). 

To investigate the effect of b-value on TDR in practice, Fig. 10 d
ompares the experimental TDR values calculated at b = 8 ms/ 𝜇m 

2 

nd 20 ms/ 𝜇m 

2 in the spinal cord for the two maximum gradients.
he average TDR values in WM are similar for the two b-values, as
ollows: for G max = 600 mT/m, TDR = 0.21 ± 0.07 and 0.18 ± 0.06
or b = 8 ms/ 𝜇m 

2 and b = 20 ms/ 𝜇m 

2 , respectively; for G max = 2500
12 
T/m, TDR = 0.37 ± 0.09 and 0.37 ± 0.05 for b = 20 ms/ 𝜇m 

2 and
 = 8 ms/ 𝜇m 

2 , respectively. 

. Discussion 

This work employs numerical simulations to optimise the dMRI ac-
uisition for maximal TDR contrast. The simulation results are validated
y ex-vivo diffusion MRI data from both WM and GM tissues in rat spinal
ord. 
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Fig. 8. Optimisation of TDR acquisition including waveforms (a-b) and number of gradient directions (b). a) left: T2 weighted image of the rat spinal cord without 
diffusion gradients. White matter and grey matter regions are delineated with blue and orange contours, respectively. Right: schematic depiction of the gradient 
waveforms for the three shells (top) and the corresponding diffusion weighted maps for a perpendicular (middle) and a parallel (bottom) gradient direction. The 
maps are shown for denoised data. b) TDR maps for maximum gradient strength of 600 and 2500 mT/m for optimised and non-optimised gradient waveforms. c) 
left: TDR values as a function of how many gradient directions were included in the signal average for white matter (blue) and grey matter (orange) ROIs. right: TDR 
maps for measurement subsets with 12/60 and 60/60 directions. Equivalent figure for b = 20 ms/ 𝜇m 

2 is Fig. S7 presented in Supplementary Material. 
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Fig. 9. Comparison between TDR values and axon diameters reported in the literature in 6 spinal cord WM ROIs (Vestibulospinal (VST) - blue, Reticulospinal (ReST) 
- orange, Rubrospinal (RST) - yellow, dorsal corticospinal (dCST) - green, Funiculus Cuneatus (FC) - purple and Funiculus Gracilis (FG) - light blue). The ROIs are 
manually delineated and colour coded as illustrated on the left. Each segment is represented with a different marker shape in the correlation plot. Strong correlations 
between mean TDR values and axon diameter are observed for all the analysed sequences, both for Gmax = 600 mT/m, with a correlation coefficient of 0.85 ( p < 0.01) 
for both b-values, as well as for Gmax = 2500 mT/m with a correlation coefficient of 0.9 ( p < 0.01) for b = 8 ms/ 𝜇m 

2 and 0.87 ( p < 0.01) for b = 20 ms/ 𝜇m 

2 . 
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.1. TDR contrast and waveform optimisation 

Through our investigation of pulse sequence shapes for standard sin-
le diffusion encoding experiments, we find that optimised TDR requires
hort- 𝛿, high-G sequences contrasted with long- 𝛿, low-G sequences.
hese results are consistent for a wide range of substrates (e.g. restricted
iffusion in cylinders and spheres with different size distributions) and
equence constraints (maximum gradient strength, total gradient du-
ation, etc.), and are in line with the optimisation results of previous
tudies ( Alexander et al., 2010 ; Drobnjak et al., 2016 ; Nilsson et al.,
017 ; Ianus et al., 2021 ). Intuitively, this can be understood by the fol-
owing reasoning. Given the restriction length r, assuming the Gaussian
hase approximation and the long-pulses limit for simplicity, the sig-
al attenuation for the SDE sequence is ln S ∝ - r 4 g 2 𝛿, where g is the
radient strength amplitude ( Veraart et al., 2020 ; van Gelderen et al.,
994 ; Neuman, 1974 ). If we acquire both the signals S 1 and S 2 needed to
ompute the TDR (see Section 2.1 ) with the same b value, the condition
 

2 𝛿2 ( Δ- 𝛿/3) = const must be satisfied. In order to maximize TDR contrast
iven the above conditions, we want maximal attenuation for S 1 which
eads to maximizing const / [ 𝛿( Δ- 𝛿/3)], and minimal attenuation for S 2 
hich leads to minimizing const / [ 𝛿( Δ- 𝛿/3)]. Obviously, this can be
chieved by acquiring the signal S 1 using 𝛿 and Δ as short as possible
consequently, with stronger g given the condition of constant b value)
nd the signal S 2 using 𝛿 and Δ as long as possible (consequently, with
eaker g given the condition of constant b value). 

The contrast from the optimised TDR is sensitive to a range of restric-
ion sizes, as illustrated in Fig. 4 , and has the potential to distinguish
istributions containing large axons from those containing small axons.
s expected, size distributions with different combinations of mean and
tandard deviation can yield very similar TDR values, as illustrated by
 l  

14 
reas with similar colours in Fig. 4 . This effect is more pronounced for
istributions with longer tails, such as the gamma distribution used for
ylindrical substrates, compared to normal distributions used for spher-
cal substrates, where we observe a better correspondence between the
ean of the distribution and TDR values. This known tail-weighting ef-

ect is due to the fact that the signal contribution of each cylinder to
he total measured signal is volume-weighted ( Alexander et al., 2010 ;
eraart et al., 2020 ). As reference, for axon diameter distributions typ-

cally found in human brain tissue (i.e. < 3 𝜇m), TDR contrast is on the
rder of 6% or less ( Dell’Acqua et al., 2019 ). 

As illustrated both through simulations and experiments, the TDR
ontrast depends on the maximum gradient strength available on the
canner, and is sensitive to axon diameters that are above the res-
lution limit, i.e. the minimum diameter that can be distinguished
 Alexander et al., 2010 ; Drobnjak et al., 2016 ; Nilsson et al., 2017 ).
or sizes below the resolution limit, TDR is zero. In regards to clini-
al imaging and maximum gradient strength needed for TDR mapping,
e find that gradient strengths on typical clinical scanners (below 80
T/m) are not suitable as they do not provide sufficient contrast, and

tronger gradients are needed, e.g. such as 200 mT/m or more avail-
ble on the Connectome scanner (results presented in Supplementary
aterial Section S1). 

.2. Effect of extra-axonal space 

The TDR exploits ultra-high b-values to suppress the contribution
rom water diffusing in the extra-axonal space, and enhance the sensitiv-
ty of the dMRI measurements to water diffusing in the restricted intra-
ellular space. Previous work demonstrated, by identifying the power-
aw signature specific of narrow cylinders, that b ≳ 7 ms/ 𝜇m 

2 is enough
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Fig. 10. (a) Signal contribution of extra-axonal space calculated from Monte Carlo simulations of parallel cylinders with a Gamma distribution of radii corresponding 
to the spinal cord ROI values. The signal is the average over the 12 gradient directions used for computing TDR 12 . The contributions are shown for the different 
waveforms (left to right), as well as for different b-values and maximum gradient strengths (markers). The largest differences observed for b = 8 ms/ 𝜇m 

2 do not 
exceed 0.03 for the simulated substrates. The dotted line represents 0.01 signal difference. b) Optimised TDR (12 gradient directions, optimised waveforms) as a 
function of axon diameter for different protocols, when particles in the MC simulation are distributed either uniformly (‘x’) or just inside the cylinders (‘ □’). c) 
Optimised intra-axonal TDR (12 gradient directions, optimised waveforms) as a function of axon diameter for dispersed cylinders following a Watson distribution 
with different concentration parameters 𝜅 = {1, 6, 100}. The TDR values overlap for the different 𝜅 values. c) Comparison of optimised TDR for the data acquired 
with b = 20 ms/ 𝜇m 

2 and 8 ms/ 𝜇m 

2 for the two gradient strengths. 

15 
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o assume that the observed signal originates from inside the axons only
 Veraart et al., 2019 ). Hence, in this study we investigate sequences at
 = 8 ms/ 𝜇m 

2 , which is at the limit of that requirement, as these can
e achieved on pre-clinical and high performance clinical scanners for
 range of gradient waveforms. We find that for those, the extra-axonal
ignal is negligible (normalised signal below 0.01) for most configu-
ations (including complex fibre geometries as seen in Supplementary
aterial Section S5) and protocols ( Fig. 10 a). Only the largest axonal

onfigurations ( > 3um) for very short diffusion times ( ∼5 ms) reach non-
egligible but still very low extra-axonal signal of 0.03. This seems to
riginate from axonal configurations with geometrical repetitions, in-
ucing slow diffusion or even restriction in some of the extra-axonal
pace, a feature we expect would be much smaller in the real data. 

We found that the impact of this on TDR was not significant. We
nvestigated b = 20 ms/ 𝜇m, for which the extra-axonal signal is negli-
ible (normalised signal below 0.01) for all axonal configurations and
rotocols we investigated and TDR values of intra-axonal space almost
dentical as that of the uniform space (intra + extra-axonal) [ Fig. 10 b].

hen compared in simulations TDR for b = 8 ms/ 𝜇m 

2 has differences
lightly larger for certain axonal configurations and G = 2500mT/m but
verall still very small. When compared in pre-clinical data, we find
hat the TDR maps between the two b-values are extremely similar and
ith matching patterns and values, suggesting that b = 8 ms/ 𝜇m 

2 is
ufficiently large to satisfy the TDR assumptions. 

.3. TDR in the presence of noise 

In the original TDR, it was proposed to use the direction-averaged
ignal to remove/mitigate the bias due to orientation dispersion. In this
ork we show that, when imaging structures consisting of one or several
nisotropic fibre bundles (e.g. coherent white matter fibres, but also re-
ions with crossing fibres), in the presence of Rician noise, the TDR con-
rast can be further improved by using only a subset of the highest-signal
radient directions. This happens because for some gradient directions
he measured signal is very low and decays to the noise floor, therefore
dding a bias in the powder averaged signal and subsequent TDR cal-
ulation. Thus, removing these measurements improves the accuracy of
DR estimation. For relatively coherent fibres, both simulations and ex-
erimental results suggest that using approx 20% of the measurements is
ptimal. For more complex fibre configurations (e.g. two or three cross-
ng fibre bundles), larger subsets are more appropriate, with the exact
ptimal percentage of gradient directions depending on the SNR as well
s the fibre configurations. If we are to choose a single percentage, for
xample to calculate TDR across the brain where there are voxels with
ifferent fibre orientations, our simulations suggest that considering a
ubset with e.g. ∼50% of measurements, improves TDR accuracy and
ecreases its variance across fibre orientations compared to using the
ntire dataset. Nevertheless, the optimal percentage should be decided
ased on the SNR of the data, the number of HARDI directions and ex-
ected fibre orientations in the sample. 

This bias in TDR can also be mitigated by employing real valued data
 Eichner et al., 2015 ) instead of magnitude data and removing the effect
f the Rician noise floor. Indeed, simulations employing Gaussian noise
esult in similar TDR values for different numbers of gradient directions
data not shown). 

.4. TDR in ex-vivo spinal cord: white matter 

The TDR contrast in the ex-vivo rat spinal cord closely follows the
redictions from simulations, with higher values for the optimised wave-
orms and ∼20% of the directions. We have also observed very strong
orrelations between TDR and axon diameter values reported in the
iterature in different ROIs, with correlation coefficients above 0.85
oth for a weaker gradient (600 mT/m) and a stronger gradient (2500
T/m). As discussed above, TDR is sensitive to the volume weighted
istribution of axons, and therefore the mean diameter calculated from
16 
lectron microscopy might not be the best quantity for comparison, nev-
rtheless, there is a clear trend, as illustrated in Fig. 9 . The trends of TDR
re also consistent with previous MRI correlates of axon diameter, both
sing diffusion data as well as relaxometry ( Shemesh, 2018 ; Anaby et al.,
019 ; Fick et al., 2017 ; Nunes et al., 2017 ). 

The curves presented in Fig. 1 show a slightly different dependence
f TDR on axon diameter compared to the trends shown in Fig. 9 - namely
hat in simulations the TDR curve goes to zero for small axons and in
xed rat spinal cord it does not. Indeed, when considering straight cylin-
ers ( Fig. 10 ), simulated TDR values for axons below 2 um are close to
ero, while TDR values measured in the spinal cord are larger ( ∼0.1 for
max = 600 and 0.2 for Gmax = 2500). Nevertheless, the TDR values

imulated in the more realistic substrates with undulation and varying
xon diameter indicate higher values compared to straight cylinders,
hat are similar to the ones measured in the spinal cord in ROIs known
o have similar axon sizes, see Table S1 in Supplementary material. Since
DR is not aiming to measure pore sizes quantitatively, these differences
o not affect the interpretation of the results significantly. 

.5. TDR in ex vivo spinal cord: grey matter 

In ex vivo spinal cord grey matter we measure negative TDR values.
hese results are not consistent with simulations of TDR when diffusion

s influenced by restricting barriers in different scenarios: i) totally re-
tricted diffusion in spheres and/or cylinders, ii) randomly packed par-
llel cylinders with a uniform distribution of spins, iii) packed complex
bre geometries featuring orientation dispersion, undulation and vary-

ng diameter along the fibre (see section S6 in SI) with a uniform dis-
ribution of spins. This suggests that effects, other than pure restriction,
nfluence the diffusion time dependence in grey matter. These results
how for the first time that for measurements with high diffusion weight-
ng (i.e. ≥ 8 ms/ 𝜇m 

2 ), the signal is showing a pronounced decrease with
ncreasing diffusion time in spinal cord grey matter. This is consistent
ith recent preclinical studies focusing on brain grey matter, suggesting

hat inter-compartmental exchange is a highly plausible explanation for
he diffusion time dependence, both in vivo and ex vivo ( Jelescu et al.,
022 ; Olesen et al., 2022 ; Ianus et al., 2022 ). In this case, TDR may re-
ect exchange between neurites and extra-cellular space, between soma
nd extra-cellular space and/or between soma and neurites ( Ianus et al.,
021 ; Jelescu et al., 2022 ; Olesen et al., 2022 ). Since TDR was origi-
ally proposed to provide information about restriction effects in the
M, here we focus our optimization and investigation on WM. The ob-

erved discrepancy between simulated and measured TDR values in the
M are of great interest, but require further dedicated investigations,
hich goes beyond the scope of this work. 

.6. Going beyond single diffusion encoding 

Here we chose to look at only SDE sequences since this is the first
aper to look into TDR following the preliminary results presented in
ell’Acqua, proc. ISMRM 2019) ( Dell’Acqua et al., 2019 ) and we felt that

tarting from the most standard sequence and exploring it at depth (both
n simulation and pre-clinically) was sensible. We showed that the TDR
an work well already with SDE, however the TDR contrast could be
urther improved by including other waveforms in the optimization, for
xample oscillating gradients ( Drobnjak et al., 2016 ), and a similar ap-
roach has been explored recently in simulations using such waveforms
 Harkins et al., 2021 ). If high frequency oscillating gradients cannot
sually achieve the desired high b-values for a practical echo time, low
requency oscillations could potentially improve TDR contrast, as they
ere shown in the past to increase the sensitivity towards small axon
iameters. Nevertheless, these sequences are not widely available, nei-
her on clinical nor on pre-clinical scanners, therefore here we focused
n standard single diffusion encoding acquisitions. For larger restriction
izes, using SDE sequences in a stimulated echo sequence rather than the
tandard spin-echo preparation might be beneficial as it allows to reach
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arger gradient separations, a period where the signal is governed by a
lower T1 decay rather than the faster T2 decay. 

.7. Limitations 

This work optimises TDR based on simple and ideal geometries (par-
llel cylinders and spheres), nevertheless, the results are corroborated
or WM (where TDR works as expected) using both real data from spinal
ord and simulations performed for more complex substrates including
rientation dispersion, extra-axonal space and realistic axonal shapes.
owever, none of these substrates consider exchange between compart-
ents, so a full exploration of negative TDR values in GM is not possi-

le. The future exploration of complex substrates with a wider range of
arameters describing dispersion, axon curvature ( Nilsson et al., 2012 ;
ee et al., 2020 ), beads ( Alves et al., 2022 ; Budde and Frank, 2010 ),
nd/or exchange might provide more insight into the behaviour of TDR
cross various possible microstructures. Another simulation limitation
s that noise is simulated using the Rician distribution; strictly speaking,
oise across a multi-channel receive coil (e.g., 32 channels for many
linical scanners) should have a non-central Chi distribution. Moreover,
DR contrast could be further improved by considering other gradient
hapes, such as oscillating gradients or spin preparations, e.g. stimu-
ated echo, nevertheless, this would require the use of new sequences
hat are not widely available at the moment. Finally, in our simulations
e assume infinite slew rates in the sequence, which although are a very
ood approximation for the pre-clinical scanners (the scanner we use has
 slew rate of 25,000 mT/m) are not so well suited for clinical scanners.
ence we tested the finite slew rate of 200 mT/m (typical of Connec-

ome Scanner) that can accommodate the physiological constraints and
ound that this has not affected the optimisation results significantly
results in the Supplementary Material S2). 

We did not estimate the diffusivity directly from our mouse tissue
ample: the spinal cord segments did not have clear CSF-containing ar-
as, and they were immersed in fluorinert, which is not MR visible. That
aid, we have checked the MD values in CSF from previously published
ouse brain data acquired on the same system as ours, at the same

emperature and following the same perfusion protocol: they were ∼2.8
m 

2 /ms and it is very likely that our sample was in line with this. 
TDR requires special care when interpreting the results. As TDR is

 single-dimensional measure of restriction size, different size distribu-
ions can return identical TDR values. Examples of these distributions
an be determined through examination of the isocolours in Fig. 4 . More
enerally, when moving beyond substrates consisting simply of cylin-
ers (e.g. as a model of axons in WM) or spheres, there will be a range
f microstructure compositions which we can expect to return similar
alues of TDR. 

TDR is also affected by the inherent sensitivity of the acquisition
nd the diffusion signal to the pore sizes. As shown in previous work
 Drobnjak et al., 2016 ; Nilsson et al., 2017 ), the sensitivity of the diffu-
ion signal to axon diameter strongly depends on the gradient strength
nd SNR. These can be used to calculate a size resolution limit below
hich the signal has minimal sensitivity. While its dependence on the

esolution limit is very similar to model-based approaches, TDR has an
dvantage that it does not try to fit but rather just maps areas where
he voxels are more likely to contain pores of sizes above the resolution
imit. Hence, its robustness, sensitivity and interpretation will be much
mproved and more appropriate for some applications compared to the
odel-based approaches. However, it is also important to highlight that
DR values can be biased by properties of the tissue other than pore size,
uch as inter-compartment exchange (compartment-specific T2 and T1
elaxation should not bias to TDR values as long as high enough b values
re used to suppress extra-cellular signal and TE/TR are kept the same
or all the acquisitions). This could be particularly problematic in dis-
ases, where for example demyelination and accumulation of reactive
lia may change the exchange properties of the tissue, complicating the
nterpretation of the results. Future studies investigating TDR sensitiv-
17 
ty and specificity to changes in tissue pore sizes in disease might shed
 light on the impact of said confounders. 

. Conclusion 

This work employs simulations and pre-clinical data to show the po-
ential of TDR contrast to characterise restricted diffusion for a wide
ange of tissue microstructures featuring cylindrical and/or spherical
ize distributions. Importantly, the TDR contrast can be enhanced by us-
ng optimised gradient waveforms, contrasting a short 𝛿 + high G pulse
nd a long 𝛿 + low G pulse, as well as a subset of gradient directions
rom the acquired shells. In ex-vivo experiments on rat spinal cord, TDR
an successfully characterise spinal cord white matter microstructure,
howing a strong correlation with axon diameter values from quanti-
ative histology. Overall these results show that the recently proposed
DR approach has a great potential and is a very promising alternative
or potentially complement) to model-based approaches for informing

n pore sizes in tissue. 
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