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Abstract: A mathematical model for an outer soil, multi-defects pipe pile, and inner soil dynamic
interaction system is established to research the influences of multi-defects on the vibration of a
pipe pile. The dynamic impedance of the pipe pile is deduced by applying a Laplace transformation
method and an impedance recursive technique. Then, the velocity response at the pile head is further
obtained using the inverse Fourier transform method. Moreover, parametric analyses are conducted
to research the influences of the type, degree, distribution, length, and depth of multi-defects on
the vibration of the pipe pile. The results indicate that the characteristics of multi-defects appear
different, with amplitude differences and reflected signal features on the velocity admittance and
velocity response curve, respectively. This means that the obtained analytical solutions and relevant
results can be used to detect multi-defects of pipe piles using the different appearances of the velocity
admittance and velocity response curve, as measured in engineering practice.

Keywords: pipe pile; multi-defects; analytical solution; dynamic response; characteristics of multi-defects

1. Introduction

Pile, as a reliable foundation to deal with unfavorable geological conditions, has been
extensively used in various infrastructures, such as offshore platforms and wind turbines,
due to its large capacity. During the construction of the pile foundation, it is inevitable that
there is concrete segregation, mud clamping, necking, and other defects, which adversely
affect the function of the pile foundation [1–3]. However, the detection of pile defects
is difficult, due to their invisibility. Therefore, the nondestructive testing method, such
as low-strain pile integrity testing (LS-PIT) for the detection of pile defects is crucial to
the safety of pile-supported structures. As the cornerstone of LS-PIT, pile–soil dynamic
interaction theory has attracted great attention worldwide.

According to the integrity of pile, the existing research for the pile–soil dynamic
interaction can be divided into two categories, namely homogeneous pile [4] and defective
pile [5]. For the homogeneous pile, relevant studies are mainly aimed at the improvement
of the rationality of the mathematical model for pile and soil. The pile analytical models
consist of the Euler–Bernoulli model [6,7], the Rayleigh–Love model [8], and the continuum
pile model [9]. Among them, the Euler–Bernoulli model is the most commonly used
to study the vibration of pile with a large slenderness ratio, due to its simplicity. The
development of analytical models for soil includes the simplified Winkler model [10–12],
the Novak plain strain model [13], and the 3D continuum soil model [14].

However, the LS-PIT technique is intended to detect defects along the pile shaft. There-
fore, based on the aforementioned analytical models for pile and soil, many researchers
have conducted various theoretical studies for the dynamic interaction of defective pile and
soil. Wang et al. [15] researched the vibration of pile with single defect by simplifying the
soil as a general Voigt model. Gao et al. [16] generalized the pile defect as Young’s moduli
changing, and applied the δ function method to solve the pile dynamic response theoret-
ically. Using the three-dimensional continuum soil model, Wu et al. [17,18] presented a
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defective pile–soil interaction analytical model for the parallel seismic (PS) method to study
the influences of pile defect on wave propagation in soils. Ni et al. [2] used the complex
continuous wavelet transform method to analysis the effect of single defect features, such
as length and location, on the phase diagram, and gave the corresponding evaluation
method for pile defect features. Zheng et al. [19] proposed an impulse response function
analysis method to detect the single defect of pile, the accuracy of which was verified by
conducting field testing. Considering the various forms of pile single defects, Liu et al. [20]
obtained the analytical solutions for the velocity response of pile at multi-points along pile
shaft. Compared to the pile with single defect, the dynamic response of multi-defects pile
is more complex. Wu et al. [21] applied the Fourier-Hankel integral transform method to
derive the analytical solution of the velocity response of multi-defects pile in half-space soil.
Yang et al. [22] compared the detection outcomes of different techniques, such as LS-PIT
and PS, for pile with multi-defects, by designing large-scale field model testing. For the
study of experimental and numerical evaluations of the pile–soil interaction under dynamic
loads, Basack Sudip et al. [23] carried out the model experimental for pile groups to study
the pile soil interaction under lateral cyclic loading of loose sand, and two alternative
numerical models, boundary element model and finite element model (BEM and FEM),
were established. Cao et al. [24] proposed a series of field tests of pile groups embedded
in multi-layer soil and studied the influence of pile group characteristic parameters on
stiffness, dynamic interaction coefficient and dynamic efficiency coefficient in combination
with the theoretical model.

The above studies are all carried out for solid pile. In recent decades, a new type
of pipe pile, known as cast-in-place concrete pipe pile (PCC), has been widely used to
improve the capability and to reduce the settlement of soft ground due to its economy and
practicability [25]. For PCC, the existence of inner soil makes its vibration characteristics
different from that of solid pile [26]. Zheng et al. [27] investigated the resistance of inner
soil to PCC and analyzed the effects of the parameters of inner soil on the response of PCC.
Subsequently, Zheng et al. [28,29], Liu et al. [30], Ding et al. [31], and Li et al. [32] adopted
different mathematical models for pile and soil to investigate the effects of parameters
of PCC and soils on the vertical vibration of PCC. Zheng et al. [33] derived the velocity
time history of PCC with a single defect and utilized a parametric analysis to investigate
the effect of defect feature on the velocity time history of PCC. Existing research indicates
that PCC may have multi-defects due to a cast-in-place process [34]. However, previous
analytical models for PCC mainly aimed at the vibration problems of integrity pile or pile
with a single defect and are not suitable for multi-defects PCC. Therefore, it is essential to
develop an analytical model for multi-defect PCC.

In this study, a mathematical model for an outer soil, multi-defects pipe pile, and inner
soil dynamic interaction system is established to research the influence of multi-defects on
the vibration of a pipe pile. The dynamic impedance of the pipe pile is deduced by applying
a Laplace transformation method and an impedance recursive technique. Then, the velocity
response at the pile head is further obtained using the inverse Fourier transform method.
Moreover, parametric analyses are conducted to research the influence of the type, degree,
distribution, length, and depth of multi-defects on the vibration of the pipe pile.

2. Mathematical Model and Definite Problem
2.1. Simplified Mathematical Model

The simplified mathematical model of a pipe pile–soil dynamic interaction system
considering pile with multi-defects is shown in Figure 1. The r and z in the coordinate
system represent the radial and vertical variables, respectively. According to the location of
a defect within pile, this multi-layered system is numbered 1, 2, . . . , k, . . . , n from the pile
toe to the head. The length, upper interface depth, inner radius, outer radius, cross section,
density, and elastic modulus of the kth pile are lk, hk, rk0, rk1, Sk, ρP

k , and EP
k , respectively.

According to existing research by Lysmer and Richart [35], the pile end soil behaves
similarly to a simply damped oscillator that can be simplified as an analog of a parallel
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spring and dashpot type. Therefore, the kelvin-voigt model is used to simulate the stiffness
and damping at the pile toe. The damping and stiffness coefficients of the visco-elastic
support at the pile toe are cp and kp, respectively. The shear modulus, damping coefficient,
and density of the kth soil layer are Gk0(Gk1), ηk0(ηk1), and ρk0(ρk1), respectively. The
subscripts k0 and k1 refer to the corresponding parameters for the inner and surrounding
soils. f S0

k and f S1
k are the shear stresses of the inner and surrounding soils, respectively, at

relevant interfaces of the pipe pile. The excitation is p(t). The length of the pipe pile is H.
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Figure 1. Simplified mechanical model. 
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Figure 1. Simplified mechanical model.

2.2. Wave Equations

Based on the Novak soil model, the wave equations of the kth pile inner and surround-
ing soil layers are given as:

Gk0
∂2uS0

k (r, t)
∂r2 + ηk0

∂3uS0
k (r, t)

∂t∂r2 +
Gk0

r
∂uS0

k (r, t)
∂r

+
ηk0
r

∂2uS0
k (r, t)
∂t∂r

= ρk0
∂2uS0

k (r, t)
∂t2 (1)

Gk1
∂2uS1

k (r, t)
∂r2 + ηk1

∂3uS1
k (r, t)

∂t∂r2 +
Gk1

r
∂uS1

k (r, t)
∂r

+
ηk1
r

∂2uS1
k (r, t)
∂t∂r

= ρk1
∂2uS1

k (r, t)
∂t2 (2)

where uS0
k and uS1

k are the displacements of the kth inner soil and surrounding soil, respec-
tively.

According to the Euler–Bernoulli rod theory, the wave equation of the kth pile is given as:

∂2uP
k (z, t)
∂z2 −

2πrk0 f S0
k

EP
k Sk

−
2πrk1 f S1

k
EP

k Sk
=

ρP
k

EP
k

∂2uP
k (z, t)
∂t2 (3)

where uP
k is the displacement of the kth pile.
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2.3. Boundary Conditions

(1) Pile inner soil:
lim
r→0

uS0
k (r, t) 6= ∞ (4)

The displacement continuity and force balance conditions of pile and inner soil are
given as:

uS0
k (rk0, t) = uP

k (rk0, t) (5)

f S0
k = τS0

k (r)
∣∣r=rk0 (6)

(2) Pile surrounding soil
When r→∞, the displacement of kth pile surrounding soil is zero.

lim
r→∞

uS1
k (r, t) = 0 (7)

The displacement continuity and force balance conditions of pile and surrounding soil
are given as:

uS1
k (rk1, t) = uP

k (rk1, t) (8)

f S1
k = −τS1

k1 (r)
∣∣r=rk1 (9)

(3) Pile shaft

EP
n Sn

∂uP
n (z, t)
∂z

∣∣∣∣
z=0

= p(t) (10)

EP
1

∂uP
1 (z, t)
∂z

∣∣∣∣∣
z=H

= −(kpuP
1 (z, t) + cp

∂uP
1 (z, t)
∂t

) (11)

3. Solutions for Definite Problems
3.1. Solutions for Soils

By utilizing the Laplace Transformation (LT), Equations (1) and (2) can be written as

Gk0
∂2US0

k (r, s)
∂r2 + ηk0s

∂2US0
k (r, s)
∂r2 +

Gk0
r

∂US0
k (r, s)
∂r

+
ηk0s

r
∂US0

k (r, s)
∂r

= ρk0s2US0
k (r, s) (12)

Gk1
∂2US1

k (r, s)
∂r2 + ηk1s

∂2US1
k (r, s)
∂r2 +

Gk1
r

∂US1
k (r, s)
∂r

+
ηk1s

r
∂US1

k (r, s)
∂r

= ρk1s2US1
k (r, s) (13)

where US0
k (r, s) and US1

k (r, s) are the LT form of uS0
k (r, t) and uS1

k (r, t), respectively.
Then, Equations (12) and (13) can be further arranged into the following form:

∂2US0
k (r, s)
∂r2 +

1
r

∂US0
k (r, s)
∂r

=
(

qS0
k

)2
US0

k (r, s) (14)

∂2US1
k (r, s)
∂r2 +

1
r

∂US1
k (r, s)
∂r

=
(

qS1
k

)2
US1

k (r, s) (15)

where qS0
k =

√
ρk0s2

Gk0+ηk0s , qS1
k =

√
ρk1s2

Gk1+ηk1s .
The solutions for Equations (14) and (15) are:

US0
k (r, s) = AS0

k K0(q
S0
k r) + BS0

k I0(q
S0
k r) (16)

US1
k (r, s) = AS1

k K0(q
S1
k r) + BS1

k I0(q
S1
k r) (17)

where AS0
k , BS0

k , AS1
k , and BS1

k are underdetermined coefficients.
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Utilizing LT for Equations (4) and (7), and substituting them into Equations (16) and (17)
yields:

US0
k (r, s) = BS0

k I0(q
S0
k r) (18)

US1
k (r, s) = AS1

k K0(q
S1
k r) (19)

Subsequently, the shear stiffness of the pile inner and surrounding soils at the interface
with pipe pile can be further obtained as

KKS0
k = −

2πrk0τS0
k (rk0)

UP
k

= −2πrk0(Gk0 + ηk0s)qS0
k

I1(q
S0
k rk0)

I0(q
S0
k rk0)

(20)

KKS1
k = −

2πrk1τS1
k (rk1)

UP
k

= −2πrk1(Gk1 + ηk1s)qS1
k

K1(q
S1
k rk1)

K0(q
S1
k rk1)

(21)

where UP
k (r, s) is the LT form of uP

k (r, t).

3.2. Solutions for Pipe Pile

Utilizing LT for Equation (3) and substituting it into Equations (20) and (21) yields:

∂2UP
k (z, s)
∂z2 − αk

2UP
k (z, s) = 0 (22)

where αk
2 =

KK
S1
k

EP
k Sk
− KK

S0
k

EP
k Sk

+
ρP

k
EP

k
s2.

The solution of Equation (22) is

UP
k (z, s) = CP

k e
–
αkz/lk + DP

k e−
–
αkz/lk (23)

where
–
αk = αklk is a dimensionless eigenvalue. CP

k and DP
k are underdetermined coefficients.

Therefore, the displacement impedance (DI) of the first pile segment at its lower
interface (z = H) and upper interface (z = h1) can be expressed as

ZP
0

∣∣∣
z=H

=
−EP

1 S1
∂
∂z UP

1 (z, s)
∣∣∣
z=H

UP
1 (z, s)

∣∣
z=H

=
−EP

1 S1
–
α1

(
CP

1 e
–
α1 H/l1 − DP

1 e−
–
α1 H/l1

)
l1
(

CP
1 e

–
α1 H/l1 + DP

1 e−
–
α1 H/l1

) = S1
(
kp + cps

)
(24)

ZP
1

∣∣∣
z=h1

=
−EP

1 S1
∂
∂z UP

1 (z, s)
∣∣∣
z=h1

UP
1 (z, s)

∣∣
z=h1

=
−EP

1 S1
–
α1

(
CP

1 e
–
α1h1/l1 − DP

1 e−
–
α1h1/l1

)
l1
(

CP
1 e

–
α1h1/l1 + DP

1 e−
–
α1h1/l1

) (25)

By combining Equations (24) and (25), the recursive relation of DI can be given as

ZP
1 =

−EP
1 S1

–
α1

(
β1e

–
α1h1/l1 − e−

–
α1h1/l1

)
l1
(

β1e
–
α1h1/l1 + e−

–
α1h1/l1

) (26)

where β1 =
EP

1 S1
–
α1−ZP

0 l1
EP

1 S1
–
α1+ZP

0 l1
e−2

–
α1h0/l1 .

According to the coupling conditions of adjacent pile segments, the DI of the kth pile
at its upper interface (z = hk) can be obtained using the impedance recursive method.

ZP
k =

−EP
k Sk

–
αk

(
βke

–
αkhk/lk − e−

–
αkhk/lk

)
lk
(

βke
–
αkhk/lk + e−

–
αkhk/lk

) (27)
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where βk =
EP

k Sk
–
αk−ZP

(k−1) lk
EP

k Sk
–
αk+ZP

(k−1) lk
e−2

–
αkhk−1/lk .

Consequently, the DI at the pile head can be given as

ZP
n

∣∣∣
z=hn=0

=
−EP

n Sn
–
αn(βn − 1)

ln(βn + 1)
=
−EP

n Sn
ln

ZP′
n (28)

where βn =
EP

n Sn
–
αn−ZP

n−1ln
EP

n Sn
–
αn+ZP

n−1ln
e−2

–
αnhn−1/ln . ZP′

n =
–
αn(βn−1)

βn+1 is a dimensionless DI. ZP′
n = Kr + kKi.

Kr is the dynamic stiffness. Ki is the dynamic damping.
Then, the displacement (Hu) and velocity (Hv) in the frequency domain of the pile

head can be obtained:

Hu = 1/ZP
n = − ln(βn + 1)

EP
n Sn

–
αn(βn − 1)

(29)

Hv = − iωln(βn + 1)

EP
n Sn

–
αn(βn − 1)

= − 1
ρP

n SP
n VP

n
Hv
′ (30)

Hv
′ =

iθ
–
tn(βn + 1)

–
αn(βn − 1)

(31)

where Hv
′ is the dimensionless velocity admittance. VP

n =
√

EP
n /ρP

n , θ = ωTc, Tc = H/VP
n ,

tn = ln/VP
n ,

–
tn = tn/Tc.

When p(t) = Qmax sin π
T t, the dimensionless velocity response of pile can be given

using the inverse Fourier transform for Equation (31).

Vv
′ =

1
2π

∞∫
−∞

[
Hv
′ πT′

π2 − T′2θ2

(
1 + e−iθT′

)]
eiθt′dθ (32)

where T is the pulse width. T′ = T/Tc.

4. Results and Discussion

The parameters for numerical instances are shown in Table 1.

Table 1. The parameters for numerical instances.

H = 6 m EP
k = 25 GPa δp = 100 kN/m3 ρk1 = ρk0 = 2000 kg/m3 Gk0 = Gk1 = 5× 106 Pa

rk0 = 0.30 m rk1 = 0.60 m kp = 1000 kN/m3 ρP
k = 2500 kg/m3 ηk0 = ηk1 = 10 kN·s/m2

To study the influences of pile multi-defects on the pile vibration, the pile–soil system
is divided into five segments (n = 5). The length and depth of each pile are shown in Table 2.

Table 2. Length and depth of each pile segment.

n 1 2 3 4 5

lk (m) 1.70 0.50 1.50 0.50 1.80
hk (m) 4.30 3.80 2.30 1.80 0.00

4.1. Verification of the Present Method

To verify the rationality of the present model, the reduction form of the analytical
solution of DI expressed in Equation (28) is compared to the existing solution. Wang
et al. [36] gives the analytical solution of DI for solid pile. The pipe pile solution is reduced
to solid pile by setting rk0 = 0 and comparing it with the solution of Wang et al. [36] (shown
in Figure 2). It is clear from Figure 2 that the present solution agrees well with the existing
solutions.
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4.2. Effect of Multi-Defects on the Response of the Pipe Pile

To investigate the effect of multi-defect segments along the pipe pile shaft on the
response of the pile head, the second and fourth pipe piles are set as defect segments. In
the following numerical analysis, the defects are generalized as the changing of the pile
section, such as necking and expanding [15]. The defect degree is defined by the ratio of
wall thickness for the defect segment to the normal segment.

γN
j =

r1 − r0

rj1 − rj0
(33)

γE
j =

rj1 − rj0

r1 − r0
(34)

where γN
j and γE

j are the defect degrees for necking and expanding, respectively, of the jth
defect segment. rj1 and rj0 are the outer and inner radii of the jth defect segment. r1 and r0
are the outer and inner radii of the normal segment.

The necking defect of pipe pile can be caused by the increase in inner radius or the
decrease in the outer radius. Consequently, there are three types for the necking defect,
namely the outer radius decrease (ORD), inner radius increase (IRI), and coincidence of
ORD and IRI (ORD-IRI). Figure 3 illustrates the diagram of different types of necking defect
with the same defect degree. HG refers to the homogeneous pile type. Figure 4 shows the
comparison of the pile dynamic response under different necking types.

It can be noticed from Figures 3 and 4 that the amplitude difference (AD) between
adjacent crests of admittance for homogeneous pile types can be neglected, while this AD
for multi-necking pile is apparent. Specifically, the AD of ORD-IRI is the largest, followed
by that of IRI, and that of ORD is the smallest. That means, for two necking segments with
same defect degree, the AD between two crests caused by the simultaneous change of the
inner and outer diameters is the most obvious, while that caused by the single change of the
inner diameter is the smallest. Furthermore, the two necking segments lead to obviously
reflected signals at corresponding locations on the velocity and the attenuation of the signal
from the pile tip. These reflected signals from the necking segments are first in phase and
then out of phase with the incident signal. The amplitude for the necking reflected signal
of ORD is the largest, and that of IRI is the smallest. In other words, the necking caused by
the decrease in the outer radius is easier to detect than that caused by the increase in the
inner radius in practice.
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The effect of the defect degree for multi-necking within pile on its response is inves-
tigated by setting various γN

j under same defect type. Figures 5 and 6 show the necking
degree diagram and the changing of the pile dynamic response with defect degree, respec-
tively. The AD between adjacent crests of admittance increases with the increase in the
defect degree. Furthermore, the larger the defect degree, the lower the resonance frequency
of admittance. For the dimensionless velocity in Figure 6b, the amplitudes of reflected
signals from necking defect rise with the increasing defect degree. The effect of defect
degree on the signal from the first necking is more obvious than that from the second
necking. That means that the closer the defect is to the pile head, the greater the effect
of the defect degree on the amplitude of the signal from the defect. Moreover, with the
increase in the defect degree, the amplitude of the signal from the pile toe decreases. Due
to the difference in acoustic impedance between normal and defect segments, the vibration
velocity (V′v) is divided into two parts, namely transmission velocity (TV′v) and reflection
veloity (RV′v), at the interface of normal and defect segments.

RV′v = V′vα TV′v = V′vβ (35)
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where α and β are reflection and transmission coefficients.
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According to the definition of reflection and transmission coefficients, it can be easily
found that the reflection coefficient increase with the decrease of cross-section area, while
the transmission coefficient decrease with the decrease of the cross-section area. The smaller
the cross-section area of the defect segment, the greater the degree of defect. Therefore,
the greater the degree of defect, the larger the reflection coefficient and the smaller the
transmission coefficient. In summary, the amplitude of the signal from pile toe is in direct
proportion to the transmission velocity (TV′v) decrease with an increase in the degree of
defect. Due to the evaluation of the pile length being based on the pile tip signal, the
increase in the defect degree makes it difficult to detect the pile length in practice.

For the pipe pile with two defects, the distribution of defects consists of four conditions
(as shown in Figure 7); namely, two necking segments (TN), two expanding segments
(TE), upper necking–lower expanding (N-E), and upper expanding–lower necking (E-N).
Figure 8 shows the response of pile for the four defect distribution conditions under same
defect degree (γN

j = γE
j = 1.2). The AD between the HG pile and the TN or TE pile appears
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only at the third resonance amplitude. Specifically, the amplitude of the TE pile is greater
than that of HG pile, while the amplitude of the TN pile is less than that of the HG pile.
Differently, there exists AD between the HG pile and the N-E or E-N pile at both the second
resonance amplitude and the third resonance amplitude. For the N-E pile, the amplitude is
greater than the HG pile at the second resonance amplitude, and the amplitude is less than
the HG pile at the third resonance amplitude. The AD between the E-N pile and the HG
pile is opposite to the N-E pile. Compared with the TN and TE piles, the total AD between
adjacent crests of N-E and E-N piles is greater. It is clear from Figure 8b that the signal
from the expanding defect is anti-phase with that from the necking defect. Furthermore,
the amplitudes for the reflected signals from the necking and expanding defects are almost
identical under the same defect degree. However, the features of reflected signals for
different defect distributions are quite distinct. Therefore, the distribution of different
defects can be recognized from the velocity of pile measured in practice.
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Figure 9 shows the diagram of four instances for necking defects with different lengths.
The dynamic response for these four instances is shown in Figure 10. For the velocity
admittance, the AD between the adjacent crests rises with the increase in the lengths of
necking defects. Compared with the second necking defect, the effect of the length of the
first necking defect on the AD is even more obvious. In other words, the closer the necking
defect to the pile head, the greater the AD caused by the increase in the defect length. As
shown in Figure 10b, the influence of the necking defect’s length on the velocity response
mainly appears in the amplitude of the defect signals. To be specific, the amplitude of
the reflected signals from the necking defect increases with the rise in the necking defects
length. Furthermore, the increase in the necking defect’s length also leads to a decrease in
the amplitude of the pile tip signal, and this decrease in amplitude mainly relates to the
total length of multi-defects.
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To study the effects of multi-defect depths on the pipe pile response, three instances
with different defect depths are set (as shown in Figure 11), and the responses of pipe pile
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for these three instances are compared. It is clear from Figure 12 that the changing of the
two defect depths have significant influences on both the velocity admittance and velocity
response curve. For the velocity admittance, the comparison of the H1 and H3 instances
shows that the deeper the depths of defects are, the greater the ADs are. The comparison of
the H1 and H2 or H2 and H3 instances shows that the closer the two defects are, the smaller
the ADs are. Furthermore, the difference between the AD of H3 and H2 is larger than that
between the AD of H1 and H2. This indicates that the effect of the second defect depth on
velocity admittance is more obvious than the first defect depth. For the velocity response
curve, the changing of defect depth leads to a time delay of the reflected signals from
the relevant defect. In particular, the time difference between the reflected signals from
the first defect and the second defect reduces with the decrease in the distance between
the first defect and the second defect. Therefore, the depth and distance of multi-defects
can be evaluated by the time delay and the time difference of reflected signals from these
multi-defects in engineering practice.
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5. Conclusions

In this paper, the response of a pipe pile with multi-defects is researched. The dynamic
impedance of the pipe pile is deduced by applying a Laplace transformation method and
an impedance recursive technique. Then, the velocity response at the pile head is further
obtained by using the inverse Fourier transform method. Moreover, parametric analyses
are conducted to research the influence of the type, degree, distribution, length, and depth
of multi-defects on the vibration of the pipe pile. The results indicate the following:

(1) For two necking segments with the same defect degree, the amplitude difference be-
tween two crests caused by the simultaneous change in the inner and outer diameters
is the most obvious, while that caused by the single change in the inner diameter is
the smallest. Furthermore, the amplitude for the necking reflected signal of the outer
radius decrease is the largest, and that of the inner radius increase is the smallest.

(2) The amplitude difference between adjacent crests of admittance increases with the
increase in the defect degree, and the amplitudes of the reflected signals from the
necking defect rise with the increasing defect degree. Moreover, the closer the defect
is to the pile head, the greater the influence of the defect degree on the amplitude of
the defect signal.

(3) The amplitude of the TE pile is greater than that of the homogeneous pile, while the
amplitude of the TN pile is less than that of the homogeneous pile. Compared with
the TN and TE piles, the total AD between the adjacent crests of the N-E and E-N
piles is greater. For the velocity response curve, the features of the signals for different
defect distributions are quite distinct.

(4) The amplitude difference between adjacent crests rises with the increase in the length
of necking defects, and the closer the necking defect to the pile head, the greater the
AD that is caused by the increase in the defect length. The necking defect length
increase also leads to a decrease in the amplitude of the pile tip signal, and this
amplitude decrease mainly relates to the total lengths of multi-defects.

(5) The deeper the depths of the defects, the greater the amplitude differences, and the
closer the two defects, the smaller the amplitude differences. For the velocity response
curve, the change in the defect depth leads to a time delay of the reflected signals from
the relevant defect. In particular, the time difference between the reflected signals
from the two defects is related to the distances of these defects.

The features of multi-defects appear to have different amplitude differences and re-
flected signal features on the velocity admittance and velocity response curves, respectively.
This means that the obtained analytical solutions and relevant results can be used to detect
multi-defects of pipe piles according to the different appearances of the velocity admittance
and velocity response curve, as measured in engineering practice.
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