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Thesis Summary  

Parkinson’s disease (PD) is a neurodegenerative movement disorder caused by 

progressive loss of dopaminergic neurons. Beyond motor symptoms, patients experience a 

host of non-motor symptoms. Two common symptoms are pain and depression, which have 

been correlated with each other. PD is also characterised by increased activation of the 

immune system within the periphery and CNS. A genetic risk factor for PD is at the Human 

Leukocyte Antigen (HLA) locus, a highly polymorphic region encoding proteins that control 

the adaptive immune response. This project aimed to develop the understanding of genetic 

factors influencing inflammation, pain, and depression in PD. 

Firstly, a range of bioinformatics techniques including HLA imputation were applied to 

a PD dataset to determine the HLA loci most associated with PD risk and protection. This 

resulted in identification of HLA-B, HLA-C, HLA-DRB1, and HLA-DQA1 as loci to further analyse. 

The Pacific-Biosciences long-read sequencing method was applied to these loci from PD 

samples. Results from sequencing data indicated the HLA alleles associated with PD 

protection (HLA-DRB1*04) and risk (HLA-DQA1*01). These results were compared to HLA 

imputation in a large case-control dataset, which corroborated the top associated alleles. 

Secondly, an investigation into the relationship between pain and depression in PD 

was conducted. Two GWAS of depression in PD were conducted in the UKBB and Proband 

cohorts, and a GWAS of multisite chronic pain (MCP) in PD was conducted in the UKBB cohort. 

The results indicated putative genetic associations with these symptoms. Polygenic risk score 

(PRS) analysis showed no evidence for correlation of genetic influences with MDD, but did for 

MCP. A Mendelian randomisation analysis was performed, finding no evidence for a causative 

relationship between these symptoms; this suggests independent causative factors. 

Overall, novel data to identify potential genetic influences of these PD characteristics 

was collected, which can help direct future investigations. 
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1 Introduction 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, 

affecting over 6 million individuals globally (1). PD is primarily a movement disorder 

characterised by tremor, rigidity of movement, bradykinesia, and dyskinesia. In 2015 an 

investigation into the global burden of disease found its incidence to be the fastest growing 

neurological disease (1), and the number of PD cases is anticipated to exceed 12 million by 

2040(2). PD predominantly affects those over 60 years of age, with 1% of this age group 

suffering from PD and 5% of those over 85(3). The impact of PD extends beyond loss of motor 

control, with patients experiencing a range of physical and psychological symptoms including 

sleep disturbance, mood disorders, cognitive decline, systemic inflammation, digestive issues, 

and chronic pain (4). 

Pathological hallmarks of PD include accumulation of aggregated alpha-synuclein (α-

syn) in the midbrain, leading to progressive degeneration of dopaminergic neurons in the 

substantia nigra, which results in symptomatic loss of motor function(5). Braak staging 

indicates that neurodegeneration begins in medulla oblongata and spreads through the 

subcortical areas to eventually include extensive cortical regions. This contributes to 

development of non-motor symptoms including cognitive decline, sleep alterations and 

pain(5).  

There are limited treatments for PD; the dopamine precursor Levadopa is the current 

gold standard treatment to address the loss of dopamine production, and other avenues such 

as deep brain stimulation are considered in severe treatment resistant cases (6). Currently 

there is no way to prevent or reverse neurodegeneration, so new therapeutic targets to treat 

and alleviate symptoms are an important area of investigation. 

1.2 Non-motor aspects of PD 

Whilst motor symptoms are characteristic of PD patients, the host of other non-motor 

PD symptoms can be experienced to varying degrees. Often these symptoms can be 

experienced as prodromal PD, with onset occurring years before characteristic motor 
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symptoms (7). Whilst the experience of these symptoms differs across patients, they can have 

a significant impact on quality of life. It is questionable how much traditional PD therapies 

which focus on dopamine replacement can impact these non-motor symptoms. To have a 

greater impact on the quality of life of PD patients, an improved understanding of the 

underlying causes of these non-motor symptoms is required so that they may be targeted 

appropriately. 

1.2.1 Pain in PD 

1.2.1.1 Prevalence of pain in PD 

Pain is one of the most common non-motor symptoms in PD. Different investigations 

have attempted to determine the exact prevalence and severity of pain in PD. A recent 

investigation assessing 1957 PD patients found 85% of PD patients reported pain, with 42% 

reporting moderate to severe pain (8). Pain was assessed with three different tests: Short 

Form McGill Pain Questionnaire (SFMPQ), Visual Analogue Scale (VAS) for pain severity over 

the last month and the Kings Parkinson's Pain Scale (KPPS). Experience of overall pain was not 

predicted by disease duration or motor impairment, but female gender and younger age were 

two predictors. Importantly, a multiple regression model found that pain influenced quality 

of life more significantly than motor impairment (8). 

A different investigation into the prevalence of pain in 176 PD patients in Norway 

found that 146 (83%) reported experiencing pain, with musculoskeletal pain reported by 70%. 

This investigation used three separate measures of pain: Brief Pain Inventory (BPI), the Bodily 

Pain (BP) Scale of the SF-36, and a clinical examination. It was also found that the experience 

of pain was not associated with disease duration or severity, with female gender the only 

predictor (9). 

The DoPaMiP survey similarly set out to characterise pain in PD in French patients, but 

with a focus on chronic pain (10). Out of 450 PD patients assessed, 278 (62%) experienced 

chronic pain. This was defined as pain lasting more than 3 months. 26% of patients reported 

having pain unrelated to PD (mainly caused by osteoarthritis) whilst 39.3% had chronic pain 

exclusively associated with PD. Of those with PD related pain, this was associated with several 

factors such as younger age of onset and more severe depressive symptoms than those 

without PD related pain, but not with disease duration or severity. 
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These results consistently show that the level of pain experienced in PD patients is 

greater than the general population. It is not only important to consider the prevalence of 

pain but what impact this has on sufferers. As mentioned above, in one investigation pain was 

found to negatively influence quality of life more than motor impairment (8). To better 

understand what the greatest burden is to PD sufferers, a separate investigation into the 

patient’s perspective asked a cohort of 265 PD patients to report their three worst symptoms 

(4). In early PD patients (less than six years of disease), pain was ranked as the fourth overall 

worst symptom behind slowness, tremor and stiffness. Whilst over 60% of these patients 

reported slowness or tremor as the worst aspect of their disease, 10% reported pain as their 

worst feature and 10% reported it as their second. In patients with later stage PD, pain was 

the sixth ranked most troublesome feature with mood disorders and fluctuating responses to 

medication becoming more burdensome. This indicates the significance of pain to the 

experience of PD patients, and why it is an important target of consideration. 

1.2.1.2 Causes of pain in PD 

The most common types of pain experienced in PD are musculoskeletal (pain affecting 

bones, joints, and muscles), radicular (back pain radiating from spinal nerves), and dystonic 

(painful muscle movements) (8). It has been suggested that PD pain, in particular 

musculoskeletal pain, could be attributed to motor impairments such as stiffness and loss of 

movement. However, studies have observed that severity of motor impairment has not been 

shown to be correlated with levels of pain in PD (8), suggesting this is not the case. 

Alterations in central pain processing pathways could also be an underlying cause of 

pain in PD. Loss of dopaminergic neurons in PD can affect the mesolimbic dopamine system, 

which affects the experience of painful stimuli and motivational behaviour in response to it. 

Within chronic pain patients, reduced D2 receptor binding and responsiveness to dopamine 

has been observed, affecting motivating behaviour (11). This impairment of the response to 

mesolimbic dopamine activity could however be a result of experiencing persistent painful 

stimuli rather than a cause of it. One investigation into the effects of dopamine in PD pain 

observed that PD patients appear to have greater impairment in emotional-motivational pain 

processing rather than sensory-discriminative pain processing, which could be improved by 

L-Dopa administration, suggesting that dopamine depletion is a key factor in the experience 

of this symptom (12). However, a greater understanding of the pain processing pathways 
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affected is required in order to attribute peripheral and central neuropathic pain experienced 

in PD to pathological factors. 

A GWAS was recently conducted to identify genetic risk factors for developing pain in 

PD (13). PD patients were divided into those with no/low pain or high pain levels, with two 

genome wide significant SNPs found to be associated with high pain. These were located at 

the TRPM8 locus, which is a cold-sensing ion channel also involved in inflammation and 

analgesia. Cannabinoids have been shown to act as TRPM8 antagonists (14), which could be 

of significance to PD pain considering that trials of cannabinoids have been shown to relieve 

a range of symptoms in PD including pain and inflammation (15). Furthermore, other TRPM8 

antagonists have been investigated for their analgesic properties (16), such as AMTB which 

reduces painful bladder syndrome and allodynia in different animal models (17,18). TRPM8 is 

also highly expressed in the caudate, which forms part of the striatum, implicating it in 

regulation of pain via the basal ganglia pain processing pathway (19). As this region is subject 

to PD degeneration, this genetic association could indicate an important role for the caudate 

in PD pain. TRPM8 is also expressed in dorsal root ganglion (DRG) neurons, where its role in 

depolarising neurons has been linked to the development of neuropathic pain (20). Despite 

several hypotheses, the mechanism of how this genetic risk factor could be impacting PD is 

still yet to be fully established. 

1.2.1.3 Treatments for pain in PD 

Current treatment options for pain in PD include traditional analgesic drugs and 

dopaminergic therapies, however there are varying reports as to their success. Due to the 

potential role of dopamine in PD pain, dopaminergic treatments have been studied. Levodopa 

has previously not been shown to improve PD pain, but some studies suggest it increases the 

threshold for painful stimuli in PD patients (21). However, a more recent investigation into 

musculoskeletal pain in PD found that over 80% of PD patients experiencing musculoskeletal 

pain were responsive to Levodopa, resulting in a reduction in pain intensity scores (22). 

Alternatively, while a double-blind study of dopamine agonist rotigotine found an 

improvement in average pain severity in PD patients, these results did not reach significance 

(23). Mixed results of dopamine therapies could indicate that addressing dopamine depletion 

cannot completely eliminate the underlying cause of PD pain. However, PD patients 

experiencing pain most often report it during ‘off states’ (when motor symptoms are worse 
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and medication does not work effectively to control them) rather than ‘on states’ (where 

motor symptoms are regulated), suggesting that dopamine levels do impact pain sensations, 

and further exploration of these therapies is worthwhile (24). 

Of other treatment options, non-steroidal anti-inflammatory drugs (NSAIDs) are most 

used to treat PD pain, whilst other therapies such as opioid analgesics have shown potential 

to be effective. Opioid analgesic tapentadol demonstrated ability to lower pain severity as 

well as anxiety and depression in 21 PD patients in one trial (25), and a study of combined 

oxycodone and naloxone (OXN) provided some evidence that this opioid-based therapy was 

able to reduce PD pain (particularly musculoskeletal), although the final endpoint 

improvement was insignificant and adverse side effects were reported (26). One investigation 

found that 28% of PD patients experiencing pain reported paracetamol to be effective, 12% 

found NSAIDs effective, 10% found opioids effective and 3% found drugs targeting central 

pain (gabapentin, pregabalin etc) effective (4). No pharmacological treatments have proved 

to be universally effective, with mixed to poor results. Alternative therapies such as deep 

brain stimulation (DBS) have demonstrated ability to alleviate painful symptoms in PD 

patients (27), however are not viable options for many patients. 

The current lack of effective treatments for pain in PD could be due to insufficient 

understanding of the correct targets to address PD pain, and the heterogeneity of pain 

experiences in PD patients. With greater knowledge of factors which result in the experience 

of pain in PD, more effective interventions for PD pain could be identified. 

1.2.2 Depression in PD 

1.2.2.1 Prevalence of depression in PD 

Mood disorders are similarly a common issue, with depression being the most 

common psychiatric symptom experienced by PD patients (28). An estimated 35% of patients 

experience clinically significant depressive symptoms, with experiences of sadness, 

pessimism, and increased anxiety the most widely reported experiences from PD patients 

(28). While estimates vary, up to 90% of PD patients experience some symptoms of 

depression (28). In the assessment of worse disease aspects for PD patients, those with 

advanced PD report that mood disorders rather than pain were one of the most troublesome 

symptoms, with 7.5% listing this as the most significant symptom, and it ranked second 
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overall behind fluctuating response to medication (4). This indicates the significant of mood 

disorders for those suffering from the disease long-term. 

1.2.2.2 Causes of depression in PD 

Different reasons for the prevalence of mood disorders in PD have been proposed. PD 

diagnosis can be a risk factor for developing a mood disorder, with a difficult illness bringing 

new struggles in day-to-day life. As with pain, neurological changes in PD can also directly 

affect mood, with various studies observing that degeneration of dopaminergic neuron 

projections, as well as loss of noradrenergic limbic and brainstem structures, are linked with 

PD depression (29). This potential impact of dopaminergic levels on PD depression is 

supported by patients with motor fluctuations commonly reporting ‘off period’ depression 

(30), and PD patients with depression having lower striatal dopamine transporter (DAT) 

binding (31). Dopamine depletion can have adverse effects on the reward-motivation system 

as described earlier, which also leads to experience of anhedonia as well as pain dysregulation 

(32). Whilst not correlated with severity of motor symptoms, the DoPaMiP study observed 

that depressive symptoms were associated with PD pain (10), which has also been observed 

elsewhere (33). This suggests that potential shared central mechanisms such as monoamine 

depletion caused by PD degeneration could be driving PD pain and depression. 

Other biological processes in PD that could be affecting mood disorders include the 

increased levels of inflammation in PD. It has been observed that levels of inflammatory 

cytokines are elevated in patients with major depressive disorder (MDD), and that some 

antidepressants also act to reduce cytokine levels (34). TNF-α levels are increased in PD 

patients with depression compared to those without (35), indicating that inflammatory 

factors can also be an important factor in PD depression. Systemic activation of T cells has 

been shown to affect mood via depletion of serum amino acids tryptophan and tyrosine (36), 

with the resulting serotonin and dopamine deficiency leading to anxiety-like behaviours and 

increased fear response in a mouse model. The extent to which these inflammatory factors 

influence PD mood disorders is uncertain, and greater understanding is required of the 

specific causes of PD-specific depression. 

Whilst no GWAS of depression in PD has been conducted to date, potential genetic 

associations have been investigated. One study previously identified a CB1 receptor gene 

polymorphism that could impact the expression of this gene that was associated with 
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depression in PD, however no further genetic associations were explored (37). The 

endocannabinoid system has been shown to be a target in both pain and depression 

therapies, so this could be an avenue of further investigation. Furthermore, another study 

investigating the variable effects of PD associated SNPs on different clinical features of 

disease identified one SNP near the BRIP1 gene which was associated with depression (38). 

This encodes the BRCA1 Interacting Protein 1, so is difficult to identify the potential impact of 

this gene function on PD depression.  

Differences between experience of depression in Mendelian and idiopathic form of 

PD could also provide insight into the genetic correlates of this symptom. One investigation 

found that there was no association with carrying genetic variants in LRRK2, PRKN, or APOE4 

with higher rates of depression (39). Familial PD rates of depression were approximately 

37.5%, which is comparative to idiopathic PD rates. A different study did observe depression 

to be more common in SNCA triplication PD patients (40,41). However as this was a small 

sample of only three familial PD patients, further exploration of genetic associations with PD 

depression is necessary to determine if SNCA variation is also a factor influencing idiopathic 

PD. 

1.2.2.2 Treatments for depression in PD 

SSRIs are traditionally the go-to therapy for PD patients with depression, although 

their effectiveness is questionable(28). Some trials indicate they are less effective at treating 

PD depression than non-PD depression. A study of the SSRI paroxetine found this to 

significantly improve depressive symptoms compared to placebo (42), yet alternative trials 

have found that paroxetine was no better than the placebo (43). Overall, meta-analysis 

indicates that there is no strong evidence for the efficacy of SSRIs with PD depression, and 

that a lack of well powered research into efficacy of antidepressant medications for PD 

patients hinders the development of better therapeutic options (44). 

Given the potential impact of dopamine on depression in PD, dopamine replacement 

therapies could also be effective anti-depressants as well as treating motor symptoms. 

Levodopa has not been shown to have any significant antidepressant effects, but a clinical 

trial of dopamine agonist Pramipexole showed a reduction in depressive symptoms compared 

with placebo in PD patients (45,46). Greater research into the pharmacological and non-
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pharmacological interventions into PD depression is required, which will be aided by a greater 

understanding of factors influencing PD depression. 

1.3 The immune system in PD 

A key element of the pathophysiology of PD is the activation of the immune system. 

As described previously, this can potentially influence non-motor symptoms such as 

depression, and other motor and non-motor symptoms such as pain through its impact on 

neurodegeneration. The following sections will outline important areas of the immune 

system and how they relate to PD pathology. 

1.3.1 Structure of the immune system 

The immune system has two main approaches of responding to a pathogen: the innate 

response in which myeloid cells such as macrophages perform an immediate general 

response, and the adaptive response wherein lymphoid cells present a specialised response 

for the pathogen. To initiate the adaptive response, various antigen presenting cells (APCs) 

including macrophages, dendritic cells and B cells present peptides derived from these 

pathogens to adaptive immune cells, primarily T cells and natural killer (NK) cells. These 

multiply and produce specific antibodies, allowing direct targeting (47). A key element of the 

adaptive immune system is the major histocompatibility complex (MHC), which consists of 

the cell surface proteins that enable activation of T cells. 

1.3.2 Structure and function of the Major Histocompatibility Complex 

MHC molecules are surface proteins that form complexes with antigen peptides to 

facilitate presentation. They are heterodimers, forming pockets to tightly anchor the antigen 

in a precise orientation which can then be recognised by T cell receptors (TCR) (48). This 

process occurs with foreign peptides that have been digested by APCs but also viral proteins 

and self-derived pathogenic proteins, including α-syn (Figure 1-1). 

A huge variety of MHC proteins are involved in this process, with over 200 genes in 

the MHC system (49). These are separated into class I, class II and class III. The most studied 

and well-defined MHC genes include the class I genes HLA-A, HLA-B, and HLA-C, and class II 

genes HLA-DRA, HLA-DRB, HLA-DQA, HLA-DQB, HLA-DPA, and HLA-DPB.  
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Class I molecules are expressed in most nucleated cells and present antigens to CD8+ 

cytotoxic T cells, initiating them to clear all ‘non-self’ molecules. Class II however are primarily 

expressed on APCs where they present antigens to CD4+ helper T cells, initiating helper 

responses such as cytokine production. The types of peptides presented also differ; class I 

presents endogenous proteins such as those from a viral infection, while class II present 

extracellular proteins from bacterial infections for example (49) (Figure 1-1). 

 

To prevent the damaging consequences of unnecessary activation of these processes, 

this response is tightly controlled. Appropriate activity is ensured by MHC restriction, which 

requires a specific match up of the antigen and MHC complex with the TCR for activation (50). 

Extensive MHC diversity ensures that the correct MHC-antigen complex can form for the huge 

array of potential antigens that could be met. One of the ways in which the MHC is adapted 

to provide this diversity among MHC proteins and control the immune response is by the 

unique properties of the genomic region. 

 

Figure 1-1: Function of the MHC-I and MHC-II molecules. 

From Bellanti, JA (Ed), Immunology IV: Clinical Applications in Health and Disease (2012) 
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1.3.3 Human Leukocyte Antigen genomic region 

Located on the short arm of chromosome 6, the HLA (Human Leukocyte Antigen) 

region covers about 4000 kb and is amongst the most highly polymorphic regions of the 

human genome (Figure 1-2). The HLA region encodes the MHC proteins, and is so called as it 

is the human specific version of the MHC. It is characterised by high linkage disequilibrium 

(LD) between variants, few recombination regions, and high gene density and allele diversity 

compared to the rest of the genome (51). The IGMT database holds the sequences of all 

identified alleles of HLA genes, currently listing over 25,000 alleles for 45 genes within the 

HLA locus (52). 

 

The most polymorphic genes of class I are HLA-A, B and C which have 5,266, 6,537, 

and 5,140 alleles respectively. The majority of the class II genes are polymorphic; the most 

polymorphic is HLA-DRB1, which has 2,581 alleles sequenced so far (53). This polymorphism 

arises from point mutations but also gene conversion, in which class I genes transfer sections 

of DNA to replace homologous regions (51). Polymorphisms most often occur in peptide 

binding grooves, with any changes to the amino acid sequence having significant functional 

effects (54). These new alleles will confer different capacity for binding and presenting 

peptides, creating a huge array of potential MHC-antigen interactions. Non-binding groove 

Figure 1-2 HLA genomic region.  

From McCarty, Influence of the Human Leukocyte Antigen Complex on the Development of Cutaneous 
Fibrosis: An Immunogenetic Perspective (2010) 
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variants can also have significant functional changes, such as cytoplasmic tail alterations 

affecting MHC transport to the cell surface (53). 

 

Detailed nomenclature is used to categorise each HLA allele, consisting of four sets of 

numbers divided by colons (Figure 1-3). The first indicates the allele group or allotype, 

detected by a different serological antigen. The second is the subtype, with a new number for 

each discovered subtype. Alleles with different numbers for the first two values have different 

amino acid sequences. Synonymous substitutions in the coding sequence are differed by the 

third number, and polymorphisms in the non-coding regions are differed by the fourth 

number. 

This variety within the HLA is necessary to support the need for humans to adapt to 

constantly changing environmental pathogens. With extensive polymorphism, there is a 

greater chance that individuals will be heterozygous for each HLA gene, increasing chances of 

survival via a greater capacity for antigen presentation (55). Group survival is also increased 

with a greater diversity, increasing the likelihood that a fraction of individuals will be able to 

target a novel antigen. Some alleles will be enriched in certain populations, which have 

historically given greater chances of survival in a particular environment. It has also been 

observed that environments with more pathogenic diversity have populations with greater 

HLA diversity (55). The low recombination frequency of the HLA region results in certain sets 

Figure 1-3 HLA Nomenclature. 

 From http://hla.alleles.org/nomenclature/naming.html 
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of alleles being consistently inherited together. This process could ensure that alleles which 

work together are collectively inherited, facilitating epistasis (51). This also contributes to the 

long-range LD patterns of the region. 

This adaptation creates a level of complexity when trying to determine HLA risk, with 

extreme diversity making it difficult to identify associations between particular HLA alleles 

and disease. Furthermore, many GWAS have a process of excluding regions of high LD or SNP 

frequency including the HLA locus. If tested, HLA SNPs that are significantly associated with a 

phenotype will likely be in LD with many other variants over a large region, complicating the 

interpretation of results. Understanding the HLA variants which carry risk can be important 

for many conditions, so alternative approaches are often taken to work around this. A 

growing body of evidence indicates the importance of the adaptive immune response in PD 

development, so revealing the HLA alleles involved will aid in furthering this understanding. 

1.3.4 Adaptive immune response in PD 

The activation of the immune response in neurodegenerative diseases has long been 

studied, with toxic protein accumulation and cell death initiating inflammatory processes. 

Whether this is a necessary mechanism that helps to counteract the effects on cell 

degeneration, or a factor which contributes to disease progression, is subject to investigation.  

Increased activity of the adaptive immune response in PD has been observed. 

Circulating levels of pro-inflammatory cytokines, including TNF-α and IFN-γ (56), have 

consistently been found to be upregulated in PD patients. Differences in T cell subpopulations 

have also been measured, with a greater proportion of activated T cells compared to naïve, 

increased CD8+ and decreased CD4+ expression, and a shift to a H1-type immune response 

observed in patients (57,58). There is some indication that activity of T-regs, which normally 

act to suppress the activated immune response, may be impaired in PD patients (59) and 

therefore reduce the ability to control excess inflammation. However, research into the exact 

nature of the T cell response in PD is ongoing, with inconsistencies across some results. While 

most of this T cell activity has been monitored in the periphery, the central nervous system is 

increasingly a focus of study with regards to the PD immune response. 

Inflammation within the brain is characteristic of PD, indicated by upregulated DR-

positive microglia in the substantia nigra of PD patients (60). This inflammatory response has 
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been suggested to accelerate neurodegeneration and cognitive decline (61). Traditionally the 

brain has been considered an immune privileged site, with the blood brain barrier (BBB) 

preventing the entry of peripheral immune cells to exacerbate the response of brain specific 

microglia. Neurodegeneration however can cause breakdown of this barrier and erode the 

distinction between these immune systems. Neuroimaging of PD patients has confirmed the 

breakdown of areas of the barrier including near the midbrain (62), facilitating the entry of 

peripheral cells. CD8+ and CD4+ T cells, but not B cells, were found to be present in post-

mortem brain tissue of PD patients, with the same results observed in MPTP animal models 

(63,64). A different animal approach involving injection of human α-syn also led to T cell 

infiltration (65). In this study, infiltration was observed before the development of motor 

symptoms. This evidence highlights how the activity of these cells of the adaptive immune 

response can contribute to central as well as peripheral pathology, potentially occurring in 

early critical stages of the disease. 

Different possibilities exist for the pathway by which the adaptive immune response 

is initiated in PD. α-syn specific T cells have been identified (66), indicating T cells interact with 

APCs presenting α-syn peptides to generate an immune response. This could occur via 

breakdown of aggregated α-syn within the brain, or peripheral α-syn. As well as α-syn 

aggregation within the CNS, there is evidence for early build up in the enteric nervous system, 

potentially activating α-syn specific T cells within the gut (67). It has been suggested that this 

early activation of an immune response in the periphery could contribute to the weakening 

of the BBB and infiltration of T cells (67). 

Results from animal studies support this immune response being a significant 

pathological factor of disease development. The same study that observed T cell infiltration 

in MPTP mice found that knock down of genes necessary for T cell function resulted in 

protection against this (64). CD4-/- mice were resistant to MPTP-induced PD symptoms 

including dopaminergic cell death, whereas CD8a-/- mice were as susceptible as wildtype 

animals to cell death. This indicated the impact of T cell infiltration could be driven by this 

specific subset. Transfer of wild type T cells reversed this protection in CD4-/- animals. All 

mutant animals had similar levels of striatal dopamine and metabolites following MPTP 

injections, suggesting that T cell infiltration does not seriously effect dopamine production. 

In a different animal model involving viral overexpression of α-syn, deletion of CCR2 (a 
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receptor expressed on peripheral monocytes) resulted in prevention of peripheral T cell entry, 

reduced MHCII expression and reduced dopaminergic neuron degeneration (68). 

As well as genetic models interfering directly with T cell function, knock outs of MHCII 

genes have demonstrated protection from different PD models (69,70). One mouse model 

found expression of human α-syn induced MHCII expression in microglia, with knock-out of 

MHCII then preventing the antigen presentation of α-syn and subsequent microglial 

activation, attenuating neurodegeneration (70). A separate model also found that MPTP 

treatment induced MHCII expression in astrocytes and microglia, while MHCII knock out mice 

showed significantly reduced MPTP-induced neurodegeneration and cytokine production. 

Knockout of the class II transactivator, a factor required for MHCII induction, was also 

sufficient to reduce α-syn induced neurodegeneration and T cell infiltration in mice (71). This 

demonstrates the central function of MHCII molecules to the immune response and resulting 

neurodegeneration in models of PD, which could be comparable their role in human disease 

development. 

Collectively this evidence demonstrates the importance of the HLA region to PD 

pathology, with MHC expression and T cell activity both influencing the extent of 

neurodegeneration observed. Different cell types are important to consider in this 

interaction, with expression of MHC proteins observed in SN and LC neurons as well as 

microglia and astrocytes, facilitating interaction with CD8+ T cells (72). Additional 

investigation is needed to understand which genes or alleles are significant in this interaction, 

although current genetic research has suggested some candidates for further study. 

1.3.5 HLA in PD genetics 

The use of GWAS to investigate the polygenic risk of PD has led to the identification 

of several of the main risk loci, although most heritable factors are still not understood. 

Recent advances in data collection have allowed large analysis to be conducted, with GWAS 

now covering millions of individuals. Among well-established loci, results from the past 

decade have indicated regions of the HLA locus that confer risk for PD (Table 1). Fully 

characterising this risk will help to explain the observed impact of MHC proteins on disease 

development. 
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One of the earliest observations of a potential HLA risk for PD came in a 2009 GWAS 

of 1,713 idiopathic PD cases and 3,978 controls from European ancestry. They observed a 

significant association for rs13192471 within HLA-DQB1, but this did not remain significant 

when replicated in a wider cohort (73). Subsequently, the UK PD consortium and Welcome 

Trust case-controlled consortium performed the then largest PD GWAS on 2,190 idiopathic 

PD cases and 5,667 controls. They found several loci within the short arm of chromosome 6 

but outside of the HLA locus, however these too did not remain significant in the replication 

sample (74).  

Following these early indications, more robust results emerged. A GWAS of 2,000 late 

onset PD cases and 1,986 controls in the NGRC dataset in 2010 found a new risk SNP in the 

HLA region, rs3129882, which was located within HLA-DRA (75). The association was 

confirmed and gained significance in a meta-analysis with further datasets. This SNP was 

proposed to be an eQTL for HLA-DRA, HLA-DQA2 and HLA-DRB5 based on previous expression 

data. Following this initial study, the NGRC data was further stratified into the subpopulations 

of sporadic-PD (1,565) and familial-PD (435) to examine if these groups held different 

associations. They found rs3129882 was more associated with sporadic than familial PD (76), 

which differed this from other risk variants observed. This result was further tested for 

interaction with toxin exposure in PD patients, with results suggesting this variant can interact 

with the environmental impact of a common insecticide to increase PD risk (77). 

Whilst these results indicated the HLA risk associated with sporadic PD, results for 

Mendelian forms of PD have also included HLA loci. The first GWAS of familial PD was 

conducted in 2009, with 857 cases and 867 controls. A SNP within HLA-DQB1, rs9275184, was 

found to be significantly associated. The cohort was then used for an additive meta-analysis 

with a previous GWAS, resulting in a total of 1,124 cases and 1,137 controls. The same SNP 

gained significance and was in the 20 most significantly associated SNPs in the meta-analysis 

(78). 

Since these results, PD GWAS analyses have increased in power and size. In 2011 a 

meta-analysis of the then 5 largest GWAS studies was conducted, totalling 5,333 cases and 

12,019 controls. Of the 11 loci that passed significance threshold, one was the SNP 

chr6:32588205 located near HLA-DRB5. This was taken as a confirmation of the earlier 

indications of HLA being a PD risk locus (79). 
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An updated meta-analysis was published in 2019, vastly increasingly the scale of 

analysis (80). A total of 37.7 thousand cases, 18.6 thousand UK Biobank proxies, and 1.4 

million controls were included. Consistent with the previous analysis, HLA-DRB5 was 

identified as a risk locus, with rs11245576 near this gene passing genome wide significance. 

Also included in this analysis was a summary-based Mendelian randomisation approach to 

investigate whether QTL properties contributed to any of the results. An meQTL for HLA-

DRB5, rs34039593, was identified as the top associated meQTL within the HLA locus.  

Table 1: Top HLA risk variants for PD from published GWAS results 

 

Beyond identifying HLA risk SNPs, data from these GWAS have been used for further 

imputation of HLA allele information. One study used the NGRC dataset (75) to impute HLA 

alleles using SNP2HLA and HLA*IMP, as well as conducting further HLA sequencing of 196 PD 

cases and 204 controls (81). The HLA haplotype 
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B*07:02_C*07:02_DRB5*01_DRB1*15:01_DQA1*01:02_DQB1*06:02 was found to be 

positively associated with PD, while the group of alleles C*03:04, DRB1*04:04 and 

DQA1*03:01 were negatively associated. A separate cohort was also used for an imputation 

investigation using HLA*IMP (82), which identified an association for PD with the HLA-

DRB1*04 allele. This study also performed a meta-analysis on 4 GWAS data sets, finding an 

association with rs660895 within HLA-DRB1. 

The growing power of GWAS has aided in refining of the risk locus at the HLA region, 

although there are still different candidates for the main genes and alleles associated. HLA-

DRB5 has been presented as a gene of interest from the largest meta-analysis, due to its 

proximity to associated SNPs and their ability to act as eQTLs for this gene. However, this 

overlooks the potential trans and cis acting effects of the risk variants, and how these could 

be associated with other HLA loci. Furthermore, HLA-DRB5 is only present in approximately 

20% of the population (83). Caution must therefore be taken before focusing on this as the 

main gene of interest. Other class II genes have been repeatedly implicated in PD, and 

imputation of data have shown a variety of potentially associated alleles. Further analysis of 

these risk loci is necessary to identify how these genes are involved and the biological 

pathways affected. 

The results of these GWAS investigations have indicated several HLA risk loci of 

interest, yet how these loci impact HLA expression or function is not always clear. Risk variants 

are often in intronic regions, affecting expression or function of unknown genes. Whilst some 

PD risk SNPs have been identified as potential eQTLs, for most the gene or extent of impact 

is unknown. Animal studies have shown the extreme effects that complete knockdown of HLA 

genes can have on PD pathology, yet these effects will not likely be comparable to biological 

consequences of altered expression caused by polygenic risk SNPs. Therefore, it is important 

to understand the extent of the impact of genetic risk on gene expression. 

A recent investigation using public expression data sought to further the 

understanding of which genes are most impacted (84). An initial study examined the 

distribution of PD risk SNPs overlapping tissue-specific regulatory elements, finding that most 

enrichment was seen in non-neuronal tissue including lymphocytes (85). This indicated the 

altered gene expression outside of neuronal tissue could be more significant than central 
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brain effects. However, this only examined tissue-specific active regions rather than affected 

gene sets. 

Subsequently, a genome-wide screen was carried out to gather 7,607 PD risk SNPs and 

23,759 proxy variants (LD > 0.8) from public databases. GTEx was used to identify PD risk 

eQTLs and examine the correlation between GWAS significance and eQTL expression. In 

addition, overlap between enhancer regions and risk SNPs was identified, and gene set 

enrichment analysis performed on the genes affected. 

795 genes were found to be affected by risk SNPs, with strong associations seen at 

chromosome 6. Gene set and pathway enrichment were conducted across different methods, 

with most methods showing that within the majority of gene sets, antigen presentation 

pathway dominated. To establish whether this was due to the strength of the HLA locus 

overwhelming other associations, risk SNPs were further subclassified to those that both 

overlapped dbSUPER defined superenhancers and which disrupted transcription factor 

binding. These 95 genes were also functionally enriched for antigen presentation processes. 

A strong correlation was observed between associated eQTL expression changes and PD 

GWAS significance, suggesting eQTL associations directly impacted PD risk. The subset of 

brain tissue-specific eGenes also included 20 at the HLA locus, which aligned with a previous 

investigation into eQTLs within the prefrontal cortex of PD patients that found HLA gene 

expression was impacted (86). 

Overall, these results indicate that of the known PD risk SNPs that act as eQTLs, they 

significantly effect antigen related processes involving HLA genes. The HLA genes that were 

associated with increased expression included HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-

DQB1-AS1, HLA-DRB1, and HLA-DRB5, whilst those that showed decreased expression 

included HLA-DOB, HLA-DQA2, HLA-DQB2, and HLA-DRB6. It was suggested that the pathways 

altered by PD eQTLs could contribute to excessive neuroinflammation in PD patients, 

although the exact mechanism and extent to which this contributes to PD pathology is still 

unknown. 

1.4 Aims and Outline 

The main aim of this thesis is to contribute to the understanding of genetic factors 

influencing inflammation, pain, and depression in PD. As detailed in this chapter, there is at 
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present some understanding of the potential genetic factors influencing these, primarily 

through GWAS or other association studies. However, two main areas that require further 

research have been identified. 

The first is the understanding of the nature of the HLA association with PD. HLA alleles 

are long, complex, and highly polymorphic genes, with new alleles being identified regularly. 

The methods applied to date have primarily focused on identifying associated loci and 

commonly known alleles that could be driving the association between PD and the HLA. This 

has been insufficient to capture unambiguous data of the full length of HLA alleles within PD 

subjects. Therefore, if rare or novel HLA alleles are associated with PD, they have yet to be 

identified. 

The second is the understanding of the factors influencing the development of two of 

the primary non-motor symptoms in PD: pain and depression. These symptoms have both 

been correlated with each other, as well as to inflammatory processes that occur in PD. There 

has been no genome wide association study of depression in PD, and no exploration of how 

these two symptoms could be influencing each other in PD. Greater understanding of how 

these symptoms develop is needed to improve treatment options. 

To address these issues, the aims of each experimental chapter are as follows:  

1. Apply a range of bioinformatic approaches to a PD case control dataset to understand 

which HLA loci are most associated with PD risk and protection. This will include 

various HLA imputation methods and QTL analysis. This will be used to select HLA loci 

most appropriate to target for long-read sequencing. 

2. Apply long-read sequencing to the HLA locus in PD samples to determine which alleles 

are associated with PD risk and protection. This approach will implement the Pacific 

Biosciences long-read technology to study the complex HLA region, and so will be able 

to uncover any unknown alleles or structural variants within the HLA locus of PD 

samples. 

3. Study the genetic factors influencing pain and depression in PD, and the relationship 

between these symptoms. This will include conducting further GWAS of pain and 

depression in PD, a polygenic risk score analysis to identify any shared genetic factors 

between PD and non-PD symptoms, and a Mendelian randomisation study to identify 

any causal relationships. 
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2 Exploring Parkinson’s Disease Associated HLA 

Loci 

2.1 Introduction 

Numerous PD GWAS studies have indicated the HLA is a genetic risk factor for PD. This 

was first observed in a 2009 GWAS of fewer than 6,000 subjects, in which a significant 

association for rs13192471 within the HLA-DQB1 locus was identified (73). However, this did 

not remain significant when replicated in a wider cohort. Over the subsequent decade, the 

power of PD GWAS grew significantly, enabling a greater ability to detect genetic associations 

of interest. The most recent PD GWAS meta-analysis in 2019 was able to combine data from 

37.7 thousand cases, 18.6 thousand UK biobank proxies, and 1.4 million controls (80). This 

identified the top HLA risk SNP to be rs11245576, with the minor allele having a protective 

effect on disease (P = 6.96E-28, OR = 0.85). As the nearest gene was HLA-DRB5, this was 

proposed as the HLA gene of interest; however, this gene is only present in approximately 

20% of individuals who carry HLA-DRB1 alleles within the HLA-DR15 serotype (83). Therefore, 

this is unlikely to explain the full extent of the genetic association with PD at the HLA locus. 

As this proposed risk locus is potentially not the only HLA locus involved in PD risk, 

other avenues of investigation are required to understand additional HLA loci that confer risk 

for PD. Furthermore, once specific risk loci are identified, the highly polymorphic nature of 

the HLA locus means there are potentially thousands of alleles with differing disease 

associations. The complex pattern of linkage disequilibrium within the HLA means that there 

can be multiple alleles that are associated, however this also makes it difficult to pinpoint the 

causative association (51). 

Alternative strategies to observing the nearby HLA genes to the top risk SNP have been 

applied to understand PD HLA risk. One such approach is to impute HLA alleles within a 

sample, and test these for association with disease. HLA imputation is the method by which 

common SNP data is used to infer the specific HLA alleles carried by an individual, using a 

reference panel of samples with known HLA data. Different imputation software can be 

applied using various computational approaches to give the ‘best guess’ alleles based on SNP 
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data. One of the initial PD HLA imputation studies was conducted in 2013, which applied 

SNP2HLA and HLA*IMP software’s to impute HLA alleles (81). This study identified C*03:04 (P 

= 8.3x 10-6, OR = 0.72) and DRB1*04:04 (P = 4.3x10-5, OR = 0.65) as independent HLA alleles 

associated with PD risk. As well as identifying the potential DRB1 allele of interest, this was 

also the first indication of a class I HLA allele association with PD. Since this result, sample 

sizes of imputation studies and computational power of imputation programmes have 

developed. A more recent imputation approach in 2021 was published after completion of 

the work in this chapter. This applied a different computational approach with use of the 

HIBAG software (87). The association of HLA-DRB1*04:04 was replicated in this study, with 

this being the main PD association (P = 8.21x10-5, OR = 0.84). PD association was also 

identified for HLA-DQA1*03:01, HLA-DQB1*03:02, and HLA-DRB1*04:01 alleles, however no 

HLA class I alleles were found to be associated with disease. 

Other factors beyond imputed alleles associated with PD can aid in understanding of 

whether PD associated HLA associations are indicating specific HLA loci. For example, QTL 

(quantitative trait loci) properties of associated SNPs can be informative. This was the case 

within the 2019 PD GWAS meta-analysis, which identified an meQTL (methylation QTL) for 

HLA-DRB5, rs34039593, as the top associated meQTL within the HLA locus (80). 

One of the main aims of this thesis is to apply a long-read sequencing approach to HLA 

loci in PD samples. Before pursuing sequencing work, it is important to have a more detailed 

picture of which HLA loci it is worthwhile to investigate with this approach. To achieve this, a 

PD case-control sample in which the HLA alleles had previously not been imputed was 

obtained. This consists of 5,322 cases and 10,018 controls that were previously included 

within the 2011 PD meta-analysis (79). Multiple different HLA imputation approaches were 

applied to compare results across classical imputation methods and newer approaches. 

Additionally, various up to date QTL databases were applied to GWAS and conditional analysis 

results to gain improved insight into the HLA loci of interest indicated by these results. This 

data, combined with previously published results, allows an informed selection of the HLA 

alleles most likely to be associated with PD to target for deeper analysis with long-read 

sequencing. 

2.1.1 Aims 

The aims of this current investigation include the following: 



Chapter 2: Exploring PD Associated HLA Loci 

 22 

1. To conduct a GWAS and conditional analysis in a PD case-control dataset to further 

analyse the HLA risk variants identified. 

2. To apply bioinformatics approaches including a range of different HLA imputation 

approaches and QTL searches to this dataset to further identify the most likely HLA 

loci that could be associated with PD. 

3. To select HLA risk loci for PD for further investigation for PacBio long-read sequencing. 
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2.2 Materials and Methods 

2.2.1 Study Population 

The individuals used for this investigation were obtained from the dataset gathered 

for the 2011 PD meta-analysis (79). These represent 4 separate European/American 

populations; USA-NIA, UK, Germany and France (Table 2). Individuals from the USA dbGAP 

dataset were also used. 15,340 individuals in total were included in this analysis, with 5,322 

cases and 10,018 controls. The populations had a similar age and sex divide. Data collection 

and quality control procedures were similar for each sample (79). 

 Table 2: Characteristics of datasets included in the PD case control sample for this study. 

 

2.2.2 Genotyping and Quality Control 

The genotyped SNPs that were present across all datasets were obtained, with a total 

of 252,356 common SNPs. All samples from each of the populations had similar standardised 

quality control, including the inclusion criteria of < 95% genotyping success rate per SNP and 

< 95% call rate per sample. A further 6,468,921 SNPs were then imputed using the HRCv1.1 

reference panel, totalling 6,721,277 SNPs. SNPs were excluded according to the following 

thresholds: imputation quality (INFO) > 0.8, missingness (geno) > 0.02, minor allele frequency 

(MAF) < 0.01, and HWE P value < 1x10−6. Individuals were excluded according to missing 

genotype data (mind) > 0.01. 

 

Population 
group 

Cases Controls Total 

Sample 
size 

Women 
(%) 

Mean age 
at onset 
(years 
[SD]) 

Sample 
size 

Women 
(%) 

Mean age at 
examination 
(years [SD]) 

US-NIA 971 40.5 55.9 (15.1) 3034 52.8 62 (15.6) 4005 

UK 1705 43.3 65.8 (10.8) 5200 49.5 NA 6905 

Germany 742 39.8 56 (11.6) 944 48 NA 1686 

France 1039 41.2 48.9 (12.8) 0 NA NA 1039 

USA-dbGAP 876 40.4 61.5 (9.2) 857 60.2 NA 1733 

Total (after 
removal of 
duplicates) 

5322     10,018     15,34
0 
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2.2.3 GWAS and Conditional Analysis 

A genome wide association study (GWAS) was conducted with this dataset using Plink 

version 1.9. Initially, a principal component analysis (PCA) was conducted. By controlling for 

principal components (PCs), confounding bias by population stratification can be reduced. To 

generate the PCs, the PD case-control dataset was merged with the FIN, CHB and YRI samples 

from 1000 genomes reference genotype data, and the resulting dataset LD pruned. This 

merged dataset was used for a principal components analysis (PCA). The output eigenvec file 

was imported to R studio version 3.2.0 to calculate which of the PCs were significantly 

associated with disease state using a logistical regression model. All PCs which passed the 

significance threshold (P < 1x10−10) were then used as covariates for the GWAS. The 

association analysis was conducted using logistic regression in Plink with 14 PCs included as 

covariates. 

SNPs from the HLA region (hg19 28–33.5 Mb) were extracted from the results of the 

association analysis to find significant associations in this region. The top SNP from this region 

was used as a covariate for a further conditional analysis to observe any further independent 

associations. The same conditions and covariates were used in this conditional analysis. 

2.2.4 Imputation Approaches 

A variety of imputation statistical programmes were used to impute HLA alleles, amino 

acids, and SNPs from the genotype data of this population. 

2.2.4.1 SNP2HLA 

SNP2HLA is an imputation method that uses Beagle to impute HLA alleles from 

genotyped data using a reference panel (88). This imputation method produces allele dosages 

for 2- and 4-digit classical HLA alleles for HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1, as well as 

polymorphic amino acid positions and SNPs. 

SNP2HLA version 1.0.3 was used along with Beagle version 3.0.4, linkage2beagle and 

Plink version 1.9. Recommended parameters were used with 10 iterations and a 1000 marker 

window. The imputation was run using the HapMap-CEPH (124 samples) reference panel 

provided. 
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Following imputation, variants with INFO < 0.5 were excluded, leaving a total of 3,136 

alleles for further analysis. A regression analysis for association with disease state was then 

conducted with Plink using this allele dosage data. 

2.2.4.2 HIBAG 

HIBAG (HLA Imputation using attribute BAGging) is an imputation method which uses 

attribute bagging to impute 4-digit classical HLA alleles for HLA-A, -B, -C, -DRB1, -DQA1, -

DQB1 and -DPB1 from genotype data (89). HIBAG version 1.20.0 along with R studio version 

3.2.0 were used with the European-HLA4-hg19 (2,572 samples) reference dataset provided 

to impute HLA alleles from the sample data. An association analysis for disease state was run 

with these imputed alleles in R studio. 

2.2.4.3 DISH 

DISH (Direct imputing summary association statistics HLA variants) is the most recently 

developed imputation software, which imputes summary association statistics of HLA alleles 

from GWAS output summary association statistics (90). This method imputes association 

statistics for 2- and 4-digit classical HLA alleles for HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1, as 

well as polymorphic amino acid positions and SNPs. DISH version 1.0 was used with R studio 

version 3.2.0 for imputation. 

2.2.5 Haploview 

Haploview version 4.1 was used to observe linkage disequilibrium (LD) between 

genotyped SNPs and imputed HLA SNPs, alleles and amino acids. Genotype data for the PD 

dataset and SNP2HLA imputation results were used as input data and converted to Haploview 

input files using Plink. LDLink was used to find improved LD R2 and D’ values where applicable. 

2.2.6 Public QTL Databases 

Public databases were used to search for QTL properties of the top associated variants 

from the GWAS, conditional analysis and imputation results. The following datasets were 

included in this search. 

2.2.6.1 eQTLGen 

eQTLGen is a database which includes eQTL information from 37 expression datasets, 

with a total of 31,684 individuals tested across all cohorts (91). Gene expression and genotype 
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data was obtained from blood samples, with 19,250 genes expressed in blood tested for 

association. Every eQTL reported was tested in at least 2 cohorts. P values provided are 

Bonferroni corrected, and the number of cohorts and samples in which this SNP-gene 

combination was tested is provided. Effect is provided as a Z-score of the assessed allele. 

2.2.6.2 GTEx 

The GTEx portal is a source of gene expression data, with samples collected from 54 

non-diseased tissue sites across nearly 1,000 individuals (92). 838 donors from the database 

had whole genome sequencing and RNA-seq data used for eQTL analysis. Results provide the 

tissue type in which this QTL was observed, as well as the adjusted P values and normalised 

effect size (slope of linear regression) for the alternative allele. 

2.2.6.3 QTLbase 

QTLbase is a database which gathers published QTL summary statistics from different 

studies across more than 70 tissue or cell types (93). Release 1.1 was consulted, including 167 

independent studies for eQTL data in the database. Results from QTLbase provide the study 

in which the QTL was identified, and the sample size of that study. The P value and effect size 

from the original study are provided. 
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2.3 Results 

2.3.1 GWAS 

A GWAS was conducted using the PD case-control dataset gathered (see Appendix 1 

for Manhattan and QQ plots). The genomic inflation factor was λ = 1.099. The most associated 

SNPs within the HLA region (P < 8.00 x 10-6) are listed in Table 3. The most significantly 

associated SNP is rs9268926 (P = 3.67 x 10-7, OR = 0.84). A plot of this region is displayed in 

more detail in Figure 2-1A. The minor allele G is associated with disease protection, and the 

major allele A is associated with disease risk (Table 3). This SNP is in partial linkage 

disequilibrium (LD) with the most associated HLA SNP from the 2019 meta-analysis results, 

rs112485576 (R2 = 0.76, D’ = 0.89). Of the rs112485576 alleles, the minor A protective allele 

is correlated with the minor G protective allele (Figure 2-1C). This SNP is also in LD with the 

top meQTL from the same analysis, rs34039593 (R2 = 0.81, D’ = 0.92), with the minor G allele 

correlated with the minor G allele of rs9268926 (Figure 2-1D). This suggests these results are 

comparable and could be indicating the same association, although this is inconclusive. 

With the quality control criteria set at this standard (INFO > 0.8, geno > 0.02, MAF < 

0.01, and HWE P value < 1x10−6), rs112485576 was excluded from this GWAS. The criteria 

were relaxed so that this variant was included, reducing the exclusion criteria to INFO > 0.5, 

geno > 0.35, MAF < 0.002 and HWE < 0.00001 (Figure 2-1B). The PD association for this variant 

was insignificant in this analysis (P = 0.085, OR = 0.62). This indicates that the association at 

rs112485576 required a larger sample size to be significantly associated; the partial LD 

between this SNP and rs9268926 suggests the top GWAS result could still be indicating the 

same HLA association (Figure 2-1C). These relaxed criteria were only used for the purpose of 

exploring the rs112485576 results; the analysis with the original stringent QC criteria was 

used for the subsequent imputation analysis. 
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A 

C D 

Figure 2-1: LocusZoom plot of top GWAS result in HLA region.  

(A) The region in the original GWAS with the most associated HLA SNP, rs9268926 (P = 3.67 x 10-7, OR = 
0.8428). A section within this region was removed during quality control due to poor imputation score (B) 
The secondary GWAS conducted with reduced quality control thresholds to include rs112485576, which is 
labelled as position 6:32578772. Lead SNP in purple, SNPs in LD, 0.6 < R2 ≤ 0.4 in green. (C-D) LDLink box 
plot demonstrating the correlated alleles between the Nalls top SNP rs112485576 (C), and the Nalls top 
meQTL rs34039593 (D) with rs9268926. 
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SNP Position (hg19) Effect allele Non-effect allele Odds Ratio P value 

rs9268926 32433067 G A 0.84 3.67E-07 

rs9268833 32428062 T C 0.86 4.65E-07 

rs9268834 32428079 A C 0.86 4.65E-07 

rs9268835 32428115 A G 0.86 4.65E-07 

rs9268838 32428715 A G 0.86 5.23E-07 

rs554742089 32451822 T C 0.85 8.33E-07 

rs3817966 32367847 C T 0.87 2.49E-06 

rs3817963 32368087 C T 0.87 2.49E-06 

rs9268499 32375695 A G 0.87 3.00E-06 

rs9268458 32350384 A C 0.87 3.55E-06 

rs1980496 32340070 T C 0.88 4.32E-06 

rs521539 32581973 A G 0.86 5.24E-06 

rs9268400 32340654 A G 0.87 5.49E-06 

rs9268516 32379489 T C 0.87 6.01E-06 

rs9268514 32378945 A T 0.87 6.48E-06 

rs2294880 32367722 G A 0.87 6.68E-06 

rs9275098 32649161 T C 0.82 7.09E-06 

rs9268401 32341318 G A 0.87 7.15E-06 

rs9275095 32649088 G C 0.82 7.76E-06 

rs9268482 32367777 T A 0.87 7.85E-06 
Table 3: Top 20 variants within the HLA region associated with PD from the GWAS results. 

 

To establish if there is existing eQTL data for rs9268926 and rs112485576, public QTL 

databases were searched. Results from the GTEx consortium indicates rs9268926 could be 

associated with increased HLA-DQA2 expression, with the top 9 associations all for HLA-DQA2 

(Table 4). HLA-DQA2 is a paralogue of HLA-DQA1. However, QTLbase results indicate that 

mixed eQTL results have been published for rs9268926, including effects on HLA-DRB1 and 

HLA-DPB1 expression (Table 5). The QTL properties of rs9268926 therefore remain 

ambiguous. 
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Gene P Value Effect size Tissue 

HLA-DQA2 3.00E-78 1.1 Muscle - Skeletal 

HLA-DQA2 2.40E-73 1 Whole Blood 

HLA-DQA2 3.90E-67 1.2 Adipose - Subcutaneous 

HLA-DQA2 9.20E-65 0.94 Skin - Sun Exposed (Lower leg) 

HLA-DQA2 7.20E-64 1 Artery - Tibial 

HLA-DQA2 1.60E-62 1.1 Lung 

HLA-DQA2 5.80E-62 1.1 Nerve - Tibial 

HLA-DQA2 2.40E-57 1 Thyroid 

HLA-DQA2 3.70E-55 1.1 Esophagus - Muscularis 

HLA-DRB6 1.80E-52 0.88 Muscle - Skeletal 

Table 4: Top 10 results from the GTEx database for rs9268926 
 

Gene P Value Effect Size Tissue Source Sample size 

HLA-DRB1 3.03E-28 0.76 Brain-Prefrontal 
Cortex 

Fromer (2016) 467 

HLA-DRB1 2.08E-15 0.74 Brain-Prefrontal 
Cortex 

Fromer (2016) 467 

HLA-DPB1 2.59E-12 0.19 Blood Jansen (2017) 4896 

HLA-DQA1 1.22E-11 0.88 Brain-Prefrontal 
Cortex 

Fromer (2016) 467 

HLA-DQA1 2.94E-09 0.87 Brain-Prefrontal 
Cortex 

Fromer (2016) 467 

SLC44A4 9.90E-08 0.15 Blood Jansen (2017) 4896 
Table 5: Top associations from the QTLbase database for rs9268926 

 

The 2019 meta-analysis proposed their top HLA variant (rs112485576) to be an eQTL 

for HLA-DRB5, based upon its proximity to the gene and on published eQTL data from 

eQTLGen. A search of the database revealed that whilst HLA-DRB5 expression was found to 

be significantly reduced when tested in the largest number of cohorts, there are also mixed 

eQTL results for this SNP, with an increase in HLA-DQA2 expression included as the most 

significant association (Table 6). This indicates that HLA-DRB5 is potentially not the only 

candidate for the affected gene, and other loci could be being impacted. 

Gene P value Z-score No. Cohorts No. Samples 

HLA-DQA2 3.27E-310 55.72 13 5500 

HLA-DRB1 3.27E-310 -38.01 13 5500 

HLA-DRB6 4.69E-100 -21.23 30 26959 

HLA-DQB1 6.65E-96 -20.78 28 21135 

HLA-DQB2 5.92E-91 20.22 14 10575 

HLA-DQB1-AS1 4.58E-34 -12.17 12 4992 

HLA-DRB5 7.37E-32 -11.75 33 22312 

Table 6: Significant HLA associations for rs112485576 within eQTLGen database 
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This analysis of the HLA region has shown which SNP allele is correlated with risk and 

which is correlated with protection, and the potential QTL properties of the effect alleles. 

Haploview was then used to assess which HLA alleles were in LD of D’ = 1 with these alleles. 

The HapMap CEU HLA reference panel was used for analysis. This panel did not contain the 

top SNP rs9268926, but the proxy SNP rs2395163 was analysed (R2=0.91, D'=1) (Figure 2-2A). 

The minor C allele of rs2395163 is correlated with the minor G allele of rs9268926. The 

following alleles formed haplotypes with alleles of this SNP; HLA-DRB1*0401, DRB1*15:01, 

DQA1*01:01, DQA1*01:02, DQA1*05:01 and DQB1*06:02 (2-2B-C). Figure 2-2C shows the 

Haploview block with these alleles, while Figure 2-2B indicates which alleles form haplotypes 

with the PD risk associated allele T and protective associated allele C. The number 01-10 in 

Figure 2-2B indicate the variants in the same order as presented in 2-2C, with ‘A’ indicated 

HLA allele absence and ‘T’ indicating HLA allele presence. This demonstrates that HLA-

DRB1*04:01 is correlated with the C allele, whilst HLA-DRB1*15, HLA-DQA1*01, HLA-

DQA1*05 and both HLA-DQB1 alleles are correlated with the T allele. Therefore HLA-

DRB1*04:01 is correlated with PD protection, and the others with PD risk. 
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Figure 2-2: Haploview plots of HapMap HLA alleles in LD (D’=1) with the proxy for rs9268926, 

rs2395163. 

(A) LDLink plot demonstrated the correlated alleles between rs9268926 and rs2395163. rs9268926 
was the most significantly associated HLA SNP with PD in the current GWAS (P = 3.67 x 10-7, OR = 
0.84). The rs9268926 minor allele G is correlated with the minor allele C of proxy SNP rs2395163 (B) 
Haploview haplotype plot showing which HLA alleles form haplotypes with alleles of proxy SNP 
rs2395163. ‘T’ and ‘C’ indicate the rs2395163 allele whilst for the HLA alleles ‘A’ indicates absence of 
HLA allele while ‘T’ indicates presence. (C) LD block of the HLA alleles in D’ = 1 with the SNP rs2395163. 
Red and blue squares indicate D’=1, with red indicating LOD (log of the likelihood odds ratio, a measure 
of confidence in the value of D) ≥ 2 and blue indicating LOD < 2. White squares indicate D’ < 1. 
 

A B 

C 
rs

23
95

16
3

 
H

LA
_D

R
B

1_
0

40
1

 
H

LA
_D

R
B

1_
1

5
 

H
LA

_D
R

B
1_

1
50

1
 

H
LA

_D
Q

A
1_

0
10

1
 

H
LA

_D
Q

A
1_

01
02

 
H

LA
_D

Q
A

1_
0

5 
H

LA
_D

Q
A

1_
0

50
1

 
H

LA
_D

Q
B

1_
0

5
 

H
LA

_D
Q

B
1_

0
60

2
 

Fr
eq

u
en

cy
 



Chapter 2: Exploring PD Associated HLA Loci 

 33 

2.3.2 Conditional Analysis 

A subsequent conditional association analysis was conducting with rs9268926 

included as a covariate to test for any independent HLA associations in this dataset. The 

results from this analysis indicated there was one potential independent association, with 

one SNP (rs9295987) reaching suggestive significance (P = 9.82 x 10-5, OR = 0.80) (Table 7). 

 

SNP Position (hg 19) Effect allele Non-effect allele OR P 
rs9295987 31349844 G A 0.80 9.82E-05 

rs9261503 30111863 A G 0.86 1.29E-04 

rs9261505 30112408 G A 0.86 1.29E-04 

rs9261504 30111932 T C 0.86 1.51E-04 

rs9261501 30111526 T C 0.86 1.63E-04 

rs757262 30114955 T  G 0.86 1.63E-04 

rs757259 30115542 A  C 0.86 1.63E-04 

rs1573299 30115965 T  G 0.86 1.63E-04 

rs1573297 30116341 T  G 0.86 1.63E-04 

rs9261514 30116537 A  G 0.86 1.63E-04 

Table 7: Top 10 associated variants within the HLA region from the conditional analysis results.  

 

This SNP was also searched for within the QTL databases. The top associations did not 

include HLA alleles, so the HLA specific associations were extracted rather than the top 

results. Both results from GTEx database and QTLbase indicate that this SNP is potentially 

correlated with expression of class I genes HLA-B and HLA-C. The two most significant HLA 

associations within GTEx were for increased expression of HLA-C (Table 8), and the top results 

from QTLbase were mixed associations with HLA-C expression, with HLA-B also significant 

(Table 9). 

Gene P Value Effect size Tissue 

HLA-C 2.5E-13 0.50 Adipose - Subcutaneous 

HLA-C 2.2E-10 0.34 Whole Blood 

HLA-C 4.30E-06 0.38 Lung 

HLA-B 7.80E-06 -0.28 Nerve - Tibial 
HLA-C 8.50E-06 0.62 Spleen 

HLA-C 9.90E-06 0.37 Adipose - Visceral (Omentum) 

HLA-B 1.00E-04 -0.16 Artery - Tibial 
Table 8: HLA specific results from the GTEx database for rs9295987 
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Gene P-Value Effect Size Tissue Source Sample size 
HLA-C 2.50E-55 -0.81 Blood Lloyd-Jones 

(2017) 
2765 

HLA-B 9.17E-13 0.36 Blood-T cell CD4+ 
naive 

Chen (2016)  197 

HLA-C 6.38E-11 0.57 Adipose-
Subcutaneous 

GTEx Consortium 
(2015) 

385 

HLA-A 9.10E-09 -0.29 Blood Lloyd-Jones 
(2017) 

2765 

HLA-H 1.70E-08 -0.29 Blood Lloyd-Jones 
(2017) 

2765 

HLA-A 1.90E-07 -0.28 Blood Lloyd-Jones 
(2017) 

2765 

Table 9: HLA specific results from the QTLbase database for rs9295987 

 

Similarly with the main associated HLA SNP, Haploview analysis of the HapMap 

dataset was used to assess which HLA alleles were in an LD of D’ = 1 with these alleles. 

rs9295987 was not present in this reference panel dataset, but the proxy SNP rs9461684 was 

present (D’ = 1, R2 = 0.53). The minor T allele of rs9461684 is correlated with the minor G 

allele of rs9295987 (Figure 2-3A). This SNP formed a haplotype with the HLA alleles HLA- 

C*04:01 and HLA-B*35:01 (Figure 2-3 B-C). Both of these HLA alleles were only present on the 

major A allele, indicated they are correlated with disease protection. 
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B A 

Figure 2-3: Haploview plots of HapMap HLA alleles in LD (D’=1) with the proxy for rs9295987, 
rs9461684. 

 (A) LDLink plot demonstrated the correlated alleles between rs9461684 and rs9295987. (B) Haploview 
haplotype plot showing which HLA alleles form haplotypes with rs9461684 alleles. The numbers 3337-
3660 correlate with the order of HLA alleles demonstrated in the block shown in (C). ‘A’ indicates absence 
of HLA allele while ‘T’ indicates presence. 

C 
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2.3.3 Imputation 

The genotype data from the PD case-control dataset was used in a variety of 

imputation methods to predict which HLA alleles are associated with PD from the genotype 

data. 

2.3.3.1 SNP2HLA 

The SNP2HLA imputation strategy resulted in a total of 6,700 imputed alleles, 

including 180 2- and 4- digit classic alleles, 728 amino acids and 5,787 SNPs. The most 

associated alleles from the SNP2HLA association analysis (P < 5 x 10-5) are listed (Table 10).  

The association analysis with imputed alleles differs from that described above for the 

overall GWAS. When SNPs were tested for association with PD, the minor vs the major allele 

are tested. This provides one allele that is associated with the risk group, and one allele 

associated with the protective group. At the HLA loci, there are potentially thousands of 

alleles to test. For each HLA allele, the presence (P) and absence (A) are tested for association 

with PD phenotype; in other words, one allele is tested against all other possible alleles. This 

is the same in alternative imputation association studies. This means the nature of each allele 

to confer risk or protection for PD can be identified by the odds ratio value (Table 10). 

 

SNP Effect allele Non-effect allele Frequency Odds Ratio P Value 

rs3763316 T C 0.33 0.85 6.26E-06 

rs9268516 A G 0.33 0.85 6.30E-06 

rs3763311 A G 0.32 0.86 6.80E-06 

rs3793127 A G 0.28 0.87 6.80E-06 

rs3763309 A C 0.28 0.87 6.82E-06 

rs3763312 A G 0.27 0.87 6.87E-06 
rs2076520 T C 0.28 0.87 7.97E-06 

rs2076522 C G 0.28 0.87 8.35E-06 

rs7454108 C T 0.10 0.83 1.02E-05 
DRB1*13:01 P A 0.30 0.83 1.49E-05 

rs3998159 G T 0.10 0.83 1.96E-05 

rs3957148 C T 0.10 0.83 2.08E-05 

rs9275184 G A 0.10 0.83 2.53E-05 
rs3134996 T A 0.64 0.89 3.65E-05 

Table 10: Top associated alleles of the SNP2HLA imputed alleles (P < 5 x 10-5). 
 

These results indicate that HLA-DRB1 is a locus of interest, with the allele HLA-

DRB1*13:01 being the only classical HLA allele significantly associated with PD (P = 1.49 x 10-

5, OR = 0.83) (Table 10). Presence of this allele is associated with PD protection. 
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The top associated imputed SNP from the SNP2HLA analysis, rs3763316, was then 

investigated for QTL properties. Results from the GTEx database indicate that rs3763316 

could be an eQTL for HLA-DQA2, with the majority of results being for increased HLA-DQA2 

expression (Table 11). However, the QTLbase results also indicate mixed results have been 

published, including HLA-DQB1 and HLA-DRA associations (Table 12). HLA-DQA2 is still the 

most significant association in this database. 

Gene P Value Effect size Tissue 

HLA-DQA2 8.80E-55 0.83 Whole Blood 

HLA-DQA2 2.10E-54 0.86 Muscle - Skeletal 

HLA-DQA2 3.60E-52 0.96 Adipose - Subcutaneous 

HLA-DQA2 4.10E-49 0.77 Skin - Sun Exposed (Lower leg) 

HLA-DQA2 4.90E-46 0.9 Nerve - Tibial 

HLA-DQA2 6.70E-46 0.84 Thyroid 

HLA-DRB6 9.80E-45 0.65 Whole Blood 

HLA-DQA2 2.20E-41 0.84 Lung 

HLA-DQA2 8.60E-41 0.76 Artery - Tibial 

HLA-DRB6 4.90E-40 0.71 Muscle - Skeletal 

Table 11: Top 10 results from the GTEx database for rs3763316 

 

Trait P-Value Effect Size Tissue Source Samples size 

HLA-DQA2 5.91E-201 -0.0864 Blood Yao (2017) 5257 

HLA-DQA2 5.91E-201 -0.0864 Blood Yao (2017) 5257 
HLA-DQA1 3.60E-177 0.8844 Blood Lloyd-Jones (2017) 2765 

HLA-DQA1 4.70E-177 0.8844 Blood Lloyd-Jones (2017) 2765 

HLA-DQA1 3.70E-103 0.6705 Blood Lloyd-Jones (2017) 2765 

HLA-DQB1 3.40E-74 0.5598 Blood Lloyd-Jones (2017) 2765 

HLA-DRB6 5.10E-68 -0.5432 Blood Lloyd-Jones (2017) 2765 

HLA-DRA 1.00E-55 -0.503 Blood Lloyd-Jones (2017) 2765 

HLA-DQA2 8.79E-55 0.8321 Blood NA  
Table 12: Top 10 results from the QTLbase database for rs3763316 

 

2.3.3.2 HIBAG 

A total of 80 classical HLA alleles were imputed using the HIBAG method. The top 10 

significantly associated alleles from the HIBAG association analysis are listed (Table 13). The 

HIBAG results indicate that the DRB1*04:01 allele is the only HLA allele significantly 
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associated with PD (P = 1.56 x 10-6, OR = -0.03) (Figure 2-4), with no other alleles passing the 

significance threshold. 

 

Table 13: Top 10 HIBAG alleles associated 
with PD phenotype    

 

 

2.3.3.3 DISH 

Imputation using the DISH method resulted in a total of 4,441 imputed alleles. The top 

20 associated alleles from the DISH analysis are listed (Table 14). The results from this 

imputation method indicate that HLA-DQA1 alleles and amino acids are most significantly 

associated with PD, with the top associated HLA allele being HLA-DQA1*03:01 (P = 3.25 x 10-

5). Alleles from HLA-B are also significantly associated with PD to a lesser degree by this 

analysis. 

 

 

 

 

 

 

Allele P Value OR 

DRB1*04:01 1.56E-06 -0.03 

DQB1*03:02 1.23E-04 -0.03 

DQA1*03:01 1.77E-04 -0.03 

DQA1*02:01 1.44E-03 0.02 

DQA1*03:03 0.01 -0.03 

DRB1*15:01 0.01 0.02 

C*02:02 0.01 0.04 

DQB1*05:01 0.01 0.02 

C*14:02 0.02 0.63 

DPB1*03:01 0.02 -0.02 

Figure 2-4: Plot of PD association of HLA alleles of HIBAG 
analysis. 



Chapter 2: Exploring PD Associated HLA Loci 

 39 

Variant Position 
(hg19) 

Effect 
allele 

Non-effect 
allele 

Z Score P Value 

SNP_DQA1_32713235 32605257 C A 4.40 1.07E-05 

AA_DQA1_-16_32713236_L 32605258 P A 4.40 1.07E-05 

AA_DQA1_-
16_32713236_M 

32605258 A P 4.40 1.09E-05 

SNP_DQA1_32717257 32609279 C T 4.39 1.14E-05 

AA_B_12_31432680 31324701 V M 4.39 1.15E-05 

SNP_B_31432681 31324702 C T 4.39 1.15E-05 

rs1048087 32609286 C T 4.38 1.16E-05 

SNP_DQA1_32717256_C 32609278 A P 4.38 1.17E-05 

AA_DQA1_69_32717257_L 32609279 A P 4.38 1.17E-05 

SNP_DQA1_32717264 32609286 C T 4.38 1.17E-05 

AA_DQA1_187_32718380_A 32610402 A P -4.16 3.24E-05 

HLA_DQA1_03 32608306 P A -4.16 3.25E-05 

HLA_DQA1_0301 32608306 P A -4.16 3.25E-05 

SNP_DQA1_32717108 32609130 T C -4.16 3.25E-05 

SNP_DQA1_32717120 32609142 G C -4.16 3.25E-05 

AA_DQA1_26_32717128 32609150 S T -4.16 3.25E-05 

SNP_DQA1_32717128 32609150 G C -4.16 3.25E-05 

AA_DQA1_47_32717191_Q 32609213 P A -4.16 3.25E-05 

SNP_DQA1_32717217_A 32609239 P A -4.16 3.25E-05 

AA_DQA1_56_32717218_R 32609240 P A -4.16 3.25E-05 

Table 14: Top 20 PD associated alleles from the DISH association analysis 

 

2.3.4 Haploview 

In order to investigate the correlation between SNPs that were associated with PD in 

the GWAS and HLA alleles that were associated following imputation, Haploview was used to 

measure the linkage disequilibrium (LD) between genotyped and imputed SNPs from the 

GWAS dataset, and imputed alleles, amino acids and SNPs from the SNP2HLA method. The 

top associated HLA SNP from the main GWAS (rs9268926), the top associated SNP from the 

conditional analysis (rs9295987), and the top meQTL (rs34039593), were measured for LD 

with all 180 2- and 4- digit classic alleles from the SNP2HLA imputation. 

None of the HLA alleles passed the LD threshold of R2 = 0.7 to indicate LD with the 

most associated SNP from the GWAS, rs9268926. However, it was in partial LD with three 

SNPs that were imputed by SNP2HLA; rs3793127, r s3763309, rs3763312 (Figure 2-5). The LD 

between rs9268926 and these three SNPs is D’ = 0.8974, R2 = 0.7853. 
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The top meQTL from the 2019 meta-analysis was also in partial LD with these three 

SNPs (D’ = 0.8935, R2 = 0.7393). The top SNP from this meta-analysis, rs112485576 does not 

have an R2 above 0.7 with any of the SNPs from SNP2HLA. 

The most associated SNP from the conditional analysis, rs9295987, was observed to 

be in partial LD with four imputed alleles of class I loci (Table 15) (Figure 2-6). 

Allele R2 D’ 

HLA_B_3501 0.633 0.934 
HLA_B_35 0.633 0.934 

HLA_C_0401 0.547 0.822 

HLA_C_04 0.547 0.822 
Table 15: SNP2HLA Imputed alleles in LD with rs9295987. 

 

A B 
A 

Figure 2-5: Haploview plot indicating LD between rs9268926 and SNP2HLA imputed SNPs rs3793127, 
rs3763309, rs3763312.  

The minor G allele is correlated with the minor T, A and A alleles of rs3793127, rs3763309, and rs3763312 
respectively. 
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The three SNP2HLA SNPs that were in LD with the top GWAS variant and 2019 meta-

analysis meQTL were searched for published QTL properties. As these three SNPs are in strong 

LD, the results were similar. Both the GTEx and QTLbase databases indicated they could be 

eQTLs for HLA-DQA2 and/or HLA-DQA2. The top 10 GTEx results for each were all associations 

with HLA-DQA2 expression, and the top QTLbase result for each was association HLA-DQA1 

expression (Tables 16-21). 

Gene P Value Effect Size Tissue 

HLA-DQA2 1.2e-49 0.84 Whole Blood 

HLA-DQA2 2.9e-47 0.86 Muscle - Skeletal 

HLA-DQA2 3.2e-42 0.94 Adipose - Subcutaneous 

HLA-DQA2 4.5e-42 0.77 Skin - Sun Exposed (Lower leg) 

HLA-DQA2 1.8e-39 0.83 Thyroid 

HLA-DQA2 2.7e-39 0.91 Nerve - Tibial 

HLA-DQA2 4.1e-39 0.80 Artery - Tibial 

HLA-DQA2 1.4e-36 0.85 Lung 

HLA-DQA2 1.9e-35 0.91 Esophagus - Muscularis 

HLA-DQA2 4.6e-31 0.75 Esophagus - Mucosa 

Table 16: Top 10 results from the GTEx database for rs3793127 

 

 

 

A 
B 

A 

Figure 2-6: Haploview plot indicating LD between rs9295987 and SNP2HLA imputed HLA alleles. 

 rs9295987 is in LD with HLA_C_04:01 and HLA_B_35:01. The minor G allele is correlated with the presence 
of these alleles, while the major A allele is correlated with absence of these alleles. 
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Trait P Value Effect Size Tissue Source Sample Size 

HLA-DQA1 3.30E-165 0.94 Blood Lloyd-Jones 
(2017) 

2765 

HLA-DQA1 4.40E-165 0.94 Blood Lloyd-Jones 
(2017) 

2765 

HLA-DQA1 4.50E-135 0.85 Blood Lloyd-Jones 
(2017) 

2765 

HLA-DQA2 2.57E-120 -0.08 Blood Yao (2017) 5257 

HLA-DQA2 2.57E-120 -0.08 Blood Yao (2017) 5257 

Table 17: Top results from the QTLbase database for rs3793127 

 

Gene P Value Effect Size Tissue 

HLA-DQA2 1.2e-49 0.84 Whole Blood 

HLA-DQA2 2.9e-47 0.86 Muscle - Skeletal 

HLA-DQA2 3.2e-42 0.94 Adipose - Subcutaneous 

HLA-DQA2 4.5e-42 0.77 Skin - Sun Exposed (Lower leg) 

HLA-DQA2 1.8e-39 0.83 Thyroid 

HLA-DQA2 2.7e-39 0.91 Nerve - Tibial 

HLA-DQA2 4.1e-39 0.80 Artery - Tibial 

HLA-DQA2 1.4e-36 0.85 Lung 

HLA-DQA2 1.9e-35 0.91 Esophagus - Muscularis 

HLA-DQA2 4.6e-31 0.75 Esophagus - Mucosa 

Table 18: Top 10 results from the GTEx database for rs3763309 

 

Gene P-Value Effect Size Tissue Source Sample Size 

HLA-DQA1 5.00E-165 0.94 Blood Lloyd-Jones (2017) 2765 

HLA-DQA1 6.70E-165 0.94 Blood Lloyd-Jones (2017) 2765 

HLA-DQA1 4.70E-135 0.85 Blood Lloyd-Jones (2017) 2765 

HLA-DQA2 7.93E-121 -0.08 Blood Yao (2017) 5257 

HLA-DQA2 7.93E-121 -0.08 Blood Yao (2017) 5257 
Table 19: Top results from the QTLbase database for rs3763309 

 

Gene P Value Effect Size Tissue 
HLA-DQA2 1.2e-49 0.84 Whole Blood 

HLA-DQA2 2.9e-47 0.86 Muscle - Skeletal 

HLA-DQA2 3.2e-42 0.94 Adipose - Subcutaneous 

HLA-DQA2 4.5e-42 0.77 Skin - Sun Exposed (Lower leg) 

HLA-DQA2 1.8e-39 0.83 Thyroid 

HLA-DQA2 2.7e-39 0.91 Nerve - Tibial 

HLA-DQA2 4.1e-39 0.80 Artery - Tibial 

HLA-DQA2 1.4e-36 0.85 Lung 

HLA-DQA2 1.9e-35 0.91 Esophagus - Muscularis 

HLA-DQA2 4.6e-31 0.75 Esophagus - Mucosa 

Table 20: Top 10 results from the GTEx database for rs3763312 
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Trait P-Value Effect Size Tissue Source Sample Size 

HLA-DQA1 1.10E-164 0.94 Blood Lloyd-Jones (2017) 2765 

HLA-DQA1 1.50E-164 0.94 Blood Lloyd-Jones (2017) 2765 

HLA-DQA1 1.70E-134 0.84 Blood Lloyd-Jones (2017) 2765 

HLA-DQA2 7.00E-121 -0.08 Blood Yao (2017) 5257 

HLA-DQA2 7.00E-121 -0.08 Blood Yao (2017) 5257 
Table 21: Top results from the QTLbase database for rs3763312 

 

2.3.5 HLA Loci Selection 

Based upon these results, the selected loci to perform long-read sequencing on were 

HLA-B, HLA-C, HLA-DQA1, and HLA-DRB1. (Table 22). Despite the evidence for HLA-DQA2 and 

HLA-DRB5 association, this was not included due to a lack of primers in the case of HLA-DQA2, 

and limited sample numbers carrying HLA-DRB5. 

Loci Reasons for Sequencing 

HLA-B • Top SNP from conditional analysis is in partial LD with HLA-B/HLA-C 

alleles, and is a potential QTL for HLA-B/HLA-C HLA-C 

HLA-DQA1 • DISH results indicate most associated allele is HLA-DQA1*03 

• Top SNP from SNP2HLA has mixed eQTL result for HLA-DQA1 

HLA-DQA2 • Top association from GWAS could be an eQTL for HLA-DQA2 

• Top variant from SNP2HLA had mixed eQTL result for HLA-DQA2 

HLA-DRB1 • SNP2HLA results indicate most associated allele is HLA-DRB1*13:01 

• HIBAG results indicate most associated allele is HLA-DRB1*04:01 

HLA-DRB5 • Nalls (2019) meta-analysis results indicate top HLA SNP could be an eQTL 

for HLA-DRB5, and the top HLA meQTL is within HLA-DRB5 

Table 22: HLA Loci selected for sequencing  
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2.4 Discussion 

This chapter describes the investigation of PD associations within the HLA region using 

a range of bioinformatics techniques applied to a large case-control PD dataset. It is important 

to examine the demographic properties of the samples prior to bioinformatic investigations. 

Age, sex, and genetic ancestry are all sample properties that can have an impact on the 

detection of genetic factors associated with PD. Age and sex are both risk factors for PD; the 

disease twice as common in men than women (3,94), and primarily affects the elderly 

population. 

As far as possible, age and sex of samples should be matched across cases and 

controls, with samples differing only by the phenotype, as these covariates can explain some 

of the phenotypic variation. However, this is not often possible; as seen in the samples used 

here, whilst there is a relatively similar age and sex divide, there is a higher proportion of men 

in cases (59%) compared to controls (47%). There is also some missing demographic data, 

which reduces the ability to precisely control these factors. Correcting for age and sex here 

will increase the precision of the study, accounting for sample stratification and reducing the 

residual variance of the outcome, which could increase statistical power to detect effect size 

of true associations. 

However, the differences here still introduce some potential for issues. Conversely, 

correcting for known covariates can also reduce the power to detect associations in rare 

diseases. One study found when conducting GWAS of rare diseases (prevalence <20%), 

controlling for known covariates reduced the power to detect genome wide significant 

associations whilst the opposite was the case for common diseases (95). Whilst this is the 

case, type I error rate would also be higher when not controlling for known covariates. Having 

a more closely age and sex matched sample would improve this study and remove the 

uncertainty of whether controlling for these characteristics will negatively affect power. 

Whilst age and sex can be described as non-confounding covariates as they are not 

confounders (associated with both the genotype and the disease outcome), genetic ancestry 

is a confounding factor that can explain some phenotypic variation. Not adjusting for this will 

increase the type I error rate by leading to false associations between the disease status and 

SNPs whose frequency is dependent upon ancestry. Controlling for the principal components 
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associated with disease status as has been done here will avoid the confounding effect of 

population structure and is a necessary step in the quality control process. Therefore whilst 

quality control procedures could have been improved, the most appropriate steps were taken 

to control for confounding factors within the dataset used here. 

Firstly, a GWAS and conditional analysis were performed, identifying a PD associated 

HLA SNP that is in partial LD with the top HLA SNP from the latest PD meta-analysis, indicating 

the same association could be identified. Further exploration of the QTL properties of both 

the top HLA SNP from the current data and from the meta-analysis indicated that these had 

ambiguous QTL properties, but both showed associations with HLA-DQA1/DQA2 loci as well 

as the HLA-DRB1 loci. Furthermore, Haploview analysis indicated HLA-DRB1*04:01 is 

correlated with the protective allele, whilst HLA-DRB1*15, HLA-DQA1*01, and HLA-DQA1*05 

are correlated with the PD risk allele. These results indicated that this association has broader 

associations than the HLA-DRB5 locus, as suggested in the meta-analysis. The conditional 

analysis revealed a further independent association at the HLA locus, which upon exploration 

was found to be associated with class I loci HLA-C and potentially HLA-B, rather than the 

established class II association.  

These results are in agreement with previous studies that have identified a class I HLA 

association with PD as well as class II, such as in the original 2013 imputation study. In 

comparison, the more recent imputation results published during this investigation suggest 

class II loci alone were associated with PD risk, and that the HLA-DRB1*04 allele was driving 

this association, with no class I association (87). However, the present results indicate it can 

be worthwhile to continue the investigation of a broader class of HLA loci associations, 

particularly when basing evidence upon imputation studies which may be more likely to be 

flawed in their conclusions compared to sequencing studies. 

Subsequently, three separate HLA imputation methods were applied to this dataset 

for comparison. SNP2HLA and HIBAG have been applied to different PD datasets previously, 

yet the more novel method DISH has not previously been used to assess PD HLA associations. 

Within the GWAS and conditional analysis, both minor and major SNP alleles were tested for 

association with PD, providing one allele that is associated risk, and one allele associated with 

protection. At the HLA loci, up to thousands of potential alleles were tested for PD association, 
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with each tested for the presence (P) against the absence (A). This allowed identification of 

further HLA alleles correlated with PD risk and protection. 

 Results from the SNP2HLA method indicated that the HLA-DRB1*13:01 allele was 

associated with PD risk. Whilst this allele has not been indicated previously to be associated 

with PD, HLA-DRB1*13 alleles have been shown to have a protective effect in 

neurodegenerative disease. In a recent study of age-related brain atrophy, absence of the 

DRB1*13:02 allele was found to be significantly association with reduction in total grey 

matter, cerebrocortical grey matter, and subcortical grey matter in a small number of healthy 

individuals (96). Consequently, this allele was then also found to have a protective effect 

against dementia in a larger study of western European samples (97). As the observed PD 

association of DQA1*13 alleles in this data is protective, this imputation result indicates there 

could also be a protective effect of this allele against PD neurodegeneration. However, this 

result would need to be repeated in order to assess the significance in PD, as this could be a 

result of imputation error. 

Alternatively, HIBAG imputation results replicated an association from previous 

studies indicating HLA-DRB1*04:01 is the significant DRB1 allele of interest, which also had a 

protective effect. The results from the DISH imputation on the other hand indicated that the 

HLA-DQA1*03 allele was the most associated, which has also been observed in the previous 

PD imputation studies (87). This result could be due to the high LD between the DQA1*03 and 

DRB1*04 alleles, as suggested in the previous imputation study. 

Different computational approaches have been taken with each of these imputation 

methods, and the results here demonstrate that alterations in these methods or reference 

panels applied to the same dataset can yield varying results. Due to the imperfect nature of 

the imputation approach and inability to identify novel alleles, inaccuracies can be 

introduced. This is especially the case with the class II alleles, and it has previously been 

observed in a PD imputation study that the DRB1 locus was most poorly imputed compared 

to others (81). Given that this is the case for the most commonly associated PD HLA allele, it 

is not appropriate to rely on one method to provide a reliable association at this locus. The 

comparison of imputation results here has indicated that it is worthwhile to follow up both 

DRB1 and DQA1 loci, and that alternative sequencing methods are necessary to identify the 

specific PD associated alleles. Any rare or non-classical HLA alleles that are correlated with PD 
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risk and protection, but not present in the reference panels used here, would also not have 

been identified in this investigation. Therefore, sequencing is still required to best identify the 

most significant alleles of interest. 

Applying a combination of GWAS, imputation and QTL property analysis to this PD 

dataset has outlined the most significant HLA loci that are candidates for driving the PD HLA 

risk, replicating certain established associations, and revealing potential new associations. 

Consequently, it was decided that the class I alleles HLA-B and HLA-C, and the class II alleles 

HLA-DRB1 and HLA-DQA1, are the loci that will be taken forward to further investigation with 

a long-read sequencing approach using the PacBio method. 
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3 Long-Read Sequencing of the HLA Locus 

3.1 Introduction 

3.1.1 HLA Imputation 

HLA imputation is the process by which a samples HLA alleles are predicted using 

common SNP data. This has been the primary method applied in large PD datasets to identify 

HLA alleles associated with risk of disease (87,98,99). This approach has the potential to 

achieve high levels of accuracy at resolving risk alleles, with the popular SNP2HLA imputation 

method applied in the previous chapter reporting an average accuracy of 96.7% at 4-field 

resolution (100). As imputation methods can be applied to large cohorts at low cost, they are 

instrumental to conducting well powered HLA association analysis and fine mapping HLA 

disease risk. 

Certain conditions must be met to ensure high quality imputation. Due to the 

significant differences in HLA allele frequencies between different ancestral populations, HLA 

reference panels must be well-matched to the sample population. Issues can arise when there 

is broader allele diversity in the sample than in the reference panel. To demonstrate, 

imputation of HLA alleles in a cohort from the Human Genome Diversity Project was 

conducted using a variety of different methods including HIBAG and HLA*IMP:02, each using 

a European reference panel from the 1000 genomes project (101). Correct imputation across 

all HLA loci was achieved in less than 27.8% of the sample, with most imputation errors 

occurring at HLA-B and HLA-DRB1. This indicates the difficulties faced with imputing HLA 

alleles in more diverse samples using currently available panels. In the case of imputing alleles 

in PD datasets, this issue could lead to errors if allele frequency in disease differs from 

standard European populations. 

The difficulty with imputation of specific HLA loci, such as HLA-DRB1, is reflected in 

other HLA imputation software. For example, HLA*IMP and SNP2HLA reported accuracy of 

up to 98% at individual loci with appropriate reference panel of 5,225 individuals, yet HLA-

DRB1 alleles were consistently the least well imputed across both methods, with 92% and 

93% accuracy respectively (100). HLA-DRB1 was also found to be the most poorly imputed of 

the HLA alleles in a previous PD HLA association analysis, which implemented a 1000 genomes 
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sample reference panel of 1,092 individuals (81). Given the suggested significance of the HLA-

DRB1 and potentially HLA-B loci in PD HLA associations discussed in the previous chapter, this 

limitation of HLA imputation approaches can be particularly restrictive in fine mapping the PD 

HLA risk. 

Where reference panels are well matched and of appropriate size, imputation 

software is still limited in that it can only impute alleles that are present in the reference 

panel. No association information will be available for rare or novel alleles in the samples, 

which can introduce inaccuracies when disease risk is associated with alleles not commonly 

observed in the population. 

The current largest reference panel is part of the lately released HLA-TAPAS software, 

released in October 2021, which provides a multi-ancestry panel consisting of 21,546 diverse 

individuals (102). This method demonstrated high accuracy imputation at G-group (2-field) 

resolution, with the multi-ancestry nature addressing issues with poor imputation of alleles 

not commonly observed in European ancestry populations. However, this method is still 

limited to identifying G-group sequence of known alleles, meaning it has limited use in 

identifying variants outside of the binding domain and is unable to identify novel variants. To 

achieve unambiguous HLA typing at full four-field resolution, methods outside of imputation 

must be considered. 

3.1.2 Sequencing of the HLA Region 

In comparison to imputation, sequencing of the HLA region can provide information 

on full length alleles and infer novel or rare variants. Different sequencing approaches are 

used to achieve this. 

Next generation sequencing (NGS) methods such as Illumina sequencing are popular 

for HLA sequencing. A short-read approach is taken that either uses short-range PCR to 

produce exon only amplicons, or long-range PCR to cover multiple exons, which are then 

fragmented to into stretches of approximately 500bp. Reads of these short fragments are 

then either mapped individually onto reference alleles from an HLA database to identify the 

best match, or de novo consensus sequences are formed which are then fully mapped as one 

to the best match allele; the former is the most common approach. 
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NGS provides an improvement on the previously used Sanger sequencing method 

(Figure 3-1). This method resulted in mixed data from the two alleles, limiting accurate 

phasing of alleles. In contrast, the clonal nature of NGS allows for resolution of phasing 

ambiguities, as multiple overlapping short reads can provide high coverage and be sorted into 

phased alleles (103). However, there are still major limitations for using NGS approaches to 

sequence HLA regions. 

 HLA genes are long and highly repetitive, with 49.5% of the HLA genomic sequence 

composed of interspersed repeat elements (49). When polymorphisms are separated by long 

stretches of SNP poor regions and cannot be covered by the same short read or read pair, 

allele phasing becomes more challenging and results in inaccuracies with this approach. This 

issue is particularly relevant when it comes to phasing alleles of the HLA locus, as these 

contain long repetitive regions separating variants, resulting in poor phase resolution 

between the two chromosomes (103).  

The HLA region also contains multiple paralogues of several genes, and there are 

highly conserved repetitive regions shared between alleles and different loci. This presents 

another challenge when mapping of short reads to correct regions, as they can correctly map 

to many regions or alleles. This can be an added issue when attempting to characterise the 

whole allele and not just the core exons, as non-coding regions include long homopolymer 

stretches and short tandem repeats (STRs); these not only provide multiple stretches for short 

reads to map to, but if a read does not cover the whole region of an STR then it can be difficult 

to ascertain the exact length. 
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Some HLA read mapping software tackle these computational issues by discarding 

reads that do not uniquely map, which results in errors by biasing against alleles containing 

conserved sequences. Similarly, duplicated reads can also be removed, which can bias results 

by reducing coverage of repetitive sequences. Some approaches consider only exact read 

matches, but this can result in incorrect results if the allele is novel. By ignoring rare alleles 

(no frequency on AlleleFrequency.net), or partially known alleles in the database, mapping 

software can address the issue of the high number of alleles to sort through, however this 

will bias against rare alleles which could have biological importance. Many algorithms only 

report at G group resolution to reduce computational issues with long stretches in non-coding 

regions. This can be most useful in clinical contexts, but less so when sequencing to identify 

disease associated variants. Current computational approaches for short-read mapping have 

limited ability to address the range of potential issues with this method (103). 

The main issues associated with NGS sequencing can be addressed with long-read 

sequencing, using technologies developed by companies such as Pacific Biosciences (PacBio) 

or Oxford Nanopore. This approach involves generating long-range PCR products covering the 

Figure 3-1: HLA sequencing methods 

Demonstration of ease of unambiguous allele phasing using PacBio sequencing approach in comparison to 
sanger sequencing or NGS. The SNP poor regions demonstrated here for which NGS methods struggle to 
phase are long in HLA-DRB1 and other class II alleles. From Suzuki et al (2018) 
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entirety (or majority) of the gene, then sequencing these amplicons in full without breaking 

into short segments. This is the only approach capable of providing fully phased, unambiguous 

reads at 4-field resolution. Reads cannot be assigned to the incorrect allele, and length and 

position of repetitive sequences require no extra computational approaches to determine 

(104). The majority of entries in the IGMT HLA database are now being sequenced with the 

PacBio system, which has allowed resolution of discrepancies and identification of novel 

intronic and exonic polymorphisms of known alleles (105). The application of this HLA typing 

method has significant consequences for the understanding of HLA risk alleles for certain 

inflammatory disease, such as identification of an intronic risk SNP in HLA-DRB1 for 

rheumatoid arthritis (104), amongst many other conditions. For example, an investigation 

into the HLA-G association with preeclampsia (PE) used PacBio sequencing of the whole locus 

to determine genetic associations. Two novel alleles at four-field resolution were identified, 

as well as a poly-T stretch downstream of HLA-G, the length of which appeared to be 

associated with onset of maternal PE (106). Short-read sequencing cannot achieve the same 

full-length high-resolution HLA reads to enable such discoveries, especially when it comes to 

correctly identifying the length of repetitive sequences. PacBio HLA typing has also been 

demonstrated to provide significant improvement for donor matching, with the accuracy 

from PacBio reads resulting in improved survival rates for patients receiving hematopoietic 

cell transplantation (107). 

Long-read sequencing is a more expensive method than other sequencing 

approaches, often resulting in fewer subjects being tested. As well as short-read sequencing, 

mapping long-reads also relies on incomplete database reads to assign alleles to samples. 

However, discrepancies between sequencing data and database allele records can be more 

easily identified through long-read sequencing, and the ability to overcome phasing 

ambiguities is important for novel allele discovery in disease association.  

3.1.3 PD HLA Sequencing 

At the onset of this investigation, limited studies had been conducted which involved 

sequencing of the HLA region in PD samples. The largest sequencing study that aimed to 

characterise the HLA alleles associated with PD involved sequencing of 11 HLA genes in 1,597 

PD cases and 1,606 controls (108). Results indicated that HLA-DRB1*04:01 and HLA-

DQB1*03:02 alleles had protective effects, with these alleles in high LD forming part of the 
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same haplotype; HLA-DQA1*03:01∼HLA-DQB1*03:02∼HLA-DRB1*04:01. DRB1*04:01 was 

identified as the source of this protective effect, with other haplotypes containing this allele 

also strongly protective. HLA-DRB1*01:01 was also found to be a borderline risk allele, in 

strong LD with HLA- DQA1*01:01 and HLA-DQB1*05:01 as a risk haplotype. However, no 

interaction between these associated haplotypes and known PD risk SNPs was identified.  

The amino acid residues within DRB1 were then focused on for functional 

investigation. Four positions were identified, three of which are in the binding motif, that 

were significantly associated with PD: 11-V, 13-H, and 26-F. The protective effects of these 

were due to their association with HLA-DRB1*04, whilst a risk amino acid 11-L was similarly 

specific to HLA-DRB1*01. A set of amino acids (shared epitope) at positions 70-74 was 

identified, which is shared across HLA-DRB1*01:01, HLA-DRB1*04:01 and HLA-DRB1*10:01. 

It was observed that only HLA-DRB1*04 alleles with the SE were associated with reduced risk 

for PD. This SE in combination with 11-V explained the protective effects of DRB1 alleles, while 

the SE without 11-V conferred risk (108). 

Though the risk alleles and their functional properties identified here could explain 

some of the PD HLA risk, the fact that the alleles identified in this investigation were not 

associated with any established PD HLA risk SNPs at the time suggests this does not explain 

the entire HLA risk. There are likely to be other alleles that individually or collectively confer 

PD risk. A larger sample and improved methods of HLA typing could contribute to expanding 

the understanding of these risk alleles. Furthermore, this study implemented a short-read 

sequencing approach with long-range PCR products broken down into 300-500bp fragments, 

with reads then compared to multiple HLA references and the matching allele manually 

selected. As discussed, any novel variants would be ambiguously phased by this approach, 

and identification of structural variants that differ from alleles within the reference database 

would be limited. 

Identifying the HLA alleles that confer risk for PD is important to understand the 

functional consequence of this established risk locus. The best approaches to typing HLA 

alleles must be implemented to understand those variants that could have a role in PD 

pathology. In particular, the HLA alleles tagged by the most recent HLA risk variant identified 

in the large-scale meta-analysis should be identified. To best identify any potential novel 

alleles, long-read sequencing of this region is preferred. 
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3.1.4 Aims  

Performing PacBio long-read sequencing can aid unambiguous identification of HLA 

alleles that are associated with the established PD risk variants, and what functional qualities 

of these alleles could potentially explain this risk. This investigation aims to conduct an 

exploratory analysis of variants within the HLA region of PD samples, in particular examining 

whether the top PD associated HLA SNP from the latest meta-analysis GWAS (Nalls 2019) is 

associated with a particular HLA variant. 

Due to the recent release of a large and diverse HLA imputation panel which improves 

upon the accuracy of methods applied in the initial study, this investigation is also able to 

implement up to date HLA imputation with a large multi-ancestry reference panel that has 

not yet been applied to a PD dataset. Alongside the long-read sequencing approach, this will 

allow for a comparison of methods within the sequenced sample. Furthermore, improved 

imputation will be to the larger case-control dataset to investigate HLA alleles independent 

of the Nalls 2019 top PD associated HLA SNP. 

The aims for this investigation are as follows: 

1 To generate PacBio long-read sequencing data for the HLA loci that were previously 

identified as potential risk loci; HLA-B, HLA-C, HLA-DQA1, HLA-DRB1. 

2 Compare long-read data for these loci in PD patients that carry the risk or protective 

allele for the top PD associated HLA SNP identified in the 2019 meta-analysis. 

3 If associated alleles are identified, establish which of these can also be identified as PD 

associated in a larger case-control dataset, and so further explore associated alleles 

independent of this SNP. 
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3.2 Methods 

3.2.1 PacBio Samples 

PD patient DNA samples were selected from the Proband cohort (109). Within the 

cohort, samples within the recent onset (<3 years) group were selected. Samples were either 

homozygous for the risk allele (C) of the top HLA SNP from the Nalls 2019 GWAS 

(rs112485576), or the protective allele (A). A total of 70 samples were sequenced, 31 

homozygous for C and 39 homozygous for A. Age of onset and sex were evenly distributed 

across the groups (Table 23) 

Table 23: Characteristics of PD samples selected for long-read sequencing 

3.2.2 Amplicon preparation 

HLA-B, HLA-C, HLA-DRB1, HLA-DQA1 loci were amplified using GenDx NGSgo-AmpX or 

NGSgo-AmpX v2 primers. The method for selection of these HLA loci based on PD HLA 

association data and QTL data is described in Chapter 2. Separate PCR reactions amplified 

each of the HLA loci. Primers amplified the entirety of the HLA-B, HLA-C and HLA-DQA1 loci in 

one reaction, producing amplicons of 3.4 kb, 3.4 kb and 5.8 kb respectively. To amplify the 

entirety of the DRB1 locus, two primer pairs were used which amplified exon 1 and exons 2-

6 respectively, resulting in 2 amplicons of approximately 2.5 and 5 kb in length covering the 

whole gene. Figure 3-2 demonstrates the amplicon ranges. 

rs112485576 genotype No. of 
samples 

Age at onset average (years) Percent male (%) 

C/C 31 66 45 

A/A 39 66.4 51 

All 70 66 50 

GenDx Primers 

Figure 3-2: Length of amplicon products from PCR reactions to be processed for PacBio library. 

Adapted from https://www.gendx.com/product_line/ngsgo-ampx-v2/.  
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Each PCR reaction contained approximately 40ng genomic DNA, or 60ng for HLA-DRB1 

amplification. HLA-B and HLA-C were amplified using the following PCR settings: initial 

denaturation of 95°C/3 min, followed by 25 cycles of 95°C/15 sec, 65°C/30 sec, 67°C/4 min, 

followed by final extension of 67°C/10 min. For HLA-DRB1 and HLA-DQA1 the following 

touchdown PCR protocol was used: initial denaturation of 95°C/3 min, followed by 10 cycles 

of 95°C/15 sec, 68 → 63°C/30 sec touchdown, 67°C/5 min, followed by 15 cycles of 95°C/15 

sec, 63°C/30 sec, 67°C/5 min, followed by final extension of 67°C/10 min. PCRs were carried 

out in Bio Rad T100 Thermal Cyclers. 

Success of amplification was determined using gel electrophoresis. 0.5μl of PCR 

product was loaded into a 0.5% agarose gel and run at 80V for 4 hours, alongside a 10kb 

ladder. Figure 3-3 demonstrates an example of PCR product separation  

 

3.2.3 PacBio library preparation 

Amplicons were first purified using AMPure PB beads (Pacific Biosciences) to remove 

excess PCR reaction materials, at a ratio of 0.45X or 0.6X for DRB1 PCR products. Purified 

samples were then quantified using a PicoGreen assay (Thermo Fisher) using a Tecan 

Fluorometer plate reader. The purified amplicons for each sample were then pooled following 

an equimolar pooling strategy, and further purified with AMPure PB beads 0.6X to achieve a 

total volume of 5μl for each sample containing at least 250ng. 

Each sample underwent library preparation using the PacBio SMRTbell Express 

Template Prep Kit 2.0. Firstly, DNA damage repair was conducted, followed by end repair and 

1
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Figure 3-3: Gel electrophoresis of PCR products from amplification of HLA loci.  
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A-tailing, and barcoded adapter ligation. Barcoded adapters from the PacBio Barcoded 

Overhang Adapter kits 8A and 8B were used, which result in a circular DNA SMRTBell template 

appropriate for PacBio sequencing (Figure 3-4). Barcoded samples were pooled into libraries 

of 16 samples, and then each library was further purified with 0.6X AMPure PB beads. Final 

libraries were quantified using the Qubit dsDNA BR Assay Kit (ThermoFisher) with the Qubit 

Fluorometer and 260/230 ratios verified using the NanoDrop. 

 

3.2.4 PacBio Sequencing 

Libraries were sequenced on the PacBio Sequel II system. This system uses Single 

Molecule, Real-Time (SMRT) long-read sequencing technology in which amplicons are ligated 

to adapters to create a circular SMRTbell template. DNA polymerase is bound to the template 

before addition to the SMRT Cell, which contain millions of ‘zero mode waveguides’ (ZMWs). 

Each ZMW holds a single molecule SMRTbell template. The polymerase is fixed to the bottom 

of the ZMW, where it incorporates nucleotides to the circular template. As each nucleotide is 

added a light is emitted corresponding to the base, which allows for real time sequencing of 

the library (Figure 3-5). 

First, libraries were bound to the Sequel polymerase using Sequel Binding Kit 3.0. An 

internal control of 2kb bound to the sequel polymerase was included. Bound libraries were 

then sequenced using the Sequel Sequencing Kit reagent plate on a Sequel SMRT Cell 1M v3. 

Sequencing was run for 10 hours of collection time, producing circular consensus reads. 

Figure 3-4: Generation of PacBio SMRTbell template appropriate for long-read sequencing. 

From https://www.pacb.com/technology/hifi-sequencing/. 
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3.2.5 Analysis of PacBio data 

SMRTLink platform version 10.2.0.133434 was used to assess quality (Q20 score) and 

read length and depth for all samples. PacBio data was exported as FastQ files and analysed 

using the GenDx NGSEngine software version 2.23. The settings used consisted of ‘PacBio 

subread’ as sequencing instrument, with no quality trimming measures. The cluster phasing 

algorithm was used for all samples except HLA-DRB1, where classic phasing algorithm was 

used. A maximum of 10,000 reads per sample were analysed. Reads were mapped to the 

IGMT HLA database version 3.43. 

NGS engine reports the best match allele from the database for each sample, also 

showing all incomplete allele entries that exactly match the data and further close matches. 

Where novel alleles occur, the best match alleles are presented with the number of 

mismatches between the data and database allele record. These are listed in order of best 

match, with a scoring strategy that penalises mismatches in ARD (antigen recognition domain) 

regions higher than other exons and in other exons higher than non-coding regions. The best 

match allele provided from this analysis was used for association analysis. 

Figure 3-5: SMRT Template sequencing within the Zero Mode 
Waveguides. 
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3.2.6 Association analysis 

Using R studio version 1.4.1106 Fishers Exact test was applied to test if there was a 

significant difference between the total number of each HLA allele carried between the 

rs112485576 genotype groups. 

3.2.7 HLA Imputation 

Imputation of the HLA alleles for each sequenced sample and for the PD case-control 

dataset consisting of 5,322 cases and 10,018 controls (described in Chapter 2) was conducted 

using the full multi-ancestry reference panel of 21,546 individuals available on the Michigan 

imputation server (102). This imputation approach is a recently available improvement upon 

the imputation approaches applied in the previous chapter, allowing for comparison between 

sequencing and imputation to a more accurate level. Pre-imputation quality control for the 

case-control sample was applied by filtering samples for missingness > 0.02, minor allele 

frequency (MAF) < 0.01, and HWE P value < 1e−6, and excluding individuals according to 

missing genotype data (mind) > 0.01. 

3.2.8 Association analysis and conditional analysis 

Association of imputed HLA alleles with PD in the case-control dataset was measured 

by logistic regression in Plink version 1.9. Regression was performed with principal 

components associated with PD phenotype and sex as covariates, previously described in 

Chapter 2. Conditional analysis was then using the same approach with specific HLA alleles as 

a condition. 
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3.3 Results 

3.3.1 HLA Allele Determination 

PacBio long-read sequencing of full-length HLA-B, HLA-C, HLA-DQA1 and HLA-DRB1 

loci was successful for 70 samples. The mean barcode quality (Q score) for all samples was 

between 90-96, indicating high single-molecule accuracy and a base call error rate of less than 

0.0001%. Average read depth was 1,460, 812, 7,578 and 2,600 for HLA-B, HLA-C, HLA-DQA1 

and HLA-DRB1 respectively. The average read lengths were 3,365, 3,397, 4,812, and 5,648 kb 

for HLA-B, HLA-C, HLA-DQA1 and HLA-DRB1 respectively. 

Reads were mapped to IGMT HLA database using GenDx NGSengine. Most sequences 

matched known HLA alleles within the database. Extrapolation was applied in several cases 

where for example there is only allele data for the core exons that encode the binding pocket, 

and sequence data from a similar allele is used to match the whole read. The best match 

alleles for all samples at four-field resolution are displayed in Supplementary Table 1.  

3.3.1.1 Novel Allele Identification 

Most alleles sequenced completely matched with the database entry HLA alleles, with 

no novel indels, repeat expansions, inversions or other variants detected. The one novel allele 

identified was at the HLA-DQA1 locus of a sample in the PD risk allele group. The best match 

allele was DQA1*01:01:01:01, yet the sample differed from the entry for this allele by two 

SNPs within the first intron; a G to A change at gDNA position 3828 (rs9272687) and an A to 

T change at position 3832 (rs28654242). These were upstream of the second exon, which 

begins at gDNA 3858. rs28654242 has been associated with an increased chance of immune-

related adverse events in patients with melanoma (110). With this being the only example of 

novel variation at this locus, it is not possible to suggest whether this is associated with any 

risk or protective group in PD. 

3.3.2 Identification of HLA Alleles correlated with PD associated SNP (rs112485576) 

To determine which 2-field HLA alleles were correlated with the risk and protective 

allele of rs112485576, a Fishers Exact test was performed for each (Supplementary Table 2). 

Those alleles that showed a significant difference between C/C (PD protective) and A/A (PD 
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risk) groups in which sequencing was conducted (Fishers Test P value < 0.05) are listed in 

Table 24. 

These results indicate that the alleles that show significantly higher representation 

within the risk group are: B*44:03, C*07:01, DQA1*01:01, DQA1*01:02, DQA1*02:01, 

DQA1*04:01, DRB1*01:01, DRB1*03:01, DRB1*07:01, DRB1*11:01, DRB1*15:01. The alleles 

that are significantly higher within the protective group are: B*40:01, B*44:02, C*03:04, 

DQA1*03:01, DQA1*03:03, DRB1*04:01, DRB1*04:04. 

 

Locus Allele No. of allele copies  Fishers Exact P Val 

Risk group Protective group 

B B*40:01 3 13 3.36E-02 

B*44:02 4 19 5.30E-03 

B*44:03 6 0 6.60E-03 

C C*03:04 4 15 4.48E-02 

C*07:01 9 3 3.34E-02 

DQA1 DQA1*01:01 9 0 5.00E-04 

DQA1*01:02 12 1 2.00E-04 

DQA1*02:01 11 0 1.00E-04 

DQA1*03:01 0 38 < 0.00001 

DQA1*03:03 1 38 < 0.00001 

DQA1*04:01 4 0 3.64E-02 

DQA1*05:01 12 0 < 0.00001 

DRB1 DRB1*01:01 9 0 5.00E-04 

DRB1*03:01 13 0 < 0.00001 

DRB1*04:01 2 39 < 0.00001 

DRB1*04:04 0 24 < 0.00001 

DRB1*07:01 9 0 5.00E-04 

DRB1*11:01 5 0 1.55E-02 

DRB1*15:01 12 0 < 0.00001 

Table 24: Distribution of HLA alleles in PacBio dataset 

Distribution of alleles between the risk group (Nalls SNP A/A) and protective group (Nalls SNP C/C) of all 
alleles with significantly different allele distribution. Fishers Exact test P val < 0.05 indicates significant 
difference between the risk and protective groups. Full allele distribution between groups is provided in 
Supplementary Table 2. 

 

3.3.3 Comparison of HLA Imputation Using the Most Recent Reference Panel with 

Best-Match Alleles Determined by PacBio Sequencing 

For many HLA association studies, to maximise sample size and reduce costs HLA 

imputation is used rather than sequencing methods. A recently published multi-ancestry 
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reference panel aims to address some of the issues involved with HLA imputation by 

improving upon allele diversity and panel size. To assess the quality of imputation of HLA 

alleles using this panel compared to PacBio sequencing, HLA imputation was also conducted 

from genotype data for these sequenced samples using the latest imputation approach. 

Whilst this method does implement the largest and most diverse available dataset to support 

high quality imputation, it can only provide G-group resolution, and so the ability of 

imputation to correctly capture the first two fields of the PacBio sequenced samples was 

assessed. 

The HLA alleles imputed by this method for all samples are provided in Supplementary 

Table 1, under ‘HLA-TAPAS’. These showed discrepancies when compared to the PacBio best 

match alleles, especially evident in the class II loci. Table 25 indicates the percentage of 

samples where the first two fields of the PacBio best match allele did not match the same 

fields of the imputation results. 

Locus 

% Mismatch between 
sequencing and 
imputation (risk 
group) 

% Mismatch between 
sequencing and 
imputation 
(protective group) 

% Mismatch between 
sequencing and 
imputation (total) 

HLA-B 6 10 9 

HLA-C 3 4 4 

HLA-DQA1 19 48 37 

HLA-DRB1 18 38 31 

Table 25: Percent mismatch between best match allele to PacBio long-reads and imputed result from 
HLA-TAPAS.  

Percentage is a calculation of each allele incidence (2n) in which the first 2 fields do not match between the 
methods. The group homozygous for the protective alleles showed greater mismatch across all alleles 
excepting HLA-C. 

 

At the DQA1 locus, this mismatch primarily came from any allele of the DQA1*03 

group being imputed as DQA1*03:01, which disregarded any of the 03:03 and 03:02 alleles 

(Supplementary Table 1). At the DRB1 locus, this primarily arose from imputation of a high 

number of alleles within the HLA-DRB1*04 group to various incorrect alleles of the DRB1*04 

or DRB1*07 group, although with a less consistent pattern. 

These errors are weighted more in the protective allele group than the risk group 

(Table 25), with up to 48% of all alleles being incorrectly imputed at 2-field resolution in the 

case of DQA1. This demonstrates the issue with relying on imputation alone to understand 

which alleles are associated with this genome wide significant SNP, as association of certain 
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alleles may be inflated such as in the case of DQA1*03:01. Confirmation with sequencing 

studies can aid in identification of true associations. 

Despite these errors, the overall accuracy of this method is an improvement on other 

approaches, and most alleles are imputed with high accuracy. When common repeated errors 

in the DQA1 locus or errors where the second field was not assigned were removed, the 

remaining two field alleles are imputed to a high level of accuracy as demonstrated in Table 

26. Furthermore, of the alleles that were significantly associated with either the risk or 

protective group in the PacBio sequenced data, the majority were imputed to either 100% 

accuracy or with one instance of a sample with this allele being incorrectly imputed. DRB1 is 

still the most poorly imputed allele, so caution should be taken when interpreting results of 

DRB1 allele associations within the imputed data. 

Locus % Mismatch between 
sequencing and 
imputation (risk group) 

% Mismatch between 
sequencing and 
imputation (protective 
group) 

% Mismatch between 
sequencing and imputation 
(total) 

HLA-B 3 9 6 

HLA-C 2 4 3 

HLA-DQA1 8 3 5 
HLA-DRB1 10 20 16 

Table 26: Percent mismatch between best match allele to PacBio long-reads and imputed result from 
HLA-TAPAS, ignoring selective errors. 

Percentage is a calculation of each allele incidence (2n) in which the first 2 fields do not match between the 
methods. The imputation of the majority of alleles at each loci show accurate imputation, with alleles at 
the DRB1 locus still showing the most errors. 

 

3.3.4 Case/Control Association Analysis of HLA Alleles Correlated With rs28654242 

Despite these discrepancies with imputation identified at the individual sample level, 

imputation quality was still demonstrated to be high for most alleles, and in larger case-

control datasets will be valuable in providing information on allele groups that are associated 

with disease. Identification of which alleles associated with PD risk/protection in the PacBio 

analysis are also associated with PD in a larger case-control sample will help identify which 

are true associations with these risk/protective alleles. 

To conduct a case-control association analysis of the HLA alleles implicated by the 

PacBio sequencing, HLA imputation of the PD dataset with 10,017 cases and 5,322 controls 

was performed with the latest large multi-ancestry panel. This data was used to perform an 
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association analysis of HLA alleles with PD. Table 27 shows the P value and odds ratio from 

this analysis for each HLA allele implicated by PacBio sequencing dataset. 

 

Allele Case-Control Imputation PD association 

Odds Ratio P value 

B*40:01 0.96 0.45 

B*44:02 0.93 0.13 

B*44:03 1.04 0.49 

C*03:04 0.90 0.029 

C*07:01 0.95 0.33 

DQA1*01:01 1.08 0.037 

DQA1*01:02 1.04 0.24 

DQA1*02:01 1.00 0.96 

DQA1*03:01 0.83 4.38E-08 

DQA1*03:03 N/A N/A 

DQA1*04:01 1.13 0.13 

DQA1*05:01 1.02 0.70 

DRB1*01:01 1.05 0.34 

DRB1*03:01 1.03 0.59 

DRB1*04:01 0.88 0.0059 

DRB1*04:04 0.85 0.026 

DRB1*07:01 0.99 0.90 

DRB1*11:01 1.06 0.29 

DRB1*15:01 1.06 0.14 

Table 27: Comparison of associated alleles from PacBio sequencing approach with allele association 
results from imputation in larger case-control dataset.  

Odds ratio and P value of all alleles that showed significantly different distribution between Nalls risk and 
protective group are provided. DQA1*03:03 is not provided as HLA-TAPAS failed to impute this allele. 

 

The results from this data indicate which of the alleles implicated by the PacBio 

dataset are also putatively associated (P < 0.05) in the case-control dataset. These include 

DQA1*03:01(P = 4.38 x 10-8, OR = 0.83), DRB1*04:01 (P = 0.005786, OR = 0.88), C*03:04 (P = 

0.029, OR = 0.90) associated with PD protection, and DQA1*01:01 (P = 0.037, OR = 1.08) 

associated with risk. 

The remainder of HLA alleles that were implicated did not translate into significance 

in a case-control association, which indicates that could have been a product of the small 

sample used for the PacBio analysis. These alleles were demonstrated to be imputed to a high 
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level of accuracy, so it is unlikely to be a result of imputation error. However, within the 

significant results which are replicated, imputation errors of DQA1*03:01 and DRB1*04:01 

could have had an impact on biasing results to inflate or deflate the significance of the 

association. 

3.3.5 Case-Control Association Analysis of HLA Alleles Independent of rs28654242  

These imputation results indicate the potential true associations from the PacBio 

analysis, however this approach focused only on those alleles and variants that were 

correlated with the most significantly associated PD HLA SNP. This approach overlooks the 

other associations that are either independent of rs112485576 or those that were not 

captured by this sample. To fully examine the PD associations in this latest imputation of case-

control data, the complete PD case-control association results were examined independently 

(Table 28)  

The results indicate that the top associated allele is the protective effect of the 

DQA1*03:01 allele (P = 4.38 x 10-8, OR = 0.83). This association analysis also identified multiple 

putatively associated alleles (P < 0.05), including the protective alleles DRB1*04 (P =3.8 x 10-

6, OR=0.85), DQB1*03:02 (P = 1.1 x 10-5, OR = 0.82), and DRB1*11:04 (P =3.0 x 10-3, OR = 0.77) 

and the risk alleles DQA1*01 (P = 2.1 x 10-4, OR = 1.11), C*02:02 risk (P = 2.0 x 10-3, OR = 1.19), 

DPB1*01:01 (P =0.013, OR=1.15), B*37:01 (P = 0.017, OR = 1.28). 

To correct for multiple comparisons, the Bonferroni corrected P value was calculated 

to account for testing 1,781 HLA alleles; in this case P < 3 x 10-5. Thus DQA1*03:01, DRB1*04, 

DQB1*03:02 associations remained significant after correcting for multiple comparisons. 

However, uncorrected putative associations of P < 0.05 are also considered in this analysis, 

due to the conservative nature of the Bonferroni correction and considering the high level of 

correlation of alleles within the HLA locus. 

Indicated in bold are those alleles that were found to be correlated with rs112485576 

in the PacBio sequenced dataset; these alleles being the protective DQA1*03:01, DRB1*04, 

and C*03:04 alleles, and the risk allele DQA1*01. The replication of these alleles gives further 

confidence in these being true associations with PD risk and protection. The presence of other 

associated alleles not correlated with risk/protection in the PacBio dataset suggests that 

these associations are independent of rs112485576.
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Table 28: PD case-control association analysis of imputed HLA alleles. 

HLA Allele Frequency 
PD Association 

Conditional on 
DQA1*03:01 

Conditional on 
DQA1*01 

Conditional on C*02:02 
Conditional on 
DPB1*01:01 

OR P OR P OR P OR P OR P 

DQA1*03:01 0.18 0.83 4.4E-08 NA NA 0.85 1.49E-05 0.83 4.10E-08 0.83 6.00E-08 

DRB1*04 0.16 0.85 3.8E-06 1.05 0.55 0.87 5.78E-04 0.85 3.26E-06 0.85 4.87E-06 

DQB1*03:02 0.10 0.82 1.1E-05 0.95 0.45 0.85 6.42E-04 0.82 8.74E-06 0.83 1.47E-05 

DQB1*03 0.27 0.89 8.2E-05 1.01 0.87 0.92 0.02 0.89 8.21E-05 0.89 1.30E-04 

DQA1*01 0.42 1.11 2.1E-04 1.05 0.14 NA NA 1.11 2.20E-04 1.12 9.89E-05 

C*02:02:02:01 0.04 1.22 1.0E-03 1.22 1.00E-03 1.22 1.00E-03 3.26 0.05 1.22 1.16E-03 

C*02:02 0.04 1.20 2.0E-03 1.20 2.00E-03 1.20 3.00E-03 NA NA 1.20 2.52E-03 

DRB1*11:04 0.03 0.77 3.0E-03 0.75 1.00E-03 0.80 0.01 0.78 4.00E-03 0.77 3.31E-03 

DRB1*04:01 0.09 0.88 6.0E-03 1.07 0.28 0.92 0.07 0.88 6.00E-03 0.88 6.38E-03 

DPB1*01:01 0.06 1.15 0.013 1.14 0.02 1.17 6.00E-03 1.15 0.01 NA NA 

DPB1*01:01:01:01 0.06 1.15 0.016 1.14 0.02 1.17 7.00E-03 1.15 0.02 0.82 0.67 

B*37:01 0.02 1.28 0.017 1.26 0.02 1.25 0.03 1.28 0.02 1.28 0.01 

B*35 0.08 0.88 0.018 0.87 0.01 0.88 0.02 0.89 0.03 0.87 0.01 

C*03:04:01:01 0.07 0.89 0.019 0.92 0.11 0.90 0.03 0.90 0.04 0.89 0.02 

DQA1*01:03 0.06 1.13 0.025 1.09 0.12 1.07 0.26 1.12 0.03 1.13 0.02 

DRB1*04:04 0.03 0.85 0.026 0.99 0.89 0.89 0.12 0.85 0.02 0.85 0.03 

DQB1*05:01:01:01 0.12 1.09 0.028 1.05 0.25 1.04 0.42 1.09 0.03 1.09 0.03 

C*01:02 0.04 0.86 0.028 0.84 0.01 0.85 0.02 0.87 0.04 0.86 0.03 

DQB1*05:01 0.12 1.09 0.029 1.05 0.25 1.04 0.43 1.09 0.03 2.14 0.03 

C*03:04 0.07 0.90 0.029 0.93 0.16 0.90 0.04 0.91 0.05 0.89 0.02 

DQA1*01:01 0.15 1.08 0.037 1.04 0.35 1.02 0.65 1.08 0.04 1.08 0.04 

C*01 0.04 0.87 0.038 0.85 0.02 0.85 0.02 0.87 0.05 0.86 0.04 

DQB1*06 0.25 1.07 0.042 1.02 0.57 0.98 0.62 1.07 0.03 1.07 0.02 

DQB1*05 0.16 1.08 0.042 1.03 0.40 1.01 0.78 1.08 0.05 1.08 0.04 

DQB1*06:03 0.06 1.11 0.048 1.07 0.20 1.05 0.41 1.11 0.06 1.11 0.04 
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Association analysis of HLA alleles imputed by the HLA-TAPAS method with PD phenotype. Association analysis was conducted with 10,018 cases and 5,322 controls. 
Following this, association was repeated whilst conditioning on the top risk and protective alleles. Odds ratio (OR) and P value are displayed. Those passing putative 
significant threshold (P < 0.05) in the initial association analysis and with a frequency greater than 0.01 are included. In bold are those alleles that were implicated by 
the PacBio long-read sequencing analysis. 
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To test the independence of these alleles, various conditional analyses were 

performed on the most significantly associated risk and protective HLA alleles (DQA1*03:01, 

DQA1*01, DRB1*11:04, DPB1*01:01, C*02:02). Conditioning on DQA1*03:01 showed 

DRB1*11:04 remained significant as a protective allele (P =1.00 x 10-3), while DRB1*04 (P = 

0.55) and DQB1*03:02 (P = 0.45) were insignificant (Table 28). This indicates the LD between 

the latter alleles and DQA1*03:01 was driving their protective association, whilst DRB1*11:04 

is independently associated. Out of the risk alleles C*02:02 (P = 2.00 x 10-3), DPB1*01:01 (P = 

0.02), and B*37:01 (P = 0.02) remained significant while DQA1*01 (P = 0.14) became 

insignificant. Conditioning on C*02:02 showed DPB1*01:01 (P = 0.01) and B*37:01 (P = 0.02) 

remained significant as risk alleles, and after conditioning on DPB1*01:01, B*37:01 (P = 0.01) 

remained significant still. 

These results indicate that the top independent PD associations include DQA1 

(DQA1*03:01 protective and DQA1*01 risk), DRB1*11:04 (protective), and C*02:02 (risk), 

with further putative risk or protective alleles. 

3.3.6 Interaction of Imputed Alleles Associated with PD Risk and Protection 

To assess the interaction between the risk and protective alleles, frequencies of 

haplotypes including the top identified risk and protective alleles (DQA1*03:01, DQA1*01, 

DRB1*11:04, DPB1*01:01, C*02:02) were assessed (Table 29). For the purpose of this 

investigation, those that had excess frequency in the cases were considered risk haplotypes, 

while those that had excess frequency in controls were protective haplotypes. All haplotypes 

that had a frequency of > 0.01 are included. 

The results indicate that in most instances, any haplotypes containing the DQA1*03 

allele will always be protective, while carrying the DQA1*01 allele will only confer risk in the 

absence of DQA1*03 (Table 29). The protective effect of DQA1*03 is only overcome when the 

haplotype also contains C*02:02 as well as DQA1*01. C*02:02 and DRB1*11:04 alleles are 

only present in risk haplotypes at this frequency, while it can be observed that the protective 

effect of DPB1*01:01 is carried in risk and protective haplotypes, suggesting this allele is less 

influential on outcome than other HLA loci. The frequencies of these interactions are small, 

so these suggestions are observational rather than conclusive. This does however indicate the 

nature of the DQA1*03:01 risk overpowering alternative protective effect.
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  C DRB1 DQA1 DPB1 Control count Control Frq Case count Case Frq Frequency difference 

R
is

k 
h

ap
lo

ty
p

es
 

- - - - 01 - - - 2549 0.25 1436 0.27 -0.015 

- - - - 01 01 - - 1479 0.15 844 0.16 -0.011 

- - - - - - - - 1039 0.10 595 0.11 -0.008 

02:02 - - - 01 - - - 194 0.02 136 0.03 -0.006 

- - - - 01 - 01:01 - 393 0.04 237 0.04 -0.005 

- - 11:04 - - - - - 132 0.01 88 0.02 -0.003 

02:02 - - - 01 03:01 - - 122 0.01 80 0.02 -0.003 

- - 11:04 - 01 - - - 151 0.02 90 0.02 -0.002 

02:02 - - - 01 01 - - 147 0.01 87 0.02 -0.002 

P
ro

te
ct

iv
e 

h
ap

lo
ty

p
es

 - - - - - - 01:01 - 306 0.03 156 0.03 0.001 

- - - - 03:01 - 01:01 - 163 0.02 67 0.01 0.004 

- - - - 03:01 03:01 - - 298 0.03 114 0.02 0.008 

- - - - 01 03:01 - - 1332 0.13 589 0.11 0.022 

- - - - 03:01 - - - 1161 0.12 461 0.09 0.029 

Table 29: Most frequent haplotypes containing any combination of risk and protective alleles. 

All haplotypes with frequency > 0.01 within the imputed case-control dataset are listed. – corresponds to carrying of alleles other than C*02:02, DRB1*11:04, 
DQA1*01/03 or DPB1*01:01. Frequency in case and control groups are displayed, with the difference between the two indicating risk or protection. 
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3.3.6.1 Interaction between DQA1 and DQB1 alleles 

As DQA1 alleles form functional heterodimers with DQB1 alleles, frequency of 

DQA1/DQB1 haplotypes was also examined (Table 30). DQA1*03:01 was most frequently in 

haplotypes with DQB1*03 alleles, forming the DQ8 HLA molecule, whilst DQA1*01 was most 

frequently observed in haplotypes with DQB1*05 and 06, forming the DQ5 and DQ6 

molecules respectively. Other haplotypes at lower frequencies with DQA1*01 were also 

observed. This observation is in line with other data suggesting that these are the most 

frequent DQ molecules combinations for these DQA1 alleles, forming stable surface 

heterodimers (111). 

 

DQA1 DQB1 Control count Control Frq Case count Case Frq 

03:01 03:01 03 03 342 0.03 140 0.03 

01 01 05 06 748 0.07 439 0.08 

01 01 06 06 600 0.06 315 0.06 

01 01 05 05 214 0.02 138 0.03 

01 03:01 03 06 907 0.09 405 0.08 

01 03:01 03 05 529 0.05 254 0.05 

Table 30: Combinations of DQA1 and DQB1 alleles 

DQB1 combinations are listed for all samples either homozygous for DQA1*03:01 or DQA1*01 or 
heterozygous for both alleles, at a frequency greater than 0.01. Frequencies demonstrate that DQA1*03:01 
is most often in a haplotype with a DQB1*03 allele, whilst DQA1*01 alleles are most often in a haplotype 
with a DQB1*05 or 06 allele. 

 

3.3.7 Amino Acids Associated with PD Risk or Protection 

To examine the potential functional properties of the top protective and risk alleles at 

the DQA1 locus, the amino acid residues that are most associated with PD were examined. 

The top amino acid positions that were associated with disease are listed in Table 31. This 

shows that the association of the DQA1*03:01 allele was driven primarily by positions 187, 

47, 56 and 76 carrying a threonine, glutamine, arginine, and valine respectively.  

The protective association of the top 4 most significant positions (187 T, 47 Q, 56 R, 

76 V) are consistent with the association of DQA1*03:01 allele, as these amino acids are 

unique to DQA1*03 alleles. The three positions which reach a lower significance threshold 

(215 L, 50 L, 53 R) are also shared by the DQA1*03 group alleles but are not unique to this 



Chapter 3: Long-Read Sequencing of the HLA Locus in PD 

 71 

group, for instance DQA1*02 alleles also carry a leucine at positions 215 and 50, and an 

arginine at position 53. 

 

Amino acid residue Odds ratio P value Allele group 

DQA1 position 187 (exon4) T (Threonine) 0.83 4.38E-08 
Unique to 
DQA1*03:01 
alleles 

DQA1 position 47 (exon2) Q (Glutamine) 0.83 4.38E-08 

DQA1 position 56 (exon2) R (Arginine) 0.83 4.38E-08 

DQA1 position 76 (exon2) V (Valine) 0.83 4.38E-08 

DQA1 position 215 (exon4) L (Leucine) 0.87 1.66E-06 
Not unique to 
DQA1*03:01 

DQA1 position 50 (exon2) L (Leucine) 0.87 1.66E-06 

DQA1 position 53 (exon2) R (Arginine) 0.87 1.66E-06 

Table 31: The top associated amino acid positions with PD protection. 
 

The differences at these positions therefore account for most of the protective effect 

of the DQA*03:01 alleles. Figure 3-6 demonstrates the location of these unique positions in 

green, and the respective amino acids within the DQA1*01:01 allele for reference. Within the 

DQA1*01 group, these consist of arginine, glycine and methionine at positions 47, 56 and 76 

respectively. These amino acid residues are associated with disease risk. 

 

Amino acid residue Odds ratio P value Allele group 

 DQA1 position -16 (exon1)  L (Leucine) 1.13 1.07E-05 Shared with 
DQA1*04 and 06 
alleles  DQA1 position 69 (exon2) AT 1.13 1.12E-05 

 DQA1 position 175 (exon3)  Q 1.11 2.05E-04 

Unique to 
DQA1*01 alleles 

 DQA1 position 218  (exon4)  Q 1.11 2.13E-04 

 DQA1 position  47  (exon2)  R 1.11 2.13E-04 

 DQA1 position 50  (exon2)  E 1.11 2.13E-04 

 DQA1 position 52  (exon2)  S 1.11 2.13E-04 

 DQA1 position 53 (exon2)  K 1.11 2.13E-04 

 DQA1 position 55 ( exon2)  G 1.11 2.13E-04 

 DQA1 position 56 (exon2)  G 1.11 2.13E-04 

 DQA1 position 61 (exon2)  G 1.11 2.13E-04 

 DQA1 position 64 (exon2)  R 1.11 2.13E-04 

 DQA1 position 66 (exon2)  M 1.11 2.13E-04 

 DQA1 position 69 (exon2)  A 1.11 2.13E-04 

 DQA1 position 76 (exon2)  M 1.11 2.13E-04 

 DQA1 position 80 (exon2)  Y 1.11 2.13E-04 
Table 32: The top associated amino acid positions with PD risk. 
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At a lesser significance, amino acids are associated with PD risk. These are listed in 

Table 32. The two most significant position are not unique to DQA1*01 alleles, with a Leucine 

at position -16 also being shared by DQA1*04/06 alleles, and a Threonine at 69 being carried 

by DQA1*04/06 alleles, whilst DQA1*01 alleles carry an Alanine. The remainder of the risk 

DQA1 amino acids associated are all unique to the DQA1*01 allele group, and so explain most 

of the PD risk association of this locus. Figure 6 highlights the position of these unique risk 

amino acids in red. The three positions for which there is one unique risk amino acid and one 

unique protective amino acid are demonstrated in Figure 6 C-H. 

The differences in PD risk and protection conferred by these amino acid positions can 

be due to the binding and presentation of specific residues that they enable, or in the way 

that they impact stability and expression of the DQ heterodimer molecule. The amino acid at 

position 76 is part of the helix forms the peptide binding pocket P9 with the DQB molecule, 

and is involved in stability of the heterodimer at this pocket (111). Position 56 is also part of 

peptide binding structure within the P1 binding pocket (112). The amino acid at position 47 

lies outside of the peptide binding pocket domains but is an important stability regulatory site 

for the heterodimer formation. An arginine in this position such as in the DQA1*01 alleles 

forms hydrogen bonds with the alpha 2 domain, whereas these are not present when a 

glutamine is substituted as in DQA1*03 alleles, negatively impacting heterodimer stability 

(113). It is less clear how amino acid changes within the peptide binding pockets or position 

187 which lies outside of the DQ molecule domain could have different functional properties 

in the context of PD pathology. 
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Figure 3-6: Amino acid residue differences between HLA-DQA1*01:01 and HLA-DQA1*03:01 alleles. 

(A) Amino acid sequence of both alleles, with amino acids unique to DQA1*03 highlighted in red. (B) Location of top associated amino acids within the DQ heterodimer. (C-H) 
Differences in amino acid residues at associated positions; (C,F) position 47, (D,G) position 56, (E,H) position 76 for DQA1*03 (C-E) and DQA1*01 (F-H). DQA1 molecule is 
represented in green, DQB1 molecule in orange, and bound peptide in purple. Images generated using the RCSB protein data bank entries 2NNA (DQ8) and 1UVQ 
(DQA1*01:02/DQ0602). 
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3.4 Discussion 

3.4.1 Approach 

In this chapter, PacBio long-read sequencing was applied to PD patient samples to 

determine if there were any unknown structural variants within the HLA locus that were 

correlated with the main SNP associated with PD risk/protection. Long-read sequencing is an 

especially important method to apply to the HLA region as its complex patterns of LD, 

conserved repetitive sequencies, and highly polymorphic nature can make it challenging to 

identify associated alleles and novel variants using short-read sequencing methods. 

PD samples from the proband cohort were selected that were homozygous for either 

the protective or the risk allele of rs112485576, which is the SNP at the HLA locus showing 

strongest evidence for association with PD in the latest meta-analysis (80). HLA loci 

determined to be of most relevance (HLA-B, -C, -DQA1, -DRB1) were amplified and full-length 

long-read sequencing was conducted. Whilst this method did reveal one novel allele at the 

DQA1 locus that differed from a known HLA allele in the IGMT database by two intronic SNPs, 

there were no other structural variants that were observed in these samples and no novel 

variants associated with this PD risk SNP. However, it was possible to observe which alleles 

were associated with the risk or protective group samples. 

To determine which alleles associated in this group were also associated at a case 

control level, comparison of PacBio results to imputation results from the latest HLA 

imputation method was conducted. This allowed observation of both protective and risk 

alleles of interest. 

3.4.2 What protective alleles were identified? 

Within the PacBio dataset, the top HLA alleles associated with PD protective group 

were the class II alleles DQA1*03:01, DQA1*03:03, DRB1*04:01, DRB1*04:04. This result was 

in agreement with results reported from the previous sequencing project, which identified 

the HLA-DRB1*04_HLA-DQA1*03 haplotype as the source of PD protection (108). When 

compared with the imputed HLA case-control association, the DQA1*03 and DRB1*04 allele 

groups were also identified amongst the most associated protective alleles, with DQA1*03:01 

the most associated PD allele. Conditioning on DQA1*03:01 showed DRB1*04 and 
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DQB1*03:02 alleles were no longer significantly associated, demonstrating their LD with the 

DQA1*03 allele potentially caused their association. One independent risk allele DRB1*11:04 

was also identified, however as this is a novel identification it would need to be repeated to 

ensure this is not an imputation error. 

The identification of DQA1*03:01 as the main protective allele in this dataset is of 

interest, as previous association studies have identified the DRB1*04 allele as the most 

significant protective factor, with any association from DQA1*03 being explained the LD 

between these two alleles. This result suggests there could potentially be an alternative 

explanation to this protective factor, with the role of the DQ alleles as well as the DR of 

functional consequence. The imputation method applied here could potentially have inflated 

this association due to imputation of other DQA1*03 alleles as DQA1*03:01, but this still 

demonstrates the significance of this allele group. 

3.4.3 What risk alleles were identified? 

Previously, protective alleles have been the focus of PD HLA association, with the top 

associated alleles acting in protective haplotypes and the top SNP rs112485576 being 

associated with PD protection (80,87). However, the PacBio analysis identified several alleles 

associated with the risk group, including DQA1*01:01, DQA1*01:02, DQA1*02:01, 

DQA1*04:01, DRB1*01:01, DRB1*03:01, DRB1*07:01, DRB1*11:01, and DRB1*15:01. In 

previous sequencing results, DRB1*01:01 and DQA1*01:01 had been identified as risk 

associated alleles only. Comparison to the imputation case control results demonstrated that 

the DQA1*01 group was the most associated allele with PD risk, and so together with the 

sequencing results this gives confidence in this risk allele. 

Beyond this established risk, the C*02:02 allele was also associated with risk despite 

not being associated with the PacBio sample risk group. Conditioning on DQA1*01 confirmed 

C*02:02 remained significant, indicating that this is an independent risk allele outside of 

association with the rs112485576 SNP. DPB1*01:01 was also identified as a potential 

independent risk allele. This locus was not included in the sequencing data as DPB1 had not 

previously been identified as a locus of interest. Confirmation that this association is not a 

product of poor imputation would need to be conducted before further investigating this 

potential PD risk. 
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3.4.4 How do these interact? 

Exploring the properties of these risk and protective alleles, and their interaction with 

one another, is important to understanding their role in PD pathology. Identification of the 

most common haplotype pairs containing the main risk and protective alleles observed here 

demonstrated this interaction. When carrying at least one copy of the DQA1*03:01 allele, 

these diplotypes had a protective effect even when also carrying risk allele DQA1*01, unless 

a second risk allele C*02:02 is also carried. This, whilst the effect of this main protective allele 

is dominant compared to DQA1*01 risk effect, the data suggests multiple risk alleles can 

overcome this effect. Due to small frequencies of these haplotypes caution should be taken 

when observing interactions, however this dominance can explain why protective alleles have 

commonly been the most readily observed associations in PD studies. 

3.4.5 What are the biological consequences of these alleles? 

The functional role of these HLA alleles in the pathology of PD, and how they confer 

risk and protection, has yet to be determined. Alleles from both class I and class II have been 

identified as conferring risk or protection for PD, despite their different mechanisms of action. 

Class II alleles are the most associated group, which act by forming heterodimers of one alpha 

and one beta molecule to present peptides on the cell surface. DQA1 will form a heterodimer 

with the polymorphic DQB1 molecule, while DRB1 forms a heterodimer with the non-

polymorphic DRA molecule, both of which present engulfed extracellular molecules to CD4+ 

T cells. Class I alleles on the other hand do not form heterodimers, and act presentation of 

intracellular molecules to activate CD8+ T cells. 

As the DQA1*03 and DQA1*01 groups have been identified as protective and risk 

alleles respectively, the DQB1 alleles within their haplotypes were also examined. DQA1*03 

almost exclusively formed haplotypes with DQB1*03, forming the DQ8 heterodimer 

molecule. On the other hand, DQA1*01 was commonly in haplotypes with DQB1*05 or 06, 

forming the DQ5 and DQ6 heterodimers, however other haplotypes at lower frequencies 

were also observed. This aligns with previously observed haplotypes in other populations 

(113). 

Both trans- and cis- heterodimers can be expressed on the cell surface, meaning 

heterodimers formed from alpha and beta subunits on the same chromosome or from 
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different chromosomes. The formation of trans-heterodimers has been indicated to be of 

importance in disease susceptibility, for example in the case of type I diabetes (114). 

However, current evidence suggests that expression of trans-heterodimers between 

DQA1*03 and DQB1*05/06 or DQA1*01 and DQB1*03 is not readily detected at the cell 

surface (113,115). This suggests that it is competition between the DQ8 molecule and 

alternative class II molecules such DQ5 and DQ6 that results in either a risk or protective 

effect, rather than interaction with trans-heterodimers. 

Relative expression levels of these DQ molecules could contribute to their differing 

influence on PD risk. The level of cell surface density of DQ8 molecules formed of DQA1*03 

and DQB1*03 molecules has been observed to be lower than DQ 5/6 molecules formed with 

DQA1*01 and DQB1*05/06 for example (113). This difference was suggested to be due to the 

stabilising effect of amino acid position 47, with a glutamine at this position in DQA1*03:01 

conferring less stability and so reduced heterodimer expression. This could indicate that 

reduced DQ-TCR interaction and CD4+ T cell activity could be protective in PD. 

Whilst the mechanism by which these HLA alleles confer risk or protection is still 

unknown, one possibility is the involvement of cell surface expression of α-syn. It has been 

demonstrated that T cells from PD patients can recognise α-syn (66), however it is currently 

unclear which HLA alleles present α-syn and whether the expression of these alleles is 

significant to PD development. One study investigating the recognition of α-syn molecules 

identified two antigen regions which elicited a response from class II stimulated CD4+ cells 

(116). One antigenic peptide near the N-terminus which was bound by DRB1*15:01 and 

DRB5*01:01 with high affinity, but also by DQB1*03:01 with slightly lower affinity. A different 

peptide near the C-terminus was found to be weakly bound to most class II molecules except 

from DQB1*05:01, to which it bound strongly. These results suggest that DQ molecules 

formed by both the risk and protective alleles could be involved in antigen presentation of α-

syn molecules, and so doesn’t present a clear picture of whether this process is involved in 

reduced or increased risk of PD. It is also not yet clear whether the specific amino acids of 

significant identified in the DQA1*03/01 alleles could impact the presentation of these α-syn 

molecules. By further exploring potential differences in the immune response elicited by 

these molecules and the antigens that they preferentially bind, this could present a pathway 

of modulated disease risk. 
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It was also observed that the response resulting from α-syn molecule recognition was 

mostly mediated by CD4+ T cells, indicating that class I alleles are not involved in this pathway. 

The PD risk conferred by HLA C*02:02 would be a result of its interaction with CD8+ T cells. 

Although consistently less significantly associated than the role of the class II HLA loci, this 

interaction with CD8+ molecules could be of importance in PD pathology. CD8+ rather than 

CD4+ T tell infiltration was observed to be increased in within the brain of PD patients and 

correlated with neuronal cell death, and studies in post-mortem tissue indicate this 

infiltration can occur in early stages of disease prior to α-syn aggregation (117). CD8+ 

infiltration was also observed to be increased in the brain in PD mouse models after increase 

in oxidative stress and expression of class I HLA molecules (118). This indicates there could be 

alternative biological pathways that separately influence PD risk, independent class I PD 

associations acting through influence of CD8+ activity. The specific role of HLA-C or other class 

I alleles in this pathway however is yet to be determined. 

3.4.6 Conclusions 

The results of this investigation indicate that both risk and protective HLA alleles are 

associated with PD, primarily at the DQA1 locus. The protective effects of DQA1*03:01 are 

the most influential on PD outcome, so further investigation into the role of this allele in PD 

pathology will be important to understand this association. Previous short-read sequencing 

studies and imputation studies have identified the DRB1 alleles in the risk/protective 

haplotype as the driving factor of impact on PD risk, with a specific shared epitope identified 

at DRB1*04 alleles conferring PD protection. Any association of DQA1 alleles was suggested 

to be due to the high LD between the class II alleles. However, due to the complex patterns 

of LD at the HLA region it difficult to pinpoint the exact functional mechanism behind this 

association at linked alleles, and the results from this study suggest that investigation of the 

role of the DQ molecules should also be further explored. 
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4 Investigating the Causal Relationship Between 

Pain and Depression in Parkinson’s Disease 

4.1 Introduction 

4.1.1 Experience of Non-Motor Symptoms in PD 

While Parkinson’s disease (PD) is characterised by motor symptoms, patients also 

suffer from a host of other non-motor PD symptoms, such as sleep disturbances and cognitive 

changes. The experience of these symptoms differs across patients but can have a significant 

impact on quality of life. An investigation into the experience of those living with PD aimed to 

establish the most impactful symptoms. Responses showed that for early PD patients, pain 

was the 4th most troubling PD related symptom behind slowness, tremor and stiffness (4), 

with 9.8% ranking it as their worst symptom. On the other hand, patients with advanced PD 

reported that mood disorders were one of the most troublesome symptoms, with 7.5% listing 

this as the most significant symptom, and second only to fluctuating response to medication. 

This demonstrates how for many, it is these non-motor symptoms that form the worst 

aspects of living with PD. Pain is a common issue for PD patients, with a recent investigation 

finding that 85% of PD patients report experiencing some pain, with 42% having moderate to 

severe pain. This study also found that pain had a greater impact on quality of life compared 

to motor symptoms in this cohort (8). Mood disorders are similarly a very common issue, with 

depression being the most common psychiatric symptom experienced by PD patients (119). 

An estimated 35% of patients experiencing clinically significant depressive symptoms (120), 

with experiences of sadness, pessimism, and increased anxiety the most reported 

experiences from PD patients who complained of mood changes (4).  

Whilst traditional PD therapies which focus on dopamine replacement have benefit in 

treating the core disease characteristics, it is questionable how much they can impact these 

non-motor symptoms. To have a greater impact on quality of life of PD patients an improved 

understanding of the underlying causes of these non-motor symptoms is required so that 

they may be targeted appropriately. 
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4.1.1.1 PD Pain 

The most common types of pain experienced in PD are musculoskeletal, radicular, and 

dystonic. It has been suggested that motor impairments and related stiffness could contribute 

to these symptoms, however, severity of motor impairment has not been shown to be 

correlated with levels of PD pain (8). Alterations in central or peripheral pain processing 

pathways could also be underlying causes. Severity of PD symptoms of anxiety and depression 

were found to predict the pain levels experience, suggesting potential shared central 

mechanisms such as monoamine depletion caused by PD degeneration could also be driving 

PD pain. 

One previous GWAS of pain in PD has been conducted (13), aiming to identify the 

genetic factors influencing PD patients to experience no/low pain or high pain levels. This 

study implicated the TRPM8 locus as a risk factor, which is a cold sensing ion channel also 

involved in inflammation and analgesia. TRPM8 is highly expressed in the caudate, potentially 

implicating it in central pain pathway regulation (121), and also in DRG neurons, which are 

involved in the development of neuropathic pain (20). However, pathway through which this 

risk factor could impact pain is still uncertain. 

Current treatment options for pain in PD, including traditional analgesic drugs such as 

NSAIDs, seem to have limited effect. 28% of PD patients experiencing pain reported 

paracetamol to be effective, 12% found NSAIDs effective, 10% found opioids effective and 3% 

found drugs targeting central pain (gabapentin, pregabalin etc) effective (4). Trials of other 

therapies have yet to indicate a promising alternative, however with greater knowledge of 

factors which result in the experience of pain in PD, more effective therapies could be 

achieved. 

4.1.1.2 PD Depression 

Likewise with pain in PD, there is still an incomplete understanding for why the 

incidence of mood disorders in PD is so high. A PD diagnosis as an adverse life event itself can 

be a risk factor for developing depression, and biological changes in PD can also directly affect 

mood. Depression in PD is associated with degeneration of dopaminergic neurons, 

noradrenergic limbic and brainstem structures, supporting the impact of these structures on 

mood (28). This is also supported by patients ‘off period’ depression, demonstrating the 
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impact of dopamine dysfunction on mood (30). It has also been observed that inflammatory 

factors are increased in PD patients with depression (35). Whether inflammatory factors act 

on mood via increasing degeneration of dopaminergic neurons or through a different avenue 

is uncertain. 

Whilst no GWAS of depression in PD has been conducted to date, potential genetic 

associations have been investigated. One study previously identified a CB1 (cannabinoid 

receptor 1) gene polymorphism that could impact the expression of this gene that was 

associated with depression in PD (37). The endocannabinoid system has been shown to be a 

target in both pain and depression therapies, so this could be an avenue of further 

investigation. Furthermore, another study investigating the variable effects of PD associated 

SNPs on different clinical features of disease found one SNP near the BRIP1 gene which was 

associated with depression (38). Further exploration of genetic associations with PD 

depression is necessary to determine if these are the primary factors. 

SSRIs are the most common approach for treatment of PD depression. These may not 

be the most appropriate approach however, with trials showing they are less effective at 

treating PD depression than non-PD (28). There is evidence antidepressants targeting both 

serotonergic and noradrenergic systems could be more effective for these patients (7). 

Furthermore, given the potential impact of dopamine on depression in PD, dopamine 

replacement therapies could also be effective anti-depressants as well as treating motor 

symptoms. Levodopa, the gold standard treatment, has not been demonstrated to have 

antidepressant effects, but a trial of dopamine agonist Pramipexole showed a reduction in 

depressive symptoms compared with placebo in PD patients (46). Improved understanding of 

various causes of depression in PD could lead to greater improvements for treatments of this 

symptom. 

4.1.2 Pain and Depression Comorbidity 

Whilst non-motor symptoms can impact PD patients to varying degrees, an 

association between pain and depression in PD has been observed in multiple investigations 

(33). This is reflected in the general population, where chronic pain and depression are often 

comorbid conditions. Approximately 85% of chronic pain patients also experience depression 

(122). Similarly, patients with depression can be twice as likely to develop a pain condition 

compared to the general population (123). Common neurological changes have been 
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suggested as the reason for this (122), with similar shared factors as studied in PD observed 

in the general population. In particular, monoamine activity including dysregulation of the 

dopaminergic system has been found to be significantly impacted in both chronic pain and 

depression. 

Treatment of the symptoms for both conditions can be limited, with pain killers and 

physical therapy often having inadequate effect on chronic pain conditions, and about 10-

30% of patients with major depression showing treatment resistance (124). It has been 

indicated that the comorbidity of pain and depression could cause worse response to 

treatment, highlighting the need to investigate these conditions jointly (125). A greater 

understanding of the causes and risk factors of these disorders and how they interconnect 

can make targets for treatments improved and help develop preventative measures. 

4.1.3 Mendelian Randomisation 

4.1.3.1 MR Method 

Given their comorbidity, an understanding of whether there exists a causal 

relationship between pain and depression or whether these are independent factors is 

important. It can be misleading to rely upon observed correlation to determine causation, as 

there can be multiple other unmeasured phenotypes also correlating with pain and 

depression (known as confounding factors). Correlation observed will also not indicate a 

direction of effect between the two. Ideally, to determine the effect of one exposure on a 

health outcome (e.g. the effect of the exposure of depression on later development of pain), 

a randomised control trial (RCT) would be conducted so that randomly selected participants 

differ only by their exposure. For evident ethical reasons, this cannot be done for risk factors 

such as chronic pain and depression in the same way it is done for therapies. Therefore, 

comparison of the outcomes of patients with pain or depression and those without will be 

potentially impacted by confounding factors. 

To address this issue, the Mendelian randomisation (MR) method was developed as a 

way of conducting a version of an RCT using genetic data of samples. MR allows the detection 

of a causal relationship between a risk factor (exposure) and an outcome of interest, using 

genetic variants associated with exposure as instrumental variables for the exposure. As these 

genetic factors are randomly distributed and less susceptible to confounding bias, they can 
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be used to differentiate samples in a way that reflects the RCT approach, with individuals 

differing only by allele. This approach also has the benefit of reflecting lifelong patterns of the 

exposure. The association of these variables can then be tested on the outcome, with any 

association presumed to be acting through the exposure, and therefore reflecting a direct 

causal pathway. 

The strength of an MR study will be improved by having instrumental variables that 

closely represent the exposure, either by accounting for a high proportion of the variability 

or by representing a known biological pathway. The three key assumptions for MR results to 

be valid are: 

• The relevance assumption, that the genetic variants have a true association with the 

exposure  

• The independence assumption, that the genetic variants are not associated with 

confounders of the exposure-outcome association 

• The exclusion restriction assumption, that variants affect the outcome only through 

the effect on the risk factor. 

When these assumptions hold true, the test will indicate if a significant causative 

relationship exists between the exposure and outcome. Although it is impossible to prove 

that all potential confounders have been measured, use of reliable genetic variants and 

application of different sensitivity analyses can contribute to assessing these assumptions in 

MR tests. 

4.1.3.2 MR of Chronic Pain and Depression 

The MR method has been applied to test the relationship between chronic pain and 

depression in the general population. A recent GWAS of multisite chronic pain (MCP) found 

multiple genetic loci that were risk factors for development of MCP (126). It was also observed 

that MCP was most closely genetically correlated to major depressive disorder (MDD) out of 

several psychiatric disorders tested. To determine if a causative relationship existed, an MR 

test was performed in which the effect of these genetic factors on MDD was tested, with both 

MCP and MDD tested as exposures. A positive and significant causal effect of MDD on MCP 

(ß = 0.019 and P = 0.0006) was observed, however there were inconsistencies between 

methods with regards to whether this had a positive or negative causal effect on the outcome, 
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indicating this was not a true causal effect. Alternatively, with MCP as the exposure and MDD 

as the outcome, a consistent positive and significant causal effect (ß = 0.16 and P = 0.047) was 

observed, indicating that MCP has a causal effect on MDD. 

This result indicates that not only is there a correlation between these phenotypes, 

but that a causative relationship could exist. This result is consistent with observations that 

sufferers of chronic pain go on to develop depression at a higher rate than general population. 

However, this study also observed that the genetic instruments used showed evidence of 

pleiotropic effects, indicating they could be influencing MDD through a pathway other than 

MCP. Therefore, this outcome would need to be replicated in another dataset to have more 

certainty of a true causal relationship. A greater understanding of this pathway can be useful 

to identify those most at risk of developing depression.  

Given a causative pathway potentially exists for MCP on MDD in the general 

population, the question remains whether there is a causative relationship between these 

non-motor symptoms in PD. While PD pain and PD depression could have common causes 

with non-PD equivalents, it cannot be assumed that PD pain will also be causative for PD 

depression. These could have different biological basis, which is indicated by the differing 

responses to treatments. Therefore, it needs to be investigated whether these factors share 

a causative relationship in PD which could be targeted, or whether these are independent 

symptoms. 

4.1.4 Aims and Hypotheses 

The aims of this investigation are: 

1. To investigate the correlation between pain and depression in PD cohorts 

2. To identify the possible genetic associations influencing pain and depression in PD in 

these cohorts via GWAS 

3. To establish if a causative relationship exists between these PD phenotypes via 

Mendelian randomisation. 

It is hypothesised that  

1. There will be a correlation between pain and depression phenotypes in PD. 

2. A causative relationship of chronic pain in PD on depression in PD will exist, reflecting 

that in the general population. 
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Figure 4-1: Schematic of the hypotheses to be tested in the MR analysis. 

Adapted from Moen (2018) 
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4.2. Methods 

4.2.1 PD Datasets  

4.2.1.1 Proband 

PD samples were obtained from the Proband (Tracking Parkinson’s) patient cohort 

(109). This cohort consists of 2,247 patient samples, 1,987 with recent onset (<3.5 years) and 

260 young onset (diagnosed <50 years of age). DNA samples were genotyped using the 

Illumina Human ExomeCore-12 v1.1 array. 

Data collected for pain and depression phenotypes of these samples was obtained for 

this study. Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) 

was used to assess PD pain, with a scale from 0 for no pain to 4 for severe pain. Leeds Anxiety 

and Depression Scale (LADS) depression score (LADS-D) was used to assess depression 

characteristics in these participants. This ranges from 0-18, with 0 being a self-assessment of 

no depression symptoms and 18 being severe depression. 

4.2.1.2 UK BioBank 

PD samples were extracted from the UK Biobank (UKBB) database. All samples with 

self-reported PD (field: 20002) or with an ICD10 main or secondary diagnosis of PD (field: 

41202 and 41204) were used, with 1,566 PD patients extracted in total. 

Depression phenotype data was extracted according to the ‘broad depression’ 

phenotype previously used in the UKBB GWAS (Howard 2018), consisting of patients who had 

answered ‘yes’ to “Have you ever seen a general practitioner (GP) for nerves, anxiety, tension 

or depression?” (field: 2090) or “Have you ever seen a psychiatrist for nerves, anxiety, tension 

or depression?” (field: 2010), or who has a primary or secondary diagnosis of a depressive 

mood disorder from linked hospital admission records (F32—Single Episode Depression, 

F33—Recurrent Depression, F34—Persistent mood disorders, F38—Other mood disorders 

and F39—Unspecified mood disorders). 

Chronic pain phenotype data was extracted as the number of pain sites at which pain 

has persisted for over 3 months (0 to 7 sites). Patients responded to the question “pain types 

experienced in the last month” (field: 6159), with either ‘None of the above’; ‘Prefer not to 

answer’; pain at seven different body sites (head, face, neck/shoulder, back, 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41202
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41204
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stomach/abdomen, hip, knee); or ‘all over the body’. Patients could select any number of pain 

sites, and then were additionally asked (category: 100048) whether this pain had lasted for 3 

months or longer. Those who answered ‘all over the body’ could not also select from the 

seven sites, so were excluded. 

4.2.2 Association Analysis 

Association between pain and depression phenotypes in both PD cohorts was tested 

to observe potential correlation between PD symptoms. In the Proband cohort, correlation 

between UPDRS PD pain score and Leeds depression score was measured. In the UKBB cohort, 

correlation between the number of chronic pain sites and presence/absence of a broad 

depression phenotype was measured. Linear regression analysis was performed using 

RStudio 1.4.1106, with age and sex included as confounding factors. 

4.2.3 GWAS 

All GWAS and principal component analysis (PCA) were performed using Plink version 

1.9. PCA was performed to generate principal components (PCs) to use as covariates in the 

association analysis to control for genetic variation within the population. For each PCA, the 

Proband or UKBB dataset was merged with the FIN, CHB and YRI samples from 1000 genomes 

reference genotype data, and the resulting dataset LD pruned. This ensures the PCAs 

represent population structure and not LD. This merged dataset was then used for a PCA for 

each cohort. These principal components represent population stratification, and are 

important to use as covariates so that association with the phenotype is not explained by 

population structure. 

4.2.3.1 GWAS of Depression in Proband cohort 

The Proband cohort was used to conduct a GWAS of depression in PD. Depression 

phenotype data was available for 1,820 samples, with their LADS depression scores used for 

a linear regression GWAS. SNPs were excluded according to the following QC thresholds: 

imputation quality (INFO) > 0.8, missingness (GENO) > 0.01, minor allele frequency (MAF) < 

0.001, and HWE P value < 1 x 10−5. A linear regression of the principal components was 

conducted to test association with the depression phenotype. The three principal 

components that were associated (P < 0.05) with depression phenotype (PC7, PC13 and PC16) 

were used as covariates to perform the GWAS. 
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4.2.3.2 GWAS of MCP in UKBB cohort 

UKBB PD samples were used to conduct a GWAS of multisite chronic pain in PD. 1,394 

samples in total were included in this analysis. SNPs were excluded according to the following 

QC thresholds: imputation quality (INFO) > 0.4, missingness (GENO) > 0.05, minor allele 

frequency (MAF) < 0.01, and HWE P value < 1 x 10−6. The number of chronic pain sites was 

used as a phenotype to perform a linear regression analysis. A linear regression of the 

principal components was conducted to test association with the MCP phenotype. As no 

principal components were associated with the MCP phenotype, PCs 1-5 were included as 

covariates in the GWAS along with age and sex. 

4.2.3.3 GWAS of Depression in UKBB cohort 

UKBB PD samples were also used for a GWAS of broad depression (BD) in PD. There 

were 563 PD cases with BD and 831 PD cases without BD. SNPs were excluded according to 

the following QC thresholds: imputation quality (INFO) > 0.4, missingness (geno) > 0.05, minor 

allele frequency (MAF) < 0.01, and HWE P value < 1 x 10−6. The BD phenotype was used to 

perform a logistic regression analysis. A logistic regression of the principal components was 

conducted to test association with the BD phenotype As PC18 was the only principal 

component associated with the BD phenotype, this was included as a covariate in the GWAS 

along with age and sex. 

4.2.4 Polygenic Risk Score Analysis  

To test correlation between genetic risk factors for MDD and depression in PD, and 

MCP and pain in PD, a polygenic risk score (PRS) analysis was conducted. This involves 

generating a PRS for MDD/MCP for each PD sample using the summary statistics from a 

‘discovery’ MDD/MCP GWAS dataset containing effect size and association P value data for 

each SNP allele. The combined effect size of all SNPs carried in individuals from the PD ‘target’ 

sample constitutes their PRS for the given phenotype in a discovery sample. This PRS can then 

be tested for association with a different phenotype in the target sample. For example, if PRS 

for MDD is associated with the depression phenotype in the PD samples from the Proband or 

UKBB samples, this would indicate a shared genetic association between MDD and PD 

depression, and likewise with chronic pain. 
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PRS were calculated using Plink version 1.9. GWAS summary statistics from the Wray 

2018 MDD meta-analysis and the Johnston 2019 MCP GWAS were used as discovery samples, 

with those excluding 23 and me used for the Proband PRS and those excluding both 23 and 

me and the UKBB sample used or the UKBB PRS. To identify independent causal SNPs to use 

to calculate the PRS, SNP LD clumping was performed so that for SNPs within 250kb of an 

index SNP, those with R2 > 0.1 were removed. PRS scores were calculated using Plink –score 

function, using SNPs from a range of SNP P thresholds (P </= 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 

0.5). Regression analysis between PRS and target sample phenotype was also calculated using 

the glm regression function in R studio, with principal components 1-5, age and sex included 

as control variables. This was repeated for PRS at each of the P value thresholds. The best fit 

P value threshold (pT) was generated in R Studio by calculating the Nagelkerke R2 value for 

each, and the pT with the higher R2 taken as explaining the greatest proportion of variance.  

4.2.5 Mendelian Randomisation 

4.2.5.1 Two-sample Mendelian Randomisation 

Two sample Mendelian randomisation tests were conducted using the TwoSampleMR 

R package (version 3.5). Instrumental variables (IVs) were selected based on association with 

the exposure, at genome-wide significance (P < 5 x 10-8) for the meta-analysis or at a 

suggestive significance threshold (P < 5 x 10-6) for the remaining GWAS. This allowed inclusion 

of suggestive instruments from GWAS where genome-wide significant results were not 

produced, and reduced winners curse bias. 

Exposure instruments were LD clumped according to the recommended parameters 

in the TwoSampleMR package to ensure all were independent instruments before 

harmonising with outcome data. These parameters included clumping within a window of 

10,000kb at an R2 of 0.001. 

The Inverse Variance Weighted (IVW) method was used as the primary MR test, with 

sensitivity analysis applied including the MR-Egger, Simple Mode, Weighted Mode, Weighted 

Median and MR-RAPS methods. These tests each have different assumptions, and so test the 

validity of the IV assumptions under different conditions.  

• IVW: The IVW method tests association based on the assumption that all 

instruments are valid, or that if pleiotropic effects are present they are balanced. 
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Whilst this test has the greatest statistical power, it can be biased if the pleiotropic 

effect is unbalanced (does not equal zero). 

• MR-Egger: This method uses the slope from the weighted regression of the 

variant-outcome associations on the variant-exposure associations to estimate 

the causal effect. This takes the intercept as the average pleiotropic effect, based 

on the assumption that pleiotropy is independent of the variant-exposure 

associations (InSIDE assumption). This results in bias when this assumption is 

violated and is also sensitive to outliers. 

• Mode: Mode based methods assume more variants estimate true causal effect 

than any other quantity (plurality valid). This is robust to outliers, yet a more 

conservative approach 

• Median: Median based methods are similar to mode except they assume the 

majority of instruments are valid. This is also robust to outliers. 

Other measures used to assess the reliability of the tests conducted included the MR 

Egger intercept, a test of potential pleiotropic effects; the Q statistic, a measure of 

heterogeneity between IVs of the exposure; and the F statistic to assess the strength of the 

instruments used, with a value >10 indicating absence of weak instrument bias. 

The following exposure and outcome combinations were tested in this way:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 33: Combinations of exposures and outcomes tested in the two sample MR approach 

Exposure Outcome 

Pain in PD (Proband) MDD 

Depression in PD (UKBB) 

Broad Depression in PD (UKBB) Pain in PD (Proband) 

Multisite chronic pain 

Multisite chronic pain (MCP) Depression in PD (Proband) 

Depression in PD (UKBB) 

MDD 

MDD Multisite chronic pain 

Pain in PD (Proband) 

MCP in PD (UKBB) 

MCP in PD (UKBB) Depression in PD (Proband) 
MDD 

Depression in PD (Proband) MCP in PD (UKBB) 

Multisite Chronic Pain 
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4.2.5.2 GWAS datasets 

Summary statistics for different existing GWAS were obtained to complete the 

samples needed for the two sample MR approach. 

A GWAS of pain in PD was previously performed using the Proband and Oxford PD 

cohort (13). PD patients had been divided into 2 groups that represented patients with no/low 

pain (McGill score < 3 and Visual Analog Scale severity <2) and high pain (McGill Score ≥ 3 and 

Visual Analog Scale severity ≥2). The GWAS was performed with 898 PD cases with pain and 

420 PD cases with no/low pain. 

For the multisite chronic pain (MCP) phenotype, data was extracted from the recent 

MCP GWAS (126). 387,649 UKBB samples were included, with number of chronic pain sites 

used as the phenotype ranging from 0-7. 

For the major depressive disorder (MDD) phenotype, data from a recent meta-analysis 

was used excluding 23 and Me samples (127). 135,458 cases with an MDD diagnosis or 

equivalent were used with 344,901 controls from various cohorts for this GWAS analysis. For 

two-sample MR tests including UKBB PD samples, results from the MDD meta-analysis 

excluding both the 23 and Me and UKBB samples were used. 
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4.3 Results 

4.3.1 Association analysis 

Regression analysis was first conducted to attempt to replicate the association found 

between pain and depression in PD observed previously (4,10). Within the Proband cohort, 

association was tested between the Leeds depression score and UPDRS pain score of samples, 

adjusted for age and sex. These were significantly positively associated (ß = 1.20, P = 2 x 10-

16, adjusted R2 = 0.17). Within the UKBB PD cohort, association was tested between the 

number of chronic pain sites and the presence of a broad depression phenotype in samples, 

adjusted for age and sex. These phenotypes were also significantly positively associated (ß = 

0.05, P = 5.56 x 10-6, adjusted R2 = 0.03). This indicates that there is a positive correlation 

between experiencing pain and depression in PD. However, this does not indicate presence 

of causative relationship. 

4.3.2 GWAS 

4.3.2.1 GWAS of Depression in PD (Proband) 

To test the genetic associations with depression in PD, a GWAS was conducted on the 

depression phenotype of PD Proband samples. Table 34 shows the number of samples with 

each self-reported LADS depression score, from 0 for healthy to 18 for severely depressed. 

There were no genome-wide significant associations identified in the results from this 

GWAS, but multiple that crossed the suggestive significance threshold (Figure 4-2). These are 

distributed across various chromosomes, with the top 20 of these associated SNPs listed in 

Table 35. There was no sign of genomic inflation (Genomic Inflation Factor = 0.99). The most 

significantly associated SNP is located within the ASXL2 gene. Among the most significantly 

associated SNPs is rs12765904, an intronic variant in ZNF33B that also acts as an sQTL (splicing 

QTL) for the same gene. Expression levels of ZNF33B have been associated with suicide 

attempts in major depressive disorder (128), indicating this could be of potential biological 

significance for PD depression. 
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Table 34: Distribution of Leeds Depression Score (LADS) across the Proband cohort. 

 

 

. 

 

Leeds Depression Score Sample no. 
0 252 

1 180 

2 221 

3 222 
4 221 

5 172 

6 143 
7 115 

8 87 

9 76 

10 58 
11 30 

12 15 

13 9 
14 10 

15 2 

16 3 

17 0 
18 0 

Figure 4-2: Manhattan plot for the Proband GWAS of depression in PD: 

Association results from the linear GWAS of depression scores in the Proband cohort. The red line 
indicates genome wide significant threshold, and the blue line indicates the suggestive significance 
threshold. No genome wide significant associations were identified 
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CHR SNP BP A1 BETA P 

2 2:25981549 25981549 GT -0.5595 1.80E-06 

13 rs368229332 93050447 T 1.96 1.91E-06 

10 rs12765904 43073561 A 5.031 2.25E-06 

5 rs187185731 163976625 T 5.315 2.42E-06 

2 2:26022849 26022849 CA -0.5431 2.54E-06 

1 rs2504032 179701403 T -0.5179 2.63E-06 

10 rs7909331 11205224 G -0.6694 3.20E-06 

3 rs9846248 144992508 C 0.7544 3.48E-06 

10 10:11207166 11207166 TC -0.6651 3.55E-06 

3 rs9818054 145006500 A 0.752 3.81E-06 

3 rs9855632 145006499 T 0.752 3.81E-06 

7 7:71051664 71051664 G -0.5488 3.88E-06 

5 rs1191746 119412658 A -0.4908 4.27E-06 

2 2:26032165 26032165 GAA -0.5324 4.34E-06 

3 rs16856636 145025038 C 0.7489 4.55E-06 

3 rs1822905 145024118 T 0.7489 4.55E-06 

3 rs1596719 144988130 C 0.7475 4.66E-06 

12 rs12422530 103482733 A 0.6072 4.72E-06 

2 2:25979334 25979334 G -0.5256 4.84E-06 

3 3:145013732 145013732 G 0.7438 4.93E-06 

Table 35 : Results of Proband depression GWAS 

Top 20 suggestive significant SNPs from the Proband GWAS of depression in PD 

Figure 4-3: QQ plot for the Proband GWAS of depression in PD 

Quantile-quantile plot of the GWAS, showing observed P values vs expected P values 



Chapter 4: Investigating the Causal Relationship Between Pain and Depression in PD 

 95 

4.3.2.2 GWAS of Depression in PD (UKBB) 

To test the genetic association of depression in PD in an alternative dataset, a GWAS 

of depression in PD was also conducted in the UKBB PD samples. The phenotype tested was 

‘broad depression’ in PD, with 563 PD cases with BD and 831 PD cases without BD. This GWAS 

also found no genome wide significant associations, but again several SNPs passing the 

suggested significance threshold (Figure 4-4). The top 20 associated SNPs are listed in Table 

36. There was no evidence of genome inflation (Genomic Inflation Factor = 1.01). 

The top associated SNPs include rs8021933 at chromosome 14, which is located within 

a long noncoding RNA, rs113628522 at chromosome 3 which is located within GTF2E1, and 

rs116725867 at chromosome 12 which is located within KDM5A, and also an eQTL for KDM5A. 

This genetic association is of biological interest, as hypothalamic levels of KDM5A have been 

linked to post-partum depression in a rat model (129). 

 

 

 

 

Figure 4-4: Manhattan plot for the UKBB GWAS of depression in PD 

Association results from the logistic GWAS of broad depression in the UKBB cohort. The 
red line indicates genome wide significant threshold, and the blue line indicates the 
suggestive significance threshold. No genome wide significant associations were 
identified 
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CHR SNP BP A1 OR P 

14 rs8021933 50475405 C 1.546 2.09E-07 

14 rs8020990 50475426 A 1.537 2.98E-07 

3 rs73031851 14542762 A 1.484 1.84E-06 

3 rs113628522 120482991 T 2.764 2.92E-06 

14 rs2355655 50474531 A 1.523 3.14E-06 

3 rs4684228 14556175 A 1.452 3.26E-06 

14 rs11157717 50474754 A 1.506 4.13E-06 

17 rs79830835 39164353 C 1.602 4.44E-06 

17 rs6503759 54826065 G 0.6619 4.57E-06 

14 rs2526935 73076595 C 1.434 4.57E-06 

17 rs6503760 54826089 A 0.6615 4.66E-06 

12 rs116725867 433630 C 2.868 5.42E-06 

12 rs145520591 431276 C 2.868 5.42E-06 

12 rs148698001 457146 C 2.868 5.42E-06 

12 rs16929140 389801 A 2.868 5.42E-06 

12 rs16929352 417321 A 2.868 5.42E-06 

12 rs16929362 418046 G 2.868 5.42E-06 

12 rs7297011 451918 A 2.868 5.42E-06 

12 rs75755418 418424 C 2.868 5.42E-06 

12 rs76971761 436293 A 2.868 5.42E-06 

Table 36: Results of UKBB depression GWAS 

Top 20 suggestive significant SNPs from the UKBB GWAS of depression in PD. 

Figure 4-5: Figure 4: QQ plot for the UKBB GWAS of depression in PD 

Quantile-quantile plot of the GWAS, showing observed p values vs expected p values. 
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4.3.2.3 GWAS of MCP in PD (UKBB) 

The UKBB PD sample was also used for a GWAS of multi-site chronic pain in PD. Table 

37 lists the number of PD samples with each number of self-reported chronic pain sites.  

 

 

 

 

 

 

 

Table 37: Number of chronic pain sites in UKBB PD samples 

Distribution of multisite chronic pain (MCP) phenotype within the UKBB PD samples 

 

There were again no genome wide significant associations resulting from this GWAS, 

but several variants that crossed the suggestive significant threshold (Figure 4-6). The top 

associated SNPs are listed in Table 38. There was no evidence of genomic inflation (Genomic 

inflation factor = 1.00). The top associated SNP rs11787328 within chromosome 8 is an 

intronic variant in NRG1, levels of which have been related to neuropathic pain in a rat model 

(130). 

Chronic pain sites Samples 

0 623 

1 363 

2 220 

3 133 

4 40 

5 10 

6 5 

7 0 

Total: 1394 
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Figure 4-6: Manhattan plot for the UKBB GWAS of MCP in PD 

Association results from the logistic GWAS of multisite chronic pain (MCP) in the UKBB 
cohort. The red line indicates genome wide significant threshold, and the blue line 
indicates the suggestive significance threshold. No genome wide significant associations 
were identified. 

Figure 4-7: QQ plot for the UKBB GWAS of MCP in PD 

Quantile-quantile plot of the GWAS, showing observed p values vs 
expected p values. 
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CHR SNP BP A1 BETA P 

8 rs11787328 32024297 T 1.021 2.88E-07 

5 rs111848133 142472408 T 1.163 3.99E-07 

8 rs149157041 32055503 A 0.968 8.38E-07 

2 rs181629690 243013288 T 1.944 1.46E-06 

3 rs145972844 16533323 A 0.7314 1.60E-06 

3 rs113031786 16511074 T 0.7284 1.66E-06 

9 rs73642017 10573215 A 0.4304 1.85E-06 

9 rs73642018 10573216 G 0.4304 1.85E-06 

4 rs35368229 122163771 A 0.3768 1.99E-06 

4 rs73843561 122165084 T 0.3768 1.99E-06 

6 rs2475509 39890217 G -0.235 2.35E-06 

1 rs7532316 112176753 G 0.2143 2.36E-06 

4 rs34150800 122169908 G 0.3749 2.43E-06 

4 rs2877748 174102397 G -0.2276 2.64E-06 

1 rs11102320 112169145 G 0.2134 2.70E-06 

1 rs3904831 112169812 A 0.213 2.75E-06 

4 rs13125905 122175720 G 0.3734 2.76E-06 

8 rs184752533 83997828 A 1.007 2.98E-06 

4 rs6826412 174109622 C -0.2265 2.98E-06 

4 rs6851632 174109611 A -0.2265 2.98E-06 

Table 38: Results of UKBB MCP GWAS 

Top 20 suggestive significant SNPs from the UKBB GWAS of MCP in PD 

 

4.3.3 Polygenic Risk Score  

4.3.3.1 PRS of MDD in PD Depression cohorts 

To test the genetic correlation between MDD and depression in PD, PRS for MDD was 

calculated within the Proband and UKBB PD cohorts. The PRS was then tested for association 

with depression phenotype. PRS was calculated by combining the effect sizes of all variants 

carried by a sample with an MDD association P value below a certain threshold (pT). The 

number of independent SNPs used to calculate the PRS at each pT is provided in tables 39 and 

40. Effect size and P value provided are the result of association analysis to calculate the 

association between the PRS and depression in PD phenotype.  
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pT N SNPS EFFECT SIZE P VALUE GOODNESS OF FIT* 
0.001 4814 4.14 0.92 6.68E-06 

0.05 109334 389.04 0.09 2.04E-03 

0.1 187750 445.62 0.16 1.42E-03 

0.2 315082 906.79 0.02 3.61E-03 
0.3 419730 841.69 0.08 2.16E-03 

0.4 507228 735.38 0.17 1.36E-03 

0.5 582366 708.19 0.22 1.07E-03 
Table 39: PRS analysis for BD in PD (UKBB sample)  

Results of MDD PRS association with broad depression phenotype in the UKBB PD sample. PRS for pT <0.2 
has the highest R2, indicating it represents the greatest proportion of variance. The p value = 0.024, 
indicating a potential significant association between MDD PRS and depression phenotype. However this is 
not repeated across other tests. 

Table 39 shows the results of this analysis for broad depression (BD) in PD as measured 

in the UKBB PD sample. The pT threshold which provided the best proportion of variance 

explained by the PRS is 0.2. At this pT, PRS explained 0.36% difference between the depressed 

and non-depressed PD samples. Depressed PD samples had a significantly higher PRS for 

major depressive disorder (P = 0.024, effect size = 906.79). However, this was the only test in 

which P < 0.05 was reached, with P values at other pT thresholds all consistently larger. This 

indicates a lack of strong evidence for a shared genetic background between MDD and BD in 

PD. 

pT N SNPS EFFECT SIZE P VALUE GOODNESS OF FIT* 

0.001 3326 230 0.33 2.15E-04 
0.05 57594 369.9 0.74 2.58E-05 

0.1 94392 1134 0.43 1.41E-04 

0.2 152260 847 0.64 4.82E-05 

0.3 198594 2200 0.29 2.48E-04 
0.4 237402 2880 0.20 3.66E-04 

0.5 269568 1716 0.49 1.07E-04 
Table 40: PRS analysis for depression in PD (Proband sample)  

Results of MDD PRS association with depression phenotype in the Proband PD sample. PRS for pT <0.4 has 
the highest R2, indicating it represents the greatest proportion of variance. The p value = 0.20, indicating 
no significant association between MDD PRS and depression phenotype. 

Table 40 shows the results of this analysis for depression in PD as measured in the 

Proband sample. The pT level which provided the best proportion of variance explained by 

the PRS is 0.4. At this pT, PRS explained 0.0037% of the difference between the depression 

score of the PD samples. PD samples with higher depression scores did not show a 

significantly higher PRS for MDD in this pT PRS test (P = 0.20, effect size = 2880), indicating no 

shared genetic risk between depression in PD and MDD in this cohort. 



Chapter 4: Investigating the Causal Relationship Between Pain and Depression in PD 

 101 

4.3.3.2 PRS of MCP in PD Pain cohort 

To test the genetic correlation between MCP and pain in PD, PRS for MCP was 

calculated within the Proband PD cohorts. The PRS was then tested for association with 

UPDRS pain phenotype. The UKBB cohort was not tested to avoid sample overlap between 

the base and target data, which can inflate the association Table 41 shows the results from 

the PRS analysis. 

 

pT N SNPS EFFECT SIZE P VALUE GOODNESS OF FIT* 

0.001 5788 816.965 0.33 1.95E-04 

0.05 54500 6.611e+03 0.046 8.00E-04 

0.1 85034 9.391e+03 0.035 8.97E-04 

0.2 126332 1.026e+04 0.085 5.99E-04 

0.3 158594 1.289e+04 0.070 6.64E-04 

0.4 185662 1.831e+04 0.024 1.03E-03 

0.5 208280 2.094e+04 0.020 1.09E-03 
Table 41: PRS analysis for pain in PD (Proband sample)  

Results of MCP PRS association with pain phenotype in the Proband PD sample. PRS for pT <0.5 has the 
highest R2, indicating it represents the greatest proportion of variance. The p value = 0.024, indicating no 
significant association between MDD PRS and depression phenotype. 

 

The pT level which provided the best proportion of variance explained by the PRS is 

pT < 0.5. At this pT, PRS explained 0.0011% of the difference between the depression score 

of the PD samples. PD samples with higher pain scores did show a significantly higher PRS for 

MCP in this pT PRS test (P = 0.024, effect size = 1.831 x 104). Whilst all tests did not indicate a 

significant association between MCP PRS and pain phenotype, the majority did align with the 

pT < 0.5 result which indicates a shared genetic risk between pain in PD and MCP in this 

cohort. 

4.3.4 Two-sample Mendelian Randomisation  

To establish if a causal relationship exists between pain and depression in PD, multiple 

two sample Mendelian randomisation tests were carried out. Each of the following sections 

details the results from each phenotype tested as an exposure. 

4.3.4.1 Multisite Chronic Pain  

General MCP was tested as an exposure with MDD and depression in PD (Proband) as 

outcomes. There were 37 independent IVs selected (F stat = 36.14). Two SNPs were missing 

from the MDD dataset with no appropriate proxies, and 3 were missing from the Proband 
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dataset, with a further 3 excluded for incompatible alleles. MCP was found to have a positive 

significant causal effect on MDD (ß = 0.69, P = 3.79 x 10-7, SE = 0.14). This was replicated across 

the MR RAPS and weighted median tests performed. However, the MR Egger test showed 

insignificant association, and although the ß was in the same direction, the effect was largely 

reduced compared to the sensitivity tests (Table 42, Figure 4-8A). This indicates that these 

instruments could be pleiotropic and affect MDD through pathways other than MCP, as 

originally suggested by Johnston et al (126). Significant heterogeneity was also detected 

(Table 43), which also indicates potential violation of the IV assumptions and that this is not 

a true causative association. 

MCP was not observed to have a significant causal effect on depression in PD as 

measured in the Proband cohort (IVW ß = 1.60, P = 0.22, SE = 1.30) (Table 42, Figure 4-8B). 

 

Samples MR 

Exposure Outcome Method 
No. 
SNP 

Beta SE P val 

Multisite 
chronic 
pain 

Depression 
in PD 
(Proband) 

MR Egger 31 2.45 6.27 0.70 

Weighted 
median 

31 1.30 1.81 0.47 

IVW 31 1.60 1.30 0.22 

Simple mode 31 2.45 3.66 0.51 

Weighted mode 31 2.26 3.84 0.56 

MDD 

MR Egger 35 0.01 0.68 0.99 

Weighted 
median 

35 0.64 0.16 9.42E-05 

IVW 35 0.69 0.14 3.79E-07 

Simple mode 35 1.09 0.38 7.00E-03 

Weighted mode 35 1.00 0.41 0.021 

Table 42: MR results for MCP exposure: 

 Two sample MR results for the effect of multisite chronic pain (MCP exposure on both depression in PD 
(UKBB and Proband) and major depressive disorder (MDD) outcomes. Significant causal relationships were 
observed for MDD as an outcome; however this is likely not a true causative association. 
 

Samples Heterogeneity 

Exposure Outcome Method Q Q df Q pval 

Multisite 
chronic pain 

Depression in 
PD (Proband) 

MR Egger 28.41 29 0.5 

IVW 28.43 30 0.55 

MDD 
MR Egger 53.14 33 0.015 

IVW 54.85 34 0.013 
Table 43: Heterogeneity results for multisite chronic pain (MCP) exposure 

Q statistic results to test heterogeneity of instrumental variables used in the IVW and MR Egger tests 
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Samples Pleiotropy test 

Exposure Outcome Method 
Egger 
intercept 

SE P val 

Multisite 
chronic pain 

Depression in PD 
(Proband) 

MR Egger -0.015 0.11 0.89 

MDD MR Egger 0.012 0.011 0.31 
Table 44: MR Egger intercept for MCP exposure 

MR Egger intercept tests potential pleiotropic effects of instrumental variables in each two sample MR test. 

 

 

4.3.4.2 Major Depressive Disorder 

MDD was also tested as an exposure on chronic pain outcomes, with 35 independent 

IVs selected for MDD including UKBB samples, and 44 independent IVs selected for the MDD 

exposure excluding UKBB samples (F stat = 37.01). All IVs were present in the MCP dataset, 

but the MCP in PD UKBB dataset had 9 missing SNPs and the Proband dataset had 7, with no 

suitable proxies. Similarly to the Johnston study, MDD was found to show a significant positive 

causative effect on MCP as tested in the IVW (ß =0.05, P = 1.86 x 10-4, SE = 0.01). However, 

the MR Egger approach showed an insignificant effect and a reversal of the ß effect sign, 

indicating pleiotropic instruments and inconsistent causal estimates (Table 45, Figure 4-9A). 
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Figure 4-8 Two Sample MR Scatter plot for MCP exposure: 

The SNP effect on the exposure (MCP) is plotted against the effect on each outcome, with lines fitted for 
each of the MR tests conducted. The outcomes of major depressive disorder (MDD) (A), depression in PD 
(Proband) (B) are shown. The slope of each line corresponds to the causal effect estimated by the test. 
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The test of heterogeneity also indicated significant heterogeneity amongst the instruments, 

also indicating that this is not a true causal effect (Table 46). 

MDD also did not show any significant causal effect on multisite chronic pain in PD as 

measured in the UKBB cohort (IVW ß = 0.28, P = 0.12, SE = 0.18) (Figure 4-9B) or on pain in 

PD as measured in the Proband cohort (IVW ß = 0.24, P = 0.66, SE = 0.55) (Figure 4-9C). 

Samples MR 

Exposure Outcome Method No. SNP Beta SE P val 

MDD 

Multisite 
chronic pain 

MR Egger 44 -0.03 0.05 0.53 
Weighted 
median 

44 0.03 0.01 0.021 

IVW 44 0.05 0.01 1.86E-04 

Simple mode 44 0.03 0.03 0.34 

Weighted mode 44 0.03 0.03 0.30 

Pain in PD 
(Proband) 

MR Egger 28 -2.65 3.52 0.46 

Weighted 
median 28 -0.13 0.77 0.87 

IVW 28 0.24 0.55 0.66 

Simple mode 28 2.760 1.82 0.14 

Weighted mode 28 -0.18 1.55 0.91 

MCP in PD 
(UKBB) 

MR Egger 35 0.18 0.61 0.77 

Weighted 
median 35 

-0.03 0.26 0.91 

IVW 35 0.28 0.18 0.12 

Simple mode 35 -0.43 0.60 0.48 

Weighted mode 35 -0.41 0.56 0.48 

Table 45: MR results for MDD exposure: 

Two sample MR results for the effect of major depressive disorder (MDD) exposure on both pain in PD (UKBB 
and Proband) and multisite chronic pain (MCP) outcomes. Significant causal relationships were observed 
for MCP as an outcome, however inconsistent ß estimate was observed in the MR Egger test of sensitivity. 

 

Samples Heterogeneity 

Exposure Outcome Method Q Q df Q pval 

MDD 

Multisite chronic pain 
MR Egger 112.99 42 2.00E-08 

IVW 121.81 43 1.83E-09 

Pain in PD (Proband) 
MR Egger 25.04 26 0.52 

IVW 25.73 27 0.53 

MCP in PD (UKBB) 
MR Egger 35.60 33 0.35 

IVW 35.63 34 0.39 

Table 46: Heterogeneity results for major depressive disorder (MDD) exposure 

Q statistic results to test heterogeneity of instrumental variables used in the IVW and MR Egger tests. 
Significant heterogeneity amongst instruments used for the MR including MCP as the outcome was 
detected. 
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Samples Pleiotropy test 

Exposure Outcome Method Egger 
intercept 

SE P val 

MDD 

Multisite chronic pain MR Egger 0.005 0.003 0.08 

Pain in PD (Proband) MR Egger 0.09 0.11 0.41 

MCP in PD (UKBB) MR Egger 0.006 0.035 0.87 

Table 47: MR Egger intercept for MDD exposure 

MR Egger intercept tests potential pleiotropic effects of instrumental variables in each two sample MR test. 
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Figure 4-9 Two Sample MR Scatter plot for MDD 
exposure: 

The SNP effect on the exposure is plotted against 
the effect on the outcome, with lines fitted for 
each of the MR tests conducted. The outcomes of 
multisite chronic pain (MCP) (A), MCP in PD 
(UKBB) (B) and pain in PD (Proband) (C) are 
shown. The slope of each line corresponds to the 
causal effect estimated by the test. 
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4.3.4.3 Pain in PD (Proband) 

Pain in PD as measured in the Proband cohort was used as an exposure, with 7 

independent SNPs out of the 106 passing the P value threshold (P < 5 x 10-6) used as 

instrumental variables (F stat = 24.51). One SNP was missing from the MDD dataset, with no 

proxies available. The results showed no evidence for a causative effect on either general 

MDD or depression in PD as measured in the UKBB cohort. The IVW test was used to assess 

the effect on MDD as the outcome (ß = 2.12 x 10-5, P = 1, SE = 0.01), and also with depression 

in PD as the outcome (ß = 7.17 x 10-3, P = 0.94, SE = 0.09), both of which were insignificantly 

associated (Table 48) (Figure 4-10).  

Samples MR 
Exposure Outcome Method No. SNP Beta SE P val 

Pain in PD 
(Proband) 

BD in PD 
(UKBB) 

MR Egger 7 -1.02E-02 0.6 0.99 

Weighted median 7 -8.86E-03 0.1 0.93 

IVW 7 7.17E-03 0.09 0.94 

Simple mode 7 -9.76E-02 0.16 0.56 

Weighted mode 7 -2.31E-02 0.15 0.88 

MDD 

MR Egger 6 1.95E-02 0.06 0.77 

Weighted median 6 -4.66E-03 0.01 0.67 

IVW 6 2.12E-05 0.01 1 

Simple mode 6 -1.03E-02 0.02 0.53 

Weighted mode 6 -9.52E-03 0.01 0.49 

Table 48: MR results for Pain in PD (Proband) exposure: 

Two sample MR results for the effect of the pain in PD (Proband) exposure on both major depressive disorder 
(MDD) and depression in PD (UKBB) outcomes indicate no causative associations are present. 

 

Samples Heterogeneity 

Exposure Outcome Method Q Q df Q pval 

Pain in PD 
(Proband) 

BD in PD (UKBB) 
MR Egger 8.21 5 0.14 
IVW 8.21 6 0.22 

MDD 
MR Egger 5.99 4 0.19 

IVW 6.14 5 0.29 
Table 49: Heterogeneity results for Pain in PD (Proband) exposure 

Q statistic results to test heterogeneity of instrumental variables used in the IVW test indicate no significant 
heterogeneity within the instrumental variables. 
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Samples Pleiotropy test 
Exposure Outcome Method Egger intercept SE P val 

Pain in PD 
(Proband) 

BD in PD (UKBB) MR Egger 0.01  0.34  0.98 

MDD MR Egger -0.01 0.03 0.77 
Table 50: MR Egger intercept for Pain in PD (Proband) exposure 

MR Egger intercept to test potential pleiotropic effects of instrumental variables in each two sample MR 
test indicated no significant pleiotropy within the two MR tests. 

 

 

4.3.4.4 Multisite Chronic Pain in PD (UKBB) 

MCP in PD as measured in the UKBB cohort was then used as an exposure to test the 

causal effect on MDD (excluding UKBB samples) and Depression in PD (Proband) as outcomes. 

16 independent IVs out of 49 passing the P value threshold (P < 5 x 10-6) were selected for this 

exposure (F stat = 22.15). 8 SNPs were missing from the MDD data with 4 appropriate proxy 

variants available, so 12 IVs were used in total. 9 SNPs were present in the depression in PD 

Proband samples with one suitable proxy variants present, so 10 IVs were used in total. MCP 

in PD was not found to have a causal effect on MDD as measured by the IVW (ß = -2.47 x 10-

3, P = 0.87, SE = 0.01), (Table 51) (Figure 4-11A), and likewise on depression in PD (ß = 0.16, P 

= 0.43, SE = 0.21). (Table 51) (Figure 4-11B). 
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Figure 4-10: Two Sample MR Scatter plot for Pain in PD (Proband) exposure: 

The SNP effect on the exposure is plotted against the effect on the outcome, with lines fitted for each of the 
MR tests used. The outcomes of major depressive disorder (MDD) (A) and depression in PD (B) are shown. 
The slope of each line corresponds to the causal effect estimated by the test. No significant causal 
association was identified. 
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Samples MR 
Exposure Outcome Method No. SNP Beta SE P val 

MCP in PD 
(UKBB) 

Depression 
in PD 
(Proband) 

MR Egger 10 0.21 0.63 0.74 

Weighted 
median 

10 
-0.07 0.23 0.76 

IVW 10 0.16 0.21 0.43 

Simple mode 10 -0.17 0.38 0.66 

Weighted mode 10 -0.17 0.35 0.64 

MDD 

MR Egger 12 -1.54E-02 0.03 0.66 

Weighted 
median 

12 
6.63E-03 0.02 0.73 

IVW 12 -2.47E-03 0.01 0.87 

Simple mode 12 4.70E-03 0.03 0.86 

Weighted mode 12 1.14E-02 0.03 0.66 
Table 51: MR results for MCP in PD (UKBB) exposure: 

Two sample MR results for the effect of the multisite chronic pain (MCP) in PD (UKBB) exposure on both 
major depressive disorder (MDD) and depression in PD (Proband) outcomes indicate no causal associations 
are present. 

 

Samples Heterogeneity 

Exposure Outcome Method Q Q df Q pval 

MCP in PD 
(UKBB) 

Depression in 
PD (Proband) 

MR Egger 15.71 8 0.047 

IVW 15.73 9 0.073 

MDD 
MR Egger 8.49 10 0.58 
IVW 8.67 11 0.65 

Table 52: Heterogeneity results for MCP in PD (UKBB) exposure 

Q statistic results to test heterogeneity of instrumental variables used in the IVW test indicate no significant 
heterogeneity within the instrumental variables. 

 

Samples Pleiotropy test 

Exposure Outcome Method Egger 
intercept 

SE P val 

MCP in PD 
(UKBB) 

Depression in PD (Proband) MR Egger -0.016 0.19 0.94 

MDD MR Egger 0.005 0.012 0.68 
Table 53: MR Egger intercept for MCP in PD (UKBB) exposure 

MR Egger intercept to test potential pleiotropic effects of instrumental variables in each two sample MR 
test indicated no significant pleiotropy within the two MR tests. 
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4.3.4.5 Depression in PD (UKBB) 

Six independent IVs were selected that passed the P value threshold (P < 5 x 10-6) for 

the exposure of broad depression (BD) in PD as measured by the UKBB cohort (F stat = 23.56). 

Three of these were present in the Proband dataset, with no appropriate proxies available. 

This exposure was found to not have a causative effect on pain in PD as measured in Proband 

cohort (ß = 0.10, P = 0.61, SE = 0.19) (Table 54) (Figure 4-12). This was reflected across all 

other sensitivity analyses.  

Samples MR 

Exposure Outcome Method No. SNP Beta SE P val 

BD in PD 
(UKBB) 

Pain in PD 
(Proband) 

MR Egger 3 -3.33 1.69 0.30 

Weighted median 3 0.03 0.17 0.87 

IVW 3 0.10 0.19 0.61 

Simple mode 3 7.41E-04 0.23 1.00 

Weighted mode 3 -0.02 0.22 0.92 
Table 54: MR results for Depression in PD (UKBB) exposure: 

Two sample MR results for the effect of the Broad depression (BD) in PD (UKBB) exposure on pain in PD 
(Proband). No significant causal relationships were observed. 
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Figure 4-11: Two Sample MR Scatter plot for MCP in PD (UKBB) exposure: 

The SNP effect on the exposure is plotted against the effect on the outcome, with lines fitted for each of 
the MR tests conducted. The outcomes of major depressive disorder (MDD) (A) and depression in PD (B) 
are shown. The slope of each line corresponds to the causal effect estimated by the test. No significant 
causal association was identified.  
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Samples Heterogeneity 
Exposure Outcome Method Q Q df Q pval 

BD in PD 
(UKBB) 

Pain in PD 
(Proband) 

MR Egger 0.12 1 0.76 

IVW 6.58 2 0.12 
Table 55: Heterogeneity results for Depression in PD (UKBB) exposure 

Q statistic results to test heterogeneity of instrumental variables used in the IVW and MR Egger tests 
indicate no significant heterogeneity within the instrumental variables. 

 

Samples Pleiotropy test 

Exposure Outcome Method Egger intercept SE P val 

BD in PD 
(UKBB) 

Pain in PD 
(Proband) 

MR Egger 1.36 0.67 0.29 

Table 56: MR Egger intercept for Depression in PD (UKBB) exposure 

MR Egger intercept tests potential pleiotropic effects of instrumental variables in each two sample MR test 
indicated no significant pleiotropy within the two MR tests. 
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Figure 4-12: Two Sample MR Scatter plot for Depression in PD (UKBB) exposure: 

The SNP effect on the exposure (Broad depression in PD) is plotted against the effect on the outcome (Pain 
in PD), with lines fitted for each of the MR tests used. The slope of each line corresponds to the causal effect 
estimated by the test.  
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4.3.4.6 Depression in PD (Proband) 

8 independent IVs were selected out of the 29 SNPs that passed the P value threshold 

(P < 5 x 10-6) for the exposure of depression in PD as measured in the Proband cohort (F stat 

= 21.97). In both MCP outcome datasets, two IVs were missing with no appropriate proxies 

available. This exposure was found not to have a significant causative effect on MCP (IVW ß 

= -3.88 x 10-3, P = 0.059, SE = 2.05 x 10-3). This was reflected in all other tests performed, with 

ß sign swapping in half of the sensitivity tests reflecting an inability to identify a causative 

pathway (Table 57, Figure 4-13B). 

When MCP in PD was tested as the outcome, there was similarly no evidence for a 

causative effect of Depression in PD on MCP in PD (IVW ß = 0.05, P = 0.20, SE = 0.04). (Table 

57, Figure 4-13A). 

Samples MR 
Exposure Outcome Method No. SNP Beta SE P val 

Depression 
in PD 
(Proband) 

MCP in PD 
(UKBB) 

MR Egger 6 0.14 0.12 0.31 

Weighted 
median 

6 
0.06 0.05 0.22 

IVW 6 0.05 0.04 0.20 

Simple mode 6 0.08 0.08 0.35 

Weighted mode 6 0.08 0.07 0.34 

MCP 

MR Egger 6 -6.74E-03 6.84E-03 0.38 

Weighted 
median 

6 
-2.65E-03 2.69E-03 0.32 

IVW 6 -3.88E-03 2.05E-03 0.059 

Simple mode 6 -1.77E-03 4.20E-03 0.69 

Weighted mode 6 -1.77E-03 4.27E-03 0.70 
Table 57: MR results for Depression in PD (Proband) exposure: 

Two sample MR results for the effect of the depression in PD (Proband) exposure on both multisite chronic 
pain (MCP) in PD (UKBB) and MCP outcomes. Significant causal relationships were observed for MCP in PD 
as an outcome. 

 

Samples Heterogeneity 

Exposure Outcome Method Q Q df Q pval 

Depression in PD 
(Proband) 

MCP in PD (UKBB) 
MR Egger 2.17 4 0.70 

IVW 2.79 5 0.73 

Multisite chronic 
pain 

MR Egger 4.46 4 0.35 

IVW 4.68 5 0.46 

Table 58: Heterogeneity results for Depression in PD (Proband) exposure 

Q statistic results to test heterogeneity of instrumental variables used in the IVW and MR Egger tests 

 

 



Chapter 4: Investigating the Causal Relationship Between Pain and Depression in PD 

 112 

Samples Pleiotropy test 

Exposure Outcome Method Egger intercept SE P val 

Depression in 
PD (Proband) 

MCP in PD (UKBB) MR Egger -0.06 0.08 0.48 

Multisite chronic 
pain 

MR Egger 1.91E-03 4.33E-03 0.68 

Table 59: MR Egger intercept for Depression in PD (Proband) exposure 

MR Egger intercept tests potential pleiotropic effects of instrumental variables in each two sample MR test. 
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Figure 4-13: Two Sample MR Scatter plot for depression in PD (Proband) exposure: 

The SNP effect on the exposure is plotted against the effect on the outcome, with lines fitted for each of the 
MR tests conducted. The outcomes of multisite chronic pain (MCP) in PD (A) and MCP (B) are shown. The 
slope of each line corresponds to the causal effect estimated by the test.  
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4.4 Discussion 

The aim of this investigation was to examine the genetic factors influencing pain and 

depression as non-motor symptoms in Parkinson’s disease and explore the possibility of a 

causal relationship between these symptoms. Association analysis found a replication in both 

UKBB and Proband PD cohorts of a correlation existing between these symptoms, an 

observation that has been previously observed in other PD cohorts (4). It was then 

investigated whether these were independent yet correlated symptoms or if a causative 

pathway existed, with the aim of furthering our understanding of causes of non-motor 

symptoms in PD. 

Initially, three separate GWAS studies were conducted to identify genetic factors 

influencing pain and depression in PD. These tested PD depression in the Proband cohort, and 

PD multisite chronic pain (MCP) and broad depression (BD) in the UKBB cohort. In each of 

these tests there were no genome wide significant associations identified, which is potentially 

due to the small sample sizes that were available for these cohorts resulting in underpowered 

GWAS. 

However, putative associated SNPs of potential biological interest were identified 

across these GWAS. In the pain in PD GWAS in the UKBB cohort, the top associated SNP is an 

intronic variant within NRG1, expression levels of which have been related to neuropathic 

pain in a rat model (130). The pathway proposed by this model describes how a reduction in 

NRG1 secretion from large dorsal root ganglion (DRG) neurons following nerve injury can 

result in disinhibition of C-fibre-mediated nociceptive signalling, causing chronic pain 

conditions. This model of neuropathic pain focusing on peripheral disinhibition could be 

inconsistent with the proposal that central pain processes related to the monoamine 

dysregulation in PD are more significantly impacting pain processing in PD. However, this is 

worth further investigation, and considering TRPM8 which has been previously implicated in 

PD pain from the pain in PD GWAS (13) is also expressed in DRG neurons, it is worth 

establishing the potential role of the DRG neuron circuit in PD pain. 

Similarly with depression in PD, the two GWAS performed revealed potential 

associations of interest. In the PROBAND cohort GWAS which tested genetic associations with 

self-reported depression scores, the most significantly associated SNP is an intronic variant in 
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ZNF33B, expression levels of which have been associated with suicide attempts in major 

depressive disorder. A study into MDD patients with and without suicide attempts (SA) found 

that a copy number variant (CNV) was more associated with SA subjects, with this CNV 

impacting expression levels of ZNF33B in the pituitary and cerebellum (128). This observation 

is of interest, as zinc finger proteins have been previously associated with various neurological 

disorders. ZNF33B variants have been associated with bipolar disorder risk, and further 

members of the zinc finger family have been identified as risk genes for various disorders. 

ZNF804A has been established as a risk gene for schizophrenia, with recent evidence 

suggesting ZNF804A polymorphisms are involved in maintenance of neuronal function and 

integrity of white matter fibre bundles (131). Whether the processes that zinc finger proteins 

regulate in these neurological disorders is also relevant in PD depression is yet to be 

determined, but could be an important avenue of investigation.  

In the UKBB broad depression GWAS, the association at chromosome 12 located 

within KDM5A, which is also an eQTL for KDM5A, is of particular interest. Hypothalamic 

expression levels of this gene have been linked to post-partum depression in a rat model 

(129). Hypothalamic transcript levels of KDM5A, which is involved in circadian rhythm 

regulation, were greater in the depression model rats, which also demonstrated a loss of 

diurnal rhythms. This change in diurnal patterns and circadian rhythm gene expression could 

be important in PD depression. Sleep disturbances in PD are recognised as one of the key non-

motor symptoms, and a recent investigation observed that poorer sleep in PD patients was 

correlated with depression severity (132), suggesting this could be having an impact on mood. 

It is therefore worth investigating this genetic risk factor and establishing whether PD sleep 

disturbances impact PD depression.  

The lack of genome wide significant associations across these GWAS could be 

attributed to the small sample sizes used. The power of a GWAS to detect genome wide 

significant associations is dependent upon the sample size, the MAF of the associated SNP, 

prevalence of the disease, and the Genotype Relative Risk (GRR). GRR refers to how the 

number of copies of the risk allele carried (0, 1, or 2) affects the probability of an individual 

being in the case group i.e. whether the risk allele is additive, dominant, recessive, or 

multiplicative. Smaller GWAS samples can detect some genome wide significant associations, 

which was demonstrated in the recent Pain in PD GWAS (13). This study, using 898 PD patients 
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with high pain and 420 PD patients with no/low pain, was able to detect the SNP association 

at the TRPM8 locus (P = 1.45 x 10‐9, OR = 1.78). While it is therefore not inappropriate to 

conduct GWAS with relatively small sample sizes, this had the potential to be a common 

limiting factor across the GWAS conducted in the present study. For example, the GWAS for 

depression in PD in the UKBB sample was conducted with 563 PD patients with a broad 

depression phenotype, and 890 PD patients with no history of depression. For a hypothetical 

associated allele with minor allele frequency of 0.1, disease prevalence of 0.4, and genotype 

relative risk of 1.5, the power (probability of rejecting the null hypothesis) to detect an 

associated allele at the significance level of P < 5 x 10-8 using this sample is 0.653 (133). If the 

sample size were to be increased to 800 PD cases with depression and 1000 without, this 

power would be increased to 0.914. This demonstrates the greater potential to identify 

genetic factors influencing these non-motor symptoms when even marginally larger samples 

are obtained. 

Polygenic Risk Scores (PRS) were calculated within the Proband and UKBB PD cohorts 

for MDD and MCP, which could then be tested for association with their non-motor pain and 

depression phenotypes. No strong evidence was found for a correlation of genetic factors 

influencing depression in PD and MDD, yet there was more evidence for correlation between 

pain in PD and MCP. The lack of evidence within the depression phenotype test could also be 

due to the underpowered sample size. Given the top genetic risk factors for pain and 

depression in PD identified in the GWAS indicated some potential shared biological 

mechanisms, it could be expected that a greater amount of polygenic risk factors would be 

shared between depression in PD and MDD than could be detectable in this study. If future 

studies with improved power can more decisively indicate whether polygenic risk is shared 

between PD non-motor symptoms and non-PD related pain and depression, this would help 

determine whether investigating shared biological pathways and treatment options is 

appropriate. 

Two sample Mendelian randomisation was performed using the results from the 

GWAS conducted here along with existing GWAS data for MCP, MDD and pain in PD to 

establish whether causal relationships exist between these PD symptoms. The putative 

associations identified in the GWAS conducted were sufficient to select instrumental 

variables for use in MR analysis. Although genome-wide significant instruments can be 
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preferable as they are more strongly associated with the exposure, selection of all associated 

SNPs above a suggestive significant threshold can be implemented in MR studies to avoid 

winners curse bias in selection and represent a greater share of genetic influences. 

Furthermore, identification of potential genes of biological significance at these associated 

SNPs suggests some biological relevance to the exposure is present in these instruments, 

which adds confidence to their selection as IVs. 

Similarly to the results from Johnston et al, significant and positive causative 

associations were observed for both MCP on MDD and MDD on MCP. It was also observed 

that opposite ß signs of the causative estimate occurred for MDD as the exposure, suggesting 

this is also not a causative estimate. However, whilst the effect of MCP on MDD was more 

consistent, the MR Egger analysis also suggested the presence of pleiotropic effects, in line 

with the earlier observations of Johnston. Rather than confirming this reported causative 

association, this suggests that there may not be a true causative association of MCP on MDD, 

but rather these instrumental variables act through other confounding pathways to impact 

MDD. Significant heterogeneity amongst the IVs for this MR test further suggests that this 

could be the case, as this is an indicator of a breach of the IV assumptions. However, this 

would need to be investigated further to establish the nature of these pleiotropic effects. 

The results from the remainder of the MR tests also indicated no causative pathways 

exist between pain in PD and depression in PD, or between these non-motor PD symptoms 

and non-PD related pain and depression. These negative results could also be due to the small 

sample sizes of the GWAS leading to insufficient power to detect all the appropriate IVs, and 

consequently performing MR tests with a small number of IVs.  

Several limitations of this investigation could possibly render the results from this MR 

approach misleading, so should be explored. As discussed, the instrumental variables used 

potentially do not represent a significant proportion of variance in the exposure phenotype, 

which could be the case given there were not genome wide significant associations in the 

GWAS performed. The F statistics indicate the tests do all avoid weak instrument bias (all F 

statistics > 10), but these could still not explain significant variance. However, weak 

instrument bias from underpowered GWAS would bias in favour of the null in this instance, 

so positively associated results can be better trusted and indicate this bias, if present, has 

been insignificant. 
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Selection or collider bias may also be an issue here, which will instead bias in favour 

of type I errors. This can occur if there is significant bias due to sample selection i.e. if selection 

into the sample is dependent on the risk factor or the outcome, or depends on a ‘collider’ of 

the instrumental variable and potential confounding factors. This is mainly an issue where the 

bias due to selection is large, meaning the samples used differ from the populations they 

represent. It has been observed that for moderate influence of risk factor on sample selection, 

selection bias is small, and the type I error rate is not increased (134). As the PD populations 

recruited can be representative of the general PD population rather than those with specific 

risk of non-motor symptoms, this bias should be minimal. 

Whilst the consistent negative results from these tests could reflect the disadvantages 

of the current method as described above, consideration should be given to the potential that 

these are fully valid and indicate independent symptoms that are correlated but not 

causative. This conclusion can also apply to chronic pain and depression in the general 

population, given the conflicting results of the previous MR study. 

The correlation between these symptoms can be due to some of the overlapping 

potential causes arising from PD pathology as discussed previously; monoamine depletion, 

neuroinflammation, and degeneration of limbic structures. Taking into account the 

pleiotropic effects suggested in the previous MR study, no evidence to date adequately 

supports a causative pathway of pain on depression or vice versa in PD or in the general 

population. The most compelling evidence of a causative pathway remains animal studies, 

where models of neuropathic and inflammatory pain consistently induce depression-like 

behavior (135). However, these observations are under very different conditions to human 

conditions and there is doubt as to the extent to which depressive like behaviors in animals 

can fully reflect depression in humans. In comparison, depression models have shown mixed 

results in the resulting influence they have on pain sensitivity (135). Combined with the results 

from human genetic studies here, evidence currently indicates these are correlative but not 

causative. 

As the genetic factors influencing pain and depression in PD identified here also 

indicate these symptoms are independent rather than causative, focusing on the separate 

biological pathways that these indicate are the most associated with these symptoms could 
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be the best approach to improving therapeutic targets. Evidence indicates pain in PD is 

associated with the TRPM8 locus encoding an ion channel expressed in DRG neurons that acts 

as a cannabinoid receptor amongst other roles. Exploring cannabinoid therapies as well as 

other TRPM8 ligands could be the appropriate next step in improving PD pain targets, with 

the benefit of being able to repurpose existing drugs. Depression in PD alternatively is 

potentially influenced by KDM5A and ZNF33B expression levels, which would require further 

investigation for an appropriate therapeutic intervention. Improving the therapy options for 

these symptoms by focusing on the most appropriate target rather than on reduction of pain 

or depression as a causative factor could be the best approach to tackling these symptoms. 

Whilst it is still the case that responses to treatment for pain or depression could be affected 

by experience of the other symptoms as indicated in the general population, until there is 

more compelling evidence for a causative pathway it cannot be assumed that targeting one 

will alleviate the other. 

It is worthwhile working to increase the power of these GWAS and MR tests with 

greater PD samples so that the true genetic risk factors for these symptoms can be 

substantiated, and any true causal effects, if present, could be estimated. This is especially of 

importance as it relates to the experiences and therapies received by PD patients. Monitoring 

of non-motor symptoms would be of clear benefit if for example those reporting high PD were 

then able to receive preventive interventions for mood disorders. However, greater 

understanding of the biological mechanisms behind both non-motor symptoms is still 

required so that the most suitable intervention targets can be identified, and preventative PD 

pain and depression therapies applied in an appropriate way. This can then go towards 

addressing some of the most troublesome aspects of the disease for PD patients.  
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5 General Discussion 

5.1 Overview 

Parkinson’s disease is a neurodegenerative disorder which primarily affects the elderly 

population. It is characterised by loss of motor control caused by degeneration of the basal 

ganglia; however PD also impacts many aspects of health including pain, neuropsychiatric 

symptoms, and inflammation. The aim of the work in this thesis was to investigate the genetic 

factors influencing depression, pain, and inflammation in PD, and to study the associations 

between these PD non-motor symptoms. Two main experimental approaches were pursued: 

the first was to generate novel long-read sequencing data of the HLA locus in PD to allow 

observation of any polymorphisms detectable by this superior HLA sequencing application, 

and the second aim was to conduct GWAS to establish genetic associations with depression 

and pain in PD, and consequently establish if a causative relationship exists between these 

symptoms using an MR approach. These aims were pursued in order to better understand 

the underlying causes of these PD symptoms which are currently imperfectly understood, and 

aid future work in targeting therapies more appropriately for these symptoms. 

The following sections will summarise the findings from each experimental chapter, 

and how these have been interpreted.  

5.2 Summary and Interpretation of Findings 

5.2.1 Chapter 2 

The main aim of Chapter 2 was to establish which HLA loci are most associated with 

PD risk, to subsequently select which loci to focus on for HLA sequencing. Previous 

publications had suggested specific HLA loci of interest, but without a thorough comparison 

between bioinformatics approaches or incorporating the most recent imputation application. 

Here, a range of different bioinformatics approaches were applied to a PD case-control 

dataset, which allowed comparison with other published association results from different 

PD datasets. Firstly a GWAS and conditional analysis were conducted, indicating that there 

were potentially two independent associations at the HLA locus; rs9268926 was the most 

associated GWAS result (P = 3.67 x 10-7, OR = 0.84), which is in partial LD with the main SNP 
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from the Nalls 2019 meta-analysis (rs112485576 (R2 = 0.76, D’ = 0.89)) (80), and rs9295987 

was the most associated SNP when conditioning on this result (P = 9.82 x 10-5, OR = 0.80). The 

top association is located near the class II DR loci, while the top independent association from 

the conditional analysis is located near the class I B and C loci. QTL properties of these SNPs 

also indicated association with these loci, with rs9268926 a potential QTL for HLA-

DQA1/DRB1 loci, and rs9295987 a QTL for HLA-B and HLA-C. 

The HLA loci and specific HLA alleles that these SNPs were associated with were 

analysed using imputation and QTL approaches. Varying results were achieved across 

imputation methods, which applied different computational approaches. Whilst the SNP2HLA 

approach indicated a DRB1 allele that had not been previously associated with PD was the 

top associated allele (HLA-DRB1*13:01, P = 1.49 x 10-5, OR = 0.83), the HIBAG approach 

replicated a previously associated allele as the top associated (HLA-DRB1*04:01 P = 1.56 x 10-

6, OR = -0.03) (87). The novel DISH method which has not previously been applied to a PD 

dataset also indicated HLA-DQA1*03:01 as the top associated allele, which is in strong LD with 

DRB1*04:01 and has been previously associated with PD (87). The conditional analysis result 

was also observed to be in LD with HLA-B*35:01 and HLA-C*04:01 alleles. 

The overall interpretation of these findings was that they provide further evidence 

from a new dataset for the associations at DRB1 and DQA1 loci associated with PD protection, 

that had been identified in previous imputation studies. However, comparison between 

multiple methods showed that discrepancies can occur when different panels are applied, 

highlighting the limitations with relying on any single imputation approach. Whilst the 

DRB1*13 was a novel association identified, and evidence exists for the importance of this 

association in other neurodegeneration conditions (96,136), this could also be a product of 

imputation error as the smallest panel was applied in this situation. Furthermore, whilst the 

top associated result from the conditional analysis here is of interest, it does not reach a 

sufficiently high significance level to indicate a definite independent association, 

demonstrating that a greater powered study needs to be applied to identify the true 

association here. Despite the limitations of the methods used here, DRB1, DQA1, B and C loci 

were repeatedly found to be associated with PD risk across methods, giving confidence that 

these were the most likely candidates to further explore via sequencing. 

 



Chapter 5: General Discussion 

 
121 

5.2.2 Chapter 3 

The aim of Chapter 3 was to conduct long-read sequencing of the HLA region in PD 

patient samples, which would allow testing for the presence of PD-associated polymorphisms 

that were undetectable by imputation or by short-read sequencing methods, and to fully 

characterise which HLA alleles are associated with the Nalls 2019 SNP. Sequencing of the HLA 

locus in PD samples has only been conducted in one previous study, which applied a short-

read sequencing approach with limited ability to capture HLA structural variations(108). In 

this chapter, 70 PD samples were used for PacBio long-read sequencing, with data generated 

for full length HLA-B, C, DQA1, and DRB1 loci. Samples were either homozygous for the risk 

allele (C) or protective allele (A) of the top associated HLA SNP.  

Following on from this, the secondary aim was to conduct a further PD association 

analysis using HLA allele data imputed using the latest panel, released while these 

experiments were being carried out (102). This imputation approach is a large multi-ancestry 

panel that can improve upon imputation quality and address some of the previous issues with 

panel sample size and allele variety. This data allowed comparison of the best method 

sequencing approach to a case-control situation in a larger cohort. 

Analysis of sequencing data demonstrated allele associations with the rs112485576 

protective and risk alleles. It was observed that DQA1*03:01, DQA1*03:03, DRB1*04:01, 

DRB1*04:04 were correlated with the minor protective allele, as previously reported. HLA 

alleles were also identified as correlated with the risk allele, with DQA1*02:01 the most 

associated. One novel allele was identified via sequencing that differed from the HLA- 

DQA1*01:01:01:01 IPD-IMGT/HLA database entry by two intronic SNPs, however as this was 

an individual identification it could not be tested for association with PD risk. 

Comparison with the case-control imputation results revealed which correlated alleles 

were also associated with PD in this analysis. It was observed that DQA1*03:01 was the top 

protective allele (P = 4.4 x 10-8, OR = 0.83), and DQA1*01 (P = 2.1 x 10-4, OR= 1.11) the top risk 

allele in this case-control dataset. These associations are consistent across the sequencing 

and imputation data, giving greater confidence that these alleles are the most significant. 

HLA-DQA1*03:01 allele diplotypes were observed to consistently confer protection for the 

disease, whilst risk alleles only conferred risk in the absence of DQA1*03:01. 
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The sequencing results describe alleles that were observed to be correlated with the 

rs112485576 alleles, the most associated SNP in the latest meta-analysis. This did not analyse 

potentially independent associated SNPs. However, in the case-control dataset, associations 

independent of rs112485576 were also able to be observed. This conditional investigation 

found that C*02:02 (P = 2.52 x 10-3, OR = 1.15) and DPB1*01:01 (P = 0.013, OR = 1.15) were 

top candidates for independent associations. This suggests that the C locus allele could be 

driving the class I association. DPB1 has not previously been associated with PD, and as this 

was a suggestive significant finding, it would need to be replicated before deciding if this is of 

importance. 

Overall, these findings provided evidence from a sequencing approach that 

corroborates the association of the DQA1*03/DRB1*04 haplotype, whilst providing novel 

data to suggest which alleles can confer the greatest PD risk. No unknown structural variants 

were observed in these PD samples; it is possible the sample size was too small, however 

there is no evidence here for unknown structural variants affecting PD risk or protection. The 

imputation results here do suggest that the main locus that is driving this association, 

previously suggested to be DRB1*04, could require further investigation. Multiple previous 

methods have identified the DRB1 shared epitope as driving PD protection (87,108), yet this 

study indicated that the DQA1*03 amino acid positions are most associated. Overall, this 

implies the properties of the DQA1*03 association merit further investigation. 

5.2.3  Chapter 4 

The aim of this chapter was to investigate the genetic factors influencing pain and 

depression in PD, and their potential causal interactions. Firstly, regression analyses were 

conducted which indicated that pain and depression in PD are associated symptoms in two 

PD cohorts, a replication of previous findings (4,10). Following this, various GWAS of pain and 

depression in PD were conducted to identify the genetic associations with these symptoms in 

PD samples from Proband and UKBB cohorts. Whilst no genome-wide significant associations 

were observed, certain putative genetic associations indicated genetic loci that are 

potentially associated with these symptoms: NRG1 in multisite chronic pain in PD, and 

KDM5A, ASXL2, and ZNF33B in depression in PD. The role of NRG1 in DRG mediated 

neuropathic pain suggests a potential shared pathway between neuropathic pain and MCP in 

PD (130). Furthermore, NRG1-ErbB4 signalling has been suggested to mediate inflammatory 
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pain symptoms in an animal model (137). Similarly, the role of KDM5A in regulating sleep 

patterns and its association with post-partum depression (129), as well as the association of 

ZNF33B with suicide attempts (128), also suggests pathways of interest for depression in PD. 

These findings indicate a genetic underpinning of these two non-motor symptoms, 

which could potentially determine which PD patients are more likely to develop pain and 

depression symptoms. By identifying which of these genetic factors have also been identified 

as risk factors with MDD and pain in the general population, the potential shared biological 

processes could be identified. However, it can also be the case that factors influencing these 

symptoms are independent of non-PD related disorders. 

To further investigate this question of shared genetic risk between PD non-motor 

symptoms and pain and depression in the general population, a polygenic risk score (PRS) 

analysis was conducted. This identified that the broad depression phenotype tested in the 

UKBB sample had a shared genetic risk with MDD (P = 0.024, ß = 906.79), however this was 

not replicated across other PRS tests. Furthermore, LADS score depression phenotype as 

measured in the Proband phenotype did not indicate a shared genetic risk (P = 0.20, ß = 2880). 

This was therefore inconclusive as to the extent to which genetic risk is shared. In the case of 

pain, there was greater evidence for the shared genetic risk between pain in PD as measured 

by the UPDRS pain score and MCP in the general population (P = 0.024, ß = 18,310) 

The results obtained in the first part of this investigation were then used for a two 

sample Mendelian randomisation study. Previously a causative association had been 

suggested for multisite chronic pain on MDD in the general population using a similar method 

(126). Here, a TSMR study was conducted which aimed to replicate this finding and then 

determine if this was also the case for PD pain and depression. 

Interestingly, the results did not indicate a causative association between depression 

and pain in the general or the PD population. Whilst this study did replicate the causative 

association observed in the general population of MCP on MDD using a different MR approach 

(P = 3.79 x 10-7, ß = 0.69), tests of heterogeneity indicated that the IV principals had been 

violated and that the results were influenced by pleiotropic effects. No significant causative 

associations were observed when testing the relationship between PD symptoms. 
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Taken together, these results build upon existing knowledge of genetic associations of 

pain in PD, and introduce preliminary results to understand the genetic influences on 

depression in PD. There is no evidence for a causative association from this data, indicating 

these symptoms can be treated independently. 

5.3 Limitations of Work 

It is important to consider the limitations of this work and how they may affect the 

interpretation of these findings. One of the main weaknesses is the size of the samples used 

for these investigations, which has limited the power of the association studies to detect 

genetic loci contributing to phenotypic variation. This is the case in the first results chapter 

when considering the number of PD samples used; this sample size meant that genome-wide 

significance was not achieved at the HLA loci as was previously observed (79). Furthermore, 

within this sample the current top HLA association was poorly imputed and removed in 

quality control. Sample size is an important factor determining the ability of a GWAS to detect 

genome wide significant results; for example, it was observed that a sample of over 50,000 

cases enabled substantially greater ability to observe genome-wide significant associations in 

an MDD study (138). Of the factors that limit the power of an association study, especially 

when detecting smaller effect sizes as is the case with HLA associations, the sample size is 

most straightforwardly addressed. Obtaining a larger and more current PD sample for this 

purpose would help to overcome this issue. One of the main consequences of this limitation 

was a lack of confidence in the independent class I association identified, so a larger sample 

would help determine if this would reach genome-wide significance. This is important for 

basing expansion of data collection into class I variants in PD samples. 

Sample size was also a limitation with the imputation reference panels applied to this 

dataset, which impacted the quality of HLA imputation. Since this work was completed, it was 

observed that applying a much larger multi-ancestry reference panel can improve imputation 

quality significantly, and so this was able to be addressed in the subsequent work completed. 

Whilst the methods applied worked well for the purpose of identifying loci of interest to 

further explore via sequencing, the poorer quality reference panels introduced ambiguity in 

the alleles of interest when looking at imputation results alone. In future work, this multi-
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ancestry panel should be used on the larger PD samples available to improve the power of 

this work. 

The PacBio long-read sequencing method was applied to samples that were 

homozygous for the top Nalls 2019 HLA SNP risk allele or protective allele. Whilst this allowed 

a focused exploration of potential polymorphisms associated with this top associations, it was 

a limiting factor in the scope of the sequencing work as it prevented observation of other 

polymorphisms not associated with this SNP. This could be improved upon by sequencing a 

larger cohort of PD samples that also carried alleles associated with independent SNPs. 

However, this would firstly require a greater powered investigation into independent 

associations to ascertain which SNPs are also worth investigating in a similar manner. 

Furthermore, sequencing focused solely on the HLA-B, C, DQA1, DRB1 loci, which disregarded 

the multiple further genes within the HLA loci such as DPB1. As imputation is an imperfect 

association approach, it is possible other loci have been overlooked at this stage, and so data 

was missed when taking these selected loci forwards for sequencing analysis. A more 

thorough investigation would cover all the primary class I and class II loci, which would allow 

for comparison between DPB1 associations observed in imputation and sequencing results. 

The main limitations of the final results chapter on non-motor symptoms also include 

sample size issues, which potentially contributed towards no observation of genome-wide 

significant associations in the various GWAS conducted. Genome-wide significant results had 

previously been observed with small PD sample sizes, such as the pain in PD GWAS which 

used 1,318 samples and detected a genetic association at the TRPM8 locus. However, the 

smaller sample sizes clearly impacted the current study’s ability to detect genetic 

associations. It was calculated that a sample size increase from 1,453 to 1,800 in the UKBB PD 

depression GWAS could have increased the power to detect a genome wide significant 

association from 0.65 to 0.91. This power limitation could also be addressed by conducting a 

meta-analysis of pain and depression in PD combining the two samples used. This was not 

attempted here due to the different phenotype approaches used, but future work could 

prioritise using more similar phenotypes instead to create more power for these GWAS.  

This issue of power also had a knock-on effect on the Mendelian randomisation 

approach, as no instrumental variables from these samples had genome-wide significance, 

and in some cases there were only a small number of independent IVs to be taken to the MR 
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test. This can have a significant impact on the ability of Mendelian randomisation to detect 

causative associations, as the IVs used were potentially insufficient to represent phenotypic 

variance. Increasing the power of this study could be key to further understanding this 

causative association by providing superior IVs to use in a larger MR study. In addition, a two 

sample Mendelian randomisation approach was used instead of a one sample approach, 

which increased the bias in favour of type II error. Combined with the low power, this could 

explain the lack of significant causative associations observed. 

5.4 Strengths of Work 

Despite these limitations described, there were multiple strengths to the approaches 

taken in this work. In the first results chapter, whilst sample sizes were small for some of the 

imputation panels applied, a broader range of imputation techniques than usual were applied 

to allow for comparison between results that used different reference panels and 

computational approaches. In particular, the novel DISH method which uses direct imputation 

from summary statistics had not previously been applied to PD association analysis, so was 

an important comparison to more established methods. This novel data allowed 

corroboration of existing results, as the DISH results were in partial agreement with the HIBAG 

results in that the correlated alleles HLA-DQA1*03 and HLA-DRB1*04 were most associated 

with PD. Comparison with SNP2HLA also showed additional potential associations, indicating 

the HLA-DQA1*13:01 allele could be associated with PD risk. Thorough investigation of 

associated loci within existing QTL databases was an improvement upon existing published 

results, which omitted this or relied upon a single source with potentially misleading results. 

Overall, this chapter also highlighted the limitations of relying on a single bioinformatics 

approach when it comes to the HLA locus, as differing techniques gave varying results. 

The main strength of the second results chapter was application of a long-read sequencing 

method to the HLA locus in PD. No long-read sequencing of the HLA locus has previously been 

applied to this genetic risk factor in PD, yet it is highly preferable over short-read methods 

due to its ability to obtain unambiguous data of the long, complex, and highly repetitive HLA 

region. Whilst no structural variants or repeat regions were identified, this method allowed 

identification of one new allele identified in PD samples. Also, the use of the novel large 

imputation panel allowed results to be compared between the most up-to-date imputation 
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approach and the long-read sequencing data. Application of these gold-standard methods for 

HLA sequencing and imputation allowed discrepancies to be highlighted between current 

results and previously published results, and provide a novel insight into the HLA genetic 

influence on PD. 

The various approaches applied in the final results chapter permitted a thorough 

investigation into genetic factors influencing PD non-motor symptoms across different 

cohorts. A GWAS of depression in PD has not previously been carried out, so this provided 

novel insight into this PD symptom which can be built upon further in future work. The MR 

methods used are well-established computational approaches to assess causation whilst 

avoiding bias from confounding. Despite the small numbers of IVs, weak instrument bias was 

avoided, and the replication of previously results indicates suitable methods were applied. 

5.5 Implications 

The results from this work have several implications with regards to assessment of the 

genetic factors influencing pain, depression, and the immune system in PD. Firstly, the results 

from the HLA association studies have shown some deviation from previous published results 

as to which variants are driving the primary HLA genetic association. The one previous 

sequencing study and latest imputation results published are in agreement that the DRB1*04 

allele is the top association, driven by specific amino acids 11V, 13H, and 33H. Any association 

at DQA1*03 was not significant after adjustment for these amino acids. However, the present 

results from the more up-to-date and powerful imputation approach suggest the DQA1*03 

allele is the leading association, with amino acids unique to DQA1*03 driving this association. 

When conditioning on this result, DRB1*04 did not remain significantly associated. The DQA1 

and DRB1 loci are in strong linkage disequilibrium, which can make identifying the causative 

allele difficult. This has also had an impact on identifying the causative DQA1/DRB1 variants 

in other disorders such as type I diabetes (139,140). Whilst both molecules act to activate 

CD4+ T cells through antigen presentation, they differ in the heterodimers that they form and 

the molecules that they can present, and therefore their effect on immune responses. Current 

data is unclear what these differences could mean for molecular pathways in PD. Analysis of 

HLA alleles that present α-syn peptides has so far indicated that DRB1*15:01 and DRB5*01:01 

alleles can present one epitope with high affinity, whilst DQB1*03:01, DQB1*05:01, and 
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DQB1*04:02 bound to three different epitopes with varying affinity (66). This indicates that 

there is currently no evidence for DRB1*04:01 having affinity to bind α-syn, but there is for 

DQB1 alleles that can form heterodimers with DQA1*03:01. This may not be the most 

significant HLA-related pathway influencing PD immune dysfunction; however, it is worth 

investigating further whether the DQA1*03 allele influences this process. 

This has implications on the development of new therapeutics targeting inflammatory 

processes in PD. Due to their potential as early intervention therapies, and ability to 

repurpose currently available drugs, these are promising targets for new therapeutic trials. 

However, a greater understanding of the immune processes involved will help in more 

appropriately selecting targets. Recent examples include a trial of MCC950, an NLRP3 

inflammasome inhibitor, following evidence that this protects against neuroinflammation in 

a PD mouse model (141). NLRP3 activation has been found to activate upon a-syn binding to 

TLR2 and TLR5 (142). Whilst these do not interact with HLA molecules in the same way TCRs 

do, HLA-DR molecules have been shown to interact with and enhance TLR activity (143). 

Understanding if the HLA-DR risk variants identified here modulate this process can help 

identify which patients would best benefit from this therapy, if it is proven to be useful. Other 

therapeutic interventions targeting the immune system in PD include Sargramostim, a 

granulocyte macrophage colony stimulating factor (GM-CSF). This works to increase the 

number of Tregs, demonstrated to be reduced in PD, which can then counteract the 

proinflammatory T cell responses. Initial results published recently have been positive for the 

potential of this therapy to regulate the PD immune response (144) As HLA allele type can 

determine T cell repertoire, a greater understanding of whether class II risk alleles influence 

Treg levels can also aid in appropriate targeting of this therapy. 

This work also has implications for the treatment of other non-motor symptoms. As 

there is no evidence for a similar causative effect in PD symptoms as there is in the general 

population currently, these should be treated as associated symptoms but not causative. This 

observation could change with a better powered study, but this implies that treatment could 

be approached separately. The results from the MCP in PD GWAS indicate that as well as 

TRPM8, NRG1 signalling could be targeted. Both have been demonstrated to be involved in 

inflammatory pain; therefore, the link with inflammation and pain could be more relevant for 

this symptom and anti-inflammatory therapeutics could have a greater effect. More data is 
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needed before exploring this possibility. KDM5A has a more varied impact; however, as it is 

suggested to be involved in sleep-dysregulation, targeting this pathway could also benefit this 

additional non-motor symptom. ZNF33B also implicates a range of zinc-finger related 

processes, that could be more appropriate to target in the case of PD neuropsychiatric 

symptoms. An important conclusion is the need for greater statistical power to identify which, 

if any, of these targets is worthy of future investigation. 

5.6 Future Directions and Further Work 

Whilst this work made progress in answering some of the questions outlined in the 

aims, more work can be conducted to improve upon and further the conclusions made here. 

It was not within the scope of this research project to determine how these HLA loci or risk 

variants for other symptoms function in the process of PD, but further work could help 

elucidate this.  

With more time and funding, this would include the following: 

1. Increase the sample size of the PD cohort to use for the HLA imputation method using 

the large multi-ancestry panel, so this latest method can be analysed with greater 

power. 

2. Conduct long-read sequencing on a larger cohort of PD patients and across more HLA 

loci (e.g. including HLA-DPB1). Conduct sequencing in PD cohorts that are not selected 

based on rs112485576 allele carried, but a wider selection that could include 

independent associations. 

3. Conduct HLA imputation and sequencing across populations of different ancestry. For 

example, South Indian PD patients have demonstrated certain different PD HLA allele 

associations within the class II HLA alleles (145). This can be built upon to improve the 

understanding of risk across more diverse populations. 

4. To explore the potential interaction of the DRB1 PD protective allele with TLR and 

NLRP3 activity, test co-expression of differing HLA-DR molecules with TLR3/TLR4 in 

vitro to observe the effect on NLRP3 activation. 

5. To explore the potential function of the DQA1 risk and protective alleles, use flow 

cytometry to test T cell repertoire differentiation in response to various antigens in 

samples with differing HLA-DQ alleles. This will help identify if, for example, Tregs are 
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more affected by activity of specific DQ molecules in PD patients. Being able to 

correlate specific HLA DQ alleles with T cell subset activity will help focus the targets 

for PD immune therapies. 

6. Repeat the GWAS for pain and depression in PD with more samples and conduct a 

meta-analysis using a combination of Proband and UKBB samples. This increase in 

power can lead to improved ability to identify genetic risk factors for these symtpoms. 

5.7 Concluding Remarks 

Overall, the work in this thesis made contributions to furthering our understanding of 

the genetic underpinnings of these non-motor and biological characteristics of PD. They 

highlight the need for further work to be conducted on these issues, and where this could be 

applied. Given the estimated growth in the burden of PD on the global population, and the 

current lack of preventative measures and adequate therapies, focusing on these elements 

will be beneficial to address some of the worst aspects of living with this disease. 
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Appendix 1: Manhattan plot and QQ plot for PD GWAS. Top associated SNP at the HLA locus is 
rs9268926 (P = 3.67 x 10-7, OR = 0.84). 
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