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weak preferences∗

Ghufran Ahmad†

October 7, 2020

Abstract

I consider the housing market problem with weak preferences. In this context, I provide a su�cient

condition for weak group strategy proofness; no group of agents can jointly misreport their preferences

such that each agent in the group becomes better-o�. Using this su�cient condition, I prove that the top

trading absorbing sets, top cycles, and highest priority object rules satisfy weak group strategy proofness.

Thus, this paper establishes that it is possible to achieve weak group strategy proofness, along with

other desirable results, for the housing market problem with weak preferences even though group strategy

proofness is incompatible with Pareto e�ciency in this setting.
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1 Introduction

I consider the problem of reallocating objects among a set of agents. Speci�cally, I consider the problem

where each agent has to be assigned exactly one object and is endowed with exactly one object as well. Each

agent has preferences over the set of objects. These objects are to be reassigned, among the agents, without

any monetary transfers. Such a reallocation problem is referred to as the housing market problem in the

literature and was introduced by Shapley & Scarf [19]. This simple economy has several real-life applications

such as the allocation of housing [1], o�ces, seminar slots, and organs for transplant [16].

The top trading cycles (TTC ) rule, attributed to David Gale, was proposed by Shapley & Scarf [19] for

the housing market problem. The TTC rule proceeds by repeating the following until all agents have been

removed from the problem: Each agent points at an agent holding her most preferred object. Since each

agent is pointing at another agent and there is a �nite number of agents, there is at least one cycle. Each

agent in the cycle is assigned the object owned by the agent she is pointing at for this housing market problem

and removed from the problem.1 When an agent is removed from the problem, along with an object, her

assignment is �nalized.

For the case of strict preferences, i.e., the agents cannot express indi�erences between objects, several desirable

results have been proved for the TTC rule. Roth & Postlewaite [15] show that the outcome of the TTC

rule is the unique allocation in the core i.e. no group of agents can reallocate their endowments such that at

least one agent in the group is made better-o� without making any agent in the group worse-o� compared to

the outcome of the rule. An allocation is called competitive if there are prices for the objects such that each

agent purchases her most preferred object among the a�ordable objects and the price of her assignment is

the same as the price of her endowment. Roth & Postlewaite [15] also show that the outcome of the TTC

rule is the unique competitive allocation. With regards to incentive compatibility, the TTC rule is strategy

proof [14], no agent has an incentive to misreport her preferences, and group strategy proof [4], no group of

agents has an incentive to jointly misreport their preferences such that at least one agent in the group is made

better-o� without making any agent in the group worse-o�. Moreover, the TTC rule is the only rule that

satis�es Pareto e�ciency, individual rationality, and strategy proofness simultaneously [9, 20]. Finally, the

1The cycles for which trades are conducted in an algorithm are referred to as trading cycles in what follows.
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TTC rule is anonymous, independent of how the agents are named, and non-bossy, no agent can in�uence

the welfare of other agents without a�ecting her welfare [10].

Considering the more general case of weak preferences, i.e., allowing the agents to be indi�erent between

objects, for the housing market problem is a natural extension because indi�erences can arise in a real-life

setting when the agents: (1) do not have enough information to break ties between the objects, or (2) consider

di�erent objects to be identically important e.g. organs from multiple donors can be identical for a patient,

for transplantation purposes, as biological properties of organs from di�erent donors, blood-type and tissue-

type, can be identical. In accounting for indi�erences, however, some of the desirable results achievable for

the strict preferences, are no longer possible.

In the presence of indi�erences, a core allocation may not exist [19], competitive allocation does not coincide

with the core [22], and Pareto e�ciency is incompatible with group strategy proofness [6]. Additionally,

Pareto e�ciency, individual rationality, and strategy proofness are, in general, not compatible [20]. Moreover,

following impossibility results hold under the weak preferences: (1) no rule is Pareto e�cient, strategy proof,

and anonymous, (2) no rule is Pareto e�cient, strategy proof, individually rational and non-bossy, and (3)

no rule is Pareto e�cient, strategy proof, individually rational, and consistent [5, 7, 8]. Consistency states

that if there is a group of agents where each agent in the group is assigned the endowment of an agent who

is also in the group, then applying the rule on the agents who do not belong to this group, along with their

endowments, keeps the assignment of these agents unchanged.

An intuitive method to incorporate indi�erences is to arbitrarily break ties between the objects and then

applying the TTC rule to the induced housing market problem with strict preferences. This straightforward

rule is weakly Pareto e�cient, individually rational, strategy proof, non-bossy and consistent [7]. In addition

to these results, the rule with arbitrary tie-breaking can be generalized to the setting where the agents are

endowed with multiple objects [11, 13]. However, weak Pareto e�ciency can be particularly weak because

any assignment in which at least one agent gets one of her most preferred objects is weakly Pareto e�cient

regardless of how objects are assigned to the other agents. Additionally, examples can be found where, no

matter how ties are broken, the outcome of the TTC rule with �xed tie-breaking is not Pareto e�cient [8].

Even though several desirable results are not possible for the housing market problem with weak preferences,
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some appropriate results are still achievable because the weak core, no group of agents can reallocate their

endowments such that each agent in the group is made better-o� compared to the rule's outcome, is non-

empty [19], and the incompatibility of Pareto e�ciency, individual rationality, and strategy proofness holds

under certain assumptions on the preference domain [21].2 Utilizing this, much progress has been made for

the housing market problem with weak preferences. Alcalde-Unzu & Molis [2] and Jaramillo & Manjunath [8]

independently proposed generalizations of the TTC rule to account for indi�erences; the top trading absorbing

sets (TTAS ) and top cycles (TC ) rules, respectively. Both of these rules are Pareto e�cient, individually

rational, strategy proof, weak core-selecting, and core-selecting (whenever the core is non-empty) [2, 3, 8].

The TC rule has a polynomial running time, O
(
n6
)
implementation where n is the number of agents in

the problem, whereas the TTAS rule has an exponential running time in the worst case [3, 8]. Plaxton

[12] proposed another generalization of the TTC rule which is also Pareto e�cient, individually rational,

strategy proof, weak core-selecting, and core-selecting (whenever the core is non-empty) in addition to having

an O
(
n3
)
implementation.

Aziz & de Keijzer [3] introduced the generalized absorbing top trading cycle (GATTC ) class of rules. Each

member of the GATTC family satis�es Pareto e�ciency, individual rationality, weak core-selection, and core-

selection (whenever the core is non-empty). However, the members of the GATTC family may not satisfy

strategy proofness. Saban & Sethuraman [17] establish su�cient conditions for strategy proofness and employ

these conditions to provide computationally e�cient algorithms for the housing market problem with weak

preferences. They provide a class of rules for which each member satis�es Pareto e�ciency, individual ratio-

nality, weak core-selection, and strategy proofness, namely; common ordering on agents, individual ordering

on objects (CAIO).3 Moreover, they propose a member from the CAIO family, the highest priority object

(HPO) rule, which is computationally quicker than the TTAS and TC rules with an O
(
n2 log n+ n2γ

)
implementation.4

In this paper, I focus on the TTAS , TC , and HPO rules owing to their algorithmic similarities. Essentially,

the proof of strategy proofness for these rules is similar which allows for the possibility of a common su�cient

2The impossibility result of [20] is established for the problem where at least one agent is endowed with more than one object.
Additionally, the impossibility result relies on the assumption that each agent �nds every other object to be strictly better or
worse than her endowment.

3The TTAS and TC rules are members of the CAIO family [17] while the CAIO family is a subset of the GATTC family.
4Here, γ is the maximum size of an indi�erence class in the preferences of the agents.
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condition for weak group strategy proofness for these rules. Strategy proofness of Plaxton's mechanism, on

the other hand, is proved using a con�uence property of the algorithm [12], unlike the aforementioned rules.

As such, the application of the su�cient condition of weak group strategy proofness, provided in this paper,

may not be possible for Plaxton's mechanism.

The algorithms for the TTAS , TC , and HPO rules share important commonalities. These rules are iterative

and each step consists of three phases; departure, pointing, and trading. In the departure phase, a group of

agents has their assignments �nalized and these agents are removed from the algorithm if no more bene�cial

trades are possible using these agents and their assigned objects. Speci�cally, it is not possible to increase

the welfare of any agent in the group and the only possible way to increase the welfare of some agent outside

of the group would decrease the welfare of some agent in the group. Similar to the TTC rule, the TTAS ,

TC , and HPO rules rely on the formation of cycles to determine the trades that should occur at each step.

However, in the presence of indi�erences, each agent can have multiple most preferred objects (among the

remaining ones) at any step of the algorithm. Such agents could belong to multiple cycles and, as such, the

algorithm should be capable of determining a unique pointee for these agents so that no agent belongs in

more than one trading cycle. So, each cycle may not become a trading cycle in the presence of indi�erences

i.e. trades may not be conducted for each cycle that is formed. This is in contrast to the strict preferences

where each cycle ends up as a trading cycle. The pointing phase of these rules is responsible for determining

a unique pointee for each agent and the criterion used for this determination is referred to as the unique

pointee selection criterion. The unique pointee selection criterion relies on a priority ordering over agents

or objects to determine a unique pointee for each agent.5,6 Finally, in the trading phase, the objects are

exchanged, among the agents, according to the trading cycles that are formed in the pointing phase.

In this paper, I focus on group incentive compatibility in the context of the housing market problem with

weak preferences. In this setting, it has been established that group strategy proofness is incompatible with

Pareto e�ciency [6]. However, I prove that weak group strategy proofness is still achievable. To prove this, I

show that if the unique pointee selection criterion of the pointing phase of a rule satis�es certain conditions,

the rule satis�es weak group strategy proofness. In other words, I provide a su�cient condition for weak group

5There are members of the CAIO which rely on priority orderings over the agents and objects.
6The unique pointee selection criterion for the TTAS , TC , and HPO rules is independent of the step of the algorithm.
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strategy proofness, namely consistent pointing, and, using this su�cient condition, I show that the TTAS ,

TC , and HPO rules are weakly group strategy proof.

The remainder of the paper is organized as follows. The model is presented in Section 2 along with some

relevant notation. Some properties are formally de�ned in Section 3. In Section 4, I present three of the

existing rules along with the two properties utilized in the su�cient condition for strategy proofness presented

by Saban & Sethuraman [17]. Section 5 provides the proofs with related discussion and Section 6 concludes

the paper. To the best of my knowledge, the possibility of achieving weak group strategy proofness has not

been studied in the context of the housing market problem with weak preferences.

2 Model and Notation

LetN andO be the sets of agents and objects, respectively. As stated by Jaramillo &Manjunath [8], |N | = |O|

can be assumed without loss of generality. Each agent is endowed with an object and the endowment of the

agents is represented by the bijection ω : N → O. For each i ∈ N , agent i's endowment is denoted as ωi and,

for any group of agents M ⊆ N , ωM ≡ {ωi : i ∈M} i.e. ωM is the set of endowments of all agents in M .

Let R be the set of all possible complete and transitive preference relations over O. For a given R ∈ RN , the

preference relation for agent i ∈ N is denoted as Ri and for each a, b ∈ O: (1) a being at least as good as b

for agent i is represented as aRib, (2) a being preferred to b by agent i is represented as aPib, and (3) agent

i being indi�erent between a and b is denoted as aIib. Moreover, R−i is used to denote preferences of the

agents in N other than agent i. For any M ⊆ N , RM denotes the preferences of all agents in M and RN\M

denotes the preferences of all agents in N\M . For any R ∈ RN , i ∈ N and O′ ⊆ O, let τ (Ri, O
′) represent

the set of agent i's most preferred objects in O′ under Ri. Formally, τ (Ri, O
′) ≡ {a ∈ O′ : aRib ∀b ∈ O′}.

Let A be the set of all possible allocations i.e. it contains all bijections from N to O. For any allocation

α ∈ A, let the object allocated to agent i under α be denoted as αi. Moreover, for any M ⊆ N , let

αM ≡ {αi : i ∈M} i.e. αM is the set of objects assigned to the agents in M under α.

As mentioned in Section 1, the proposed rules for the housing market problem with weak preferences re-

quire priority orderings over agents or objects. These priority orderings are complete, transitive, and anti-

symmetric. With a slight abuse of notation, I use the same notation for priority orderings over agents and
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objects: ≺. When ≺ represents the priority ordering over agents, i ≺ j depicts that agent i has higher

priority ordering than agent j for i, j ∈ N . When ≺ represents priority ordering over objects, a ≺ b shows

that object a has higher priority ordering than object b for a, b ∈ O.

The quadruple (N,O,R, ω) denotes a housing market problem with the set of agents N , set of objects O,

preference pro�le R, and endowment ω. Without loss of generality, N and O can be considered to be �xed.

So, the housing market problem can be simply represented as (R,ω). An allocation rule, ϕ : RN × A → A,

gives an assignment for a given housing market problem i.e. for (R,ω) ∈ RN × A, ϕ (R,ω) represents the

assignment for the housing market problem (R,ω) under the allocation rule ϕ.

Since the analysis of the housing market problem with weak preferences relies on graph theory, I present

some relevant concepts and notation here. Let G = (V,E) be a directed graph where V is a set of vertices

and E is a set of directed arcs. For v, v′ ∈ V , there is a path from v to v′ if there are vertices v1, · · · , vm

with a directed arc from vk to vk+1 for k ∈ {1, · · · ,m− 1} such that v1 = v and vm = v′. An ordered set of

vertices (v1, · · · , vm) with an arc from vk to vk+1 for k ∈ {1, · · · ,m− 1} in the directed graph G is referred

to as a chain, denoted as Ch = (v1, · · · , vm). If there is an arc from vm to v1, then it is referred to as a cycle

which is denoted as C = (v1, · · · , vm).7 For each v ∈ V , let Ev ⊆ V be the set of vertices with an incoming

directed arc from the vertex v. The set of vertices V ′ ⊆ V is referred to as an absorbing set if: (1) for every

v, v′ ∈ V ′, there is a path from v to v′ and a path from v′ to v, and (2) there is no path from any v ∈ V ′ to

v′ ∈ V \V ′ i.e. Ev ∩ (V \V ′) = φ. Figure 1 (a) provides an example of a directed graph in which the unique

absorbing set is depicted in a green shaded circle. De�ne F as a unique pointee selection criterion where

F (G) =
(
V,EF

)
is a directed graph with the same vertices as the directed graph G and EF ⊆ E is the set

of directed arcs of the directed graph F (G) such that each vertex has exactly one outgoing directed arc i.e.

for each v ∈ V , the set of directed arcs from the vertex v in the directed graph F (G), denoted as EF
v , is a

singleton set. Figure 1 (b) shows an application of a unique pointee selection criterion on the directed graph

presented in Figure 1 (a).

Consider an arbitrary (R,ω) ∈ RN × A. Let ϕ : RN × A→ A be a member of the CAIO family. Then, the

rule ϕ is iterative and each step has three phases: departure, pointing and trading. In the departure phase,

the assignment of some of the agents is �nalized and they are removed from the problem. Let Nt and Ot

7Vertices are not repeated in an ordered set.
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(a) A directed graph with 8 vertices and 14 directed arcs
is depicted above. The vertices enclosed in the green
shaded circle depict the unique absorbing set of this di-
rected graph.

(b) A unique pointee selection criterion, F , has been
applied to the directed graph so that each vertex has
exactly one outgoing directed arc. The arcs not selected
by F are represented as dashed arcs.

Figure 1

be the set of agents and objects, respectively, remaining after the departure phase of step t. Let ht be the

bijection which represents the objects held by agents at the beginning of step t. Moreover, hi,t be the object

held by agent i at the beginning of step t and, for any M ⊆ N , let hM,t ≡ {hi,t : i ∈M}. An agent i ∈ Nt

is referred to as a satis�ed agent at step t if hi,t ∈ τ (Ri, Ot) i.e. among the objects remaining at step t,

agent i holds one of her most preferred objects. Let St be the set of all satis�ed agents in Nt at step t.

An agent who is not satis�ed is referred to as an unsatis�ed agent and the set of all unsatis�ed agents in

Nt, at step t, is denoted as Ut. At step t, let Gt = (Nt, Et) denote the directed graph where the agents in

Nt are the vertices and the set Et consists of directed arcs from each agent i ∈ Nt to every agent j ∈ Nt

such that hj,t ∈ τ (Ri, Ot). That is, in the set Et, there is a directed arc from each agent to every agent

who owns one of her most preferred objects (among the remaining ones). The directed graph Gt is referred

to as the TTC -graph at step t. Additionally, let AS t be the set of all absorbing sets of the directed graph

Gt. For each i ∈ Nt, let Ei,t denote the agents that have an incoming arc from agent i. Then, for each

j ∈ Ei,t, it must be that hj,t ∈ τ (Ri, Ot). Let Ch (Gt) and C (Gt) denote the set of all chains and cycles

in the TTC -graph Gt, respectively. Additionally, let Chi (Gt) be the set of all chains in Ch (Gt) which have
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agent i as the last agent i.e. if Ch ∈ Chi (Gt) and Ch = (i1, · · · , im), then im = i. Moreover, let Ci (Gt)

represent the set of all cycles in C (Gt) which include agent i i.e. if C ∈ Ci (Gt) and C = (i1, · · · , im), then

ik = i for some k ∈ {1, · · · ,m}. In the pointing phase, each agent points at a unique agent based on the

unique pointee selection criterion associated with the rule ϕ; denoted as F . Then, F (Gt) =
(
Nt, E

F
t

)
is a

directed graph where each agent has exactly one outgoing arc i.e. EF
i,t is a singleton set for each agent i.8,9

Let pi,t denote the agent pointed at by agent i in the directed graph F (Gt). Let Ch (F (Gt)) and C (F (Gt))

be the set of all chains and cycles in the directed graph F (Gt), respectively. Additionally, let Chi (F (Gt))

be the set of chains in Ch (F (Gt)) which have agent i as the last agent and Ci (F (Gt)) be the set of cycles

in C (F (Gt)) which include agent i.10 Since each agent is pointing at exactly one agent, there is at least one

cycle in the directed graph F (Gt) i.e. C (F (Gt)) 6= φ. The cycles in C (F (Gt)) are referred to as trading

cycles because: (1) in the trading phase, objects are traded according to these cycles, and (2) each agent can

belong to at most one such cycle i.e. |Ci (F (Gt))| ≤ 1 for any i ∈ Nt. The agents involved in these trades

are said to have become part of a trading cycle and their objects are updated in step t + 1. Formally, for

each cycle C = (i1, · · · , im), in C (F (Gt)), the objects of agents in C are updated in step t + 1 as follows:

hik,t+1 = hik+1,t for k ∈ {1, · · · ,m− 1} and him,t+1 = hi1,t. The distinction between a cycle and a trading

cycle is important because not all cycles in the TTC -graph, Gt, occur as cycles in F (Gt) and trades take

place only for the cycles in C (F (Gt)) i.e. there may be cycles in C (Gt) which do not occur in C (F (Gt)).

This can be observed in Figure 1.

3 Some Properties

Consider an arbitrary (R,ω) ∈ RN × A. An allocation α ∈ A Pareto dominates β ∈ A if αiRiβi for all

i ∈ N and αjPjβj for some j ∈ N . An allocation rule, ϕ : RN × A → A, is Pareto e�cient if for any

(R,ω) ∈ RN ×A, ϕ (R,ω) is not Pareto dominated by any allocation in A.

8For the TTAS rule, at any step t, unique pointees are determined only for agents who belong in an absorbing set. Then,

EFTTAS

i,t can be empty for some agents at step t where FTTAS is the unique pointee selection criterion associated with the TTAS
rule.

9The unique pointee selection criterion F is provided without a t subscript to highlight that it is independent of the step of
the algorithm.

10Clearly, it must be true that Ch (F (Gt)) ⊆ Ch (Gt), C (F (Gt)) ⊆ C (Gt), and Ci (F (Gt)) is either an empty set or a
singleton set.
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An allocation rule, ϕ, is individually rational if for all (R,ω) ∈ RN × A and i ∈ N , ϕi (R,ω)Riωi i.e. each

agent receives an object which is at least as good as her endowment.

An allocation rule is strategy proof if no agent has an incentive to misreport her preferences i.e. for each

i ∈ N , R ∈ RN and R′i ∈ R, it must be that ϕi (R,ω)Riϕi (R′, ω) where R′ = (R−i, R
′
i). In other words, for

a strategy proof rule, truth-telling is a weakly dominant strategy for each agent.

An allocation rule is weakly group strategy proof if no group of agents can jointly misreport preferences such

that every agent in the group is made better-o�. Formally, for any M ⊆ N , there are no R,R′ ∈ RN such

that ϕi (R′, ω)Piϕi (R,ω) for each agent i ∈M where R′ =
(
RN\M , R

′
M

)
. Additionally, an allocation rule is

group strategy proof if no group of agents can jointly misreport preferences such that no agent in the group

is made worse-o� and at least one agent in the group is made better-o�. Formally, for any M ⊆ N , there

are no R,R′ ∈ RN such that ϕi (R′, ω)Riϕi (R,ω) for each agent i ∈M and ϕj (R′, ω)Pjϕj (R,ω) for some

agent j ∈ M where R′ =
(
RN\M , R

′
M

)
. It should be obvious that group strategy proofness implies weak

group strategy proofness which implies strategy proofness but the converse is not true in general.

For any allocation α ∈ A and group of agents M ⊆ N , α is said to be blocked by M if there is β ∈ A such

that βM = ωM and, for each agent i ∈ M , βiPiαi is true. An allocation α ∈ A is said to be weakly blocked

by M ⊆ N if there is β ∈ A such that βM = ωM , βiRiαi for all agents i ∈ M , and βjPjαj for some agent

j ∈ M . An allocation is in the weak core if it is not blocked by any subset of N whereas an allocation is in

the core if it is not weakly blocked by any subset of N . An allocation rule is said to be weak core-selecting if

it �nds allocations in the weak core and core-selecting if it �nds allocations in the core.

4 Existing Rules

In this section, I provide brief descriptions of three of the existing rules proposed for the housing market

problem with weak preferences. First, I present the identical departure condition for the three rules. Then, a

brief description of two important properties for the su�cient condition of strategy proofness, given by Saban

& Sethuraman [17], is presented. Finally, I present the unique pointee selection criterion for the TTAS , TC ,

and HPO rules along with some relevant notation.
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4.1 Departure Condition

At each step of the algorithm, the assignment of some of the agents is �nalized and they are removed from

the problem. Unlike the TTC rule, in the presence of indi�erences between objects, an agent cannot simply

be removed from the problem after she has become part of a trading cycle. Being part of a trading cycle

ensures that the agent has one of her most preferred objects (among the remaining ones) i.e. she cannot

be made better-o�. However, it might still be possible to make other agents better-o� without making her

worse-o�. To illustrate this, consider the following example.

Example 1. Consider the following housing market problem: let N = {1, 2, 3}, O = {a, b, c}, ω = (a, b, c) and

the preference pro�le, R = (R1, R2, R3), be given as:

R1 R2 R3

bc a b

a b c

c a

In the above table, each column represents the preferences of an agent. Speci�cally, agent 1 is indi�erent

between objects b and c, and prefers each of these objects to object a, agent 2 prefers a to b and b to c, and

agent 3 prefers b to c and c to a. The TTC -graph corresponding to the above example is displayed in Figure

2.

Figure 2: A TTC -graph, corresponding to the housing market problem of Example 1, depicting two cycles C1 = (1, 2)

and C2 = (1, 3, 2).

For this housing market problem, there is a unique Pareto e�cient assignment α = (c, a, b). It is clear from

Figure 2 that there are two possible cycles; C1 = (1, 2) and C2 = (1, 3, 2). Suppose that trades are conducted
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according to the cycle C1. Now, if agents 1 and 2 are removed from the problem after becoming part of the

trading cycle, the assignment would be β = (b, a, c). However, β is not Pareto e�cient because agent 3 can

be made better-o� without making any other agent worse-o�. This removal criterion is unable to achieve

Pareto e�ciency because, even though agent 1 cannot be made better-o� after she has been part of a trading

cycle, she could have made agent 3 better-o� without a�ecting her welfare.

As illustrated in Example 1, when indi�erences between objects are allowed, becoming part of a trading cycle

is not su�cient to ensure Pareto e�ciency. So, to achieve Pareto e�ciency, the possibility of improving some

other agent's welfare has to be eliminated before an agent, who has been part of a trading cycle, is removed

from the problem. In other words, an agent is removed from the problem, her assignment is �nalized, if she

owns one of her most preferred objects (among the remaining ones)11 and some other agent cannot be made

better-o� without making her worse-o�.12 Formally, the departure condition, presented at step t for a general

rule ϕ and arbitrary (R,ω) ∈ RN × A, can be stated as follows: At the start of step t, a set of agents M is

removed from the problem if hi,t ∈ τ (Ri, Ot−1) for each agent i ∈ M and hM,t = ∪i∈Mτ (Ri, Ot−1). Once

agents in M are removed (along with the objects in hM,t), another set of agents may be chosen to depart

similarly. This process is continued until no more groups can depart.

The assignment of each agent who is removed from the problem is �nalized based on the object she is holding

at the step of her removal. These agents are referred to as departed or removed from the problem. Then,

for the set of agents M who are departing at step t, the assignment of each agent i ∈ M is ϕi (R,ω) = hi,t.

The process is repeated until no other set of agents satis�es the departure condition. Based on this departure

condition, each agent in the departing group owns one of her most preferred objects (among the remaining

ones), and the only possible way to increase the welfare of some agent, who does not belong in the departing

group, by using agents (along with their objects) in the departing group would make some agent in the

departing group worse-o�. In this manner, the departure condition can ensure Pareto e�ciency [2, 3, 8, 17].13

11This statement is true for an agent who has been part of a trading cycle because each agent in a trading cycle points at an
agent who holds one of her most preferred objects (among the remaining ones).

12Under this departure condition, some agents can be removed from the problem without ever becoming part of a trading
cycle i.e. these agents are assigned their endowment for the housing market problem. This is in contrast to the TTC rule for
which an agent is removed from the problem only after she has become part of a trading cycle. However, if becoming part of a
trading cycle is made a requirement in the departure condition, such agents would either form a trading cycle with themselves,
or become part of a trading cycle in which welfare of all involved agents remains unchanged.

13This departure condition is identical to the condition used in [8], and equivalent to the conditions of paired-symmetric

absorbing sets and terminal sinks used for the TTAS and HPO rules in [2] and [17], respectively.
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4.2 Independence of Unsatis�ed Agents and Persistence

Saban & Sethuraman [17] established a su�cient condition on the unique pointee selection criterion to achieve

strategy proofness in the context of the housing market problem with weak preferences. They show that the

independence of unsatis�ed agents and persistence play an important role in ensuring strategy proofness of

rules for the housing market problem with weak preferences. In this subsection, these properties are presented

for a rule ϕ that is a member of the CAIO family.

Independence of unsatis�ed agents states that the unique pointee selection criterion, F , is independent of the

most preferred objects (among the remaining ones) of an unsatis�ed agent in the sense that changing the

most preferred objects (among the remaining ones) for an unsatis�ed agent should not change the unique

pointee selected for the other agents. Formally, consider the TTC -graphs G = (N,E) and G′ =
(
N, É

)
such

that Ej = Éj for each j ∈ N\ {i}, and Ei 6= Éi where agent i is an unsatis�ed agent. In other words, the

TTC -graphs, G and G′, di�er only in the outgoing arcs from the unsatis�ed agent i. If the unique pointee

selection criterion F satis�es independence of unsatis�ed agents, then EF
j = ÉF

j for each j ∈ N\ {i} i.e. the

unique pointees selected for the other agents are not a�ected by changing the most preferred objects (among

the remaining ones) of an unsatis�ed agent. This condition is important for strategy proofness because it

eliminates the ability of an unsatis�ed agent to manipulate the trading cycles that are formed by misreporting

her preferences and, hence, restricts her ability to improve her welfare. Figure 3 illustrates the independence

of unsatis�ed agents. Figure 3 (a) shows two TTC -graphs which di�er only in the outgoing arcs of an

unsatis�ed agent - agent 2. Figure 3 (b) shows the directed graphs after a unique pointee selection criterion,

satisfying independence of unsatis�ed agents, has been applied to the TTC -graphs of Figure 3 (b). It can be

observed that the directed graphs of Figure 3 (b) di�er only in the unique pointee selected for agent 2.

Persistence requires that if, during the running of the algorithm, an object is made available to an unsatis�ed

agent, that object stays available to her until she departs or becomes satis�ed. Formally, let Gt = (Nt, Et)

be the TTC -graph at step t for the rule ϕ and let F be the unique pointee selection criterion associated with

the rule ϕ. If at step t of the rule ϕ, there is a chain Ch ∈ Ch (F (Gt)) such that Ch = (i1, · · · , im) and

im ∈ Ut, then the chain Ch �persists� in all of the directed graphs F (Gt̃) where t̃ < tm and tm is the �rst

13



(a) Two TTC -graphs which di�er only in the outgoing arcs of agent 2 who is an unsatis�ed
agent.

(b) A unique pointee selection criterion, satisfying independence of unsatis�ed agents, is
applied to the TTC -graphs of Figure 3 (a). The resulting directed graphs di�er only in
the unique pointee selected for the unsatis�ed agent 2. The arcs not selected by the unique
pointee selection criterion are represented as dashed arcs.

Figure 3

step in which agent im departs or becomes satis�ed i.e. Ch ∈ Ch (F (Gt̃)) for all t̃ < tm.14 Figure 4 provides

a visual presentation of persistence. According to this condition, if a chain to an unsatis�ed agent is formed,

under the unique pointee selection criterion F at some step t, then this chain occurs until the unsatis�ed

agent receives an object at least as good as any of the objects held by the agents in these chains because she

can always form a trading cycle by pointing at any of the agents in these chains. If a unique pointee selection

14Agent im can become satis�ed at step tm if: (1) she becomes part of a trading cycle at step tm − 1, or (2) tm is the �rst
step in which agent im likes her endowment at least as much as each of the remaining objects. Additionally, the distinction
between departing and becoming satis�ed is necessary because even after an agent becomes satis�ed, she is not removed from
the problem until she satis�es the departure condition.
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criterion of a rule does not satisfy persistence, it is possible that at some step an object is made available

to an unsatis�ed agent and she prefers that object to her �nal assignment. In this case, she would have an

incentive to misreport her preferences to become part of a trading cycle in the step this object was made

available to her. Hence, strategy proofness can be violated if persistence does not hold.

Figure 4: For a unique pointee selection criterion that satis�es persistence, if a chain is formed to an unsatis�ed agent

(agent im) at step t, that chain �persists� in the following steps t̃ < tm where tm is the �rst step in which agent im
departs or becomes satis�ed.

4.3 Top Trading Absorbing Sets Rule

A brief description of the TTAS rule, proposed by Alcalde-Unzu & Molis [2], is given in this subsection. Let ≺

be a priority ordering over objects. For any (R,ω) ∈ RN×A and priority ordering over objects ≺, the outcome

of the TTAS rule is denoted as TTAS≺ (R,ω). It should be noted that the unique pointee selection criterion

of the TTAS rule, FTTAS , is de�ned only for the absorbing sets of the TTC -graph. However, if FTTAS is

applied to the whole TTC -graph, rather than just for the absorbing sets, the rule behaves equivalently.15

So, the equivalent variant of the TTAS rule, where FTTAS is applied to the whole TTC -graph, is presented

here.16 Additionally, in the presentation of the TTAS rule, each agent points at an object and each object

points at the agent who holds it [2]. However, the rule is described here so that agents point at other agents

instead of objects for notational congruity. Step t of the TTAS rule proceeds as follows:

1. Groups of agents are chosen to depart according to the departure condition until no more groups of

15This is formally presented in the proof of strategy proofness of the TTAS rule [2] and is intuitively explained by Saban &
Sethuraman [17].

16The equivalent variant of the TTAS rule is used in this paper because the unique pointee selection criterion of the TC and
HPO rules is de�ned for the whole TTC -graph. This allows the application of a common su�cient condition of weak group

strategy proofness to the three rules.
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agents satisfy the departure condition. Each departing agent is assigned the object she is holding at

step t i.e. if agent i was chosen to depart, then TTAS≺i (R,ω) = hi,t.

2. The unique pointee selection criterion for the TTAS rule, FTTAS , is de�ned as follows: If all of the

agent's most preferred objects (among the remaining ones) have been held by her at least m times, she

points at whoever owns one of her most preferred objects (among the remaining ones), that she has

not held m+ 1 times, with the highest priority under ≺. The endowment of an agent is considered as

a previously assigned object.

3. Each agent is pointing at exactly one agent under FTTAS . Then, there is at least one trading cycle. At

step t + 1, objects of each agent in a trading cycle at step t are updated i.e. if agent i is in a trading

cycle at step t, then hi,t+1 = hpi,t,t.

The TTAS algorithm ends when every agent has departed. The TTAS rule is Pareto e�cient, individually

rational, strategy proof, weak core-selecting, and core-selecting (whenever the core is non-empty) [2]. However,

the TTAS rule can have an exponential running time in the worst case [3].

The unique pointee selection criterion for the TTAS rule, FTTAS , satis�es the independence of unsatis�ed

agents as the unique pointee for each agent is determined independently from the preferences of all the other

agents. Moreover, FTTAS enforces persistence because an agent i continues to point at an agent j until agent

j departs or becomes part of a trading cycle.17 However, it should be noted that the variant of persistence

imposed on the TTAS rule di�ers from persistence in the sense that each agent's pointing �persists� until

her unique pointee departs or becomes part of a trading cycle whereas persistence only requires those chains

to �persist� which have an unsatis�ed agent as the last agent.18 The di�erence between these two properties

is highlighted in Figure 5. Figure 5 shows that the unique pointees of agents i1, · · · , im−2 can �persist� even

after agent im, the unsatis�ed agent, has departed or become satis�ed as long as agent im−1 does not become

part of a trading cycle at step tm−1 where tm is the �rst step in which agent im departs or becomes satis�ed.

If agent im−1 does not become part of a trading cycle at step tm− 1, then agents i1, · · · , im−1 hold the same

17The variant of persistence imposed on the TTAS and TC rules implies persistence because whenever an agent becomes
part of a trading cycle in these rules, she is guaranteed to receive one of her most preferred objects (among the remaining ones)
in the next step i.e. unsatis�ed agents necessarily become satis�ed after becoming part of a trading cycle.

18Even though the TTAS and TC rules satisfy a variant of persistence which implies persistence, the proofs for these two
rules rely only on the implied persistence.
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objects at steps tm − 1 and tm which means that, under FTTAS , the selected unique pointees for agents

i1, · · · , im−2 are the same at steps tm − 1 and tm. However, this is more than what persistence requires

because agent im is not unsatis�ed at step tm.

Figure 5: Step t is the �rst step in which this chain occurs and step tm is the �rst step in which agent im
departs or becomes satis�ed such that agent im−1 is not part of a trading cycle at step tm− 1. Then, for the
TTAS and TC rules, agents i1, · · · , im−2 have the same unique pointees at step tm whereas persistence does
not enforce these pointees at step tm.

4.4 Top Cycles Rule

In this subsection, the TC rule, proposed by Jaramillo & Manjunath [8], is brie�y described along with some

relevant notation. Let ≺ be a priority ordering over agents. For any (R,ω) ∈ RN × A and priority ordering

≺, the outcome of the TC rule is denoted as TC≺ (R,ω). Step t of the algorithm proceeds as follows:

1. Groups of agents satisfying the departure condition are selected to depart until no other group of agents

satis�es the departure condition. Each departing agent is assigned the object she is holding i.e. if agent

i was chosen to depart at step t, then TC≺i (R,ω) = hi,t.

2. Unique pointee selection criterion for the TC rule, FTC , determines unique pointees for each agent at

step t as follows:

(a) For any agent j who holds the same object as in the previous step, the agents pointing at her in

the previous step, point at agent j in the current step under FTC . Formally, if hj,t = hj,t−1 for

j ∈ Nt, then pi,t = j for all i ∈ Nt such that pi,t−1 = j.
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(b) If at least one of the most preferred objects (among the remaining ones) of an agent is held by an

unsatis�ed agent, she points at the unsatis�ed agent with the highest priority under ≺.

(c) Any agent who is not pointing by this stage must have all of her most preferred objects (among

the remaining ones) held by satis�ed agents. From 2 (b), each satis�ed agent who has one of

her most preferred objects (among the remaining ones) held by an unsatis�ed agent is pointing

at an unsatis�ed agent. Denote the set of these agents as LU 1 i.e. LU 1 = {i ∈ St : pi,t ∈ Ut}.

Sequentially, de�ne LU k = {i ∈ St : pi,t ∈ LU k−1} for k > 1. Induce an ordering ≺k as follows:

for any i, j ∈ LU k, de�ne i ∼k j if i = j and pi,t ∼k−1 pj,t where i ∼1 j if i = j and pi,t = pj,t

are true, and i ≺k j if (1) pi,t ≺k−1 pj,t holds, or (2) pi,t ∼k−1 pj,t and i ≺ j are true where

≺1=≺. Now, consider an agent who is not pointing yet and has one of her most preferred objects

(among the remaining ones) held by some agent in LU k. Among the agents in LU k who hold

one of her most preferred objects (among the remaining ones), she points at the agent who has a

higher priority under ≺k. Continue the process until LU k = φ.19

(d) Any agent who is still not pointing, points at the highest priority agent, other than herself, who

holds one of her most preferred objects (among the remaining ones).

3. Since each agent is pointing at exactly one agent, there is at least one trading cycle under the unique

pointee selection criterion FTC . In the next step of the TC rule, objects of the agents in a trading

cycle are updated i.e. if agent i is part of a trading cycle at step t, hi,t+1 = hpi,t,t.

The second phase of the TC rule ensures that each trading cycle has at least one unsatis�ed agent as long

as 2 (a) is not in e�ect. The algorithm is terminated when all of the agents have departed. The TC rule

is Pareto e�cient, individually rational, strategy proof, weak core-selecting, and core-selecting (whenever the

core is non-empty) [3, 8]. Moreover, it has been shown to have a polynomial running time [8].

The TC rule satis�es the independence of unsatis�ed agents because unique pointees are selected indepen-

dently from the preferences of unsatis�ed agents. Basically, for each agent, a unique pointee is determined to

19Only satis�ed agents are considered in the de�nition of LU k because once the unique pointees are determined for the agents
who have one of their most preferred objects (among the remaining ones) owned by an unsatis�ed agent, the rule needs to
determine unique pointees for the agents who have all of their most preferred objects (among the remaining ones) owned by
satis�ed agents.

18



form a path to the closest possible unsatis�ed agent under FTC . As this does not depend on the preferences

of the unsatis�ed agent, because the path ending in an unsatis�ed agent consists entirely of satis�ed agents (if

any), the TC rule satis�es the independence of unsatis�ed agents. The TC rule explicitly imposes persistence

in 2 (a) which requires that an agent i continues to point at an agent j as long as agent j holds the same object

as the previous step of the rule. This is referred to as TC -persistence in this paper. TC -persistence implies

persistence but di�ers from persistence because each agent's pointing �persists� until her pointee departs or

becomes part of a trading cycle.17,18 The di�erence between TC -persistence and persistence is highlighted in

Figure 5. Figure 5 shows that, under TC -persistence, if agent im−1 does not become part of a trading cycle

at step tm−1, then agents i1, · · · , im−1 hold the same objects at steps tm−1 and tm. Then, under FTC , the

unique pointees for agents i1, · · · , im−2 are the same at steps tm−1 and tm. However, since agent im departs

or becomes satis�ed at step tm, she is no longer unsatis�ed at step tm. Therefore, the unique pointees for

agents i1, · · · , im−2 are not required to be the same at steps tm−1 and tm under persistence.

4.5 Highest Priority Object Rule

This subsection brie�y describes the HPO rule proposed by Saban and Sethuraman [17]. The HPO rule uses

a priority ordering over objects which is then used to induce an ordering over agents at each step. However,

the induced ordering over agents is not used for the HPO rule and was used only to show that the HPO rule

is a member of the CAIO family [17]. As such, the induced ordering over agents is ignored in the following

description. Let ≺ be a priority ordering over objects. For any (R,ω) ∈ RN × A and priority ordering over

objects ≺, the outcome of the HPO rule is denoted as HPO≺ (R,ω). Step t of the HPO rule proceeds as

follows:

1. Sets of agents are chosen to depart according to the departure condition until no more sets of agents

satisfy the departure condition. Each departing agent is assigned the object she holds at step t i.e. if

agent i was chosen to depart at step t, then HPO≺i (R,ω) = hi,t.

2. FHPO determines a unique pointee for each agent in Nt in the following manner:

(a) FHPO enforces persistence as follows: For any j ∈ Ut and Ch ∈ Chj

(
FHPO (Gt−1)

)
, it must be

that pi,t = pi,t−1 for each i ∈ {i1, · · · , im} where Ch = (i1, · · · , im, j).
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(b) For each i ∈ Ut who is not pointing yet, agent i points at the agent who owns the highest priority

object in τ (Ri, Ot) under the priority ordering ≺.

(c) Any agent who is not pointing yet must be a satis�ed agent. Repeat the following until all satis�ed

agents are pointing:

i. Let L be the set of all agents who are already pointing. Refer to these agents as labeled agents.

ii. Agent i ∈ Nt is said to be adjacent to labeled agents if hj,t ∈ τ (Ri, Ot) for some j ∈ L i.e.

an agent is adjacent to labeled agents if at least one of her most preferred objects (among

the remaining ones) is held by a labeled agent. The set of agents who are adjacent to labeled

agents is denoted as AL.

iii. Select the agent in AL who owns the highest priority object, say agent i. Agent i points at

the agent in L who owns one of her most preferred objects (among the remaining ones) with

the highest priority under ≺. Go back to stage i.

3. Since each agent is pointing at exactly one agent, there is at least one trading cycle under FHPO .

Moreover, each trading cycle has at least one unsatis�ed agent. In step t+ 1 of the HPO rule, objects

of each agent in a trading cycle of step t are updated i.e. if agent i is part of a trading cycle at step t,

hi,t+1 = hpi,t,t.

The HPO rule is Pareto e�cient, individually rational, strategy proof, and weak core-selecting [17]. Moreover,

the HPO rule can be implemented in O
(
n2 log n+ n2γ

)
where n is the number of agents in the problem and

γ is the maximum number of objects agents are indi�erent between for the given preference pro�le.

The HPO rule satis�es independence of unsatis�ed agents because the unique pointee for each agent is de-

termined independently from the preferences of unsatis�ed agents. Moreover, persistence is directly imposed

on the unique pointee selection criterion of the HPO rule.

5 Results and Discussion

In this section, a su�cient condition for weak group strategy proofness is presented. Using this su�cient

condition, it is established that the TTAS , TC , and HPO rules satisfy weak group strategy proofness even
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though group strategy proofness is incompatible with Pareto e�ciency for the housing market problem with

weak preferences [6]. The following example shows that the TTC rule with �xed tie-breaking, which satis�es

weak Pareto e�ciency instead of Pareto e�ciency [7], does not satisfy group strategy proofness regardless of

how the ties are broken.

Example 2. Consider the following housing market problem: let N = {1, 2, 3}, O = {a, b, c}, ω = (a, b, c) and

the preference pro�le, R = (R1, R2, R3), be given as:

R1 R2 R3 R′1 R′′1

bc a a b c

a b c c b

c b a a

Let P = (P1, P2, P3) be the preference pro�le for which ties in R are broken. Then, P2 = R2 and P3 = R3

because R2 and R3 do not have any ties. Moreover, P1 ∈ {R′1, R′′1} i.e. there are exactly two ways of breaking

ties in R1. If the tie-breaking is done so that P1 = R′1, the outcome of the TTC rule with �xed tie-breaking

is (b, a, c). In this case, if agent 1 misreported her preferences as R′′1 , the outcome of the TTC rule with �xed

tie-breaking would change to (c, b, a) i.e. agent 1's welfare does not change while agent 3 becomes better-o�.

On the other hand, if ties are broken so that P1 = R′′1 , the outcome of the TTC rule with �xed tie-breaking

is (c, b, a). In this case, agent 1 can misreport her preferences as R′1 which would change the outcome of the

TTC rule with �xed tie-breaking to (b, a, c) i.e. agent 2 becomes better-o� and agent 1's welfare remains

unchanged.

Example 2 shows that the TTC rule with �xed tie-breaking is unable to achieve group strategy proofness

even though it satis�es weak Pareto e�ciency instead of Pareto e�ciency. This is because the equivalence

of strategy proofness and non-bossiness with group strategy proofness, which holds for strict preferences

[11, 18], does not hold for weak preferences [7]. Non-bossiness is applicable only when an agent's outcome

remains unchanged whereas, in the presence of indi�erences, the agent can receive a di�erent outcome while

maintaining the same welfare level. In this scenario, non-bossiness does not apply and, as such, is unable

to rule out group manipulation as illustrated in Example 2. However, it is straightforward to show that

21



the TTC rule with �xed tie-breaking does satisfy weak group strategy proofness. This result follows directly

from group strategy proofness of the TTC rule for strict preferences [4] and, as such, a formal proof is not

provided.

Proposition 1. The TTC rule with �xed tie-breaking satis�es weak group strategy proofness.

The proof of the su�cient condition for weak group strategy proofness is not straightforward even though the

TTAS , TC , and HPO rules reduce to the TTC rule for the restricted case of strict preferences. However,

the proof shares many similarities with the proof of the su�cient condition for strategy proofness presented

in Saban & Sethuraman [17]. As such, I brie�y discuss both these proofs to highlight the similarities and the

di�erences.20

Similar to the proof of strategy proofness, independence of unsatis�ed agents and persistence are important

properties for ensuring weak group strategy proofness. Note that persistence is de�ned for all unsatis�ed

agents, appearing at any step of the algorithm, and, as such, it does not need to be modi�ed for dealing

with groups of agents to prove weak group strategy proofness. Additionally, even though the independence of

unsatis�ed agents is de�ned for an unsatis�ed agent misreporting her preferences, it implies �independence�

for any group of unsatis�ed agents jointly misreporting their preferences i.e. if the TTC -graphs for two

housing market problems di�er in the outgoing arcs of only unsatis�ed agents, the unique pointees chosen

for the other agents are identical as long as the unique pointee selection criterion satis�es independence of

unsatis�ed agents. Saban & Sethuraman [17] show that strategy proofness is equivalent to local invariance

for the members of the CAIO family as these rules satisfy independence of unsatis�ed agents and persistence.

Local invariance is de�ned as follows: Consider a housing market problem (R,ω) ∈ RN × A and a rule

ϕ. Suppose ϕi (R,ω) = a for an arbitrary agent i ∈ N . Let R′ ∈ RN be a preference pro�le such that

R′ = (R−i, R
′
i) where R′i|O\{a} = Ri|O\{a} (the preference ordering of agent i is identical for the objects in

O\ {a} under Ri and R′i) and, for each b ∈ O\ {a}, bPia⇒ bP ′ia and aRib⇒ aP ′i b. Then, the rule ϕ satis�es

local invariance if ϕi (R′, ω) = a. Following Jaramillo & Manjunath [8], R′i is referred to as the local push-up

of Ri at a.

Local invariance reduces the misreported preferences that have to be ruled out as successful misreports for a

20These similarities are also shared with the proofs for strategy proofness of the TTAS and TC rules.
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rule to be strategy proof. For a rule that satis�es local invariance, if agent i receives a better object (say a ∈ O)

by reporting R′i, instead of her true preference Ri, she can receive the same object by reporting the local

push-up of R′i at a (say R′′i ). Additionally, when agent i reports R′′i , she is removed from the problem with

object a after becoming part of the trading cycle exactly once because she satis�es the departure condition

after she has been assigned object a under the reported preferences R′′i .
21 As such, local invariance allows

for a somewhat simpler proof for strategy proofness in this context.

After establishing equivalence of local invariance and strategy proofness for the rules that satisfy the in-

dependence of unsatis�ed agents and persistence, Saban & Sethuraman [17] provide conditions for unique

pointee selection criteria to ensure local invariance. Using these conditions, strategy proofness for the rules

in the CAIO family is established. Unfortunately, local invariance cannot be utilized for weak group strategy

proofness as the latter deals with a group of agents jointly misreporting their preferences while the former

is de�ned only for one agent. Even if local invariance is suitably adjusted for groups of agents, it cannot be

used in the context of the housing market problem with weak preferences because no rule is Pareto e�cient,

strategy proof, individually rational, and non-bossy [5, 7, 8]. Since members of the CAIO family satisfy Pareto

e�ciency, strategy proofness, and individual rationality [17], these rules cannot be non-bossy. So, even when

the outcome of an agent remains unchanged, the outcome of the remaining agents can change suggesting that

a group variant of local invariance may not be suitable for proving weak group strategy proofness. Hence, for

the su�cient condition, I skip this intermediary step and directly present a condition for the unique pointee

selection criterion which is able to ensure weak group strategy proofness for the members of the CAIO family.

Then, I prove weak group strategy proofness of the TTAS , TC , and HPO rules by showing that the unique

pointee selection criterion of each of these rules satis�es this condition.

Independence of unsatis�ed agents is de�ned for one unsatis�ed agent who is misreporting her preferences.

However, this property applies to situations where multiple unsatis�ed agents are jointly misreporting their

preferences. Speci�cally, for a rule satisfying independence of unsatis�ed agents, if two TTC -graphs di�er

only in the outgoing arcs of unsatis�ed agents, then the unique pointees of the other agents are identical if the

unique pointee selection criterion satis�es independence of unsatis�ed agents. The proof is straightforward and

21Local invariance is an important step in the proofs of strategy proofness of the TTAS and TC rules and the su�cient
condition of Saban & Sethuraman [2, 8, 17].
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requires the construction of a sequence of TTC -graphs so that any two consecutive TTC -graphs di�er only

in the outgoing arcs of an unsatis�ed agent, and the �rst and �nal TTC -graphs are the two directed graphs

which di�er only in the outgoing arcs of unsatis�ed agents. This allows the application of the independence

of unsatis�ed agents for the consecutive TTC -graphs and provides the required result which is formally

presented in the following lemma.

Lemma 1. Let G and G′ be two TTC -graphs which di�er only in the outgoing arcs of unsatis�ed agents.

If the unique pointee selection criterion F satis�es the independence of unsatis�ed agents, then the directed

graphs F (G) and F (G′) di�er only in the outgoing arcs of the unsatis�ed agents.

Proof. Let G = (N,E) and G′ =
(
N, É

)
be the TTC -graphs such that Ei = Éi for all i ∈ N\M and M

is a set of unsatis�ed agents. It has to be shown that EF
i = ÉF

i for each i ∈ N\M for the directed graphs

F (G) and F (G′) where the unique pointee selection criterion F satis�es independence of unsatis�ed agents.

Without loss of generality, let M = {i1, · · · , im}. An example of the TTC -graphs G and G′ is provided

in Figure 6 (a). Let G0 = G, and G1, · · · , Gm be the TTC -graphs such that, for any k ∈ {1, · · · ,m},

Gk and G0 di�er only in the outgoing arcs from the agents i1, · · · , ik. Moreover, the outgoing arcs of the

agents i1, · · · , ik, in the TTC -graph Gk, are identical to the outgoing arcs of these agents in G′. Then, by

construction, Gm = G′. It should be noted that for k = 1, · · · ,m, the TTC -graphs Gk−1 and Gk di�er

only in the outgoing arcs of the unsatis�ed agent ik. Figure 6 (b) exhibits this construction for the the two

TTC -graphs presented in Figure 6 (a). Then, for k = 1, · · · ,m, the directed graphs F
(
Gk−1) and F (Gk

)
di�er only in the outgoing arcs of the unsatis�ed agent ik because F satis�es independence of unsatis�ed

agents. The application of a unique pointee selection criterion, satisfying independence of unsatis�ed agents,

on the sequence of TTC -graphs of Figure 6 (b) is depicted in Figure 6 (c). Then, the directed graphs

F
(
G0
)

= F (G) and F (Gm) = F (G′) di�er only in the outgoing arcs for the unsatis�ed agents in M i.e.

EF
i = ÉF

i for each i ∈ N\M . �

The main proof of this paper proceeds by contradiction for which some additional notation is presented

here. For what follows, let R,R′ ∈ RN be such that R′ =
(
RN\M , R

′
M

)
and M ⊆ N . Moreover, assume

that ϕi (R′, ω)Piϕi (R,ω) for each i ∈ M for a rule ϕ that is a member of the CAIO family. Let Nt and

Ot be the set of remaining agents and objects, respectively, after the departure phase of step t under R.

Similarly, let N ′t and O
′
t be the set of remaining agents and objects after the departure phase of step t under
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(a) The two TTC -graphs, G and G′, which di�er only in the out-
going arcs of the unsatis�ed agents i1, · · · , im.

(b) A sequence of the TTC -graphs is constructed so that the �rst and last TTC -graphs are the TTC -graphs G and G′,
respectively. Moreover, consecutive TTC -graphs di�er only in the outgoing arcs of an unsatis�ed agent. This allows the
application of the independence of unsatis�ed agents for the consecutive TTC -graphs.

(c) A unique pointee selection criterion, satisfying independence of unsatis�ed agents, is applied to the TTC -graphs of
Figure 6 (b). It can be observed that the consecutive directed graphs di�er only in the unique pointee of an unsatis�ed
agent.

Figure 6

25



R′, respectively. Let ht and h′t be the bijections stating the objects that are held by agents at step t under

R and R′, respectively. Let Gt = (Nt, Et) and G′t =
(
N ′t , Ét

)
represent the TTC -graphs at step t of rule ϕ

under R and R′, respectively. Let Ch (Gt) and C (Gt) represent the sets of all chains and cycles, respectively,

in the TTC -graph Gt while the corresponding sets for G′t are denoted as Ch (G′t) and C (G′t). Moreover,

let Chi (Gt) be the set of all chains in Ch (Gt) which have agent i as the last agent and Ci (Gt) be the set

of all cycles in C (Gt) which include agent i. The corresponding sets for the TTC -graph G′t are denoted as

Chi (G′t) and Ci (G′t).

Let F be the unique pointee selection criterion for the rule ϕ. The directed graphs with the unique pointee

selection criterion applied are denoted as F (Gt) =
(
Nt, E

F
t

)
and F (G′t) =

(
N ′t , É

F
t

)
at step t under R and

R′, respectively. Then, Ch (F (Gt)) and C (F (Gt)) represent the chains and cycles in the directed graph

F (Gt), respectively. Moreover, Chi (F (Gt)) is the set of all chains in Ch (F (Gt)) which have agent i as the

last agent and Ci (F (Gt)) is the set of all cycles in C (F (Gt)) which include agent i. The corresponding

sets for the directed graph F (G′t) are denoted as Ch (F (G′t)), C (F (G′t)), Chi (F (G′t)), and Ci (F (G′t)). In

accordance with the directed graphs F (Gt) and F (G′t), let pi,t and p
′
i,t denote the agent pointed at by agent

i at step t under R and R′, respectively. Let hi,t and h′i,t denote the object held by agent i at step t under

R and R′, respectively. Moreover, de�ne the following:

CONN i,t ≡ {j ∈ Nt : j ∈ Ch for some Ch ∈ Chi (F (Gt))}

Therefore, CONN i,t is the set of all agents who have a path to agent i in the directed graph F (Gt) i.e. these

agents are either directly or indirectly pointing at agent i at step t under R. Let CONNM,t = ∪i∈MCONN i,t

where M ⊆ N .

In the following lemma, certain results are established for a member of the CAIO family that violates weak

group strategy proofness.

Lemma 2. Consider a rule ϕ belonging to the CAIO family. If there isM ⊆ N such that ϕi (R′, ω)Piϕi (R,ω)

for each i ∈M , where R′ =
(
RN\M , R

′
M

)
, then:

1. ϕi (R′, ω)Piωi for each i ∈M i.e. each agent in M becomes part of a trading cycle at least once under
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R′,

2. no agent in M departs at step 1 of ϕ under R or R′, and

3. no agent in M is satis�ed at step 1 under R.

Proof. Consider a rule ϕ that is a member of the CAIO family. Let R,R′ ∈ RN be such that R′ =(
RN\M , R

′
M

)
and ϕi (R′, ω)Piϕi (R,ω) for each i ∈ M . De�ne α ≡ ϕ (R,ω) and α′ ≡ ϕ (R′, ω). Since ϕ

is a member of the CAIO family it satis�es individual rationality, then αiRiωi is true for each i ∈ M . By

assumption, α′iPiαi for each i ∈M , then α′iPiωi holds for each i ∈M . So, statement (1) of Lemma 2 is true.

Statement (2) of Lemma 2 for R′ follows directly from statement (1) of Lemma 2. To see that statement (2)

of Lemma 2 is true for R, consider the following: For contradiction, suppose that agent i ∈ M is the �rst

agent in M to depart at step 1 under R. Let Ñ and Õ be the set of agents and objects, respectively, which

have departed before agent i. Then, αi ∈ τ
(
Ri, O\Õ

)
. Note that, by the departure condition, agents in Ñ

are selected to depart with objects in Õ under R′ as well. Since αi ∈ τ
(
Ri, O\Õ

)
, it must be that αiRiα

′
i

which is a contradiction. Therefore, statement (2) of Lemma 2 is true.

Suppose, for contradiction of statement (3) of Lemma 2, that there is an agent i ∈ M who is satis�ed at

step 1 under R. Then, ωi ∈ τ (Ri, O1).22 Since α′iPiαi and αi ∈ τ (Ri, O1), then it must be that α′i ∈ O\O1.

Additionally, agents in N\N1 depart with objects in O\O1 at step 1 under R′ and, by the departure condition,

αj = α′j = ωj for each j ∈ N\N1 and O\O1 = {a ∈ O : aRjωj for j ∈ N\N1}. Then, if agent i is assigned α′i

under R′, some agent in N\N1 would be made worse-o� under R′ which would violate individual rationality

because at least one agent in N\N1 would have to be assigned an object in O1. Therefore, statement (3) of

Lemma 2 is true which completes the proof. �

Next, similar to the proofs of strategy proofness by Alcalde-Unzu & Molis [2] and Jaramillo & Manjunath

[8], and the proof of the su�cient condition by Saban & Sethuraman [17], for R and R′ the steps of the rule

ϕ are divided into two categories: before and after the �rst agent in the group of jointly misreporting agents

departs, becomes satis�ed, or becomes part of a trading cycle. Let t be the �rst step where either of the

following is true for some agent i ∈M under R :

22From statement (2) of Lemma 2, agent i does not depart at step 1.
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1. agent i departs at step t,

2. agent i becomes satis�ed at step t, or

3. agent i becomes part of a trading cycle at step t.

Let the corresponding step for R′ be denoted as t′. De�ne t = min {t, t′}. Before step t, no agent in M

departs, becomes satis�ed, or becomes part of a trading cycle for the rule ϕ under R or R′. Additionally, for

the steps following step t, some agent in M has departed, becomes satis�ed, or becomes part of a trading

cycle for either R or R′. These categories are made so that the proof is more tractable. For all of the steps

before step t, the TTC -graphs for R and R′ di�er only in the outgoing arcs of unsatis�ed agents inM . Thus,

the independence of unsatis�ed agents is applicable for these steps. For the steps after step t, at least one

agent in M has departed, becomes satis�ed, or becomes part of a trading cycle under R or R′. As such, the

independence of unsatis�ed agents is not enough and additional restrictions on the unique pointee selection

criterion are necessary.

The next result shows that for the members of the CAIO family, the state of the algorithm is identical under

R and R′ before step t. This is because only agents who are truthfully reporting their preferences are involved

in any trading cycles that occur before step t for R and R′. In other words, the following result establishes

that a group of agents cannot change the state of the algorithm before step t by jointly misreporting their

preferences. The proof relies on the fact that for each step before t, the TTC -graphs under R and R′ di�er

only in the outgoing arcs of the agents inM , the group of jointly misreporting agents. Then, by the de�nition

of t, the agents in M are unsatis�ed before step t under R and R′. Since every member of the CAIO family

satis�es the independence of unsatis�ed agents, this allows the application of Lemma 1 i.e. the directed

graphs di�er only in the unique pointees selected for the unsatis�ed agents in M under R and R′.

Lemma 3. (t equality) Consider a rule ϕ belonging to the CAIO family. Let M ⊆ N be such that

ϕi (R′, ω)Piϕi (R,ω) for each i ∈M where R′ =
(
RN\M , R

′
M

)
and t be the �rst step an agent in M departs,

becomes satis�ed, or becomes part of a trading cycle under R or R′. Then, for all t̃ < t:

1. Nt̃ = N ′
t̃
and Ot̃ = O′

t̃
,

2. ht̃ = h′
t̃
,
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3. pj,t̃ = p′
j,t̃

holds for each j ∈ Nt̃\M ,

4. ht = h′t, and

5. if no agent in M departs at step t under R, it must be that Nt = N ′t and Ot = O′t.

Proof. Consider a rule ϕ that is a member of the CAIO family. Let R,R′ ∈ RN be such that R′ =(
RN\M , R

′
M

)
and ϕi (R′, ω)Piϕi (R,ω) for each i ∈ M . Let t be the �rst step for which some agent in M

departs, becomes satis�ed, or becomes part of a trading cycle under R. Denote the corresponding step under

R′ as t′. Then, t = min {t, t′}. Since ϕ is a member of the CAIO family, it satis�es the independence of

unsatis�ed agents.

If t = 1, Lemma 3 is vacuously true. Now, suppose that t > 1. Consider t̃ = 1. By statement (2) of Lemma

2, no agent in M departs at step 1 under R or R′. Then, the set of departing agents and objects should be

the same, under R and R′, because Rj = R′j for each j ∈ N\M . So, N1 = N ′1 and O1 = O′1. Moreover, since

each agent holds her endowment at step 1, h1 = h′1. Since t̃ < t, each agent in M is unsatis�ed at step 1

under R and R′. Since the rule ϕ satis�es the independence of unsatis�ed agents, by Lemma 1, pj,1 = p′j,1 is

true for each j ∈ N1\M proving statement (3) of Lemma 3 for t̃ = 1.

Now, suppose that statements (1), (2), and (3) of Lemma 3 are true for some step t̃ < t − 1. I show that

statements (1), (2), and (3) of Lemma 3 are true for step t̃ + 1. By the induction hypothesis, Nt̃ = N ′
t̃
,

Ot̃ = O′
t̃
, ht̃ = h′

t̃
, and pj,t̃ = p′

j,t̃
are true for each j ∈ Nt̃\M . Therefore, the directed graphs F (Gt̃) and

F
(
G′

t̃

)
are identical for the agents in Nt̃\M . Hence, the same trading cycles occur for the agents in Nt̃\M

at step t̃ because agents own the same objects, ht̃ = h′
t̃
, and agents in Nt̃\M have the same unique pointees

under R and R′ i.e. pj,t̃ = p′
j,t̃

for each j ∈ Nt̃\M . Additionally, no agent in M is part of a trading cycle at

step t̃ < t under R and R′ i.e. Ci (F (Gt̃)) = Ci

(
F
(
G′

t̃

))
= φ for each i ∈ M . Then, ht̃+1 = h′

t̃+1
because

ht̃ = h′
t̃
and the same trading cycles occur at step t̃ under R and R′.

Since t̃ + 1 < t, no agent in M departs at step t̃ + 1 under R or R′. So, Nt̃+1 = N ′
t̃+1

and Ot̃+1 = O′
t̃+1

because ht̃+1 = h′
t̃+1

and Rj = R′j for each j ∈ N\M . The TTC -graphs Gt̃+1 and G′
t̃+1

di�er only in the

outgoing arcs of the agents in M who are unsatis�ed at step t̃+ 1 < t under R and R′ because Nt̃+1 = N ′
t̃+1

,

Ot̃+1 = O′
t̃+1

, ht̃+1 = h′
t̃+1

, and Rj = R′j for each j ∈ N\M . Since the rule ϕ satis�es the independence
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of unsatis�ed agents, the directed graphs F
(
Gt̃+1

)
and F

(
G′

t̃+1

)
di�er only in the outgoing arcs of the

unsatis�ed agents in M by Lemma 1 i.e. pj,t̃+1 = p′
j,t̃+1

holds for each j ∈ Nt̃+1\M .

To prove statement (4) of Lemma 3, note that ht−1 = h′t−1, pj,t−1 = p′j,t−1 for each j ∈ Nt−1\M , and no

agent in M is part of a trading cycle at step t− 1 under R and R′. So, the same trading cycles occur at step

t− 1 under R and R′. Therefore, it can be concluded that ht = h′t.

For statement (5) of Lemma 3, suppose that no agent in M departs at step t under R. By statement (1) of

Lemma 2, each agent in M becomes part of a trading cycle at least once under R′ i.e. no agent in M departs

at step t under R′. Since ht = h′t and Rj = R′j for each j ∈ N\M , it must be that Nt = N ′t and Ot = O′t

because only agents in N\M depart at step t under R and R′. �

Note that persistence is not required to prove Lemma 3 because it is utilized to keep track of the objects

that become available to the unsatis�ed agents. Since no agent in M becomes part of a trading cycle before

step t under R and R′, tracking such objects is not necessary.

Lemma 3 establishes that the agents in M cannot manipulate the state of the algorithm before step t.

However, after step t, the agents in M can depart, become satis�ed, or become part of a trading cycle. As

such, the two TTC -graphs may not share the same vertices or they do not di�er only in the outgoing arcs of

the unsatis�ed agents as some agents in M might be satis�ed. Then, the independence of unsatis�ed agents

is no longer applicable and, thus, the algorithm could be susceptible to group manipulation after step t.

Therefore, the next task is to restrict the ability of the group of misreporting agents to manipulate the state

of the algorithm after step t. This is achieved by considering a restriction on the unique pointee selection

criterion which is referred to as consistent pointing. Consistent pointing is de�ned as follows:

Consistent Pointing: Consider R,R′ ∈ RN such that R′ =
(
RN\M , R

′
M

)
for some M ⊆ N . Let t be

the �rst step an agent in M departs, becomes satis�ed, or becomes part of a trading cycle under R. Let

the corresponding step under R′ be represented as t′. Suppose t′ < t. Then, the unique pointee selection

criterion, associated with the rule ϕ - a member of the CAIO family - is consistent if for all t̃ ∈ {t′, · · · , t− 1}:

1.
N ′

t̃
⊆ Nt̃

Nt̃\N ′t̃ ⊆ CONNM,t̃−1

and
O′

t̃
⊆ Ot̃

Ot̃\O′t̃ ⊆ hCONNM,t̃−1,t̃

,
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2.
St̃ ⊆ S′t̃

S′
t̃
\St̃ ⊆ CONNM,t̃−1

or, equivalently,
U ′
t̃
⊆ Ut̃

Ut̃\U ′t̃ ⊆ CONNM,t̃−1

,

3. pj,t̃ = p′
j,t̃

holds for each j ∈ Nt̃\CONNM,t̃, and

4. hj,t̃+1 = h′
j,t̃+1

holds for each j ∈ Nt̃\CONNM,t̃.

If the unique pointee selection criterion F of the rule ϕ is consistent, the rule ϕ is said to satisfy consistent

pointing.23 The statements of consistent pointing might seem complicated which is why an explanation for

each of those is provided here: According to statement (1) of consistent pointing, N ′
t̃
⊆ Nt̃ and O

′
t̃
⊆ Ot̃. This

suggests that the sets of remaining agents and objects under R′ are a subset of the sets of remaining agents

and objects under R, respectively. Therefore, the two TTC -graphs may not have identical vertices and,

as such, the independence of unsatis�ed agents is no longer applicable. In addition, Nt̃\N ′t̃ ⊆ CONNM,t̃−1

suggests that any agent who has departed under R′, but not under R, must be pointing (directly or indirectly)

at some agent inM under R. Similarly Ot̃\O′t̃ ⊆ hCONNM,t̃−1,t̃
states that any object which has been removed

under R′, but not under R, must be owned by some agent who is pointing (directly or indirectly) at some

agent in M under R. These two conditions suggest that the TTC -graphs under R and R′ share the agents in

Nt̃\CONNM,t̃−1 as vertices. In statement (2) of consistent pointing, St̃ ⊆ S′t̃ suggests that there may be some

agents who are satis�ed under R′ but not under R and all such agents are pointing (directly or indirectly) at

some agent in M under R because S′
t̃
\St̃ ⊆ CONNM,t̃−1. This implies that an agent in Nt̃\CONNM,t̃−1 is

satis�ed under R if and only if she is satis�ed under R′. Statement (3) of consistent pointing says that the

unique pointee decisions of all agents in Nt̃\CONNM,t̃ are identical under R and R′. Finally, statement (4)

of consistent pointing says that the agents in Nt̃\CONNM,t̃ are assigned the same object at step t̃+ 1 under

R and R′. The statements (3) and (4) of consistent pointing imply that identical trading cycles occur for the

agents in Nt̃\CONNM,t̃ under R and R′ for all t̃ ∈ {t′, · · · , t− 1} as these agents hold the same objects and

have the same unique pointees. This result is formally presented as Lemma 4.

Lemma 4. Consider a rule ϕ belonging to the CAIO family. Let R,R′ ∈ RN where R′ =
(
RN\M , R

′
M

)
and

M ⊆ N . If, for some step t̃, pj,t̃ = p′
j,t̃

and hj,t̃ = h′
j,t̃

for each j ∈ Nt̃\CONNM,t̃ hold, then Cj (F (Gt̃)) =

23It is noteworthy that consistent pointing is the group variant of the Post-trade inclusion claim presented by Jaramillo &
Manjunath [8] and one of the su�cient conditions for local invariance given by Saban & Sethuraman [17].
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Cj

(
F
(
G′

t̃

))
and hj,t̃+1 = h′

j,t̃+1
are true where F is the unique pointee selection criterion for the rule ϕ while

Gt̃ and G
′
t̃
are the TTC -graphs at step t̃ under R and R′, respectively. Moreover, if Cj (F (Gt̃)) 6= φ for some

j ∈ Nt̃\CONNM,t̃, then the trading cycle Cj (F (Gt̃)) is composed entirely of agents in Nt̃\CONNM,t̃.

Proof. Consider a rule ϕ that is a member of the CAIO family. Let R,R′ ∈ RN be such that R′ =(
RN\M , R

′
M

)
andM ⊆ N . Consider any step t̃ such that pj,t̃ = p′

j,t̃
and hj,t̃ = h′

j,t̃
for each j ∈ Nt̃\CONNM,t̃

i.e. every agent in Nt̃\CONNM,t̃ has the same unique pointee and holds the same object under R and R′.

As the agents in Nt̃\CONNM,t̃ are pointing at the same agents under R and R′, the same trading cycles are

formed for these agents i.e. Cj (F (Gt̃)) = Cj

(
F
(
G′

t̃

))
holds for each j ∈ Nt̃\CONNM,t̃. Since hj,t̃ = h′

j,t̃
for

each j ∈ Nt̃\CONNM,t̃ and the same trading cycles occur for these agents, then it must be that hj,t̃+1 = h′
j,t̃+1

holds.

Now, consider an agent j ∈ Nt̃\CONNM,t̃ such that Cj (F (Gt̃)) 6= φ. By de�nition of CONNM,t̃, for

each i ∈ Nt̃\CONNM,t̃, pi,t̃ ∈ Nt̃\CONNM,t̃ must be true. Therefore, the trading cycle Cj (F (Gt̃)) must

consist entirely of agents in Nt̃\CONNM,t̃ because each agent in Nt̃\CONNM,t̃ points at another agent in

Nt̃\CONNM,t̃. �

Lemma 4 shows that statements (3) and (4) of consistent pointing limit the ability of a group of jointly

misreporting agents to manipulate the rule for the steps t̃ = t′, · · · , t− 1 (given that t′ < t) in the sense that

the same trading cycles occur for the agents in Nt̃\CONNM,t̃ under R and R′. In other words, any di�erences

arising from the joint misreporting of agents in M must be for the agents who were pointing (directly or

indirectly) at some agent inM under the true preference pro�le R. Then, the misreporting agents are unable

to make additional objects available for themselves under R′ because, by misreporting their preferences, they

can only in�uence those agents who were already pointing (directly or indirectly) at some agent in M under

R.

Remark. Note that any member of the CAIO family satis�es the statements of consistent pointing for

all steps t̃ < t. Statements (1), (3), and (4) of consistent pointing at step t̃ follow directly from Lemma 3.

Statement (2) of consistent pointing, on the other hand, follows from the fact that Ot̃ = O′
t̃
, ht̃ = h′

t̃
, and

Rj = R′j for each j ∈ N\M are true by Lemma 3. Moreover, since each agent in M is unsatis�ed at step

t̃ < t under R and R′, it must be that St̃ = S′
t̃
and Ut̃ = U ′

t̃
are true.
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The next result proves a su�cient condition for weak group strategy proofness for the housing market problem

with weak preferences. It proves that a member of the CAIO family that satis�es consistent pointing is weakly

group strategy proof. Note that Lemma 3 shows that a group of jointly misreporting agents cannot a�ect the

outcome of the algorithm before step t = min {t, t′}. So, successful manipulation by a group of misreporting

agents, if possible, can be done only for steps t̃ > t. There can be two possibilities: t ≤ t′ or t′ < t i.e. t = t

or t = t′, respectively. When t ≤ t′, it is relatively straightforward to show that if an agent in M departs,

becomes satis�ed, or becomes part of a trading cycle, under R, before she does under R′, she cannot be made

better-o� by joint misrepresentation of preferences by agents in M . As such, weak group strategy proofness

cannot be violated when t ≤ t′. On the other hand, when t′ < t, consistent pointing of the rule suggests

that, by jointly misreporting their preferences, the group of agents can only a�ect the outcome for the agents

who were pointing (directly or indirectly) at some agent in M under R suggesting that the agents in M are

unable to get additional agents to point (directly or indirectly) at them under the misreported preferences

R′. Since the agents who are pointing (directly or indirectly) at agents in M under R continue to do so until

step t due to persistence,24 it is not possible to violate weak group strategy proofness even when t′ < t.25

Theorem 1. A member of the CAIO family satisfying consistent pointing satis�es weak group strategy

proofness.

Proof. Let ϕ be a member of the CAIO family that satis�es consistent pointing. Since ϕ is a member of the

CAIO family, it satis�es independence of unsatis�ed agents and persistence. Moreover, the results proved in

lemmas 1, 2, and 3 are true for the members of the CAIO family. For contradiction, suppose that ϕ does

not satisfy weak group strategy proofness. Then, there is M ⊆ N and R,R′ ∈ RN such that α′iPiαi for each

i ∈ M where R′ =
(
RN\M , R

′
M

)
, α ≡ ϕ (R,ω), and α′ ≡ ϕ (R′, ω). Let t be the �rst step for which some

agent inM departs, becomes satis�ed, or becomes part of a trading cycle under R. Denote the corresponding

step under R′ as t′. De�ne t = min {t, t′}. The proof proceeds in two steps:

Step 1. It cannot be that t ≤ t′.

For contradiction, suppose that t ≤ t′. Then, t = t. By Lemma 2, no agent in M departs at step t under R′

because each agent in M has to become part of a trading cycle at least once. Now, consider the following

24This is because agents in M are unsatis�ed before step t under R.
25This is why consistent pointing is de�ned for the case of t′ < t because this restriction is not needed when t ≤ t′.
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cases:

Case 1. No agent in M departs at step t under R.

Then, by Lemma 3, Nt = N ′t and Ot = O′t are true. Let agent i ∈ M be some agent who becomes satis�ed

or becomes part of a trading cycle at step t under R. Then, it must be that αi ∈ τ
(
Ri, Ot

)
. Since α′i ∈ Ot,

αiRiα
′
i which is a contradiction.

Case 2. Some agent in M departs at step t under R.

Let agent i ∈M be the �rst agent inM to depart at step t under R. By Lemma 3, Nt−1 = N ′t−1, Ot−1 = O′t−1,

and ht = h′t hold. Then, all agents who depart before agent i at step t under R must depart at step t under

R′ as well. Let Ñ and Õ be the sets of agents and objects, respectively, that are removed from the algorithm

before agent i departs at step t under R and R′. Then, it must be true that αi ∈ τ
(
Ri, Ot−1\Õ

)
. Since

α′i ∈ Ot−1\Õ, as Ñ and Õ are removed from the algorithm at step t under R′ as well, it must be that αiRiα
′
i

which is a contradiction.

Step 2. It cannot be that t′ < t.

For contradiction, suppose that t′ < t. If some agent i ∈M departs at step t̃ under R′ such that t̃ < t, then

it must be that t̃ > t′ by Lemma 2 and α′i ∈ hCONNM,t−1,t−1 by statement (1) of consistent pointing because

α′i is removed from the algorithm at step t̃ under R′ but cannot be removed before step t under R. To better

observe the latter, note that for any step ẗ ∈ {t′, · · · , t− 1}, as shown in Lemma 4, any trading cycle that

occurs at step ẗ under R consists entirely of agents in Nẗ\CONNM,ẗ and occurs at step ẗ under R′ as well.

Moreover, any trading cycle that occurs at step ẗ under R′, but not under R, consists entirely of agents in

CONNM,ẗ because ẗ < t and no agent in M becomes part of a trading cycle before step t under R. So,

α′i ∈ hCONNM,t̃−1,t̃−1 and hCONNM,t̃−1,t̃−1 ⊆ hCONNM,t−1,t−1 because no agent in M becomes satis�ed before

step t under R so that once an agent starts pointing (directly or indirectly) at an agent in M , she continues

to do so at least until step t. Therefore, it can be concluded that α′i ∈ hCONNM,t−1,t−1.

By de�nition of step t, at least one agent in M departs, becomes satis�ed, or becomes part of a trading cycle

at step t under R. Consider the following cases:

Case 1. Some agent in M departs or becomes satis�ed at step t under R.

Let agent i ∈M be the �rst such agent inM . Let Ñ and Õ be the sets of agents and objects, respectively, that
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are removed before agent i departs or becomes satis�ed at step t under R. By persistence, it must be the case

that Ñ ⊆ Nt−1\CONNM,t−1 and Õ ⊆ Ot−1\hCONNM,t−1,t−1 because no agent in CONNM,t−1 can depart

before some agent inM becomes satis�ed under R. Then, by consistent pointing, N ′t−1 ⊆ Nt−1, O′t−1 ⊆ Ot−1,

hj,t = h′j,t, and Rj = R′j for each j ∈ Nt−1\CONNM,t−1. Then, Ñ and Õ are removed from the algorithm at

step t under R′ as well. So, O′t−1\Õ ⊆ Ot−1\Õ, O′t ⊆ O′t−1\Õ, and αi ∈ τ
(
Ri, Ot−1\Õ

)
. If agent i departed

at some step t̃ < t under R′, then α′i ∈ hCONNM,t−1,t−1. However, by persistence, hCONNM,t−1,t−1 ⊆ Ot−1\Õ.

Since αi ∈ τ
(
Ri, Ot−1\Õ

)
, it must be that αiRiα

′
i. On the other hand, if agent i departs at some step t̃ ≥ t

under R′, then it must be the case that α′i ∈ O′t−1\Õ. Hence, αiRiα
′
i which is a contradiction.

Case 2. No agent in M departs or becomes satis�ed at step t under R.

Then, it must be that some agent in M becomes part of a trading cycle at step t under R. Let agent

i ∈ M be such an agent. Then, αi ∈ τ (Ri, Ot). If agent i departed at some step t̃ < t under R′, then

α′i ∈ hCONNM,t−1,t−1 and hCONNM,t−1,t−1 ⊆ Ot by persistence because no agent in CONNM,t−1 can depart

before some agent in M becomes satis�ed under R. So, αiRiα
′
i must be true. If agent i departs at step t̃ ≥ t

under R′, then α′i ∈ Ot because O′t ⊆ Ot since no agent in M departs at step t under R. Then, it can be

concluded that αiRiα
′
i.

Steps 1 and 2 provide a contradiction. Therefore, the rule ϕ satis�es weak group strategy proofness. �

It is noteworthy that the proof of Theorem 1 is similar in structure to the proof of the su�cient condition

for strategy proofness presented by Saban & Sethuraman [17]. One major di�erence is that the intermediate

step of proving equivalence with local invariance is skipped for the su�cient condition of weak group strategy

proofness. As discussed earlier, such an equivalence may not hold for weak group strategy proofness even

if local invariance is appropriately de�ned for a group of agents because the rules considered in this paper

violate non-bossiness.

Next, weak group strategy proofness of the TTAS , TC , and HPO rules is established. Since these rules are

members of the CAIO family [17], by Theorem 1, it only needs to be proved that these rules satisfy consistent

pointing. Before proving consistent pointing of these rules, an intermediate step is proved in Lemma 5 which

assists in proving statements (1) and (2) of consistent pointing.

Lemma 5. Consider a rule ϕ belonging to the CAIO family. Let R,R′ ∈ RN where R′ =
(
RN\M , R

′
M

)
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and M ⊆ N . Take t as the �rst step an agent in M departs, becomes satis�ed, or becomes part of a

trading cycle under R and let t′ be the corresponding step under R′. Suppose that t′ < t and, for some step

t̃ ∈ {t′, · · · , t− 1}, the following are satis�ed:

1.
N ′

t̃
⊆ Nt̃

Nt̃\N ′t̃ ⊆ CONNM,t̃−1

and
O′

t̃
⊆ Ot̃

Ot̃\O′t̃ ⊆ hCONNM,t̃−1,t̃

,

2.
St̃ ⊆ S′t̃

S′
t̃
\St̃ ⊆ CONNM,t̃−1

or, equivalently,
U ′
t̃
⊆ Ut̃

Ut̃\U ′t̃ ⊆ CONNM,t̃−1

,

3. pj,t̃ = p′
j,t̃

holds for each j ∈ Nt̃\CONNM,t̃, and

4. hj,t̃+1 = h′
j,t̃+1

holds for each j ∈ Nt̃\CONNM,t̃.

Then, whenever t̃+ 1 < t, the following are true:

1.
N ′

t̃+1
⊆ Nt̃+1

Nt̃+1\N ′t̃+1
⊆ CONNM,t̃

and
O′

t̃+1
⊆ Ot̃+1

Ot̃+1\O′t̃+1
⊆ hCONNM,t̃,t̃+1

, and

2.
St̃+1 ⊆ S′t̃+1

S′
t̃+1
\St̃+1 ⊆ CONNM,t̃

or, equivalently,
U ′
t̃+1
⊆ Ut̃+1

Ut̃+1\U ′t̃+1
⊆ CONNM,t̃

.

Proof. Consider a rule ϕ which is a member of the CAIO family. Let R,R′ ∈ RN be such that R′ =(
RN\M , R

′
M

)
and M ⊆ N . Since the rule is a member of the CAIO family, it satis�es persistence. Let t be

the �rst step for which some agent in M departs, becomes satis�ed, or becomes part of a trading cycle under

R. Denote the corresponding step under R′ as t′. Let t′ < t and consider some step t̃ ∈ {t′, · · · , t− 1}.

Suppose that N ′
t̃
⊆ Nt̃, O

′
t̃
⊆ Ot̃, pj,t̃ = p′

j,t̃
, and hj,t̃ = h′

j,t̃
are true for each j ∈ Nt̃\CONNM,t̃. Since

pj,t̃ = p′
j,t̃

and hj,t̃ = h′
j,t̃

for each j ∈ Nt̃\CONNM,t̃, then the same trading cycles occur at step t̃ for agents

in Nt̃\CONNM,t̃ under R and R′ by Lemma 4. Therefore, hj,t̃+1 = h′
j,t̃+1

is true for each j ∈ Nt̃\CONNM,t̃.

Since Rj = R′j for each j ∈ Nt̃\CONNM,t̃, if an agent in Nt̃\CONNM,t̃ departs at step t̃+ 1 under R, then

she departs at step t̃+ 1 under R′ because O′
t̃
⊆ Ot̃ and hj,t̃+1 = h′

j,t̃+1
for each j ∈ Nt̃\CONNM,t̃ are true.

Therefore, N ′
t̃+1
⊆ Nt̃+1 and O′

t̃+1
⊆ Ot̃+1 must hold. Since t̃+ 1 < t has been assumed, each agent in M is

unsatis�ed at step t̃ + 1 under R. Then, by persistence, no agent in CONNM,t̃ departs at step t̃ + 1 under
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R as these agents continue to �persistently� point until step t under R. Therefore, any agent who departs at

step t̃ + 1 under R′ but not under R must belong in CONNM,t̃ i.e. Nt̃+1\N ′t̃+1
⊆ CONNM,t̃ must be true.

Similarly, Ot̃+1\O′t̃+1
⊆ hCONNM,t̃,t̃+1 because any object that departs at step t̃+ 1 under R′ but not under

R must be held by an agent in CONNM,t̃ at step t̃+ 1.

Lemma 4 shows that the same trading cycles occur at step t̃ for the agents in Nt̃\CONNM,t̃ under R and

R′. Moreover, no agent in CONNM,t̃ becomes part of a trading cycle at step t̃ under R because t̃ < t.

Then, St̃+1 ⊆ S′
t̃+1

because hj,t̃+1 = h′
j,t̃+1

and Rj = R′j are true for each j ∈ Nt̃\CONNM,t̃. Moreover,

S′
t̃+1
\St̃+1 ⊆ CONNM,t̃ because some agents in CONNM,t̃ may become part of a trading cycle at step t̃

under R′ but not under R as t̃ < t. �

First, the proof of consistent pointing for the TTAS rule is presented as it is simpler compared to the

corresponding proofs for the TC and HPO rules.

Proposition 2. The TTAS rule satis�es weak group strategy proofness.

Proof. Consider R,R′ ∈ RN such that R′ =
(
RN\M , R

′
M

)
for an arbitrary M ⊆ N . Let t be the �rst step

for which some agent in M departs, becomes satis�ed, or becomes part of a trading cycle under R. Denote

the corresponding step under R′ as t′. De�ne t = min {t, t′}. Suppose t′ < t. It needs to be proved that the

TTAS rule satis�es consistent pointing.

Consider any t̃ ∈ {t′, · · · , t− 1} and suppose that the statements of consistent pointing hold for all steps

ẗ < t̃. Then, to complete the proof, the statements of consistent pointing need to be proved for step t̃ because

the statements of consistent pointing are true for all steps before t as discussed in the Remark.

Since the statements of consistent pointing are true for step t̃− 1 and t̃ < t, then statements (1) and (2) of

consistent pointing are true at step t̃ by Lemma 5. Now, consider any agent j ∈ Nt̃\CONNM,t̃. It needs to

be proved that pj,t̃ = p′
j,t̃

and hj,t̃+1 = h′
j,t̃+1

. First, note that, for each a ∈ τ (Rj , Ot̃) and b ∈ τ
(
Rj , O

′
t̃

)
, it

must be that aRjb because O′t̃ ⊆ Ot̃ by statement (1) of consistent pointing at step t̃. If aPjb is true, then no

object in τ (Rj , Ot̃) is available in O′
t̃
i.e. τ (Rj , Ot̃) ⊆ hCONNM,t̃−1,t̃

because Ot̃\O′t̃ ⊆ hCONNM,t̃−1,t̃
is true

by statement (1) of consistent pointing at step t̃. But this leads to a contradiction because agent j points at

an agent who holds an object in τ (Rj , Ot̃) at step t̃ under R which implies that agent j ∈ CONNM,t̃ since

τ (Rj , Ot̃) ⊆ hCONNM,t̃−1,t̃
. Therefore, it can be concluded that aIjb for each a ∈ τ (Rj , Ot̃) and b ∈ τ

(
Rj , O

′
t̃

)
.
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Then, it must be that τ
(
Rj , O

′
t̃

)
⊆ τ (Rj , Ot̃) because O′

t̃
⊆ Ot̃. Since agent j ∈ Nt̃\CONNM,t̃, it must be

that agent j ∈ Nẗ\CONNM,ẗ for each step ẗ < t̃ by persistence because once an agent points (directly or

indirectly) at an agent in M under R, she continues to do so at least until step t where some agent in M

may become satis�ed. Then, by statements (3) and (4) of consistent pointing for step ẗ < t̃, pj,ẗ = p′
j,ẗ

and

hj,ẗ = h′
j,ẗ

must be true. Therefore, by Lemma 4, the same trading cycles occur for agent j for all steps

ẗ < t̃ under R and R′. Since the same trading cycles occurred for agent j for all steps ẗ < t̃, the objects in

τ
(
Rj , O

′
t̃

)
would have been assigned to her the same number of times under R and R′.

Let a ∈ τ
(
Rj , O

′
t̃

)
be the object that is assigned the least number of times to agent j under R′.26 Then, agent

j points at the agent who owns object a at step t̃ under R′. Under R, it is not possible that agent j points

at an agent who holds an object in Ot̃\O′t̃ because Ot̃\O′t̃ ⊆ hCONNM,t̃−1,t̃
and j ∈ Nt̃\CONNM,t̃. Therefore,

agent j points at an agent who holds an object in τ
(
Rj , O

′
t̃

)
at step t̃ under R. As discussed earlier, this

agent must hold object a because this object has been assigned the least number of times to agent j under

R. Let pj,t̃ = i and p′
j,t̃

= i′. Since agent j ∈ Nt̃\CONNM,t̃, it must be that agent i ∈ Nt̃\CONNM,t̃. Then,

by persistence, agent i ∈ Nt̃−1\CONNM,t̃−1 because once an agent points (directly or indirectly) at an agent

in M under R, she continues to do so at least until step t. Then, by statement (4) of consistent pointing at

step t̃− 1, it must be that hi,t̃ = h′
i,t̃

= a. This implies that i = i′ i.e. pj,t̃ = p′
j,t̃

is true.

Since pj,t̃ = p′
j,t̃

and hj,t̃ = h′
j,t̃

are true for each j ∈ Nt̃\CONNM,t̃, then hj,t̃+1 = h′
j,t̃+1

holds by Lemma 4.

Therefore, the TTAS rule satis�es the statements of consistent pointing and, by Theorem 1, it satis�es weak

group strategy proofness. �

The proof of Proposition 2 relies on the fact that identical trading cycles occur for the agents who are not

pointing (directly or indirectly) at some agent in M under R. Based on this, each object is assigned to

this agent the same number of times under R and R′. Since FTTAS , the unique pointee selection criterion

associated with the TTAS rule, is based on the number of times each object has been assigned to an agent

in the previous steps, it can be established that the TTAS rule satis�es consistent pointing and, thus, weak

group strategy proofness.

The next result shows that the TC rule is weakly group strategy proof by establishing that it satis�es consistent

pointing. The proof relies heavily on the progression of the pointing phase for the TC rule.
26If there are multiple such objects, the ties are broken in accordance with the priority ordering over objects.
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Proposition 3. The TC rule satis�es weak group strategy proofness.

Proof. Consider R,R′ ∈ RN such that R′ =
(
RN\M , R

′
M

)
for an arbitrary M ⊆ N . Let t be the �rst step

for which some agent in M departs, becomes satis�ed, or becomes part of a trading cycle under R. Denote

the corresponding step under R′ as t′. De�ne t = min {t, t′}. Suppose t′ < t. It needs to be proved that the

TC rule satis�es consistent pointing.

Consider any t̃ ∈ {t′, · · · , t− 1} and suppose that the statements of consistent pointing hold for all steps

ẗ < t̃. Then, to complete the proof, the statements of consistent pointing need to be proved for step t̃ because

the statements of consistent pointing are true for all steps before t as discussed in the Remark.

By the induction hypothesis, the statements of consistent pointing are satis�ed at step t̃ − 1. Therefore,

statements (1) and (2) of consistent pointing are true at step t̃ by Lemma 5. So, it needs to be proved that

for each agent j ∈ Nt̃\CONNM,t̃, pj,t̃ = p′
j,t̃

and hj,t̃+1 = h′
j,t̃+1

are true. To prove that pj,t̃ = p′
j,t̃

holds for

each j ∈ Nt̃\CONNM,t̃, the pointing phase of the TC rule is considered below:

Case 1. The agents in Nt̃\CONNM,t̃ who are pointing based on TC -persistence at step t̃ under R.

For any agent j ∈ Nt̃\CONNM,t̃, let pj,t̃ = i. Since agent j ∈ Nt̃\CONNM,t̃, it must be true that agent

i ∈ Nt̃\CONNM,t̃ and, therefore, agent i ∈ Nt̃−1\CONNM,t̃−1 otherwise i ∈ CONNM,t̃−1 and, by TC -

persistence, it must be that agent i ∈ CONNM,t̃ because once an agent points (directly or indirectly) at an

agent in M , she continues to do so at least until step t under R. Then, it must be that hi,t̃ = h′
i,t̃

are true

by statement (4) of consistent pointing at step t̃ − 1. Similarly, by statement (4) of consistent pointing at

step t̃ − 2, hi,t̃−1 = h′
i,t̃−1 is true. Then, hi,t̃ = hi,t̃−1 is true if and only if h′

i,t̃
= h′

i,t̃−1 is true. So, agent j

points based on TC -persistence at step t̃ under R if and only if she points based on TC -persistence at step t̃

under R′. Therefore, pj,t̃ = p′
j,t̃

is true because pj,t̃−1 = p′
j,t̃−1 as j ∈ Nt̃−1\CONNM,t̃−1, and TC -persistence

implies pj,t̃ = pj,t̃−1 and p′
j,t̃

= p′
j,t̃−1.

After dealing with the above case, none of the remaining agents in Nt̃\CONNM,t̃ are pointing based on

TC -persistence.

Case 2. The agents in Nt̃\CONNM,t̃ who have a unique most preferred object (among the remaining ones)

at step t̃ under R.

Consider any agent j ∈ Nt̃\CONNM,t̃ who has a unique most preferred object (among the remaining ones)
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at step t̃ under R. By statement (1) of consistent pointing at step t̃, O′
t̃
⊆ Ot̃ is true. Moreover, since

agent j ∈ Nt̃\CONNM,t̃, it must be that pj,t̃ ∈ Nt̃\CONNM,t̃. Then, pj,t̃ ∈ Nt̃−1\CONNM,t̃−1 otherwise

pj,t̃ ∈ CONNM,t̃−1 and, by TC -persistence, pj,t̃ ∈ CONNM,t̃ which contradicts j ∈ Nt̃\CONNM,t̃. Therefore,

pj,t̃ = p′
j,t̃

= i because hi,t̃ = h′
i,t̃

holds by statement (4) of consistent pointing at step t̃− 1.

Case 3. The agents in Nt̃\CONNM,t̃ who have multiple most preferred objects (among the remaining ones)

at step t̃ under R. For this case, I use j
R−→̃
t
i to represent that agent j points at agent i, after the application

of the unique pointee selection criterion FTC , at step t̃ under R. This case relies heavily on the progression

of the pointing phase for the TC rule to show that pj,t̃ = p′
j,t̃

is true for each j ∈ Nt̃\CONNM,t̃.

1. Consider an agent j ∈ Nt̃\CONNM,t̃ such that j
R−→̃
t
j0 ∈ Ut̃ i.e. agent j points at the unsatis�ed agent

j0 at step t̃ under R. This agent is depicted in Figure 7 (a) where the unsatis�ed agent is shown in red.

Since agent j ∈ Nt̃\CONNM,t̃, agent j0 ∈ Nt̃\CONNM,t̃, and Ut̃\U ′t̃ ⊆ CONNM,t̃−1 by statement (2)

of consistent pointing at step t̃, then it must be that agent j0 ∈ U ′t̃ . However, suppose that j
R′−→̃
t
j′0 6= j0.

Then, j′0 ∈ U ′t̃ and j
′
0 ≺ j0 because j0 ∈ U ′t̃ . This is shown in Figure 7 (b) which shows that even though

the unsatis�ed agent j0 is available under R′, agent j points at the unsatis�ed agent j′0 suggesting that

j′0 ≺ j0. However, by statement (2) of consistent pointing, U ′
t̃
⊆ Ut̃ i.e. agent j

′
0 ∈ Ut̃ which contradicts

j
R−→̃
t
j0 because j′0 ≺ j0. As shown in Figure 7 (c), presence of the unsatis�ed agent j′0 under R gives a

contradiction because agent j′0 has a higher priority than agent j0.

(a) (b) (c)

Figure 7: Unique pointee determination for an agent who has at least one of her most preferred objects
owned by an unsatis�ed agent under R. The unsatis�ed agents are depicted in red. The dashed arc shows
the contradictory pointing.
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2. Now, consider an agent j ∈ Nt̃\CONNM,t̃ such that j
R−→̃
t
j1

R−→̃
t
j0 ∈ Ut̃ with j1 ∈ St̃. This is depicted

in Figure 8 (a). By the preceding argument, it must be that j1
R′−→̃
t
j0. Since agent j ∈ Nt̃\CONNM,t̃

(so that j0, j1 ∈ Nt̃\CONNM,t̃) and, by statement (2) of consistent pointing at step t̃, St̃ ⊆ S′
t̃
and

Ut̃\U ′t̃ ⊆ CONNM,t̃−1 are true. Therefore, it must be that j0 ∈ U ′t̃ and j1 ∈ S′t̃ are true as shown in

Figure 8 (b) where agents j0 and j1 are depicted in red and green, respectively.

Suppose that j
R′−→̃
t

j′1 6= j1. If agent j′1 ∈ U ′
t̃
, then j′1 ∈ Ut̃ and hj′1,t̃ = h′

j′1,t̃
. This contradicts

j
R−→̃
t
j1 ∈ St̃. So, suppose that j

R′−→̃
t
j′1

R′−→̃
t
j′0 ∈ U ′t̃ with j

′
1 ∈ S′t̃ where either j

′
1 ≺ j1 and j0 = j′0, or

j′0 ≺ j0. These possibilities are presented in Figure 8 (b). Since U ′
t̃
⊆ Ut̃, it must be that agent j

′
0 ∈ Ut̃.

Now, consider the following cases:

(a) hj′1,t̃ = h′
j′1,t̃

.

First, note that it cannot be that j′1 ∈ Ut̃ as that would contradict j
R−→̃
t
j1 ∈ St̃. Therefore,

j′1 ∈ St̃ which implies that j′1 /∈ M because no agent in M becomes satis�ed before step t under

R. So, Rj′1
= R′j′1

i.e. agent j′1 is not misreporting her preferences under R′. Since j′0 ∈ Ut̃, it

must be that j′1
R−→̃
t
pj′1,t̃ � j′0 and pj′1,t̃ ∈ Ut̃. This contradicts j

R−→̃
t
j1 because either j′1 ≺ j1

and j0 = pj′1,t̃, or pj′1,t̃ � j′0 ≺ j0. Both possible contradictions are shown in Figure 8 (c). The

�rst possibility corresponds with pj′1,t̃ = j0 which is a contradiction because j′1 ≺ j1. The second

possibility corresponds with pj′1,t̃ 6= j0 which leads to a contradiction because pj′1,t̃ � j
′
0 ≺ j0.

(b) hj′1,t̃ 6= h′
j′1,t̃

.

Let h′
j′1,t̃

= a. Since hj′1,t̃ 6= a and O′
t̃
⊆ Ot̃, there is ĵ ∈ Nt̃ such that hĵ,t̃ = a 6= h′

ĵ,t̃
. So,

by statement (4) of consistent pointing at step t̃ − 1, it must be that ĵ ∈ CONNM,t̃−1 because

hĵ,t̃ 6= h′
ĵ,t̃
. Note that ĵ ∈ Ut̃ contradicts j

R−→̃
t
j1 ∈ St̃ because hĵ,t̃ = a and a ∈ τ (Rj , Ot̃).

Therefore, agent ĵ ∈ St̃ i.e. ĵ /∈M because t̃ < t and no agent in M is satis�ed before step t under

R. Therefore, Rĵ = R′
ĵ
i.e. agent ĵ is not misreporting her preferences under R′.

Let t̂ be the �rst step such that agent ĵ ∈ CONNM,t̂. Then, by statement (4) of consistent pointing

at step t̂− 1, it must be that hĵ,t̂ = h′
ĵ,t̂

= a and ĵ ∈ St̂ are true. This is because agent ĵ does not

become part of a trading cycle at any step ẗ ∈
{
t̂, · · · , t− 1

}
under R as no agent in M becomes

part of a trading cycle before step t under R.
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Since h′
j′1,t̃

= a, there is a step ẗ ∈
{
t̂, · · · , t̃− 1

}
such that agent j′1 is part of a trading cycle under

R′ and j′1
R′−→̈
t
j̃ such that h′

j̃,ẗ
= a.27 Note that either agent j̃ = ĵ or agent j̃ 6= ĵ acquired object

a in a trading cycle for some step before step ẗ. In either case, agent j̃ ∈ S′
ẗ
because ĵ ∈ S′

t̂
and

agents become satis�ed after being part of a trading cycle. Therefore, it must be that j′1
R′−→̈
t
j̃ ∈ S′

ẗ

which is a contradiction as: (1) j′0 ∈ U ′ẗ since j
′
0 ∈ U ′t̃ and ẗ < t̃, and (2) hj′0,ẗ ∈ τ

(
R′j′1

, Oẗ

)
because

aI ′j′1
hj′0,t̃ and hj′0,ẗ = hj′0,t̃.

(a)

(b) (c)

Figure 8: Unique pointee determination for an agent who has all of her most preferred objects owned by
satis�ed agents and at least one of these satis�ed agents has one of her most preferred objects owned by an
unsatis�ed agent under R. The satis�ed and unsatis�ed agents are depicted in green and red, respectively.
The dashed arcs show the contradictory pointing.

3. Induction Hypothesis: For any j ∈ Nt̃\CONNM,t̃, if j
R−→̃
t
jk−1

R−→̃
t
· · · R−→̃

t
j1

R−→̃
t
j0 ∈ Ut̃ with

{j1, · · · , jk−1} ⊆ St̃, then j
R′−→̃
t
jk−1

R′−→̃
t
· · · R′−→̃

t
j1

R′−→̃
t
j0 ∈ U ′t̃ .

27Agent j′1 becomes satis�ed after receiving object a under R′. Since she points at agent j′0 at step t̃ under R′, aI′
j′1
hj′0,t̃

must

be true.
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To complete the proof, it has to be established that, for any j ∈ Nt̃\CONNM,t̃, if j
R−→̃
t
jk

R−→̃
t
· · · R−→̃

t

j1
R−→̃
t

j0 ∈ Ut̃ with {j1, · · · , jk} ⊆ St̃, then j
R′−→̃
t

jk
R′−→̃
t
· · · R′−→̃

t
j1

R′−→̃
t

j0 ∈ U ′
t̃
. Consider agent

j ∈ Nt̃\CONNM,t̃ and suppose that j
R−→̃
t
jk

R−→̃
t
· · · R−→̃

t
j1

R−→̃
t
j0 ∈ Ut̃ with {j1, · · · , jk} ⊆ St̃ as shown

in Figure 9 (a). Since agent j ∈ Nt̃\CONNM,t̃, it must be that agent jk ∈ Nt̃\CONNM,t̃ is true.

Then, by the induction hypothesis, jk
R′−→̃
t
· · · R′−→̃

t
j1

R′−→̃
t
j0 ∈ Ut̃ is true. Moreover, by statement (2) of

consistent pointing at step t̃, St̃ ⊆ S′
t̃
i.e. {j1, · · · , jk} ⊆ S′

t̃
. However, suppose that j

R′−→̃
t
j′k 6= jk and

let j
R′−→̃
t

j′k
R′−→̃
t
· · · R′−→̃

t
j′1

R′−→̃
t

j′0 which is depicted in Figure 9 (b). Note that agents in {j′0, · · · , j′k}

are shown in black as their welfare status (satis�ed or unsatis�ed) is currently undetermined. Now,

consider the following cases:

(a)

(b) (c)

Figure 9: Unique pointee determination for an agent who is k satis�ed agents away from the closest unsatis�ed
agent under R. The satis�ed and unsatis�ed agents are depicted in green and red, respectively.

(a) hi,t̃ = h′
i,t̃

for each i ∈ {j′1, · · · , j′k}:

Suppose that j′k ∈ Ut̃. However, this contradicts j
R−→̃
t
jk ∈ St̃ because j

′
k ∈ Ut̃ and hj′k,t̃ = h′

j′k,t̃
is
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true. Hence, it must be that j′k ∈ St̃.

Now, consider any j′
k̈
such that i ∈ St̃ is true for each i ∈

{
j′
k̈+1

, · · · , j′k
}
and k̈ ∈ {1, · · · , k − 1}.

Note that j′
k̈
∈ Ut̃ contradicts j

R−→̃
t
jk

R−→̃
t
· · · R−→̃

t
j1

R−→̃
t
j0 ∈ Ut̃ with {j1, · · · , jk} ⊆ St̃ because

i ∈ St̃ and hi,t̃ = h′
i,t̃

are true for each i ∈
{
j′
k̈+1

, · · · , j′k
}
. The former implies that no agent in{

j′
k̈+1

, · · · , j′k
}
is misreporting her preferences under R′ because no agent in M is satis�ed before

step t under R and t̃ < t. Then, agent j′
k̈+1

either points at the unsatis�ed agent j′
k̈
or a higher

priority unsatis�ed agent under R. Therefore, an unsatis�ed agent is reachable for agent j at step

t̃ under R through (at most) k − k̈ satis�ed agents if j
R−→̃
t
j′
k̈
compared to the k satis�ed agents

when j
R−→̃
t
jk. This is presented in Figure 9 (c) which shows that agent j could reach a closer

unsatis�ed agent by pointing at agent j′k. Therefore, it must be true that j′
k̈
∈ St̃. Thus, it can

be concluded that {j′1, · · · , j′k} ⊆ St̃ holds. Additionally, by statement (2) of consistent pointing

at step t̃, St̃ ⊆ S′
t̃
holds i.e. {j′1, · · · , j′k} ⊆ S′

t̃
which implies that j′0 ∈ U ′t̃ ⊆ Ut̃ otherwise agent j

would point at agent jk at step t̃ under R′ instead of agent j′k.

Since j
R′−→̃
t

j′k 6= jk, it must be the case that either j′0 ≺ j0, or j′0 = j0 with j′
k̈
≺ jk̈ for some

k̈ ∈ {1, · · · , k − 1} and jl = j′l for each l < k̈. These possibilities are shown in Figure 10 (a). The

unique pointee path from agent j′k to the �rst unsatis�ed agent, say agent j′′0 , under R should

have at least k− 1 satis�ed agents otherwise j
R−→̃
t
jk is contradicted, and it should not have more

than k − 1 satis�ed agents because hi,t̃ = h′
i,t̃

for each i ∈ {j′1, · · · , j′k} and hj′0,t̃ = h′
j′0,t̃

as agent

j′0 ∈ U ′t̃ . Therefore, let j
′
k

R−→̃
t
j′′k−1

R−→̃
t
· · · R−→̃

t
j′′1

R−→̃
t
j′′0 where

{
j′′1 , · · · , j′′k−1

}
⊆ St̃ and j

′′
0 ∈ Ut̃.

By the unique pointee selection criterion of the TC rule, one of the following must be true: (1)

j′l = j′′l for each l ∈ {0, 1, · · · , k − 1}, (2) j′′0 = j′0 with j′′
k̈
≺ j′

k̈
for some k̈ ∈ {1, · · · , k − 1} and

jl = j′l for each l < k̈, or (3) j′′0 ≺ j′0. The �rst possibility is shown in Figure 10 (b). This leads

to a contradiction because, based on the unique pointee selection criterion FTC , agent j's unique

pointee would be determined as j′k instead of jk under R since j′k was selected as her unique

pointee under R′ as shown in Figure 10 (a). The second possibility is shown in Figure 10 (c).

The chain starting from agent j′k in Figure 10 (c) di�ers from the chain depicted in Figure 10

(a). However, the di�erence is j′′
k̈
≺ j′

k̈
and the subsequent satis�ed agents, before the unsatis�ed

agent j′0 is reached, are identical. Therefore, because agent j pointed at j′k under R′, as shown in
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Figure 10 (a), she should point at j′k under R which is a contradiction. The third case, shown in

Figure 10 (d), allows agent j to reach a higher priority unsatis�ed agent while going through the

same number of satis�ed agents. Then, it must be that agent j points at agent j′k under R which

contradicts j
R−→̃
t
jk.

(a) (b)

(c) (d)

Figure 10: Unique pointee determination for an agent who is k satis�ed agents away from the closest unsat-
is�ed agent under R. The satis�ed and unsatis�ed agents are depicted in green and red, respectively. The
dashed arrows show the contradictory pointing.

(b) hi,t̃ 6= h′
i,t̃

for some i ∈ {j′1, · · · , j′k}.

Let k̈ ∈ {1, · · · , k} be such that hj′
k̈
,t̃ 6= h′

j′
k̈
,t̃

= a and hi,t̃ = h′
i,t̃

for each i ∈
{
k̈ + 1, · · · , k

}
.

Following the reasoning from 3 (a), it must be that
{
j′
k̈+1

, · · · , j′k
}
⊆ St̃ ⊆ S′

t̃
. Moreover, it

cannot be that j′
k̈
∈ U ′

t̃
because U ′

t̃
⊆ Ut̃ and hj′

k̈
,t̃ 6= h′

j′
k̈
,t̃
has been assumed. So, agent j′

k̈
∈ S′

t̃
.

45



Since O′
t̃
⊆ Ot̃, there is an agent ĵ ∈ Nt̃ such that hĵ,t̃ = a and hĵ,t̃ 6= h′

ĵ,t̃
holds because h′

j′
k̈
,t̃

= a.

It must be that ĵ
R−→̃
t
ĵm

R−→̃
t
· · · R−→̃

t
ĵ1

R−→̃
t
ĵ0 ∈ Ut̃,

{
ĵ, ĵ1, · · · , ĵm

}
⊆ St̃, and m ≥ k̈ − 1 otherwise

j
R−→̃
t
jk

R−→̃
t
· · · R−→̃

t
j1

R−→̃
t
j0 ∈ Ut̃ with {j1, · · · , jk} ⊆ St̃ is contradicted following the arguments

from 3 (a). This can be observed from Figure 11 which shows that if agent j points at the satis�ed

agent j′k, she reaches the �rst unsatis�ed agent ĵ0 through k − k̈ + m + 1 satis�ed agents. This

would contradict j
R−→̃
t
jk

R−→̃
t
· · · R−→̃

t
j1

R−→̃
t
j0 ∈ Ut̃ with {j1, · · · , jk} ⊆ St̃ if k − k̈ + m + 1 < k

because, by pointing at agent jk, agent j reaches the �rst unsatis�ed agent j0 through k satis�ed

agents. Therefore, it must be that k − k̈ +m+ 1 ≥ k which implies that m ≥ k̈ − 1.

Figure 11: Unique pointee determination for an agent who is k satis�ed agents away from the closest unsat-
is�ed agent under R. The satis�ed and unsatis�ed agents are depicted in green and red, respectively.

By statement (4) of consistent pointing at step t̃ − 1, it must be that ĵ ∈ CONNM,t̃−1 since

hĵ,t̃ 6= h′
ĵ,t̃
. Let t̂ be the �rst step such that ĵ ∈ CONNM,t̂. Then, by statement (4) of consistent

pointing at step t̂ − 1, it must that hĵ,t̂ = h′
ĵ,t̂

= a and ĵ
R−→̂
t
ĵm

R−→̂
t
· · · R−→̂

t
ĵ1

R−→̂
t
ĵ0 ∈ Ut̃ with{

ĵ, ĵ1, · · · , ĵm
}
⊆ St̂. This is true because no agent in

{
ĵ, ĵ1, · · · , ĵm

}
becomes part of a trading

cycle for any step ẗ ∈
{
t̂, · · · , t− 1

}
as no agent in M becomes part of a trading cycle before step

t under R.

It needs to be proved that whenever ĵ
R−→̂
t
ĵm

R−→̂
t
· · · R−→̂

t
ĵ1 with

{
ĵ, ĵ1, · · · , ĵm

}
⊆ St̂, then it must
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be that ĵ
R′−→̂
t
ǰm

R′−→̂
t
· · · R′−→̂

t
ǰ1 with

{
ĵ, ǰ1, · · · , ǰm

}
⊆ S′

t̂
is true whenever ĵ /∈M . In other words,

if an agent, who is not misreporting her preferences under R, is at least m satis�ed agents away

from the �rst unsatis�ed agent under R, then she is at least m satis�ed agents away from the �rst

unsatis�ed agent under R′.

Let m = 1 i.e. ĵ
R−→̂
t
ĵ1 ∈ St̂ and, for contradiction, suppose that ĵ

R′−→̂
t

ǰ0 ∈ U ′
t̂
. However, by

statement (2) of consistent pointing at step t̂, U ′
t̂
⊆ Ut̂ is true. Then, ǰ0 ∈ Ut̂ which contradicts

ĵ
R−→̂
t
ĵ1 ∈ St̂. Now, suppose that the claim is true for m ≤ m̂ − 1 and it needs to be proved for

m = m̂.

Let ĵ
R−→̂
t
ĵm̂

R−→̂
t
· · · R−→̂

t
ĵ1 with

{
ĵ, ĵ1, · · · , ĵm̂

}
⊆ St̂. De�ne N̂ =

{
i ∈ Nt̂ : hi,t̂ ∈ τ

(
Rĵ , Ot̂

)}
i.e. N̂ is the set of agents who hold one of agent ĵ's most preferred objects at step t̂ under R.

Note that no agent in N̂ belongs in M because N̂ ⊆ St̂ and each agent in M is unsatis�ed before

step t under R. Additionally, by assumption, each agent in N̂ is at least m̂ − 1 satis�ed agents

away from the �rst unsatis�ed agent under R. Then, by the induction hypothesis, each agent

in N̂ is at least m̂ − 1 satis�ed agents away from the �rst unsatis�ed agent under R′. De�ne

N̂ ′ =
{
i ∈ N ′

t̂
: h′

i,t̂
∈ τ

(
Rĵ , O

′
t̂

)}
and consider the following cases:

Case 1. N̂ ′ ⊆ N̂ .

Since N̂ ′ ⊆ N̂ , the most preferred objects of agent ĵ are held by satis�ed agents (as St̂ ⊆ S′
t̂
)

who are at least m̂ − 1 satis�ed agents away from the �rst unsatis�ed agent at step t̂ under R′.

Therefore, agent ĵ points at a satis�ed agent who is at least m̂− 1 satis�ed agents away from the

�rst unsatis�ed agent under R′. Hence, it can be concluded that agent ĵ is at least m̂ satis�ed

agents away from the �rst unsatis�ed agent.

Case 2. N̂ ′ * N̂ .

Since N̂ ′ * N̂ , there is an agent i′ ∈ N ′
t̂
such that i′ ∈ N̂ ′ but i′ /∈ N̂ . In other words, agent i′

holds one of agent ĵ's most preferred objects at step t̂ under R′ but not under R. Then, it needs

to be proved that agent i′ is at least m̂ − 1 satis�ed agents away from the �rst unsatis�ed agent

at step t̂ under R′. Since O′
t̂
⊆ Ot̂, there is i ∈ N̂ such that hi,t̂ = h′

i′,t̂
and hi,t̂ 6= h′

i,t̂
are true.

Moreover, by assumption, it must be that i
R−→̂
t
im̂−1

R−→̂
t
· · · R−→̂

t
i1 with {i, i1, · · · , im̂−1} ⊆ St̂
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because i ∈ N̂ .

Since hi,t̂ 6= h′
i,t̂
, by statement (4) of consistent pointing at step t̂ − 1, it must be that i ∈

CONNM,t̂−1. Let ti be the �rst step such that i ∈ CONNM,ti . Then, by statement (4) of

consistent pointing at step ti − 1, it must be that hi,ti = h′i,ti = hi,t̂ and i
R−→
ti

im̂−1
R−→
ti
· · · R−→

ti
i1

with {i, i1, · · · , im̂−1} ⊆ St̂ are true because no agent in CONNM,ti becomes part of a trading

cycle before step t under R. Then, by the induction hypothesis, agent i is at least m̂− 1 satis�ed

agents away from the �rst unsatis�ed agent at step ti under R′.

Since h′
i′,t̂

= hi,t̂, there is a step ẗi ∈
{
ti, · · · , t̂− 1

}
in which agent i′ becomes part of a trading

cycle where she receives object hi,t̂. However, this requires that agent i
′ points at a satis�ed agent

who is at least m̂−1 satis�ed agents away from the �rst unsatis�ed agent which implies that agent

i′ is at least m̂ satis�ed agents away from the �rst unsatis�ed agent under R′. Since agent i′ is at

least m̂ − 1 satis�ed agents away from the �rst unsatis�ed agent, it can be concluded that agent

ĵ is at least m̂ satis�ed agents away from the �rst unsatis�ed agent for this case.

Based on the above cases, it can be concluded that ĵ
R′−→̂
t
ǰm

R′−→̂
t
· · · R′−→̂

t
ǰ1 with

{
ĵ, ǰ1, · · · , ǰm

}
⊆

S′
t̂
is true whenever ĵ

R−→̂
t
ĵm̂

R−→̂
t
· · · R−→̂

t
ĵ1 with

{
ĵ, ĵ1, · · · , ĵm̂

}
⊆ St̂ holds.

Since h′
j′
k̈
,t̃

= a and hĵ,t̂ = h′
ĵ,t̂

= a, there is a step ẗ ∈
{
t̂, · · · , t̃− 1

}
such that agent j′

k̈
becomes

part of a trading cycle under R′ where j′
k̈

R′−→̈
t
j̃ such that hj̃,ẗ = a. It is possible that j̃ 6= ĵ if agent

j̃ acquired object a in a trading cycle of some previous step say t́ ∈
{
t̂, · · · , ẗ− 1

}
. Note that agent

ĵ was at least m satis�ed agents away from the closest unsatis�ed agent at step t̂ under R′ because

she is at least m satis�ed agents from the closest unsatis�ed agent at step t̂ under R. Hence, for

any trading cycle agent ĵ becomes part of, after step t̂ under R′, the agent pointing at her must

be at least m+ 1 satis�ed agents away from the closest unsatis�ed agent since ĵ ∈ S′
t̂
. Therefore,

it can be concluded that agent j̃ is at least m satis�ed agents away from the �rst unsatis�ed agent

at step t́ under R′. Moreover, agent j̃ ∈ Sẗ because either agent j̃ = ĵ ∈ S′
t̂
or agent j̃ became

part of a trading cycle at step t́ < ẗ.

It has already been shown that
{
j′
k̈
, · · · , j′k

}
⊆ S′

t̃
. Then, agent i ∈ U ′

t̃
for some i ∈

{
j′0, · · · , j′k̈−1

}
otherwise j

R′−→̃
t
j′k

R′−→̃
t
· · · R′−→̃

t
j′1

R′−→̃
t
j′0 is contradicted. In other words, agent j′

k̈
is (at most) k̈−1
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satis�ed agents away from the closest unsatis�ed agent at step t̃ under R′ which suggests that

agent j′
k̈
has a path to an unsatis�ed agent through (at most) k̈−1 satis�ed agents at step ẗ under

R′ because ẗ < t̃. This contradicts j′
k̈

R′−→̈
t

j̃ if h′
j′
k̈−1

,ẗ
= h′

j′
k̈−1

,t̃
because, based on this pointing,

agent j′
k̈
reaches an unsatis�ed agent through at least m + 1 satis�ed agents while m ≥ k̈ − 1

suggesting that m + 1 > k̈ − 1 i.e. agent j′
k̈
can reach a closer unsatis�ed agent by pointing at

agent j′
k̈−1 at step ẗ under R

′. If h′
j′
k̈−1

,ẗ
6= h′

j′
k̈−1

,t̃
, then agent j′

k̈−1 acquired object h′
j′
k̈−1

,t̃
at some

step between ẗ and t̃ under R′. But this would mean that the agent who holds object h′
j′
k̈−1

,t̃
at

step ẗ must be (at most) k̈ − 1 satis�ed agents away from the �rst unsatis�ed agent giving the

same conclusion as when h′
j′
k̈−1

,ẗ
= h′

j′
k̈−1

,t̃
.

Therefore, it can be concluded that pj,t̃ = p′
j,t̃

is true for each j ∈ Nt̃\CONNM,t̃ i.e. statement (3) of consistent

pointing holds at step t̃. Finally, statement (4) of consistent pointing at step t̃ is true by application of Lemma

4 as statement (4) of consistent pointing is true at step t̃− 1 and statement (3) of consistent pointing is true

at step t̃. �

The proof of Proposition 3 relies on the fact that the unique pointee selection criterion of the TC rule, FTC ,

determines unique pointees so that the closest unsatis�ed agent is reached whenever TC -persistence is not

in e�ect. If there are multiple such unsatis�ed agents or there are multiple paths through which the same

unsatis�ed agent can be reached, the priority ordering over agents is used to ascertain the unique pointee.

Note that, even though the proof of Proposition 3 refers to TC -persistence, it does not rely on its di�erences

with persistence. The reference is made only to highlight that Jaramillo & Manjunath [8] explicitly impose

this restriction on FTC .

The next result establishes weak group strategy proofness of the HPO rule by showing that it satis�es con-

sistent pointing.

Proposition 4. The HPO rule satis�es weak group strategy proofness.

Proof. Consider R,R′ ∈ RN such that R′ =
(
RN\M , R

′
M

)
for an arbitrary M ⊆ N . Let t be the �rst step

for which some agent in M departs, becomes satis�ed, or becomes part of a trading cycle under R. Denote

the corresponding step under R′ as t′. De�ne t = min {t, t′}. Suppose t′ < t. It needs to be proved that the

HPO rule satis�es consistent pointing.
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Consider any t̃ ∈ {t′, · · · , t− 1} and suppose that the statements of consistent pointing hold for all steps

ẗ < t̃. Then, to complete the proof, the statements of consistent pointing need to be proved for step t̃ because

the statements of consistent pointing are true for all steps before t as discussed in the Remark.

By the induction hypothesis, the statements of consistent pointing are satis�ed at step t̃− 1 and t̃ < t, then

statements (1) and (2) of consistent pointing hold at step t̃ by Lemma 5. By statement (2) of consistent

pointing at step t̃, U ′
t̃
⊆ Ut̃ and Ut̃\U ′t̃ ⊆ CONNM,t̃−1 are true. Then, an agent in Nt̃\CONNM,t̃ points

persistently at step t̃ under R if and only if she points persistently at step t̃ under R′. This is because an

agent in Nt̃\CONNM,t̃ is unsatis�ed at step t̃ under R if and only if she is unsatis�ed at t̃ under R′ i.e.

Ut̃\U ′t̃ ⊆ CONNM,t̃−1 implies that any agent who is unsatis�ed at step t̃ under R but not under R′ must be

pointing (directly or indirectly) at an agent inM under R. Moreover, each agent inNt̃\CONNM,t̃ must belong

in Nt̃−1\CONNM,t̃−1 as otherwise she belongs in CONNM,t̃−1 and, thus, in CONNM,t̃ because no agent in

M departs or becomes satis�ed before step t under R. Therefore, for each agent j ∈ Nt̃\CONNM,t̃, it must

be that pj,t̃−1 = p′
j,t̃−1 by statement (3) of consistent pointing at step t̃− 1. So, any agent j ∈ Nt̃\CONNM,t̃

who is pointing persistently at step t̃, it must be that pj,t̃ = pj,t̃−1 and p
′
j,t̃

= p′
j,t̃−1 are true i.e. agent j points

persistently under R and R′. Therefore, it can be concluded that pj,t̃ = p′
j,t̃

must hold as pj,t̃−1 = p′
j,t̃−1 is

true.

Now, consider the unique pointees for the unsatis�ed agents who are not pointing yet at step t̃ under R

and R′ in accordance with the unique pointee selection criterion FHPO . Consider any unsatis�ed agent j

such that j ∈ Nt̃\CONNM,t̃. By statement (2) of consistent pointing at step t̃, agent j is unsatis�ed under

R and R′ because Ut̃\U ′t̃ ⊆ CONNM,t̃−1 is true. Moreover, every agent in Nt̃\CONNM,t̃ also belonged in

Nt̃−1\CONNM,t̃−1 because once an agent points (directly or indirectly) at an agent in M , she continues to

do so at least until step t under R. Then, by statement (4) of consistent pointing at step t̃ − 1, for each

agent i ∈ Nt̃\CONNM,t̃ it must be the case that hi,t̃ = h′
i,t̃

because agent i ∈ Nt̃−1\CONNM,t̃−1. Since

agent j ∈ Nt̃\CONNM,t̃, it must be that pj,t̃ ∈ Nt̃\CONNM,t̃. Therefore, it must be that pj,t̃ = p′
j,t̃

because

the highest priority object in τ
(
Rj , O

′
t̃

)
must be the highest priority object in τ (Rj , Ot̃) as O′

t̃
⊆ Ot̃ and

Ot̃\O′t̃ ⊆ hCONNM,t̃−1,t̃
by statement (1) of consistent pointing at step t̃. Additionally, this object is owned

by the same agent at step t̃ under R and R′ as pj,t̃ ∈ Nt̃\CONNM,t̃.

Let L and L′ represent all of the agents who are pointing so far at step t̃ under R and R′, respectively. Since
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U ′
t̃
⊆ Ut̃ and Ut̃\U ′t̃ ⊆ CONNM,t̃−1, it must be that L′ ⊆ L and L\L′ ⊆ CONNM,t̃−1 are true. Let agent

j1 ∈ Nt̃\CONNM,t̃ be the �rst agent chosen to point from the agents in Nt̃\CONNM,t̃ who are not in L

under R. Then, agent j1 must be the �rst agent chosen to point from the agents in Nt̃\CONNM,t̃ who are

not in L′ under R′ because agents are selected for unique pointee determination on the basis of the priority

ordering of the object they hold and statement (4) of consistent pointing is true at step t̃− 1. Since L′ ⊆ L

and L\L′ ⊆ CONNM,t̃−1 are true, for any agent who is selected to point before agent j1 under R, one of the

following must be true:

1. She is selected to point before agent j1 under R′,

2. She has already departed under R′, or

3. She holds di�erent objects under R and R′.

Consider an agent i ∈ Nt̃ who has already departed under R′. Then, agent i is already labeled under R

because an agent who has departed under R′ but not under R must be pointing (directly or indirectly) at

an agent in M and she continues to do so at least until step t under R. Therefore, agent i ∈ CONNM,t̃

and agents in CONNM,t̃ continue to point persistently at least until step t under R. Now, consider an agent

i ∈ N ′
t̃
such that hi,t̃ 6= h′

i,t̃
. Then, by statement (4) of consistent pointing at step t̃−1, it must be that agent

i ∈ CONNM,t̃−1. Therefore, in both cases, agent i became part of CONNM,ẗ at some step ẗ < t̃. Moreover,

hi,t̃, h
′
i,t̃
∈ hCONNM,t̃−1,t̃

because once an agent points (directly or indirectly) at an agent in M , she continues

to do so at least until step t under R. Hence, these objects are held by agents who are labeled at step t̃ under

R. So, before agent j1 is chosen to point at step t̃, all of the objects that are held by labeled agents under

R′ must be held by labeled agents under R as well. Moreover, any agents who are labeled under R but not

under R′ must belong in Nt̃\N ′t̃ ⊆ CONNM,t̃−1. Agent j1 points at the labeled agent who holds one of her

most preferred objects and, if there are multiple such labeled agents, agent j1 points at the labeled agent

who holds the object with a higher priority under the priority ordering ≺. Then, it needs to be established

that this object is held by the same agent at step t̃ under R and R′. Since agent j1 ∈ Nt̃\CONNM,t̃,

then it must be that pj1,t̃ ∈ Nt̃\CONNM,t̃ is true. Let pj1,t̃ = ĵ1. Then, by persistence, it must be that

j1, ĵ1 ∈ Nt̃−1\CONNM,t̃−1 otherwise j1, ĵ1 ∈ Nt̃\CONNM,t̃ is contradicted because once an agent points
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(directly or indirectly) at an agent in M , she continues to do so at least until step t under R. Then, by

statement (4) of consistent pointing at step t̃−1, it must be that hĵ1,t̃ = h′
ĵ1,t̃

= a is true. Note that agent ĵ1

has not departed at step t̃ under R′ because Nt̃\N ′t̃ ⊆ CONNM,t̃−1 i.e. any agent who has departed at step t̃

under R′ but not under R must belong in CONNM,t̃−1 whereas agent ĵ1 ∈ Nt̃−1\CONNM,t̃−1. Furthermore,

agent ĵ1 is labeled before agent j1 is chosen to point at step t̃ under R and R′. Then, it must be that

pj1,t̃ = p′
j1,t̃

. Update L and L′ to represent all of the agents who are pointing so far at step t̃ under R and

R′, respectively. Again, L′ ⊆ L and L\L′ ⊆ CONNM,t̃−1 must be true. Now, let agent j2 ∈ Nt̃\CONNM,t̃

be the next agent chosen to point from the agents in Nt̃\CONNM,t̃ who are not in L under R. Following

the same reasoning, as for agent j1, it can be shown that pj2,t̃ = p′
j2,t̃

. Proceeding in this manner, it can be

concluded that pj,t̃ = p′
j,t̃

for each j ∈ Nt̃\CONNM,t̃.

Since pj,t̃ = p′
j,t̃

(statement (3) of consistent pointing at step t̃) and hj,t̃ = h′
j,t̃

(statement (4) of consistent

pointing at step t̃− 1) are true for each j ∈ Nt̃\CONNM,t̃, it can be concluded that hj,t̃+1 = h′
j,t̃+1

for each

j ∈ Nt̃\CONNM,t̃ by Lemma 4. This completes the proof of weak group strategy proofness for the HPO

rule. �

The unique pointee selection criterion for the HPO rule, FHPO , determines the unique pointees of the

unsatis�ed agents after persistence has been ensured. Once the unsatis�ed agents are dealt with, the unique

pointees are determined for the satis�ed agents who are not already pointing. In this sense, the proof of weak

group strategy proofness for the HPO rule is simpler than the TC rule because it just requires a comparison

of the set of labeled agents, under R and R′, to show that the HPO rule satis�es consistent pointing instead

of a detailed analysis of the progression of the pointing phase.

Based on the results of this paper and the results that have already been proved for the TTAS , TC , and

HPO rules, the following theorem can be stated:

Theorem 2. For a housing market problem with weak preferences, there are computationally e�cient rules

which are Pareto e�cient, weak core-selecting (hence, individually rational), weakly group strategy proof

(hence, strategy proof ), and core-selecting (whenever the core is non-empty).
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6 Conclusion

When the housing market problem is considered with weak preferences, several mechanisms have been shown

to satisfy desirable properties like Pareto e�ciency, individual rationality, weak core-selection, and strategy

proofness. This paper provides a su�cient condition for weak group strategy proofness in the context of the

housing market problem with weak preferences. Using this su�cient condition, I show that three of the

existing rules - the top trading absorbing sets, top cycles, and highest priority object rules - satisfy weak group

strategy proofness. Thus, this paper proves that even though group strategy proofness is incompatible with

Pareto e�ciency for weak preferences, it is possible to achieve weak group strategy proofness. Moreover, since

the top cycles and highest priority object rules are computationally e�cient, this paper proves the existence of

computationally e�cient rules which are Pareto e�cient, weak core-selecting (hence, individually rational),

weakly group strategy proof (hence, strategy proof ), and core-selecting (whenever the core is non-empty).

Alternatively, the results of this paper can be interpreted to suggest that weak group strategy proofness is not

restrictive enough for the housing market problem with weak preferences to identify any of the three existing

mechanisms, considered in this paper, to be better than the others. It might be of interest to determine if

there are any rules in the class of mechanisms proposed by Saban & Sethuraman [17] which fail to satisfy

weak group strategy proofness.
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