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Abstract— Chronic Glaucoma is an eye disease with
progressive optic nerve damage. It is the second leading
cause of blindness after cataract and the first leading cause
of irreversible blindness. Glaucoma forecast can predict
future eye state of a patient by analyzing the historical
fundus images, which is helpful for early detection and
intervention of potential patients and avoiding the out-
come of blindness. In this paper, we propose a GLaucoma
forecast transformer based on Irregularly saMpled fundus
images named GLIM-Net to predict the probability of devel-
oping glaucoma in the future. The main challenge is that
the existing fundus images are often sampled at irregular
times, making it difficult to accurately capture the subtle
progression of glaucoma over time. We therefore introduce
two novel modules, namely time positional encoding and
time-sensitive MSA (multi-head self-attention) modules, to
address this challenge. Unlike many existing works that
focus on prediction for an unspecified future time, we
also propose an extended model which is further capable
of prediction conditioned on a specific future time. The
experimental results on the benchmark dataset SIGF show
that the accuracy of our method outperforms the state-of-
the-art models. In addition, the ablation experiments also
confirm the effectiveness of the two modules we propose,
which can provide a good reference for the optimization of
Transformer models.

Index Terms— Glaucoma forecast, transformer, attention
mechanism, fundus image.
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I. INTRODUCTION

Glaucoma is the collective term for a group of diseases that
results in progressive damage to the optic nerve and causes loss
of vision, primarily associated with pathological intraocular
pressure elevation. According to a 2014 global meta-analysis
[1], the prevalence of glaucoma for population aged 40–80
years is 3.5%, or approximately 64.3 million people. The
number of people with glaucoma is expected to increase to
112 million by 2040 due to population growth and aging.

Many early works [2]–[5] proposed measurement-based
methods for automatic screening of glaucoma, which first
segmented the pathological regions, such as optic disc and
optic cup, and then calculated the relevant clinical values
for glaucoma diagnosis. However, the accuracy of glaucoma
screening can be seriously affected by the segmentation re-
sults, which can be easily influenced by the pathological
regions and low image quality.

Recently, with the booming of deep learning, effort has been
increasingly devoted to utilizing deep learning methods for
automatic glaucoma diagnosis. For example, references [6],
[7] applied convolutional neural networks (CNNs) to extract
features and detect glaucoma from fundus images directly.
However, different from diseases such as cataracts and myopia,
the loss of vision caused by glaucoma is irreversible, but most
of the loss of vision caused by glaucoma can be avoided by
early detection and treatment. Therefore, it is vital to detect the
potential deterioration ahead of time for earlier intervention.
Li et al. [8] first established a dataset of sequential fundus
images, called SIGF, and proposed a deep learning approach
(DeepGF) for glaucoma forecast. DeepGF primarily consists
of a novel long short-term memory (LSTM) network to learn
the spatial and temporal information from sequential fundus
images of a person. However, DeepGF outputs the probability
of developing glaucoma at the next time step, but cannot
specify when the next time is. Furthermore, LSTM may suffer
from information loss when passing information from previous
steps to the current one and cannot process data in parallel.

In this paper, we propose the first transformer-based glau-
coma forecast network named GLIM-Net for irregularly sam-
pled sequential fundus images. There are two main challenges
that need to be addressed. First, the transformer architecture
lacks inductive bias like convolutions and thus requires a large



2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

amount of training data [9], but the scale of the SIGF dataset
is relatively small. In addition, the images in SIGF dataset
were captured at irregular times as it is impractical to request
patients to take medical examinations on a regular basis. The
time interval of fundus images in a sequence varies from the
minimum of only one day to the maximum of 13 years, which
will be a challenge for models to learn the status transition
over time. To overcome the first challenge, we first replace
the input embedding method of simple linear transformation,
which was used in recent works of vision transformers [10],
[11], with the polar convolutional neural network used in [8]
to extract low-level features to enable the model to converge
even if the scale of dataset is small. Transformer is designed
on the hypothesis that the intervals between samples in a
sequence are the same. So to overcome the second challenge,
we further propose two novel modules i.e., time positional
encoding module and time-sensitive MSA (multi-head self-
attention) module. We redesign the positional encoding used
in [12] and propose a new time positional encoding (TPE) to
enable our model to effectively learn the time distribution of
sequential fundus images, which are not sampled regularly.
To make full use of the prior knowledge that the longer time
the fundus image is captured from now, the less impact the
fundus image will have on the current diagnosis, we propose
a novel time-sensitive MSA to learn more effective temporal
features. Forecasting the probability of developing glaucoma
conditioned on a specific time is more meaningful and useful
than that of developing glaucoma for an unspecified time, as it
provides richer information to make more informed decisions
for monitoring, early detection and further timely treatment to
slow or halt the glaucoma progression. we therefore introduce
an extended model capable of predicting glaucoma for a
specific time by feeding the time condition into both input
and output labels. Extensive experiments on SIGF dataset [8]
demonstrate the effectiveness of our proposed model and our
two modules.

Our main contributions can be summarized as follows:

• We propose the first transformer-based glaucoma forecast
network named GLIM-Net with time positional encoding
and time-sensitive MSA modules to better address the
irregularly sampled data.

• We evaluate our model on SIGF dataset and experimen-
tal results demonstrate our GLIM-Net achieves better
performance than other state-of-the-art methods with a
remarkable margin.

• We extend our model to be able to predict glaucoma
conditioned on a specific time, which addresses a problem
that cannot be handled by existing works, and experi-
ments show the effectiveness of the extended model.

II. RELATED WORK

A. Early Prediction of Diseases

Early prediction of disease deterioration can help clini-
cians to better treat patients. It is estimated that 11% of
patient deaths followed a failure of swift recognition and
treatment [13]. Recently, many deep learning methods have

been proposed for early prediction of diseases, such as pre-
dicting chronic lung disease, acute kidney injury, heart disease,
Alzheimer’s disease (AD), dementia and glaucoma.

Cheng et al. [14] used convolutional neural networks
(CNNs) and temporal fusion mechanisms to analyze electronic
health records (EHRs) and predict the probability of suffering
from chronic lung disease in the future. Tomavsev et al. [15]
proposed a recurrent neural network that processes sequential
EHR of patients and outputs a probability of acute kidney
injury occurring at any stage of severity within the next
48 hours. Ali et al. [16] first extracted features from both
sensor data and EHR, and combined them using a feature
fusion method. An ensemble deep learning model was then
implemented to perform heart disease prediction.

The above methods are based on EHRs, but the high-
dimensionality, sparsity and irregularity of EHR [14], [17]
severely affect the accuracy of prediction. Li et al. [18]
proposed a deep learning method to implicitly extract features
from hippocampal magnetic resonance imaging (MRI) data
and established a time-to-event prognostic model to predict the
progression of subjects who meet criteria for mild cognitive
impairment to Alzheimer’s Disease (AD) dementia. Li et
al. [8] used sequential fundus images that can better show
the subtle pathological features of glaucoma to address the
prediction of glaucoma. First, a CNN was applied to extract
low-level features, which were then inputted into a long short-
term memory (LSTM) network [19] that can better capture
temporal features, and finally the probability of developing
glaucoma in the future was outputted.

B. Transformers in Vision

Transformers [12] were first proposed for machine trans-
lation tasks and have made great success in many natural
language processing (NLP) tasks, such as BERT [20], GPT
[21], [22], and XLNet [23]. In recent years, self-attention
mechanism has been extensively explored to build long-range
dependencies. Reference [24] showed that attention modules
can completely replace convolution operations and the study
reported in [25] showed that self-attention layers deal with
pixel-grid patterns analogously to CNN layers. Recently, many
works have successfully applied self-attention to various vision
tasks, such as image classification, object detection and image
segmentation. DETR [26] regarded object detection as a direct
set prediction task and reasoned about the relationships of
the objects and the global image context to yield the final
set of predictions straightforwardly in parallel. In ViT (Vision
Transformer) [10], an image was split into patches and a pure
transformer with MLP (Multi-Layer Perceptron) head was
applied to perform image classification. On the basis of ViT,
DeiT [11] proposed some training strategies and introduced
the knowledge distillation (KD) [27] to make Transformer
more efficient and achieved competitive results on small
datasets. VisTR [28] regarded video instance segmentation as
a direct coding/prediction task. With a video clip comprising
a specified number of image frames as input, VisTR outputted
a sequence of masks for individual instances in the video
directly and in order.
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Fig. 1. The proposed network architecture is an encoder-decoder structure. The encoder inputs the embedding feature of a sequence of fundus
images, which is then added with time positional encoding proposed to obtain temporal information. The decoder inputs the encoded feature and
the embedding feature of the labels (0 for negative and 1 for positive) added with time positional encoding, and outputs the probability distribution
of glaucoma. TMSA (Time-sensitive multi-head self-attention) is designed to make full use of the prior knowledge that the longer time the fundus
image is captured from now, the less impact the fundus image will have on the current diagnosis. ∆ti,j denotes the time offset of the i-th fundus
image from the j-th fundus image in the sequence. More details of the TMSA module are shown in Fig. 2. This illustration is based on taking the
fundus images captured in the 5 visits as input and predict the probability of developing glaucoma at the time of the 6th visit, to match the setting of
previous work [8]. Our method is general and can be applied to different numbers of images in the input sequence.

Some other studies [29]–[32] tried to apply self-attention
mechanisms to the medical imaging field. Xiong et al. [29]
proposed a reinforcement learning method, namely reinforced
transformers for medical image captioning (RTMIC), to gen-
erate long and coherent medical imaging reports. Inspired by
DETR, Prangemeier et al. [30] proposed a novel attention-
based detection transformer called cell detection transformer
(Cell-DETR) for faster cell instance segmentation. Valanarasu
et al. [31] introduced a modified gated axial-attention by
presenting an additional control mechanism and incorpo-
rated it as the building block of multi-head attention models
for medical image segmentation. Cao et al. [32] introduced
a Transformer-based U-shaped Encoder-Decoder architecture
with skip-connections to extract local-global semantic features
for medical image segmentation. However, most of there pre-
vious works cannot performance well on irregularly sampled
data. In this paper, we propose two modules, namely time
positional encoding and time-sensitive self-attention, to make
full use of temporal information and enable the transformer to
achieve good results on irregularly sampled data.

III. METHOD

In this section, we introduce our GLIM-Net in detail. We
first discuss the vanilla transformer and our network architec-
ture, and then introduce the two novel modules, time positional
encoding and time-sensitive MSA, as well as the loss function.
Finally we demonstrate the extended model with the capability
of forecasting glaucoma conditioned on a specific time.

A. Revisiting Transformer Architecture
The vanilla Transformer [12] is an encoder-decoder struc-

ture with stacked encoder and decoder layers. Positional
encodings are added to the embedded input prior to the first
layer of encoder and decoder to make use of the order of the
input sequence. Each encoder layer is composed of two sub-
layers i.e., a multi-head self-attention mechanism followed by

a fully connected feed-forward network. In addition to the
two sub-layers of encoder layer, the decoder layer has an
additional masked multi-head self-attention mechanism before
the two sub-layers to ensure that the prediction of time ti
can only depend on the known data at positions before ti. A
residual connection [33] followed by layer normalization [34]
is employed around each pair of sub-layers.

B. GLIM-Net Framework

The architecture of GLIM-Net is illustrated in Fig. 1, which
is also an encoder-decoder structure. For a given sequence
consisting of n fundus images, each image is denoted by
xi, i ∈ [1, ..., n], and has a corresponding time stamp ti and
label yi ∈ {0, 1}, 0 for negative glaucoma and 1 for positive
glaucoma. The output of GLIM-Net ŷi+1 is the probability of
positive glaucoma of the image xi+1, We denote the GLIM-
Net by F , and ŷi+1 = Fi = F(x1,x2, ...,xi, y1, y2, ..., yi).
The final output is yn+1 corresponding to the the fundus image
xn+1 captured in the next visit so unknown to the algorithm
but used by clinicians to determine the ground truth label yn+1.
Specifically, we first apply a polar transformation [35] and a
convolution network [8] on the fundus image xi to extract
low-level features fi. Then, the time positional encoding (see
Sec. III-C) is added to fi to form f̃i ∈ Rdm as the input of the
encoder. The encoder consists of N identical layers. We set
dm = 512 and N = 6 in our paper. Similar to the work [12],
each layer is composed of two sub-layers, i.e., time-sensitive
MSA and multilayer perceptron, and a residual connection [33]
followed by layer normalization [34] is employed around each
of the two sub-layers. The encoded feature will then be fed
into the decoder, along with the labels’ embedding feature
ỹi ∈ {0dm ,1dm} added with time positional encoding, and
the output is the probability of positive glaucoma ŷi+1. The
structure of the decoder is similar to that of the encoder, and
it is also composed of N identical layers. Each layer adds a



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

masked time-sensitive MSA to ensure that the prediction of
time ti can only depend on the previous known data.

C. Time Positional Encoding
The self-attention module in the original Transformer [12]

is permutation invariant, so it needs positional encoding to
combine input embedding and position information to enable
the model to have the ability to learn the order of the sequence.
Positional encoding can either be fixed or learnable, and either
absolute or relative. A fixed sinusoidal absolute positional
encoding is proposed in [12]. Based on sinusoidal positional
encoding, we propose a time positional encoding (TPE) that
can make better use of the temporal information of irregularly
sampled data. TPE can be expressed by the following

TPE(∆ti,1, q) =

{
sin(ωq ·∆ti,1), q = 2k

cos(ωq ·∆ti,1), q = 2k + 1
(1)

where ∆ti,1 is the time offset of the current fundus image xi

from the first fundus image x1 in the sequence and ωq =
1/100002q/dm , q ∈ [0, dm]. The wavelengths of functions
increase from 2π to 10000 · 2π. To make encoding richer,
sin and cos functions are used alternately. The modified
function can not only learn the relative position relationship
of sequential fundus images, but also learn the time distance
relationship between fundus images in the sequence.

D. Time-Sensitive MSA
References [10], [11], [28] have proved that self-attention

performs well in capturing long-range dependencies in the
vision field. However, the data of these works is all regu-
larly sampled, and thus models are designed based on the
hypothesis that the intervals between samples in the sequence
are equal, which makes self-attention sensitive to the position
relationship of data but not sensitive to the time relationship
of data. In this paper, we propose a novel time-sensitive self-
attention module to enable the model to learn the time distance
dependencies of sequential fundus images. Also we extend our
time-sensitive self-attention to time-sensitive MSA to allow
the model to attend to features from different representation
subspaces.

1) Time-Sensitive Self-Attention: On the basis of the self-
attention mechanism proposed by Vaswani et al. [12], we
propose a time-sensitive self-attention mechanism to tackle
the variable time interval problem of this task, as illustrated
in Fig. 2 (a), which can be expressed by the following

G(Q,K,T,V) = softmax(
QKT ◦T√

dm
)V (2)

Q = f̃W
Q

(3)

K = f̃W
K

(4)

V = f̃W
V

(5)

where f̃ is the result of the input embedding, f̃ ∈ Rn×dm . We
obtain the queries Q ∈ Rn×dq , keys K ∈ Rn×dk and values
V ∈ Rn×dv by multiplying f̃ with learnable weight matrices
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Fig. 2. (a) Time-Sensitive Self-Attention (b) Time-Sensitive MSA
consisting of s heads.

WQ ∈ Rdm×dq , WK ∈ Rdm×dk and WV ∈ Rdm×dv ,
respectively. dq , dk and dv are the dimensions of Q, K and V.
We set dq = dk = dv = dm = 512 in this paper. T is a weight
matrix related to time interval of data and T ∈ Rdm×dm . ◦
denotes the Hadamard product.

Let P = QKT , where P ∈ Rn×n, and KT is the transpose
of K. With the prior knowledge of vector multiplication, the
value of Pi,j represents the influence of fundus image xj on
the fundus image xi. This is sufficient in the setting of machine
translation, which represents the influence of the j-th word on
the i-th word. However, in the context of glaucoma forecast
task, the data of which is irregularly sampled, we propose to
modify the self-attention to learn the temporal information of
sequential fundus images. We have the prior knowledge that
the longer time the fundus image is captured from now, the less
impact the fundus image will have on the current diagnosis.
Therefore, we impose an additional time-related matrix T
on P through Hadamard product to enable the self-attention
mechanism to better cope with the irregularly sampled data.
The advantage of this design is to add a strong constraint to
the model, so that the model pays more attention to the recent
fundus images and less attention to the fundus images long
time ago when processing a certain fundus image. The value
of Ti,j is defined as

Ti,j =
1

eA∆ti,j+B
(6)

∆ti,j = max(|∆ti,j |, δ)/δ (7)

where A and B are learnable parameters. A is expected to
be a positive number when the model converges, so that
the function is a monotonically decreasing function, which
conforms to our prior knowledge. ∆ti,j is the time interval
from the fundus image xi to the image xj in the sequence.
Because the time stamp of the fundus images in the dataset is
accurate to months, ∆ti,j is counted in months. The maximum
time interval between fundus images can reach 256 months
in the dataset. However, the average time interval is only 39
months, which means that most of time interval in the dataset
is much smaller than 256 months. Therefore, the time interval
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Fig. 3. Conditional Glaucoma Forecast Network. Time condition is
incorporated in both the encoder and the decoder of GLIM-Net as addi-
tional input to enable the model to output the probability of developing
glaucoma at a specified time. The illustration is based on taking the first
3 fundus images (i.e., i = 3) to predict the probability of glaucoma at
time j, and our method works for general settings.

is clipped to a maximum value of δ and and then normalized
by dividing it by δ using Eq. 7. The final experimental results
prove the correctness of the conjecture.

The results of P◦T are then divided by
√
dm before softmax

normalization to ensure the stability of the gradient descent
during training. So far, the final weight matrix is obtained. We
multiply the weight matrix by the value vector V and get the
result of time-sensitive self-attention module G(Q,K,T,V),
which fuses all other data in the sequence according to the
weight matrix on the basis of the current input.

2) Time-Sensitive MSA: According to the study reported
in [12], instead of using the dm-dimensional queries, keys
and values to perform a single self-attention function, it is
better to use the dm/s-dimensional queries Qi ∈ Rn×dq/s,
keys Ki ∈ Rn×dk/s and values Vi ∈ Rn×dv/s to perform s
times self-attention function, then concatenate the results of
all the s times of operations together and project it to dm
by a linear projection. The multi-head self-attention (MSA)
mechanism increases the representation subspaces that the
model can attend to information. Therefore, we extend our
time-sensitive self-attention to time-sensitive MSA, which is
depicted in Fig. 2 (b) and can be expressed by the following

H(Q,K,V,T) = Concat(H1, ...,Hs)W
O (8)

where Hi = G(Qi,Ki,Vi,Ti). Concat function concate-
nates all the outputs of s time-sensitive self-attention modules
together. WO ∈ Rhdv×dm is a projection matrix used to
project the result to dm-dimension. In this paper, we set s = 8
heads and set dv = dm/s = 64 for each head.

E. Loss Function

As the glaucoma forecast task has only two classes, i.e.,
positive and negative glaucoma, we use the binary entropy loss
as the loss function of our model, which can be expressed by
the following

L = − 1

n

n∑
i=1

yi+1 log(ŷi+1) + (1− yi+1) log(1− ŷi+1) (9)

where ŷi+1 ∈ [0, 1] denotes the forecast probability of image
xi+1.

F. Conditional Glaucoma Forecast Network
Forecasting the probability of developing glaucoma con-

ditioned on a specific time is more meaningful and useful
than that of developing glaucoma for an unspecified time,
which provides richer information to help make more informed
decisions for monitoring, early detection and further timely
treatment to slow or halt the glaucoma progression. Therefore,
we extend our GLIM-Net to conditional GLIM-Net to assist
people who may develop glaucoma in a few years to take
measures to prevent further vision loss. Specifically, the time
condition is incorporated in both the encoder and the decoder
as additional input. The architecture of conditional GLIM-
Net is shown in Fig. 3. We denote C-GLIM-Net by F̂ , and
ŷ′j,i = F̂j,i = F̂(x1,x2, ...,xi, y1, y2, ..., yi|∆tj,i) means that
the network inputs a sequence consisting of i fundus images
and outputs the probability of glaucoma of xj (j > i).
Different from GLIM-Net, the last layer of the convolution
network [8] is changed to output a (dm−1)-dimension feature
and it is concatenated with the time interval ∆tj,i as the input
of the encoder, and the embedding feature of the label is also
changed to (dm− 1)-dimension and is also concatenated with
the time interval ∆tj,i as the input of decoder. The decoder
last outputs the probability of positive glaucoma ŷ′j,i ∈ [0, 1].

To train the C-GLIM-Net, we feed first i images of a
sequence to predict the ŷ′i+1,i and ŷ′i+2,i, under the conditions
∆ti+1,i and ∆ti+2,i. The loss function is modified to

LC = −(
1

n

n∑
i=1

(yi+1 log(ŷ
′
i+1,i) + (1− yi+1) log(1− ŷ′i+1,i))

+
1

n− 1

n−1∑
i=1

(yi+2 log(ŷ
′
i+2,i) + (1− yi+2) log(1− ŷ′i+2,i)))

(10)

We conduct experiments of C-GLIM-Net model on the
SIGF dataset by forecasting glaucoma conditioned on the time
of the next two fundus images in the sequence simultaneously.
Experimental results are detailed in the next section.

IV. EXPERIMENTS AND RESULTS

A. Datasets
To evaluate the effectiveness of our proposed method, we

first carry out experiments on a dataset consisting of sequential
fundus images annotated with either positive or negative
glaucoma named SIGF [8]. We further prove the effectiveness
of our proposed method on a dataset named Tumor-CIFAR
proposed by [36] that shares the same characteristics as the
SIGF dataset.

1) SIGF: The SIGF contains 3671 fundus images in total
and consists of 405 sequential fundus images from different
eyes with an average of 9 images per eye ranging from
1986 to 2018. In the dataset, there are at least 6 fundus
images for each eye. All the fundus images are annotated
with positive glaucoma when they satisfy any of the three
criteria, i.e., retinal nerve fiber layer defect, rim loss and optic
disc hemorrhage. The sequences are divided into 2 types:
time-variant and time-invariant as defined in [8]. Time-variant
sequences are those that change from negative to positive
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TABLE I
THE DISTRIBUTION OF TIME-VARIANT TYPE DATA AND TIME-INVARIANT

TYPE DATA IN TRAINING, VALIDATION AND TEST SET.

Training Validation Test
Time-variant 27 3 7

Time-invariant 273 32 63

glaucoma and time-invariant sequences are those that keep
negative glaucoma. SIGF contains 37 time-variant sequences
and 368 time-invariant sequences. In our experiments, we use
the same training (300), validation (35) and test (70) sets used
in [8], and the ratios of the time-variant and time-invariant
sequences are roughly the same in the training, validation and
test sets, detailed in Table I. There are 264 patients in total in
the dataset, with 192 patients, 23 patients and 49 patients in
the training set, validation set and test set, respectively. The
dataset is randomly split at the patient level.

2) Tumor-CIFAR: The Tumor-CIFAR is a simulated dataset
of nodules based on the CIFAR10 dataset [37]. Tumor-
CIFAR contains 60,000 samples which are randomly divided
into training (40,000), validation (10,000) and test (10,000)
sets. Each sample consists of five sequential images that are
extended from one image in the CIFAR10 dataset with two
gradually growing nodules, the size of which is computed by
the following

si = ti × g (11)

where ti is the time stamp from the beginning, g is the
growth rate, i is the sequential index. The difference between
malignant and benign nodules is the growth rate g. The growth
rate of malignant pulmonary nodules is roughly three times as
the benign one. The growth rate g of simulated nodules is
expressed by the following

g =
si
ti

∼

{
N(3, 1.8), if malignant

N(1, 0.2), if benign
(12)

where N(µ, σ2) denotes the Gaussian distribution whose mean
and variance are µ and σ2, respectively.

B. Experimental Setup

1) Implementation Details: We implement our GLIM-Net
with Tensorflow [38] on a single NVIDIA TITAN X (Pascal)
GPU with 12 GB memory. We employ the Adam algorithm
[39] to update the parameters of our model with β1 = 0.9,
β2 = 0.999 and ϵ = 1e − 8. Considering that the data
distribution of SIGF dataset is extremely imbalanced, we adopt
the active convergence strategy used in [8] to self-update the
distribution of the training set actively and adaptively, i.e.,
discarding the sequences the training loss of which ranks
the lowest. Specifically, we set learning rate lr = {3 ×
10−8, 10−7, 6 × 10−6, 6 × 10−6, 10−5, 5 × 10−7} each for 5
epochs. The parameters of time-sensitive MSA, A and B,
are initialized as 0.9 and 2.0, respectively, according to our
extensive experiments. The batch size is set to 4. Our model
can gradually achieve the approximate global optimum after
400 epochs of iterations.
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Fig. 4. The fundus image in the Cartesian coordinate system (a).
The corresponding fundus image in polar coordinate system (b) through
polar transformation in Eq. 13.

To augment the data set and avoid the overfitting problem,
following the work [8], we segment the 405 sequences into
1146 clips, with each clip comprising T (=6) time steps and
an overlap of 5 frames is allowed in segmenting the sequences
into clips. Before being input into the model, the fundus
images are reshaped to 224× 224 and a polar transformation
Φ is applied on them in order to enlarge the disc and cup
structure, as illustrated in Fig. 4, which can be expressed by
the following {

r =
√
u2 + v2,

θ = tan−1( vu ),
(13)

where (u, v) denotes a point in the original Cartesian coordi-
nate system, as shown in Fig. 4 (a). r and θ are the radius and
directional angle in the polar coordinate system, as shown in
Fig. 4 (b).

2) Evaluation Metrics: To compare our method with other
state-of-the-art methods, we adopt four commonly-used met-
rics to assess our GLIM-Net and [8], [36], [40]–[42] on
SIGF, including accuracy, sensitivity, specificity and AUC
(Area Under Curve).

C. Comparison with State-of-the-art Methods
1) Comparison on the SIGF dataset: We use the vanilla

transformer as our Baseline method, because transformer can
build long-range dependencies and shows good performance
in processing sequential data. We compare our model with
the baseline method and 8 other state-of-the-art methods to
verify the superiority of our proposed method, namely DeepGF
[8], Deep CNN [40], AG-CNN [41], tLSTM [42], DLSTM
[36], MIL-VT [43], CABNet [44] and CoG-Net [45]. Notice
that in DeepGF, they convert image classification models to
prediction models by supervising the models with the labels
at the next time step, so we similarly try to use two sequential
image classification models, tLSTM [42] and DLSTM [36],
the setting of which is more similar to the setting of our
task than that of the image classification models. The MIL-
VT, CABNet and CoG-Net are designed for fundus image
classification and we convert them to be prediction models by
supervising the models with the labels at the next time step
as DeepGF [8] does.

Table II tabulates the results of our model, baseline method
and other state-of-the-art-methods. As shown, our baseline
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON SIGF. ACC,
SE AND SP DENOTE THE ACCURACY, SENSITIVITY AND SPECIFICITY,

RESPECTIVELY. OUR METHOD OUTPERFORMS OTHER METHODS IN ALL

FOUR METRICS WITH A CONSIDERABLE MARGIN. FOR EACH MEASURE,
WE SHOW THE MEAN AND STANDARD DEVIATION.

Method ACC (%) SE (%) SP (%) AUC (%)
AG-CNN 47.5± 0.5 57.5± 4.6 47.1± 0.7 51.8± 2.5

Deep CNN 67.0± 5.5 62.1± 1.8 67.2± 5.7 63.0± 3.3
DeepGF 76.0± 4.8 79.4± 1.3 75.9± 5.0 85.0± 2.5
tLSTM 84.7± 1.4 72.5± 0.0 85.1± 1.4 83.6± 0.5
DLSTM 87.2± 1.1 84.3± 1.6 87.3± 1.2 92.4± 0.7
MIL-VT 79.7± 1.1 77.8± 3.4 79.8± 1.2 83.4± 1.6
CABNet 73.9± 1.6 74.4± 1.6 73.9± 1.6 78.7± 2.6
CoG-Net 77.0± 2.0 72.5± 3.6 77.2± 1.7 81.8± 3.5
Baseline 84.7± 0.2 77.8± 0.9 84.9± 0.1 86.1± 1.5

Ours 89.5± 0.8 87.6± 0.9 89.6± 0.8 93.6± 0.3

TABLE III
COMPARISON ON THE TUMOR-CIFAR DATASET.

Method ACC (%) SE (%) SP (%) AUC (%)
DLSTM 96.1± 0.3 96.0± 0.6 96.1± 0.7 99.3± 0.1
DeepGF 94.0± 0.1 94.1± 0.1 93.8± 0.2 98.6± 0.1

Ours 97.3± 0.6 97.1± 0.3 97.4± 0.8 99.7± 0.1

method performs better than 6 other state-of-the-art methods
in terms of accuracy, sensitivity, specificity and AUC, and
our modified model significantly improves the performance of
baseline method. Our GLIM-Net model considerably outper-
forms 8 other state-of-the-art methods and the baseline method
by achieving 89.5%, 87.6%, 89.6% and 93.6% in accuracy,
sensitivity, specificity and AUC, respectively.

The loss, ACC and ROC (Receiving Operating Characteris-
tic) curves of the training and validation phases are shown in
Figure 5. (a) and (b) show the ROC curves of the training and
validation phases. (c) presents the loss curves and (d) shows
the ACC curves of the training and validation phases. The blue
curve is the result of the training phase, and the red curve is
the result of the validation phase.

DeepGF [8] and DLSTM [36] are based on the LSTM
network, consisting of several recurrent layers, which need to
process data sequentially. This enables the LSTM network to
use more information of adjacent positions to make decisions.
In contrast, the Transformer architecture is based entirely
on the attention mechanism and the positional encoding. It
leverages the information of all positions and allows for signif-
icantly more parallelization. And our proposed time positional
encoding and time-sensitive multi-head self-attention make
the transformer architecture better suit the irregularly sampled
data.

2) Comparison on the Tumor-CIFAR dataset: To further
verify the ability of handling irregularly sampled sequential
data of our model, we also carry out experiments on the
Tumor-CIFAR dataset [36]. As listed in Table III, our method
achieves 97.3%, 97.1%, 97.4%, 99.7% in accuracy, sensitivity,
specificity and AUC respectively, which illustrates that our
method can deal with irregularly sampled sequential data well.

(a) (b)

(c) (d)

Fig. 5. The ROC curves of the (a) training and (b) validation phases.
(c) the loss curves and (d) the ACC curves of the training and validation
phases. The blue curve is the result of training phases, and orange curve
is the result of validation phases.

TABLE IV
ABLATION STUDIES ON CONVOLUTIONAL INPUT EMBEDDING (CIE),

TIME POSITIONAL ENCODING (TPE) AND TIME-SENSITIVE MSA
(TMSA). ACCORDING TO THE RESULTS, THE TMSA MODULE IS THE

MOST EFFECTIVE MODULE OF OUR METHOD.

Method ACC (%) SE (%) SP (%) AUC (%)
w/o CIE 85.3± 1.1 83.0± 0.9 85.4± 1.1 90.0± 0.4
w/o TPE 87.9± 0.6 81.1± 0.9 88.1± 0.6 88.6± 1.8

w/o TMSA 85.0± 1.5 81.1± 0.9 85.1± 1.5 88.5± 2.0
Ours 89.5± 0.8 87.6± 0.9 89.6± 0.8 93.6± 0.3

D. Ablation Study

To demonstrate the effectiveness of our each module, we
conduct ablation studies on the convolutional input embedding,
time positional encoding, time-sensitive MSA, the initializa-
tion of hyper-parameters A and B and the setting of threshold
δ.

1) Convolutional Input Embedding (CIE): We first evaluate
the impact of convolutional input embedding compared to the
simple linear transformation by flattening the original fundus
image ximg ∈ R3×H×W to a vector x′

img ∈ R3HW and then
using linear transformation to embed it to dm dimensions. As
indicated in Table IV, the convolutional input embedding can
improve accuracy and specificity by 4.2%. Also, sensitivity
and AUC increase considerably from 83.0% and 90.0% to
87.6% and 93.6%, respectively. These results verify the ratio-
nality of replacing linear transformation with ConvNet as the
input embedding method.

2) Time Positional Encoding (TPE): To demonstrate the
superiority of our time positional encoding, we replace it
with the vanilla positional encoding. As shown in Table IV,
TPE improves the performance of glaucoma forecast in terms
of all four evaluation metrics. Specifically, TPE improves
the accuracy and specificity by 1.6% and 1.5%. Sensitivity
and AUC reach 87.6% and 93.6% from 81.1% and 88.6%,
respectively. These results verify that it is an effective module
to make use of temporal information.
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TABLE V
COMPARISON OF ACCURACY WITH DIFFERENT A IN EQ. 6. WE FIX

B = 2.0 AND THEN EVALUATE THE IMPACT OF A.

A 0.3 0.6 0.9 1.2 1.5
ACC
(%)

82.6±0.8 85.9±1.3 89.5± 0.8 87.1±1.4 82.6±1.2

TABLE VI
COMPARISON OF ACCURACY WITH DIFFERENT B IN EQ. 6. WE FIX

A = 0.9 AND THEN EVALUATE THE IMPACT OF B.

B 0 1.0 2.0 3.0 4.0
ACC
(%)

81.4±0.9 85.0±1.3 89.5± 0.8 86.5±0.7 82.0±1.0

3) Time-sensitive MSA (TMSA): We justify our time-
sensitive MSA by simply removing the time related matrix (T)
from our model. As shown in Table IV, TMSA significantly
improves the performance of the model, and this module
improves the network performance most. Accuracy, sensitivity,
specificity and AUC are all increased by at least 4%, to be
specific, 4.5%, 6.5%, 4.5% and 5.1%, respectively.

4) Hyper-parameters A and B in Eq. 6: As aforementioned,
we need the model to pay more attention to the most recent
fundus images and less on the older ones when processing
a particular fundus image. Eq. 6 is the key component to
achieve this. A and B are two hyper-parameters controlling the
overall trend of the function of Eq. 6. According to our prior
knowledge, hyper-parameter A should be positive so that the
function in Eq. 6 will be a monotonically decreasing function.
Table V manifests that using a small and positive A, the model
can perform better. And the model shows a performance drop
when A is either smaller or bigger. Therefore, A is initialized
as 0.9 in all experiments. Furthermore, we investigate the
impact of different B on the performance of the model and
find that model performs best when B is initialized as 2, as
illustrated in Table VI. Setting B smaller or bigger will affect
the performance of the model. Therefore, B is initialized as 2
in all experiments. Note that these settings are initializations
and A and B are learnable parameters updated during training.

5) Hyper-parameter δ in Eq. 7: We evaluate the effect of
different thresholds of time interval used in Eq. 7. As shown
in Table VII, the model performs best when δ = 96 (8 years)
and shows a performance drop when δ is either smaller or
bigger. This result is reasonable because there are only 4.6%
of data in the dataset that have a bigger time interval than 96
months. Furthermore, the data of 96 months away from the
current data may have little influence on the diagnosis. And if
δ is too small, temporal information between fundus images
in the sequence may be lost.

E. Conditional Glaucoma Forecast Network
With the help of time condition, C-GLIM-Net can output the

probability of developing glaucoma of a patient conditioned
on a specific time. In the following experiment, we feed in
first i = 4 images of a sequence into C-GLIM-Net, under
the condition ∆ti+1,i and ∆ti+2,i to predict the labels of
the 5th and 6th images. We denote the results of the 5th
and 6th predictions as C-GLIM1 and C-GLIM2, respectively.

TABLE VII
COMPARISON OF ACCURACY WITH DIFFERENT δ IN EQ. 7. THE

NETWORK GETS BEST ACCURACY WHEN δ = 96. THIS RESULT IS

REASONABLE BECAUSE THERE ARE ONLY 4.6% OF DATA IN THE

DATASET THAT HAVE A BIGGER TIME INTERVAL THAN 96 MONTHS

(8YEARS). FURTHERMORE, THE DATA OF 96 MONTHS AWAY FROM THE

CURRENT DATA MAY HAVE LITTLE INFLUENCE ON THE DIAGNOSIS. AND

IF δ IS TOO SMALL, TEMPORAL INFORMATION BETWEEN FUNDUS

IMAGES IN THE SEQUENCE MAY BE LOST.

δ 24 60 96 132 168
ACC
(%)

81.5±1.2 84.3±0.5 89.5± 0.8 85.8±1.0 84.1±0.7

TABLE VIII
OUR CONDITIONAL GLIM-NET COMPARED WITH THE

STATE-OF-THE-ART METHOD, DEEPGF, ON SIGF. C-GLIM1 AND

C-GLIM2 DENOTE THE CONDITIONAL GLIM-NET CONDITIONED ON

THE TIME OF NEXT FUNDUS IMAGE AND THE FUNDUS IMAGE AFTER THE

NEXT ONE IN THE SEQUENCE, RESPECTIVELY.

Method ACC (%) SE (%) SP (%) AUC (%)
DeepGF 74.4± 5.3 74.1± 8.1 74.4± 5.4 79.8± 8.6

C-GLIM1 83.0± 0.6 87.6± 0.9 82.9± 0.7 90.7± 0.3
C-GLIM2 82.8± 0.6 74.7± 1.9 83.1± 0.6 81.8± 0.6

Because DeepGF is used to predict probability at the next time
step and cannot predict the probability at a specified time, to
compare with C-GLIM1, we feed in first i = 4 images to train
the DeepGF to only predict the label of the 5th image. As
shown in Table VIII, our C-GLIM1 outperforms the DeepGF
by achieving 83.0%, 87.6%, 82.9% and 90.7% in accuracy,
sensitivity, specificity and AUC respectively. The specificity
is dropped slightly in C-GLIM2 because it is harder to predict
positives at a longer time. To further investigate this, we show
the prediction of time-steps in-between the 5th and 6th visits
in Fig. 6. Although the probability of positives are increased
stably, the false negatives are increased due to the probabilities
of some positive samples do not exceed the 50 % threshold at
the 6th visit.

C1 C1 + 1/4 t C1 + 1/2 t C1 + 3/4 t C2
Time-step
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Fig. 6. Average probability changes compared to C1 of our C-GLIM-
Net performing on the time-steps between the 5th and 6th visits. The
blue curve denotes the average probability changes for samples that are
annotated as positive at C2 while the orange one denotes the average
probability changes for samples that are annotated as negative at C2.
C1 denotes the time-step of the 5th visit, C2 denotes the time-step of
the 6th visit, and ∆t = C2 − C1.
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V. CONCLUSION

In this paper, we present the first transformer-based glau-
coma forecast network for irregularly sampled sequential fun-
dus images named GLIM-Net. Instead of using linear transfor-
mation as input embedding method, we utilize a convolutional
neural network to embed the input into specific dimension
to address the problem that transformer architecture needs
large-scale training data. We propose time positional encoding
and time-sensitive MSA to harness the challenge that the
time interval of fundus images in a sequence varies from
the minimum of only one day to the maximum of 13 years.
To make our model more practical in real life, both input
and output are concatenated with a time condition so as to
output the probability of developing glaucoma conditioned on
the time we feed to the model. Extensive experiments on the
SIGF dataset demonstrate that our proposed GLIM-Net greatly
outperforms other state-of-the-art methods in the glaucoma
forecast task. Furthermore, we prove that the transformer
architecture, which has achieved great success recently due
to its effectiveness in traditional computer vision tasks, can
also learn representative features of fundus images and can
provide an idea of employing transformer architectures in the
medical imaging area. Besides, extensive experiments prove
that our two proposed modules can help to better capture
temporal information of sequential data, which may provide a
good reference for the problems with similar data structures
as that of our data. A limitation of our current work is that
the dataset used has a limited number of glaucoma cases for
training. It would be better to collect more cases for training
the model with better generalization ability in the future.
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