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Abstract 

Limit point and bifurcation buckling loads are critical concerns in structural stability 

design. With the inevitable viscoelastic effects of creep and shrinkage in concrete, such 

critical buckling points may vary due to the time-dependent change of equilibrium 

configuration. Furthermore, the intrinsic uncertainty and natural randomness in the geometry 

and material characteristics would affect the structural stability performance significantly. 

The present study provides a new robust method, called the generalized Chebyshev surrogate 

model-based sampling approach, in assessing the time-dependent nonlinear buckling 

behaviour of 3D concrete-filled steel tubular (CFST) arch structures when both random and 

interval uncertainties are involved. In the proposed approach, the relationships between the 

uncertain parameters and the critical nonlinear limit and bifurcation buckling loads are 

formulated using Chebyshev surrogate model strategy combined with finite element method. 

The extreme bounds of the statistical features, including means, standard deviations, of the 

critical nonlinear buckling loads are furnished by using Monte Carlo method and Quasi 

Monte Carlo simulation method. Finally, the applicability and the validity of the proposed 

approach are illustrated with a series of numerical investigations. 
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1. Introduction 

The design of structures to meet all kinds of criteria is always a crucial task for 

engineers. In static analysis, the arch-type structures will buckle in either an in-plane anti-

symmetric bifurcation mode or in an in-plane symmetric snap-through mode with the 

constraint of lateral displacements and twist rotations, with corresponding critical buckling 

points named as bifurcation point and limit point. Such critical points are the boundary 

between the stability and instability of a structure, and when structures become unstable, it 

could fail catastrophically before reaching the serviceability limit state or yield strength of the 

materials. Therefore, in engineering design, it is critical to foresee the minimum buckling 

load of the structure so that the in-plane failure could be prevented[1, 2].  

To date, many numerical researches on the buckling behaviour of arches have been 

extensively implemented[3-5]. The so-called classical buckling theory[6] has been applied to 

determine the critical buckling load of arches, however it may overestimate the buckling load 

of shallow arch[7]. This is because the classical buckling theory simplified the problem by 

linearizing the pre-buckling behaviour and ignoring the pre-buckling displacement[8]. An 

energy method is recently used by Pi [9, 10] in order to set up the non-linear equilibrium 

equations and buckling equilibrium equations for shallow arches with different cross-sections, 

loading and boundary conditions. Although these methods shown excellent performance on 

arch structures, the theories are derived based on 2D arches and in order to be applied to real 

engineering applications, complex 3D arch structures need to be simplified which could 

possibly lead to over or under estimation of the structural performance. 

As one of the typical bridges, Concrete-filled steel tubular (CFST) arch bridges attracts 

large a number of attentions in both academic and industrial fields owing to their excellent 

mechanical behaviours and outstanding structural forms. Sun et al. [11] investigated the 

buckling behaviours of CFST arches subjected tilting loads via experimental study and 

verified by finite element analysis. By applying the machine learning method, Feng et al. [12] 

studied the stochastic effects of corrosion and fire on cables of CFST arches. Symmetric and 

asymmetric buckling of the arch structures were presented by Hu et al. [13]. Along with the 

development of the research, the time-dependent behaviours (such as creep and shrinkage 

effects) of CFST arches have been witnessed by many researches. Geng et al. [14-16] 

thoroughly studied the time-dependent behaviour of CFST arches and concluded that creep 
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effect induces remarkable effect on structural responses while shrinkage in the core concrete 

has little effect when the core concrete remains normal strength. Huang et al. [17] developed 

an analytical method for long-term lateral-torsional buckling behaviour of CFST arches 

subjected to uniform radial loads and temperature fields.  

Besides the complexity of analysis procedures in stability design, intrinsic uncertainty 

and natural randomness are widely witnessed in the geometry and material characteristics. 

Such variations may change the equilibrium configuration and influence significantly the 

structural performance. As a result, the limit point and bifurcation point of the equilibrium 

path as well as the critical buckling load may change. Due to the manufacturing defects, the 

actual material/geometry may not match the exact design specifications, which will lead to 

the differences between experimental results and theoretical simulations. The inherent 

complexity in fabrication process, and inconsistent data measurement of experiments due to 

human errors will eventually lead to the uncertain structural responses [18, 19]. Until now, 

three main frameworks to handle the uncertainty have been broadly proposed, which are 

probabilistic/stochastic, non-probabilistic and hybrid approaches. As for the first type, 

uncertain variables are modelled as random parameters or random fields with specified 

distribution functions[20, 21]. While this approach needs large number of data to get the 

overall statistical information of structural outputs. The non-probabilistic approach[22, 23], 

addresses circumstances when stochastic demonstrating experiences challenges and lacks of 

sufficient statistical information. This approach includes fuzzy method [24, 25], interval 

analysis[26-28] and convex model with ellipsoidal uncertainties [29, 30] etc. In the hybrid 

approach, any combinations of the probabilistic and non-probabilistic analysis can be merged. 

Such method can obtain a more universal analysis framework by incorporating mixture of 

distinctive uncertainty models and gain a superior uncertainty analysis [31, 32]. 

To accurately assess the nonlinear critical buckling loads of a structure is a non-trivial 

task, and it gets even more challenging when uncertain parameters involved in the system. In 

engineering practices, the general finite element software has been extensive accepted by 

engineers for nonlinear buckling analysis with complex geometry. Although the rapid 

improvement of computational capability and the arise of efficiency algorithms, the 

computational cost of solving complex nonlinear structural problems is still too expensive. In 

this case, the direct sampling method does not applicable because obtaining the outputs are 

time-consuming but have no practical value.  It has been recognized that alternative methods 
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can improve computational efficiency, such as importance sampling approach [33], subset 

simulation method [34] etc. These methods can significantly reduce the sampling size 

without sacrificing computational accuracy. Compared with traditional Monte Carlo 

simulation method, the sampling sizes are reduced but it is still inefficient uncertain systems 

with complex finite element models [28] or multiple types of random variables. Surrogate 

model or metamodel strategy [35-38] can obtain approximation expression between inputs 

(the area of interests) and outputs by using explicitly mathematical formulations. The benefit 

of this method is reflected in both sufficient accuracy and the time to find the statistical 

information can be drastically reduced. 

In this paper, a new robust method is presented in assessing the time-dependent 

nonlinear buckling behaviour of CFST arch structures when both random and interval 

uncertainties are involved. The Chebyshev surrogate model strategy is adopted in formulating 

the relationships between the uncertain structural parameters and the critical nonlinear limit 

and bifurcation buckling loads based on finite element method. The QMCS and MCS 

methods are then combined to obtain the lower and upper bounds of the statistical 

characteristics of the critical nonlinear buckling loads. Both interval and random uncertain 

variables are considered in present framework. 

This study is organized as follows. Section 2 introduces the general finite element 

procedure for buckling analysis with random and interval uncertainties are presented. In 

section 3, the generalized Chebyshev surrogate model-based sampling approach is presented. 

Section 4 introduces the time-dependent features of concrete. A series of numerical 

investigation are presented in section 5. Some conclusions are summarized in Section 6. 

2. Stochastic interval nonlinear buckling analysis using finite element method 

Assume )(Z
R , and )(Z  denotes overall random parameters in a stochastic set 

),,( PAΩ    and  represents the set with all possible numbers. Also, 

}|{],[  =  
I  is an interval variable of )(I  which denotes the set of all 

closed real intervals, where   and   denote respectively the lower and upper bounds of I . 

For each time step tt + , applying the finite element method based on virtual work 

principle, one can obtain[39]: 
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0=− ++ FR tttt  (1) 

where Rtt + and Ftt +  represent the vector of external forces and internal element stresses at 

time tt + , respectively. For static response of structures, the usual incremental solution of 

Eq.(1) can be presented as the following iterative scheme: 

)1()()1( −++− −= ittttii FRUK  (2) 

 
iittitt )()1()( UUU += −++

 (3) 

with the following initial conditions: 

UUFF tttttt
  == ++ )0()0( ;  (4) 

where )1( −iK  is a coefficient matrix and )(iU  is an increment displacement vector of the 

current one. It is also important to note that )1( −iK  is varying according to different iterations. 

In the full Newton-Raphson method, the matrix is updated in every iteration, i.e., 

)1()1( −+− = itti KK  and KK ttt =+ )0( ; For modified Newton-Raphson iteration, the matrix 

updates at certain times, i.e., KK ti =− )1( . 

Such iterative method can only be applied to problems with prescribed load level for 

which the equilibrium configurations are to be calculated was known and only the response 

on the time of collapse of the structure was required. When the analyst does not have a pre-

entry knowledge in structural loading capacity, and post-collapse response is required, the 

load-displacement-constraint method can be applied by introducing a load multiplier that 

increase or decrease the intensity of the externally applied loads [40-42]. In this case, Eq. (2) 

with modified Newton-Raphson iteration can be reformulated in the form: 

)1()( −++ −= itttti
 FRUK 

 (5) 

where tt +  is the load factor multiplier at time tt +  and R  is the prescribed reference load 

vector. Based on deterministic iterative nonlinear finite element analysis framework, the non-

deterministic analysis with uncertain parameters can be rewritten into: 

)1()( −++ −=
iRIttRIttiRIRIt

 FRUK   (6) 
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where RI)(•  denotes the variable that is function of both random and interval uncertain 

parameters R  and I , as follows 







==

==

}1for,|{:

}1for),(~|{:Ω

v,...,c     

h,...,d     xg

ccc

vI

R

d

hR
R
d






Φ
 (7) 

where R denotes the vector which collects all the h  random variables presented in the 

system; )(xg R
d

denotes the probability density function (PDF) of the random variable R

d ; 

R
d

  and R
d

  represent the mean and standard deviation of random variable R

d ; I  is the 

interval variables presented in the system; 
c  and 

c  denote the lower and upper bounds of 

the thc  interval variable. In most nonlinear buckling analysis methods for structures or 

engineering systems, this iterative method has been widely used in modern engineering 

applications for nonlinear buckling analysis. However, such method becomes difficult to 

implement when considering mixed uncertain parameters in the system. 

3. The generalized Chebyshev surrogate model-based sampling approach 

In this section, the proposed Chebyshev surrogate models are introduced to handle the 

random and/or interval uncertainty analysis. By transforming implicitly problem into an 

explicitly Chebyshev polynomials, such method can obtain highly acceptable accuracy. The 

classical sampling approach with MCS and/or QMCS method is then adopted so that the 

uncertain outputs of the critical nonlinear buckling loads can be obtained. For pure 

probabilistic analysis, the generalized Chebyshev surrogate model-based sampling approach 

is labelled as Chebyshev-MCS. In this category, the Chebyshev surrogate model is firstly 

generated, and after obtained the mathematical surrogated performance function the classical 

MCS is executed to capture the statistical features, such as means and standard deviations of 

the system outputs. In interval analysis, the proposed method is labelled as Chebyshev-

QMCS, where QMCS is adopted after applying the Chebyshev surrogate model method and 

the upper and lower bounds of the interval outputs can be captured. This is because QMCS 

has superiority on generating more uniformly scattered random numbers which is particularly 

beneficial for modelling interval variables[43]. For the hybrid random interval analysis, again 

the Chebyshev surrogate model is firstly applied and the dual sampling approach which 

combines MCS and QMCS is adopted and termed as Chebyshev-MCS-QMCS method. 
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3.1. Chebyshev polynomial 

According to the definition of Chebyshev polynomial, the domain ]1,1[  x − . For a 

more general domain ],[ b a , it can be easily transferred to ]1,1[  − . The first kind of Chebyshev 

polynomial ( )
n

T x with degree n  is defined as 

)](coscos[)( 1
x nxTn

−=  ]1,1[  x −  (8) 

Substituting n=0,1 into Eq.(8), one can obtain 

1)(0 =xT , xxxT == − ))(cos(cos)( 1
1  (9) 

Furthermore, the following recurrence relation can generate 

)()(2)( 11 xTxxTxT nnn −+ −=  when 1 n   (10) 

Explicit expressions for the first 5 Chebyshev polynomials are: 

1)(0 =xT , xxT =)(1 , 12)( 2
2 −= xxT , xxxT 34)( 3

3 −= , 188)( 24
4 +−= xxxT , … (11) 

The polynomial )(xTn  has n zeros and n+1 extremum in the interval ]1,1[  − . The zeros of 

Chebyshev polynomial )(xTn  are 

m

j
x j

2

)12(
cos

−
=


 mj ,...,3,2,1=  (12) 

Chebyshev polynomial are orthogonal when ]1,1[  x −  with a weight function 

2/12 )1()( −−= xxw , which has: 

izizi NxxwxTxT =−
1

1
d)()()(  (13) 

with =0N  and 
2


=iN  if 0i , and iz  is Kronecher delta. In addition, the discrete 

orthogonal relationship is given as 

 KxTxT izi

m

j

jzji =
=1

)()(  (14) 
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with mK0 =  and 
2

m
K i = for 0i . 

For one dimensional problem, a target function )(xf can be approximated in terms of 

Chebyshev series as: 


=


n

i

ii xTaxf
0

)()(  (15) 

where n is the number of the Chebyshev series, and ia is the i-th coefficient of expansion. By 

multiplying equation )( jz xT at both sides of Eq.(15) , one can obtain: 

 
== ==

==
n

i

izii

n

i

m

j

jzjii

m

j

jzj K axTxT axTxf
00 11

])()([)()(       n...z,...,i ,0=  (16) 

where m=n+1 is the number of coefficients. The coefficient of expansion can then be 

expressed as: 











=

=





=

=

1),((
2

)(
1

1

1
0

i   x)Txf
m

a

xf
m

a

ji

m

j

ji

m

j

j

 (17) 

For two-dimensional Chebyshev polynomials, x1 and x2 are considered, the following 

expression can be obtained 


= =


1

1

2

2

2121

0 0
2121 )()(),(

n

i

n

i

iiii xTxTaxxf  (18) 

Similarly, to find the coefficient 
21iia , Eq.(18) is expressed at zeros of )(

1
xTn  and )(

2
xTn , 

which are 
11 jxx = and 

22 jxx = . Multiplying both sides of equation with )()(
2211 jzjz xTxT  and 

summing the resultant equations leads to: 

















= 

=== == =

)()()()()()(),(
22

2

2

2211

1

1

11

1

1

2

2

21

1

1

2

2

221121

000 01 1
jz

m

j

jijz

m

j

ji

n

i

n

i

ii

m

j

m

j

jzjzjj xTxTxTxTaxTxTxxf  (19) 

The coefficients for 2D model can be expressed by using Chebyshev orthogonality 
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 (20) 

Following the same procedure, the Chebyshev polynomials of multi-dimensional 

system can be obtained by making the tensor product with respect to each one-dimensional 

polynomial, as follows  

)()()()( 21 211 knnn...nn xTxTxTT
kk

...x = , k
 ]1,1[−x  (21) 

represents a k-dimensional Chebyshev polynomial. With regards to the orthogonality 

property, the multi-dimensional continuous function )(xf can express as: 


==


k

k

kk

n

i

...ii...ii

n

i

Taf
00

)(...
11

1

1

x(x)  (22) 

where kn denotes the d.o.f Chebyshev polynomial in each dimension and the k-dimensional 

Chebyshev polynomials is rewritten as: 


==















=

k

k

kkkk

m

j

jj...iijj

m

jk

k

...ii ...xxT...xxf
mmm

a
1121

)()(...
...

2

2

1
111

1

1

1



 (23) 

where  represents the occurrence of total number of zero(s) in the subscripts kii ...1 , and 

1+= kk nm . 

4. The time-dependent features of concrete 

In order to consider the time-dependent feature of concrete, the effective Young’s 

modulus of the concrete is introduced [44, 45]:  

c

u

uctec, E
ttχ

tEE 
+

=



),(),(1

1
),,,(

7,

7, 
  (24) 
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where ),( ut  and ),( 7, t are creep and aging coefficient, which are written as 

uu
tt

tt
t  








−+

−
=

6.0
0

6.0
0

)(10

)(
),( , 

)(20

)))((1(
1),(

0

07,
*

7,
tt

tt
t

−+
−−

−= 



  (25) 

ut  118.0
07, 8.0=  and 

7,

7,

33.1

0

33.1

00
7,

8.016.0

4.078.0
)(





−

−


++

+
=






et

ettχ*   (26) 

In this paper 150 =t days is adopted to represent that first loading date of concrete.  

5. Numerical Examples 

 

Fig. 1. 3D single span double CFST arch structure layout 



11 

 

 

Fig. 2. Meshed 3D single span double CFST arch structure and internal section layout 

 

Fig. 3. Loading scenario on main arch span of CFST arch structure 

In this section, the time-dependent uncertain random and/or interval bifurcation and limit 

point buckling load of 3D CFST arch structure is investigated to demonstrate the 

performance of the proposed generalized Chebyshev surrogate model-based sampling 

approach. The arch frame, shown in Fig. 1, is designed with a span 15=L m and span-to-

span width of 5m. The inner radius and outer radius of the main span and steel brace are 

24.0=ir m and 25.0=or m, respectively. For the differences between bifurcation and limit 

point buckling, researchers have conducted many studies[46-48] and revealed that the type of 

buckling mode is influenced by geometrical properties and loading scenarios. In this study, 

all the loading scenarios are the same for both bifurcation buckling and limit point buckling 

analysis. Therefore, in the bifurcation buckling analysis, the rise-to-span ratio is designed to 

be 1/10.57 and in the limit point buckling analysis, it has a rise-to-span ratio of 1/12. The 

finite element simulations are implemented on ANSYS platform. For the 3D arch structure, 

the main span is linearized by 40 three-dimensional beam elements and each intermediate 

bracing is modelled by 4 three-dimensional beam elements, with a total of 594 degrees of 

freedom. The 2D arch structure is modelled separately as a single span structure linearized by 

40 beam elements with a total of 234 degrees of freedom. Fig. 2 shows meshed structure and 

f  

L  
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section layout for the 3D arch. The applied vertical load is 600 kN on each node on the main 

arch span for both structures as indicated in Fig. 3.  

Four possible uncertainty sources are considered. In the pure random scenario, the 

Young’s modulus of steel and concrete are considered as normal distributed random variables 

with 200=R
sE

 GPa, 21=R
sE

 GPa, 30=R
cE

 GPa and 6.3=R
cE

 GPa; and in the pure 

interval scenario, the uncertain final creep coefficient is modelled as interval variable from 

1.362 to 2.27 (i.e., 27.2362.1  I

u ) and the final shrinkage coefficient is modelled as 

interval parameter which has 66 1034010150 −−  *I

shε  [49-51]. In the hybrid random 

interval analysis, both random and interval uncertainty parameters are included. 

For the pure random or interval analysis, the ANSYS Probabilistic Design System 

(PDS) is implemented as the reference method for verifying the random or interval 

bifurcation and limit point buckling analysis. In the ANSYS PDS, Monte Carlo simulation 

method was adopted for both probabilistic and interval analysis and was termed as ANSYS 

PDS-MCS. In the referenced hybrid random interval analysis, as ANSYS PDS does not 

provide direct double loop simulation function, ANSYS is thus run from MATLAB function 

for each uncertain simulation. In this approach, again the MCS and QMCS is adopted in 

generating samples from in MATLAB and the referenced method is termed as MATLAB-

ANSYS-MCS-QMCS. For the QMCS approach, the low-discrepancy Sobol sequence is 

adopted by skipping the first 1000 values and retaining every 101st point for generating all the 

interval parameters.  

In order to illustrate the difference between 2D and 3D structures, the bifurcation and 

limit point buckling analysis are carried at day 100 of the loading age at the mean and middle 

values of the uncertainty parameters. As shown in Fig. 4, both scenarios show a significant 

higher critical buckling load in 3D arch structures, which illustrates the necessity of 

implement 3D analysis and the deficiency of theoretical 2D study. The result why 3D model 

predicted a higher buckling load than the 2D model is that 3D models are prone to buckle out 

of the front plane and the steel braces of the 3D single span double CFST arch structure 

restraints this behaviour. Such conclusions have also been witnessed in columns, as reported 

by [52] and stated that it was found that the theoretical buckling loads reported in previous 
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research with 2D systems were conservative and largely underestimated the buckling 

capacities of prestressed stayed columns. 

 

(a) 

 

(b) 

Fig 4. Critical buckling analysis of 2D and 3D CFST arch structures at day 100 for (a) 

bifurcation buckling and (b) limit point buckling 
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5.1. Probabilistic analysis 

5.1.1. Probabilistic bifurcation buckling of 3D CFST arch at day 100 

In the probabilistic analysis of bifurcation buckling of 3D CFST arch structure, the 

Young’s modulus of concrete and steel are considered as random variables. For the proposed 

Chebyshev-MCS method, a mathematical function was first obtained by using Chebyshev 

polynomials where 14 interpolation points are selected in each dimension, and then 20000 

MCS was performed to obtain the statistical information of the bifurcation point load and 

displacement. As the reference method, the ANSYS PDS-MCS method executed 5000 Monte 

Carlo simulations in ANSYS Probabilistic Design System (PDS), the mean and standard 

deviation of the relevant displacement and load at the bifurcation point was obtained. The 

relative error is calculated as: 

100
methodReference

methodReferencemethod  Proposed
(%)errorRelative 

−
=

  

     
     

It can be seen in Table 1 that the ANSYS PDS-MCS took 9 hours and 20 minutes to 

finish the 5000 simulations, while the proposed method only took 30.7 minutes in generating 

the surrogate model and a flash of 30.5 seconds to finish the 20000 Monte Carlo simulations 

with an excellent accuracy. 

Table 1. Bifurcation buckling analysis for pure random scenario 

Bifurcation buckling analysis       

Pure random scenario       

  
μ of central 

displacement (m) 
σ of central 

displacement (m) 
μ of dimension-

less load 
σ of dimension-

less load 

Method 1 0.2571 0.0069 0.2379 0.0193 

Method 2 0.2571 0.0068 0.2375 0.0189 

Relative 
error (%) 

0.012 -0.759 -0.185 -2.057 

 Method 
Interpolation 

points 
Simulation 

number 
computational 

time 

Method 1 ANSYS PDS-MCS N/A 5000 9hrs 20mins 

Method 2 Chebyshev-MCS 14*14 20000 30.7mins + 30.5s 
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5.1.2. Probabilistic limit point buckling of 3D CFST arch at day 100 

In the probabilistic analysis limit point buckling of 3D CFST arch structure, 8 

interpolation points are selected in each dimension in order to formulate the surrogate model 

and again 20000 MCS was executed in the proposed Chebyshev-MCS approach and 5000 

simulations in the ANSYS PDS-MCS method. It can be seen from Table 2 that again the 

proposed method achieved an excellent performance in both accuracy and efficiency. 

Table 2. Limit point buckling analysis for pure random scenario 

Limit point buckling analysis       

Pure random scenario       

  
μ of central 

displacement (m) 
σ of central 

displacement (m) 
μ of dimension-

less load 
σ of dimension-

less load 

Method 1 0.4856 0.0080 0.5321 0.0421 

Method 2 0.4867 0.0082 0.5314 0.0413 

Relative 
error (%) 

0.224 2.423 -0.139 -1.821 

  Method 
Interpolation 

points 
Simulation 

number 
computational 

time 

Method 1 ANSYS PDS-MCS N/A 5000 15 hrs 13 mins 

Method 2 Chebyshev-MCS 8*8 20000 22 mins + 37.8s 

 

5.2. Interval analysis 

5.2.1. Interval bifurcation buckling of 3D CFST arch at day 100 

In the interval analysis of bifurcation buckling of 3D CFST arch structure, the creep 

coefficient and final shrinkage coefficient are considered as interval variables. In the 

proposed Chebyshev-QMCS method, 3 interpolation points are selected in each interval 

dimension and 500 simulations were run based on the surrogated mathematical model. In the 

reference ANSYS PDS-MCS method, 1000 simulations have been implemented. The upper 

bound (U.B.) and lower bound (L.B.) of the central displacement and dimensionless load as 

well as the computational time and the relative errors are listed in Table 3. From Fig.5 it can 

be seen that the proposed Chebyshev-QMCS is capable of providing the load-displacement 

path before reaching the critical buckling load while for the ANSYS PDS-MCS only the 

critical loads can be captured with the indicated computational time. The buckling path 

calculated using the mid value of the interval inputs are also plot in Fig. 5. 
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Table 3. Bifurcation buckling analysis for pure interval scenario 

Bifurcation buckling analysis       

Pure interval scenario       

  
U.B. of central 

displacement (m) 
L.B. of central 

displacement (m) 

U.B. of 
dimension-less 

load 

L.B. of 
dimension-less 

load 

Method 1 0.2618 0.2475 0.2469 0.2301 

Method 2 0.2609 0.2518 0.2468 0.2302 

Relative 
error (%) 

-0.340 1.721 -0.045 0.022 

  Method 
Interpolation 

points 
Simulation 

number 
computational 

time 

Method 1 ANSYS PDS-MCS N/A 1000 1hrs 55mins 

Method 2 Chebyshev-QMCS 3*3 500 1.7mins + 1.6s 

 

Fig. 5. Load displacement curve for bifurcation buckling analysis of 3D CFST arch with 

interval uncertainty parameters 

5.2.2. Interval limit point buckling of 3D CFST arch at day 100 

In the interval analysis of limit point buckling of 3D CFST arch structure, again 3 

interpolation points are selected in each interval dimension and 500 simulations were run in 

Chebyshev-QMCS. 1000 simulations have been implemented in ANSYS PDS-MCS and the 

computational time and the relative errors are listed in Table 4. Fig. 6 shows the buckling 

path of each of the 500 interval inputs in the proposed Chebyshev-QMCS method, the critical 
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limit points captured using ANSYS PDS-MCS as well as the results from the mid values of 

the interval inputs. 

Table 4. Limit point buckling analysis for pure interval scenario 

Limit point buckling analysis       

Pure interval scenario       

  U.B. of central 
displacement (m) 

L.B. of central 
displacement (m) 

U.B. of 
dimension-less 

load 

L.B. of 
dimension-less 

load 

Method 1 0.4958 0.4733 0.5566 0.5117 
Method 2 0.4917 0.4709 0.5562 0.5118 

Relative 
error (%) 

-0.835 -0.513 -0.070 0.029 

  Method Interpolation 
points 

Simulation 
number 

computational 
time 

Method 1 ANSYS PDS-MCS N/A 1000 3 hrs 10 mins 

Method 2 Chebyshev-QMCS 3*3 500 2.3mins +2.4s 

 

 

Fig.6. Load displacement curve for limit point buckling analysis of 3D CFST arch with 

interval uncertainty parameters 
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5.3. Hybrid random interval analysis 

5.3.1. Results verification for hybrid analysis at day 100 

In this section, the varication for hybrid random interval bifurcation buckling analysis 

of 3D CFST arch structures at day 100 of the loading age was firstly implemented. As 

aforementioned, both uncertain variables in pure probabilistic and interval analysis are 

incorporated in the hybrid analysis. In the proposed Chebyshev-MCS-QMCS method, 14 

interpolation points are selected in each dimension for random variables and 3 interpolation 

points are selected in each dimension for interval variables. The Chebyshev polynomials are 

then constructed followed by a combination of 1000 MCS and 500 QMCS. In the reference 

method, however, the combination of 1000 MCS and 500 QMCS are run in ANSYS from 

MATLAB function. It has been noticed that the reference method took a huge amount of 

computational time, in which 20 computers were involved and it took 76 hours 10 minutes 

for each computer to finish the simulation. While in the proposed Chebyshev-MCS-QMCS 

method, it consumed 4.35 hours to generate the Chebyshev surrogate model, and after that 

only 48 minutes was used to finish the 500,000 simulations. The relative errors which show 

the exceptional computational accuracy achieved by the proposed method are also listed in 

Table 5. 

Table 5. Bifurcation buckling analysis at day 100 for hybrid random interval scenario 

Bifurcation buckling analysis at Day 100 

Hybrid random interval scenario 

 U.B. of μ of central 
displacement (m) 

L.B. of μ of 
central 

displacement (m) 

U.B. of σ  of 
central 

displacement (m) 

L.B. of σ of 
central 

displacement (m) 

Method 1 0.2558 0.241 0.0081 0.0068 

Method 2 0.2564 0.2395 0.0084 0.0066 

Relative 
error (%) 

0.2346 -0.6224 3.7037 -2.9412 

 U.B. of μ of 
dimensionless load 

L.B. of μ of 
dimensionless 

load 

U.B. of σ of 
dimensionless 

load 

L.B. of σ of 
dimensionless 

load 

Method 1 0.2463 0.2301 0.0201 0.0177 

Method 2 0.2477 0.2293 0.0201 0.0175 

Relative 
error (%) 

0.568 -0.348 0.178 -1.130 

 Method Interpolation Simulation computational 
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points number time 

Method 1 
MATLAB-ANSYS 

–MCS-QMCS 
N/A 1000*500 20*76 hr 10mins 

Method 2 
Chebyshev-MCS-

QMCS 
14*14*3*3 1000*500 4.35 hr + 48mins 

 

5.3.2. Hybrid random interval bifurcation buckling of 3D CFST arch 

After the varication stage, the hybrid random interval bifurcation buckling analysis of 

3D CFST arch structures has been further implemented at day 50 and day 400 of the loading 

age. The detailed results and computational time are listed in Table 6 and Table 7. The upper 

and lower bounds of the mean of the loading path as well as the results calculated using the 

mean and mid values of the input uncertainty variables are plot in Fig. 7. Due to the 

exceptional computation efforts required in performing the MATLAB-ANSYS–MCS-QMCS 

analysis, the results verification for day 50 and day 400 of the hybrid random interval 

bifurcation buckling analysis is not taken place. 

Table 6. Bifurcation buckling analysis at day 50 and 400 for hybrid random interval scenario 

Bifurcation buckling analysis 

Hybrid random interval scenario 

  

U.B. of μ of 
central 

displacement (m) 

L.B. of μ of 
central 

displacement (m) 

U.B. of σ of 
central 

displacement (m) 

L.B. of σ of 
central 

displacement (m) 

Day 50 0.2572 0.2481 0.0072 0.0059 

Day 400 0.2671 0.256 0.0106 0.0056 

  

U.B. of μ of 
dimensionless 

load 

L.B. of μ of 
dimensionless 

load 

U.B. of σ of 
dimensionless 

load 

L.B. of σ of 
dimensionless 

load 

Day 50 0.2553 0.2361 0.0209 0.0181 

Day 400 0.2391 0.2208 0.0197 0.0171 

  
Method 

Interpolation 
points 

Simulation 
number 

 
  

  
Chebyshev-MCS-

QMCS 
14*14*3*3 1000*500 

  

 

Table 7. Computational time for Bifurcation buckling analysis with Hybrid scenario 

Computational time for Bifurcation buckling analysis with Hybrid scenario 

Day 50 Day 400 

5.20hrs + 41.12mins 4.81hrs+ 45.96mins 
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Fig.7. The upper and lower bounds of the mean of the load displacement curve for 

bifurcation buckling analysis of 3D CFST arch with hybrid random interval uncertainty 

parameters 

 

5.3.3. Hybrid random interval limit point buckling of 3D CFST arch 

The limit point buckling analysis of 3D CFST arch at day 50, 100 and 400 of the 

loading ages with both random and interval variables are implemented in this section. In the 

proposed Chebyshev-MCS-QMCS method, 8 interpolation points are selected in each 

dimension for random variables and 3 interpolation points are selected in each dimension for 

interval variables. The results and computational time are listed in Table 8 and Table 9, and 

the upper and lower bounds of the mean of the loading path as well as the results calculated 

using the mean and mid values of the input uncertainty variables are plot in Fig. 8. Again, due 

to the exceptional computation efforts required in performing the reference method, the 

results have not been verified. The purpose of section 4.3.2 and 4.3.3 is major showing the 

potential and capability of the proposed Chebyshev-MCS-QMCS method in performing time-
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dependent hybrid probabilistic interval non-linear buckling analysis. It has also been noticed 

that with the increase of loading age, the upper and lower bounds of the mean of the critical 

bifurcation of limit point buckling load will decrease. The proposed method can efficiently 

and accurately foresee such change at the design stage when both random and interval 

uncertainty factors are involved. 

Table 8. Limit point buckling analysis for hybrid random interval scenario 

Limit point buckling analysis 

Hybrid random interval scenario 

  

U.B. of μ of 
central 

displacement (m) 

L.B. of μ of 
central 

displacement (m) 

U.B. of σ of 
central 

displacement (m) 

L.B. of σ of 
central 

displacement (m) 

Day 50 0.4868 0.4743 0.0094 0.0059 

Day 100 0.4911 0.4791 0.0099 0.0069 

Day 400 0.4971 0.4833 0.0095 0.0062 

  

U.B. of μ of 
dimensionless 

load 

L.B. of μ of 
dimensionless 

load 

U.B. of σ of 
dimensionless 

load 

L.B. of σ of 
dimensionless 

load 

Day 50 0.5763 0.5301 0.0466 0.0390 

Day 100 0.5578 0.5111 0.0454 0.0384 

Day 400 0.5344 0.4883 0.0426 0.0372 

  
Method 

Interpolation 
points 

Simulation 
number 

 
  

  
Chebyshev-MCS-

QMCS 
8*8*3*3 1000*500   

 

Table 9. Computational time for limit point buckling analysis with Hybrid scenario 

Computational time for limit point buckling analysis with Hybrid scenario 

Day 50  Day 100  Day 400  

2.56hrs + 72.72mins 2.51hrs + 73.03mins 2.45hrs + 70.40 mins 
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Fig.8. The upper and lower bounds of the mean of the load displacement curve for limit point 

buckling analysis of 3D CFST arch with hybrid random interval uncertainty parameters 

 

6. Conclusions 

This study has proposed a new generalized Chebyshev surrogate model based on 

sampling approach in analysing the time-dependent nonlinear buckling behaviour of CFST 

arch structures when both probabilistic and interval uncertainties are incorporated. With the 

Chebyshev surrogate model strategy combined with finite element method, the mathematical 

relationships between the uncertain structural parameters and the critical nonlinear limit and 

bifurcation buckling loads can be formulated explicitly, which dramatically reduced the 

computational time when performing uncertainty analysis using MCS and QMCS methods. 

With the exceptional computational efficiency, the proposed method can be used to perform 

nonlinear buckling analysis of CFST arch structures at any time of the loading age and 

accurately predict the critical buckling loads and load-displacement paths. Furthermore, with 

the help of finite element method, the proposed approach is capable of analysing nonlinear 

buckling of complex 3D structures with hybrid random interval uncertainties. 



23 

 

 

Acknowledgements 

The work described in the present paper is fully funded by a research grant from the 

National Natural Science Foundation of China (51838004), the National Key Research and 

Development Program of China (2020YFC1511900), Natural Science Foundation of Jiangsu 

Province (BK20210254), 2021 High-level Personnel Project Funding of Jiangsu Province 

(JSSCBS20210069) as well as the funding from State Key Laboratory of Mechanical 

Behavior and System Safety of Traffic Engineering Structures (KF2022-04). The authors are 

grateful for the financial support. The damage dataset supporting the conclusions of this 

article will be made available by the authors, without reservation. 

 

Declaration of Interests 

All authors declare that they do not have any conflict of interest in the work presented in 

this paper.   



24 

 

Reference 1 

[1] Dou C, Guo Y-F, Jiang Z-Q, Gao W, Pi Y-L. In-plane buckling and design of steel 2 

tubular truss arches. Thin-Walled Structures. 2018;130:613-21. 3 

[2] Dou C, Jiang Z-Q, Pi Y-L, Gao W. Elastic buckling of steel arches with discrete lateral 4 

braces. Engineering Structures. 2018;156:12-20. 5 

[3] Liu A-R, Huang Y-H, Fu J-Y, Yu Q-C, Rao R. Experimental research on stable ultimate 6 

bearing capacity of leaning-type arch rib systems. Journal of Constructional Steel Research. 7 

2015;114:281-92. 8 

[4] Liu A, Lu H, Fu J, Pi Y-L, Huang Y, Li J et al. Analytical and experimental studies on 9 

out-of-plane dynamic instability of shallow circular arch based on parametric resonance. 10 

Nonlinear Dynamics. 2017;87:677-94. 11 

[5] Liu A, Yang Z, Bradford MA, Pi Y-L. Nonlinear Dynamic Buckling of Fixed Shallow 12 

Arches under an Arbitrary Step Radial Point Load. Journal of Engineering Mechanics. 13 

2018;144:04018012. 14 

[6] Timoshenko SP, Gere JM. Theory of elastic stability. McGraw-Hill, New York; 1961. 15 

[7] Pi Y-L, Bradford M, Uy B. In-plane stability of arches. Int J Solids Struct. 2002;39:105-16 

25. 17 

[8] Pi Y-L, Trahair N. Non-linear buckling and postbuckling of elastic arches. Engineering 18 

Structures. 1998;20:571-9. 19 

[9] Pi Y-L, Bradford M, Tin-Loi F. Nonlinear analysis and buckling of elastically supported 20 

circular shallow arches. Int J Solids Struct. 2007;44:2401-25. 21 

[10] Pi Y-L, Bradford MA, Qu W. Long-term non-linear behaviour and buckling of shallow 22 

concrete-filled steel tubular arches. Int J Nonlinear Mech. 2011;46:1155-66. 23 

[11] Sun J, Geng Y, Zhang H, Yin H, Wang Y. Experimental and numerical study on slender 24 

concrete-filled steel tubular arches subjected to tilting loads. Thin-Walled Structures. 25 

2022;179:109701. 26 

[12] Feng J, Gao K, Gao W, Liao Y, Wu G. Machine learning-based bridge cable damage 27 

detection under stochastic effects of corrosion and fire. Engineering Structures. 28 

2022;264:114421. 29 

[13] Hu C-F, Li Z, Hu Q-S. On non-linear behavior and buckling of arch-beam structures. 30 

Engineering Structures. 2021;239:112214. 31 

[14] Geng Y, Ranzi G, Wang Y, Zhang S. Time-dependent behaviour of concrete-filled steel 32 

tubular columns: analytical and comparative study. Magazine of Concrete Research. 33 

2012;64:55-69. 34 

[15] Geng Y, Ranzi G, Wang Y-T, Wang Y-Y. Out-of-plane creep buckling analysis on 35 

slender concrete-filled steel tubular arches. Journal of Constructional Steel Research. 36 

2018;140:174-90. 37 

[16] Geng Y, Wang Y, Ranzi G, Wu X. Time-dependent analysis of long-span, concrete-38 

filled steel tubular arch bridges. Journal of Bridge Engineering. 2014;19:04013019. 39 

[17] Huang Y, Yang Z, Fu J, Liu A. Long-term lateral-torsional buckling behavior of pin-40 

ended CFST arches under uniform radial loads and temperature field. Mechanics of 41 

Advanced Materials and Structures. 2021;28:2472-86. 42 

[18] Ellingwood BR, Tekie PB. Wind load statistics for probability-based structural design. 43 

Journal of Structural Engineering. 1999;125:453-63. 44 

[19] Gao W, Song C, Tin-Loi F. Probabilistic interval analysis for structures with uncertainty. 45 

Structural Safety. 2010;32:191-9. 46 

[20] Barbato M, Zona A, Conte JP. Probabilistic nonlinear response analysis of steel-concrete 47 

composite beams. Journal of Structural Engineering. 2013;140:04013034. 48 



25 

 

[21] Ma J, Zhang S, Wriggers P, Gao W, De Lorenzis L. Stochastic homogenized effective 49 

properties of three-dimensional composite material with full randomness and correlation in 50 

the microstructure. Computers & Structures. 2014;144:62-74. 51 

[22] Moens D, Vandepitte D. A survey of non-probabilistic uncertainty treatment in finite 52 

element analysis. Computer methods in applied mechanics and engineering. 2005;194:1527-53 

55. 54 

[23] Möller B, Beer M. Engineering computation under uncertainty–capabilities of non-55 

traditional models. Comput Struct. 2008;86:1024-41. 56 

[24] Brown CB, Yao JT. Fuzzy sets and structural engineering. Journal of structural 57 

engineering. 1983;109:1211-25. 58 

[25] Wang L, Ma Y, Zhang J, Liu Y. Probabilistic analysis of corrosion of reinforcement in 59 

RC bridges considering fuzziness and randomness. Journal of Structural Engineering. 60 

2012;139:1529-40. 61 

[26] Do DM, Gao W, Song C, Tangaramvong S. Dynamic analysis and reliability assessment 62 

of structures with uncertain-but-bounded parameters under stochastic process excitations. 63 

Reliability Engineering & System Safety. 2014;132:46-59. 64 

[27] Yang C, Tangaramvong S, Tin-Loi F, Gao W. Influence of interval uncertainty on the 65 

behavior of geometrically nonlinear elastoplastic structures. Journal of Structural Engineering. 66 

2016;143:04016147. 67 

[28] Gao K, Gao W, Wu B, Song C. Nondeterministic dynamic stability assessment of Euler–68 

Bernoulli beams using Chebyshev surrogate model. Applied Mathematical Modelling. 69 

2019;66:1-25. 70 

[29] Kang Z, Luo Y. Non-probabilistic reliability-based topology optimization of 71 

geometrically nonlinear structures using convex models. Computer Methods in Applied 72 

Mechanics and Engineering. 2009;198:3228-38. 73 

[30] Jiang C, Han X, Lu G, Liu J, Zhang Z, Bai Y. Correlation analysis of non-probabilistic 74 

convex model and corresponding structural reliability technique. Computer Methods in 75 

Applied Mechanics and Engineering. 2011;200:2528-46. 76 

[31] Wu J, Luo Z, Zhang N, Zhang Y. A new uncertain analysis method and its application in 77 

vehicle dynamics. Mechanical Systems and Signal Processing. 2015;50:659-75. 78 

[32] Wu B, Gao W, Wu D, Song C. Probabilistic interval geometrically nonlinear analysis for 79 

structures. Structural Safety. 2017;65:100-12. 80 

[33] Au S, Beck J. Important sampling in high dimensions. Structural safety. 2003;25:139-63. 81 

[34] Elishakoff I, Dujat K, Lemaire M, Gadiot G. Hybrid Optimization and Anti-82 

Optimization of a Stochastically Excited Beam. Journal of Applied Mechanics. 83 

2014;81:021017. 84 

[35] Yao TH-J, Wen Y-K. Response surface method for time-variant reliability analysis. 85 

Journal of Structural Engineering. 1996;122:193-201. 86 

[36] Bakalis K, Fragiadakis M, Vamvatsikos D. Surrogate modeling for the seismic 87 

performance assessment of liquid storage tanks. Journal of Structural Engineering. 88 

2016;143:04016199. 89 

[37] Wu J, Luo Z, Zhang N, Gao W. A new sequential sampling method for constructing the 90 

high-order polynomial surrogate models. Engineering Computations. 2018;35:529-64. 91 

[38] Wu J, Luo Z, Zheng J, Jiang C. Incremental modeling of a new high-order polynomial 92 

surrogate model. Applied Mathematical Modelling. 2016;40:4681-99. 93 

[39] Bathe K-J. Finite element procedures in engineering analysis. Prentice-Hall; 1982. 94 

[40] Riks E. An incremental approach to the solution of snapping and buckling problems. Int 95 

J Solids Struct. 1979;15:529-51. 96 



26 

 

[41] Bathe K-J, Dvorkin EN. On the automatic solution of nonlinear finite element equations.  97 

Nonlinear Finite Element Analysis and Adina: Elsevier; 1983. p. 871-9. 98 

[42] Bathe K-J. Finite element procedures: Klaus-Jurgen Bathe; 2006. 99 

[43] Zhang H, Dai H, Beer M, Wang W. Structural reliability analysis on the basis of small 100 

samples: an interval quasi-Monte Carlo method. Mechanical Systems and Signal Processing. 101 

2013;37:137-51. 102 

[44] Australia SAo. AS3600.  Australian Standard: Concrete Structures. Sydney2001. 103 

[45] Institute AC. ACI Committee 209.  Prediction of creep, shrinkage and temperature 104 

effects in concrete structures. Detroit1982. 105 

[46] Chen C-N. A finite element study on bifurcation and limit point buckling of elastic-106 

plastic arches. Computers & structures. 1996;60:189-96. 107 

[47] Samuels P. Bifurcation and limit point instability of dual eigenvalue third order systems. 108 

Int J Solids Struct. 1980;16:743-56. 109 

[48] Wardle BL, Lagace PA. Bifurcation, limit-point buckling, and dynamic collapse of 110 

transversely loaded composite shells. AIAA journal. 2000;38:507-16. 111 

[49] Ichinose LH, Watanabe E, Nakai H. An experimental study on creep of concrete filled 112 

steel pipes. Journal of constructional steel research. 2001;57:453-66. 113 

[50] Uy B. Static long-term effects in short concrete-filled steel box columns under sustained 114 

loading. Structural Journal. 2001;98:96-104. 115 

[51] Han L-H, Tao Z, Liu W. Effects of sustained load on concrete-filled hollow structural 116 

steel columns. Journal of structural engineering. 2004;130:1392-404. 117 

[52] Hyman P, Osofero AI, Sriramula S. Buckling behaviour of three-dimensional prestressed 118 

stayed columns.  IOP Conference Series: Materials Science and Engineering: IOP Publishing; 119 

2018. p. 012007. 120 

 121 


