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Abstract— Simultaneous localization and mapping (SLAM)
have been an essential requirement for the autonomous op-
eration of mobile robots for over a decade. However, in the
wake of recent developments and successes of deep neural
networks and machine learning, the conventional task of SLAM
is gradually being replaced by Semantic SLAM. Extracting
semantic information (such as object information) from sensory
data can enable the robot to distinguish different environ-
mental regions beyond the conventional grid assignments of
free and occupied. This level of scene awareness is essential
for performing higher-level navigation and manipulation tasks
and enhancing human-robot interactions. This paper presents
an integrated framework that not only builds such maps of
indoor environments but also facilitates the execution of ‘Go
to object’ tasks with high-level user input. We also present a
method to extract meaningful endpoints of navigation based
on object class. Our modular stack leverages well-known
object detectors (YOLOv3), RGB-D SLAM techniques (RTAB-
Mapping) and local navigation planners (TEB) to perform
ObjectGoal navigation tasks. We also validate the results of
experiments in real environments.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has been
the key technique to realize autonomous operation of mobile
robots for over a decade. Several new and efficient algorithms
have been proposed for robot based environment perception
and modeling [1]. SLAM has widespread applications in
different fields ranging from warehouses, drones, self-driving
vehicles, agricultural robotics, to space robotics for explo-
ration and mapping of extra-terrestrial regions [2]–[5]. It is
also a prerequisite for upcoming Augmented Reality (AR)
scenarios.

Most of the earlier works in SLAM focused on utilising the
optimal state estimator filters such as the Extended Kalman
Filter (EKF-SLAM) [6] for obtaining the robot’s position
in the operating space. Due to its inability to handle non-
Gaussian noises, EKF was eventually replaced by other
probabilistic filters particularly particle filtering techniques
such as FastSLAM2.0 [7], [8] or Rao-Blackwellized filter
for SLAM [9]. This resolved the problems in mapping using
grid, however, it was still inefficient for preparing large scale
3D maps as well as for executing higher-level navigation
tasks. Most SLAM applications involving mobile robots
mainly focused on mapping and localization in small to
medium sized areas that are mostly structured [10]. Mapping
and localizing in unstructured environments is still a hard

The authors are with the Graduate School of Engineering,
Department of Robotics, Tohoku University, Sendai 980-8579,
Japan. (a.k.chikhalikar, j.salazar, s.a.tafrishi, ankit, hi-
rata@srd.mech.tohoku.ac.jp)

Kobuki

Chair 3

Chair 2

Chair 0

Fig. 1: A partial semantic map of the environment. Markers
as STL files are overlaid on the grid map at the location
where the object is detected. In this figure, two chairs and a
sofa are overlaid by their markers.

problem such as tunnels and mines, and for exploratory
applications in underwater and cluttered environments such
as forests. Another challenge is for robots operating in
dynamic environment [11]. Particularly environment with
moving obstacles such as human causes most SLAM algo-
rithms to fail because of the missed correspondence between
moving objects resulting in loop closure failures or unreliable
map generation.

On the other hand, humans can seamlessly navigate in any
environment. A distinguishing factor is that humans possess
‘scene-awareness’ that robots still lack comparatively. For
example, a simple task like putting plates in the dishwasher
involves understanding ‘what is a plate’, ‘what is a dish-
washer’, and ‘where is the dishwasher’. Such reasoning in
robot navigation is recently getting much interest. Recent
advances in performance of deep learning techniques has
enabled real-time object detection [12], [13], instance seg-
mentation [14] and other machine learning based object and
place classification methods seems to have answered the first
two questions to a large extent. However, Semantic SLAM
plays an important role in answering the latter question and is
still relatively unsolved. Semantic SLAM is also important to
foster human-robot interactions and multi-robot collaboration
tasks. A high-level ‘scene-awareness’ is critical to deploying
service robots in environments like healthcare facilities or
restaurants [15], [16]

Earlier approaches in semantic mapping used the ‘bag
of key points’ approach for object detection, and image
descriptors such as SIFT for localizing the object in the
map [17]. More recently, the Habitat challenge [18], [19]
focused on the context-driven exploration of indoor scenes.
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Fig. 2: Overview of proposed framework

One objective of these semantic mapping challenges is
’Go to object’ tasks (e.g. ’Go to chair’ or ’Go to bed’).
While many works targeting the Habitat challenges [20],
[21] can understand contextual information in a previously
unseen environment and navigate to the desired object, and
they are performed in photo-realistic simulators. Martins et
al. demonstrated semantic mapping in the real world with
off-beat object classes like fire hydrants. However, their
approach does not cover ’Go to Object’ navigation [22].
Using semantics for path planning is largely an unexplored
area of research. Neural networks enriched SLAM algorithms
that create pixel-by-pixel encoded semantic maps and give
a complete understanding of all the objects and instances
in the scene have only recently emerged. However, they do
not generate solutions to semantic planning, which is crucial
when the robot moves in narrow and constrained spaces
inside homes or office-like environments. By considering
navigation with semantic understanding, it is possible to
segregate spaces into navigable or avoidable regions when
planning, e.g. avoiding certain areas of the map when humans
are using that region or lowering speed when going over a
specific type of flooring or carpets.

This research aims to perform ObjectGoal navigation tasks
by providing a framework to navigate to a meaningful
endpoint. This endpoint is extracted from a keyword (eg.
sofa, chair) input given by the user. We use domain-agnostic
modules to ensure that our framework can be effective in
different indoor environments. In this work, we leverage
well-known object detectors (YOLOv3 [23]), RGB-D SLAM
techniques (RTAB-Map [24]) and local navigation plan-
ners (TEB [25]). Specifically, we extend existing semantic
navigation frameworks to demonstrate the importance of
considering object context during navigation.

The rest of the paper is organized as follows. Section II
presents our proposed framework with respect to different
modules used for the semantic object navigation. Section
III describes the hardware configuration, experimental setup,
and results of semantic mapping and navigation in indoor
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Fig. 3: Hardware configuration of indoor robot (Turtlebot2)

test environment. Finally, Section IV concludes the paper
with discussion.

II. SYSTEM FRAMEWORK

This section introduces our proposed framework in detail.
Firstly, we describe the pre-processing module. This is
followed by a discussion on SLAM, filtering and tracking
module and describes the steps in preparing the semantic
map by overlaying the grid map with object information.
Finally, we present our navigation strategy to perform the
ObjectGoal navigation. Fig. 2 gives an overview of the
proposed framework. The framework is shown as a network
of Robot Operating System (ROS) nodes and topics. Fig. 3
shows the hardware configuration for reference. We explain
it in detail in Section III

Our framework extensively utilizes the open-source mid-



dleware Robot Operating System (ROS) [26] and its associ-
ated libraries. For the RGBD sensor, the Azure Kinect DK
sensor SDK [27] was used while designing our framework.

A. Pre-processing

The RGB and depth images are acquired from the Azure
Kinect sensor at 30 fps. Azure Kinect was chosen as a sensor
because of its compatibility with ROS and high resolution
camera sensors along with ability to generate high density
point cloud. The depth image is registered in the RGB frame
since the RGB image has a lower FoV. ROS distributed
network is used and the compressed depth and RGB images
are transported from the onboard computing system to the
master computer. These images are rectified using intrinsic
camera calibration parameters provided by the SDK, and
finally, a dense point cloud is generated.

B. Mapping

A 3D grid map (octomap) of the environment is first pro-
cessed from the generated point cloud data. While any kind
of 3D map representation can be used for navigation such as
the ORB-SLAMv2 [28] and RGBDSLAMv2 [29], we choose
RTAB-Map [24] as the preferred method because it is well
documented and has good support for different distributions
and operating system platforms including embedded systems.
Additionally, it uses a graph-based SLAM approach that
uses appearance based loop closure in real-time. It uses
GTSAM [30] as its graph optimization strategy due to the
latter’s robustness to multi-session mapping. It also provides
the ability to store robot poses as graph nodes that can be
used for offline map generation and data post-processing.
While mapping, each of the 3D Local occupancy grid is
transformed using the robot’s pose. If the grid corresponds
to a new node, it is appended to the current global map
with clearing and adding of obstacles assuming the new
node as the truth. However, if the local grid corresponds to a
previously visited place using the image correspondence and
image feature matching, a loop closure is performed in the
back-end allowing the assembly of sub-maps to a globally
consistent and updated map.

Three of the most ubiquitous object classes in indoor
spaces, namely the chair, bed, and sofa are taken into
consideration for generating the semantic map. During the
mapping process, YOLOv3 [23] is running in parallel to
detect objects in frames. We choose YOLOv3 due to its low
inference times and mean Average Precision (mAP) scores.
For each object detected, a 5-D output is generated by the
YOLOv3 network, namely, object class and 4 Bounding Box
(BB) parameters (centre coordinates: Xc and Yc, width: W ,
and height: H). Artificial cropping of roughly 10% of the
image width is done before using the BBs to ensure that the
object is sufficiently centred and not partially visible. We
then randomly sample a pre-determined number of pixels
from the detected Bounding Box(15 pixels for bed and 25
pixels for chair, and sofa) and compute the mean X and Y
coordinate from the Point Cloud data corresponding to those
pixels. It is assumed that this mean equals the centroid of

the detected object. These centroid coordinates which are
in the camera coordinate frame, are then converted to the
global map frame. This is the first of six such measurements
carried out before placing an STL marker (3D object model)
corresponding to the object class on the map frame. A
Kalman filter determines the marker position from the six
measurements and the details of which are given in equations
2 and 3. Due to the lack of a reliable, real-time, low
computation cost object-pose estimation network, we don’t
compute the 3D Pose of the object in this work. There are
several techniques that can be utilized to correctly estimated
the final 3D pose of the detected [31], [32].

After the object is placed on the map as an STL marker
object, it still needs to be tracked. If an object is re-
observed while the robot is exploring, it is important to
determine whether it is a previously detected instance of
that object or not. This is not a trivial task as the robot
can be at a completely different location and viewing the
object from a completely different viewpoint. For tracking
the objects in such instances, we firstly maintain a dictionary
of ′K ′ previously seen objects of the same class as P =
{P0, P1, · · · , PK}. Each element in the dictionary is a 2×1
vector corresponding to x and y locations on the map. If
for any acquired frame, ′L′ objects of the same class are
observed, a new list C = {C0, C1, · · · , CL} is created. We
then calculate a cost-association matrix Dk,l between both
the sets using Euclidean distance as shown in equation 1
below.

∀(k, l) ∈ (K,L) : Dk,l =
√
(Pk − Cl)T (Pk − Cl) (1)

After the cost-association matrix is computed, the association
between new observations (i.e list C) and previous observa-
tions (i.e dictionary P) is determined using the Hungarian
algorithm [33] as prescribed in [22]. If the distance corre-
sponding to the association is less than the threshold value
α (Dk,l < α), it is assumed to correspond to the previously
seen object with which it is associated to. Otherwise, it is
considered a new instance. The object marker is placed on
the map for this new instance, and its location is appended
to the dictionary. We conducted numerous experiments by
varying the threshold value α and set α as 0.5m for the
chair and sofa, and 1m for the bed.

If the object is determined as previously seen, a Kalman
filter is then used to combine current observations with prior
observations of the same instance over time. For a prior state
of the instance ‘k’ given by Pt−1

k and an associated new
observation Ct

l , determined via the Hungarian algorithm, the
following computations are carried out:

Prediction Step : P′t
k = APt−1

k (2)

Correction Step : Pt
k = P′t

k + K(t)(Ct
l −HP′t

k ) (3)

where, A is the 2×2 state transition matrix (set to identity),
H is the measurement matrix (set to identity), and K(t) is the
Kalman gain. The optimal Kalman gain, K(t), is computed
with a diagonal process noise covariance matrix of 0.3I and



Fig. 4: Semantic layered map of the environment with
detected object markers.

a diagonal measurement noise covariance matrix of 0.5I.
This ensures consistency in object localization as the object
classes are relatively static. Fig. 4 shows a semantic map of
the environment prepared with this method.

C. Semantic Navigation

After completion of the mapping phase, the navigation
module is executed. It is important to note that mapping
is a continuous process. The tracking module will continue
to incorporate small changes in the location of the objects
even during the navigation phase and update the map. Addi-
tionally, if a new instance of any object class is discovered
during navigation, it is added to the map. This procedure is
the same as described in Sec. II-B. This is possible since
we maintain a dictionary of previously observed instances
of all classes. Any detection during navigation is compared
with the dictionary instance to ratify whether it is a new or
previously seen instance.

The user input for the object class to navigate is to be
provided first. If there are multiple instances of the object
class on the map, the instance ID of the object needs to
be specified as well. Fig. 4 shows multiple instances of
object class chair in our environment. The instance ID is
set according to the order in which the robot discovered the
instances (i.e. first chair detected has instance ID = 0, the
second chair has one and so on).

Context-driven navigation is used to determine the end-
point. In the case of the object class being bed, the logical
approach for the robot to approach the object is along the
edge of the bed. An example of such a scenario is in a

Algorithm 1 Endpoint extraction from user input

Require: Map, Markers, Teb planner
Input: Object, Id, Goal pose, Goal loc
While Not shutdown do

if Prev Goal = Reached
Object← User Object input
if Instances > 1

Id← Obj Id input
Obj pose← Markers.pose
if Object == Chair or Sofa

Goal pose← Rotate Obj pose by 180o

Goal loc←Markers.loc+ 0.5 ∗Obj pose
if Goal == Bed

Goal pose← Rotate Obj pose by 90o

Goal loc←Markers.loc− 0.5 ∗Goal pose
Map← Goal pose,Goal loc
Prev Goal = Not Reached

While Prev Goal = Not Reached do
Run Teb planner

end While
Prev Goal = Reached

end While

healthcare facility wherein the robot has to deliver medicines
to a bed-ridden patient. If the object is sofa or chair the
logical approach is to approach from the front. This is
meaningful in residential scenarios wherein the user might
be relaxing on the sofa and needs an item delivered.

In both cases, the robot’s final pose is desired to be facing
toward the object to improve human-robot interaction while
maintaining the convenience to the user. The implementation
of this algorithm is shown in Pseudocode 1.

III. EXPERIMENTAL STUDIES

In this section, we first describe the hardware configuration
of the robot. Then, we discuss the experiments and results.

A. Hardware Configuration

As seen in Fig. 3, a modified Turtlebot2 platform with
Kobuki base was used to perform the experiments. The
Kobuki comes with onboard encoder to calculate the odom-
etry. Additionally, it was fitted with an Azure-Kinect RGB-
D camera and an RPLIDAR S2 laser range scanner. For
computation, a ROS distributed computing network was
setup consisting of NVIDIA Jetson AGX Xavier as an
onboard computer mainly for data acquisition and controlling
the robot.

The semantic information was generated on a CPU (mas-
ter) with NVIDIA 3090RTX graphics’ unit and i9-12900K
processor. The framework was able to sustain implementa-
tion at rates higher than 30 fps.

The depth cloud was limited to a range of 3m for reducing
the noise generated at higher depth and the scanning LiDAR
data to a range of 8m. The field of interest of the rectified
RGB-D images was 120◦×120◦.On the object detection side,
a threshold of 0.85 was set for YOLOv3 [23] framework. The



(a) (b)

Fig. 5: Result of Navigate to chair task (a) Intermediate step with local and global costmaps (b) End-result of semantic
navigation

angular tolerance for navigation was 0.25 and the positional
tolerance was 0.1m. The maximum forward and reverse
movement velocity was 0.55 m/s and 0.2 m/s, respectively.
The angular velocity was limited to 0.3 m/s.

B. Mapping and Navigation

The robot was initially teleoperated to obtain the semantic
map of the environment by moving inside the area of
interest. During the exploration process, minor changes in the
object’s centroid’s coordinates are managed by the filtering
and tracking module. After the semantic map is ready, the
navigation module is started. For the navigation task, either
the user can input the object and the instance ID (if required)
to which location the robot is supposed to navigate on the
console, or the robot can be given position-based goals. The
object extraction algorithm, as described in the Pseudocode
1 takes the input and accordingly publishes a meaningful
endpoint position and orientation on the map frame. This
activates the move base local planner (TEB), which then
prepares a plan based on the endpoint of navigation and the
global and local costmaps. The robot is directed to approach
the object, maintaining a safe distance of 0.5m to the object
in all cases. The intermediate and end result of navigation can
be found in Fig. 5a and 5b, respectively. Fig. 5b also shows
YOLOv3 output during the navigation. Once the robot is

facing the front of the chair, and within the terminal distance,
the task of semantic navigation is successfully completed.
After the termination criteria are met, the user can provide
the following input, and the navigation sequence is repeated.
In future, we will extend the semantic navigation node so it
can interface with different services like Siri or Alexa [16].

IV. CONCLUSIONS AND DISCUSSIONS

This study provided a proof of the concept of semantic
navigation in indoor environments. The objective of ap-
proaching the user-defined location in a meaningful way
was successfully demonstrated. The filtering and tracking
module was able to incorporate small changes in the detected
location of the object due to differences in depth camera data
when the object was viewed from different view points and
locations. The end-point extraction algorithm is able to direct
the robot to approach the object in a meaningful manner. Our
proposed system can currently work in real-time and can per-
form object-oriented semantic goal tasks in small to medium
sized indoor environments such as homes and offices. The
proposed semantic navigation framework is flexible and can
be easily integrated into existing ROS navigation stack as an
additional layer for high-level scene understanding. We are
also planning to add additional modularities to our current
framework to include high definition 3D maps along with



semantic rich information of the environment for performing
intelligent tasks. The system can be improved by using
instance segmentation techniques for clustering Point Cloud
Data instead of vanilla object detection. The framework can
be readily incorporated with reliable, real-time object-pose
estimation networks to further improve its robustness in
complex environments. There is a lot of potential to increase
the applicability of the work by adding manipulation tasks
using the generated semantic map. This preliminary research
showed the necessity of considering the context not only
during mapping but also in navigation. Such context-driven
navigation is of additional importance in the development of
service robots.
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