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a b s t r a c t 

Filtering in nonlinear state-space models is known to be a challenging task due to the posterior distri- 

bution being either intractable or expressed in a complex form. One of the most successful methods, 

particle filtering (PF), although generally outperforming traditional filters, suffers from sample degener- 

acy. Drawing from optimal transport theory, the stochastic map filter (SMF) accommodates a solution to 

this problem, but its performance is influenced by the limited flexibility of nonlinear map parameterisa- 

tion. To alleviate these drawbacks, we propose a hybrid filter which combines the PF and SMF, and hence 

call it PSMF. Specifically, the PSMF splits the likelihood into two parts, which are then updated by PF and 

SMF, respectively. The proposed approach adopts systematic resampling and smoothing to break the par- 

ticle degeneracy caused by the PF. To investigate the influence of the nonlinearity of transport maps, we 

introduce two variants of the proposed filter, the PSMF-L and PSMF-NL, which are based on linear and 

nonlinear maps, respectively. The PSMF is tested on various nonlinear state-space models and a nonlinear 

non-Gaussian target tracking model. The proposed linear PSMF-L outperforms all the reference models for 

medium-to-large numbers of particles, whilst the PSMF-NL shows better resilience to parameter changes. 

Crown Copyright © 2023 Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The state-space formulation for time-dependent models has 

een long used in various applications in science and engineer- 

ng. For example, in target tracking, the state vector represents 

he kinematics of the target [1–3] ; in weather prediction, it is re- 

ated to temperature, pressure, humidity, etc.; in oceanography, it 

ould refer to the spatial pattern of surface currents; and in eco- 

omics, it concerns interest rates, inflation, etc. Nevertheless, fil- 

ering based on such formulation still faces numerous challenges, 

specially in nonlinear and high-dimensional situations. In the 

iterature, various types of filters have been proposed, to cope 

ith the various state estimation issues encountered by different 

odels. 

Indeed, in the case of linear Gaussian signal and observation 

odels, the minimum mean squared error (MMSE) estimator un- 

erpins the Kalman filter (KF) [4] . However, despite its optimality 

n the aforementioned scenario, the KF is not applicable when ei- 

her model is nonlinear. To overcome this, various extensions of 

he KF have been proposed in the literature, such as Extended 
∗ Corresponding author. 
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alman filter (EKF) [5] and Unscented Kalman filter (UKF) [6,7] . 

ven though both EKF and UKF constitute improvements on the 

lassical KF, they still have some drawbacks. Among those, satis- 

actory performance can only be achieved when they are used in 

ild nonlinear conditions. The reason behind this is the model lin- 

arization in EKF and the unscented transform in UKF have a weak 

apability to approximate high-nonlinear dynamic behaviours. 

To address solutions to the state estimation for highly nonlinear 

nd non-Gaussian models, the particle filter (PF) [8–10] has been 

roposed and is one of the most common choices in the litera- 

ure. The key idea behind this important filtering approach is to 

epresent the posterior density function in terms of a set of ran- 

om samples along with their associated weights and to compute 

stimations based on these weighted samples. In cases when the 

umber of samples becomes large (i.e., the Monte Carlo (MC) sim- 

lation), the distribution of these samples corresponds to an equiv- 

lent representation to the functional description of the posterior 

robability density function (pdf). In other words, large number 

f samples help to represent posterior distribution perfectly and 

he PF estimates converge to the optimal Bayesian estimates. De- 

pite its ability to model non-linear and non-Gaussian cases, the 

F suffers from sample degeneracy especially in large-scale sys- 

ems [11] , where all but one particle weights tend to zero after a 

ew iterations [8] . Thus the particles along with their correspond- 

ng weights cannot accurately represent the posterior distribution 
cle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ny longer. To alleviate the particle degeneracy, many variants of 

F have been presented based on two strategies: (1) the use of ef- 

ective importance proposals [8,12] , such as auxiliary PF [13] , un- 

cented PF [14] , and PF based on multiple importance sampling 

15] ; (2) employing resampling techniques [16,17] , such as multi- 

omial resampling [18] , systematic resampling [16] or residual re- 

ampling [19] . Despite these improvements, in the highly nonlinear 

nd high-dimensional cases, a large number of particles are still 

equired due to the scale of the degeneracy problem and the com- 

utation load becomes prohibitive. 

The Ensemble Kalman filter (EnKF) [20–22] has been proposed 

s another solution for the highly nonlinear cases. The EnKF also 

as a deterministic version which is the Ensemble Square Root fil- 

ers (ESRF) [23] . In particular, for EnKF, the linear transformation 

s performed statistically by treating the observations as random 

ariables. By contrast, in ESRF, analysis perturbations follow the 

F analysis error covariance equation. Different from the PF, both 

nKF and ESRF just require a small number of particles as they per- 

orm posterior estimation through linear particle movements and 

void the computation of importance sampling. However, despite 

hese advantages over the PF, their performance in highly nonlin- 

ar environments is limited due to the intrinsic bias resulting from 

he low flexibility of their linear updates. 

In an attempt to increase the flexibility of filtering tech- 

iques and address the drawbacks mentioned above, two kinds of 

onlinear-transportation-based particle filters have been proposed. 

irst, there are particle flow filters, which assume that the parti- 

le flow is embedded in a reproducing kernel Hilbert space and 

fficient solutions can be designed [24–26] . Although these ap- 

roaches can provide flexible particle movements, they suffer from 

he slow transition from prior to posterior space. To improve trans- 

ort efficiency, for the second method, optimal transport (OT) the- 

ry has also been utilised in conjunction with Bayesian methods 

o design one-step transportation methods. Optimal transport is 

n important mathematical theory, which was first introduced by 

onge and then developed by Kantorovich [27] . Optimal trans- 

ort maps define couplings that minimize a particular integrated 

ransport cost corresponding to rearranging samples. Several filters 

ased on optimal transport theory have been proposed. In [28] , 

he ensemble transform particle filter (ETPF) has been introduced, 

hereby the optimal transport problem is resolved by linear pro- 

ramming. Despite its robust filtering performance, it suffers from 

 large computational load. In [29] , two efficient generalizations of 

nKF and ESRF have been presented, which are the stochastic map 

lter (SMF) and the deterministic transport map filter (DMF).For 

oth of these approaches, the nonlinear movements of particles are 

aptured by stochastic or deterministic maps based upon Knothe–

osenblatt (KR) coupling which is also an optimal transport cou- 

ling [30] . Compared with other OT maps, the KR map has a trian-

ular structure, so it is simple to invert, and computationally easier 

o parameterize and learn [27,31] . Benefiting from the flexibility of 

he nonlinear maps, the SMF has produced better performance for 

onlinear models when compared to the EnKF which is based on 

inear transformation. 

In recent years, motivated by the aforementioned drawbacks of 

F and EnKF, three hybrid filters have been proposed and explored, 

amely the Gaussian mixture model-EnKF hybrid filter (GMM- 

nKF) [32,33] ; the hybrid of ETPF and ESRF (ETPF-ESRF) [28,34] ; 

nd the SIR-ESRF [35] via combining the standard PF and ESRF 

ith a mean-preserving random orthogonal resampling. For all the 

forementioned hybrid filters, the likelihood function is first sepa- 

ated into two parts, then, EnKF/ESRF and PF-based filters are ap- 

lied sequentially to assimilate each likelihood part. As a result, 

he hybrid filters can yield more precise non-Gaussian approxi- 

ations than PF since they alleviate the particle degeneracy is- 

ue through the use of EnKF/ESRF. However, these filters also have 
2 
ome drawbacks. In GMM-EnKF, since the EnKF is implemented in 

he first stage, it is not suitable for moderately non-Gaussian mod- 

ls where prior distributions are non-Gaussian and posterior distri- 

utions are close to Gaussian. ETPF-ESRF suffers from a large com- 

utational load due to the ETPF component. SIR-ESRF provides an 

fficient solution to the moderately non-Gaussian models and the 

ean-preserving random orthogonal transformation in the ESRF 

pdate stage produces the Gaussian approximation for the poste- 

ior distribution. However, in cases when the posterior is not close 

o a Gaussian form, this resampling technique causes large sam- 

ling errors. 

In this paper, we propose a new nonlinear filter by combining 

deas from the PF and the SMF. In particular, the main contribu- 

ions of this work consist in: 

1. We propose a hybrid particle-stochastic map filter, referred to 

as PSMF, which combines the particle filter and the stochastic 

map filter. In order to build the new hybrid filtering approach, 

the likelihood function is separated into two parts, with the PF 

and SMF being then employed sequentially. In the proposed ap- 

proach, we utilise SMF and not DMF since the former only re- 

quires the optimisation of a convex function. 

2. To address the particle degeneracy issue, we employ the sys- 

tematic resampling method [16,17] and a subsequent smoothing 

step by adding a low-variance Gaussian noise. Compared with 

the ETPF, the computation load of systematic resampling is rel- 

atively low and proportional to the number of particles. Also, it 

is not based on Gaussian approximation, hence when the pos- 

terior distribution is not close to Gaussian, the adopted resam- 

pling technique is still efficient. 

3. To evaluate the influence of the nonlinearity of the transport 

maps on hybrid filters, we introduce PSMF-L and PSMF-NL, 

which are based on linear and nonlinear transport maps, re- 

spectively. These two variants were compared in the experi- 

mental analysis, and their advantages and disadvantages are 

analysed in details. 

The rest of the paper is organised as follows: we begin in 

ection 2 with a review of the theoretical preliminaries in the 

orm of state-space models, particle filters, and stochastic map fil- 

er. In Section 3 , we present the details of the proposed PSMF algo-

ithm. The experimental analysis is performed in Section 4 , whilst 

ection 5 concludes the paper with a summary. 

. Background on particle filtering 

.1. State-space model 

A state-space model can be described as a probabilistic graphi- 

al model, which defines the relationship between the hidden state 

ariables and the measurements. It includes two equations, which 

re for states (signals) and their measurements. The signal model 

escribes the state changes over time, whilst the measurement 

odel explains the relationship between the states and measure- 

ents. A generic state-space model is expressed as 

 k = f (X k −1 , U k −1 ) (1) 

 k = h (X k , W k ) (2) 

here X k refers to the hidden state, Z k is the observation, the ran- 

om model error is denoted by U k , and W k refers to the obser- 

ation noise at time k . The random model and observation noise 

rrors are independent of each other and the states. Figure 1 de- 

icts the general conditionally independent structure of state-space 

odels, which shows the independence of observations condi- 

ioned on the state. 
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Fig. 1. State-space model. 
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.2. Sequential Monte–Carlo methods 

Particle filters, also referred to as Sequential Monte Carlo 

SMC) algorithms are a class of Monte Carlo algorithms used to 

olve some filtering problems arising in signal processing and in 

ayesian statistical inference. They represent a popular solution to 

stimate the expectations of the posterior distribution by repre- 

enting the density with a large number of weighted samples. The 

ey step of the PF algorithm is to design proper importance pro- 

osals for the posterior distribution and use the importance sam- 

ling method to calculate its mean. Thus, estimating the expec- 

ation of the posterior distribution becomes a tractable problem 

hrough the samples and their corresponding weights. At any time 

 , the posterior distribution can be expressed as 

p(X 0: k | Z 1: k ) ∝ p(Z k | X k ) p(X k | X k −1 ) p(X 0: k −1 | Z 1: k −1 ) . (3) 

enerally, the posterior distribution has a complex form, and 

ampling from it cannot be done. Hence, we usually obtain the 

ampled particles of posterior distributions using the importance 

ampling methodology. Let the importance proposal be q (X 0: k | Z 1: k ) , 

hen we take the sequential form of 

 (X 0: k | Z 1: k ) = q (X k | X 0: k −1 , Z 1: k ) q (X 0: k −1 | Z 1: k −1 ) (4)

here we firstly sample from the importance proposal and obtain 

he particles X i 
0: k 

, i = 1 . . . N. Then, the corresponding weights w 

i 
k 

an be expressed as 

 

i 
k ∝ 

p(X 

i 
0: k 

| Z 1: k ) 

q (X 

i 
0: k 

| Z 1: k ) 
. (5) 

ence, the posterior density is approximated as 

p(X 0: k | Z 1: k ) ≈
N ∑ 

i =1 

w 

i 
k δ(X 0: k − X 

i 
0: k ) . (6) 

or the standard particle filter formulation, the importance pro- 

osal is chosen as 

 (X 

i 
k | X 

i 
k −1 , Z k ) = p(X 

i 
k | X 

i 
k −1 ) (7) 

hich relies only on the prior information and leads to the weight 

pdating equation as 

 

i 
k ∝ w 

i 
k −1 p(Z k | X 

i 
k ) . (8) 

Degeneracy problem As mentioned in the above sections, a com- 

on problem in particle filtering applications is the degeneracy 

henomenon, where a large part of the particles will have negli- 

ible weights after a few iterations. It has been proved that the 

ariance of the importance weights can only increase over time 

8] , and thus it is impossible to avoid the degeneracy phenomenon. 

ossibly, the most effective way to reduce the effects of this draw- 

ack is to design an efficient importance proposal [9] . Also, while 

F will always degenerate in the long term, this problem can be 

lleviated by resampling techniques [16,17] , which replicate the 

articles with large weights and eliminate the ones with small 

eights. 
3 
. Stochastic map filtering 

In this section, the general formulation of the SMF is intro- 

uced. We first provide some brief, necessary background on OT. 

hen, we explain the Knothe–Rosenblatt rearrangement, which is 

n optimal transport map designing procedure and constitutes the 

asis of the SMF approach. The cost function for the parameter op- 

imisation of the KR rearrangement is introduced subsequently. Fi- 

ally, the assimilation step of the SMF concludes this subsection. 

.1. Optimal transport fundamentals 

The optimal transport [27,36] is a historical mathematical the- 

ry, which exploits the most efficient way to move one distribution 

o another. It was first presented by French mathematician Gaspard 

onge in 1781. Specifically, Monge’s optimal transportation prob- 

em pursues a transport map g which pushes one probability dis- 

ribution p(X ) , X ∈ �0 to another q (Y ) , Y ∈ �1 , i.e., 
 

X : g(X ) ∈ B 
P (X ) dX = 

∫ 
B 

q (Y ) dY (9) 

here B is an arbitrary area in the domain �1 . In general, there 

xists an infinite number of maps that solve Eq. (9) . One way to se-

ect a map is to define a particular cost function and solve the op- 

imal transport problem. For example, g can be restricted by min- 

mising the p -Wasserstein metric below 

(p, q ) = min 

g∈ MP 

(∫ 
�0 

c ( X, g(X ) ) p(X ) dX 

) 1 
p 

, (10) 

here MP denotes measure preserving maps meeting Eq. (9) . 

(X, g(X )) = | X − g(X ) | p , p ≥ 1 is a cost function, and denotes the

ransport cost from X to g(X ) . 

In 1942, Monge’s transport problem was generalised by Leonid 

. Kantorovich, whose formulation pursues a transportation plan 

. One can regard γ as the joint distribution which has marginals 

p(X ) and q (Y ) , i.e., 

γ (�0 × Y ) = q (Y ) 

(X × �1 ) = p(X ) . 
(11) 

ts corresponding objective function can be expressed as 

(p, q ) = min 

γ ∈ MP 

(∫ 
�0 ×�1 

c ( X, Y ) dγ (X, Y ) 

) 1 
p 

, 

here MP meets Eq. (11) , and c ( X, Y ) = | X − Y | p , p ≥ 1 . We should

ote that the optimization problem over the joint distribution is 

ver a different space than the MP used in Eq. (10) . Specifically, 

or Monge’s problem, a transport map assigns one element of X to 

xactly one of Y . By contrast, Kantorovich’s problem is more gen- 

ral and supports one-to-many movements. 

In recent years, the regularisation of many optimal transport 

aps/plans has been presented and applied to filtering problems, 

uch as ETPF [28] , the mapping particle filter [25] , and filtering 

ased on the Knothe–Rosenblatt (KR) rearrangement [29] . 

.2. Knothe–Rosenblatt rearrangement 

Given any pair of positive densities, there exists a unique mono- 

one triangular transport map, which defines a deterministic cou- 

ling between two distributions and is called the KR rearrange- 

ent [36] . This strategy belongs to Monge’s problem, i.e., a one-to- 

ne transport map. Due to its ability to create connections between 

wo probability densities, it has been widely used in Bayesian in- 

erence, importance sampling, SMC, etc. [37–39] . 

A parametric strategy for the KR rearrangement is presented 

n Moselhy and Marzouk [37] . Assume X = [ x , x , . . . , x n ] 
T and
1 2 
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 = [ y 1 , y 2 , . . . , y n ] 
T are n -dimensional variables with distributions

p(X ) and q (Y ) , respectively. Then, a standard triangular transport 

ap can be expressed as 

 = S(X ) = 

⎡ 

⎢ ⎣ 

S 1 (x 1 ) 
S 2 (x 1 , x 2 ) 

. . . 

S n (x 1 , x 2 , . . . , x n ) 

⎤ 

⎥ ⎦ 

(12) 

here the map S transports the distribution p(X ) to q (Y ) and each 

omponent of S is monotone with respect to its last input. The cru- 

ial property of the KR rearrangement for its application to the 

MC algorithm is that it provides an implicit characterization of 

he marginal conditional distributions. In the example above, S 1 

ransports p(x 1 ) to q (y 1 ) , S 
2 transports p(x 2 | x 1 ) to q (y 2 | y 1 ) and so

n. This conditional distribution transformation property is used in 

he design of the SMF algorithm. 

The parameterisation of KR rearrangement is an important part 

f the design of transport maps. One way to parameterise each 

omponent of the map S is via multivariate polynomials which 

ould either involve Hermite or Legendre polynomials [31] . Span- 

ini et al. [29] also provides a specific computational parameteri- 

ation of triangular maps, which is based on radial basis functions 

RBFs), and we adopt the same form in this work. 

.3. Constructing KR rearrangement from samples 

Following the definition of the triangular transport maps above, 

e now explain the cost function definition based on the Kullback–

eibler (KL) divergence. We aim to optimise the parameters of the 

ransport map polynomials which connect an arbitrary distribution 

p(X ) to a reference distribution q (Y ) . Following Eq. (9) , since S is

 monotone and differentiable transformation, we have 

ˆ p (X ) = q (S(X )) | det (D X S) | , (13) 

here ˆ p (X ) is an approximation of p(X ) . The map S can be ob- 

ained by minimizing the difference between ˆ p (X ) and p(X ) , and 

he KL divergence can be used to measure this. It can be expressed 

s 

 KL (p| ̂  p ) = E 

[
log 

(
p(X ) 

ˆ p (X ) 

)]
= E [ log (p(X )) − log (q (S(X ))) − log | det (D X S) | ] . 

(14) 

hen, the transport map can be expressed in terms of the KL di- 

ergence as 

ˆ 
 = arg min 

S∈H 

E 

[
− log (q (S(X ))) − log | det (D X S) | 

]
, (15) 

here H is a function space for map S. The unknown term 

 [ log ( p(X ) ) ] is neglected in the objective function above because 

t is not related to S. We should note that in the above cost func-

ion, there is no term related to transport cost like Eq. (10) , be-

ause the uniqueness of the transport map is guaranteed by the 

riangular structure and monotonicity of KR rearrangement [37] . 

ssume that we have N samples X i , i = 1 . . . N, from p(X), then the 

ost function based on the discrete samples is expressed as 

ˆ 
 = arg min 

S∈H 

1 

N 

N ∑ 

i =1 

[
− log q (S(X 

i )) − log | det (D X S(X 

i )) | ] (16) 

ewton’s method provides an efficient solution to the minimisa- 

ion of the cost function in (16) and has been widely used in the

iterature [29] . 

.4. Data assimilation 

In this section, we introduce the structure of the SMF. For 

 filtering problem, at any time k , we initially have sam- 

les X i 
k −1 | k −1 

, i = 1 , . . . , N, from p(X k −1 | Z 1: k −1 ) . By sampling
4 
p(X k | X i k −1 | k −1 
) , we have X i 

k | k −1 
, i = 1 , . . . , N. Then by sampling

p(Z k | X i k | k −1 
) , Z i 

k | k −1 
, i = 1 , . . . , N are obtained. Then we have

 

X i 
T 
k | k −1 , Z i 

T 
k | k −1 

] T 
, i = 1 , . . . , N which are samples from the joint 

ensity p(X k , Z k | Z 1: k −1 ) . Following [29] , we define the function S X :

 

n × R m → R n , which is a part of the KR rearrangement S : R n ×
 

m → R n × R m , which transports the distribution p(X k , Z k | Z 1: k −1 ) to

 normal distribution. The resulting map is continuous and can be 

efined as 

 

X (Z k , X k ) ∼ N (0 , I n ) (17) 

rom [29] , we have that the analysis map T which transports the 

oint distribution to the posterior can be expressed as 

 := S X (Z ∗k , ∼) −1 ◦ S X (Z k , X k ) (18) 

here Z ∗
k 

is a fixed observation at time k , S X (Z ∗
k 
, ∼) −1 denotes the

nverse function of the map S X (Z ∗
k 
, ∼) , and ◦ denotes the compo- 

ition of the two maps. In the above structure, S X transforms the 

amples from the joint distribution to the standard normal which 

s then pushed by S X (Z ∗
k 
, ∼) −1 to the posterior. In principle, we 

an directly employ S X (Z ∗
k 
, ∼) −1 to produce posterior approxima- 

ions by pushing forward samples from the standard normal den- 

ity. However, from Spantini et al. [29] , transporting samples from 

p(X k , Z k | Z 1: k −1 ) through T yields more accurate results which is at-

ributed to the cancellation of errors in the composition of ˆ S X and 

ts inverse. 

In practice, we can obtain the estimator of T using the samples, 

nd it can be expressed as 

ˆ 
 := 

ˆ S X (Z ∗k , ∼) −1 ◦ ˆ S X (Z k , X k ) (19) 

here ˆ S X denotes the estimated map of S X . 
In general, the process of stochastic map filtering can be divided 

nto two steps, i.e., the forecast step and the analysis step. First, we 

et samples of p(X k , Z k ) (forecasting). Second, the samples of the 

stimated posterior distribution can be obtained by transforming 

he joint prior samples through the map 

ˆ T (analysis). 

. Stochastic map-augmented particle filtering 

In this section, we present the proposed hybrid filter that com- 

ines PF with the SMF. At any time k , we have samples (X i 
k −1 

, i =
 , . . . , N) subject to p(X k −1 | Z ∗1: k −1 

) . Then, forecast samples (X i 
k 
, i =

 , . . . , N) from p(X k | Z ∗1: k −1 
) can be obtained by sampling from

p(X k | X i k −1 
) . After the prior samples are obtained, the likelihood 

unction is separated as 

p(Z ∗k | X k ) = p(Z ∗k | X k ) 
α p(Z ∗k | X k ) 

1 −α (20)

here 0 < α < 1 is the splitting factor , p(Z ∗
k 
| X k ) α is assimilated by

F and p(Z ∗
k 
| X k ) 1 −α is assimilated by SMF. For α values of 0 and 1, 

he hybrid filter boils down to the SMF and the PF, respectively. 

When α is small, PSMF is close to the SMF. In this case, the 

ample degeneracy can be alleviated effectively, but the estima- 

ion error increases due to the limited flexibility of the maps. We 

hould note that theoretically, the degree of non-linearity of a map 

an be arbitrarily high and there is no limit to its flexibility. How- 

ver, with a certain number of particles, highly non-linear maps 

uffer from larger map variances and may produce worse estima- 

ions than more linear maps. So, the flexibility of nonlinear maps 

hould be controlled according to the ensemble size. Specially, for 

 small number of particles, less non-linear maps, should be used. 

y contrast, a larger number of particles can restrict the variance 

f a highly non-linear map [29] . 

By contrast, for large α, PSMF approaches closely the PF. Then, 

he error from sample degeneracy increases. In this case, as 1 − α
ends to zero, p(Z ∗

k 
| X k ) 1 −α just reshapes the distribution slightly. 
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o, there is no need for a highly flexible transport to complete the 

econd assimilation step, and the SMF-part does not cause a rough 

stimate. With the adaptability mentioned above, the proposed hy- 

rid filter achieves a trade-off between the PF and the SMF. 

Before we implement the assimilation step, α needs to be cho- 

en. For a given θ , we choose α as the largest value which satisfies 

he condition 

SS � θN (21) 

here ESS is the effective sample size and can be approximated 

y the sample weights. For a given α, based on (8) , we have the

eight update equation which can be expressed as 

 

i 
k ∝ w 

i 
k −1 p(Z ∗k | X 

i 
k ) 

α. (22) 

ince a resampling step is taken at every iteration, we have w 

i 
k −1 

= 

 /N and the normalized particle weights can be written as 

 

i 
k = 

p(Z ∗
k 
| X 

i 
k 
) α∑ N 

j=1 p(Z ∗
k 
| X 

j 

k 
) α

. (23) 

hen, the ESS can be approximated by 

SS = 

1 ∑ 

i (w 

i 
k 
) 2 

(24) 

rom [33] , searching the value of 0 � α � 1 satisfying the condi-

ion in (21) can be achieved by a root finding method. For large θ ,

he searched α is small, and then the hybrid filter is closer to SMF. 

or a smaller θ , the hybrid filter moves towards the PF. The opti- 

al values of θ depend on the nonlinear models. Currently, there 

s no automatic way to select parameter θ , and it needs to be se-

ected manually based on the models. After θ is selected and α is 

alculated, the PF is implemented to update p(Z ∗
k 
| X k ) α . Based on

23) , we obtain the normalized particle weights corresponding to 

he selected α. 

To alleviate the particle degeneracy problem, we utilise a sys- 

ematic resampling followed by a smoothing step. Different strate- 

ies for the alleviation of particle degeneracy [33–35] have been 

roposed in the literature. For example, EnKF-GMM avoids the 

egeneracy by sampling from the posterior density approximated 

y a Gaussian Mixture; the ETPF-ESRF filter employs the opti- 

al transport strategy to implement the resampling; a mean- 

reserving random orthogonal transformation is used in SIR-ESRF 

o break the degeneracy. Although the performance of systematic 

esampling is proved in previous work, one did not pay enough 

ttention to its embedding in hybrid filters, because the discon- 

inuity update influences its application in the high-dimensional 

cenario. In this work, we only consider the low-dimension cases, 

ut with the developments of the local PF [24,40] and its combina- 

ion with the EnKF [41] , we can reasonably consider applying our 

ybrid filter to high-dimension models. This however is out of the 

cope of this paper. 

The proposed resampling process [17] starts by generating N or- 

ered numbers u i , i = 1 : N by 

 i = 

(i − 1) + u 

N 

, u ∼ U[0 , 1) (25) 

hich are used to select X i 
k 

according to the multinomial distribu- 

ion. That is 

 

i 
k = X (F −1 (u i )) , s.t.u i ∈ 

[ 

i −1 ∑ 

s =1 

w 

s 
k , 

i ∑ 

s =1 

w 

s 
k 

] 

(26) 

here function X(i ) = X i 
k 
. F denotes the cumulative probability dis- 

ribution of the normalised particle weights, i.e., F (i ) = 

∑ i −1 
s =1 w 

s 
k 
. 

 

−1 denotes the inverse of F . After resampling, all the particle 

eights become equal, w 

i 
k 

= 1 /N. 
5 
After resampling, to increase the diversity of particles, we add 

 small Gaussian noise to smooth the samples, which is helpful to 

ecrease the variance of transport maps in the SMF assimilation 

tage. 

 

i 
k = X k + ζ (X 

i 
k − X k ) + β ∗ v i , v i ∼ N(0 , v ar(X k )) (27)

here 0 < β < 1 is the smoothing factor and v ar(X k ) is the vari-

nce of the resampled samples. ζ = 

√ 

1 − β2 is the shrinking fac- 

or, which is employed to remove the excess variance caused by 

he added noise [32] . 

Next, (p(Z ∗
k 
| X k ) 1 −α is assimilated by the SMF. First, to obtain 

he samples [ Z i 
k 
, X i 

k 
] from the joint distribution, we sample the 

ikelihood p(Z k | X i k ) 1 −α, i = 1 , . . . , N. In this work, we only consider

aussian and Gaussian Mixture likelihood. For Gaussian cases, as- 

ume p(Z k | X i k ) = N ( f (X i 
k 
) , �) , i.e., 

p(Z k | X i k ) = 

1 

(2 π) 
m 
2 | �| 1 2 

exp 

[ 
− 1 

2 

(
Z k − f (X i k ) 

)T 
�−1 

(
Z k − f (X i k ) 

)] 
here � is the covariance matrix. Then 

p(Z k | X i k ) 1 −α

= 

[
1 

(2 π) 
m 
2 | �| 1 2 

]1 −α

exp 

[ 

− 1 

2 

(
Z k − f (X i k ) 

)T 

(
�

1 − α

)−1 (
Z k − f (X i k ) 

)] 

∝ 

1 

(2 π) 
m 
2 

∣∣ �
1 −α

∣∣ 1 
2 

exp 

[ 

− 1 

2 

(
Z k − f (X i k ) 

)T 

(
�

1 − α

)−1 (
Z k − f (X i k ) 

)] 

= N 

(
f (X i k ) , 

�

1 − α

)
. 

ence, we can sample N ( f (X i 
k 
) , �

1 −α ) to obtain Z i 
k 
. For Gaus- 

ian mixture cases, the likelihood can be expressed as p(Z k | X i k ) =
 M 

j=1 P j N ( f (X i 
k 
) , � j ) where M is the number of mixtures. P j 

nd � j are the mixing factor and the covariance matrix of the 

th Gaussian component, respectively. Similarly, we can sample 
 M 

j=1 P j N 

(
f (X i 

k 
) , 

� j 

1 −α

)
to obtain Z i 

k 
. 

Then, the map 

ˆ S X can be designed from the samples [ Z i 
k 
, X i 

k 
]

ccording to (17) and the transport map 

ˆ T can be designed by (19) . 

In the last step, the samples [ Z i 
k 
, X i 

k 
] are transported with the

ransport map 

ˆ T as 

 

i 
k = 

ˆ T (Z i k , X 

i 
k ) (28) 

In our work, thanks to the generalisation of the EnKF, the trans- 

ort map 

ˆ T can be designed to be both linear and nonlinear which 

an then respectively be called PSMF-L and PSMF-NL. As also noted 

n Spantini et al. [29] , the nonlinear map achieves a better perfor- 

ance compared to the linear map, but suffers from larger map 

ariances. The overall procedure of the proposed PSMF algorithm 

s summarised in Algorithm 1 . 

. Simulation results 

.1. State-space models 

In this section, we introduce the low-dimensional nonlinear 

tate-space models used in the experimental analysis. There are 

our benchmark models considered, i.e., (1) the univariate non- 

tationary growth model [42] , (2) Henon map [35] , (3) Lorenz-63 

odel [29] , and (4) a target tracking model also used in Henke 

t al. [43] , 44 ]. The first model is one-dimensional, the Henon map

s a two-dimensional model, whilst Lorenz-63 and the target track- 

ng models are of dimensions 3 and 4, respectively. The details of 

hese state-space models are presented in the sequel. 
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Algorithm 1: The PSMF algorithm 

procedure PSMF (Z ∗
k 
, p(X k | X k −1 ) , p(Z k | X k ) , θ, X i 

k −1 
) ; for i ← 1 

to N do 

X i 
k 

← sample from p(X k | X i k −1 
) ; 

α ← root-finding method; if α > 0 then 

for i ← 1 to N do 

w 

i 
k 

← particle weights by (23); 

for i ← 1 to N do 

X i 
k 

← systematic resampling by (25) and (26); 

for i ← 1 to N do 

X i 
k 

← smoothing by (27); 

if α < 1 then 

for i ← 1 to N do 

[ Z i 
k 
, X i 

k 
] ← sample from p(Z k | X k ) 1 −α; 

ˆ S X ← estimator of S X from [ Z i 
k 
, X i 

k 
] by (16). S X is defined 

by (17); for i ← 1 to N do 

X i 
k 

← 

ˆ S X (Z i 
k 
, X i 

k 
) ; 

X i 
k 

← 

ˆ S X (Z ∗
k 
, X i 

k 
) −1 ;

return X i 
k 
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.1.1. Univariate non-stationary growth (UNGM) model 

The UNGM model can be expressed as 

x k = αx k −1 + β
x k −1 

1 + x 2 
k −1 

+ γ cos (1 . 2(k − 1)) + u k 

 k +1 = x k +1 + w k +1 

(29) 

here α = 0 . 5 , β = 25 , γ = 8 and u k ∼ N (0 , 1) , w k ∼ N (0 , 2 . 5) are

ero-mean Gaussian noise. In our experiments, we set the total 

umber of steps to 100 and repeat the simulations 100 times. The 

nitial state follows N(20 , 1 2 ) . 

.1.2. Henon map 

Different from the other models, for the Henon map, the num- 

er of steps is set to 1. This helps to focus on a single Bayesian as-

imilation update. Hence, the complication related to varying non- 

aussianity along cycled steps can be eliminated. 

From [35] , the prior is the joint density of U and V whose sam-

les are obtained by pushing samples of normal variables U 0 and 

 0 forward through the Henon map, i.e., 

 = 1 − 1 . 4 U 

2 
0 + V 0 , 

 = 0 . 3 U 0 

(30) 

here U 0 ∼ N (0 , 1 2 ) , V 0 ∼ N (0 , 0 . 1 2 ) . The true values of U and V 

re set to −4 and 0.6. 10 0 0 Monte Carlo runs were simulated in

he experiments. 

.1.3. Lorenz-63 

The Lorenz-63 Model is a 3-dimensional nonlinear state- 

pace model, and its state vector is represented by X t = 

X 1 (t) , X 2 (t) , X 3 (t)) . The dynamics of the model can be described

y 

dX 1 

dt 
= −σX 1 + σX 2 

dX 2 

dt 
= −X 1 X 3 + ρX 1 − X 2 

dX 3 = X 1 X 2 + βX 3 

(31) 
dt c

6 
here β, ρ, σ are fixed parameters, which are set to β = 8 / 3 , ρ =
8 , σ = 10 . The ODE system above is integrated by a fourth-order 

xplicit Runge–Kutta method and a constant stepsize of � t = 

 . 05 . Also, the process noise follows a Gaussian distribution ε� t ∼
 (0 , 10 −4 I 3 ) . 

For the observation model, we assume the states are measured 

very � t obs = 0 . 5 time units, then the measurement model can be

epresented as 

 k = Z k + W k (32) 

here Z k = Z(k � t obs ) and W k ∼ N (θ2 I d ) is zero-mean white

aussian observation noise. In our experiment, the states are fully 

easured, i.e., d = 3 , and the observation noise variance is set to 
2 = 4 . 

For the initialisation, the true state is set by sampling from 

 0 ∼ N (0 , I d ) . The true model runs 60 0 0-time steps to generate

he states, and the observations are produced by the measurement 

odels. The initial ensemble is produced by a spin-up stage. N

amples are obtained from the initial condition N (0 , I d ) and then

he stochastic EnKF is run for the first 20 0 0 steps. The produced 

articles are used as initial samples. In the last 40 0 0 steps, sev- 

ral filters are run. Only the filter results for the last 20 0 0 steps

re used for the analysis of the filter quality, and the middle 20 0 0

teps are used for eliminating the influence of switching between 

nKF and other filters at the end of the 20 0 0th iteration. 

.1.4. Target tracking with heavy-tailed measurement noise 

In this subsection, we describe a nonlinear target tracking 

odel [43,44] . As it is shown below, the state of the target X is

 four-dimensional vector, where P east and P north are the map co- 

rdinates of the object, V abs is the value of velocity, and ϕ is the 

irection of movement. 

 = 

⎡ 

⎢ ⎣ 

P east 

P north 

V abs 

ϕ 

⎤ 

⎥ ⎦ 

(33) 

he dynamics of the target tracking model can be described by 

f (X ) = 

⎡ 

⎢ ⎣ 

P east + � t obs ∗ cos (ϕ) ∗ V abs 

P north + � t obs ∗ sin (ϕ) ∗ V abs 

V abs 

ϕ 

⎤ 

⎥ ⎦ 

+ ε (34) 

here � t obs is the time interval from current state to the next 

tate, and ε is the heavy-tailed process noise. Different from Henke 

t al. [43] , 44 ], in our experiment, the heavy-tailed noise is approx- 

mated by a Gaussian mixture as is used in various other target 

racking models [2,3] , and can be expressed as 

∼
{

N(0 , Q ) with probability 0 . 85 

N(0 , ηQ ) with probability 0 . 15 

(35) 

here Q is the covariance matrix, and η is a diagonal matrix used 

o enlarge Q . Then, the measurement equation is given by 

 = HX + W (36) 

here W ∼ N (0 , R ) is the measurement noise with covariance R

nd 

 = 

[
1 0 0 0 

0 1 0 0 

]
(37) 

s the transformation matrix. Following the measurement model, 

t every time instant, the position coordinates of the target, P east 

nd P north , are observed. For the complete definition, we also need 

o specify the observation interval � t obs , the values for the ini- 

ial state X 0 with the covariance matrix C 0 , the processing noise 

ovariance Q , and the measurement noise covariance R . In the 



P. Hao, O. Karaku ̧s and A. Achim Signal Processing 207 (2023) 108969 

Fig. 2. The comparison of the proposed PSMF to the traditional filters under different number of particles. The horizontal axis represents the number of particles, and the 

vertical axis represents the log (RMSE). 

Fig. 3. The comparison of the proposed PSMF to the traditional filters under the different number of particles. The horizontal axis represents the number of particles, and 

the vertical axis represents the log (CRPS). 

7 
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Fig. 4. The comparison of the PSMF to the other hybrid filters under the different number of particles. The horizontal axis represents the number of particles, and the 

vertical axis represents log ( RMSE ) . 

Fig. 5. The comparison of the proposed PSMF to the traditional filters under the different number of particles. The horizontal axis represents the number of particles, and 

the vertical axis represents log ( CRPS ) . 

8 
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Fig. 6. The comparison among hybrid filters with different values of parameter θ under different models. The ensemble size N is set to 20. Horizontal axis represents the 

value of θ , and vertical axis represents the estimation log ( RMSE ) . 
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xperiment, without loss of generality, the target starts to move 

rom the initial point and the real initial state X 0 is set to 

0 m 0 m 30 m / s 0 rad 

]
, where the initial speed of 30 m / s 

s a reasonable value for a vehicle. For simplicity, we assume the 

nitial state subject to a Gaussian distribution with the covariance 

 0 where the deviation about the position, velocity, and direction 

s set to 
[
10 m 10 m 3 m / s π/ 10 rad 

]
, so we have 

 0 = diag 
[
100 m 

2 100 m 

2 9( m / s ) 2 π2 / 100 rad 

2 
]
. 

In our experiments, we set 

 t obs = 1 , 

 = diag 
[
0 . 01 m 

2 0 . 01 m 

2 0 . 01( m / s ) 2 (π/ 90) 2 rad 

2 
]
, 

= diag 
[
100 100 100 900 

]
, 

 = diag 
[
9 m 

2 9 m 

2 
]
. 

he whole tracking process lasts for 120 s and 50 Monte Carlo runs 

ere simulated. 

.2. Benchmark filters 

In our experiments, the proposed hybrid PF-SMF filter is com- 

ared to 6 state-of-the-art filters, including the classic PF, EnKF, 

SRF, SMF and two-hybrid filters of SIR-ESRF and GMM-EnKF. In 

his section, we introduce the configuration of these filters. 

For PSMF-L and PSMF-NL, we set both the smoothing parameter 

to 0.2. Following [29] , linear and nonlinear transport maps take 

he “linear” and “linear + 2 RBFs” forms, respectively. Also, the SMF 

art in the proposed hybrid filter processes the observations at a 

iven time sequentially. 
9 
For a fair comparison, other filters’ configurations follow that 

f PSMF according to their structures. First, systematic resampling 

s performed in PF, SIR-ESRF and GMM-EnKF. Second, the same 

moothing step is adopted in PF. Third, the map design configu- 

ations are the same as in SMF. Finally, the observations are se- 

uentially processed in EnKF, ESRF, SMF, and the ESRF/EnKF parts 

n hybrid filters. 

.3. Performance evaluation in relation to ensemble size 

In the first set of experiments, we numerically investigated 

he performance of filters under different ensemble sizes over a 

ange of state-space models. The number of particles used was 

uccessively N = [20 , 40 , 60 , 100 , 200 , 400 , 600] . For the hybrid fil-

ers, the parameter θ has influences on their filtering perfor- 

ance. In this experiment, the value of θ was taken from a vec- 

or [0.0 01,0.0 02,0.0 04,0.0 06,0.0 08, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 

.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 0.992, 

.994, 0.996, 0.998, 0.999], and we selected the best performing θ
nd its corresponding results as the final results. The coordinates 

n the vector range from 0.001 to 0.999. In the scales near 0 and 

ear 1, a smaller sampling interval is chosen. The reason behind 

his is that for some of the state-space models, the performance of 

he hybrid filters is more sensitive to the change of θ within those 

wo scales. The minimum θ in the vector can ensure the effective 

umbers are less than 1, and maximum larger than N − 1 , which 

an ensure the best parameter values are in the tested range. Al- 

ernatively, we can use a root finding method to search the best 

erforming hybrid filters and their corresponding values of θ [35] . 

he root mean-square error (RMSE) was used to analyse the per- 
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Fig. 7. The comparison among hybrid filters with different values of parameter θ under different models. The ensemble size N is set to 200. Horizontal axis represents the 

value of θ , and vertical axis represents the estimation log ( RMSE ) . 
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ormance of each filter. For the UNGM and Lorenz-63, estimations 

n all variables were used to calculate RMSE values. For Henon 

ap model, following [35] , the variable u and v were analysed 

eparately whilst the location estimation precision was considered 

or the target tracking model. In addition, the average continuous 

anked probability score (CRPS) is also computed. Different from 

MSE, it quantifies the spread of the ensemble. Lower CRPS indi- 

ates that the ensemble concentrates around the true values, and 

s more precise for state estimation. 

.3.1. Evaluating PSMF vs. traditional filters 

RMSE comparisons between the PSMF and the traditional filters 

re plotted in Fig. 2 . When compared to the PF for a small num-

er of particles (N < 100) , the proposed approach provides im- 

roved results in all cases. For large ensemble sizes, although PSMF 

till yields better tracking performance under higher dimensional 

odels, similar estimations are obtained under the one-dimension 

odel. These comparisons indicate that different from the classic 

F, the proposed hybrid filter can effectively alleviate particle de- 

eneracy due to employing the parameter θ . Note however that in 

ne-dimensional cases, because of the narrow sampling space, for 

edium and large number of particles, the classic PF does not suf- 

er from particle degeneracy seriously, and PSMF does not make a 

ignificant difference in these cases. 

For small N, the PSMF has similar results with the EnKF/ESRF, 

hereas when increasing the number of particles, the PSMF starts 

o show considerable gain for models. This shows that with few 

umber of samples, the PSMF utilises a larger θ value to maintain 

he effective number of particles, so that α tends to be smaller 

eading to the PSMF performing closely to the SMF. By contrast, 
10 
ith large N, the PSMF adopts a smaller θ , and α increases. Then, 

he PF part occupies a larger assimilation proportion, and more 

onlinear information can be extracted. On the other hand, due to 

heir limited flexibility, the EnKF/ESRF does not yield better results 

ith increased number of particles. 

Specifically speaking for the linear and nonlinear versions of the 

roposed approach, for small N, the PSMF-L yields better perfor- 

ance compared to the PSMF-NL. In most cases, with an increase 

n the number of particles, the advantages of the PSMF-L gradually 

educes. The reasons behind this are related to the quality of trans- 

ort maps. From [29] , we can recall that a linear map has more 

obust performance with small N but can have limited flexibility. 

y contrast, a nonlinear map holds higher non-linearity but might 

ield unacceptable variances without a sufficient number of parti- 

les. As a result, for small N, nonlinear maps cause large variance, 

nd the PSMF-NL performs worse than its linear counterpart, the 

SMF-L. For large N, the variance produced by the nonlinear maps 

an be suppressed and the difference between PSMF-L and PSMF- 

L becomes smaller. 

The results above do not imply that the PSMF-L can always 

chieve better results than PSMF-NL. From the results under the 

ariable v of the Henon map, PSMF-NL provides better results. 

s mentioned before, compared with the nonlinear maps, linear 

aps have very limited flexibility, which causes poor estimation 

esults. In some cases, a large θ is needed to maintain the effec- 

ive number of particles, and then the value of α decreases. Conse- 

uently, the SMF occupies a larger assimilation part and needs to 

erform more complex transportations. If the bias caused by the 

inear transport approximation is larger than that of nonlinear-map 

ariance, the PSMF-NL can perform better than the PSMF-L. 
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Fig. 8. The comparison among hybrid filters with different values of parameter θ under different models. The ensemble size N is set to 600. Horizontal axis represents the 

value of θ , and vertical axis represents the estimation log ( RMSE ) . 
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To complete this section, CRPS comparisons between the PSMF 

nd the traditional filters are also plotted in Fig. 3 and they fol- 

ow the same characteristics similar to the RMSE results in Fig. 2 . 

his suggests that our new hybrid filter shows advantages over the 

raditional filters in both mean estimations and ensemble concen- 

ration. 

.3.2. PSMF vs. hybrid filters 

RMSE comparisons between the PSMF and other hybrid filters 

re plotted in Fig. 4 . 

When compared to the SIR-ESRF, the proposed PSMF performs 

orse when the particle number is small. In most cases, for in- 

reasing number of particles, the proposed PSMF’s performance 

chieved is closer to or better than that of SIR-ESRF. 

The difference between the performance of the SIR-ESRF and 

hat of PSMF is primarily due to their distinct strategies of allevi- 

ting the particle degeneracy. In the PSMF, systematic resampling 

ith a smoothing step is adopted. By contrast, SIR-ESRF relies on 

he mean-preserving random orthogonal transformation which re- 

amples the ensemble during the ESRF assimilation stage. This re- 

ampling technique performs well under medium-level nonlinear 

odels. However, since it is based on the Gaussian approxima- 

ion, when the posterior distribution gets further from Gaussian, 

ore errors will be introduced. In all the experiments, for small N, 

he bias caused by the systematic resampling and transport map 

ariances is larger than that of the Gaussian approximation in SIR- 

SRF, which thus determines the proposed PSMF to achieve closer 

r worse results. However, for medium and large N, the bias from 

he systematic resampling and transport map variance is less sig- 
11 
ificant. As a result, it becomes smaller than the error from the 

esampling in the SIR-ESRF. 

For small N, the PSMF and GMM-EnKF achieve considerably 

ower performance compared to the SIR-ESRF. However, the GMM- 

nKF achieves worse results than the proposed PSMF for a medium 

umber of particles. When increasing the number of particles, its 

erformance gradually approaches that of PSMF, although under 

he nonlinear non-Gaussian target tracking model, for N = 600 , the 

SMF still offers obvious advantages. These results are caused by 

he structure of the GMM-EnKF. Different from the other hybrid fil- 

ers, the GMM-EnKF implements the EnKF assimilation first, which 

s based on the Gaussian assumption for the prior distributions. 

n all the state-space models in this paper, all the measurement 

odels are linear and Gaussian, which means that the posterior 

as a closer form to a Gaussian than the prior. Thus, implement- 

ng ensemble-based filters first introduces more error. For small N, 

he EnKF update occupies a large part to keep the ESS. As a re-

ult, the Gaussian approximation introduces more errors. For large 

, the GMM-EnKF just needs a small θ value to ensure the ESS is 

arge enough. Consequently, a smaller α will be selected and the 

MM occupies a large proportion. Hence, more nonlinear trans- 

orm information between the prior and posterior can be obtained. 

owever, the 4-dimensional target tracking model has a larger 

ampling space and needs more effective particles. So, even for 

 = 600 , the EnKF occupies a larger assimilation proportion than 

he other cases. As a result, the GMM-EnKF is significantly outper- 

ormed by the proposed PSMF. 

As in previous section, we also provide comparisons between 

he PSMF and the other hybrid filters in terms of CRPS and these 

re plotted in Fig. 5 . The results are consistent with the RMSE 
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Fig. 9. The comparison of the proposed PSMFs between with and without the smoothing step under the different number of particles. PSMF-nsm-L and PSMF-nsm-NL 

represent linear and nonlinear PSMFs without the smoothing step, respectively. The horizontal axis represents the number of particles, and the vertical axis represents 

log ( RMSE ) . 
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esults in Fig. 4 . This means that the differences among the hy- 

rid filters in the mean estimation can be extended to the ensem- 

le concentration. Finally, for further objective evaluation, numer- 

cal results obtained for both RMSE and CRPS are also shown in 

ables A.1 and A.2 , respectively, in Appendix A . Due to the lim-

ted space, a sparse selection of ensemble sizes, [20,60,20 0,60 0], is 

rovided. Results indicate that in most cases, hybrid filters work 

etter than traditional filters. Also, SIR-ESRF tends to perform bet- 

er than the others with few particles, while PSMF obtains robust 

erformance with large ensemble sizes. 

.4. The effect of θ on filter performance 

In the second set of experiments, we investigated the influence 

f θ on the hybrid filters. We used the same values of θ as in 

ection 5.3 , i.e., between 0.001 and 0.999. The number of particle 

sed were 20 , 200 , and 600. 

In Fig. 6 , the influence of parameter θ is evaluated, for an en- 

emble size of N = 20 . It can be observed that, in general, the best

esults are achieved by the SIR-ESRF. As was mentioned in the pre- 

ious sections, the reason behind this is that the resampling tech- 

ique of the SIR-ESRF, i.e., the mean-preserving random orthogonal 

ransformation, has a more robust performance for small N. In ad- 

ition, the large variance of nonlinear maps for small number of 

articles makes the proposed nonlinear approach be inefficient in 

his case. 

The PSMF-L and GMM-EnKF achieve inconsistent results and 

ower performance than the SIR-ESRF in most cases. This is due 

o the known drawbacks of these two filters: when using few par- 

icles, the systematic resampling technique in PSMF-L is not as ro- 
12 
ust as that in SIR-ESRF. By contrast, the GMM-EnKF runs by first 

erforming the EnKF component, which leads to large errors. 

In Fig. 7 , the influence of the parameter θ is evaluated for N =
00 . It can be seen that for the first 3 models, for the same reason

s above, the GMM-EnKF yields the worst results. It is clear that 

he proposed PSMF-NL achieves the best performance for large θ
alues (close to 1). The improved results benefit from the larger 

exibility of the nonlinear maps and reduced map variances in the 

ase of a medium number of particles. However, when θ is small, 

he advantage of PSMF-NL is not obvious anymore, the reason be- 

ng that in such case, the values of α tend to be large, and the SMF

art occupies a small proportion of the assimilation process. Con- 

equently, there is no need for a flexible nonlinear map to com- 

lete the assimilation. Also, we should notice that the performance 

f the PSMF-NL is just slightly worse than that of PSMF-L in this 

ase. The small effective number of particles caused by small θ do 

ot cause large nonlinear map variances. Because of our smoothing 

trategy, the diversity of particles can be ensured and the variance 

an be suppressed. 

For the first 3 models, the PSMF-L and SIR-ESRF achieve com- 

arable results with lower performance compared to the proposed 

SMF-NL. The disadvantages of the SIR-ESRF stem from the Gaus- 

ian assumption of the resampling techniques, whilst the disadvan- 

ages of the PSMF-L are due to the lower flexibility of linear maps. 

For the last model (4D tracking), the results are slightly dif- 

erent. First, the SIR-ESRF performs relatively worse than the pro- 

osed PSMF-L since the posterior distributions under this model 

re far from the standard Gaussian assumption. Second, when θ
s close to 1, the advantage of the proposed PSMF-NL can still be 

een. Nevertheless, on a large scale, the PSMF-NL performs worse 
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Fig. 10. The comparison of the proposed PSMF to the other filters under the different number of particles. The horizontal axis represents the number of particles, and the 

vertical axis represents log ( time ) . 
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han its linear counterpart. This is due to increased variance of the 

onlinear map in this case. According to the structure of the tri- 

ngular maps, it is known that the number of map parameters in- 

reases with the dimension of models. As a result, a medium num- 

er of particles cannot effectively suppress the variance of nonlin- 

ar maps that causes PSMF-NL to perform worse than the linear 

SMF-L. 

Finally, in Fig. 8 , the influence of parameter θ is evaluated, for 

 = 600 . The results are similar to those obtained for N = 200 ,

ith some slight differences. It can be seen that For large N, the 

roposed PSMF-NL benefits more from the increase of the number 

f particles. For a larger scale of values of θ , it outperforms the 

thers for the first three models. Even under the 4D target tracking 

odel, the variance of nonlinear maps can be suppressed more ef- 

ciently, and its performance becomes closer to that of the PSMF-L. 

We can also notice that under the target tracking model, when 

 . 2 < θ < 0 . 8 , the location estimation log (RMSE) of the proposed

SMF varies very little. We attribute this to the fact that the trans- 

ormation between a prior distribution and corresponding pos- 

erior distribution is not particularly complex under this model. 

hen θ changes between 0.2 and 0.8, the assimilation proportion 

f PF changes as well. However, the SMF can always complete the 

emaining assimilation update and the final estimation results re- 

ain stable. When θ is very close to 1, transport maps cannot ex- 

ract all the remaining nonlinear information and the performance 

s reduced. By contrast, when θ is very close to zero, the PSMF 

ecomes closer to the classical PF and hence suffers from particle 

egeneracy. 

.5. The effect of the smoothing step on filter performance 

In this section, the influence of the smoothing step on the fil- 

ering performance of PSMFs is investigated. The parameter set is 
13
he same as in the first experiment, and the experiment results 

re shown in Fig. 9 . Under most models, the smoothing step does 

ot influence the filtering performance. However, under Lorenz-63, 

ith a large number of particles, PSMF performs better than PSMF- 

sm. The reason is that with large ensemble sizes, the optimal 

alue of θ is relatively small under Lorenz-63 as shown in Fig. 8 . 

hus, ESS is small, which causes large map variances. A smooth- 

ng step can increase the diversity of samples, and then the map 

ariance is decreased. Hence, in this case, PSMF works better than 

SMF-nsm. 

.6. Computational complexity analysis 

For an exhaustive evaluation of our proposed PSMF method, the 

lter efficiency with the change of particle numbers is also evalu- 

ted. To this end, we fix the parameter θ to 0.5, and employ en- 

emble sizes of [10 0 , 20 0 , 40 0 , 60 0 , 10 0 0] . Small particle numbers

re not considered because some filters diverge with few samples 

nd then the precise computational cannot be obtained. The rest 

f the parameters are the same as in the first set of experiments 

resented above. The computational time is shown in Fig. 10 . 

Compared with traditional methods, PSMF is less efficient than 

F, EnKF and ESRF. However, the comparison between PSMF and 

MF does not lead to consistent conclusions, being dependent on 

he state-space models investigated. Specifically, under the one- 

imensional UNGM model, the PF part of PSMF can keep the 

SS high, and the SMF part is omitted in many iterations. Con- 

equently, PSMF is more efficient than SMF. By contrast, under 

igher-dimensional models, the SMF part of PSMF can be omitted 

n fewer iterations. Thus, the inclusion of both PF and SMF steps in 

SMF slows the filtering process. 

Also, GMM-EnKF is more time-consuming than PSMF for all the 

odels. This is due to its ESS calculation for searching α. Specifi- 



P. Hao, O. Karaku ̧s and A. Achim Signal Processing 207 (2023) 108969 

c

fi

o

d

t

w

o

c

T

m

w

R

p

6

P

f

s

s

n

b

s

fi

f

e

l

fi

N

n

a

b

n

t

t

p

t

t

m

n

e

l

m

p

a

[

D

a

m

D

c

i

C

d

A

A

T

R

T

n

ally, because GMM-EnKF implements EnKF first, the whole hybrid 

lter should be implemented to calculate ESS. However, for PSMF, 

nly the PF part is implemented to obtain ESS, as the SMF step 

oes not change ESS. Therefore, GMM-EnKF spends more time on 

he search of α by the root-finding method. 

Finally, PSMF has a similar computational load to SIR-ESRF 

hen the ensemble size is small. However, the computational time 

f SIR-ESRF increases faster than PSMF along the x -axis and be- 

omes larger than that of PSMF when particle numbers are large. 

his is caused by the mean-preserving random orthogonal transfor- 

ation in SIR-ESRF, which has nonlinear computational complexity 

ith respect to the particle number as explained in Grooms and 

obinson [35] . By contrast, PSMF has linear computational com- 

lexity. 

. Conclusion 

In this paper, we proposed a novel hybrid filtering approach, the 

SMF, which enhances the standard particle filter by using ideas 

rom stochastic map filters. To break the particle degeneracy is- 

ue, which is peculiar to PF, systematic resampling followed by a 

moothing step was adopted. In order to analyse the impact of the 

onlinearity of transport maps, we presented PSMF-L and PSMF-NL 

y adopting linear and nonlinear transport maps, respectively. 

Two sets of experiments involving four widely employed state- 

pace models were implemented to validate the proposed hybrid 

lters. In the first experimental setup, we investigated the per- 

ormance of the PSMF with optimal parameters of θ for different 

nsemble sizes. Experiment results showed that for medium and 

arge number of particles the linear version of the proposed hybrid 

lter, PSMF-L, yields better results than the benchmark approaches. 

evertheless, in some cases, the error inherently introduced by the 

onlinear map variance was smaller than that due to the linear 

pproximation of the linear map. Consequently, the nonlinear hy- 

rid filter provided better results than the PSMF-L. We should also 

ote that, with a small number of particles, the advantages that 
able A1 

MSE results of the filters under different models. R and N represent RMSE and the ensem

arget tracking, respectively. F1:F9 represent PF, EnKF, ESRF, SMF-L, SMF-NL, SIR-ESRF, GM

umbers and models are highlighted in red and blue bold font, respectively. 

R N F1 F2 F3 F4 

M1 20 2.375 1.81 1.681 1.733 

60 1.536 1.598 1.641 1.59 

200 1.351 1.572 1.628 1.574 

600 1.335 1.562 1.624 1.564 

M2 20 1.821 1.446 1.331 1.38 

60 1.103 1.14 1.127 1.135 

200 0.915 1.057 1.055 1.063 

600 0.891 1.043 1.038 1.042 

M3 20 0.155 0.128 0.119 0.129 

60 0.097 0.113 0.112 0.113 

200 0.08 0.108 0.109 0.11 

600 0.077 0.108 0.108 0.108 

M4 20 20.361 3.323 4.451 3.667 

60 20.229 2.815 4.214 2.872 

200 17.282 2.506 4.383 2.673 

600 13.533 2.511 3.671 2.477 

M5 20 996.963 7 . 788 6 . 745 8.551 

60 690.83 4.856 4 . 413 4.979 

200 458.637 4.207 4.127 4.196 

600 262.829 4.116 4.096 4.122 

14 
he PSMF offers were not obvious when compared to the other fil- 

ers, since the PSMF suffers errors caused by the systematic resam- 

ling and transport map variance. 

For the second series of simulations, the relationship between 

he performance of the PSMF and the parameter θ was inves- 

igated. It was demonstrated that in most cases the PSMF-NL is 

ore tolerant to changes of the parameter θ for medium and large 

umbers of particles. This owes to the higher flexibility of nonlin- 

ar maps. In addition, for small numbers of particles, due to the 

arge nonlinear map variance, the PSMF-NL achieves lower perfor- 

ance with respect to benchmark approaches. 

Our future work will consider extending the proposed ap- 

roaches to higher dimensional problems. Moreover, we will 

lso investigate the deterministic transport map filter (DMF) 

29] within the context of the proposed hybrid filters. 

ata availability 

All the used codes for the above experiments are shared 

t: https://github.com/PengchengH/A- hybrid- particle- stochastic- 

ap-filter.git . 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Pengcheng Hao: Methodology, Software, Writing – original 

raft. Oktay Karaku ̧s : Supervision, Writing – review & editing. Alin 

chim: Supervision, Writing – review & editing. 

ppendix A. Numerical results 
ble size, respectively. M1:M5 represent UNGM, Henon-u, Henon-v, Lorenz-63, and 

M-EnKF, PSMF-L, PSMF-NL. The first and second minimums under different particle 

F5 F6 F7 F8 F9 

1.876 1 . 576 1 . 647 1.651 1.778 

1.529 1 . 398 1.422 1.424 1 . 403 

1.366 1 . 338 1.346 1.341 1 . 338 

1.346 1 . 331 1.334 1.333 1 . 332 

2.008 1 . 227 1.323 1 . 239 1.662 

1.239 0 . 888 0.991 0 . 901 0.956 

1.094 0 . 852 0.89 0 . 86 0.887 

1.121 0 . 85 0.862 0 . 851 0.879 

0.25 0 . 102 0.114 0 . 103 0.155 

0.132 0 . 086 0.091 0 . 085 0 . 086 

0.11 0.079 0.079 0 . 078 0 . 076 

0.108 0 . 076 0 . 076 0 . 076 0 . 074 

NaN 2 . 681 2 . 977 3.361 9.33 

3.198 2 . 228 2.46 2.35 2 . 346 

2.11 1.782 1.997 1 . 639 1 . 66 

1.88 1.348 1.409 1 . 33 1 . 33 

59.663 8.549 8.136 9.214 912.3 

7.857 5.14 4.853 4 . 723 6.756 

3.821 4.519 4.024 3 . 652 3 . 719 

3.655 4.153 3.726 3 . 445 3 . 465 

https://github.com/PengchengH/A-hybrid-particle-stochastic-map-filter.git
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Table A2 

CRPS results of the filters under different models. C and N represent CRPS and the ensemble size, respectively. M1:M5 represent UNGM, Henon-u, Henon-v, Lorenz-63, and 

Target tracking, respectively. F1:F9 represent PF, EnKF, ESRF, SMF-L, SMF-NL, SIR-ESRF, GMM-EnKF, PSMF-L, PSMF-NL. The first and second minimums under different particle 

numbers and models are highlighted in red and blue bold font, respectively 

C N F1 F2 F3 F4 F5 F6 F7 F8 F9 

M1 20 1.031 0.913 0.892 0.898 0.908 0 . 82 0.843 0 . 826 0.855 

60 0.767 0.837 0.876 0.834 0.774 0 . 734 0.747 0.745 0 . 739 

200 0.714 0.823 0.87 0.822 0.727 0 . 713 0.716 0.714 0 . 713 

600 0.709 0.816 0.868 0.816 0.716 0 . 707 0 . 708 0 . 708 0 . 708 

M2 20 1.427 0.878 0.847 0.847 1.129 0 . 736 0.812 0 . 743 1.002 

60 0.743 0.669 0.708 0.663 0.717 0 . 505 0.594 0 . 513 0.554 

200 0.544 0.609 0.66 0.61 0.629 0 . 481 0.516 0 . 486 0.503 

600 0.509 0.597 0.647 0.596 0.647 0 . 479 0.491 0 . 478 0.496 

M3 20 0.118 0.075 0.07 0.076 0.136 0 . 059 0.066 0 . 06 0.087 

60 0.065 0.065 0.065 0.066 0.076 0.049 0.054 0 . 048 0 . 048 

200 0.046 0.062 0.062 0.063 0.063 0 . 045 0 . 045 0 . 045 0 . 042 

600 0.043 0.062 0.062 0.061 0.061 0 . 042 0 . 042 0 . 042 0 . 041 

M4 20 9.28 0.954 1.235 0.987 NaN 0 . 781 0 . 871 0.939 2.102 

60 9.355 0.82 1.198 0.834 0.794 0 . 603 0.688 0 . 644 0.654 

200 6.99 0.766 1.242 0.787 0.582 0 . 442 0.484 0 . 423 0.447 

600 4.466 0.762 1.116 0.757 0.542 0.37 0.36 0 . 357 0 . 358 

M5 20 378.726 2.738 2 . 474 2.773 14.909 2.83 2 . 73 3.043 338.948 

60 224.118 1.844 1.871 1.857 2.429 1.895 1 . 843 1 . 8 2.315 

200 97.731 1.673 1.808 1.668 1.518 1.686 1.564 1 . 438 1 . 472 

600 36.274 1.64 1.799 1.643 1.449 1.589 1.459 1 . 362 1 . 374 

R
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