Accelerating multimodel Bayesian inference, model selection, and systematic studies for gravitational wave astronomy

Charlie Hoy

Gravity Exploration Institute, School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom
and University of Portsmouth, Port., South PO1 3FX, United Kingdom

(Received 2 August 2022; accepted 21 September 2022; published 7 October 2022)

Gravitational wave signals are used to infer the properties of black holes in merging binaries from the observed gravitational wave signals through Bayesian inference. Although we have access to a large collection of signal models that are sufficiently accurate to infer the properties of black holes, for some signals, small discrepancies in the models lead to systematic differences in the inferred properties. In order to provide a single estimate for the properties of the black holes, it is preferable to marginalize over the model uncertainty. Bayesian model averaging is a commonly used technique to marginalize over multiple models, however, it is computationally expensive. An elegant solution is to simultaneously infer the model and model properties in a joint Bayesian analysis. In this work we demonstrate that a joint Bayesian analysis can not only accelerate but also account for model dependent systematic differences in the inferred black hole properties. We verify this technique by analyzing 100 randomly chosen simulated signals and also the real gravitational wave signal GW200129_065458. We find that not only do we infer statistically identical properties as those obtained using Bayesian model averaging, but we can sample over a set of three models on average $2.5 \times$ faster. In other words, a joint Bayesian analysis that marginalizes over three models takes on average only 20% more time than a single model analysis. We then demonstrate that this technique can be used to accurately and efficiently quantify the support for one model over another, thereby assisting in Bayesian model selection.

DOI: 10.1103/PhysRevD.106.083003

I. INTRODUCTION

Since the first detection of gravitational waves (GWs) in 2015 [1], the Advanced LIGO [2] and Advanced Virgo [3] GW observatories have detected ~ 90 GWs originating from compact binary coalescences (CBCs) [4–11]. The properties of these binaries are typically inferred through Bayesian inference (see e.g. [12–23]), where Bayes theorem is exploited in order to calculate the posterior probability distribution: the probability that the binary has a specific set of properties given the observed data. In most cases, Bayesian inference is performed by stochastically sampling over the binaries' properties and returning a set of independent samples drawn from the posterior distribution; although see Refs. [12,17,19–25] for other methods. Two common stochastic sampling approaches are the Markov chain Monte Carlo (MCMC) approach [26] and nested sampling [27].

In order to perform Bayesian inference on GW data, a parametrized model for the GWs emitted from a CBC [28–47] is required in order to evaluate the likelihood [18]. It has previously been shown that analyses that use different models can result in noticeably different posterior distributions for individual observations (see e.g. [48–54]) and the population as a whole [55,56], which is understood to be caused by underlying systematic differences in the GW models. As illustrated most recently in the third GW transient catalog (GWTC-3) [53], systematic differences in the GW models remains a limiting factor when inferring the properties of black hole binaries (BBHs) through Bayesian inference. Although there are ongoing efforts to enhance the accuracy of future GW models (see e.g. [57]), systematic differences will likely remain a limiting factor for the foreseeable future.

Bayesian model selection (BMS) provides a method for choosing between posterior distributions obtained with different models. Here, the posterior distribution obtained with the single model that best describes the data is objectively selected, i.e. the model with the largest Bayesian evidence. On the other hand, Bayesian model averaging (BMA) and Bayesian model combination combine posterior distributions obtained with different models to provide a single model marginalized result. BMA calculates a weighted average of the posterior distributions obtained with the different models (see Refs. [4,5,53,58,59] and Ref. [60] for a review) and therefore inherently assumes that only one model is the true data generating model but there is an associated uncertainty as to which
produces statistically identical results as those obtained when applying BMA. In Sec. IV we show that a JBA can address model systematics in real GW strain data and highlight that there can be subtleties in its interpretation. In Sec. V we highlight that a JBA has several other applications, including the potential to significantly reduce the computation of one or more Bayes factors. Finally we conclude with discussions in Sec. VI.

II. METHOD

The properties of a system that produced an observed GW, characterized by the multidimensional vector \(\lambda = \{ \lambda_1, \lambda_2, \ldots, \lambda_j \} \), can be inferred through Bayesian inference. These properties are then represented by the model-dependent posterior distribution \(p(\lambda|d, m) \), which is conditional on the observed GW data \(d \) and a parametrized model \(m \) for the GWs emitted from the system. This model-dependent posterior distribution is calculated using Bayes theorem,

\[
p(\lambda|d, m) = \frac{p(\lambda|m)p(d|\lambda, m)}{\mathcal{Z}},
\]

where \(p(\lambda|m) \) is the probability of the system having properties \(\lambda \) given the GW model, otherwise known as the prior, \(p(d|\lambda, m) \) is the probability of observing the data given the system's properties and GW model, otherwise known as the likelihood, and \(\mathcal{Z} \) is the probability of observing the data given the GW model \(\mathcal{Z} = p(d|m) = \int p(\lambda|m)p(d|\lambda, m)d\lambda \), otherwise known as the evidence. The model-dependent posterior distribution assumes that model \(m \) is correct.

When there is an ensemble of models, \(m = \{ m_1, \ldots, m_i, \ldots, m_N \} \), BMA can be applied to marginalize over model uncertainty,

\[
p(\lambda|d) = \sum_{i=1}^{N} p(\lambda|d, m_i) p(m_i|d),
\]

where \(p(m_i|d) \) is the model probability (the probability of the model \(m_i \) given the data) and \(N \) is the total number of models that we wish to marginalize over. By exploiting Bayes theorem, it can be shown that the model probability is a function of the model's Bayesian evidence [59,60],

\[
p(m_i|d) = \frac{\mathcal{Z}_i p(m_i)}{\sum_{j=1}^{N} \mathcal{Z}_j p(m_j)},
\]

where \(p(m_i) \) is the prior probability for the choice of model. For the case of uniform priors, \(p(m_i) = 1/N \) \(\forall m_i \), BMA is simply the average of the model-dependent posterior distributions weighted by the evidence. The significant disadvantages of using BMA to marginalize over the model is that (1) \(p(\lambda|d, m_i) \) must be calculated for
all models, which is computationally expensive, and (2) \(Z_i \) must be robustly inferred which is often difficult to guarantee, especially for GW Bayesian inference where tails of the likelihood surface occupy a large volume in high dimensions.

An alternative solution for marginalizing over the model is to simultaneously infer the model and model properties in a single JBA [64]. For this case, the multidimensional vector \(\lambda \) can be expanded to include the model, \(\lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_i, \lambda_j, m\} \). If the additional degree of freedom representing the choice of model is trivial for existing parameter estimation methods to explore, a JBA will at most be \(N \times \) faster to compute compared to applying BMA. For the worst case scenario, where the choice of model is difficult for parameter estimation methods to explore, we expect that a JBA will take the same time to compute as applying BMA.

In general, the JBA returns a single posterior distribution on the multidimensional parameter space. The probability distribution for a specific dimension can then be obtained by marginalizing over the unwanted dimensions. Consequently, the model probability can be inferred from the JBA by calculating,

\[
p(m|d) = \int p(\lambda|d) d\lambda_1, d\lambda_2, \ldots, d\lambda_j. \tag{4}
\]

Although there are multiple approaches for calculating the posterior distribution (see e.g. [12,17–25]), the majority of Bayesian inference analyses use stochastic parameter estimation methods that return a set of discrete samples drawn from the posterior. As explained in Sec. 5 of Ref. [68], assuming that the total number of collected samples from a JBA is \(N \), \(p(m_i|d) \) is simply

\[
p(m_i|d) = \frac{N_{i_j}}{N} \tag{5},
\]

where \(N_{i_j} \) is the number of independent samples obtained with model \(m_i \). Assuming that we have infinite time and perfect sampling, such that we have (1) sufficient samples to fully explore the parameter space and (2) a reliable estimate for \(Z_i \),

\[
N_{i_j} = \frac{Z_i p(m_i)}{\sum_{j=1}^{N} Z_j p(m_j)} \tag{6}.
\]

We therefore expect that the JBA will return a similar posterior distribution as that obtained when applying BMA.\(^2\)

\(^2\)Note that by construction, the independent samples obtained in the JBA are mixed according to the model probabilities. The prior for the model is therefore folded into \(\mathcal{N} \).

III. IMPLEMENTATION AND VALIDATION

A typical Bayesian analysis of a quasicircular BBH analyzes a 15-dimensional parameter space \(\lambda \); two dimensions describing the component masses of the binary \((m_1, m_2) \), six describing two spin vectors of each component \((\alpha_1, \alpha_2, \phi_1, \phi_2, \Delta \phi, \phi_{ij}) \), two for the binary's inclination and phase \((\psi_{1,i}, \psi_{2,i}) \), four for the binary's location on the sky, the distance to the source and polarization \((\mathbf{R}, \mathbf{D}, c, \psi) \) and finally one describing the merger time of the binary \((t_o) \). To improve convergence when stochastically sampling over the binaries' properties, the distance to the source is often analytically marginalized over [24], see e.g. Ref. [53], through the use of a numerical look up table. This means that \(\lambda \) is often a 14-dimensional parameter space. Consequently, a JBA will analyze a 15-dimensional parameter space \(\lambda \); all of the aforementioned dimensions plus an additional dimension describing the model \(m \).

We choose to implement our JBA into the DYNASTY nested sampling package [70] and the PHEL BY parameter estimation software (a parallelized version of the BILBY software [13,14]) since they are both regularly used by the LIGO-Virgo-KAGRA (LVK) collaborations (e.g. [51,52]). During the sampling of our JBA, a 15-dimensional vector of model parameters is proposed at each step, including an integer representing the model \(m \). As was done in Ref. [68], in order to calculate the likelihood, we first apply a mapping which selects the model based on the integer \(m \), and then pass the remaining model parameters to the selected model. We therefore simultaneously explore the model and parameter space.

To validate (1) our implementation and (2) the robustness of using a JBA to marginalize over model uncertainty for BBH mergers, we perform a comprehensive injection and recovery analysis. We compare the posterior distributions inferred from 100 randomly chosen simulated signals to those obtained when applying BMA to the model-dependent posteriors [see Eq. (2)]. We also compare the computational cost of both methods.

We choose to inject GWs emitted from 100 randomly chosen BBHs into colored-Gaussian noise from two detectors, Hanford and Livingston, with design sensitivities [2]. In this validation study we use a selection of precessing models, which we define as models that include 6 spin degrees of freedom but do not include higher-order multipoles [71]. We do not include any complete models, which we define as models that include all 6 spin degrees of freedom and higher-order multipoles, due to the large computational cost required to analyze 100 simulated signals. We therefore simulate the injected GWs with IMRPHENOMXp [44] and our recovery analysis marginalizes over IMRPHENOMXp, IMRPHENOMYp [45], and IMRPHENOMYP [38].

The parameters of the injected GWs were obtained through random draws of the prior used in the recovery
analysis. We used a prior that is uniform over spin magnitudes and component masses, and isotropic over spin orientation, sky location and binary orientation [4,5,53]. The signal-to-noise ratios (SNRs) for the injected GWs ranged from 3.0 to 47.0 with 75% of the injected binaries having SNR > 8 (a typical search threshold). To improve the convergence of the inferred results, we analytically marginalized over the luminosity distance through the use of a numerical look up table. The JBA extended the prior to include an equal-weighted categorical prior for the choice of model.

For each of the 100 simulated signals, 14 comparable distributions, one for each dimension, can be inferred from both the JBA and BMA analyses. To compare each of these 1400 distributions, we calculate the Jensen-Shannon divergence (JSD) [72]. The JSD ranges between 0 bits and 1 bit, where a JSD = 0 bits (JSD = 1 bit) implies statistically identical (distinct) distributions. As shown in Fig. 1, the inferred JSDs ranged between 7×10^{-3} and 0.1 bits with median and 90% symmetric credible interval JSD = 0.002$^{+0.001}_{-0.000}$ bits. As described in Ref. [4], a good rule of thumb is that a JSD < 0.05 bits implies that the distributions are in good agreement. We find that 98% of all distributions satisfied the JSD < 0.05 bits constraint. Consequently, for the majority of cases, there is no statistical difference between the JMA and BMA analyses. Although 2% of the distributions are statistically different, we find that all distributions are consistent between JBA and BMA analyses. This means that the median of the BMA analysis lies within the 90% confidence interval of the JBA and vice versa. We suspect that these small

![Comparison between the 1400 posterior distributions obtained from the JBA and BMA analyses when analyzing 100 randomly chosen binaries. The JSD ranges between 0 and 1 bits where a JSD = 0 bits (JSD = 1 bits) implies statistically identical (distinct) distributions. The vertical dashed line shows a JSD = 0.05 bits.](image)

statistical differences for a subset of distributions are therefore a consequence of sampling uncertainties. We discuss the individual distributions in more detail in the Appendix.

For the 2% of distributions with JSD ≥ 0.05 bits, we find no correlation between the JSD and the SNR of the injected signal nor the JSD and the probability of a particular model given the data. Indeed, all distributions obtained when analyzing the 14 simulated signals with the highest SNRs (ranging between 24.0 and 47.0) and the 28 simulated signals with the lowest SNRs (ranging between 3.0 and 8.0) satisfied the JSD < 0.05 bits constraint.

The sampling time for a nested sampling analysis depends on the stopping criterion: when the stopping criterion is reached, the sampling terminates and independent samples are returned. In order to gauge how computationally expensive the JBA is, we compare the total sampling time taken to analyze 100 simulated signals for both the JBA and BMA analyses when run on identical machines. The total sampling time for the JBA is the total wall clock time taken to generate $p(\lambda|d)$ for each simulated signal. The total sampling time for the BMA analysis on the other hand, is the total wall clock time taken to generate $p(\lambda|d, m_j)$ for each model in the ensemble for each simulated signal. We found that the total sampling time to perform the JBA for 100 simulated signals was 239.5 hours with each injection taking on average 2.5 hours to complete when parallelized over 200 CPUs. Meanwhile, the total sampling time to apply BMA for 100 simulated signals was 606.5 hours when run on an identical number of CPUs.

We have therefore shown that a JBA is faster than applying BMA with no statistical difference among the obtained posterior distributions. A JBA can therefore successfully marginalize over model uncertainty for BBH mergers. However, one limitation of using a JBA is that it collects fewer independent samples: on average $2 \times$ less. In general, if one model has a significantly larger model probability, we expect a comparable number of samples between the JBA and BMA analyses no matter the number of models in the ensemble. However, if all models have comparable probabilities, we expect the JBA to obtain $\sim N \times$ fewer samples than the BMA, since the JBA will call each model on average N times fewer when a consistent stopping criterion is employed. Although this may become an issue when the JBA marginalizes over many models with comparable probabilities, this is unlikely to affect typical GW astronomy since (1) ordinarily only two of the leading models are combined (see e.g. [4,5,53]) and (2) it is unlikely that many models will have comparable model probabilities (see e.g. Sec. IV). Consequently, for typical analyses undertaken by the LVK, a JBA can significantly reduce the computational cost of multimodel Bayesian inference.
IV. APPLICATION TO BAYESIAN MODEL SELECTION

The inferred posterior distribution from a Bayesian inference analysis is dependent on the assumed model. Owing to alternative techniques used when first constructing the models (see e.g. [73–75]), some models are often more accurate than others in certain regions of the parameter space. For high SNR GW observations, these model discrepancies can show up as systematic differences in the inferred posterior distributions. This was the case for GW200129_065458 [53,54,76], hereafter referred to as GW200129, which was an SNR ~ 27 signal generated by the merger of a ~60 M_\odot binary [53] and the first signal with strong evidence for spin-induced orbital precession [54].

One method for dealing with these systematic differences is to independently check the model’s accuracy by comparing it to GW signals calculated by numerically solving Einstein’s equations for a given binary system [54]. However, it is often not feasible to apply this method since it is computationally expensive to numerically solve Einstein’s equations especially for low-mass binaries. Another method is to use BMS to identify which model has more support in the observed data. BMS objectively selects between different models by identifying the single model that has the largest Bayesian evidence, $m^* = \max_{m_l} p(d|m_l)$.

As demonstrated in Sec. III, a JBA returns posterior distributions that are statistically identical to those obtained with BMA in a fraction of the time. This means that the inferred model probabilities from the JBA are consistent with the model’s evidence [see Eqs. (5) and (6)]. We therefore propose that the JBA can be used to accelerate BMS. To demonstrate this, we performed an independent analysis of GW200129 that marginalized over a selection of the latest complete models, and inferred the model probability. We chose to include NRSUR7dq4 (m_{NRS}) [40], IMRPhenomXPHM (m_{XPHM}), and IMRPhenomTPHM (m_{TPHM}) [47].

For comparison, we also ran three additional analyses, one for each model, and inferred the Bayesian evidence. In all analyses, we used the same priors, sampler settings, power spectral densities, and calibration envelopes as those described in Ref. [54]. We also used an agnostic prior for the choice of model.

In Fig. 2 we show the posterior distribution for the binary’s mass ratio, defined as $\eta = m_2/m_1 \leq 1$, inferred from (1) the JBA, (2) the model-dependent posterior distribution obtained by analyzing GW200129 with each model separately, and (3) BMA. Although we see significant differences in the inferred model-dependent posterior distributions, the JBA displays excellent agreement with the BMA posterior as expected. This highlights that although m_{TPHM} suggests that GW200129 is an equal mass ratio system, both the JBA and BMA analyzes show that this model is disfavored in comparison to the m_{NRS} and m_{XPHM} models. Although we only plot estimates for the binary’s mass ratio, since this is where we saw the biggest discrepancy between the posterior distributions obtained with the individual models when analyzing GW200129, we also see excellent agreement between the JBA and BMA analyses for all dimensions. To quantify this agreement, we calculate the JSD between comparable distributions. We found that the JSDs between the JBA and BMA posterior distributions ranged between 0 bits and 0.009 bits with median $D_{\text{JS}} = 0.001$ bits.

Our JBA inferred model probabilities of 0.30, 0.69, and 0.01 for m_{NRS}, m_{XPHM}, and m_{TPHM}, respectively. According to these model probabilities, m_{XPHM} best describes the data, $m^* = m_{\text{XPHM}}$. This is consistent with the inferred model evidences since the BMA combined individual distributions with weights 0.31, 0.68, and 0.01 for m_{NRS}, m_{XPHM}, and m_{TPHM} models, respectively.

Although the JBA marginalizes over multiple models by construction, we can estimate the model-dependent posterior distribution $p(\chi|d, m^*)$ by selecting only the
independent samples with model m'. Combined with the ability to accurately and efficiently infer the model probabilities, the BJA can be used to accelerate the inference of $p(\lambda|d, m')$.

Figure 3 compares the model-dependent posterior for the binary's mass ratio, $p(q|d, m_i)$, obtained from analyzing GW200129 with each model separately and an estimate for $p(q|d, m_i)$ calculated by selecting only the independent samples obtained from the BJA with model m_i. In general we see excellent agreement between the two estimates for $p(q|d, m')$. However, we do see a small difference for $p(q|d, m_{THM})$. While insignificant for a BMS analysis (since m_{THM} has the lowest evidence), this is unsurprising since the BJA posterior contains only ~300 independent samples with m_{THM} compared to $\sim44,000$ with m_{XPHM}. Of course, this level of agreement can be improved by allowing the sampler to run for longer and therefore collecting a greater number of samples or by simply combining different independent BJA analyses.

We have therefore shown that a BJA can infer $p(\lambda|d, m_i)$ and in particular $p(\lambda|d, m')$. As demonstrated previously, a significant advantage of performing the JBA is that the BJA is significantly cheaper to perform. We found that the JBA terminated 2.5x faster than the total time required to apply BMS; the BJA took a total of ~4 hours to complete on 400 CPUs while applying BMS took a total of ~10 hours to generate on the same number of CPUs: ~4 hours for m_{NRS}, ~3.5 hours for m_{THM}, and ~2.5 for m_{XPHM} models, respectively. As discussed, the BJA obtained $\sim44,000$ samples for m' while BMS selected the posterior with $\sim60,000$ samples. In general, the BJA obtained $\sim20,000$, $\sim44,000$, and ~300 samples for m_{NRS}, m_{XPHM}, and m_{THM}, respectively, while the BMA analysis combined $\sim30,000$, $\sim60,000$, and ~1000 samples for m_{NRS}, m_{XPHM}, and m_{THM}, respectively. However, the BMA discarded $\sim90,000$ model-dependent samples, most obtained with m_{THM}.

A. Subtleties in Bayesian model selection

Our analysis of GW200129 concludes that m_{XPHM} has the largest model probability out of the models considered and therefore it best describes the data. At first glance this seems to be inconsistent with the conclusions presented in Ref. [54] since it was found that m_{NRS} is the most accurate model in the region of parameter space of GW200129. This highlights an important caveat with using the Bayesian evidence for BMS: the model with the larger evidence will not necessarily be the model that most accurately describes the observed GW.

To demonstrate this, consider the following simulated signal: we simulate a signal with parameters that match the most likely GW found from Ref. [54] with m_{NRS} and inject it into real GW strain data 2 seconds prior to reported merger time of GW200129 in Hanford, Livingston, and Virgo. We then analyze the strain data and marginalize over m_{NRS}, m_{XPHM}, and m_{THM} using the same settings as described above. Since the ensemble of models used in
the recovery analysis includes m_{NRS}, there is no systematic bias as we are including the exact model that was used to simulate the injection; in other words, m_{NRS} is perfectly accurate for describing the simulated GW.

For this specific simulated signal, our JBA concludes that m_{XPHM} has the greatest support in the data since the model probabilities are 0.38, 0.58, and 0.04 for $m_{\text{NRS}}, m_{\text{XPHM}},$ and m_{TPHM} models, respectively. However, if we compare the maximum likelihood estimates from m_{NRS} and m_{XPHM}, where the maximum likelihood estimate identifies the parameters λ that maximizes the likelihood distribution, we find that m_{NRS} has the larger maximum likelihood. We ascertain that m_{XPHM} has the greatest support in the data, of those models considered, since it is likelihood distribution is more tightly constrained with a slightly larger prior probability.

This simulated signal highlights that although the model probability can be inferred, this probability does not necessarily correlate with the model accuracy, and therefore care must be taken when interpreting the result. One method for mitigating misinterpretation is to use external knowledge of model accuracy to inform the prior for the choice of model.

B. Priors

A JBA allows for the user to specify custom priors for the choice of model. This therefore acts as a means of expressing what is already known, or generally agreed upon, regarding the choice of model. One of the problems with using a custom prior is that it must be well motivated.

One option for deriving a custom prior for the choice of model involves generating a weighted categorical prior, where the weights are correlated with the accuracy of the model, as encoded in the match (see e.g. [78]), between each model and a series of numerical relativity simulations in the relevant region of parameter space; a model with a larger match has a larger weight. This works on the principle that the match quantifies how similar a waveform is to a fiducial true waveform: a match of 1 (0) implies that the two waveforms are identical (orthogonal). For example, the weights could be based on the average value of $\log_{10} (1 - \text{match}^{-1})$, since a model with a poor (good) match to numerical relativity simulations will have a smaller (larger) weight; the weights should be normalized such that the sum is unity. However, averaging the match across a given region of parameter space may not be optimal since models tend to perform differently in different regions of the parameter space. Consequently, a parameter space dependent prior may perform better. We leave a detailed investigation to future work.

In order to demonstrate that a BMS analysis can take into consideration external knowledge of model accuracy, we reanalyze the injection detailed in Sec. IV A with a weighted categorical prior for the choice of model. To reflect the fact that m_{NRS} is the most accurate model, we generated a prior that favors m_{NRS}: for the ease of presentation, we chose weights $0.6, 0.3, 0.1$ for $m_{\text{NRS}}, m_{\text{XPHM}},$ and m_{TPHM}, respectively. We gave m_{NRS} twice the weight of m_{XPHM} since $\log_{10} (1 - \text{match}^{-1})$ is roughly twice as large for m_{NRS} than m_{XPHM} in the region of parameter space of the simulated signal. Under this informed prior, the JBA infers model probabilities 0.54, 0.44, and 0.02 for $m_{\text{NRS}}, m_{\text{XPHM}},$ and m_{TPHM} models, respectively, which are consistent with simply reweighting the model probabilities obtained under an agnostic prior.

We next use this weighted categorical prior for a reanalysis of GW200129. In Fig. 2, we see that the JBA with a weighted prior more closely resembles the NRSUR7D4 posterior distribution with less support at $q \approx 0.9$ where only the IMFPHENOMXPHM and IMFPHENOMTPHM find any substantial probability. Under the weighted prior, we find that $p(m_{\text{NRS}}|d)$ increases from 0.30 to 0.53. This result is therefore now inline with the conclusions presented in Ref. [54].

V. BAYES’S FACTORS

When multiple models are available, it is natural to quantify how much one model is preferred to another. Within the Bayesian framework, the primary tool for comparing the performance of two competing models is the Bayes factor. The log Bayes factor for model A over model B is calculated by simply subtracting the log model evidences: $\log_{10} B_{AB} = \log_{10} Z_A - \log_{10} Z_B$. A log Bayes factor > 0 indicates a preference for model A over model B and in general, if the log Bayes factor is > 1, then there is strong evidence to suggest that model A is preferred to model B [79].

Since the log Bayes factor requires estimates for the model’s evidence Z_i, this requires running multiple parameter estimation analyses, one for each of the models A and B, which is computationally expensive. However, as described in Sec. 5 of Ref. [68], the log Bayes factor can be approximated by running a single JBA that marginalizes over models A and B. Here, the ratio of inferred model probabilities $p(m_A|d)/p(m_B|d) = \mathcal{N}_A/\mathcal{N}_B$ [see Eq. (5)] gives the posterior odds for model A over model B. For the case of uniform priors for the choice of model, the posterior odds is equivalent to the Bayes factor,

$$\log_{10} B_{AB} = \log_{10} Z_A - \log_{10} Z_B, \approx \log_{10} \mathcal{N}_A - \log_{10} \mathcal{N}_B.$$

If we wish to calculate two log Bayes factors simultaneously, for example comparing model A to model B and model A to model C, then we can simply perform a single analysis that

Based on Fig. 4 in Ref. [54], m_{NRS} and m_{XPHM} have a match of ~ 0.999 and ~ 0.985, respectively, in the region of parameter space of the simulated signal.
marginalizes over all three models A, B, and C while assuming uniform priors for the choice of model, rather than launching three separate parameter estimation analyses to calculate Z_A, Z_B, Z_C. As demonstrated in Secs. III and IV, this has the potential to greatly reduce the computational cost of calculating the Bayes factor.

In order to show that the JBA can greatly reduce the computational cost of calculating the log Bayes factor while still maintaining accuracy, we calculated two log Bayes factors from a single JBA and compared the results to the log Bayes factors estimated from three separate analyses. Owing to the computational cost of generating 2 log Bayes factors, we only considered the first 20 randomly chosen binaries described in Sec. III. Unlike in Sec. III, we simulated the injected GWs with a complete model (IMRPhenomXHM [44]). Our recovery analysis marginalized over an aligned-spin (IMRPhenomXHM [42]), precessing (IMRPhenomXPH) and higher-order multipole (IMRPhenomXHM [43]) models.

Since a precessing model includes all 6 spin degrees of freedom, it analyzes a 15-dimensional parameter space, see Sec. III for details. In comparison, an aligned-spin model restricts spins to be aligned with the orbital angular momentum, meaning that only 2 spin degrees of freedom are probed. Consequently, an aligned-spin model analyzes an 11-dimensional parameter space. The log Bayes factor in favor of the precessing model over the aligned-spin model therefore quantifies the support for spins misaligned with the orbital angular momentum. This log Bayes factor can therefore be interpreted as a measure for the evidence of spin-induced orbital precession in the observed GW [80]. Similarly, a higher-order multipole model includes higher order multipoles but restricts spins to be aligned with the orbital angular momentum. By calculating the log Bayes factor in favor of the higher-order multipole model over the aligned-spin model, we quantify the evidence for higher order multipoles in the observed GW.3

Our JBA must therefore sample a 15-dimensional parameter space for the precessing model and an 11-dimensional parameter space for both the higher-order multipole and aligned-spin models. Since the aligned-spin parameter space is simply a subspace of the full precessing parameter space, we accomplish this transition by always sampling the 15-dimensional parameter space and simply projecting onto the aligned-spin parameter space when an aligned-spin model is chosen during the sampling.

The left panel of Fig. 4 compares the log Bayes factors in favor of precession and higher order multipoles calculated from a single JBA to the log Bayes factors estimated from three separate analyses. In general we see that the difference in log Bayes factors are $\lesssim 0.1$ with the largest differences occurring for systems with $\log_{10} B_{ij} \sim 0$. This level of disagreement is consistent with the expected error in the estimated log Bayes factor from the PHIBLY parameter estimation software and the IMRPhenomX waveform family, see e.g. Table IV in Ref. [88]. We also note that in previous LVK analyses, when $\log_{10} B_{ij} \sim 0$, the Bayes factor is not quoted and therefore the difference in $\log_{10} B_{ij}$ between the two methods is insignificant.

Importantly, we also see that the Bayes factors are consistent not only for cases where there is very little evidence for precession and/or higher order multipoles (~ 0) but also cases where there is very strong evidence for precession and/or higher order multipoles (~ 3.0). This shows that a JBA can be used to estimate the log Bayes factor for all signals reported by the LVK to date [4,5,53].

3There are numerous other measures for quantifying the evidence for spin-induced orbital precession and higher-order multipoles in an observed GW, see e.g. Refs. [4,5,51,81–87].
This technique is likely also accurate for signals displaying greater evidence for precession and/or higher order multipoles than ~ 3.0 but this region was not explored in our analysis since our binaries were randomly chosen.

The right panel of Fig. 4 shows the total runtime for computing 40 log Bayes factors (2 log Bayes factors for each injection) from a single JBA to the log Bayes factors estimated from three separate analyses. We see that the JBA computed comparable log Bayes' factors on average $2.6 \times$ faster than by comparing model evidences. This demonstrates that not only can the JBA maintain accuracy in the computation of the log Bayes factor, but it can greatly reduce the computational cost.

VI. DISCUSSION

In this work we simultaneously inferred the model and model properties in a joint Bayesian analysis. Although JBAs has already been used both inside (see e.g. [68] and outside (see e.g. [69]) of GW research, we demonstrated that it can be used to address waveform systematics in BBH mergers while also offering a computationally cheaper solution compared to applying BMA.

We validated this JBA by analyzing GWs emitted from 100 randomly chosen binaries where we marginalized over three of the latest GW models. Although our simulated signals had SNRs ranging between 3.0 and 47.0, all of the posterior distributions obtained with the JBA were consistent with those obtained using BMA. In fact, 98% of the posterior distributions were statistically identical between the two approaches. Remarkably, this method marginalizes over three models on average $2.5 \times$ faster than simply applying BMA. As a real world example, we also applied the JBA to analyze GW200129_065458 and investigated how custom priors for the choice of model can be used to reflect our knowledge of model accuracy. We then demonstrated that the model with the largest evidence does not necessarily correlate with the model accuracy and therefore care must be taken when interpreting $p(m|d)$.

This alternative method of marginalizing over a set of models can also be used to significantly reduce the computational cost of computing one or more Bayes factors. For example, we demonstrated that the Bayes factor in favor of precession and higher order multipoles can be generated from a single analysis and not only do we obtain comparable Bayes factors, but we generate them on average $2.6 \times$ faster compared to conventional methods.

The method presented in this work is timely since the fourth gravitational-wave observing run, where ~ 200 GW signals are likely to be observed, is scheduled to commence early next year. During this observing run we are likely to observe a significant number of events that lie in extreme regions of the parameter space, where it will be desirable to marginalize over the latest waveform models in order to take into consideration model systematics. The method presented in this work provides a simple, robust and computationally efficient way to marginalize over multiple models.

ACKNOWLEDGMENTS

We are grateful to Gregory Ashton, Tim Dietrich, Stephen Fairhurst, Mark Hannam, Soichiro Morisaki, Vivien Raymond, and Jonathan Thompson for comments on this manuscript as well as Mark Hannam for continued discussions throughout this project. This work was supported by European Research Council (ERC) Consolidator Grant No. 647839 and we thank the UKRI Future Leaders Fellowship for support through the Grant No. MR/T01881X/1. All calculations were performed using the supercomputing facilities at Cardiff University operated by Advanced Research Computing at Cardiff (ARCCA) on behalf of the Cardiff Supercomputing Facility and the HPC Wales and Supercomputing Wales (SCW) projects. The computational resources at Cardiff University are partially funded by the European Regional Development Fund (ERDF) via the Welsh Government and STFC Grant No. ST/I006285/1. This research made use of data, software, and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes. This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Plots were prepared with Matplotlib [89], PESUMMARY [90], and BILBY [13]. Parameter estimation was performed with the PHILBY parameter estimation software [15], which made use of the DYNESTY nesting sampling package [70], NUMPY [91] and CIPY [92] were also used during our analysis.

APPENDIX: PERCENTILE-PERCENTILE TEST

We show the posterior distributions obtained by the JBA described in Sec. III in the form of a percentile-percentile (P-P) plot in Fig. 5. A P-P plot is useful for identifying biases in the inferred posterior distributions since it plots the fraction of signals with the injected binary lying within a given credible interval against the given credible interval. If the posterior distributions are biased, then we would expect to see that the $x\%$ credible interval contains the injected binary more or less than $x\%$ of the time. To quantify the level of bias, we calculate p values in each dimension, by performing a Kolmogorov-Smirnov test.
against the expected uniform distribution, and a combined p value, by combining the individual p values using Fisher's method.

As can be seen in Fig. 5, the majority of dimensions show no bias since they are consistent with a uniform distribution at $>5\%$ confidence. Although the primary spin magnitude a_1, and coherence time τ_c show a small bias (p values < 0.05) and the combined p value shows an overall bias in the inferred distributions: 0.01, this is unsurprising since the P-P test is only expected to show no bias when the model used to generate the simulated signals exactly matches the model used for recovery [59]. Since we have marginalized over multiple models, each with different inherent assumptions, we have introduced additional uncertainty in the data analysis.

We also generated a P-P plot showing the posterior distributions obtained by the BMA analysis also described in Sec. III. As expected, we saw excellent agreement between the JBA and BMA P-P plots. To quantify the level of agreement, we generated individual p values for each dimension by performing a Kolmogorov-Smirnov test between comparable lines on the two P-P plots and combined them using Fisher’s method. We find a combined p value of 0.47, which highlights that there is no statistical difference between P-P plots.

FIG. 5. Posterior distributions obtained when analyzing 100 randomly chosen binaries modeled with the IMRPhenomPv3 [45], and IMRPhenomPFV [38] models according to Eq. (5). The numbers in the legend show the Kolmogorov-Smirnov p value [93,94] when comparing each line to the expected uniform distribution.

ACCELERATING MULTIMODEL BAYESIAN INFERENCE, MODEL ... PHYS. REV. D 106, 083003 (2022)

[34] Sascha Husa, Sebastian Khan, Mark Hannam, Michael Pürrer, Frank Ohme, Xisco Jiménez-Forteza, and Alejandro Bohé, Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal, Phys. Rev. D 93, 044006 (2016).

[38] Sebastian Khan, Katerina Chatziioannou, Mark Hannam, and Frank Ohme, Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects, Phys. Rev. D 100, 024059 (2019).

[42] Geraint Pratten, Sascha Husa, Cecilio García-Quiros, Marta Colleoni, Antoni Ramos-Buades, Hector Estelles, and Rafel Jaume, Setting the cornerstone for a family of models for gravitational waveforms from compact binaries: The dominant
harmonic for nonprecessing quasicircular black hole binaries, Phys. Rev. D 102, 064001 (2020).

[53] R. Abbott et al., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run (2021), arXiv:2111.03606.

ACCELERATING MULTIMODEL BAYESIAN INFERENCE, MODEL ... PHYS. REV. D 106, 083003 (2022)

[92] Virtanen Pauli et al., SCIPY 1.0: Fundamental algorithms for scientific computing in PYTHON, Nat. Methods 17, 261 (2020).
