Accepted manuscript

As a service to our authors and readers, we are putting peer-reviewed accepted manuscripts (AM) online, in the Ahead of Print section of each journal web page, shortly after acceptance.

Disclaimer

The AM is yet to be copyedited and formatted in journal house style but can still be read and referenced by quoting its unique reference number, the digital object identifier (DOI). Once the AM has been typeset, an ‘uncorrected proof’ PDF will replace the ‘accepted manuscript’ PDF. These formatted articles may still be corrected by the authors. During the Production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.

Version of record

The final edited article will be published in PDF and HTML and will contain all author corrections and is considered the version of record. Authors wishing to reference an article published Ahead of Print should quote its DOI. When an issue becomes available, queuing Ahead of Print articles will move to that issue’s Table of Contents. When the article is published in a journal issue, the full reference should be cited in addition to the DOI.
Submitted: 19 June 2022

Published online in ‘accepted manuscript’ format: 27 January 2023

Manuscript title: Occurrence and ecotoxicological effects of fires at municipal solid waste landfills

Authors: Arif Mohammad1,2, Evan K. Paleologos3, Paweł Ogrodnik4, Eugeniusz Koda5, Piotr Osinski5, Anna Podlasek5, Magdalena Daria Vaverková5,6, Venkata Siva Naga Sai Goli1, Prithvendra Singh1, Kai Wang7, Xiao - Hui Chen8, Aizhong Ding7, Ning-Jun Jiang9, Yi-Jie Wang10, Devendra Narain Singh1

Affiliations: 1Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai-400 076, India. 2Department of Civil Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom. 3Department of Civil Engineering, Abu Dhabi University, Abu Dhabi, UAE. 4Institute of Safety Engineering, Main School of Fire Service—SGSP, Slowackiego 52/54, 01625 Warsaw, Poland. 5Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02776 Warsaw, Poland. 6Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic. 7College of Water Sciences, Beijing Normal University, Beijing, 100875, China. 8School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK. 9Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China. 10Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, USA.

Corresponding author: Arif Mohammad, Department of Civil Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom.

E-mail: Mohammada2@cardiff.ac.uk; arifmd.iitb@gmail.com
Abstract

Surface and sub-surface fire in municipal solid waste landfills (including dumpsites) is a complex and intricate phenomenon, whose frequency is expected to increase due to climate change. Partial or incomplete combustion of landfill waste at low temperatures during fires leads to generation of toxic compounds, including hydrocarbons, particulate matter and hazardous gases, which contaminate the surrounding geoenvironment and ultimately pose severe health hazards to living entities. Under these circumstances, it is the need of the hour to understand the (i) occurrence mechanisms of landfill fires, (ii) waste properties and operational conditions that may favour landfill fires and (iii) strengths and limitations of the available detection techniques in order to provide recommendations to detect such incidences at an early stage and plan emergency measures. Hence, the present review article critically assimilates the literature on landfill fires and discusses the (a) conditions under which the initiation and sustenance of landfill fires take place, (b) ecotoxicological (geoenvironmental) hazards of landfill fires, both in short- and long-term and (c) detection techniques for an early warning system. Finally, a discussion on the coupled multi-physics interactions undergoing in the waste matrix during landfill fires is presented in this manuscript, which is crucial to mastering this subject.
Notation

\(A \)
parameter for biodegradation

\(\alpha \)
thermal diffusivity

\(C_p \)
specific heat capacity

\(D_T \)
span of degradation time

\(A_{Ti} \) and \(B_{Ti} \)
Coefficient for the peak heat production rate and its time, respectively

\(\Delta H_g^0 \)
change in enthalpy in reaction

\(\Delta H_{f,p}^0 \) and \(\Delta H_{f,e}^0 \)
change in enthalpy for products and educts, respectively

\(M_w \)
molar mass of the waste

\(m_x \)
mass of product or educts \(x \)

\(Q \)
rate of heat generation

\(q \)
conductive heat flux

\(q_T \)
heat generated by unit amount of the biodegradable MSW

\(\rho \)
density

\(\rho_0 \)
initial density

\(T \)
temperature

\(t \)
time

\(w \)
moisture content

\(\omega \)
proportion of a component
Introduction

Landfilling (including open dumping) is one of the most commonly adopted methods of handling the growing amount of municipal solid waste (MSW) worldwide (Kaza et al., 2018). Unsecure landfill poses severe geoenvironmental issues, including leaching of contaminants and pollution of surface and groundwater (Papapetridis and Paleologos, 2012), environmental degradation of resources and surrounding areas (Chandana et al., 2021; Chembukavu et al., 2019; Goli et al., 2020; Mohammad et al., 2021a). Owing to the list, landfill fires (LFs), whose frequency is predicted to increase due to global warming, poses severe environmental threats, mainly by emitting toxic gases and chemical compounds. LFs can persist for weeks and can (i) engage a number of personnel and equipments for their containment, and (ii) emit hazardous gases, which may aggravate respiratory conditions and even may lead to the evacuation of surrounding communities (US FEMA, 2002). The thermal radiation from a fire in a landfill site can be intense and make it very difficult for firefighters to approach its source to apply extinguishing media. Owing to these reasons their characteristics and mitigation measures have been receiving attention from the recent research fraternity (Chavan et al., 2019; Manjunatha et al., 2020; Mikalsen et al., 2021; Milosevic et al., 2018; Mazzucco et al., 2020; Morales S et al., 2018).

LFs can be categorized primarily into surface fires (located within 1.5 m depth from the top of MSW) (location#1 and #2) and sub-surface fires (location#3) (also known as underground fire), depending on the location of the source, as depicted in Figure 1 (Davis et al., 2021; Frid et al., 2010).
The major ignition sources of the surface landfill fires (SLFs) are intentional or accidental disposal of flammable substances (such as hot ash, active match stick and cigarette butts, etc.) at the site, spontaneous combustion or self-ignition, lightning strikes, sparks from the technical or electrical failure of instruments and vehicles, and arson and thermal runaway of batteries (Davis et al., 2021; Manjunatha et al., 2020; Mikalsen et al., 2021). A particular hazard of landfills is the presence of the highly flammable methane (CH$_4$) gas generated during anaerobic MSW decomposition, intrusion of oxygen/air due to over-extraction of gas from extraction wells especially located near a slope or through cracks and fissures, leading to the occurrence of sub-surface landfill fires (SSLFs) (Jafari et al., 2017). The release of gas from landfill cover having cracks may lead to combustion at the surface due to the self-ignition capacity of the CH$_4$ gas at ≥5% (v/v basis) in the atmosphere (Manjunatha et al., 2020).

Biochemical decomposition of MSW (i.e., chemical and biochemical oxidation) is an exothermic process, generating heat and increasing the temperature of the landfill system (Chavan et al., 2019). Consequently, the rate of biochemical decomposition of MSW increases as per the Arrhenius relationship and subsequently, more heat generation takes place (Kiersnowska et al., 2020). Typically, during aerobic decomposition of MSW in landfills, the temperature might reach 60 to 80°C, while under anaerobic conditions it rises to 45-70 ºC (Kumar et al., 2021; Yesiller et al., 2005). However, due to the thermal insulation properties (i.e., low thermal conductivity and diffusivity) of the MSW, heat accumulates until the ‘ignition temperature’ is reached leading to SSLFs (Chavan et al., 2019). The increase in temperature takes place when heat generation becomes higher than its dissipation in the waste matrix.
(Sabrin et al., 2021). Ignition and duration of landfill fires depend on several parameters, such as waste composition and their thermal characteristics, oxygen availability, ambient pressure, moisture content, properties of landfill leachate and climatic conditions (Stearns and Petoyan, 1984). Out of these parameters, thermal properties, especially thermal conductivity and the specific heat capacity, play crucial roles in the heat migration in MSW in landfills (Manjunatha et al., 2020).

Relatively limited research has been conducted to understand the mechanisms and subsequent hazards associated with LFs, which includes alteration of the ambient atmosphere, water bodies and finally, the geological strata due to migration of pollutants (Roots et al., 2004). For instance, SLF can damage final covers, similar to the decomposition induced uneven settlements in landfill, create cracks if the covers are made of clay due to its shrinkage behaviour while drying upon the application of thermal stresses (Jafari et al., 2017). In addition, LFs may emit several toxic compounds, such as polychlorinated dibenzo-p-dioxin, polychlorinated dibenzo-furans, polyaromatic hydrocarbons, polychlorinated biphenyls, chlorophenols, polychlorinated benzenes, particulate matter (PM$_{2.5}$ and PM$_{10}$) and hazardous gases, such as CO, CO$_2$, NO$_x$ and SO$_x$ (Ruokojärvi et al., 1995a,b). The harmful health effects of the LFs depend on the distance from the landfill and the physical condition of the concerned person.

Vassiliadou et al. (2009) have reported the presence of polychlorinated dibenzo-p-dioxin/furans in food samples, having translocated to animals, including humans, via the food chain. LFs also alter the physico-chemical properties of leachate in MSW landfills.
SSLF can damage the landfill gas and leachate collection system (Mazzucco et al., 2020); even the service life of High-density polyethene geomembrane will reduce due to the high-temperature stress (Chavan et al., 2019; Kumar and Reddy, 2021; Zhang et al., 2022). It must be stressed that high temperature affects the performance of the bottom liner geomembrane, which contains the leachate from subsurface, and at temperature $\approx 100^\circ$C, it is practically destroyed, allowing the unimpeded transport of contaminants to the surrounding geoenvironment. In addition, the heat from LF may lead to the thermal decomposition of waste and the geomechanical instability of a landfill due to softening of MSW or creation of temporary cavities in matrix (Jafari et al., 2017). Therefore, these complicated phenomena, which are known as coupled multi-physics phenomena, should be studied under the realm of Environmental Geotechnics.

Based on the above-mentioned discussion, this article primarily concentrates on three areas related to the: (i) occurrence and parameters that are responsible for the sustenance of LF, (ii) ecotoxicological effects of LF on geoenvironment, animals and human beings and (iii) the coupled multi-physics interactions taking place during a LF; to provide better understanding of this event.

Occurrence of landfill fires and influencing parameters

The U.S. Fire Administration (2001) reported that every year an average of 8,300 LFs took place in the USA, mostly in the spring and summer months, with 40% attributed to arson. Illegal waste burning takes place in European countries as well. In southern Italy, the area around the city of Naples has been given the name of “Land of Fires” for the frequent illegal
burning of industrial and hazardous waste set by organized crime (D’Alisa et al., 2017). In the UK, the National Fire Chiefs Council (NFCC, 2021, see https://www.ukfrs.com/guidance/fires-waste-sites) has estimated that about 300 significant LFs occur every year. In India, landfill fires are common and recently, in November 2020 at the Ghazipur landfill in Delhi, and in April 2022 at Bhalswa landfill a fire took place.

The occurrence of LFs is increasing due to global warming, incidence of the heatwave, etc., which are interconnected with climate change. For instance, the most recent statistical data till 2019 on fires at waste disposal sites located in Poland (see: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5484/1/21/1/ochrona_srodowiska_2020.pdf (in Polish)) indicates that the number of fire events increased in recent times. Many fires are also likely to have been set up in order to devour illegal waste imported from other countries (Vaverková et al., 2019). As part of the monitoring of interventions undertaken by the entities of the National Headquarters of the State Fire Service of Poland, there has been an increase in the number of fires, both in landfills and in illegal dumps (Vaverková et al., 2019). The number of big (surface area=301-1000 m²) and very big (surface area> 1000 m²) fires that occurred in Poland in 2018 were 2.4 and 2.6 higher than the average for 2010-2017, as depicted in Figure 2(a) (Bihałowicz et al., 2021). The analysis of the fire events in Poland shows that the largest number of fires occurred in the spring and summer period (in 2019: March - 25 fires, April - 34, July - 29) due to high atmospheric temperature and prolonged dry periods during this time. Past data on fires of waste gathering sites in Poland exhibited an increasing trend (except for the year 2019 which shows fewer fire events)
(Statistics Poland, GUS, 2020) as depicted in Figure 2(b).

On the contrary, Milosevic et al. (2018) have reported that due to improved landfilling, awareness and cooperation from citizens, analysis and learning from previous LFs, the incidence of fires has reduced in Nišava County (Serbia). However, when the reported data by Milosevic et al. (2018) were plotted (refer to Figure 2c) no districted trend is observed. Therefore, more datasets must be generated for different countries at the global level to compare data from different nations and accurate and reliable tracking of LF.

Occurrence of landfill fires

The combustion of MSW takes place in three phases: (i) ignition and propagation, (ii) compression stage and (iii) equilibrium and pyrolysis (the production of volatile products, condensable liquids or tar and char) stage. Depending on the waste material characteristics, the duration of each phase varies. For instance, the duration of the ignition and propagation phase of rubber tires is approximately 30 minutes where the flame front develops, and constant radiant heat flow occurs. After the inception of fire, until 60 minutes, a compression phase occurs where the fire penetrates deep in the tire pile, leading to the collapse of top layers (FEMA-USFA, 1998). The compression phase of fire is followed by pyrolysis, which can last approximately 48 minutes and is followed by an increase in liquid run-off (Nadal et al., 2016). The smouldering time (Ts) (=23 to 34 min) and the ignition time (Ti) (=27 to 48 min) are directly proportional to the age of MSW, which is due to presence of higher moisture content in fresh MSW that consumes more heat for evaporation as compare to old MSW having less moisture and more combustible content (Chavan et al., 2019). Most often, partial combustion
in the MSW in landfills occurred at temperatures between 100 and 120°C (Ettala et al., 1996).

In some cases, the temperature during smouldering combustion has been specified in the range of 200-300°C, and even 700°C (Lönnermark et al., 2008). The generated heat would try to migrate through the MSW matrix.

The heat migration phenomena in porous media are very complex and primarily occur due to conduction, convection and radiation. However, for the sake of simplicity, Kumar et al. (2021) reported that a dominant mode of heat transfer in MSW occurs due to conduction, which can be expressed as shown in Equation 1, where convection due to migration of leachate is insignificant. Further, \(q \) indicates the conductive heat flux (refer to Equation 2), whereas \(Q \), is the rate of heat generation during exothermic reaction that occurs due to microbial activities and can be computed based on the rate of generation of the CH\(_4\) gas (Hao et al., 2017).

Alternatively, \(Q \) can be generated from the oxidation of waste.

\[
\left(c_p\right)_{\text{eff}} \frac{\partial T}{\partial t} + \nabla \cdot q = Q \tag{1}
\]

\[
Q = -k_{\text{eff}} \nabla T \tag{2}
\]

where, \((c_p)_{\text{eff}}, k_{\text{eff}}, T\) and \(t\) represent the effective heat capacity, effective thermal conductivity, temperature and time, respectively.

However, it should be understood that the thermal conductivity \((k)\) of the MSW would depend on the porosity apart from waste characteristics which can decide the heat migration phenomenon. It should be worth mentioning that the porosity is being guided by density of the matrix. Hence, the values mentioned in Equation. 1 and 2 will depend on density of the matrix. Thermal diffusivity \((\alpha)\) is the parameter which is being influenced density along with \(k\) and
Specific heat capacity \((C_p)\) (refer to Equation 3) which can be more prudent to use to model \(Q\).

\[
\alpha = \frac{k}{\rho C_p}
\]

(3)

Recently, Zhang et al. \(2022\) have used Equation 4 to calculate the total heat generated from per unit volume of waste per unit time due to biodegradation of three categories of biodegradable wastes, i.e., easily-, moderately- and slowly (difficultly) degradable wastes fractions.

\[
Q = \sum_{i=1}^{3} \omega_i \frac{A_{Ti}}{B_{Ti}} \left(t + D_{Ti}\right) e^{-\left(t + D_{Ti}\right)/B_{Ti}}
\]

(4)

In Equation 4, \(i =1, 2\) and 3 represent easily degraded, moderately degraded, and difficultly degraded components in the MSW, respectively; \(\omega_i\) represents the proportion of a component; \(D_{Ti}\) is the span of degradation time that produces heat; \(A_{Ti}\) and \(B_{Ti}\) are the parameters related to the peak heat production rate and its time, respectively. Further, \(A_{Ti}\) can be estimated by:

\[
A_{Ti} = \rho_0 q_T A/M_w
\]

(5)

Where, \(\rho_0\), \(A\) and \(M_w\) are the initial density of the waste, the parameter related to the biodegradation and the molar mass of the waste, respectively; \(q_T\) is the amount of heat generated by unit amount of the biodegradable MSW.

In addition, Lu and Feng \(2020\) have determined the heat generation based on the concept of reaction enthalpy as mentioned. Under standard condition, change in enthalpy \((\Delta H_R^0)\) can be estimated as

\[
\Delta H_R^0 = \sum \Delta H_{f,p}^0 - \Delta H_{f,e}^0
\]

(6)
Where, \(R \), \(p \) and \(e \) represent reaction, products and educts;

Once, the \(\Delta H^0_k \) known, the heat generation can be estimated by multiplying it with reaction rate as shown in Equation 7.

\[
Q = \sum_x \hat{m}_x \Delta H^0_x
\]

(7)

where, \(m_x \) is mass of product or educts \(x \).

The thermal properties of waste play an important role in the SSLF due to their insulation nature and accumulation of heat generated during biochemical processes of decomposition of MSW. In this context, density, \(k \) and \(C_P \) of MSW and its different components are major guiding parameters. Furthermore, the thermal properties of waste change during a fire, which impacts heat migration, moisture and gas distribution, and leaching through a landfill.

Thermal properties of MSW: guiding factor of landfill fires

Biochemical decomposition of MSW in the landfills affects the temperature rise during the LFs and vice versa. The heat generated during these processes (i) accumulates, which subsequently results in smouldering (the slow, flameless form of combustion), or spontaneous landfill fires when the rise in temperature reaches the ignition point (Chavan et al., 2019), (ii) dissipate into the surrounding environment and (iii) can be extracted (depending on the amount) for direct heating of nearby residential and industrial facilities (Nocko et al., 2021). In all these cases, the heat accumulated in the landfills cannot be dissipated naturally through their covers and slopes, and heat exchangers can be used to extract the thermal energy from the landfills (Coccia et al., 2013; Shi et al., 2018). This will not only help in the dissipation of heat that controls landfill
fires but can also work as a source of geothermal energy. In this context, Nocko et al. (2021) performed a field-scale heat extraction study at Santee, California, using horizontal heat exchangers installed at 6 m height above the liner, which started working at a stable temperature of 52°C. However, it should be noted that heat extraction from landfills should be performed carefully because heat is required to maintain the decomposition rate of microbes. The assemblies for heat extraction can be installed easily in new landfills during their filling operation as compared to the matured (i.e., old) or operational landfills, which are already closed.

The thermal properties such as k, C_p and α of the bulk MSW would be of utmost importance, which will be influenced by the physical properties such as moisture content, density and porosity apart from the intrinsic waste composition as presented in Table 1. From this table, it can be observed that a wide range of these properties has been reported based on the composition of waste. Yeşiller et al. (2015) have reviewed the MSW thermal properties and found that $k=0.44$ to 1.5 W/m·K, $C_p=378$ to 4000 kJ/m3·K and $\alpha=1.5\times10^{-7}$ to 9.4×10^{-8} m2/s. Food waste, garden and plastic wastes have different k values and the overall thermal properties of MSW will change with the region and decomposition time depending on the relative percentage of these constituents. For instance, in developed countries, wherein plastic waste content is high in MSW will tend to possess lower k. On the other hand, in developing countries like India, where MSW is dominated by food waste and other organic-rich waste which tend to hold higher moisture content, k values will be higher. The C_p is directly proportional to w and organic matter, and inversely proportional to density of MSW, whereas, k
is inversely proportional to moisture content and organic matter and directly proportional to density of MSW. The k value decreases with temperatures above 75°C, and at 130 to 140°C its value is 0.007 W/(m·K), which hinders the dissipation of heat leading to temperature rise and subsequent occurrence of LF (Manjunatha et al., 2020). Further, density of MSW depends on the composition of its individual components and compaction levels (Cline et al., 2020). This indicates that with the same compaction efforts MSW with various density can be obtained due to variation in the composition, influencing the thermal properties. Therefore, suitable parameter such as porosity, which is devoid of the variation in composition can be used to establish the dependency of thermal properties of MSW. Furthermore, these properties of MSW in landfills would change consistently due to the decomposition and subsequent settlement of the waste. Hence, efforts should be made to measure the in-situ properties of the MSW in landfills. More recently, due to the global COVID-19 pandemic, the composition of MSW in developing countries has changed significantly, and a more combustible fraction has been accumulated from the disposal of personal protection equipment kits along with MSW (Vaverková et al., 2021; Mohammad et al., 2021c).

Further, from Table 1, it can be observed that the k of the MSW varies between 0.01 and 1.50 W/(m·K) (Bonany et al., 2013; Hanson et al., 2008; Yeşiller et al., 2015; Manjunatha et al., 2020; Nocko et al., 2021), which is, in general, higher than that of dry inorganic soils (k=0.27-0.38 W/m·K) (Mondal et al., 2016, 2017). Such a higher value can be due to the higher moisture content and electrical conductivity of the leachate (Grellier et al., 2006), which is proportional to k (Schwarz and Bertermann, 2020). The C_p of the MSW also has been reported
to vary between 1000 and 3080 J/kg K, which is much higher as compared to that of dry soils (280-335 J/kg K) (Mondal et al., 2017).

Many studies have adopted the transient line source method for measuring the thermal properties of the MSW. These methods only measure the heat migration through conduction (Mondal et al., 2016), whereas heat migration in MSW landfills, where the MSW may be partially or completely saturated with leachates and gas, takes place through convection and radiation as well (Bonany et al., 2013). Hence, in-situ studies should be conducted to understand the influence of convection and radiation mechanisms on the thermal properties of the MSW.

On the other hand, the moisture content of the MSW has been conventionally measured by resorting to the gravimetric oven drying method. However, sample for measurement requires to be retrieved from landfills (Mohammad et al., 2021a) in the disturbed state which cannot be representative of field conditions due to releasing of the in-situ moisture present in the pore spaces of the MSW matrix, apart from being an expensive and time-consuming task. Hence, in-situ determination of moisture content of MSW is a must to understand its influence on thermal properties. Further, degree of saturation, which influences thermal properties, of MSW varies spatially and is directly proportional to volumetric moisture content that can be determined by dielectric property measuring sensors, such as frequency domain reflectometry and time domain reflectometry probes (Patil et al., 2017). This would also facilitate real-time in situ monitoring of the spatial and temporal variations in the volumetric moisture content and would assist in the estimation of the changes in thermal properties of the MSW. Finally, the
density of MSW in landfills varies spatially and temporally due to overburden pressure and decomposition-driven settlements (Cline et al., 2020). Such conditions had not been considered by the studies presented in Table 1 and makes the report of thermal properties there questionable with regards to real field conditions.

Other influencing parameters

The ignition temperature of the MSW is directly proportional to its moisture content in the range of 5 to 55% (Chavan et al., 2019). It has been established based on the investigation performed by Chavan et al. (2019) on MSW collected from Bhandewadi Dumpsite, Nagpur, India, that MSW with moisture content > 55-60% required an ignition temperature of 270 °C. Further, old MSW required lower ignition temperatures due to lower moisture content and organic matter and the high percentage of plastics waste (which is combustible in nature) as estimated by Chavan et al. (2019), whereas five years old MSW required 98°C temperature. The moisture and temperature of waste in the landfill can be regulated when a leachate re-circulation system is installed and operated based on in-situ measurements (Patil et al., 2017).

Operational parameters also influence the LF. For instance, overdrawing of landfill gas through extraction wells leads to intrusion of air, especially through the wells placed near the slope, cracks and fissure leads to fire. Sterans and Petoyan (1984) reported that convection created due to the high temperature of the air during LFs also led to the entry of air due to chimney effects.
Ecotoxicological effect of landfill fire

MSW landfills are a storage of heterogeneous materials, including hydrocarbons, chlorinated compounds and pesticides, which are the primary source of toxic compounds emanating during LFs (Morales S et al., 2018). Landfill fires lead to the emission of toxic gases and several carcinogenic and mutagenic compounds including polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-furans (PCDFs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), fine particulate matter (PM), volatile organic compounds (VOCs), nitrogen oxides (NOx) along with trace elements, such as As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn and V and toxic gases, as summarized in Table 2. They are responsible for elevated hazards to surrounding human beings, animals and soils (Rovira et al., 2018).

Vassiliadou et al. (2009) reported that food samples exhibited a higher concentration of PCDDs/Fs and PCB than the limits prescribed by the European Union (regulation 1881/2006/EC). Also, in soil and olive samples, the PCB concentration is normal, and with increase in the distance from the source, the concentration of dioxin is reported to reduce. It should be noted that these contaminants can migrate/translocate to animals, including humans, via the food chain. Ruokojärvi et al. (1995b) noticed the concentrations of PAH, PCB, chlorophenols (CP), and polychlorinated benzenes (PCBzs) in air and waste samples during the fire from two investigated locations, where one was an intentionally created fire while the other was a spontaneous fire. The PAH and PCB concentrations were found to be below the threshold for both the sites, and PCB, PAH, CP, PCBz were low in the burnt sample. Recently, fire at the Ghazipur landfill in Delhi (India), led to the air quality index (AQI) of the capital city
attained the value of 445 (Sharma, 2020), which can be categorized as hazardous as per Table S1 (developed by authors). The U.S. EPA uses the AQI to summarize the effects of five air pollutants, ground-level ozone, particulate matter (both PM$_{10}$ and PM$_{2.5}$), CO, sulfur dioxide, and nitrogen dioxide. An additional difficulty arises from the fact that industrial facilities are often placed in the same broad area where landfills existed, and hence a LF could expand to threaten more hazardous substances stored at these industrial facilities.

The ecotoxicological threats from LFs are more pronounced in vulnerable groups, especially elderly citizens, children, pregnant women and patients suffering from chronic conditions. In terms of PM$_{2.5}$, employers in direct waste-management systems and people living in the near vicinity of landfills are more vulnerable (Kodros et al., 2016; Mazzucco et al., 2020). Furthermore, Kodros et al. (2016) have reported that annual premature death due to LF is 0.27 million globally; though the predicted results depend on the characteristics of concentration-response-function, chemical transport model and emission inventories considered in the modelling. Morales S et al. (2018) reported a case study of Santa Marta landfill fire on January 2016, in the area of Santiago, which was initiated after the collapse of landfill’s slope. This study also suggested that the concentration of PM$_{2.5}$ was at higher levels than recommended for the protection of the health of the vulnerable person. In another study by Adetona et al. (2020) on LF in Lagos Landfill, Nigeria, concluded that persons of age $>$ 11 years old were more vulnerable with symptoms including the daily occurrence of tingling (numbness), whitener of fingers, headache, memory problem, tremor/cramps and confusion. Adetona et al. (2020) reported that LFs contain about 29% of PM. The adverse impact of PM
as reported by Bihałowicz et al. (2021) suggested that with every 10 \(\mu g/m^3 \) increase in PM\(_{10}\) concentration increasing human mortality rate by 1.47\(\pm \)0.31\% and the relative risk of croup syndrome increases by 0.1. Recently, Abayalath et al. (2022) estimated the impact of PAH, PM\(_{10}\) and heavy metals in the air and stated that the air is polluted with these potential carcinogenic and mutagenic compounds and they can pose severe health threats and respiratory track-related ailments. Dioxin and dioxin-like substances, such as PCDDs, PCDFs and PCBs are known carcinogens and have been associated with several toxic effects, which include immunotoxicity, developmental and neurodevelopmental effects, as well as changes in thyroid and steroid hormones and the reproductive function (WHO, 2010). On the other hand, Øygard et al. (2005) measured the leachate characteristics before and after a fire event and observed that during fire and firefighting operation, the nitrogen, pH, electrical conductivity, chemical oxygen demand and heavy metal values were high. However, these values get reduced to the normal value after one week.

On combustion of rubber tires, several hazardous and toxic compounds are generated, leading to the geoenvironmental pollution. Recent tire fire incidents include the Sulaibiya-Kuwait tire graveyard fire in 2012 and 2020, the Weld County Colorado tire recycling facility fire in 2020, West Odessa-Texas tire fire in 2017 and the Federal Corporation Zhongli Factory-Taoyuan Taiwan fire in 2017, etc. (Page et al., 2020). Also, due to high temperature during the fire under anaerobic condition, pyrolysis oil is produced, which finally ends up contaminating soils, water bodies and underground water when mixed with a fire extinguishing agent. Rubber tire fires, in several cases, even exceed for more than one month
and subsequently pose a threat to the health and wealth safety of the society by closing nearby services and utilities, voluntary evacuations and even increasing respiratory issues (Singh et al., 2015). For example, the smoke plume from Rhinchart tire fire-Winchester, USA, was high at about 100 m and also spread over almost 80 km, and the fire lasted for about nine months (Stefanov et al., 2013). Nadal et al. (2016) and Rovira et al. (2018) estimated that a May 2016 LF at Toledo, Spain, where 70,000-90,000 tons of tires were accumulated for over 15 years, and which lasted for more than 20 days, would present a cancer risk to areas close to the landfill at 500 m. Nadal et al. (2016) determined the concentrations of PAH, PCB, PCDD/Fs and trace heavy metals in soil, air and plant samples after this fire, and noticed that PAH concentration (134 ng/m3) in air samples collected near to the location of the fire was six times higher than air samples (PAH concentration=19.5-22.7 ng/m3) located at 4 km away from the source. Also, PAH concentrations in lettuce were found higher than in the food quality monitoring program. This increased the possibility of cancer to 3 to 5 times for the population located nearby to the landfill due to their exposure to the high concentration level of PAH. At the same area, food sample had PAH concentrations that were relatively higher than those found in typical safe food items. Open tire fire emissions contain both “criteria” pollutants and “non-criteria” hazardous air pollutants, such as PAHs, dioxins, furans, hydrogen chloride, benzene, PCBs, and metals, which can create acute (short-term) and chronic health hazards to firefighters (who should be equipped with respirators and dermal protection) and nearby residents.

A huge variety of pollutants are released during the fires in landfills. Hence, further
research should be conducted on the migration and degradation of these compounds in soils under saturated and unsaturated conditions. The different attributes of porous media, such as mineralogical composition, particle size, should be incorporated to forecast the ecological impact of these harmful chemical compounds and ensure environmental safety. Studies are not available on the alternation of biodiversity of landfill and surrounding area due to LF, making them a crucial future area of research.

Monitoring of fires

Though SLFs are relatively easily extinguishable, significant issues are created for the firefighters related to the SSLF, whose location identification and detection is a major challenge (Chavan et al., 2019). In this context, the detection techniques employed to find out the location of SSLF primarily consist of occurrence of unusual settlement, smoke formation, presence of CO and rise in temp of landfill gas and residue in gas vent. Jafari et al. (2017) have reported that for fire event the following parameters can be used: CO > 1500 ppmv, ratio of CO$_2$ and CH$_4$ > 5, temperature > 80 °C and settlement strain > 3%/year. It has been also reported that the temperature for smouldering may vary from 200 to 300, even 700 °C, which might be difficult to use as confirmatory indicator (Jafari et al., 2017). Also, if the temperature measurement system is not installed in landfill, this method cannot be employed. Though, Frid et al. (2010) employed electrical resistivity tomography, surface temperature measurement and gas composition data to detect fire, the effectiveness and usefulness of the approach are under question due to cost and temporal and spatial resolution limitation. In their study, it has been observed that ratio of CO$_2$ and CH$_4$ is higher than 8 in smouldering/combustion zone than
normal waste body. This ratio is controlled by the oxygen intrusion (i.e., oxygen concentration) as per the Equation 8 (Frid et al., 2010).

\[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + \text{heat} \uparrow \] (8)

The effective method in early-stage fire detection in landfills are thermovision cameras and pyrometers, which are already being applied in coal waste dump sites (Wasilewski, 2020) and could also be adopted in MSW landfills too (Fjelsted et al., 2019). Mihajlović et al. (2016) have employed (i) LandGEM model to estimate the \(\text{CH}_4 \) emission and (ii) ALOHA software to calculate the fire-vulnerable zone. Evaluation of the effect on the air quality was graphically estimated by employing EPA SCREEN 3 Model. Milosević et al. (2018) have employed thermal sensing cameras to measure gas well temperature and gas concentration to identify the fire at sanitary landfill ‘Bubanj’, Serbia. Based on the data, a predictive model has been developed by logistic regression. Furthermore, to timely and cost-effective approach to identify the location of SSLF and monitor their migration within landfills, Nazari et al. (2020) have investigated the utility of satellite thermal infrared imagery technique at a moderate spatial resolution. It should be prudent to conduct further studies to define indicators (or indices), which would comprise easy to measure properties of waste (i.e., temperature, gas, leachate and settlement characteristics) to predict the places and positions as well as extent of combustion of MSW in landfills to help both the workers and researchers.

Based on a local multi-agency retrospective review of the public health response to the Iowa City fire that occurred in 2012, Singh et al. (2015) have provided some recommendations for emergency responses in terms of air quality such as careful evaluation of the higher priority
in fire data monitoring, adjusting pollutants emission rates using monitoring data in real-time, interpreting obtained data to the public, and issuing public health statements. In a nutshell, once the landfill fires have occurred, the emergency response of the imminent problems is desirable from the various aspects including economy, politics, environment, and human resources, which is systematic engineering by different agencies.

Coupled thermo-hydro-geomechanical phenomena

The coupling behaviour in the landfill before, during and after the occurrence of fire (for SLF and SSLF) is involved in heat, solid mechanics, hydraulic, also chemical and biological fields. On a short-term basis where the biochemical process can be ignored, the three major areas are geomechanical, thermal and hydraulic phenomena, depicted as ‘modules’ in Figure S1.

The geomechanical module mainly deals with the mechanical behaviour of the MSW, whereas the hydraulic module primarily deals with the multiphase and multicomponent flow of leachate, micro-organisms and gas in the MSW matrix. Finally, the thermal module, which is very crucial during LFs, is dedicated to heat generation and its migration, and alteration of thermal properties of MSW at the ambient and elevated temperatures. It is evident that during the LF, very high temperature can be reached, which leads to thermal decomposition of waste and subsequently drastic collapse of the landfill (Jafari *et al.*, 2017). Additionally, at elevated temperatures, gas pressure would be very high if a proper gas extraction system is not in place, which subsequently leads to a reduction in effective stress and geomechanical stability of the landfill (Jafari *et al.*, 2017). Shu *et al.* (2022) recently studied the effect of gas pressure on landfill slope stability and opined that for landfill slope of height 50 m and slope 1:3 exhibited
8.8% lower factor of safety when gas pressure is included in analysis. In addition, waste mass will start softening and lose its strength at elevated temperatures. Furthermore, due to high temperature, the thermal properties of waste will change, which impacts the heat migration through porous media of MSW as discussed earlier. It is needless to mention that these complicated phenomena, known as coupled THG phenomena, should be studied.

It is very challenging to experimental study this coupled THG phenomena occurring in a landfill. Hence, researchers have attempted to simulate coupled processes numerically by considering primarily coupled (i) hydro-biological-mechanical (HBM) processes, (ii) thermo-hydro-bio-chemico-mechanical (THBCM) processes (McDougal, 2007, Hubert et al., 2016, Kumar and Reddy, 2021; Kumar et al., 2021). It has been realized that these studies are to model the decomposition processes and its effect on coupled THBCM interactions and these models need to be modified to simulate landfill fire.

In general, combustion of MSW is complex due to significant difference in time-scale for fluid dynamics, combustion and heat transfer process. Combustion is modelled with constant burning (reaction) velocity, eddy break-up and eddy dissipation model, finite rate chemistry model, flamelet model, burning velocity model. Also, computation fluid dynamic is gaining importance to model landfill fires (Sun et al., 2016; Xia et al., 2014). The combustion also acts as additional source term or sink term for other fields. This section is mainly focused on the influence of high temperature on the porous media properties including mechanical deformation and fluid transport. Therefore, a precise description of combustion in the MSW is not mentioned here.
In old landfills where waste is highly compressed, despite the traditional chemical
diffusion, chemical osmosis in very low permeability media is very important (Di Maio, 1996;
Karnland et al., 2005; Zheng et al., 2021). Landfill fire can influence the chemical osmosis,
and change the water flow direction in the pore, which significantly affects the thermal
transport and solid deformation. Models that covered research in THGC model were mainly
concentrated in geomechanics, geothermal reservoir and backfill engineering (Cui and Fall,
2015; Liu et al., 2015; Seetharam et al., 2007; Taron and Elsworth, 2009).

The above theories are often called mechanics approach models, which are mainly
derived from mechanical equilibrium and momentum balance. The governing equations come
from different fields, often borrow equations from geochemistry instead of using a unified fully
coupled theory framework (Chen et al., 2016). Because of the complex geochemical reaction
and decomposition in the waste, Mixture-Coupling Theory (originally named Modified
Mixture Theory) (Heidug and Wong, 1996), a theory based on non-equilibrium
thermodynamics, is a more suitable approach to build the smooth bridge between geophysics
and geochemistry in landfill engineering than mechanics approach models. This theory uses
entropy production as the driving force to build a unified multi-field coupled theory which
covers both coupling effects between solid deformation, hydraulic field, heat transfer, and
chemical reaction, and the phenomenological interaction between fluid flow, chemical flow
and heat flow. Mixture Coupling Theory has been used to derive the hydro-geomechanical
(Chen, 2013; Chen and Hicks, 2011), hydro-geomechanical-chemical and THGC models (Chen
and Hicks, 2013; Ma et al., 2021).
Attempts to model fires in landfill wastes have faced significant difficulties due to the heterogeneous nature of waste, and the interaction of thermal, mechanical, biological, chemical, and hydraulic processes that determine the structural changes in the landfill, biodegradation of waste, moisture distribution and gas generation, and leachate movement, among others, which require the simultaneous solution of the equations that describe each individual process. It is highly unlikely that modelling exercises can predict the conditions for the inception and propagation of a fire in a landfill. It must be remembered that all models rely on simplifying assumptions in order to make them mathematically or numerically tractable, and in the case of LF, the many assumptions that need to be considered will make the results highly dependable on model simplifications, and hence will not represent real field conditions. Therefore, given the heterogeneity of waste, the significant variation of the thermal and other MSW landfill parameters, which depend on waste composition and age, the specific climatic and weather conditions, practice of landfill operation (Mohammad et al., 2022), the time of inception and location of a fire source, and the interdependence of the multiple processes during LF, must be specified in a model.

Concluding remarks and recommendations

Landfill fire is a very complex phenomenon that needs immediate attention from the scientific community. Avoiding LFs should be the prime focus of the urban local bodies to enhance the quality of the surrounding biota and human life. Further, the MSW landfills should be equipped with emergency services, and the site plan should be modified based on geographical and meteorological aspects. Apart from above mentioned precautionary measures, the research on
the aspects that trigger and/or prevent LF should be given prior importance to incorporate the engineering aspect in the prevention measures. Based on the critical review conducted on the various aspects of LFs, the following points can be recommended for future research.

- Heat migration mechanisms of the landfill should be established thoroughly to understand the heat dissipation processes and plan modalities to enhance them. In this context establishing the temporal variation of depth-wise thermal profiling of MSW landfill would be a good starting point.

- Thermal properties of the MSW were mostly determined by considering conduction as the primary heat migration path. However, thermal properties such as conductivity, diffusivity and specific heat capacity of the MSW should be established by considering both conduction and convection heat transfer mechanisms.

- If the heat dissipation from the landfills was found to be minimal, engineering systems such as heat exchangers should be installed to extract the heat energy and to maintain the landfill temperature below the ignition temperature of the MSW. This can also open up new research in the area of the utilization of landfill as a geothermal reservoir.

- Non-invasive techniques based on different sensors should be developed for realtime monitoring of moisture content, gas composition, temperature and settlement to avoid landfill fires.

- Coupled thermo-hydro-geomechanical-chemical-biological models to incorporate various processes such as MSW decomposition, leachate transport, microbial activities, and settlement, temperature variations and pore pressure development and dissipation...
that occur simultaneously in the landfill should be developed to enhance the present understanding of the landfill fires initiation and their mechanisms.

Acknowledgement

Dr. Devendra Narain Singh would like to acknowledge the funding received from the Department of Science and Technology, India under the project code DST/TDT/WMT/Plastic Waste/2021/2. The authors wish to thank Dr. Gareth Clay, Manchester University (UK) for the valuable suggestions.
References

Chandana N, Goli VSNS, Mohammad A, and Singh DN. (2021). Characterization and Utilization of Landfill-Mined-Soil-Like-Fractions (LFMSF) for Sustainable Development:

Mondal S, Padmakumar GP, Sharma V et al. (2016). A methodology to determine thermal

Page R, Lavender S, Thomas D *et al.* (2020). Identification of tyre and plastic waste from

Vaverková MD, Paleologos EK, Dominijanni A et al. (2021). Municipal Solid Waste

Table 1. Summary of the studies conducted on the thermal properties of municipal solid waste

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study location</th>
<th>Experimental conditions</th>
<th>Method of measurement</th>
<th>Thermal conductivity ((k)) (W/m·K)</th>
<th>Specific heat capacity ((C_p)) (J/kg·K)</th>
<th>Thermal diffusivity ((\alpha)) (m²/s × 10⁻⁷)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hanson et al., 2000)</td>
<td>-</td>
<td>(w = 16-38)</td>
<td>Needle probe- (\lambda); Dual probe- (C_p)</td>
<td>0.01-0.70</td>
<td>-</td>
<td>0.2-0.7</td>
<td>-</td>
</tr>
<tr>
<td>(Yoshida and Rowe, 2003)</td>
<td>Tokyo Port, Japan</td>
<td>For unsaturated landfill layer: (w = 28.90; \rho = 1157)</td>
<td>-</td>
<td>0.35</td>
<td>1939</td>
<td>-</td>
<td>Variation in the (\rho) of the MSW with an increase in depth of the landfill has not been considered.</td>
</tr>
<tr>
<td>(Hanson et al., 2008)</td>
<td>Michigan, USA</td>
<td>(\rho = 999)</td>
<td>Transient</td>
<td>1</td>
<td>2000</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>New Mexico, USA</td>
<td>(\rho = 755)</td>
<td>Transient</td>
<td>0.6</td>
<td>1200</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Alaska, USA</td>
<td>(\rho = 530)</td>
<td>Transient</td>
<td>0.3</td>
<td>1000</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>British Columbia, Canada</td>
<td>(\rho = 999)</td>
<td>Transient</td>
<td>1.50</td>
<td>2200</td>
<td>7.0</td>
<td>-</td>
</tr>
<tr>
<td>(Bonany et al., 2013)</td>
<td>Sainte-Sophie, Quebec,</td>
<td>(\rho = 970)</td>
<td>Heat flux</td>
<td>0.67</td>
<td>1400</td>
<td>-</td>
<td>Temperature rise in the landfill up to 10.5</td>
</tr>
</tbody>
</table>
months has been modelled for different λ, C_P, and latent heat of fusion of the liquid fraction of the MSW. A measuring steel box ($1.8 \times 1.8 \times 0.8$ m). An increase in temperature of the heating plate from 32.25 to 128.29 °C led to a reduction in λ from 3.60 to 0.08 W/m·K. The C_P of the MSW was increased from 2.5 to 6290 J/kg·K with an increase in temperature from 32.25 to 128.29 °C.

<table>
<thead>
<tr>
<th>Location</th>
<th>w (kg/m3)</th>
<th>ρ (kg/m3)</th>
<th>OM</th>
<th>PW</th>
<th>λ (W/m·K)</th>
<th>C_P (J/kg·K)</th>
<th>ρ_e (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyal, Hungary</td>
<td>$\rho = 352-725$</td>
<td>$\rho = 500-650$;</td>
<td>$OM=60$;</td>
<td>$PW=13$</td>
<td>0.24-1.15</td>
<td>2.07-9.66</td>
<td>1990-3080</td>
</tr>
<tr>
<td>Faitli et al., 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhandewadi, Nagpur, India</td>
<td>$w = 52$; $\rho = 500-650$;</td>
<td>$OM=60$;</td>
<td>$PW=13$</td>
<td>0.32-0.42</td>
<td>2180-2340</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Manjunatha et al., 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellahalli, Bangalore, India</td>
<td>$w = 46$; $\rho = 500-650$;</td>
<td>$OM=51$;</td>
<td>$PW=19$</td>
<td>0.53-0.70</td>
<td>2070-2250</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Synthetic MSW</td>
<td>$w = 28-53$; $\rho = 800$;</td>
<td>0.41-1.05</td>
<td>1390-2500</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nocko et al., 2021) Santee, San Diego County, USA</td>
<td>$OM=35-60$; $PW=8-25$</td>
<td>Short-term analysis (between 20-100 h) and long-term analysis (20-405 h) have been conducted.</td>
<td>Transient probe</td>
<td>Short term: 0.86-1.28; Long term: 0.89-1.32</td>
<td>7.85 to 10.5</td>
<td>between the λ and C_P with ρ and w has been proposed. 17-day heat extraction thermal response tests were performed on geothermal heat exchangers placed at 3 different layers of landfill.</td>
<td></td>
</tr>
</tbody>
</table>

w= moisture content (%); ρ= density (kg/m3); OM=organic matter (%); PW= plastics waste content (%)
Table 2. Summary of the reported studies on landfill fires and their ecotoxicological impacts

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Location</th>
<th>Salient points</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 1 | Northamptonshire, England | • The smoke from a LF contained dangerous chemical compounds:
 o acenaphthylene (60-90 ng/m³),
 o fluoranthene (50-100 ng/m³),
 o phenanthrene (30-520 ng/m³),
 o anthracene (85-160 ng/m³),
 o fluorene (120-180 ng/m³),
 o pyrene (120-170 ng/m³),
 o benzo(a)anthracene (60 ng/m³),
 o chrysene (70-80 ng/m³),
 o benzo(a)pyrene (15-20 ng/m³),
 o indeno[1,2,3-cd]pyrene (10 ng/m³),
 o dibenz[a,h]anthracene (10 ng/m³),
 o benzo[ghi]perylene (10 ng/m³),
 o PAHs (810-1480ng/m³),
 o PCBs (15,5-590 ng/m³). | (Bates, 2004) |
| 2 | Niger Delta, Nigeria | • The following compounds have been detected in the air:
 o suspended particulate matter (773-801 µg/m³),
 o CO (133.7-141.6 ppm),
 o CO₂ (401-404.5 ppm),
 o NO₂ (21.0-27.3 ppm),
 o SO₂ (27.7-37.1 ppm),
 o NH₃ (14.7-19.5 ppm),
 o CH₄ (2310-2771 ppm),
 o H₂S (3.4-7.7 ppm).
 • Levels of suspended particulate matter, CO, CO₂, and CH₄ within the vicinity of the dump site fires were above regulatory limits. | (Rim-Rukeh, 2014) |
<p>| 3 | Seseña, Toledo, Spain | • Most of the target pollutants (i.e., PAHs, PCBs, PCDD/Fs, trach elements) did not show increased concentrations in the surrounding environment after the fire. | (Nadal et al., 2016) |
| 4 | Ravni Kotari in | • The increased concentration of PCDD/Fs has been detected in the air (1940.4 fg/m³), soils | (Fajkovic et al., 2000) |</p>
<table>
<thead>
<tr>
<th>Location</th>
<th>Findings</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Dalmatia, Croatia</td>
<td>The concentration of certain compounds was increased by 4000 times in air compared to the condition before fire.</td>
<td>(al., 2017)</td>
</tr>
<tr>
<td>Santiago, Chile</td>
<td>- PM$_{2.5}$ reached concentration levels on the order of 1000 μg/m3, three days after the start of the fire.</td>
<td>(Morales S et al., 2018)</td>
</tr>
<tr>
<td>Western Sicily, Italy</td>
<td>- Heavy metals, dioxins and dioxin-like substances were found in soils (upto depth of 40 cm), food and dairy products and the concentration of these elements were higher than the permissible limit.</td>
<td>(Mazzucco et al., 2020)</td>
</tr>
<tr>
<td>Poland</td>
<td>- 6.5 and 0.36 million people were exposed to an additional 1-hour average concentration of PM$_{10}$>10 μg/m3 and 100 μg/m3, respectively. This exposure depended on the location of the fire and residential place.</td>
<td>(Bihałowicz et al., 2021)</td>
</tr>
</tbody>
</table>
Figure 1. Conceptual depiction of landfill fires and their potential sources and locations.
Figure 2. Number of (a) big and very big landfill fires, (b) total landfill fires and (c) reported by Milosevic et al. (2018) with years.