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Abstract

Background

The WHO announced the epidemic of SARS-CoV2 as a public health emergency of interna-

tional concern on 30th January 2020. To date, it has spread to more than 200 countries and

has been declared a global pandemic. For appropriate preparedness, containment, and mit-

igation response, the stakeholders and policymakers require prior guidance on the propaga-

tion of SARS-CoV2.

Methodology

This study aims to provide such guidance by forecasting the cumulative COVID-19 cases

up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregres-

sive integrated moving average (ARIMA), exponential smoothing model (ETS), and random

walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy

and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Abso-

lute Error (MAE), respectively.

Findings

The results show that the ARIMA and ETS methods outperform the other two forecasting

methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial

representation of the countries at risk of having an increase in the cases in the coming 4

weeks of February 2021.

Conclusion

Due to limited data availability during the ongoing pandemic, less data-hungry short-term

forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of

SARS-CoV2.
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Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV2) is a zoonotic virus belong-

ing to the betacoronavirus group of the coronaviridae family which also includes SARS-CoV

and MERS. These viruses are known to cause severe acute respiratory diseases in humans [1].

The first confirmed case of SARS-CoV2 emerged in December 2019 in Wuhan, China. The

WHO announced the epidemic of SARS-CoV2 as a public health emergency of international

concern on 30th January 2020 due to the high human to human transmission rate and absence

of any treatment or vaccine [2]. To date, it has spread to more than 200 countries and has been

declared as a global pandemic [3]. SARS-CoV2 transmits through respiratory droplets and has

a binding capacity, through spike proteins, to angiotensin-converting enzyme 2 (ACE2) recep-

tors in the human respiratory system [3]. Clinical symptoms of SARS-CoV2 include cough,

fever, shortness of breath, and—in severe cases—pneumonia and multiple organ failure [3].

SARS-CoV2 has an incubation period of 1–14 days and a substantial proportion of the infected

persons appear to be asymptomatic. Moreover, these individuals are highly infectious before

the onset of symptoms, which makes it a challenge to diagnose, contain, and control transmis-

sions [1, 4]. Initially, the mean basic reproduction number (R0) of SARS-CoV2 ranged from

1.4 to 6.49, while some studies highlighted that the R0 stabilized around 2–3 leading to an

exponential increase in the number of cases [3, 5]. However, relying solely on R0 to formulate

policies could be misleading as there may be a possibility of a COVID-19 outbreak even when

R0 is less than one [6].

Globally, many public and private enterprises are exploring treatment options and are in

the process of vaccine development. However, vaccines have to go through a robust and usu-

ally time-consuming process of clinical trials owing to the paradigms of human safety, health,

and bioethics [7]. Vaccine rollout has commenced in several countries but due to production

limitations, maintaining the cold chain, and vaccine hesitancy, the trend of the number of

administered doses is sluggish [7, 8]. Globally, countries have implemented various interven-

tions in an attempt to limit transmissions and curtail the number of deaths caused by COVID-

19. These interventions include social distancing, the closing of public places, academic insti-

tutes and schools, travel restrictions, quarantine for the infected, and—in some cases—curfew

or lockdown [9]. However, issues in the health security infrastructure, disease surveillance,

health systems, and limited availability of health professionals makes it a challenge for contain-

ing, mitigating, and rolling out the vaccine for SARS-CoV2 [9].

Considering these concerns, for appropriate preparedness, containment, and mitigation

response, the stakeholders and policymakers require prior guidance on the propagation of

SARS-CoV2. This study aims to provide such guidance by forecasting the cumulative COVID-

19 cases up to 4 weeks ahead and ascertain their accuracy using the Mean Absolute Percentage

Error and Mean Percentage Error.

Data sources

The daily level data for the cumulative COVID-19 cases, for 187 countries, and at the aggre-

gated level for the entire world, was acquired from “Our World in Data”–a combined effort of

the researchers at the University of Oxford and the Global Change Data Lab—which relies on

the European Centre for Disease Prevention and Control (ECDC) for data collection [10, 11].

Our sample period starts from the day of the first reported case for each country till 1st Febru-

ary 2021. The statistical analysis of this paper was performed using R 4.0.3.

Our variable of interest, for the forecasting analysis, is the cumulative COVID-19 cases at

the daily level. The descriptive statistics of the cumulative COVID-19 cases—number of obser-

vations, standard deviation, minimum, and maximum—are presented in Table 1. For brevity,
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Table 1 only provides the descriptive statistics for the 29 countries with the highest cumulative

COVID-19 cases as of 1st February 2021 and at the aggregated level for the entire world. The

descriptive statistics for the entire sample are provided in S1 Table.

Ethics

No ethics approval was required for the study as secondary data analysis was performed on the

publicly available COVID-19 dataset.

Forecasting methodology and evaluation

To forecast the cumulative COVID-19 cases, we use four different forecasting methods. Three

of the forecasts are based on the autoregressive integrated moving average process which is

usually denoted as ARIMA(p, d, q) where p is the order of the autoregressive model, d is the

Table 1. Descriptive statistics of the 29 countries with the highest cumulative COVID-19 cases and at the aggregated level of the entire world.

Country Observations Standard Deviation Minimum Maximum

Argentina 336 654867.2 1 1933853

Belgium 364 245428.4 1 711417

Brazil 342 2897244 1 9229322

Canada 373 206854.9 1 788186

Chile 345 229784.1 2 730888

Colombia 333 644995.2 1 2104506

Czechia 338 295867.7 3 987329

France 375 1017765 2 3260308

Germany 372 613919.7 1 2232327

India 369 4124427 1 10766245

Indonesia 337 292201.6 2 1089308

Iran 349 421107.1 2 1424596

Iraq 344 237033.7 1 620620

Israel 347 179182.7 1 652246

Italy 368 755731.6 2 2560957

Mexico 340 536228.6 1 1869708

Netherlands 341 298779.7 1 995300

Peru 333 390101.4 1 1138239

Poland 335 503521.2 1 1515889

Portugal 337 172793.4 2 726321

Romania 342 235456 1 730056

Russia 368 1092717 2 3825739

South Africa 334 418621.3 1 1456309

Spain 367 743438.9 1 2822805

Sweden 364 157663.7 1 576606

Turkey 328 755429.5 1 2485182

UK 368 983256 2 3846851

USA 377 7199436 1 26321120

Ukraine 336 402486.9 1 1263833

World 377 30371381 557 103422636

https://doi.org/10.1371/journal.pone.0252147.t001

PLOS ONE Data-driven methods for short-term forecasts of SARS-CoV2 cases

PLOS ONE | https://doi.org/10.1371/journal.pone.0252147 May 21, 2021 3 / 21

https://doi.org/10.1371/journal.pone.0252147.t001
https://doi.org/10.1371/journal.pone.0252147


degree of differencing, and q is the order of the moving average model. The ARIMA model has

been used for forecasting and assessing seasonality in infectious disease outbreaks [12–15].

The ARIMA model is a generalization of the autoregressive moving average (ARMA)

model with an ability to address the potential non-stationarity of the variable of interest. To

test for stationarity of the cumulative COVID-19 cases, we used the Augmented Dickey-Fuller

(ADF) and Phillips-Perron (PP) unit root tests. The null hypothesis of these tests is that the

variable contains a unit root, hence non-stationary, whereas the alternative is that the time

series variable was generated by a stationary process. Table 2 reports the p-values, for the unit

root tests, for the 29 countries with the highest cumulative COVID-19 cases and at the aggre-

gated level for the entire world. S2 Table provides the results of the unit root tests for the 187

Table 2. Results of the unit root tests for the 29 countries with the highest cumulative COVID-19 cases and at the

aggregated level of the entire world.

Country ADFa PPb

Argentina 1.00 1.00

Belgium 1.00 1.00

Brazil 1.00 1.00

Canada 1.00 1.00

Chile 1.00 1.00

Colombia 1.00 1.00

Czechia 1.00 1.00

France 1.00 1.00

Germany 1.00 1.00

India 1.00 1.00

Indonesia 1.00 1.00

Iran 1.00 1.00

Iraq 1.00 1.00

Israel 1.00 1.00

Italy 1.00 1.00

Mexico 1.00 1.00

Netherlands 1.00 1.00

Peru 1.00 0.99

Poland 1.00 1.00

Portugal 1.00 1.00

Romania 1.00 1.00

Russia 1.00 1.00

South Africa 1.00 1.00

Spain 1.00 1.00

Sweden 1.00 1.00

Turkey 1.00 1.00

UK 1.00 1.00

USA 1.00 1.00

Ukraine 1.00 1.00

World 1.00 1.00

a The p-values of the Augmented Dickey-Fuller unit root test.
b The p-values of the Phillips-Perron unit root test.

https://doi.org/10.1371/journal.pone.0252147.t002
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countries. The test results suggest non-stationarity which justifies the use of the ARIMA
model.

Let Xt denote the cumulative COVID-19 cases on the tth day for the country being analyzed.

Then, ARIMA(p, d, q) equation can be given as follows [16]:

Dd � Xt ¼ aþ
Xp

i¼1

biðD
d � Xt� iÞ þ

Xq

j¼1

giεt� i þ εt ð1Þ

In Eq (1), D is the difference operator, α is the constant term, β’s and γ’s are the coefficients

of the autoregressive and the moving average component of the ARIMA model, respectively,

and ε is the error term which is assumed to be independently and identically distributed from

a normal distribution with zero mean. Eq (1) shows that the AR component allows the variable

to be determined based on its prior values whereas the MA component shows that the error

term is a linear combination of the current and prior values of ε. The latter accounts for the

autocorrelation in the variable of interest.

A particularly naïve attempt is to fit ARIMA(0,1,0) which is commonly referred to as ran-

dom walk and its forecasts are termed as random walk forecasts (RWF). We generate the RWF
with and without drift for the variable of interest.

A more systematic approach for fitting the ARIMA model follows these steps [17]:

1. To ensure stationarity, the differencing order (d) is selected by using the Kwiatkowski-Phil-

lips-Schmidt-Shin test [18].

2. The lags, p and q, are determined by using the Akaike Information Criterion corrected for

small sample sizes.

Aside from the ARIMA model, we also used the exponential smoothing method (ETS)

for generating forecasts. ETS is a forecasting method for univariate data which deals with

the systematic trend, seasonality, and can be used as an alternative to the ARIMA models

[19].

To evaluate the performance of forecasts, the data is divided into two mutually exclusive

sets, the training and test sets. The training set is used to fit the model (without using any

data from the test set) whereas the test set is kept for evaluating the forecast accuracy. We

use a variant of the time series cross-validation which is a more sophisticated version of the

usual training-test set methodology [16]. In this method, there is a series of test sets, and

each test set is accompanied by a corresponding training set consisting of observations

before the test set. Therefore, a series of training-test sets are constructed, and for each train-

ing-test set forecast accuracy is determined. This method is more sophisticated than the

usual training-test set methodology because it allows more comparisons of the forecasted

and actual data values.

The time-series cross-validation method is also referred to as evaluation on a rolling fore-

casting origin because the origin of the test set is rolled forward in time. In simpler words:

1. An origin for the first test set is selected.

2. Forecasts are determined for the test set using the corresponding training set.

3. The origin is rolled forward by one period generating a new training-test set for which fore-

casts can be evaluated, and so on.

In this study, we take the 45th day—since the first reported case in the country—as the ori-

gin which is then rolled forward one day at a time. The variation in our methodology is that,

instead of taking each of the test set as a single observation, we take four different test sets for

PLOS ONE Data-driven methods for short-term forecasts of SARS-CoV2 cases

PLOS ONE | https://doi.org/10.1371/journal.pone.0252147 May 21, 2021 5 / 21

https://doi.org/10.1371/journal.pone.0252147


each training set: 1 week, 2 weeks, 3 weeks, and 4 weeks into the future. This allows us to ascer-

tain the accuracy of the forecasting method up to 4 weeks ahead for each training set. There-

fore, we include countries with at least 73 (45+28) observations to ensure that there is at least

one available test set for the 4 weeks ahead forecasts for each country included for the forecast

evaluation.

Suppose the country under consideration has data available for t 2 {1,2,� � �, T}. The follow-

ing steps explain the methodology:

1. Use the data available till t = 45, and forecast the values of Xt+τ for τ 2 {1,2,� � �, 28}, i.e.,

obtain the forecasts for the next 28 days or 4 weeks.

2. Construct 1 week, 2 weeks, 3 weeks, and 4 weeks ahead forecasts using the forecasted values

till t + 7, t + 14, t + 21, and t + 28, respectively.

3. Increase the data sample by one day, i.e., take the data till (t + 1)th day and obtain 28-day

ahead forecasts, and repeat this process until we reach the end of the data, i.e., we reach the

Tth day.

There are several methods to determine the accuracy of the forecasted values. We used the

Mean Absolute Percentage Error (MAPE) for this purpose which is defined as follows [16]:

MAPE ¼ 100�
1

n

Xn

i¼1

Ai � Fi

Ai

�
�
�
�

�
�
�
� ð2Þ

In Eq (2), Ai and Fi denote the actual and forecasted values, respectively, and n is the num-

ber of forecasted values for which a corresponding actual data value exists. It should be clear

that forecasting accuracy increases as MAPE becomes closer to zero. Since the forecasted vari-

able of this study is the cumulative COVID-19 cases, MAPE represents the forecasting error as

the percentage of cumulative COVID-19 cases. Based on our methodology, there is a series of

training-test sets, and MAPE can be determined for each of these. Therefore, the forecasting

accuracy is calculated by averaging MAPE over the series of the training-test sets [16].

We also estimate the Mean Percentage Error (MPE) which is defined as follows [20]:

MPE ¼ 100�
1

n

Xn

i¼1

Ai � Fi

Ai
ð3Þ

Since MAPE uses the absolute values of the forecasting errors, it is unable to determine

whether the forecasting model is systematically under or over-predicting. In this regard, MPE
can prove useful as it does not use the absolute values of the forecasting errors [20].

Results

This section presents our results; the forecasting accuracy of the four forecasting methodolo-

gies, the forecasted values, and the heat maps.

Forecasting evaluation

Figs 1 and 2 show the MAPE for the forecasted values of the 29 countries with the highest

cumulative COVID-19 cases and at the aggregated level for the entire world. For all of the

countries, the MAPE are provided in S1–S6 Figs. As expected, the MAPE increases as we

increase the forecasting horizon from 1 week to 4 weeks ahead. This suggests that shorter-term
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forecasts are more accurate compared to longer-term forecasts. Overall, forecast evaluation

shows that the ARIMA and ETS forecasts outperform RWF with and without drift.

Table 3 shows the summary of MAPE values of each forecasting horizon for the 187 coun-

tries and at the aggregated level for the entire world. In line with the observations of Figs 1 and

2, the ARIMA forecasts have low average MAPE values of 2.24%, 3.96%, 5.78%, and 7.65% for

1 week, 2 weeks, 3 weeks, and 4 weeks ahead, respectively. The ETS forecasts show similar

average MAPE values as well. In comparison, RWF with drift has average MAPE values of

4.60% for 1 week, 7.89% for 2 weeks, 10.84% for 3 weeks, and 13.54% for 4 weeks ahead fore-

casts. Moreover, RWF without drift exhibits even higher values of MAPE than RWF with drift.

Fig 3 presents the MAPE results in the form of boxplots (without the outliers) for each of

the forecasting methodology and horizon. A boxplot depicts the quartiles of the data. The

Fig 1. The MAPE for the forecasted values for 16 of the 29 countries with the highest cumulative COVID-19 cases.

https://doi.org/10.1371/journal.pone.0252147.g001
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box ranges from the first quartile (Q1) to the third quartile (Q3) and the black notch in the

box represents the median of the data. Each boxplot also has a vertical line that encompasses

the non-outliers of the data. The bottom and top limit of the vertical line are determined as

Q1 − 1.5IQR and Q3 + 1.5IQR, respectively, where IQR = Q3 − Q1 is the interquartile range.

Any observation beyond the vertical is referred to as an outlier because 99.3% of the observa-

tions lie within its limits.

Fig 3 shows that, among the non-outliers, the maximum MAPE values for 1 week, 2 weeks,

3 weeks, and 4 weeks ahead ARIMA forecasts are 4.97%, 8.00%, 11.89%, and 15.41%, respec-

tively. Moreover, the median values for 1 week, 2 weeks, 3 weeks, and 4 weeks ahead forecasts

Fig 2. The MAPE for the forecasted values for 13 of the 29 countries with the highest cumulative COVID-19 cases and at the aggregated level for

the entire world.

https://doi.org/10.1371/journal.pone.0252147.g002
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are 1.88%, 3.47%, 5.20%, and 7.07%, respectively. The performance of ARIMA forecasts is mar-

ginally better than ETS forecasts and significantly better than RWF with and without drift.

Fig 4 shows the boxplots for the MPE of the forecasted values for each forecasting model.

This figure shows that each forecasting model systematically over-predicts the cumulative

COVID-19 cases. However, the over-predictions from the RWF with and without drift fore-

casts are much larger compared to the ARIMA and ETS forecasts.

We also used alternative measures for evaluating the forecasted values; Mean Absolute

Error (MAE) and Mean Error (ME). Based on the results of these measures, presented in S1

File, the conclusions drawn from Figs 3 and 4 remain unchanged.

Forecasted scenario

Figs 5 and 6 show the forecasted values generated using the ARIMA and ETS forecasting meth-

odologies for the 29 countries with the highest cumulative COVID-19 cases and at the aggre-

gated level for the entire world. For all of the countries, the ARIMA and ETS forecasted values

are provided in S7–S13 Figs.

We are only using the ARIMA and ETS forecasts as these outperform the RWF with and

without drift as established in the previous subsection. These figures use the data from the

entire sample period, and the values are forecasted for 4 weeks into the future. Figs 5 and 6

show that the ARIMA and ETS forecasts perform similarly in the depicted cases.

We also use ARIMA forecasts to generate heat maps for 8th February (Fig 7), 15th February

(Fig 8), 22nd February (Fig 9), and 1st March (Fig 10) in 2021. To generate the heat maps, we

selected all those countries which had at least 73 (45+23) observations and have a population

larger than 1 million. Moreover, we only use the ARIMA forecasts since its performance is

comparable to the ETS forecasts. To ensure comparability of the forecasts, we divided the fore-

casted values of the cumulative COVID-19 cases by population in millions. Overall, the heat

Table 3. Summary of the MAPE results for 187 countries and at the aggregated level of the world.

Weeks Ahead Statistic Forecasting Method

ARIMA ETS RWF With Drift RWF Without Drift

1 Min. 0.11 0.10 1.46 0.08

Max. 7.83 8.34 10.98 12.47

Average 2.24 2.37 4.60 5.69

St. Dev. 1.35 1.41 1.59 2.21

2 Min. 0.24 0.21 2.44 0.14

Max. 11.81 13.44 18.5 21.01

Average 3.96 4.18 7.89 9.80

St. Dev. 2.07 2.24 2.61 3.72

3 Min. 0.37 0.34 3.23 0.16

Max. 16.01 17.45 24.69 27.93

Average 5.78 6.06 10.84 13.38

St. Dev. 2.75 2.98 3.49 5.03

4 Min. 0.52 0.48 3.94 0.18

Max. 20.01 20.55 29.79 33.62

Average 7.65 7.97 13.54 16.58

St. Dev. 3.42 3.69 4.29 6.20

https://doi.org/10.1371/journal.pone.0252147.t003
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Fig 3. Boxplots of the MAPE results (without the outliers) for 187 countries and at the aggregated level of the world.

https://doi.org/10.1371/journal.pone.0252147.g003
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Fig 4. Boxplots of the MPE results (without the outliers) for 187 countries and at the aggregated level of the world.

https://doi.org/10.1371/journal.pone.0252147.g004
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maps depict information for 145 countries as some of the countries were not matched with the

countries listed in the rworldmap package used for generating these maps. The rworldmap

package for R 4.0.3 uses the country borders from Natural Earth data v 1.4.0 which is in the

public domain.

Discussion

Our results show that the ARIMA and ETS methods perform well in forecasting cumulative

COVID-19 cases. Additionally, using these forecasts, we generated heat maps to provide a pic-

torial representation of the countries at risk of having an increase in cases in the 4 weeks of

February 2021.

Fig 5. The 4 weeks ahead forecasts for 16 of the 29 countries with the highest cumulative COVID-19 cases.

https://doi.org/10.1371/journal.pone.0252147.g005
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Globally, uncertainty exists around the spread and transmissions of SARS-CoV2. For this

purpose, many mathematical modeling and simulation-based techniques have been used,

especially compartmental model techniques, to better understand the transmissions of

COVID-19 cases. Among these, the most used is the Susceptible-Exposed-Infectious-Recov-

ered (SEIR) model [21–24]. The SEIR model makes assumptions on the population belonging

to the different compartments based on R0. However, for these assumptions to be reliable,

large datasets are required and solely relying on R0 can be misleading as COVID-19 outbreaks

may be possible even when R0 is lower than one [6, 21–24].

During a pandemic, not a lot of data is available to reliably run the aforementioned models.

However, some of the models for infectious diseases were designed for determining long-

term, instead of short-term, dynamics and projections [25]. In comparison, the data-driven

Fig 6. The 4 weeks ahead forecasts for 13 of the 29 countries with the highest cumulative COVID-19 cases and at the aggregated level for the

entire world using the ARIMA and ETS methodologies.

https://doi.org/10.1371/journal.pone.0252147.g006
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methods considered in this paper are less data-hungry, perform well for short-term forecasts

(based on evaluation of 4-week ahead forecasts), and do not require as much level of detail in

the datasets. Other advantages of these data-driven techniques include simplicity of estimation

that can be performed using the open-source statistical software R 4.0.3.

Different countries and regions have different health systems and capacities in place which

determine their testing capabilities. The SEIR model can capture the propagation of the disease

which means that it would be able to predict the true number of cases considering the suscepti-

ble and asymptomatic individuals. However, data for asymptomatic cases is largely unavailable

for SARS-CoV2 due to limited testing capabilities and a large proportion of asymptomatic

cases not being detected; making it challenging to verify the predictions from the compart-

mental models. On the other hand, data-driven techniques can provide information on the

confirmed number of cases with high accuracy. For this study, we focused on the cumulative

COVID-19 cases. However, these forecasting methods can be used for other indicators such as

Fig 7. The heat map using the ARIMA forecasts for 8th February 2021.

https://doi.org/10.1371/journal.pone.0252147.g007
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cumulative deaths, cumulative recovery, etc. The forecasts of the confirmed number of cases

are sensitive to the number of tests performed, however, since the confirmed number of cases

is an indicator of the anticipated burden on the healthcare system and professionals, the pro-

jections by the data-driven techniques might be insightful for the policymakers. This is impor-

tant because the availability of health service resources during COVID-19 is an issue faced by

many countries [26]. Even with lockdown measures enacted, the peak demand for healthcare

services, during the COVID-19 pandemic, exceeded capacity irrespective of the capacity of the

healthcare infrastructure and resources especially during the second wave [27, 28].

Globally, our forecasting results reveal that the number of cases will increase in most of the

countries. Additionally, the forecasted scenarios for February 2021 indicate an increase in the

cumulative cases of COVID-19 in Canada, Europe, and South America (Figs 7–10). The future

of the global pandemic greatly depends on the vaccine rollout coupled with the implementa-

tion of mitigation and containment measures. Strict measures such as worldwide lockdowns,

Fig 8. The heat map using the ARIMA forecasts for 15th February 2021.

https://doi.org/10.1371/journal.pone.0252147.g008
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travel restrictions, school closures, non-essential business closures, social distancing, isolation

of infected populations as well as heightened hygiene measures can potentially reduce the risk

of spread [26]. However, the effectiveness of interventions is far from homogenous and

depends on how well people comply, the presence of enforcement, how well testing/contact

tracing/quarantine efforts that are run alongside the lockdown are performed, etc. Yet, hopes

of curtailing the pandemic have proven elusive, with many countries forced by their econo-

mies to relax the quarantine measures which can potentially lead to an exponential increase in

the number of cases. With effective vaccine rollout, close monitoring of COVID-19 cases

should be considered before easing the mitigation and containment strategies.

Although the novel coronavirus pandemic is associated with many uncertainties, we believe

that short-term forecasting and predictive modeling can be an effective tool in targeted vaccine

rollout and intervention strategies. Model-based predictions can help policymakers to make

the right decisions in a timely way [29].

Fig 9. The heat map using the ARIMA forecasts for 22nd February 2021.

https://doi.org/10.1371/journal.pone.0252147.g009
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Conclusion

Results of the study indicate that the ARIMA and ETS models perform well in forecasting the

short-term cumulative COVID-19 cases. We ran the model for 187 countries with varying

health system resources and infrastructure, and at the aggregated level for the entire world.

The results suggest that the ARIMA and ETS model can be used for SARS-CoV2 forecasting in

different countries and regions with a high level of accuracy. Since these models rely on past

observations of the cumulative COVID-19 cases, they can also be used for forecasting provin-

cial, district, or state level cases and other COVID-19 indicators.
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