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Gravitationai wave modeis are used to inter the properties of black holes in merging binaries from the
observed gravitationa' wave signais through Bayesian inference. A'though we have ac:ess to a iarge
coilection of signal models that are su ficient:y accurate to infer the properties of black holes, for some
signals, small discrepancies in the models lead to systematic differences in the inferred properties In order
to provide a single estimate for the properties of the black holes, it is preferable to marginalize over the
model uncertainty. Bayesian model averaging is a commonly used technique to marginalire over multiple
models, however, it is computationally expensive An elegant solution is to simultaneously infer the model
and model properties in a joint Bayesian analysis. In this work we demonstrate that a joint Bayesian
analysis can not only accelerate but also account for model dependent systematic differences in the inferred
black hole properties. We verity this technique by analyzing 100 randomly chosen simulated signals and
also the real gravitational wave signal GW200129_065458. We find that not only do w-e infer statistically
identical properties as those obtained using Bayesian model averaging, but we can sample over a set of
three models on average 2.5x faster. In other words, a joint Bayesian analysis that marginalizes over three
models takes on average only 207 more time than a single model analysis. We then demonstrate that this
technique can be used to accurately and etficiently quantity the support for one model over another, thereby

assisting in Bayesian model selection.
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L. INTRODUCTION

Since the first detection of gravitationa! waves (GWs) in
2015 |1], the Advanczd LICC ;2] and Advanced Virgo |3]
GW observatories have detected ~90 G'Vs originating
from compact binary coalescences (CBCs) [4-11]. The
properties of these binaries are typically inferred through
Bayesian inference (see e.g. [12-23]), where Bayes theo-
rem is exploited in order to calculate the posterior
probability distribut:on: the probability that the binary
has a specific set of properties given the observed data.
In most cases, Bayesian inference is performed by stochas-
tically sampling over the binaries” properties and returning
a set of independent samples drawn from the posterior
distribution; although see Refs. [12,i7,19-25]| for other
methods. Two common stochastic sampling approaches are
the Markov chain Monte Carlo (MCMC) approach [26] and
nested sampling [27].

In order to perform Bayesian inference on GW data,
a parametrized model for the GWs emitted from a CBC
|28-47] is required in order to evaluate the likelihood | 18].
It has previously been shown that analyses that use different
models can result in noticeably different posterior distri-
butions for individual observations (see e.g. [48-54]) and
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the population as a whole [55,56], which is understood
to be caused by underlying systematic differences in the
GW models. As illustrated most recently in the third GW
transient catalog (GWTC-3) [53], systematic differences in
the GW models remains a limiting factor when inferring the
properties of black hole binaries (BBHs) through Bayesian
inference. Although there are ongoing efforts to enhance
the accuracy of future GW models (see e.g. [57]), system-
atic differences will likely remain a limiting factor for the
foreseeable future.

Bayesian model selection (BMS) provides a method for
choosing between posterior distributions obtained with
different models. Here, the posterior distribution obtained
with the single model that best describes the data is
objectively selected, i.e. the model with the largest
Bayesian evidence. On the other hand, Bayesian model
averaging (BMA) and Bayesian model combination com-
bine posterior distributions obtained with different models
to provide a single model marginalized result. BMA
calculates a weighted average of the posterior distributions
obtained with the different models (see Refs. [4.5,53.58.59]
and Ref. [60] for a review) and therefore inherently
assumes that only one model is the frue data generating
model but there is an associated uncertainty as to which
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model it is. Bayesian model combination is similar to BMA
but instead assumes that the behavior of the frue data
generating model can be replicated more closely by a
combination of simpler models |61]. The posterior distri-
butions obtained with the different models are therefore
combined in a variety of ways and the combination is
weighted according to the probability that the specific
ensemble is correct. Other techniques, including averaging
the likelihood for each model at each proposed point during
the sampling |62], have been developed but in general,
combining/deciphering between posterior distributions
obtained with different models remains a computationally
expensive exercise.'

A computationally cheaper solution for marginalizing
over the model involves simultaneously inferring the model
and model properties in a joint Bayesian analysis (JBA)
|64]. This has the benefit of ensuring that all models
analyze exactly the same data with identical settings, and
avoids the need to calculate weights, which are often
difficult to calculate robustly. Employing a JBA to mar-
ginalize over the model is not a new principle; it has been
previously explored both inside (see e.g. [65-68]) and
outside (see e.g. [69]) of GW research. Specifically,
Ref. [68] used a JBA to study model systematics with
an emphasis on binary neutron star mergers and the binary
neutron star equation of state by using MCMC methods.

In this paper we demonstrate the validity and robustness
of using a JBA to marginalize over the model for BBH
mergers. We show that (1) waveform systematics for BBH
mergers can be addressed with a JBA, (2) there is a
significant reduction in computational cost when using a
JBA compared to applying BMA, (3) a JBA can accurately
and efficiently quantify the support for one model over
another, including cases where different models have a
different number of parameters to describe additional
physics, and (4) a JBA can be implemented within the
nested sampling framework. We verified our results by
analyzing randomly chosen simulated signals and also the
real GW signal GW200129_065458. We show that not
only can we obtain statistically identical results compared
to applying BMA, but also that the results can be obtained
~2.5x faster when sampling over three models. This means
that a JBA that marginalizes over three models takes on
average only 0% more time than a single model analysis.
Similarly, we show that a single JBA can produce two
distinct Bayes factors on average 2.6x faster than tradi-
tional techniques.

This paper is organized as follows: in Sec. Il we describe
how a JBA can efficiently marginalize over the uncertainty
in a set of models. In Sec. Il we demonstrate that a JBA

'We note that although RIFT |17] has implemented a tech-
nique to efficiently calculate likelihoods for multiple models
since it reduces the computational cost of generating waveforms
[17,63], it remains expensive for stochastic Bayesian inference
methods such as those presented in Refs. [13-16,18].

produces statistically identical results as those obtained
when applying BMA. In Sec. IV we show that a JBA can
address model systematics in real GW strain data and
highlight that there can be subtleties in its interpretation. In
Sec. V we highlight that a JBA has several other applica-
tions, including the potential to significantly reduce the
computation of one or more Bayes factors. Finally we
conclude with discussions in Sec. VL.

II. METHOD

The properties of a system that produced an observed
GW, characterized by the multidimensional vector
A={4, 4, ....4;}, can be inferred through Bayesian
inference. These properties are then represented by the
model-dependent posterior distribution p(A|d, m), which is
conditional on the observed GW data ¢ and a parametrized
model m for the GWs emitted from the system. This model-
dependent posterior distribution is calculated using Bayes
theorem,

p(Ald, m) = p().|m),;(d1,1. m)‘ ()
where p{i|m) is the probability of the system having
properties 4 given the GW model, otherwise known as the
prior, p(d|A,m) is the probability of observing the data
given the system'’s properties and GW model, otherwise
known as the likelihood, and Z is the probability of
observing the data given the GW model Z = p(d|m)=
[ p(A|m)p(d|A, m)dA, otherwise known as the evidence.
The model-dependent posterior distribution assumes that
model m is correct.
When there is an ensemble of models, m = {m, ...,

my, ....my |, BMA can be applied to marginalize over
model uncertainty,

N
p(Ald) = " piald. m) pimyld). 2)

=1

where p(m;|d) is the model probability (the probability of
the model m; given the data) and N is the total number of
models that we wish to marginalize over. By exploiting
Bayes theorem, it can be shown that the model probability
is a function of the model’s Bayesian evidence [59,60],

_ Z;p(m;)
p(m;|d) —m 3)

where p(m;) is the prior probability for the choice of
model. For the case of uniform priors, p(m;) =
1/N ¥V m;, BMA is simply the average of the model-
dependent posterior distributions weighted by the evidence.
The significant disadvantages of using BMA to marginalize
over the model is that (1) p(4|d, m;) must be calculated for
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all models, which is computationally expensive, and (2) Z;
must be robustly inferred which is often difficult to
guarantee, especially for GW Bayesian inference where
tails of the likelihood surface occupy a large volume in high
dimensions.

An alternative solution for marginalizing over the model
is to simultaneously infer the model and model properties
in a single JBA |64]. For this case, the multidimensional
vector A can be expanded to include the model,
A={A;. A, ..., A;,m}. If the additional degree of freedom
representing the choice of model is trivial for existing
parameter estimation methods to explore, a JBA will at
most be N x faster to compute compared to applying BMA.
For the worst case scenario, where the choice of model is
difficult for parameter estimation methods to explore, we
expect that a JBA will take the same time to compute as
applying BMA.

In general, the JBA returns a single posterior distribution
on the multidimensional parameter space. The probability
distribution for a specific dimension can then be obtained
by marginalizing over the unwanted dimensions.
Consequently, the model probability can be inferred from
the JBA by calculating,

p(mld) = /p(ﬂd)d‘lldiz...,djj. @)

Although there are multiple approaches for calculating
the posterior distribution (see e.g. | 12,17-25]). the majority
of Bayesian inference analyses use stochastic parameter
estimation methods that return a set of discrete samples
drawn from the posterior. As explained in Sec. 5 of
Ref. |68], assuming that the total number of collected
samples from a JBA is N, p(m;|d) is simply

p(md) =1, ©

where N, is the number of independent samples obtained
with model m;. Assuming that we have infinite time and
perfect sampling, such that we have (1) sufficient samples
to fully explore the model parameter space and (2) a
reliable estimate for Z;,

N:  Zip(m) ©)
N Y Zip(my)
We therefore expect that the JBA will return a similar

posterior distribution as that obtained when apply-
ing BMA.*?

Note that by construction, the independent samples obtained
in the JBA are mixed according to the model probabilities. The
prior for the model is therefore folded into A/}

1. IMPLEMENTATION AND YALIDATION

A typical Bayesian analysis of a quasicircular BBH
analyzes a 15-dimensional parameter space 4: two dimen-
sions describing the component masses of the binary
(g. M), six describing two spin vectors of each component
(ay.a»,0,,0:, A, ¢,;), two for the binary’s inclination
and phase (6, ¢), four for the binary’s location on the sky,
distance to the source and polarization (RA, DEC.d|,y)
and finally one describing the merger time of the
binary (7.). To improve convergence when stochastically
sampling over the binaries’ properties, the distance to the
source is often analytically marginalized over |[24],
see e.g. Ref. [53], through the use of a numerical look
up table. This means that A is often a l4-dimensional
parameter space. Consequently, a JBA will analyze a
15-dimensional parameter space A: all of the aforemen-
tioned dimensions plus an additional dimension describing
the model (m).

We choose to implement our JBA into the DYNESTY
nested sampling package |70] and the PBILBY parameter
estimation software (a parallelized version of the BILBY
software | 13.14]) since they are both regularly used by the
LIGO-Virgo-KAGRA (LVK) collaborations (e.g. |51,52]).
During the sampling of our JBA, a 15-dimensional vector
of model parameters is proposed at each step, including an
integer representing the model m. As was done in Ref. [68],
in order to calculate the likelihood, we first apply a
mapping which selects the model based on the integer
m, and then pass the remaining model parameters to the
selected model. We therefore simultaneously explore the
model and parameter space.

To validate (1) our implementation and (2) the robustness
of using a JIBA to marginalize over model uncertainty for
BBH mergers, we perform a comprehensive injection and
recovery analysis. We compare the posterior distributions
inferred from 100 randomly chosen simulated signals
to those obtained when applying BMA to the model-
dependent posteriors [see Eq. (2)]. We also compare the
computational cost of both methods.

We choose to inject GWs emitted from 100 randomly
chosen BBHs into colored-Gaussian noise from two
detectors, Hanford and Livingston, with design sensitivities
|2]. In this validation study we use a selection of precessing
models, which we define as models that include 6 spin
degrees of freedom but do not include higher-order
multipoles |71]. We do not include any complete models,
which we define as models that include all & spin degrees
of freedom and higher-order multipoles, due to the large
computational cost required to analyze 100 simulated
signals. We therefore simulate the injected GWs
with IMRPHENOMXP |44 | and our recovery analysis margin-
alizes over IMRPHENOMXP, IMRPHENOMT™ [45], and
IMRPHENOMPV3 [38].

The parameters of the injected GWs were obtained
through random draws of the prior used in the recovery
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analysis. We used a prior that is uniform over spin
magnitudes and component masses, and isotropic over
spin orientation, sky location and binary orientation
14.5,53]. The signal-to-noise ratios (SNRs) for the injected
GWs ranged from 3.0 to 47.0 with 75% of the injected
binaries having SNR > 8 (a typical search threshold). To
improve the convergence of the inferred results, we
analytically marginalized over the luminosity distance
through the use of a numerical look up table. The JBA
extended the prior to include an equal-weighted categorical
prior for the choice of model.

For each of the 100 simulated signals, 14 comparable
distributions, one for each dimension, can be inferred from
both the JBA and BMA analyses. To compare each of these
1400 distributions, we calculate the Jensen-Shannon diver-
gence (JSD) |72]. The JSD ranges between 0 bits and | bit,
where a JSD = 0 bits (JSD = 1 bit) implies statistically
identical (distinct) distributions. As shown in Fig. 1, the
inferred JSDs ranged between 7 x 10~° and 0.1 bits
with median and 90% symmetric credible interval
JSD = 0.002' 95" bits. As described in Ref. [4], a good
rule of thumb is that a JSD < 0.05 bits implies that the
distributions are in good agreement. We find that 98% of
all distributions satisfied the JSD < 0.05 bits constraint.
Consequently, for the majority of cases, there is no
statistical difference between the JIMA and BMA analyses.
Although 2% of the distributions are statistically different,
we find that all distributions are consistent between JIBA
and BMA analyses. This means that the median of the
BMA analysis lies within the 90% confidence interval of
the JBA and vice versa. We suspect that these small

10-2 101 10°?

JSD [bits]

10-4 103

FIG. 1. Comparison between the 1400 posterior distributions
obtained from the JBA and BMA analyses when analyzing 100
randomly chosen binaries. The JSD ranges between () and [ bits
where a JSD = 0 bits (JS_. = 1 bits) implies statistically identical
(distinct) distributions. The vertical dashed line shows a JSD —
0.05 bits.

statistical differences for a subset of distributions are
therefore a consequence of sampling uncertainties. We
discuss the individual distributions in more detail in the
Appendix.

For the 2% of distributions with JISD > 0.05 bits, we
find no correlation between the JSD and the SNR of the
injected signal nor the JSD and the probability of a
particular model given the data. Indeed, all distributions
obtained when analyzing the 14 simulated signals with the
highest SNRs (ranging between 24.0 and 47.0) and the
28 simulated signals with the lowest SNRs (ranging
between 3.0 and 8.0) satisfied the JSD < 0.05 bits
constraint.

The sampling time for a nested sampling analysis depends
on the stopping criterion; when the stopping criterion is
reached, the sampling terminates and independent samples
are returned. In order to gauge how computationally
expensive the JBA is. we compare the total sampling time
taken to analyze 100 simulated signals for both the JBA and
BMA analyses when run on identical machines. The total
sampling time for the JBA is the total wall clock time taken
to generate p(i|d) for each simulated signal. The total
sampling time for the BMA analysis on the other hand, is
the total wall clock time taken to generate p(A|d, m;) for
each model in the ensemble for each simulated signal.
We found that the total sampling time to perform the JBA for
100 simulated signals was 239.5 hours with each injection
taking on average 2.5 hours to complete when parallelized
over 200 CPUs. Meanwhile, the total sampling time to apply
BMA for 100 simulated signals was 606.5 hours when run
on an identical number of CPUs.

We have therefore shown that a JBA is faster than
applying BMA with no statistical difference among the
obtained posterior distributions. A JBA can therefore
successfully marginalize over model uncertainty for BBH
mergers. However, one limitation of using a JBA is that it
collects fewer independent samples: on average 2x less. In
general, if one model has a significantly larger model
probability, we expect a comparable number of samples
between the JBA and BMA analyses no matter the number
of models in the ensemble. However, if all models have
comparable probabilities, we expect the JBA to obtain
~N x fewer samples than the BMA, since the JBA will call
each model on average N times fewer when a consistent
stopping criterion is employed. Although this may become
an issue when the JBA marginalizes over many models
with comparable probabilities, this is unlikely to affect
typical GW astronomy since (1) ordinarily only two of the
leading models are combined (see e.g. [4,5,53]) and (2) itis
unlikely that many models will have comparable model
probabilities (see e.g. Sec. V). Consequently, for typical
analyses undertaken by the LVK, a JBA can significantly
reduce the computational cost of multimodel Bayesian
inference.
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IV. APPLICATION TO BAYESIAN MODEL
SELECTION

The inferred posterior distribution from a Bayesian
inference analysis is dependent on the assumed model.
Owing to alternative techniques used when first construct-
ing the models (see e.g. [73-75]), some models are often
more accurate than others in certain regions of the param-
eter space. For high SNR GW observations, these model
discrepancies can show up as systematic differences in the
inferred posterior distributions. This was the case for
GW200129_ 065458 |53,54,76|, hereafter referred to as
GW200129, which was an SNR .~ 27 signal generated
by the merger of a ~60 M, binary [53] and the first signal
with strong evidence for spin-induced orbital preces-
sion [54].

One method for dealing with these systematic differences
is to independently check the model’s accuracy by compar-
ing it to GW signals calculated by numerically solving
Einstein’s equations for a given binary system [54].
However, it is often not feasible to apply this method since
it is computationally expensive to numerically solve
Einstein’s equations especially for low-mass binaries.
Another method is to use BMS to identify which model
has more support in the observed data. BMS objectively
selects between different models by identifying the
single model that has the largest Bayesian evidence,
m* = max,, p(d|m;).

As demonstrated in Sec. Ill, a JBA returns posterior
distributions that are statistically identical to those obtained
with BMA in a fraction of the time. This means that the
inferred model probabilities from the JBA are consistent
with the model’s evidence [see Egs. (5) and (6)]. We
therefore propose that the JBA can be used to accelerate
BMS. To demonstrate this, we performed an independent
analysis of GW200129 that marginalized over a selection
of the latest complete models, and inferred the model
probability. We chose to include NRSURTDQ: (mings) [40],
IMRPHENOMXPHM  (mxp.m), and  IMRPHENOMTPHM
(mrping) 147).° For comparison, we also ran three addi-
tional analyses, one for each model, and inferred the
Bayesian evidence. In all analyses, we used the same
priors, sampler settings, power spectral densities and
calibration envelopes as those described in Ref. |54]. We
also used an agnostic prior for the choice of model.

In Fig. 2 we show the posterior distribution for the
binary’s mass ratio, defined as the secondary mass divided
by the primary mass g = m,/m; < 1, inferred from (1) the
JBA, (2) the model-dependent posterior distribution
obtained by analyzing GW200129 with each model

*We did not include the SEOBNRVAPHM [31] model owing to
the significant computational resources needed to run this model
with the PBILBY parameter estimation software. However, it may
be possible to include SEOBNRV4PHM in future studies by using
the developments in Ref. [77].

= |oint (agnostic) CZ2 NRSur7dgd
51 == Joint (weighted) .’ IMRPhenomXPHM
— BMA =3 IMRPhenomTPHM

Probability Density

FIG. 2. Comparison between the inferred mass ratio g, detined
as the secondary mass divided by the primary mass and is
therefore always < 1, for GW200129 065458. The joint poste-
riors were obtained by performing a single analysis that mar-
ginalized over the NRSURTDQ4, IMRPHENOMXPHM, and
IMRCHLNOMTPHM models. The joint (agnostic) posterior used a
uniform prior for the choice of model and the joint (weighted)
posterior used a prior weighted towards the NRSURTDQ4 model.
The BMA posterior combined posterior distributions obtained
with the NRSUR7DQ4, IMRPHENOMXPnM, IMRPHENOMTPHM mod-
els according to Eq. (3). The JBA was 2.5x faster to compute that
the BMA posterior.

separately, and (3) BMA. Although we see significant
differences in the inferred model-dependent posterior dis-
tributions, the JBA displays excellent agreement with the
BMA posterior as expected. This highlights that although
mrpym Suggests that GW200129 is an equal mass ratio
system, both the JBA and BMA analyzes show that this
model is disfavored in comparison to the mygs and mxppm
models. Although we only plot estimates for the binary’s
mass ratio, since this is where we saw the biggest
discrepancy between the posterior distributions obtained
with the individual models when analyzing GW200129, we
also see excellent agreement between the JBA and BMA
analyses for all dimensions. To quantify this agreement, we
calculate the JSD between comparable distributions. We
found that the JSDs between the JBA and BMA posterior
distributions ranged between 0 bits and 0.009 bits with
median Dy = 0.001 bits.

Our JBA inferred model probabilities of 0.30, 0.69, and
0.01 for mygs, Mxpi»> and Mppa. Tespectively. According
to these model probabilities, nypy best describes the data,
m* = mypym- This is consistent with the inferred model
evidences since the BMA combined individual distribu-
tions with weights 0.31, 0.68, and 0.01 for mygs, Mxpim-
and mpyy models, respectively.

Although the JBA marginalizes over multiple models
by construction, we can estimate the model-dependent
posterior distribution p(A|d, m*) by selecting only the
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independent samples with model m*. Combined with the
ability to accurately and efficiently infer the model prob-
abilities, the JBA can be used to accelerate the inference
of p(Ald,.m").

Figure 3 compares the model-dependent posterior for the
binary’s mass ratio, p(g|d,m;), obtained from analyzing
GW200129 with each model separately and an estimate for
plgld, m;) calculated by selecting only the independent
samples obtained from the JBA with model m;. In general
we see excellent agreement between the two estimates for
plgld, m*). However, we do see a small difference for
p(gld, mypypg). While insignificant for a BMS analysis
(since mypypy has the lowest evidence), this is unsurprising
since the JBA posterior contains only ~300 independent
samples with m-p;y compared to ~44, 000 with mypypy-
Of course, this level of agreement can be improved by
allowing the sampler to run for longer and therefore
collecting a greater number of samples or by simply
combining different independent JBA analyses.

We have therefore shown that a JBA can infer p(4|d, m;)
and in particular p(4|d, m*). As demonstrated previously, a
significant advantage of performing the JBA is that the JBA
is significantly cheaper to perform. We found that the JBA
terminated 2.5x faster than the total time required to apply
BMS: the JBA took a total of ~4 hours to complete on 400
CPUs while applying BMS took a total of ~10 hours to
generate on the same number of CPUs: ~4 hours for mygs.
~3.5 hours for mppyy. and ~2.5 for nmiypyy models,
respectively. As discussed, the JBA obtained ~44,000
samples for m* while BMS selected the posterior with
~60, 000 samples. In general, the JBA obtained ~20. 000,
~44, 000, and ~300 samples for mygs. Mixppn- and Ppppp.
respectively, while the BMA analysis combined ~30, 000,
~60,000, and ~1000 samples for mings, Mxpim, and
mrypym, respectively. However, the BMA discarded
~90,000 model-dependent samples, most obtained with

MTPHM-

A. Subtleties in Bayesian model selection

Our analysis of GW200129 concludes that mypyy has
the largest model probability out of the models considered
and therefore it best describes the data. At first glance this
seems to be inconsistent with the conclusions presented in
Ref. |54] since it was found that mygg is the most accurate
model in the region of parameter space of GW200129. This
highlights an important caveat with using the Bayesian
evidence for BMS: the model with the larger evidence will
not necessarily be the model that most accurately describes
the observed GW.

To demonstrate this, consider the following simulated
signal: we simulate a signal with parameters that match the
most likely GW found from Ref. [54] with myzg and inject
it into real GW strain data 2 seconds prior to reported
merger time of GW200129 in Hanford, Livingston, and

== NRSur7dq4 from Joint (Agnostic)
84 =7 NRSur7dq4
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FI1G. 3. Comparison between the model-dependent posterior for

the binaries mass ratio g obtained from analyzing GW200129 _
065458 with each model separately and an estimate for p(gld. m;)
calculated by selecting only the independent samples obtained
from the joint (agnostic) analysis with model m;.

Virgo. We then analyze the strain data and marginalize over
Myrs- Mxpum» and mppyy Using the same settings as
described above. Since the ensemble of models used in
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the recovery analysis includes niygs, there is no systematic
bias as we are including the exact model that was used to
simulate the injection; in other words, mygs is perfectly
accurate for describing the simulated GW.

For this specific simulated signal. our JBA concludes
that myppy has the greatest support in the data since the
model probabilities are 0.38, 0.58, and 0.04 for mygs,
myxppm» and mypypy models, respectively. However, if we
compare the maximum likelihood estimates from mygs and
mypim, Where the maximum likelihood estimate identifies
the parameters 4 that maximizes the likelihood distribution,
we find that my,q has the larger maximum likelihood. We
ascertain that myppy has the greatest support in the data, of
those models considered, since it is likelihood distribution
is more tightly constrained with a slightly larger prior
probability.

This simulated signal highlights that although the model
probability can be inferred, this probability does not
necessarily correlate with the model accuracy, and therefore
care must be taken when interpreting the result. One
method for mitigating misinterpretation is to use external
knowledge of model accuracy to inform the prior for the
choice of model.

B. Priors

A JBA allows for the user to specify custom priors for
the choice of model. This therefore acts as a means of
expressing what is already known, or generally agreed
upon, regarding the choice of model. One of the problems
with using a custom prior is that it must be well motivated.

One option for deriving a custom prior for the choice of
model involves generating a weighted categorical prior,
where the weights are correlated with the accuracy of the
model, as encoded in the match (see e.g. |78]), between
each model and a series of numerical relativity simulations
in the relevant region of parameter space; a model with a
larger match has a larger weight. This works on the
principle that the match quantifies how similar a waveform
is to a fiducial rrue waveform: a match of 1 (0) implies
that the two waveforms are identical (orthogonal). For
example, the weights could be based on the average value
of log,y(1 — match)™!, since a model with a poor (good)
match to numerical relativity simulations will have a
smaller (larger) weight; the weights should be normalized
such that the sum is unity. However, averaging the match
across a given region of parameter space may not be
optimal since models tend to perform differently in differ-
ent regions of the parameter space. Consequently, a
parameter space dependent prior may perform better. We
leave a detailed investigation to future work.

In order to demonstrate that a BMS analysis can take into
consideration external knowledge of model accuracy, we
reanalyze the injection detailed in Sec. IVA with a
weighted categorical prior for the choice of model. To
reflect the fact that mypg is the most accurate model, we

generated a prior that favors mygg: for the ease of
presentation, we chose weights 0.6,0.3,0.1 for mpgs.
mypym. and mppyy, respectively. We gave myps twice
the weight of mypyy since log,,(1 — match)™! is roughly
twice as large for mygs than myxppy in the region of
parameter space of the simulated s;ignai.4 Under
this informed prior, the JBA infers model probabilities
0.54, 044, and 0.02 for mygs. Mxpyy> And  Mpppv
models, respectively, which are consistent with simply
reweighting the model probabilities obtained under an
agnostic prior.

We next use this weighted categorical prior for a rean-
alysis of GW200129. In Fig. 2 we see that the JBA with a
weighted prior more closely resembles the NRSUR7DQ4
posterior distribution with less support at g ~ 0.9 where
only the IMRPHENOMXPHM and IMRPEENOMTPHM find any
substantial probability. Under the weighted prior, we find
that p(mygs|d) increases from 0.30 to 0.53. This result is
therefore now inline with the conclusions presented
in Ref. |54].

V. BAYES'S FACTORS

When multiple models are available, it is natural to
quantify how much one model is preferred to another.
Within the Bayesian framework, the primary tool for
comparing the performance of two competing models is
the Bayes factor. The log Bayes factor for model A over
model B is calculated by simply subtracting the log model
evidences: log,, Bap = log,, £, — log,;, Z5. A log Bayes
factor > () indicates a preference for model A over model B
and in general, if the log Bayes factor is > 1, then there is
strong evidence to suggest that model A is preferred to
model B [79].

Since the log Bayes factor requires estimates for the
model’s evidence Z,, this requires running multiple param-
eter estimation analyses, one for each of the models A and B,
which is computationally expensive. However, as described
in Sec. 5 of Ref. |68], the log Bayes factor can be
approximated by running a single JBA that marginalizes
over models A and B. Here, the ratio of inferred model
probabilities p(m,|d)/p(mgld) = N /N |see Eq. (5)]
gives the posterior odds for model A over model B. For the
case of uniform priors for the choice of model, the posterior
odds is equivalent to the Bayes factor,

logyy Bag = logyy £4 — logy Zg.zlogmNA = lOgIUNB-
(%)

If we wish to calculate two log Bayes factors simultaneously,
for example comparing model A to model B and model A to
model C, then we can simply perform a single analysis that

“Based on Fig. 4 in Ref. [54], mpgs and mypysy have a match
of ~0.999 and ~().985, respectively, in the region of parameter
space of the simulated signal.
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FIG. 4. Lett: comparison between the log,, Bayes factors obtained from a single JBA that marginalized over the IMRPHENOMXAS,
IMRPHENOMXP, and IMRPHENOMXHM models, log,, B;; (Joint), and the log,, Bayes factors calculated by comparing evidences from
three separate analyses, an IMRPHENOMXAS analysis, IMRPHENOMXP analysis, and an IMRPHENOMXHM analysis, log, B;;. Right:
histogram showing the total time taken to calculate log,, B;; (Joint) and log:( B;; shown in the left panel.

marginalizes over all three models A, B, and C while
assuming uniform priors for the choice of model, rather
than launching three separate parameter estimation analyses
tocalculate Z,, Z5, Z.. Asdemonstrated in Secs. llland IV,
this has the potential to greatly reduce the computational
cost of calculating the Bayes factor.

In order to show that the JBA can greatly reduce the
computational cost of calculating the log Bayes factor
while still maintaining accuracy, we calculated two log
Bayes factors from a single JBA and compared the results
to the log Bayes factors estimated from three separate
analyses. Owing to the computational cost of generating 2
log Bayes factors, we only considered the first 20 randomly
chosen binaries described in Sec. III. Unlike in Sec. Il
we simulated the injected GWs with a complete model
(IMRPHENOMXPHM |44]). Our recovery analysis margin-
alized over an aligned-spin (IMRPHENOMXAS |42]), pre-
cessing (IMRPHENOMXP) and higher-order multipole
(IMRPHENOMXHM |43]) models.

Since a precessing model includes all 6 spin degrees of
freedom, it analyzes a 15-dimensional parameter space, see
Sec. Il for details. In comparison, an aligned-spin model
restricts spins to be aligned with the orbital angular
momentum, meaning that only 2 spin degrees of freedom
are probed. Consequently an aligned-spin model analyzes
an 11-dimensional parameter space. The log Bayes factor
in favor of the precessing model over the aligned-spin
model therefore quantifies the support for spins misaligned
with the orbital angular momentum. This log Bayes factor
can therefore be interpreted as a measure for the evidence of
spin-induced orbital precession in the observed GW [80].
Similarly, a higher-order multipole model includes higher
order multipoles but restricts spins to be aligned with the
orbital angular momentum. By calculating the log Bayes
factor in favor of the higher-order multipole model over the

aligned-spin model, we quantify the evidence for higher
order multipoles in the observed GW.

Our JBA must therefore sample a 15-dimensional
parameter space for the precessing model and an 11-
dimensional parameter space for both the higher-order
multipole and aligned-spin models. Since the aligned-spin
parameter space is simply a subspace of the full precessing
parameter space, we accomplish this transition by always
sampling the 15-dimension parameter space and simply
projecting J onto the aligned-spin parameter space when an
aligned-spin model is chosen during the sampling.

The left panel of Fig. 4 compares the log Bayes factors in
favor of precession and higher order multipoles calculated
from a single JBA to the log Bayes factors estimated from
three separate analyses. In general we see that the differ-
ence in log Bayes factors are =0.1 with the largest
differences occurring for systems with log,, B;; ~ 0. This
level of disagreement is consistent with the expected error
in the estimated log Bayes factor from the PBILBY para-
meter estimation software and the IMRPHENOMX waveform
family, see e.g. Table IV in Ref. [88]. We also note that
in previous LVK analyses, when logy, B;; ~ 0, the Bayes
factor is not quoted and therefore the difference in log,, 5;;
between the two methods is insignificant.

Importantly, we also see that the Bayes factors are
consistent not only for cases where there is very little
evidence for precession and/or higher order multipoles (~0)
but also cases where there is very strong evidence for
precession and/or higher order multipoles (~3.0). This
shows that a JBA can be used to estimate the log Bayes
factor for all signals reported by the LVK to date [4,5,53].

*There are numerous other measures for quantifying the
evidence for spin-induced orbital precession and higher-order
multipoles in an observed GW, see e.g. Refs. [4.5,51.81-87].
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This technique is likely also accurate for signals displaying
greater evidence for precession and/or higher order multi-
poles than ~3.0 but this region was not explored in our
analysis since our binaries were randomly chosen.

The right panel of Fig. 4 shows the total runtime for
computing 40 log Bayes factors (2 log Bayes factors for
each injection) from a single JBA to the log Bayes factors
estimated from three separate analyses. We see that the JBA
computed comparable log Bayes” factors on average 2.6x
faster than by comparing model evidences. This demon-
strates that not only can the JBA maintain accuracy in the
computation of the log Bayes factor, but it can greatly
reduce the computational cost.

VI. DISCUSSION

In this work we simultaneously inferred the model and
model properties in a joint Bayesian analysis. Although
JBAs has already been used both inside (see e.g. |68]) and
outside (see e.g. [69]) of GW research, we demonstrated
that it can be used to address waveform systematics in BBH
mergers while also offering a computationally cheaper
solution compared to applying BMA.

We validated this JBA by analyzing GWs emitted from
100 randomly chosen binaries where we marginalized over
three of the latest GW models. Although our simulated
signals had SNRs ranging between 3.0 and 47.0, all of the
posterior distributions obtained with the JBA were con-
sistent with those obtained using BMA. In fact, 98% of the
posterior distributions were statistically identical between
the two approaches. Remarkably, this method marginalizes
over three models on average 2.5x faster than simply
applying BMA. As a real world example, we also applied
the JBA to analyze GW200129_065458 and investigated
how custom priors for the choice of model can be used to
reflect our knowledge of model accuracy. We then dem-
onstrated that the model with the largest evidence does not
necessarily correlate with the model accuracy and therefore
care must be taken when interpreting p(m|d).

This alternative method of marginalizing over a set of
models can also be used to significantly reduce the computa-
tional cost of computing one or more Bayes factors. For
example, we demonstrated that the Bayes factor in favor of
precession and higher order multipoles can be generated
from a single analysis and not only do we obtain comparable
Bayes factors, but we generate them on average 2.6x faster
compared to conventional methods.

The method presented in this work is timely since the
fourth gravitational-wave observing run, where ~200 GW
signals are likely to be observed, is scheduled to commence
early next year. During this observing run we are likely to
observe a significant number of events that lie in extreme
regions of the parameter space, where it will be desirable to
marginalize over the latest waveform models in order to

take into consideration model systematics. The method
presented in this work provides a simple, robust and
computationally efficient way to marginalize over multiple
models.

ACKNOWLEDGMENTS

We are grateful to Gregory Ashton, Tim Dietrich,
Stephen Fairhurst, Mark Hannam, Soichiro Morisaki,
Vivien Raymond, and Jonathan Thompson for comments
on this manuscript as well as Mark Hannam for continued
discussions throughout this project. This work was sup-
ported by European Research Council (ERC) Consolidator
Grant No. 647839 and we thank the UKRI Future Leaders
Fellowship for support through the Grant No. MR/
TO1881X/1. All calculations were performed using the
supercomputing facilities at Cardiff University operated by
Advanced Research Computing at Cardiff (ARCCA) on
behalf of the Cardiff Supercomputing Facility and the HPC
Wales and Supercomputing Wales (SCW) projects. The
computational resources at Cardiff University are partially
funded by the European Regional Development Fund
(ERDF) via the Welsh Government and STFC Grant
No. ST/1006285/1. This research made use of data, soft-
ware, and/or web tools obtained from the Gravitational
Wave Open Science Center (https://www.gw-openscience
c1g), a service of LIGO Laboratory, the LIGO Scientific
Collaboration and the Virgo Collaboration. LIGO is funded
by the U.S. National Science Foundation. Virgo is funded
by the French Centre National de Recherche Scientifique
(CNRS), the Italian Istituto Nazionale della Fisica Nucleare
(INEN) and the Dutch Nikhef, with contributions by Polish
and Hungarian institutes. This material is based upon work
supported by NSF’'s LIGO Laboratory which is a major
facility fully funded by the National Science Foundation.

Plots were prepared with Matplotlib |89], PESUMMARY
[90], and BILBY [13]. Parameter estimation was performed
with the PBILBY parameter estimation software [15], which
made use of the DYNESTY nesting sampling package [70].
NUMPY [91] and cipy |92] were also used during our
analysis.

APPENDIX: PERCENTILE-PERCENTILE TEST

We show the posterior distributions obtained by the JBA
described in Sec. Il in the form of a percentile-percentile
(P-P) plot in Fig. 5. A P-P plot is useful for identifying
biases in the inferred posterior distributions since it plots
the fraction of signals with the injected binary lying within
a given credible interval against the given credible interval.
If the posterior distributions are biased, then we would
expect to see that the x% credible interval contains the
injected binary more or less than x% of the time. To
quantify the level of bias, we calculate p values in each
dimension, by performing a Kolmogorov-Smirnov test
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193,94| against the expected uniform distribution, and a = q(0114) == ¢ (0.714)
combined p value, by combining the individual p values = ‘;: fg;;’?; = Eﬁ‘iuwzggls’
using Fisher’s method. aEdT e T i";;%:?f‘

As can l?e seen in Fig. 5, the rr!ajority gf dimf:n.sions = 2;, ‘&_1153451} = 2!{%:}?15“?:
show no bias since they are consistent with a uniform - b (0.829)

distribution at > 5% confidence. Although the primary
spin magnitude a; and coalescence time /. show a small
bias (p values < (.05) and the combined p value shows
an overall bias in the inferred distributions: 0.01, this is
unsurprising since the P-P test is only expected to show no
bias when the model used to generate the simulated signals
exactly matches the model used for recovery |59]. Since we ;
have marginalized over multiple models, each with differ- 0.0 18 : : , ’
ent inherent assumptions, we have introduced additional oo 02 P PR ! 08 Lo
uncertainty in the data analysis.

We also generated a P-P plot showing the posterior
distributions obtained by the BMA analysis also described
in Sec. Ill. As expected, we saw excellent agreement
between the JBA and BMA P-P plots. To quantify the
level of agreement, we generated individual p values for
each dimension by performing a Kolmogorov-Smirnov test
between comparable lines on the two P-P plots and
combined them using Fisher’s method. We find a combined
p value of 0.47, which highlights that there is no statistical
difference between P-P plots.

0.4 4

0.2 4

Fraction of events in confidence interval

FIG. 5. Posterior distributions obtained when analyzing 100
randomly chosen binaries modelled with the IMRPHENOMXP [44]
model. The gray regions show the cumulative lo. 20, and 3o
confidence intervals expected from a uniform distribution, which
is expected if the results are unbiased. Each line shows the
cumulative fraction of events within the confidence interval for a
given parameter. The posterior distributions were obtained by
marginalizing over the IMRPHENOMXP, IMRPHENOMTP [45], and
IMRPHENOMPV3 [38] models according to Eq. (5). The numbers
in the legend show the Kolmogorov-Smirnov p value [93,94]
when comparing each line to the expected uniform distribution.
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