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Abstract: Vehicle electrification is critical to enabling countries to develop more sustainably. 

Wider electric vehicles (EVs) adoption relies on the deployment of EV charging stations (EVCSs). 

However, the local benefits associated with offering more charging opportunities to nearby 

residents remain unexplored. Here, we provide empirical evidence about the impacts of proximate 

EVCSs on housing prices in California. We apply a hedonic property value approach using the 

EVCS data combined with about 14 million housing transaction records during 1993-2021. Our 

results show that access to charging infrastructure can be capitalized into property values. The 

average price premium for houses with EVCSs within 1 km is about 3.3% (or $17,212) compared 

to homes without proximate EVCSs. The largest effect is a 5.8% increase for houses with EVCSs 

within 0.4-0.5 km compared to houses without proximate EVCSs. We find different results across 

neighborhoods with diverse socio-demographic characteristics. Proximity to EVCSs increases 

traffic flows by 0.3-0.5% and lowers PM2.5 emissions level by 1.3-2.2%. The increased property 

value after EVCS installation can incentivize the private real estate sector to expand the availability 

of charging services. More information on the housing price premium should be provided to 

facilitate the deployment of this sustainable infrastructure. 
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Introduction 

Electrification of fossil fuel vehicles holds great potential to address social externalities such as 

emission reduction, mitigation of climate change, and energy security1,2.  Since the transportation 

sector contributes to approximately 30% of the greenhouse gas emissions in the United States, 

transportation electrification plays an essential role in achieving a Net-Zero society3. However, 

vehicle electrification relies on the deployment of energy infrastructure, which is critical to 

overcoming the barriers to the wider adoption of light-duty electric vehicles (EVs)3–5. Investments 

in sustainable charging infrastructure have expanded rapidly in recent years in the United States. 

The Infrastructure Investment and Jobs Act was passed on Nov 15, 2021, with $7.5 billion to be 

invested in establishing a nationwide network of chargers, which would boost the development of 

clean transportation infrastructure.    

 

Although existing EVs are mostly charged at home6,7, public charging infrastructure is an essential 

part of the EV charging network. Here, we denote “public charging” as the charging infrastructure 

accessible to the public at all places besides home, (e.g., workplace, commercial buildings, utilities, 

and government buildings). There are typically three levels of public chargers, namely,  level 1, 

level 2, and DC fast chargers. Many of the public charging infrastructures are commercial and 

drivers could pay by the hour (or kWh), or by subscription. Free chargers are sometimes also 

available at places such as shopping malls and hotels to their consumers. 

 

Although we expect the potential prosperity of charging infrastructure, the benefits and costs of 

public EV charging infrastructure remain unexplored and debatable, which is important for 

policymaking on the future deployment of such infrastructure. On one hand, public chargers offer 

more charging opportunities for drivers without off-street parking and for longer travels. Public 

charging serves as a substitute for home-charging, potentially generating a positive amenity to 

nearby neighbors8–10. Public chargers help drivers replenish the depleted power8,11, relieving the 

drivers’ range anxiety (i.e., concerns about insufficient electricity to reach their destinations).  

Public chargers can potentially increase the share of EVs in the nearby road traffic and thus 

improve local air quality.  

 

On the other hand, while some drivers hold generally positive attitudes toward public charging and 

support public investments in charging infrastructure, past studies have shown that many are 

unlikely to pay for public charging infrastructure12–14. Yet, no systematic research has been done 

on public perception toward public EV charging stations14. Additionally, negative repercussions 

from charging infrastructure could be influential, such as overloading of district distributional 

system, increased electric shocks, and risks of fires11,15,16. Some wireless chargers are even 

associated with hazardous exposure to magnetic fields17. Besides, charging stations can potentially 

attract more EV drivers, thus generating extra traffic. Therefore, it is important that we examine 

the public acceptance of charging infrastructure so that we can efficiently scale up the charging 

infrastructure in the future. 

 

This study applies a reduced-form hedonic property value approach (Supplementary Note 1) where 

access to nearby EV charging infrastructure is capitalized into property values. By investigating 

the house prices paid by homebuyers, the hedonic approach measures the value of nonmarketed 

services/features. This hedonic approach has also been employed by burgeoning literature to 

evaluate transportation facilities or energy infrastructure. An overview of the literature implies that 
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their effects can be simply categorized into positive effects, negative effects, or mixed effects. A 

positive price premium is reported for houses in the surrounding areas of transportation stations 

such as urban rail stations because of increased accessibility18,19. On the other hand, negative 

effects are observed for polluting energy infrastructure such as gas stations, which are found to 

decrease nearby housing values by 10%20. Similarly, fossil fuel development and gas leaks are 

shown to impose negative impacts on nearby houses and reduce house prices 21,22. Moreover, a 

growing body of literature has also investigated the effects on housing market of renewable energy 

infrastructure23–25, and they indicate a negative proximity effect given the negative externalities 

such as noise and visual impacts23,25. Importantly, some studies detect both positive accessibility 

improvement and negative environmental effects, for instance, for houses close to transport 

infrastructure26,27. Yet, no studies have specifically focused on the sustainable energy 

infrastructure of EV charging stations. This study fills this research gap by evaluating public 

charging infrastructure. By showing charging stations’ effects on the housing market, it provides 

supporting evidence for future investments and helps to justify the spending on sustainable 

infrastructure. 

 

Our paper provides empirical evidence on house sales price premiums induced by public EV 

charging stations (EVCSs) in California. We choose California to focus on because it is in the 

vanguard among all states in the US and also has the most developed public charging network. 

California has set the most aggressive goals in decarbonization of transportation compared to other 

states and pledged to end sales of new gasoline-fueled vehicles by 2035. Fig. 1 plots the spatial 

distribution of EVCSs at the zip-code zone level in California. Public charging stations are usually 

located at places such as hotel parking lots, car dealerships, office buildings, government buildings, 

and shopping centers (Supplementary Fig. 1). For our analysis, we use 14 million housing 

transactions records during 1993-2021 and combine that with public EVCS data (over 13,000 in 

California). We employ a hedonic DID (difference-in-differences) model under a quasi-

experimental design. We find that EV charging stations have increased the house sales price and 

the largest sales price premium is 5.8% for houses that have proximate EVCSs within 0.4-0.5 km. 

This price premium implies that local residents perceive nearby public charging infrastructure 

positively. This positive spillover effects on the housing market can stimulate future investments 

in EVCSs from private real estate entrepreneurs.  

 

Results 

Varying price premium by distances  

 

This study applies the two-way fixed effects model (or a generalized DID model). We exploit the 

temporal and cross-sectional variations in repeat sales data (i.e., houses sold at least twice, once 

before the treatment and once after the treatment, during our study period) to provide causal 

inference. The treatment group consists of houses with proximate EVCSs within 1 km while the 

control group includes those without proximate EVCSs. We use ten distance bins from 0 to 1 km 

with a 0.1 km increment. Our choices of the distance bins follow prior studies on transportation 

and renewable energy infrastructure3,28, where they find most of the effects are limited to 1 km 

(Supplementary Note 2). During the DID analysis, we control for the unobserved building-specific, 

area-specific, and time-specific confounders (e.g., building square footage, housing market 

variation, and land costs). Details of the DID model can be found in the Methods section. 
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We find that proximity of EVCSs has increased house sales prices and the magnitudes of price 

premium vary across different distance bins (Fig. 2). Panel (a) plots the price premium based on 

the analysis that controls for building, year, and month-of-year fixed effects while panel (b) 

corresponds to the analysis controlling for the building, month-of-year, and county-by-year fixed 

effects. Panel (a) indicates a price premium of up to 8.2%, however; panel (b) shows on average, 

the price premium is 3.3% when the county-by-year fixed effects are included. Generally, the 

estimated price premiums in panel (b) become slightly smaller in magnitude than in panel (a). The 

largest price premium is 5.8% for houses located about 0.4-0.5 km from the charging stations 

(panel b). Our results suggest that households do value the proximity of charging infrastructure 

positively, which is captured as the price premiums. Interestingly, the houses closest to the EVCSs 

(with 200 meters) do not exhibit a price increase. This may be associated with concerns about 

magnetic radiation, noise, and other nuisance effects. This is in line with other studies that show 

negative impacts are more pronounced for houses closer to the transportation infrastructure and 

thus may cancel out the positive benefits brought by the stations26,29. The summary statistics of the 

variables in the analysis are presented in Supplementary Table 1. The detailed regression 

coefficients from the analysis are displayed in columns 1-2 in Supplementary Table 2 and the 

results including county-level covariates are listed in column 5. 

 

The analysis based on the event study model is used to verify the parrel trend assumption. During 

the analysis, we obtain the coefficients before (leads) and after (lags) the installation of EVCSs at 

the zip-code zone level (Supplementary Fig. 2). We find that before the EVCS installation, the 

effects of EVCSs are not statistically different from zero, which confirms the parallel trend 

assumption between control and treated houses. After the installation, EVCSs start to show a 

positive impact although the magnitude fluctuates. This fluctuation is likely related to the 

uncontrolled seasonality of transactions. Further tests of assumptions are presented in 

Supplementary Note 3, and they help to verify the treatment effect homogeneity assumption and 

parallel trend assumption, indicating a high probability of passing the pre-test condition and low 

contamination from other periods. 

We adopt an instrumental variable approach as one way to further relieve the concerns on the 

endogeneity. We use EV adoption as an instrumental variable (IV) for EVCS installation after 

controlling for household income. The results indicate that EVCS installation can increase house 

prices at the zip code level by around $12,181, equivalent to a 1.9% increase from the average 

prices (Supplementary Table 3). The smaller magnitude observed here could be due to that zip-

code level data can hide some variation at individual house levels.  

 

Meanwhile, we additionally match the treated houses (with proximate EVCSs) to control houses 

(without proximate EVCSs) to check robustness.  The control houses have similar characteristics, 

are in the same county, and are transacted in the same year as the treated houses. Only the matched 

samples are included in the regression analysis (Supplementary Fig. 3). During the matching 

procedure, the sample size decreases as some treated houses cannot be matched with untreated 

ones, or some fail to meet the matching criteria. We estimate the proximity effects within 1 km 

without differentiating them by distance as the trimmed sample is not sufficiently large. We find 

an average house sales price premium of 4.1% (Supplementary Table 4), which is close to our 

former results.  
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Heterogeneity of price premium  

The price premium from charging stations is heterogeneous across socioeconomic characteristics. 

We examine how price premium varies with respect to several key socioeconomic factors at the 

county level, including income per capita, race, and environmental awareness. Note that the 

examination here is not meant to be causal but to explore how price premium is influenced by 

different socioeconomics. We employ a flexible semiparametric approach for fixed effects panel 

data30–32. This approach has the advantage of estimating heterogeneity by allowing for linearity in 

some variables and non-linearity in others. 

 

The results (Fig. 3) show that higher-income residents (panel a) are significantly more likely to 

pay a higher premium for houses near public EVCSs potentially because they are wealthier and 

could afford a higher price. Counties with slightly higher rates of non-white residents are also more 

likely to pay a higher premium, ceteris paribus (panel b). Interestingly, people in areas with lower 

EV market shares are willing to pay a higher price (panel c), likely because they value public 

charging more when EVs are fewer and concomitant infrastructure is still at the early deployment 

stages. The price premium tends to decrease as the marginal utility from more charging 

infrastructure also decreases. In addition, people with higher environmental awareness seem to 

have a higher premium (panel d). However, the price premium seems to decrease when 

environmental awareness continues to grow. This may be because some people with a very high 

level of awareness may prefer other more convenient and greener charging technologies such as 

in-home charging or solar charging33,34. Moreover, our heterogeneity analysis also indicates that 

more dynamic housing markets (e.g., higher house price growth and income growth) are associated 

with higher price premiums (panels e & f) (More supportive regression analysis in Supplementary 

Note 4).   

 

Changes in traffic and air quality  

 

We also run additional analyses to explore how air pollution (PM2.5) and traffic flows change 

after the installation of EVCSs. The analyses on traffic flows and air quality can also assist in 

explaining some of the estimated impacts on housing prices. We merge our datasets further with 

data on traffic flows and air pollution, which are collected from monitoring stations near highways 

in California. Our results show that the installation of charging stations increases the annual traffic 

by 0.3% and increases the peak month traffic by 0.5% (Table 1). Peak hour traffic does not see an 

increase probably because charging does not usually happen during daily traffic peak hours. 

Meanwhile, air quality is slightly improved by 1.3%-2.2%, indicating environmental benefits from 

sustainable infrastructure in the surrounding areas. Better air quality helps to explain the observed 

positive proximity effects. However, it is also true that increased traffic flows mean congestion, 

noise, and other disamenities, but this effect is constrained to houses in the immediate vicinity. 

They help explain why the houses usually very close to stations (i.e., within 300 meters) are more 

negatively impacted by increased traffic 29,35 and they enjoy no net price premium. Note that 

increased traffic and better air quality happen concurrently because more EVs are attracted, which  

increases traffic flows while not deteriorating air quality. 

 

In addition, we also added the changes in business patterns into our analysis. This analysis does 

not only use business change as a proxy of traffic, which confirms the former results, but also helps 

address potential endogeneity issues (changes in businesses lead to new EVCS installation as well 
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as changes in property values). Business patterns here cover various business types including 

shopping malls, grocery stores, manufacturing, hotels, food, and services. We use business 

establishments at the zip-code level to capture business changes. Our results (Fig. 4) are consistent 

with the previous results (Fig. 2), though the average magnitude becomes slightly larger by 

approximately 1%. The largest price premium is 7.1% for houses with EVCSs in 0.5-0.6 km. Price 

premium is observed for houses located closer than 0.1 km to EVCSs, which implies that the 

negative impacts of being adjacent to EVCSs, as observed in Fig. 2, are very likely due to negative 

externalities (e.g., being noisy) associated with new businesses. The coefficients are displayed in 

column 3 in Supplementary Table 2.  

 

 

Differentiating effects 

 

First, we differentiate price premiums between housing types. Different home types dictate 

different home charging availability, translating to different perceived price premiums. Typically, 

home charging is more available for single-family houses with off-street parking while multi-

family houses or apartments usually have limited capability of home charging. We would expect 

people in multi-family houses (i.e., townhouses, cluster homes, condominiums, row houses) have 

a higher price premium for public EVCSs. Our results support this expectation and we find that 

people in multi-family houses do have a higher willingness to pay for EVCSs. Especially, people 

in apartments/condominiums are willing to pay 1.6%-3.8% more than their single-family 

counterparts (Supplementary Table 5).  

 

Second, we differentiate chargers close to highways from those farther away as highway proximity 

may be influential. We define highway proximity as being within 200 meters of highways. 

Information on highway segmentation is from the Department of Transportation in California. Our 

data include 3,311 or 25% of EVCSs located near highway segments. The results indicate that 

(Supplementary Fig. 4) houses located fewer than 300 meters away from highway chargers 

experience negative impacts due to noise and other disamenities29,35. This is consistent with 

previous findings, which show that disamenities of highways are dominating within 0.2 miles (or 

around 300 meters)36. The largest housing premium is around 5% and happens for houses around 

0.5-0.7 km away from chargers.  

 

Third, we break down the price premium into two types of charging networks: exclusive network 

and non-exclusive network. The exclusive network is only accessible to certain brands of EVs and 

the non-exclusive network is generally accessible to all vehicles and requires no special adapters. 

Our results show that exclusive EVCSs have a lower housing premium at 1.0%-3.6% compared to 

the non-exclusive ones (Supplementary Table 6). This finding highlights the significance of 

providing more accessible chargers, which are associated with a higher price premium.  

Discussion  

 

This study estimates how proximity to EVCSs is capitalized into property values. We find that 

houses with proximate EVCSs have an average price premium of 3.3% or $17,212 (calculated by 

the mean housing price multiplied by the average premium). The average housing price premium 

is calculated to be larger than the costs of levels 1 & 2 EVCSs while lower than DC fast chargers. 
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On average, the total infrastructure costs and installation costs are around $2,800 for level 1 

chargers, $10,500 for level 2 chargers, and $53,300 for fast chargers (Supplementary Table 7). The 

average price premium is much larger than the cost of level 1 or level 2 chargers probably because 

there are also other accompanying transaction costs such as cognitive costs and information 

searching costs31,37. The transaction costs6 are high as EV owners generally have low awareness of 

charging stations6,38 and they also need to search for and compare information on the locations and 

availability of chargers, which takes nontrivial time and efforts. New drivers will need to gain 

knowledge of power levels, plug types, charging time, etc. Especially, they need to know how to 

get access, which could require registration, subscription, or other credentials. The high transaction 

costs also explain why our results differ from the contingent valuation results, which show people 

are unwilling to pay an extra fee for public charging14.  

 

Since decision-making is usually based on aggregated-level estimation, we also show aggregated 

benefits and costs at the zip-code level. The benefits are estimated as the total price premiums of 

affected houses (within 1 km proximity of EVCSs). The costs are infrastructure, installation, and 

operating costs of all EVCSs in that zip-code zone. Our estimation suggests that the aggregated 

cost-benefit comparison differs across the types of chargers. Level 1 chargers see benefits higher 

than the costs while the opposite is true for level 2 and DC fast chargers. The aggregated costs are 

about $7.9 billion higher than the benefits if all chargers are level 2 and the gap can be even higher 

for DC fast chargers. Note that this simple comparison does not account for elements such as 

environmental benefits, which a more holistic cost-benefit assessment should take into account.    

 

This study observes the net positive effects of EVCSs, which may occur through the following 

channels: (1) More charging opportunities for drivers without off-street parking (Hardman et al., 

2018). There are close to 20% of residents living in multi-family houses and nearby public 

charging is critical for these residents. (2) Public chargers serve as substitutes for home chargers 

due to higher charging speeds39,40. Public chargers are useful in cases when home chargers fail to 

function, or drivers need fast charging immediately. A study also shows that free DC fast charging 

may lead charging to shift from home to public chargers39. (3) Nearby public chargers help family 

visitors and friends to fulfill their charging needs during visits. It is reported that public charging 

infrastructure is needed for at least 3-8% of EV journeys41. The possibility of families and friends 

traveling to places with EVCSs makes houses there more attractive. (4) There are other benefits 

such as better local air quality and higher overall living quality in neighborhoods with EVCSs. 

EVCS access acts as a signal of the overall quality or other characteristics. With all these possible 

channels, consumers with EVs or with the intention to purchase EVs are more willing to pay a 

higher price for houses with nearby public charging stations. Note that this study focuses on 

estimating the net average effects of EVCSs and we call for further research that could detangle 

these effects and sort these channels out. Negative effects such as radiation and noise also appear 

and are more likely to be a concern for houses located too close to stations. Moreover, our study 

shows that the effects of EVCS are heterogeneous among different characteristics such as 

environmental awareness, and more examination of these influencing factors could further 

contribute to studies in this strand.  

 

One of the policy implications is that the price premium could help the policymakers to convince 

the real estate sector to deliver more charging. The increased property value due to charging access 

gives the local building sector more incentives while attracting tenants and addressing charging 
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demand. Co-financing between the private sector and the government should be encouraged, 

especially when installation costs are high. This co-financing could improve public welfare while 

reducing the investment risk for the private sector. In addition, collaborative efforts between the 

private sector and the government are also needed to reduce transaction costs and improve the 

quality of charging service. Providing more accessible information and facilitating easier access 

reduces the searching costs and cognitive costs associated with EVCSs.  

 

While the private sector is incentivized to provide more charging services, policymakers should 

also make sure that there is equitable public distribution in the disadvantaged communities. 

California has a leading EV market, which is expected to have more affordable EV modes and a 

rising number of used EVs in the future42,43. This tendency will make charging infrastructure more 

critical for the low- and middle-income communities. In addition, our study finds that the more 

non-white neighborhoods have a higher price premium for public charging, which provides one 

more justification for the EVCS installation in the disadvantaged communities. These under-

resourced communities are disproportionally impacted by environmental problems already and the 

EV owners there may be more likely to demand public charging. Insufficient provision of 

sustainable infrastructure for the underprivileged neighborhoods will further jeopardize the 

environment and energy equality and justice in these places. It is also unneglectable that 

infrastructure provision in disadvantaged communities should avoid unintended gentrification in 

the longer term as more public infrastructure supply may increase the attractiveness of some 

communities, which possibly accelerates gentrification44. 

 

Besides fulfilling the need for charging, we show that EVCSs could also enhance social welfare 

by reducing air pollution and thus saving abatement costs. Our study indicates a maximum of 2.2% 

decrease in local PM2.5 emissions, which corresponds to daily abatement costs of $79,200, 

supposing the daily air pollution emissions from vehicles are 30 tons45, and the average reduction 

cost is $12,000 per ton46. This externality is worth more if considering the health and economic 

benefits from better air quality47. Failing to consider the co-benefits would cause an under-

evaluation of the welfare gains from sustainable energy infrastructure.  

 

Some caveats and limitations exist in our study. Probably, we still fail to capture all the 

contemporaneous changes and neighborhood changes48 that coincide with the construction of 

EVCSs. Contamination from these changes may remain and possibly bias our estimates. Their 

effects may be captured and attributable to our estimates. In that case, our estimates can be 

considered as an upper bound of the true effects. Moreover, it is possible that waterbed effects 

exist49, meaning the relocation of residents closest to EVCSs causes the popularity of houses at 

further places. If the waterbed effects are large, then the effect induced by EVCSs at farther 

distances, for instance, at 0.5 km is overestimated. Our estimation can be treated as mixed effects. 

Our main findings still hold given that the aggregate price premium for houses within 1 km 

proximity is positive. Additionally, this study focuses on the situation in California, which has the 

highest number of EVs, charging stations, and residents in multi-family buildings in the US. The 

magnitudes of response to EVCSs in other states or in other countries could be different. Future 

market-specific studies in other regions will be essential.   
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Methods 

Data 

We obtain EVCS data from the U.S. Department of Energy’s Alternative Fuels Data Center. This 

database contains the most complete data on EV charging station data.  A range of station attributes 

such as locations (e.g., longitudes, latitudes), installation dates, access type (public vs. private), 

and nearby facility type (e.g., hotels, parking) are available in this dataset. There are altogether 

13,644 charging stations in California by August 2021. 

 

Individual housing transaction data is provided by Zillow through the Zillow Transaction and 

Assessment Dataset (ZTRAX). The ZTRAX dataset was used to support a large number of 

valuable academic studies (e.g., 31,50). The dataset provides data on house sales prices, locations, 

translation dates, etc. It also includes property-level building attributes such as the number of 

rooms, square footage, land values, and year built. There are approximately 14 million housing 

transactions in California from 1993 to 2021. We match the houses with nearby public charging 

stations based on their longitudes and latitudes. 

 

Data on population density and personal income per capita are retrieved from the Bureau of 

Economic Analysis, US Department of Commerce51. The sales shares of EVs are obtained from 

California Energy Commission52. Electricity prices are obtained at the state level from EIA53. Data 

on environmental awareness, measured by the percentage of residents that believe global warming 

is happening, is obtained from the Yale Program on Climate Change Communication54. Traffic 

flow data (2013-2020) and PM2.5 (2015-2020) data are collected at monitoring sites in the 

California highway system from dot.ca.gov55. The number of business establishments at the zip-

code level is obtained from the U.S. Census Bureau56. 

 

Empirical strategies 

 

EVCSs are not randomly located and are affected by factors such as population, income, land costs, 

and surrounding environment57,58. These factors may make some areas more prone to have EVCSs 

while also having higher house prices (Supplementary Table 8). This corresponds to the concern 

of self-selection (or sorting of houses). Other contemporaneous changes may also happen together 

with EVCS construction, such as new shopping malls and other local amenities. In this study, we 

apply the following strategies to address the endogeneity. Firstly, we use hedonic two-way fixed 

effects (or hedonic DID) under a quasi-experiment design. We take advantage of our panel data 

and exploit temporal and cross-sectional variations. This approach can help mitigate the omitted 

variable biases and establish a causal relationship. Secondly, we adopt an event study analysis to 

show comparable trends before the treatment and subsequentially argue that the estimated positive 

effects are due to treatment effects. Thirdly, to further address the endogenous biases, we adopt an 

instrumental variable approach at the zip-code level, using EV adoption as an instrumental variable 

(IV) after controlling for income. Finally, we use a cross-sectional hedonic model combined with 

a matching approach to construct a more comparable control group based on a rich set of 

observables. Moreover, we have also considered the impact of other contemporaneous changes 

such as business patterns to check the robustness of our estimations. Below we illustrate our 

empirical strategies in more detail.   
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Difference-in-differences  

 

A two-way fixed effects model (or generalized DID model) with repeat sales data enables us to 

take advantage of our panel data. The houses with and without proximate EVCSs could be very 

different, and property fixed effects can capture these structural differences so that we can focus 

on comparing the sales of the same houses and avoid comparing houses of different characteristics. 

However, one concern of using a subset sample with multiple sales is that these properties may 

share different characteristics than the general houses, which may create some bias in the 

estimation. To address this concern, we compared the housing characteristics in the repeat sale 

sample with a full sample. The summary statistics indicate that the two samples exhibit very similar 

characteristics such as year built, number of stories, number of bedrooms, and number of rooms, 

though houses with repeat sales have slightly higher land values compared to those in the full 

sample (Supplementary Table 9). This similarity indicates relatively the bias from using a repeat 

sales sample is minimal in our context. We have also added a cross-sectional hedonic analysis, 

which includes all the sales (repeat sales and non-repeat sales). The two-way fixed effects model 

is specified as follows,  

 

𝐼𝑛𝑌𝑖𝑡 = 𝛽1,𝑏 ∑ 𝑉𝑖𝑐𝑖𝑛𝑖𝑡𝑦𝑖𝑡𝑏 ∗ 𝑃𝑜𝑠𝑡𝑖𝑡𝑏
10
𝑏 + 𝛽2𝑃𝑜𝑠𝑡𝑖𝑡 + 𝑿𝑐𝑡

′ 𝝈 + 𝜑𝑐 ∗ 𝜔𝑦 + 𝑢𝑖 + 𝛾𝑦 + 𝜃𝑚 +  𝜀𝑖𝑡 (1), 

 

where ln𝑌𝑖𝑡 is the natural logarithm of the sales price of house i at day t. Prices are adjusted with 

inflation rates and are converted into 2021 dollars. 𝑉𝑖𝑐𝑖𝑛𝑖𝑡𝑦𝑖𝑡𝑏 is the treatment variable and equals 

1 if a house has an EVCS within a distance bin b, and 0 otherwise. 𝑃𝑜𝑠𝑡𝑖𝑡 equals 1 if it is after 

EVCS construction completion, and 0 otherwise. We apply ten distance bins from 0 to 1 km with 

a 0.1 km increment. 𝑢𝑖 controls individual house fixed effects, capturing all time-invariant and 

building-specific characteristics. 𝑿𝒊𝒕
′  is a vector of covariates such as income levels and population. 

𝜑𝑐 ∗ 𝜔𝑦  represents county-by-year fixed effects, capturing unobservable features in changing 

county attributes, such as changes in the housing market, land costs, building codes, population, 

and relevant local policies. 𝛾𝑦 and 𝜃𝑚 include year fixed effects and month-of-year fixed effects. 

𝜀𝑖𝑡 is an idiosyncratic error term. We cluster our standard errors at the zip code level, allowing for 

correlations between observations of the same zip code areas. We also test the validity of two-way 

fixed effects based on the methods from De Chaisemartin et al.59,60 Our fixed-effects estimates are 

relatively robust to heterogeneous timing and constant treatment effect hypotheses and our 

evaluation provides suggestive evidence in favor of our assumption and findings (Supplementary 

Table 10).  

 

Heterogeneity of the price premium 

 

To examine the heterogeneity of the price premium, a flexible semiparametric approach using the 

partially linear varying coefficient fixed effects panel data is employed. The model is specified as 

follows: 

 

𝐼𝑛𝑌𝑖𝑡 = 𝐷𝑖𝑡 × 𝑔(𝑈𝑖𝑡) + 𝑿𝒊𝒕
′ 𝜽 + 𝑢𝑖 + 𝜸𝒚𝒎 +  𝜀𝑖𝑡 (2), 

 

where Yit is the price of house i at time t. Dit is the treatment variable with a functional coefficient 

𝑔(𝑈𝑖𝑡)  and Uit is a continuous variable to be examined for heterogeneity. 𝑿𝒊𝒕
′  is a vector of 
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covariates such as population density and electricity prices. 𝑢𝑖 denotes individual fixed effects, 

𝜸𝒚𝒎 includes year fixed effects and month-of-year fixed effects.  

 

Event study analysis and matching  

 

To test the plausibility of the parallel trend assumption between the houses with proximate EVCSs 

and those without, we conduct an event study analysis. If two groups of houses share a parallel 

trend, there is no systematic difference between them or the difference between two groups is 

constant over time, which helps justify the validity of our two-way fixed effects analysis. The 

event study model is specified as follows:  

 

𝐿𝑜𝑔𝑌𝑖𝑡 = 𝛼 + ∑ 𝛽𝑗(𝐿𝑎𝑔 𝑗)𝑖𝑡
𝐽
𝑗=2 + ∑ 𝛾𝑘(𝐿𝑒𝑎𝑑 𝑘)𝑖𝑡

𝐾
𝑘=1 + 𝜌𝑖 + 𝜇𝑚 + 𝛿𝑐𝑦 +  𝜀𝑖𝑡 (3), 

 

where 𝑌𝑖𝑡 is the average sales prices at the zip-code zone i at month t. J and K represent lags and 

leads, indicating the number of months away from the installation of EVCSs. The baseline omitted 

case is the first lag where j=1. We collapse the data at the zip code zone × monthly level so that 

we have observations each month to support such analysis (not possible with individual houses). 

The zip code zones with EVCSs installations are coded as treated and others are coded as control. 

𝜌𝑖, 𝜇𝑚, and 𝛿𝑐𝑦 are zip code fixed effects, monthly fixed effects, and county-by-year fixed effects, 

respectively. 𝜀𝑖𝑡 is the error term.  

 

The DID analysis exploits the intertemporal price variation for houses that are only sold repeatedly. 

To reduce the bias caused by using such a subsample, a matching approach is applied using cross-

sectional data of all sales. To mitigate omitted variable biases, we apply the nearest-neighbor 

propensity score matching (PSM)31,61 to make the houses with proximate EVCSs comparable to 

those without EVCSs conditional on observed building and socio-demographic characteristics. We 

first apply an exact match to control for some unobserved geographical and temporal variables 

(county and transaction year). Then, the PSM technique is used to find alternative control houses 

for all treated houses. The covariates for the matching procedure include year built, number of 

stories, number of bedrooms, number of rooms, land value, square footage, and income per capita, 

population, and number of EVs in the area. After PSM, we run an ordinary least squares model 

and regress the log of housing price on the treatment variable and building and sociodemographic 

covariates. Summary statistics of treated and control houses are displayed in Supplementary Table 

11.  

 

Instrumental variable approach  

 

We also tried to adopt an instrumental variable approach, using EV adoption as an instrumental 

variable (IV) for the number of EVCSs while controlling for income. This analysis is done at the 

zip-code level due to data availability. The IV of EV adoption has a direct impact on the installation 

of EVCSs57, but should not directly impact housing prices after controlling for household income. 

Using EV adoption as an instrument captures the variation in EVCS installation exogenous to 

housing prices, which could lead to an unbiased estimation of the EVCS coefficient. 

 

𝐸𝑉𝐶𝑆𝑧𝑡 = 𝛾1𝐸𝑉𝑧𝑡 + 𝜔𝑡 + 𝑢𝑧 + 𝜀𝑧𝑡 (4), 
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𝑌𝑧𝑡 = 𝛿1𝐸𝑉𝐶𝑆𝑧𝑡 + 𝛿2𝐼𝑛𝑐𝑜𝑚𝑒𝑧𝑡 + 𝜎𝑡 + 𝛾𝑧 +  𝜖𝑧𝑡 (5), 

 

Where 𝐸𝑉𝐶𝑆𝑧𝑡 is the total number of EV charging stations for zip code area z at year t,  𝑌𝑧𝑡 is the 

average housing prices (in $2021). 𝛿1 translates the EVCS access into an effect on house price. 

𝐸𝑉𝑧𝑡 is the number of EVs (including both PEV and BEV) and 𝐼𝑛𝑐𝑜𝑚𝑒𝑧𝑡 is the average family 

income. 𝜔𝑡 and 𝜎𝑡 are year fixed effects, and 𝑢𝑧 and 𝛾𝑧 are zip code fixed effects.  

 

Other associated changes 

 

To examine whether there are changes in air pollution (PM2.5) and traffic flows after the EVCS 

installation, the following model is applied:  

 

𝐼𝑛𝑇𝑖𝑡 = 𝛽2𝑃𝑜𝑠𝑡𝑖𝑡 + 𝑿𝒊𝒕
′ 𝜽 + 𝜑𝑐 ∗ 𝜔𝑚 + 𝑢𝑖 + 𝛾𝑦 + 𝜃𝑚 +  𝜀𝑖𝑐𝑡 (6), 

 

where Tit is the traffic volume (counts of vehicles) or air pollution near closest EVCSs (about 5- 

minute drive or 8 km) for the house i at time t. 𝑃𝑜𝑠𝑡𝑖𝑡 equals 1 if it is after EVCS installation, and 

0 otherwise. 𝑿𝒊𝒕
′  controls for covariates such as precipitation and temperatures. All the other 

variables share the same definitions as equation (1). A series of time fixed effects control for time-

varying factors such as vehicle emission regulations. The traffic flows 𝑇𝑖𝑡 has three measures—

the annual, peak month, and peak hour traffic volumes. In this part of the analysis, control houses 

without proximate EVCSs are not included. 

 

Data availability 

Property transaction data is obtained from Zillow through the Zillow Transaction and Assessment 

Database (ZTRAX). We are restricted by a non-disclosure agreement and cannot share the Zillow 

data publicly, but information about the accessibility of this database can be found at 

https://www.zillow.com/research/ztrax/. While new applications are not accepted due to Zillow 

access policy change, aggregating data from other entities may produce similar transaction data. 

Other data used for this study are all retrieved from publicly available sources and the sources for 

each variable can be found in the Data section in Methods. The final compiled datasets (excluding 

the data from Zillow) and source data can be found on GitHub at  

https://github.com/jingliang727/evcs_housing_2022  

 

 

Code availability 

All data processing and analysis are conducted in Stata (15.1) and R (4.1.2). The custom code is 

available on GitHub at https://github.com/jingliang727/evcs_housing_2022  
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Tables 

 

Table 1 Impact of EVCSs on traffic flows and air pollution  
 Annual ADT Peak month ADT Peak hour ADT PM 2.5 

Post EVCS 

installation 

-0.000 0.003* 0.003 0.005*** -0.008*** -0.002 -0.013*** -0.022*** 

(0.026) (0.002) (0.002) (0.002)    (0.002) (0.002) (0.003) (0.003)    

Year fixed 

effects 

Yes No Yes No Yes No Yes No 

Month fixed 

effects 

Yes Yes Yes Yes Yes Yes Yes Yes 

County-by-

year fixed 

effects 

No Yes No Yes No Yes No Yes 

N 2,740,269 2,740,203 2,740,269 2,740,203 2,740,269 2,740,203 1,972,308 1,972,308 

R2 0.015 0.113 0.012 0.111 0.014 0.121 0.015 0.067 

Notes: ADT: average daily traffic.  

 

Figure Legends/Captions 
 

Fig. 1 Distribution of EVCSs in California  

Notes: The dots indicate EV charging stations installed at different years. Different zip codes are 

shaded by levels of average housing prices and darker orange colors indicate higher prices.   

 

 

Fig. 2 Impacts of vicinity to EVCSs on housing prices 

Notes: The dependent variable is the log of housing prices. Each panel is from one regression. 

The centers of the error bars are the values of the coefficients, which represent point estimates 

from the regressions and indicate the average effects of EVCSs. Their 95% confidence intervals 

are plotted vertically. Standard errors are clustered at the zip code level. For both regressions, the 

total number of observations is 13.8 million each. The number of houses with proximate EVCSs 

within 1 km is 1.36 million and that without is 2.56 million. Panel (a) is with individual, year, 
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and month-of-year fixed effects, and panel (b) is with individual, county-by-year, and month-of-

year fixed effects. 

 

Fig. 3 Heterogeneity of the price premium  

Notes: Each panel is a single regression at the county-year level, using a partially linear functional-

coefficient panel-data model. The centers of the error bands represent the semiparametric 

estimation of the average effects at each value of the variable on the X-axis based on the model. 

The grey shaded areas denote 95% confidence intervals. Panel (a), income per capita; panel (b), 

share of the white; panel (c), share of EV sales; panel (d), environmental awareness; panel (e), 

annual income growth rate; panel (f), house price inflation. 

 

 

Fig. 4 Impacts of vicinity to EVCS on housing prices, adding business pattern as a control 

variable  

Notes: The dependent variable is the log of housing prices. The centers of the error bars are the 

values of the coefficients, which represent point estimates from the regressions and indicate the 

average effects of EVCSs. Their 95% confidence intervals are plotted vertically. The total number 

of observations is 8.7 million. The number of houses with proximate EVCSs (within 1 km) is 1.10 

million and that without EVCSs is 1.86 million. Standard errors are clustered at the zip code level. 
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