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Abstract: Improving the performance of Deep Learning (DL) algorithms is a challenging problem.
However, DL is applied to different types of Deep Neural Networks, and Long Short-Term Memory
(LSTM) is one of them that deals with time series or sequential data. This paper attempts to overcome
this problem by optimizing LSTM parameters using the Bees Algorithm (BA), which is a nature-
inspired algorithm that mimics the foraging behavior of honey bees. In particular, it was used
to optimize the adjustment factors of the learning rate in the forget, input, and output gates, in
addition to cell candidate, in both forward and backward sides. Furthermore, the BA was used
to optimize the learning rate factor in the fully connected layer. In this study, artificial porosity
images were used for testing the algorithms; since the input data were images, a Convolutional
Neural Network (CNN) was added in order to extract the features in the images to feed into the
LSTM for predicting the percentage of porosity in the sequential layers of artificial porosity images
that mimic real CT scan images of products manufactured by the Selective Laser Melting (SLM)
process. Applying a Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) yielded
a porosity prediction accuracy of 93.17%. Although using Bayesian Optimization (BO) to optimize
the LSTM parameters mentioned previously did not improve the performance of the LSTM, as the
prediction accuracy was 93%, adding the BA to optimize the same LSTM parameters did improve its
performance in predicting the porosity, with an accuracy of 95.17% where a hybrid Bees Algorithm
Convolutional Neural Network Long Short-Term Memory (BA-CNN-LSTM) was used. Furthermore,
the hybrid BA-CNN-LSTM algorithm was capable of dealing with classification problems as well.
This was shown by applying it to Electrocardiogram (ECG) benchmark images, which improved the
test set classification accuracy, which was 92.50% for the CNN-LSTM algorithm and 95% for both
the BO-CNN-LSTM and BA-CNN-LSTM algorithms. In addition, the turbofan engine degradation
simulation numerical dataset was used to predict the Remaining Useful Life (RUL) of the engines
using the LSTM network. A CNN was not needed in this case, as there was no feature extraction
for the images. However, adding the BA to optimize the LSTM parameters improved the prediction
accuracy in the testing set for the LSTM and BO-LSTM, which increased from 74% to 77% for the
hybrid BA-LSTM algorithm.

Keywords: Deep Learning (DL); Long Short-Term Memory (LSTM); Convolutional Neural Network
(CNN); Bees Algorithm (BA); Bees Algorithm Convolutional Neural Network Long Short-Term
Memory (BA-CNN-LSTM)

1. Introduction

Artificial intelligence (AI) facilitates intelligent systems improvement and leads to an
increase in the effectiveness and efficiency of processes [1]. AI has different techniques that
can be applied in different contexts in real life, and the most popular ones are Artificial
Neural Networks (ANNs), which are inspired by the human brain. ANNs can model high
dimensional data, extract implicit patterns, and investigate complex relationships to predict
a complex systems’ future state [2]. Additionally, they can deal with nonlinear dynamic
problems [3]. Deep Learning (DL) is an extension of ANN with better learning capability,
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as it extracts the features automatically using nonlinear filters [4]. It can be applied in
different fields, such as in manufacturing, thereby enabling advanced analytics for big
data that result in smart manufacturing systems, whether during processing by diagnosing
processes conditions to predict the future state of the products, or during postprocessing to
the finished parts [5]. In addition, it can be applied in the pharmaceutical field to diagnose
cancers and predict aqueous solubility [6]. On the other hand, there are some disadvantages
of adopting DL. The most important one is the acquisition of datasets, as DL requires a
large amount of data, so the availability is not guaranteed. In addition, applying data
preprocessing for big data is challenging, especially if many irrelevant observations need
to be removed, and applying improper data mining may affect the performance of the DL
model [3].

Long Short-Term Memory (LSTM) is one of the DL networks that deals with time
series or sequential data. It is an advanced Recurrent Neural Network (RNN) that retains
information for a long period so that it can remember long-term dependencies [7]. The
RNN can retain the information as well, but for a shorter period, so it cannot remember
the dependencies in the long term. LSTM was established to address this problem in
the RNN [8]. It consists of three gates: the first one is the forget gate that decides if it is
necessary to remember the information coming from the previous time scale or not; the
second one is the input gate that learns information from the cell input; and the last gate is
the output gate, wherein the cell transfers the updated information to the next time cycle. In
addition, it has a cell state that carries the information, along with all cycles, and a hidden
state for short-term memory [9].

Improving the performance of the LSTM network is an ongoing challenge [10]. The
traditional approach of assigning the parameters using trial and error is less accurate,
since it depends on the user experience. However, using a nature-inspired algorithm to
automatically select the optimum parameter values may improve the performance of the
network [10]. The existing studies addressed optimizing hidden layers, the number of
neurons, activation function, loss function, optimizers, batch size, and the number of epochs
using different nature-inspired algorithms, as will be shown in Section 2.3. This study
addresses optimizing the learning rate in each of the three gates and the cell candidate so
that each step has a customized learning rate for more optimum performance.

In particular, the weights update in each of the three gates and cell candidate depends
on the learning rate value [9], so using a customized learning rate for each part would
result in more optimal updates for the weights [10]. A study proposed a nature-inspired
algorithm that utilized the power of global, local, and intense searches in the BA to optimize
the learning rate factor for the convolutional layers and the fully connected layer in order
to adjust the global learning for a CNN, which resulted in a more optimum weights
update [10]. When the proposed hybrid algorithm was applied to ‘Cifar10DataDir’, the
validation accuracy was improved from 80.72% to 82.22% [10].

Hence, the paper aims to improve the performance of the LSTM in dealing with
sequential problems by optimizing the parameters related to the three gates and cell state.
This paper proposes a hybrid nature-inspired algorithm, which takes the advantages of
the Bees Algorithm (BA), in order to improve the performance of the three gates and cell
state. In particular, the BA was used to optimize the learning rate factor so that each part
had its own learning rate that was determined based on the global learning rate. Having a
more optimum learning rate means more optimum updates for the network weight [11].
Artificial porosity images were used for testing the algorithms; as the input data are images,
a Convolutional Neural Network (CNN) was added in order to extract the features in the
images and feed the LSTM to predict the porosity in sequential layers of artificial porosity
images that mimicked real CT scan images of products manufactured by the Selective Laser
Melting (SLM) process. The hybrid Bees Algorithm Convolutional Neural Network Long
Short Term Memory, referred to as the BA-CNN-LSTM, combines the best DL networks for
dealing with images and sequential data, as the CNN is the most powerful DL network
for analyzing images [4]. In addition, the LSTM network is the best algorithm for dealing
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with sequential data, as it retains the information for a long period by remembering long-
term dependencies, which address the problem of normal RNNs [7]. It can be applied in
other contexts, such as in signal processing to classify electrocardiogram (ECG) benchmark
image data, as will be shown in Section 4. Also, it can deal with time series numerical
data, wherein the CNN is not needed in this case, as there is no feature extraction task for
the images.

The contribution of the paper is improving the performance of LSTM network in
predicting sequential data using BA. As the input data are images, CNN is added to
extract the image features yielding a hybrid algorithm (BA-CNN-LSTM) that provides a
more accurate prediction of porosity percentage appearing in sequential layers of artificial
porosity images that mimic CT scan images of parts manufactured by SLM process.

The paper structure starts with Section 2, which presents a review of the LSTM while
showing the gaps that need to be fulfilled to improve its performance. Then, Section 3
describes the process for the proposed BA-CNN-LSTM, and Section 4 shows the results
and discussion of the proposed model. Section 5 presents the study conclusion and future
recommendations.

2. Long Short-Term Memory (LSTM)

This section shows a review of LSTM that presents the definition and process, the gaps
and open issues, and state-of-the-art studies.

2.1. LSTM Definition and Process

The LSTM is one of the DL networks that deals with time series or sequence problems.
It is an extension of RNNs that can remember long-term dependencies, as it retains the
information for a long period. The normal RNN is not able to do so, thus resulting in a
vanishing gradient problem [9]. This is a situation where the RNN is not able to propagate
useful information from the end of the network back to the beginning of the network, as
the information is stored only for a short period [12].

The structure of the LSTM consists of three gates: the first one is the forget gate
that decides if the information coming from the previous time scale is relevant to be
remembered or irrelevant to be forgotten; the second one is the input gate that tries learning
new information from the cell input; and the last gate is the output gate, wherein the cell
transfers the updated information from the previous time cycle to the next time cycle. In
addition, it has a cell state that carries the information along with all cycles as it stores
the information for a long period and has a hidden state for short-term memory; this cell
state is present in RNN as well [9]. Reference [9] presented the following Figure 1, which
illustrates the basic structure of the LSTM, where the first part is the forget gate, the second
part is the input gate, and the last one is the output gate. In addition, Ct−1 is the cell state
for the previous time cycle, Ct is the cell state for the current time cycle, Ht−1 is the hidden
state for the previous time cycle, and Ht is the hidden state for the current time cycle.

The LSTM network starts with the forget gate to decide if the information coming
from the previous time scale is relevant to be remembered or irrelevant to be forgotten.
Then, the input gate is used to quantify the importance of the input of new information.
After that, the cell transfers the updated information from the previous time cycle to the
next time cycle in the output gate.

Reference [8] presented a more intuitive architecture of the LSTM network, as is shown
in Figure 2.
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2.2. Gaps and Open Issues

One of the most important challenges in training the LSTM is reducing overfitting [13],
which is the case where the model fits well enough for training data and performs poorly in
validation and testing data so that it is not able to generalize to unseen data [14]. This issue
can be overcome by adding a dropout layer [15,16], traying more optimal regularization
values [17], reducing the number of epochs, or augmenting the datasets [13].

The exploding and vanishing gradient is a problem that occurs in RNNs when the
model stops learning after a specific epoch, and the LSTM addresses this issue [9]. However,
the optimum weight change can be improved further by having a more optimum learning
rate as the gradient is multiplied by the learning rate, which results in the optimum set of
weights [18]. Thus, having a more optimum learning rate means more optimum updates
for the network weight [11].
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Furthermore, improving the performance of the LSTM network is an ongoing chal-
lenge [19], as there is no approach found yet that develops the best architecture. However,
adopting nature-inspired algorithms for optimizing the LSTM parameters may develop the
model performance, as it reduces the need for human input when assigning the parame-
ters [20]. The following section will present state-of-the-art studies on using nature-inspired
algorithms to optimize LSTM parameters.

2.3. State-Of-The-Art Studies

Nature-inspired algorithms have a great impact on optimizing the parameters of the
DL models. The need for trial and error when selecting the parameters is reduced, as the
nature-inspired algorithms recognize the parameters automatically [21].

The Genetic Algorithm (GA) is one of the nature-inspired algorithms used to find the
optimal parameters in the LSTM network for predictive maintenance [22]. The authors
optimized the time steps, the number of LSTM layers, and the number of hidden neurons
in each layer by using the GA. They suggested a procedure that starts with population
initialization, followed by fitness computation for chromosomes, and finally concludes
with genetic operator applications for new population creation, if needed. The design of
the GA is based on chromosome structure, fitness function, crossover operators, mutation
operators, and population updating and termination [22]. The proposed model achieved
an accuracy of 98.14%.

Similarly, another study used the GA to optimize five parameters related to LSTM
hidden layer size, the number of hidden layers, batch size, the number of times steps, and
the number of epochs. The hybrid GA-LSTM was used to predict the next word in the
sentence, which achieved an accuracy of 56% [23].

Furthermore, a swarm-based metaheuristic optimization algorithm called Particle
Swarm Optimization (PSO) was applied to improve the performance of the LSTM network
by optimizing hidden layers, the number of neurons, activation function, the loss function,
optimizers, batch size, and the number of epochs. The hybrid PSO-LSTM was applied to
predict a pollution level based on a weather dataset; it achieved a lower RMSE than the
original LSTM by a value of 0.0007 [24].

A study used the Artificial Bee Colony (ABC) to optimize the weights of an ANN [25].
The author used the hybrid algorithm to propose a new intrusion detection system that
achieved an accuracy of 95.02% [25]. Another study used the BA to train an RNN for
sentiment classification, and it improved the accuracy from 60% for the traditional RNN to
90% for the BA-RNN algorithm [26]. Additionally, the ABC was used to optimize LSTM
parameters (window size, LSTM units, dropout probability, number of epochs, batch size,
and global learning rate) [27]. They used the hybrid ABC-LSTM algorithm for stock market
prediction, which achieved a lower RMSE by 5.6836 [27].

In addition, the LSTM can be integrated with another DL network through the CNN,
which is used if the input data are images in order to extract features and feed LSTMs
that deal with sequential data [28]. A hybrid CNN-LSTM analyzed motion data in a video
to recognize unsafe actions performed by workers. Only applying the CNN resulted in
an accuracy of 82%, but adding the LSTM improved the model accuracy to 97%, as it
stored the information for a long period, which made it possible to consider the long-
term dependencies [28]. The hybrid CNN-LSTM was integrated as well with the ABC to
optimize the type of network, the number of epochs, the LSTM hidden units, the global
learning rate activation function, the step size, the fully connected layer, and the pooling
size [29]. The authors used the hybrid ABC-CNN-LSTM algorithm to detect fake reviews
of a product and resulted in an accuracy of 97% compared to 95% for the CNN-LSTM
algorithm [29].

The following Table 1 summarizes the state-of-the-art studies. It shows the purpose
of the study, along with the available model accuracy or RMSE difference between the
original and hybrid algorithms.
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Table 1. State-of-the-art studies.

Hybrid Algorithm Purpose
Original

Algorithm
Accuracy

Hybrid Algorithm
Accuracy RMSE Difference Reference

GA-LSTM
Predictive

maintenance - 98.14% - [22]

Word prediction - 56% - [23]

PSO-LSTM Pollution level
prediction - - 0.0007 [24]

ABC-ANN New intrusion
detection - 95.02% - [25]

BA-RNN Sentiment
classification 60% 90% - [26]

ABC-LSTM Stock market
prediction - - 5.6836 [27]

CNN-LSTM Worker unsafe
action recognition 82% 97% - [28]

ABC-CNN-LSTM Fake review
detection 95% 97% - [29]

When looking at the literature, there is a lack of optimization of the learning rate
adjustment factor for each gate in the LSTM network, which is an important gap, as the
learning rate controls the weight update. Having a more optimum learning rate means
more optimum updates for the network weight [11]. The following Section 3 will explain a
hybrid BA-CNN-LSTM algorithm that addresses this gap in detail.

3. Proposed Novel Hybrid BA-CNN-LSTM Algorithm

This section describes a novel approach to improve the performance of the LSTM by
optimizing the parameters related to the gates and cell state. The novel hybrid nature-
inspired algorithm adopted the BA to improve the performance of three gates and the cell
state, which it does specifically by optimizing the learning rate factor so that each part has
its own learning rate that is determined based on the global learning rate. Having a more
optimum learning rate means more optimum updates for the network weight [10]. The
bidirectional LSTM layer was used, as will be explained later in Section 3.2, which trains
the input as is and on the reverse copy of the input [30], so four parameters are related
for the forward side, the other four parameters are related for the backward side, and one
parameter is related to the fully connected layer. The following Figure 3 illustrates the
general framework for the proposed BA-CNN-LSTM algorithm, followed by subsections
explaining each part in detail.

3.1. CNN Architecture

The features in artificial porosity images were extracted using the CNN, which uses
filters in the convolutional layer to activate some features in the images. The architecture of
the CNN consists of nineteen layers, starting with five convolutional layers that are each
accompanied by a rectified linear unit layer and a batch normalization layer with four
average pooling layers in between.

The filter in the convolutional layers is a matrix that contains weights. This matrix
is multiplied by the input matrix that will be described in the next section, which results
in a matrix called a feature map [31]. Each convolutional layer is accompanied by a
rectified linear unit layer that maps the negative values to zero and keeps the positive
values for faster effective training [32]. Also, each convolutional layer is followed by a
batch normalization layer to minimize the issue of overfitting [33]. The pooling layers
come between the convolutions in order to reduce the output dimensions while keeping
the features of interest in the images [34]. This reduction contributes to minimizing the
computational cost.
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The normal filter size is 3 × 3 or 5 × 5, as advised in [32]. After trying both sizes, the
5 × 5 size was selected for all five convolutional layers, and the number of filters was 8,
16, 32, 64, and 128, so each layer is double the previous filter number, as advised in [10].
The edges of the images were detected using padding with a stride value of one, so the
pixel shift is one cell. The pooling size is 4 × 4 with a four-stride value to reduce the
computational time, since the image size is large (650 × 630 × 3). There are two types of
pooling. Average pooling calculates the average pixel brightness value of the four numbers
in the pooling matrix. It is compatible with lighter backgrounds, so it was used in the
architecture rather than the max pooling type, which selects the maximum pixel value by
taking the most activated feature, which works better with a dark background [35].

The most popular training algorithm is the stochastic gradient descent with momen-
tum (SGDM) [33], so it was used to train on the artificial porosity images with 20 epochs [36].
A section depth value of 1 was selected for network depth controlling, with a 0.0101 ini-
tial learning rate value that allowed for feature learning, a 0.9568 momentum value for
parameters updating, and a 0.0097 regularization value to mitigate the overfitting risk [37].
They were the same set of parameters found using the BA in the hybrid Bees Algorithm
Regression Convolutional Neural Network (BA-RCNN) developed in [38]. The hybrid
BA-RCNN was used to predict the porosity percentage in each layer of the SLM part. Since
the layers are sequential, the LSTM was added after the CNN to deal with sequential data
for better prediction accuracy, as will be described in the following subsection.

3.2. LSTM Architecture

The features were extracted from the artificial porosity images using the CNN to
feed the LSTM, which retains the information for a long period so that it can remember
long-term dependencies [7]. The following points are detailed mathematical explanations
of the LSTM network.

• Forget Gate
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The first step in the LSTM cell is to decide if the information coming from the previous
time scale is relevant to be remembered or irrelevant to be forgotten. It is based on the
following forget gate equation [9]:

ft = σ × (Xt × Uf + Ht−1 × Wf) (1)

where:
Xt is the current time cycle input;
Uf is the input weight;
Ht−1 is the previous time cycle hidden state;
Wf is the hidden state weight matrix.
Then, the following sigmoid function is applied, resulting in a ft value between 0 and

1 [39].
σ (x) = (1 + e−x)−1 (2)

The ft is multiplied by the cell state of the previous time cycle:

Ct−1 × ft = 0 (Forget everything) (3)

Ct−1 × ft = Ct−1 (Forget nothing) (4)

• Input Gate

This gate is used to quantify the importance of the new input information. It is based
on the following input gate equation [9]:

it = σ × (Xt × Ui + Ht−1 × Wi) (5)

where:
Xt is the current time cycle input;
Uf is the input weight matrix;
Ht−1 is the previous time cycle hidden state;
Wf is the hidden state weight matrix.
Similarly, the sigmoid function is applied, resulting in an it value between 0 and 1.

Passing the information to the cell state is based on a function of the hidden state of the
previous time cycle [24]:

Nt = tanh(Xt × Uc + Ht−1 × Wc) (new information) (6)

Using the tanh function results in a Nt value between −1 and 1. If it is positive, it will
be added to the cell state, and, if it is negative, the information will be subtracted from the
cell state, as shown in the following equation [24]:

Ct = ft × Ct−1 + it × Nt (updating cell state) (7)

• Output Gate

In this gate, the cell transfers the updated information from the previous time cycle to
the next time cycle. It is based on the following output gate equation [9]:

Ot = σ × (Xt × Uo + Ht−1 × Wo) (8)

Likewise, the Ot value is between 0 and 1, because the sigmoid function has been
applied. The current hidden state is a function of the long-term memory and the output,
and it is calculated based on the following equation:

Ht = Ot × tanh(Ct) (9)
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The output of the current time cycle is found using the SoftMax function, as shown in
the following equation [23]:

Output = SoftMax(Ht) (10)

The output with the maximum score is the predicted value.
The above-described mechanism is used to provide a more accurate prediction of the

porosity percentages appearing in sequential layers of artificial porosity images [38] that
mimic CT scan images of parts manufactured by the SLM process. The created artificial
porosity images in [38] consist of 30 3D cubes. Each one was sliced into 100 2D sequential
slices, thus resulting in 3000 slices. Therefore, there are 30 sequences with 100 layers in each
sequence. A total of 18 sequences were used for the network training task, and 6 sequences
were used for the validation set, as well as 6 for the testing set. Reference [38] presented an
example of artificial porosity images that mimic the real porosity images with a similarity
index of 0.9967, as shown in Figure 4 [38].
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The cube was sliced from bottom to top, so the pattern of the slices is expected to start
with no pores, and then, coming to the middle, the pores arise with part of a pore in a slice,
and the remaining part of that pore comes in the following slice, as the slice thickness is
0.01 mm in a cube volume of 1 mm3. The dependencies between the layers are addressed



Appl. Sci. 2023, 13, 2536 10 of 27

in the LSTM, as the important information is stored in the cell state for a long period, as
described in Section 2.1.

The labels of the slices are the actual percent of porosity calculated by dividing the
element numbers that contain the pixel value of the pores (ranging between 110 and 124)
by the image size (650 × 630 × 3), as described in [38]. For example, slice 59 has 2193 cells
with pixel values between 110 and 124, so the actual percent of porosity of this slice is
0.1785 (2193/(650 × 630 × 3)) [38].

The design of the LSTM architecture consists of 8 layers. It starts with a sequence input
layer that inputs the sequential data to the network, followed by a sequence folding layer
that converts the image sequences to a batch of images so that the convolution operation
described in the previous section can be performed on the layers independently [12]. After
folding, the convolution is applied to input data, which is a matrix that contains the pixel
value with a range between 0–255, where 0 represents the black regions and 255 represents
the white regions. The size of this matrix depends on the image size, which is 650 × 630 [31].
After performing the convolution operations to extract the image features, the sequence
unfolding layer is added to restore the sequence structure of the input data, followed by a
flatten layer that collapses the input spatial dimensions to the channel dimension [12].

Then, the bidirectional LSTM layer is added, which takes the input from both directions
(forward and backward). The output of both the forward and backward at each stage is
transferred to an activation layer (neural network). The output from this activation layer
considers the relationship between the past and future layers [40], which increases the
prediction accuracy of the percent of porosity in each layer. Reference [41] showed the
following Figure 5, which illustrates the process for the bidirectional LSTM layer:
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The number of hidden units is 200. Having more hidden units increases the compu-
tation cost without an improvement in the prediction accuracy, and also it increases the
probability of overfitting [13]. The bidirectional LSTM layer is followed by a dropout layer,
which minimizes the risk of overfitting [13], a fully connected layer is added with one
predictor (percent of porosity), and the last layer is the regression layer.
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3.3. BA Process

The BA is a swarm-based optimization technique that performs global and local
searches to find the optimal solution. It is an iterative process that starts with performing
a global search using scout bees. They use the fitness value (validation error) to evaluate
different positions. Since the objective function of this optimization problem is to minimize
the validation error, it is a complex function that cannot be formulated. After that, the local
search selects the best sites and abandons the remaining sites. Then, the intense search
selects the best among the selected sites to recruit more bees in the most promising sites
based on the neighborhood size and there being fewer bees in the other sites to conduct
the local search that is performed simultaneously with the global search. The process is
terminated if the optimal solution is reached, the number of iterations is exceeded, or if
there is no improvement over sequential specified iterations [42].

The following Table 2 shows the values of BA parameters, which were assigned based
on the capability of the computer and using the equations stated in [43].

Table 2. The values of BA parameters.

BA Parameter Symbol Equation Value

Scout bees n - 4
Selected bees m (1/2) × m 2

Elite bees e - 1
Recruited bees for elite sites nep 2 × m 4
Recruited bees for other sites nsp (1/2) × n 2

Neighborhood size ngh 0.1 × (Maximum − Minimum) = 0.1 × (1.1 − 0.9) 0.02

The challenge is in using the BA process to find the optimal values for nine LSTM
parameters to improve the performance of three gates and the cell state, which is specifically
achieved by optimizing the learning rate factor so that each part has its own learning rate
that is determined based on the global learning rate. Having a more optimum learning rate
means more optimum updates for the network weight described in Section 3.2 [11]. The
bidirectional LSTM layer was used, as described in Section 3.2, which trains the input as is
and on the reverse copy of the input [30], this resulted in four parameters related for the
forward side, the other four parameters related to the backward side, and one parameter
related to the fully connected layer. Consequently, the nine optimization variables became
the following:

• Learning rate factor for input gate (Forward);
• Learning rate factor for forget gate (Forward);
• Learning rate factor for cell candidate (Forward);
• Learning rate factor for output gate (Forward);
• Learning rate factor for input gate (Backward);
• Learning rate factor for forget gate (Backward);
• Learning rate factor for cell candidate (Backward);
• Learning rate factor for output gate (Backward);
• Learning rate factor for fully connected layer.

The optimal adjustment factors obtained by the BA (ranging between 0.9 and 1.1) were
multiplied by the global learning rate of 0.0101 [38] to result in a more optimum learning
rate for each part stated above so that the network weights described in Section 3.2 were
updated with more optimum values to improve the performance of the LSTM.

The pseudo-code for the proposed novel hybrid BA-CNN-LSTM algorithm is pre-
sented in the following Figure 6. Reference [38] was used to develop this figure.
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In addition to the pseudo-code, the following Figure 7 shows a flow chart for the
workflow diagram for the proposed novel hybrid BA-CNN-LSTM algorithm.
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4. Results and Discussion

This section presents the results of applying the LSTM network to three sets of data of
artificial porosity images to predict the porosity percentage in the SLM part as mentioned
previously. Also, it was applied in the signal processing context to classify electrocardio-
gram (ECG) benchmark image data [44]. In addition, the turbofan engine degradation
simulation dataset was used to predict the Remaining Useful Life (RUL) of engines using
the LSTM [45].

MATLAB platform was used to design the LSTM network, the CNN, and the BA,
as well as to apply the hybrid algorithms to three benchmark datasets. The system con-
figuration consisted of a single GPU with a memory of 256 GB to be able to handle the
3000 artificial porosity images of size (650 × 630 × 3). Given that the DL algorithms require
high computations, limited BA evaluations were applied to optimize the LSTM parameters.

4.1. Artificial Porosity Images

The novel hybrid BA-CNN-LSTM algorithm was developed using the MATLAB
platform. It was applied to the created artificial porosity images described in the previous
section [38] to predict the percent of porosity in sequential layers of the SLM parts. The
30 sequences were divided into 18 sequences for the network training task, 6 sequences
for the validation set, and the 6 sequences for the testing set. Since each sequence has
100 layers, 1800 slices were used for training, and 600 slices were used for each of the
validation and testing sets. The following Table 3 shows the values of the LSTM parameters
for the four evaluations of the BA.

Table 3. The values of LSTM parameters in the four evaluations of BA (artificial porosity images).

LSTM Parameter 1 2 3 4

Learning rate factor for input gate
(Forward) 1.0618 0.9737 1.0629 1.0810

Learning rate factor for forget gate
(Forward) 0.9472 0.9706 1.0812 1.0177

Learning rate factor for cell candidate
(Forward) 0.9151 1.0451 0.9254 0.9291

Learning rate factor for output gate
(Forward) 1.0349 1.0273 1.0827 1.0300

Learning rate factor for input gate
(Backward) 1.0684 1.0604 1.0265 0.9429

Learning rate factor for forget gate
(Backward) 1.0258 1.0236 0.9195 1.0386

Learning rate factor for cell candidate
(Backward) 0.9749 0.9621 0.9557 1.0006

Learning rate factor for output gate
(Backward) 1.0253 0.9779 1.0094 0.9224

Learning rate factor for fully
connected layer 0.9623 0.9477 1.0915 0.9931

Prediction error for the validation set 0.0115 0.0120 0.0134 0.0135

As can be seen in the previous table, the first evaluation yielded the minimum pre-
diction error on the validation set with a value of 0.0115, so the global learning rate of
0.0101 [38] was adjusted in the forward side of the input gate by multiplying it by 1.0618,
which resulted in a more optimum learning rate value of 0.0107. Similarly, the learning
rate in the forward side of forget gate was improved to 0.0095 by using an adjustment
factor of 0.9472. The new learning rate value for the forward cell candidate was 0.0092
after multiplying the global learning rate by 0.9151. The adjustment factor for the forward
output gate was 1.0348, which resulted in a learning rate value of 0.0104. The new values
for the four backward parameters were 0.0108, 0.0103, 0.0098, and 0.0103 for input gate,
forget gate, cell candidate, and output gate, respectively. They were adjusted using factors



Appl. Sci. 2023, 13, 2536 14 of 27

of 1.0684, 1.0258, 0.9749, and 1.0253, respectively. Finally, the performance of the fully
connected layer was improved as well by specifying a customized learning rate of 0.0097
after multiplying the global learning rate by 0.9623. The following Table 4 summarizes the
new learning rate values for the LSTM parameters:

Table 4. The new learning rate values of LSTM parameters (artificial porosity images).

LSTM Parameter Adjusted Learning Rate Value

Input gate (Forward) 0.0107
Forget gate (Forward) 0.0095

Cell candidate (Forward) 0.0092
Output gate (Forward) 0.0104
Input gate (Backward) 0.0108
Forget gate (Backward) 0.0103

Cell candidate (Backward) 0.0098
Output gate (Backward) 0.0103

Fully connected layer 0.0097

The following Figure 8 shows the training progress for the proposed BA-CNN-LSTM
algorithm using the new learning rate values stated above. The blue line represents the
training progress, and the black line represents the validation set.
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porosity images).

As can be seen from the figure, the training started with a root mean square error
(RMSE) of 0.2 and decreased significantly after the first 200 iterations, and then the chart
experienced a steady state around an RMSE value of 0.02. In the validation set, the chart
started with an RMSE value of 0.05, and it was alternating in the first 150 iterations before
reaching an RMSE value of 0.0160 at the end of the chart.

The following Table 5 shows the average porosity error (the difference between the
actual and predicted percent of porosity) for the training, validation, and testing sets using
10-fold cross-validation. The novel hybrid BA-CNN-LSTM algorithm was compared with
an existing algorithm that used Bayesian Optimization (BO) to optimize the same LSTM
parameters (BO-CNN-LSTM) [46]. Additionally, it was compared with the CNN-LSTM
algorithm without the BA and with the BA-RCNN algorithm that was developed in [38] by
using the same CNN structure and parameters described in Section 3.1.
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Table 5. The average error for percent of porosity (artificial porosity images).

BA-RCNN CNN-LSTM BO-CNN-LSTM BA-CNN-LSTM

Average error for percent of porosity
in the training data 0.0228 0.0160 0.0166 0.0155

Average error for percent of porosity
in the validation data 0.0216 0.0126 0.0128 0.0118

Average error for percent of porosity
in the testing data 0.0223 0.0131 0.0131 0.0122

Adding the LSTM network to the CNN reduced the prediction error in all training,
validation, and testing sets. The hybrid BO-CNN-LSTM did not perform better than the
original CNN-LSTM, so the BO is not recommended to be used in regression problems, as it
performs poorly with a high dimensional objective function of more than 20 dimensions [47].
The CNN-LSTM algorithm was further developed by adding the BA to optimize the LSTM
parameters, which reduced the prediction error further in the validation and testing sets to
reach the minimum error value of 0.0118 that was the result from the validation set of the
novel hybrid BA-CNN-LSTM algorithm.

In order to test the significance of the error differences in the testing set, the two-
sample t-test was conducted to investigate the difference between the BA-RCNN and
CNN-LSTM and between the CNN-LSTM and BA-CNN-LSTM algorithms using the 95%
confidence level. There is no point to performing the test between the CNN-LSTM and
BO-CNN-LSTM, as there was no difference in the testing set. The Minitab software version
17 was used to conduct the tests, as shown in the following Figure 9.
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With a p-value less than 0.05, it meant that the error difference in the testing set was
significant between the BA-RCNN and CNN-LSTM and between the CNN-LSTM and
BA-CNN-LSTM algorithms. Thus, adding the LSTM network reduced the prediction error
significantly. Furthermore, optimizing the LSTM parameters using the BA had a significant
contribution as well in error reduction.

The following Figure 10 shows the validation accuracy for all four algorithms within a
0.02 threshold (the acceptable error) using 10-fold cross-validation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 26 
 

improvement in the testing set was 2% from the CNN-LSTM algorithm and 10% from the 
BA-RCNN algorithm. The improvement was similar to the improvement discussed in Sec-
tion 2.3, as the hybrid ABC-CNN-LSTM algorithm used to detect fake reviews of a product 
yielded an accuracy of 97% compared to 95% for the CNN-LSTM algorithm [29]. The com-
putational time was almost similar for all algorithms. 

 
Figure 10. Validation accuracy for the algorithms using 10-fold cross-validation (artificial porosity 
images). 

As a result, the performance of the LSTM network for predicting sequential data was 
improved after using the BA, as the hybrid BA-CNN-LSTM provided a more accurate 
prediction by 10% for the percent of porosity in sequential layers of artificial porosity im-
ages that mimicked CT scan images of parts manufactured by the SLM process. 

4.2. Electrocardiogram (ECG) Dataset 
The novel hybrid BA-CNN-LSTM algorithm developed using the MATLAB platform 

can be designed to deal with classification problems as well. It was applied to the Electro-
cardiogram (ECG) benchmark images described in [44] to classify human ECG time series 
signals into three classes of cardiac arrhythmia (ARR), congestive heart failure (CHF), and 
normal sinus rhythms (NSR). The following Figure 11 shows an example of the three clas-
ses of ECG time series signals. 

There were 162 recordings with 96 observations from the ARR, 30 recordings from 
the CHF, and 36 from the NSR. Because the dataset was not large enough, the 
“SqueezeNet” pre-trained CNN network was used to extract the features in the images. 
The data were divided into 81 recordings for the training, 41 recordings for the validation 
set, and 40 observations for the testing set. The following Table 7 shows the values of the 
LSTM parameters for the evaluations of the BA. 

  

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Fold Number

Validation Accuracy for the Algorithms using 10-fold 
Cross-Validation 

BA-RCNN CNN-LSTM BO-CNN-LSTM BA-CNN-LSTM

Figure 10. Validation accuracy for the algorithms using 10-fold cross-validation (artificial
porosity images).

The following Table 6 presents the training, validation, and testing average prediction
accuracies of the 10-fold cross-validations for all algorithms, in addition to the time taken
for computations in the best iteration.

Table 6. The prediction accuracy and time for percent of porosity (artificial porosity images).

BA-RCNN CNN-LSTM BO-CNN-
LSTM BA-CNN-LSTM

Training set 85.50% 88.33% 88.33% 88.33%
Validation set 87.33% 95.14% 95.07% 96%

Testing set 85.17% 93.17% 93% 95.17%
Computation

time 13 min 5 s 13 min 4 s 13 min 13 s 12 min 49 s

As can be seen from the previous table, adding the LSTM network to the CNN
improved the prediction accuracy in all training, validation, and testing sets. The testing
accuracy was increased by 8% in the testing set to 93.17%. Optimizing the LSTM parameters
using the BO did not improve the testing accuracy, and it was almost the same with a value
of 93%. The CNN-LSTM algorithm was further developed by adding the BA to optimize
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the LSTM parameters, which increased the prediction accuracy in the validation and testing
sets from 95.14% and 93.17% to 96% and 95.17%, respectively, so the improvement in the
testing set was 2% from the CNN-LSTM algorithm and 10% from the BA-RCNN algorithm.
The improvement was similar to the improvement discussed in Section 2.3, as the hybrid
ABC-CNN-LSTM algorithm used to detect fake reviews of a product yielded an accuracy
of 97% compared to 95% for the CNN-LSTM algorithm [29]. The computational time was
almost similar for all algorithms.

As a result, the performance of the LSTM network for predicting sequential data was
improved after using the BA, as the hybrid BA-CNN-LSTM provided a more accurate
prediction by 10% for the percent of porosity in sequential layers of artificial porosity
images that mimicked CT scan images of parts manufactured by the SLM process.

4.2. Electrocardiogram (ECG) Dataset

The novel hybrid BA-CNN-LSTM algorithm developed using the MATLAB platform
can be designed to deal with classification problems as well. It was applied to the Elec-
trocardiogram (ECG) benchmark images described in [44] to classify human ECG time
series signals into three classes of cardiac arrhythmia (ARR), congestive heart failure (CHF),
and normal sinus rhythms (NSR). The following Figure 11 shows an example of the three
classes of ECG time series signals.
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There were 162 recordings with 96 observations from the ARR, 30 recordings from the
CHF, and 36 from the NSR. Because the dataset was not large enough, the “SqueezeNet”
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pre-trained CNN network was used to extract the features in the images. The data were
divided into 81 recordings for the training, 41 recordings for the validation set, and 40
observations for the testing set. The following Table 7 shows the values of the LSTM
parameters for the evaluations of the BA.

Table 7. The values of LSTM parameters for the evaluations of BA (ECG dataset).

LSTM Parameter 1 2

Learning rate factor for input gate (Forward) 0.9483 1.0422
Learning rate factor for forget gate (Forward) 0.9808 1.0948

Learning rate factor for cell candidate
(Forward) 0.9193 0.9703

Learning rate factor for output gate
(Forward) 0.9264 1.0198

Learning rate factor for input gate
(Backward) 1.0884 1.0804

Learning rate factor for forget gate
(Backward) 1.0912 1.0722

Learning rate factor for cell candidate
(Backward) 1.0150 0.9603

Learning rate factor for output gate
(Backward) 0.9120 1.0578

Learning rate factor for fully connected layer 0.9470 0.9413
Classification error for the validation set 0.1463 0.1220

As can be seen in the previous table, the second evaluation yielded the minimum
classification error for the validation set with a value of 0.1220, so the global learning rate
of 0.00029 was adjusted in the forward side of the input gate by multiplying it by 1.0422,
which resulted in a more optimum learning rate value of 0.0003. Similarly, the learning
rate in the forward side of the forget gate was improved to 0.00031 using an adjustment
factor of 1.0984. The new learning rate value for the forward cell candidate was 0.00028
after multiplying the global learning rate by 0.9703. The adjustment factor for the forward
output gate was 1.0198, which resulted in a learning rate value of 0.00029. The new values
for four backward parameters were 0.00031, 0.00031, 0.00027, and 0.0003 for the input gate,
forget gate, cell candidate, and output gate, respectively. They were adjusted using factors
of 1.0804, 1.0722, 0.9603, and 1.0578, respectively. Finally, the performance of the fully
connected layer was improved as well by specifying a customized learning rate of 0.00027
after multiplying the global learning rate by 0.9413. The following Table 8 summarizes the
new learning rate values for the LSTM parameters.

Table 8. The new learning rate values of LSTM parameters (ECG dataset).

LSTM Parameter Adjusted Learning Rate Value

Input gate (Forward) 0.000302238
Forget gate (Forward) 0.000317492

Cell candidate (Forward) 0.000281387
Output gate (Forward) 0.000295742
Input gate (Backward) 0.000313316
Forget gate (Backward) 0.000310938

Cell candidate (Backward) 0.000278487
Output gate (Backward) 0.000306762

Fully connected layer 0.000272977

The following Figure 12 shows the training progress for the proposed BA-CNN-LSTM
algorithm using the new learning rate values stated above. The blue line represents the
training progress, and the black line represents the validation set.
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As can be seen from the figure, the training started with low classification accuracy
and increased steadily until it reached a percentage value of 100%. In the validation set,
the chart had almost the same pattern and reached a validation accuracy of 87.80% at the
end of the chart. The following three Figures 13–15 show the confusion matrix for the
BA-CNN-LSTM algorithm for all three sets:
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Since it is a classification problem, the t-test was not applicable, as the error is either
zero or one. The following Figure 16 shows the validation accuracy for all four algorithms
using 10-fold cross-validation.
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The following Table 9 presents the training, validation, and testing average classi-
fication accuracy of the 10-fold cross-validation for CNN, CNN-LSTM, BO-CNN-LSTM,
and BA-CNN-LSTM algorithms, in addition to the time taken for computations in the
best iteration.

Table 9. The classification accuracy and time (ECG dataset).

CNN CNN-LSTM BO-CNN-LSTM BA-CNN-LSTM

Training set 100% 100% 100% 100%
Validation set 85.37% 87.80% 87.80% 87.80%

Testing set 92.50% 92.50% 95% 95%
Computation time 3 min 47 s 3 min 52 s 4 min 2 s 3 min 31 s

As can be seen from the previous table, adding the LSTM network to the CNN
improved the validation accuracy in the validation set by 2.5%. Optimizing the LSTM
parameters using the BO or BA improved the testing accuracy from 92.50% to 95%, meaning
that both algorithms perform well in classification problems. The computational time was
almost similar in all algorithms.

4.3. Turbofan Engine Degradation Simulation Dataset

The dataset consists of time series data of 100 engines that start normally at the
beginning, and then some faults appear during the series. The numerical data contain
26 columns starting with a unit number, time in cycles, 3 operational settings, and 21
sensor measurements [48]. The datasets contain 100 sequences, as each engine represents a
sequence that varies in length. There are 100 observations for each of the training, validation,
and testing sets. Because the dataset is numerical, a CNN was not needed to extract the
features, so the hybrid BA-LSTM algorithm was applied using the MATLAB platform to
predict the remaining operational cycles before engine failure. Since the forward LSTM
was used in developing the LSTM architecture [45], only four parameters related to this
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layer were optimized using the BA, which were the learning rate factors for the input gate,
forget gate, cell candidate, and fully connected layer. The following Table 10 shows the
values of the LSTM parameters for the four evaluations of the BA.

Table 10. The values of LSTM parameters in the four evaluations of BA (engine dataset).

LSTM Parameter 1 2 3 4

Learning rate factor for input gate 1.0712 0.9557 1.0413 0.9048
Learning rate factor for forget gate 1.0167 0.9147 1.0244 0.9898

Learning rate factor for cell candidate 1.0747 1.0939 1.0716 1.0878
Learning rate factor for output gate 1.0526 0.9989 0.9378 1.0041

Learning rate factor for fully connected layer 0.9915 1.0902 0.9613 1.0519
Prediction error for the validation set 4.4272 5.2740 6.7158 11.6459

As can be seen in the previous table, the first evaluation yielded the minimum pre-
diction error for the validation set with a value of 4.4272, so the global learning rate of
0.01 [45] was adjusted for the input gate by multiplying it by 1.0712, which resulted in a
more optimum learning rate value of 0.0107. Similarly, the learning rate for the forget gate
was improved to 0.0101 by using an adjustment factor of 1.0167. The new learning rate
value for the cell candidate was 0.0107 after multiplying the global learning rate by 1.0747.
The adjustment factor for the output gate was 1.0526, which resulted in a learning rate
value of 0.0105. Finally, the performance of the fully connected layer was improved as well
by specifying a customized learning rate of 0.0099 after multiplying the global learning
rate by 0.9915. The following Table 11 summarizes the new learning rate values for the
LSTM parameters.

Table 11. The new learning rate values of LSTM parameters (engine dataset).

LSTM Parameter Adjusted Learning Rate Value

Input gate (Forward) 0.0107
Forget gate (Forward) 0.0101

Cell candidate (Forward) 0.0107
Output gate (Forward) 0.0105
Fully connected layer 0.0099

The following Figure 17 shows the training progress for the BA-LSTM algorithm using
the new learning rate values stated above. The blue line represents the training progress,
and the black line represents the validation set.
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As can be seen from the figure, the training started with a root mean square error
(RMSE) of almost 80 that decreased significantly during the first 20 iterations, and then
the chart experienced a steady state around an RMSE value of 20. In the validation set,
the chart followed the same pattern and reached an RMSE value of 17.062 at the end of
the chart.

In order to test the significance of the error differences in the testing set, the two-
sample t-test was conducted to investigate the difference between the LSTM and BA-LSTM
algorithms using the 95% confidence level. There was no point to performing the test
between the LSTM and BO-LSTM, as there was no difference between the algorithms.
The Minitab software version 17 was used to conduct the tests, as shown in the following
Figure 18.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 26 
 

Table 11. The new learning rate values of LSTM parameters (engine dataset). 

LSTM Parameter Adjusted Learning Rate Value 
Input gate (Forward) 0.0107 
Forget gate (Forward) 0.0101 

Cell candidate (Forward) 0.0107 
Output gate (Forward) 0.0105 
Fully connected layer 0.0099 

The following Figure 17 shows the training progress for the BA-LSTM algorithm us-
ing the new learning rate values stated above. The blue line represents the training pro-
gress, and the black line represents the validation set. 

 
Figure 17. Training progress for the hybrid BA-LSTM algorithm (engine dataset). 

As can be seen from the figure, the training started with a root mean square error 
(RMSE) of almost 80 that decreased significantly during the first 20 iterations, and then 
the chart experienced a steady state around an RMSE value of 20. In the validation set, the 
chart followed the same pattern and reached an RMSE value of 17.062 at the end of the 
chart. 

In order to test the significance of the error differences in the testing set, the two-
sample t-test was conducted to investigate the difference between the LSTM and BA-
LSTM algorithms using the 95% confidence level. There was no point to performing the 
test between the LSTM and BO-LSTM, as there was no difference between the algorithms. 
The Minitab software version 17 was used to conduct the tests, as shown in the following 
Figure 18. 

 
Figure 18. The two-sample t-test between LSTM and BA-LSTM algorithms. Figure 18. The two-sample t-test between LSTM and BA-LSTM algorithms.

With a p-value less than 0.05, it meant that the error difference in the testing set was
significant between the LSTM and BA-LSTM algorithms. Therefore, optimizing the LSTM
parameters using the BA had a significant contribution to error reduction.

The following Figure 19 shows the validation accuracy for all algorithms within a 20
cycle threshold (the acceptable error) using 10-fold cross-validation.
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The following Table 12 presents the training, validation, and testing average prediction
accuracy of the 10-fold cross-validation for the LSTM, BO-LSTM and BA-LSTM algorithms
within a 20 cycle threshold (the acceptable difference between the actual and predicted
RUL), in addition to the time taken for computations in the best iteration.

Table 12. The prediction accuracy and time for RUL (engine dataset).

LSTM BO-LSTM BA-LSTM

Training set 72% 72% 73%
Validation set 74% 74% 76%

Testing set 74% 74% 77%
Computation time 4 min 16 s 4 min 18 s 4 min 20 s

As can be seen from the previous table, using the BO to optimize the LSTM parameters
did not improve the performance of LSTM, which confirms the conclusion that it is not
recommended to use the BO in regression problems, as it performs poorly with a high
dimensional objective function of more than 20 dimensions [47]. Adding the BA to optimize
the LSTM parameters improved the prediction accuracy in all training, validation, and
testing sets. The testing accuracy was increased by 3% in the testing set to 77% for the
BA-LSTM algorithm. The computational time was almost similar for all algorithms.

5. Conclusions

Improving the performance of Deep Learning (DL) algorithms is an ongoing challenge.
However, DL is applied to different types of Deep Neural Networks, and Long Short-Term
Memory (LSTM) is one of them that deals with time series or sequential data. This paper
addressed this issue by optimizing LSTM parameters using one of the most popular nature-
inspired algorithms known as the Bees Algorithm (BA) which mimics the foraging behavior
of honey bees. Artificial porosity images were used for testing the algorithms; since the
input data were images, a Convolutional Neural Network (CNN) was added in order to
extract the features in the images and feed the LSTM to predict the percent of porosity
in sequential layers of artificial porosity images that mimicked real CT scan images of
products manufactured by the Selective Laser Melting process.

The MATLAB platform was used to develop and apply the Convolutional Neural
Network Long Short-Term Memory (CNN-LSTM), which yielded a porosity prediction
accuracy of 93.17%. Using the BO to optimize LSTM parameters did not improve the
performance of the LSTM, as the BO performs poorly with a high dimensional objective
function of more than 20 dimensions, which is the case in regression problems. However,
Adding the BA to optimize the same LSTM parameters improved their performance
in predicting the porosity, which yielded an accuracy of 95.17% using the hybrid Bees
Algorithm Convolutional Neural Network Long Short-Term Memory (BA-CNN-LSTM).
Hence, this work has contributed to improving the performance of the LSTM network
for predicting sequential data using the BA. As the input data were images, a CNN was
added to extract the image features to yield a hybrid algorithm (BA-CNN-LSTM) that
provided a more accurate prediction and an improvement of 10% for the percent of porosity
in sequential layers of artificial porosity images that mimicked CT scan images of parts
manufactured by the SLM process.

Furthermore, the hybrid BA-CNN-LSTM algorithm can be designed to deal with
classification problems as well. Applying it to Electrocardiogram (ECG) benchmark images
improved the test set classification accuracy from 92.50% for the CNN-LSTM algorithm
to 95% for both the BO-CNN-LSTM and BA-CNN-LSTM algorithms. In addition, the
turbofan engine degradation simulation dataset was used to predict the Remaining Useful
Life (RUL) of the engines using the LSTM network. A CNN was not needed in this case, as
there was no feature extraction for the images. However, adding the BA to optimize the
LSTM parameters improved the prediction accuracy of the testing set for the LSTM and
BO-LSTM, which increased from 74% to 77% for the hybrid BA-LSTM algorithm.
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Further improvement to the novel hybrid BA-CNN-LSTM algorithm will be done in
the future by optimizing the adjustment factor of regularization to reduce the overfitting,
which in turn is expected to improve the overall performance of the LSTM network.
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